
Chaotic optical communications using

delayed feedback systems

A Thesis
Presented to

The Academic Faculty

by

Alexandre Locquet

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

School of Electrical and Computer Engineering
Georgia Institute of Technology

May 2006



Chaotic optical communications using

delayed feedback systems

Approved by:

William T. Rhodes, Committee Chair
School of ECE
Georgia Institute of technology

David S. Citrin, Advisor
School of ECE
Georgia Institute of Technology

Douglas B. William
School of ECE
Georgia Institute of Technology

Bertrand P. Boussert
School of ECE
Georgia Institute of Technology

Yves H. Berthelot
School of Mechanical Engineering
Georgia Institute of Technology

Date Approved: November 11, 2005



To my loved ones

iii



ACKNOWLEDGEMENTS

I am grateful to Jean-Pierre Goedgebuer, François Malassenet, and Hans Puttgen for having

helped me to get into the double PhD program between Georgia Tech and the Université de
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SUMMARY

Chaotic dynamics produced by optical delay systems have interesting applications in

telecommunications. Optical chaos can be used to transmit secretly, in real-time, a message

between an emitter and a receiver. The noise-like appearance of chaos is used to conceal the

message, and the synchronization of the receiver with the chaotic emitter is used to decode

the message. This work focuses on the study of two crucial topics in the field of chaotic

optical communications.

The first topic is the synchronization of chaotic external-cavity laser diodes, which are

among the most promising chaotic emitters for secure communications. It is shown that,

for edge-emitting lasers, two drastically different synchronization regimes are possible. The

regimes differ in terms of the delay time in the synchronization and in terms of the robustness

of the synchronization with respect to parameter mismatches between the emitter and the

receiver. In vertical-cavity surface-emitting lasers, the two linearly-polarized components

of the electric field also exhibit isochronous and anticipating synchronization when the cou-

pling between the lasers is isotropic. When the coupling is polarized, the linearly-polarized

component that is parallel to the injected polarization tends to synchronize isochronously

with the injected optical field, while the other component tends to be suppressed, but it

can also be antisynchronized.

The second topic is the analysis of time series produced by optical chaotic emitters sub-

jected to a delayed feedback. First, we verify with experimental data that chaos produced

by optical delay systems is highly complex. This high complexity is demonstrated by es-

timating chaos dimension and entropy from experimental time series and from models of

optical delay systems. Second, by analyzing chaotic time series, it is shown that the value

of the delay of a single-delay system can always be identified, independently of the type of

system used and of its complexity. Unfortunately, an eavesdropper can use this information

on the delay value to break the cryptosystem. We propose a new cryptosystem with two

xvii



delayed feedback loops that increases the difficulty of the delay identification problem.
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CHAPTER I

INTRODUCTION

1.1 Introduction

Chaotic dynamics produced by optical delay systems have attracted considerable attention

in the last decade because of their potential applications in telecommunications. Optical

chaos can be used to transmit secretly a message between an emitter and a receiver. The

noiselike appearance of chaos is used to conceal the message, and the synchronization of

the receiver with the chaotic emitter is used to decode the message. Delay systems are

especially attractive for chaotic communications because they can produce highly complex

chaos, which can help to ensure a good concealment of the message.

The work presented here focuses on the numerical study of three topics lying in the field

of chaotic communications.

We begin, in chapter 2, with an introduction of the basic notions of the fields of chaotic

dynamics and chaotic communications. In chapter 3, we study the synchronization process

in the context of coupled laser diodes subjected to external optical feedback. This synchro-

nization process is crucial for message recovery. The chaotic receiver is usually a copy of

the chaotic emitter, and the receiver chaos must synchronize with the transmitter chaos in

order to recover the message. The robustness of the synchronization process is very im-

portant from a practical point of view. If the synchronization process is very sensitive to

parameter mismatch or noise, it will be difficult even for an authorized listener to realize

the synchronization and decode the message. If the synchronization is very robust, then

an eavesdropper possessing a rough copy of the chaotic emitter will be able to recover the

message, and the security of the system will be low. In this chapter, we propose to study

specifically the synchronization mechanisms of semiconductor lasers subjected to the op-

tical feedback produced by an external mirror. We consider dynamical regimes in which

coherence collapse occurs because of the optical feedback, and the the laser output becomes



chaotic. These external-cavity lasers constitute one of the most promising sources of optical

chaos for chaotic communications. Their synchronization has been obtained experimen-

tally but the underlying synchronization mechanisms are not clearly understood. We will

investigate the synchronization of edge-emitting lasers as well as of vertical-cavity surface

emitting lasers, which present some specific polarization instabilities.

In chapter 4, we study the complexity of the chaos produced by an optoelectronic gen-

erator of wavelength chaos, and of the Mackey-Glass delay system, in order to determine

the operational conditions under which highly complex chaos occurs. We calculate this

complexity from the dynamical model of the system, and also assuming that we only know

the experimental time series produced by the chaotic emitter, using specific techniques for

delay systems. A measure of the effectiveness of the encryption is the difficulty with which

the parameters of the chaotic system can be extracted by time series analysis. It is partic-

ularly important to be able to hide the value of the delay time of a chaotic cryptosystem,

because if it is known, it is possible to break the system despite its high dimensionality. We

show that time series analysis techniques can be used to identify the delay value and the

nonlinear function of several chaotic delay systems. These results imply that the security

of chaotic communications is compromised.

Multiple-delay delay systems have been suggested to provide a better security level than

single-delay systems. In chapter 5, we study the delay identification problem in the specific

context of multiple-delay chaotic systems, with the objective of trying to determine if some

architectures of multiple-delay systems can make the delay identification a difficult task.

The next chapter 2, presents some basic concepts that it is necessary to master in order

to understand the remainder of the manuscript. In particular, we introduce the notions of

dynamical system, of chaotic dynamics, of delay system, of Lyapunov spectrum, of time

series analysis, of chaos synchronization, and of chaotic communications.

2



CHAPTER II

CHAOS

2.1 Introduction

The study of chaotic phenomena is part of the broader theory of nonlinear dynamical

systems. The birth of the science of dynamical systems goes back to the second half of the

seventeenth century, when Newton invented differential calculus, the laws of motion, and

the theory of gravity. Physicists have long believed that periodic solutions are sufficient to

describe the oscillatory behavior of dynamical systems after transients have died out. The

seminal research performed by Henri Poincaré at the end of the nineteenth century showed,

however, that simple dynamical laws can lead to very complex steady-state behaviors, that

we now call chaotic behaviors. It was only at the end of the 1960s that a significant part of

the scientific community drew its attention toward this type of phenomena, and that a new

science, the “science of chaos” started to grow. In parallel to the research on the theory of

dynamical systems1, the widespread use of computers has enabled a large number of research

groups, in different scientific fields, to observe chaotic behaviors. Edward Lorenz is a pioneer

of this approach. While simulating fluid convection in the atmosphere, he observed in 1963

irregular oscillations of a new type [1]. He also discovered that if the numerical integration is

repeated with slightly different initial conditions, the steady-state regime has again irregular

oscillations but looks very different. Li and Yorke [2] have proposed to use the term “chaos”

to designate this kind of behavior. Scientists have now discovered that chaos can appear in

a huge number of of biological, chemical, physical, and economic systems.

In sections 2.2 and 2.3, we explain the basic notions and properties associated with dy-

namical systems and delay sytems respectively. In section 2.4, we present the different ways

in which a laser can be made to oscillate chaotically, with a special focus on lasers subjected

1For example, the seminal work by Steve Smale and David Ruelle.



to a delayed feedback. In sections 2.5, we introduce the notions of the Lyapunov spectrum,

dimension, and entropy, which are quantities that are typically used to characterize a chaotic

regime. We also show how these quantities can be computed when the dynamical model

is known. Section 2.6 then explains the procedures to compute these quantities when all

that is know about the system is an experimental time series. Specific difficulties encoun-

tered in the case of chaotic delay systems are also pointed out. Section 3.2.4 presents the

chaos synchronization phenomenon which is fundamental to chaotic communications, whose

principles are explained in section 2.8. The last two sections (2.9 and 2.10) present some

experimental realizations of chaotic communications and explain in what sense this type of

communication can be considered secure respectively.

2.2 Basic notions about dynamical systems

A dynamical system consists of a set of possible states, together with a rule that determines

the present state in terms of past states. If the rule is applied at discrete times, it is called

a discrete-time dynamical system. In the case of continuous-time systels, the governing rule

is usually a set of differential equations.

2.2.0.1 Continuous-time systems

Continuous-time systems can be described by a system of k first-order ordinary differential

equations2 with initial conditions

d~x(t)

dt
= ~F [~x(t), t] (1)

~x(t0) = ~x0 ,

where ~x ∈ R
m is the state vector, ~x0 is the initial state vector, t represents time, t0 is the

initial time, and ~F : R
m → R

m is a vector field. We assume that the field ~F verifies the

conditions that ensure the existence and unicity of the solution of (1) for all t ≥ t0 and for

all initial conditions. When the vector field depends explicitly on time, as in (1), the system

is said to be non-autonomous. If it is not the case, the system is said to be autonomous and

2The reader should keep in mind that it is always possible to find a change of variables that transforms
an nth order differential equation in a system of n first order differential equations.
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the system of differential equations describing its dynamical behavior can be written as

d~x(t)

dt
= ~F [~x(t)] (2)

~x(t0) = ~x0 .

It is common to represent the evolution of an autonomous system in its phase space.

This space is generated by the set of all the variables that are necessary to the describe

the dynamical state of the system. The state of a dynamical system is the set of variables

whose knowledge is necessary to describe, at a given time, the evolution or the history of

this system. In the case of system described by (2), the phase space is R
m. It is interesting

to notice that for a finite-dimensional system like (2), the dimension of the phase space is

equal to the number of initial conditions that are necesary to integrate (1).

If we designate by ~φt(x0) the solution of the system of autonomous equations (2), the

family of applications

~φt : R
m → R

m;x 7→ ~φt(x) , (3)

is called the flow or the ”time-t” map of the dynamical system. This map associates to every

state ~x, the state of the system t units of time later. The set of points3 {~φt(x0) : −∞ <

t < +∞} is called the trajectory of the system going through ~x0. It is easily understood

that the unicity of the solution of the initial value problem implies that two trajectories

of an autonomous system cannot intersect in phase space. This also means that we can

talk of the trajectory going through ~x0, without specifying the time at which the trajectory

reaches ~x0.

2.2.0.2 Discrete-time systems

A map ~φ : R
m → R

m defines a discrete-time dynamical system by the iteration of

~xn+1 = ~φ(~xn) , (4)

where ~xn is the state of the system at the nth iteration and ~φ assigns to each state ~xn, the

next state ~xn+1. Starting from an initial state ~x0, the iteration of the map ~φ leads to a

sequence of vectors (~xn) that is called an “orbit” or “trajectory”.

3In the following, we will designate ~x by the term vector or point.
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2.2.0.3 Attractors

In the remainder of this manuscript, we only consider the case of dissipative systems4.

Dissipation implies that any volume in phase space will contract over time. Any trajectory

will tend asymptotically, i.e. when t → +∞, toward a subset of the phase space. Such a

subset is called an attractor. The set of initial states that lead to trajectories that converge

toward the attractor is called the basin of attraction of the attractor.

The knowledge of the geometry of the attractor helps greatly in the characterization

of the type of asymptotic (or steady-state) behavior a system experiences. The following

attractors can be observed:

• fixed point. The asymptotic behavior is stationary. Therefore the Fourier transform

of the steady-state solution is a Dirac impulse.

• limit cycle, i.e. a closed curve. The steady state solution is periodic and the spectrum

is discrete and constituted by a fundamental frequency and its harmonics.

• torus T r. The asymptotic solution is quasi-periodic and it spectrum has r base

frequencies. In the case of a two-dimensional torus (r = 2), this obviously means

that the spectrum has two base frequencies. When the ratio of the two frequencies

is irrationnal, the trajectories lie on the torus in a dense way and the spectrum is

itself dense5. When the ratio is rational, the solution is periodic and the period is the

smallest common multiple of the two base frequencies. The asymptotic solution is a

closed curve on the torus and the spectrum is discrete.

• strange attractor. The steady-state is chaotic6. Chaos is sometimes defined by

exclusion: a steady state solution of a deterministic system can be said to be chaotic

if it is neither stationary, nor periodic, nor quasi-periodic. Practically, a series of

properties are used to characterize a chaotic signal. We are going to enumerate the

most important ones. A first property is that the spectrum of a chaotic signal is

4Systems which do not experience dissipation are said to be conservative or Hamiltonian.
5This does not mean, however, that the spectrum is a continuous function
6It is possible to observe strange attractors (geometric notion) on which typical trajectories are not

chaotic (dynamical notion) [3].
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continuous and broadband . The spectrum usually resembles that of a noisy process

with sometimes a few dominant frequencies appearing. This also means that the

autocorrelation function, which is the inverse Fourier transform of the power spectral

density, tends rapidly toward zero. Therefore the temporal correlation of the signal

with itself decreases rapidly with time. Another important property is the sensitivity

to initial conditions: two trajectories, initially even very close, diverge over time and

the distance between the trajectories increases, on average, exponentially over time.

The concept of Lyapunov exponent helps quantify the sensitivity of the system to

initial conditions. A Lyapunov exponent measures the divergence or convergence rate

of initially close trajectories. This sensitivity is also linked to the unpredictability

of chaotic systems. Indeed, if the same experience is repeated two times on the

same chaotic systems, two completely different evolutions of the system over time will

be observed. We see that chaotic signals have common characteristics with random

processes even if chaotic systems are fundamentally deterministic.

In addition to knowing the geometry of an attractor, it is interesting to determine its

stability. Intuitively, an attractor A is asymptotically stable if every trajectory that reaches

a neighborhood of A is attracted to it over time. On the contrary, an attractor is unstable

if all trajectories that reach a neighborhood of A move away from A over time. This means

that it is only the trajectories that lie exactly on A that stay on A and any perturbation,

even infinitesimal, will make the trajectories move away from the attractor. We understand

easily that in a real system a trajectory can stay permanently on a stable attractor only.

2.2.0.4 An important consequence of the Poincaré-Bendixson theorem

Some necessary conditions must be verified in order to observe chaos in a dynamical system.

One of these is that the vector field ~F (continuous-time system) or the map ~φ (discrete-time

system) must be non-linear. The famous Poincaré-Bendixson theorem (see e.g. [4, p. 337])

gives another essential condition for the case of a continuous-time dynamical system. This

condition is that the dimension of the phase space must be at least equal to 3 to observe

chaos. This means that a continuous system must have at least three degrees of freedom to
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produce chaotic behaviors.

2.2.0.5 Bifurcation - Routes to chaos

We end this brief introduction on dynamical systems with the notion of bifurcation diagram.

In addition to the state variables, the equations of a dynamical system also involve parame-

ters which keep fixed values for a given experience or simulation. The type of steady-state

solution experienced by a dynamical system depends on the values of these parameters. A

bifurcation diagram represents the evolution of the type of steady-state solution when one

or more parameters are modified. The type of steady state solution is usually represented by

displaying the extrema of an observable when a parameter is varied. A bifurcation, which

corresponds to a qualitative change of a steady-state solution, can be easily spotted in a bi-

furcation diagram. One of the main uses of bifurcation diagrams is to determine the “route

to chaos” of the system under consideration i.e. the way in which chaos is reached when a

parameter value is varied continuously. Several typical routes to chaos have been observed

for low-dimensional systems. One of them is the period-doubling cascade (or sub-harmonic

cascade or Feigenbaum cascade [5]). In this route, limit cycles give rise to other limit cycles

with two times bigger periods until chaos is reached (in which case the steady-state is obvi-

ously aperiodic). Another route to chaos is by quasi-periodicity: a fixed point regime leads

to a limit cycle, then to a torus T 2, and to chaos (Curry-Yorke route) or to a T 2 torus,

then to a T 3 torus, and finally to chaos (Ruelle-Takens route) ). Finally, scientists have also

identified an intermittency route in which phases of periodic behavior and chaos alternate.

The duration of the chaotic phases increases until fully-developed chaos is reached.

In addition to bifurcations, another interesting phenomenon called a crisis can be ob-

served in a bifurcation diagram. It corresponds to the brusque appearance or disappearance

of a strange attractor or to a discontinuous change in the size or shape of an attractor. The

appearance of a crisis can be due to the collision, in phase space, of a strange attractor with

an unstable fixed point or an unstable limit cycle.
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2.3 Delay systems

In the preceding introductory section on dynamical systems (§2.2), we have considered

systems that can be modeled by a set of first-order ordinary differential equations. Delay

systems belong to a different class of systems. These possess a delayed feedback loop and

can often be modeled by a system of first-order delay-differential equations

d~x(t)

dt
= ~F [~x(t), ~x(t− τ)] , (5)

where τ is the delay of the system and ~F is a vector field. We see that for these systems,

the derivative of ~x at time t depends on the value of ~x at the same time t but also on the

value that ~x took in the past (at time t− τ). We understand that the evolution of ~x, after

a time t, can only be determined if we know the values of ~x on the time interval [t, t− τ ].

This means that it is necessary to know a vectorial function on a time interval of length

τ to determine the state of the system and therefore also its evolution. The phase space

is thus, grossly speaking, the space of vectorial functions defined on an interval of length

τ , which is an infinite-dimensional functional space. This infinite dimensionality of the

phase space means that delay systems have the potential to produce very high-dimensional

dynamics. This makes delay systems interesting candidates for secure communications, as

will be explained later in this manuscript.

Delay systems are common in scientific fields such as physiology, biology, epidemiology,

and controls systems. It is well known that a delayed feedback can induce instabilities, and

in chaotic communications, these instabilities are exploited to hide a message, but it should

be noted that a delayed feedback loop can also be added to a system to stabilize it [6, 7].

One of the most famous delay systems is Mackey-Glass system that was proposed in

1977 to model the production of red cells in the bone marrow [8]. The Mackey-Glass

system is often considered the archetype of delay systems and it will be used in chapter 4

as a benchmark for our time series analysis algorithms.

We end this section by mentioning that most chaotic systems studied at the GTL-

CNRS Telecom laboratory (Metz) and at the laboratoire d’optique Pierre-Michel Duffieux
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(Besançon), in the context of chaotic communications, are delay systems that can be mod-

eled by equations of the form (5). Figure 1 represents the bloc diagram of these chaotic

generators. A tunable source is subject to feedback on its control electrode. The feedback

Source F

amplification

delayfilter

x(t)

β

τ

nonlinearity

Figure 1: Bloc diagram of the chaotic delay emitters used at the GTL CNRS Telecom
laboratory.

loop comprises a nonlinear element, a delay line, an amplifier (in the remainder of this

manuscript, β will be a parameter proportional to the amplification), and a filter. It is

to be noted that the block diagram representation leads to a conceptual separation of the

elements of the system that does not necessarily correspond to the way things are realzed

experimentally. Section 2.4 and chapter 4 present different experimental realizations based

on this bloc diagram.

2.4 Chaos in lasers

The topic of this thesis lies in the field of chaotic optical communications. Generators

of optical chaos are a key element of these communications systems. In this section, we

show how the most common source of coherent light used in optical communications, the

semiconductor laser, can be made to produce optical chaos.

2.4.1 Arecchi’s classification

Numerous laser types can be described by equations that that resemble those of Maxwell–

Bloch. These equations are a system of three differential equations, one for the complex
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electric field, one for the complex polarization, and one for the population inversion. Arec-

chi [9] has proposed to classify lasers based on their number of degrees of freedom. The

classification is realized by comparing the typical response times of polarization, electric

field, and population to a perturbation. This information tells us which variables can be

adiabatically eliminated from the Maxwell-Bloch-like equations. Class A corresponds to

lasers whose polarization and populations adapt instantaneously to changes in the electric

field (He-Ne lasers, Ar+ and Kr+ lasers, dye lasers). These lasers have thus only one degree

of freedom since they can be modeled by a single rate equation for the electric field. For

class-B lasers (Ruby, Nd:Yag, CO2 lasers, semiconductor lasers), it is only the polarization

that can be eliminated adiabatically and the lasers have two degrees of freedom. In class

C lasers, no variable can be eliminated adiabatically and the full Maxwell-Bloch system is

needed to describe their dynamical behavior.

In this manuscript, we will only consider the case of semiconductor lasers. Since they

are class B lasers and therefore have only two degrees of freedom, the Poincaré–Bendixson

theorem (cf.§2.2.0.4) predicts that they cannot be intrinsically chaotic. At least one degree

of freedom must be added to make it chaotic. In the following, we show how this can be

realized.

2.4.2 Different ways to make a semiconductor laser chaotic

• 1. Modulation of the cavity losses.

This process called Q-switching is typically used to generate pulse trains but can lead

to chaos under certain conditions [10].

• 2. Modulation of the resonance frequency of the laser cavity.

This can be realized by an electro-optic modulator placed inside the laser cavity that

modifies its refraction index. In this way, the optical path and therefore the resonance

frequency are modified.

• 3. Modulation of the injection current.

Chaos can be observed under suitable conditions [11]. This technique is convenient to
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realize because of the easy access for the experimentalist to the injection current and

the semiconductor laser does not need to be modified.

• 4. External optical injection [12].

The light produced by a laser diode, the master, is optically injected into the active

layer of a slave laser. The master is in a continuous wave (CW) regime and its

frequency is slightly detuned with respect to that of the master. A wealth of dynamical

regimes, including chaos, can be observed in this configuration.

• 5. Delayed feedback.

The effect of the feedback is to reinject into the laser dynamics one or more state

variables, with a delay. These systems are of the type described in section 2.3 and

are of major interest to us. In the following, we present the main types of systems in

which a semicondutor laser is subjected to delayed feedback.

• 5.1 Optoelectronic feedback on the injection current of the laser. In this case, a fast

reponding photodiode (bandwith of a few GHz) produces a current that is an image

of the laser output power and that is added, after a delay τ , to the laser injection

current. Chaos has been observed for this setup [13, 14, 15].

• 5.2 External Optical Feedback. Lasers subjected to external optical feedback are often

called ”external-cavity lasers”. Figure 2 represents a laser diode subject to external

optical feedback. An external mirror is used to optically reinject a fraction of the light

produced by the laser into its active laser. The round-trip time of light in the external-

cavity introduces a delay in the system. A variable attenuator placed between the

external mirror and the laser is used to modify the reinjected power. A very large

number of dynamical behaviors has been observed numerically and experimentally. In

particular, the output power can vary in a very hyperchaotic way, which is interesting

for secure communications. Chapter 3 examines in detail the synchronization of the

chaos produced by two unidirectionally coupled external-cavity lasers. The optical

feedback that we have described above is called coherent optical feedback because
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Figure 2: External-cavity semiconductor laser diode.

the optical field is injected ”coherently” into the slave laser cavity (the cavity length

is smaller than the coherence length of the laser light and no polarization-sensitive

element is placed inside the cavity). Other types of optical feedback exist. The case

of incoherent (or polarization–rotated) optical feedback [16, 17, 18, 19] is represented

in figure 3. A Faraday rotator or a birefringent plate is inserted in the external cavity

and is used to rotate the (linear) polarization of the light emitted by the laser in such

a way that the polarization reinjected into the laser cavity is perpendicular to the

direction of polarization of the laser light. In this way, the optical field reinjected into

the laser cavity does not interfere coherently with the field inside the cavity. It has also

been proposed to use a phase-conjugating mirror as an external feedback source. This

configuration has been called naturally phase-conjugate feedback. Lasers subjected

to phase-conjugate feedback as well as lasers subjected to incoherent optical feedback

can present chaotic behaviors that can be used in chaotic communications [20, 21].

birefringent
plate

Semiconductor
Laser.

Figure 3: Semiconductor laser subjected to incoherent optical feedback. The arrows repre-
sent the direction of linear polarization.
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• 5.3 Several chaotic delay systems have been realized at the Laboratoire d’Optique

Pierre-Michel Duffieux and at GTL-CNRS Telecom on the basis of the block dia-

gram represented in Fig. 1. These systems are used as emitters and receivers in

chaotic secure communications systems (cf. §2.8). The first system that has been

realized experimentally is an optoelectronic generator of chaos in wavelength [22, 23].

This wavelength chaos is emitted by a DBR laser subject to a delayed and nonlinear

feedback applied to its wavelength-changing electrode. After this first setup, opto-

electronic systems have been built that experience fluctuations of the intensity of the

electric field [24, 25], of its phase [26], and of the optical path difference in a coherence

modulator [27, 28]. These last three systems all use electro-optic modulators subject

to delayed feedback on their driving electrode. It is important to notice that contrary

to all previously described systems, the chaos generators presented here (5.3) do not

use intrinsic semiconductor laser nonlinearities. External elements (birefringent plate,

electro-optic modulators) are used to produce nonlinearities, and the laser diode is

used only as a light source. In the next section, we describe in greater detail the

above-mentioned wavelength chaos emitter since it is the optoelectronic system that

has attracted most of our attention during the thesis work. We have taken most of

the experimental time series that we analyze in chapter 4 on this system.

2.4.3 Optoelectronic system producing chaos in wavelength

Figure 4 represents schematically the constitutive elements of the system. This chaos gen-

erator has been described in great detail in references [22, 23, 29, 30] and we will therefore

describe it relatively concisely here. A DBR laser diode is used as a light source whose

wavelength can be tuned by changing the current injected in its driving electrode. The link

between this current and the laser wavelength λ(t) is strictly linear. A constant current

applied to the electrode determines the mean wavelength and a variable current coming

from a delayed nonlinear feedback is also applied to it to create the chaotic fluctuations.

The nonlinearity is purely optical and realized by a birefringent plate placed between two

crossed polarizers. The power P (t) detected by a photodiode after the second polarizer is a
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nonlinear function of the wavelength. The current produced by the photodiode is delayed

by an analog delay line, amplified, and applied to the wavelength-changing electrode. We

have actually slightly modified the experimental setup described in [22, 23, 29, 30] with the

aim of realizing the non-linearity with optical fibers instead of using free-space optics. As

figure 4 shows, the laser light, after going through the waveplate, is injected in an optical

fiber and goes through a fiber-optic polarization controller to counter-balance the polar-

ization fluctuations induced by the optical fiber. The light then goes through a portion of

polarizing fiber which plays the role of a second polarizer, and the power P (t) is detected

at the output of this fiber. The next step in the evolution of this chaos generator will be to

replace the birefringent plate by a highly birefringent optical fiber (polarization-maintaining

fiber).

polarizer

IACT
birefringent

        plate

  tunable
DBR laser

gain
G

 delay τ

isolator

IDBR

filter

 

  

    polarization 
     controller
      

  polarizing fiber

message

P(t)

λ (t)

photodiode

Figure 4: Optoelectronic system generating wavelength chaos.

It can be easily shown that this system is described by the following scalar delay-

differential equation

τRẋ(t) = β sin2[x(t− τ) + φ] − x(t) , (6)

where x is a dimensional variable proportional to the wavelength, τR represents the response

time of the system, β represents the feedback strength, τ is the delay time of the feedback

loop, and φ is an optical phase shift. This kind of system is described by the block diagram

shown in Fig. 1. It is easy to understand that the filter in this case is a low-pass filter.

Parameters β, τ , and φ can be tuned experimentally by modiying the gain G of the amplifier,

the frequency of the oscillator that drives the analog delay line, and the mean current of the
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wavelength-changing electrode respectively. The time series analyses presented in chapter 4

have been mostly performed on this system. Since we needed to compare results obtained

from experimental time series with theoretical results coming from the model, it has been

necessary to estimate accurately the parameters of the experimental system. The interested

reader can find details on the estimation procedure in the theses manuscripts [29, 30]. More

details on the experimental setup and its constitutive elements can be found in [22, 23, 29,

30].

2.5 Lyapunov Spectrum, Dimension, and Entropy

As we have mentioned in the introduction, we believe that a complex chaos is necessary

to mask efficiently an information-bearing signal. An interesting quantity that provides a

measure of this complexity is the dimension of the chaotic attractor, i.e. of the limit set

in phase space toward which chaotic trajectories converge. The dimension gives an order

of magnitude of the number of variables that have to be used to model the dynamics.

Another very interesting quantity is the entropy of the chaotic system. Entropy measures

the “randomness” of the signal. In the context of chaotic regimes, it gives an idea of the

predictability of the system (the larger the entropy, the less the system is predictable). An

indispensable tool to determine dimension and entropy is the Lyapunov spectrum of the

chaotic system. As will be shown later, dimension and entropy can be computed trivially

once the Lyapunov spectrum is known. Chapter 4 is devoted mainly to the characterization,

in terms of Lyapunov spectrum, dimension, and entropy, of the chaotic regimes produced

by various chaotic emitters used in chaotic communication systems.

The Lyapunov spectrum is the collection of all the Lyapunov exponents of the system.

Lyapunov exponents are used to characterize the stability of any kind of attractor since their

definition is sufficiently general to be applied even to sets as complex as strange attractors

(and therefore also to simpler sets like fixed points, limit cycles, and tori). It can be consid-

ered that these exponents are a generalization of standard quantities used to characterize

the stability, like eigenvalues in the case of stationary solutions, and Floquet multipliers

for periodic solutions. In a phase-space of dimension m, there are m Lyapunov exponents
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that correspond to the exponential divergence or contraction rates of infinitesimally close

trajectories, in m orthogonal directions. A positive exponent is the fingerprint of a chaotic

system. When a system has at least two positive exponents, it is called hyperchaotic. Since

the trajectories are supposed to be infinitesimally close, the Lyapunov spectrum is a lin-

earized quantity, i.e. it is computed taking only into account the linear part of the system

in every point of the phase space.

In this section, we give a relatively detailed presentation of the notion of Lyapunov

spectrum, of its numerical calculation when the dynamical model is known, and of the

notions of dimension and entropy. This presentation is largely inspired by references [31,

32, 4]. We consider only the cases of discrete-(4) and continuous-time (2) dynamical systems

that are not subjected to delayed feedback. The important case of delay systems will be

treated in sections 4.3.1 and 4.3.2.

2.5.1 Definition of the Lyapunov exponents

2.5.1.1 Discrete-time systems – One-dimensional iteration

We consider first the case of a discrete-time system which can be described by an iterative

model involving a single variable

xn+1 = φ(xn) , (7)

where x ∈ ℜ is the system’s state variable. The trajectory coming out of the initial state

x0 is the sequence (xn), n = 0, 1, ... . To determine the stability of the system, we must

analyze in which way the distance between two initially close trajectories evolves. We will

consider trajectory (xn) that starts from x0 and (yn) that starts from x0 + δx0, where δx0

is infinitesimally small. Since the distance between the trajectories is infinitesimal, φ can

be replaced by its first-order limited Taylor series and we get

y1 = x1 + δx1 = φ(x0 + δx0) = φ(x0) + φ′(x0)δx0 .

The distance between the two trajectories is therefore initially

|δx1| =
∣

∣φ′(x0)δx0

∣

∣ =
∣

∣φ′(x0)
∣

∣ |δx0|
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and after a second iteration it becomes

|δx2| =
∣

∣φ′(x1)
∣

∣ |δx1| =
∣

∣φ′(x1)
∣

∣

∣

∣φ′(x0)
∣

∣ |δx0| .

It is easily found that the distance after k iterations is

|δxn| =

(

n−1
∏

l=0

∣

∣φ′(xl)
∣

∣

)

|δx0| .

It is well known that if we had wanted to study the stability of a fixed point x∗ of φ, we

would have chosen x0 = x∗ and would have obtained |δxk| = Lk |δx0|, where L = |φ′(x∗)|.

The stability of the fixed point could then be determined by comparing L to unity. In the

case of an arbitrary trajectory, we can define, in a similar way, an effective multiplicative

coefficient

L = lim
n→∞

(

n−1
∏

l=0

∣

∣φ′(xl)
∣

∣

)1/n

. (8)

L is called the Lyapunov number of x0 and the Lyapunov exponent λ is the natural logarithm

of L

λ = ln(L) = lim
n→∞

1

n

n−1
∑

l=0

ln
∣

∣φ′(xl)
∣

∣ . (9)

The existence of the limits defined hereabove and their independence of the initial state x0

can be proved with the help of Birkhoff’s ergodic theorem. Because it is independent of

the initial state, it is meaningful to talk of the Lyapunov exponent of an attractor, without

specifying the initial state. The Lyapunov exponent corresponds therefore to the average

of the local divergence and convergence rates, ln(|φ′(xn)|), along the trajectory.

2.5.1.2 Discrete-time systems–Multidimensional iterations

We consider now a map ~φ : R
m → R

m that defines an iteration involving several variables

(that together form the vector ~x)

~xn+1 = ~φ(~xn) . (10)

We will present the intuitive notion of Lyapunov exponent in this case. We consider a

unitary sphere U centered on the initial state ~x0 and lying in the basin of attraction of
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the attractor under consideration. Since we are interested in the evolution of states that

are initially infinitesimally close to ~x0, we will consider the linear part of ~φ which is its

Jacobian matrix. We call Jl = J~φ(~xl) the Jacobian matrix of ~φ at ~xl and J (n) = J~φn(~x0),

the Jacobian matrix of ~φn, where ~φn is the result of the convolution of ~φ, n times with itself.

We have of course that J (n) = J0J1 · · · Jn−1. When J (n) is applied to U , the unitary sphere

is transformed into the ellipsoid J (n)U . This ellipsoid has m orthogonal axes, which are

larger than unity in the expanding directions of J (n), and smaller than unity in contracting

directions. In the following, we call r
(n)
k , for k = 1, ...,m, the kth longest semi-axis of the

ellipsoid J (n)U . The kth Lyapunov number is defined as

Lk = lim
n→∞

(r
(n)
k )1/n . (11)

The kth Lyapunov exponent is defined by

λk = ln(Lk) = lim
n→∞

1

n
ln(r

(n)
k ) . (12)

The way the Lyapunov numbers and exponents are defined implies that they are ordered

x0

Jφn

φn(x0)

1

r2
n
 

r1
n
 

Figure 5: Evolution of a unitary disk under the jacobian of ~φn.
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by decreasing values

L1 ≥ L2 ≥ · · · ≥ Lm (13)

λ1 ≥ λ2 ≥ · · · ≥ λm . (14)

It can be easily shown that the semi-axis lengths of the ellipsoid J (n)U are the square

roots of the m eigenvalues of the matrix J (n)TJ (n), where T is the transposition operator.

Additionally, the axis directions correspond to the eigenvectors of this matrix. The following

definition of the Lyapunov exponents is therefore equivalent to the preceding one

λk = lim
n→∞

1

2n
ln
∣

∣

∣
Λ

(n)
k

∣

∣

∣
, (15)

where Λ
(n)
k is the kth largest eigenvalue of J (n)TJ (n) which means that

(

n−1
∏

l=0

Jl

)T (n−1
∏

l=0

Jl

)

~u
(n)
k = Λ

(n)
k ~u

(n)
k , (16)

where ~u
(n)
k is the eigenvector associated to the eigenvalue Λ

(n)
k . Oseledec’s ergodic multi-

plicative theorem [33] can be used to prove that the limit (12, 15) exists and that it is the

same for all initial vectors ~x0 belonging to the basin of attraction of the attractor under

consideration. It should be noted that the set of all eigenvectors ~u∞k constitutes a basis of

tangent space in ~x0, that gives the directions in which infinitesimal perturbations evolve

over time, with an exponential rate that is given by the corresponding Lyapunov exponent7.

In the following, we call Ek the vector subspace spanned by all the eigenvectors ~u∞k ,

except the k − 1 first ones. The essential property that will be exploited to determine

numerically the Lyapunov spectrum is

λk = lim
n→∞

1

n
ln

∥

∥

∥

∥

∥

(

n−1
∏

l=0

Jl

)

~u

∥

∥

∥

∥

∥

⇔ ~u ∈ Ek , (17)

where ~u is a unitary vector. This property means that any infinitesimal perturbation be-

longing to the subspace Ek increases or decreases, on average, as eλkt.

7It is important to realize that the eigenvalues and eigenvectors of Jl only have a local meaning.
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2.5.1.3 Continuous-time systems

The definitions presented in the case of a discrete-time system are useful to introduce the

notion of Lyapunov spectrum in the context of autonomous continuous-time systems (2).

This is because the Lyapunov exponents of the continuous-time system are the Lyapunov

exponents of the discrete-time system defined by the ”time-1 map” that corresponds to

the integration of the continuous time system over a unit of time. The time-h map of a

continuous-time autonomous system is defined as

~φh : R
m → R

m; ~xn 7→ ~xn+1 = ~φh(~xn) , (18)

where ~φh is the map that associates to the state ~xn of the continuous system (2), its state h

units of time later. When the continuous process is integrated numerically, the time h can

be the integration step. When the system is known through a measure of some observables,

h can be the sampling period8. The Lyapunov exponents of the time-1 map are obtained

by dividing the exponents of the time-h map by h.

A peculiarity of continuous-time systems is that, except in the case of a fixed point

attractor, one Lyapunov exponent is always equal to zero. The existence of this exponent

is linked to the fact that the distance between two points on the same trajectory cannot

increase indefinitely, nor it can tend toward zero.

2.5.2 Calculation of the Lyapunov spectrum of non-delay systems when the

model is known

In theory, all that has to be done is to compute the set of eigenvalues of the product of

Jacobian matrices given in (16). The Lyapunov exponents would then by obtained by

formula (15). It is not possible of course, to compute an infinite number of Jacobian

matrices and the product (16) has to be truncated. This is not the main problem of the

computation procedure however. We should recall that the eigenvalues Λ
(n)
k correspond to

the lengths of the semi-axis of the ellipsoid J (n)U . When a chaotic attractor is considered,

the ellipsoid will be stretched along certain directions and will shrink along other ones. The

ellipsoid will tend to be crushed along the direction of the eigenvector that is associated to

8i.e. the time interval between two consecutive measurements.
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the largest eigenvalue. This means that the ellipsoid will become very long and very thin.

The eigenvalues that have to be estimated have therefore very different magnitudes, which

results in an ill-conditioned problem that cannot lead to accurate numerical results.

Another approach has to be considered. The computation technique, proposed for the

first time in [34, 35], is based on the relation (17). The starting point is to consider a basis

of orthogonal vectors (~w0
1 , ..., ~w

0
m). The Jacobian matrices Jn are applied in chronological

order to the vectors of the basis which transform into

~z1 = (J0J1 · · · Jr)~w
(0)
1

~z2 = (J0J1 · · · Jr)~w
(0)
2

...

~zm = (J0J1 · · · Jr)~w
(0)
m , (19)

where r corresponds to the number of jacobian matrices taken into account at this stage

of the procedure. Since all of the vectors ~w
(0)
i belong to E1, they increase with a mean

exponential rate equal to λ1 and tend to align along the direction of the corresponding

eigenvector. Before the transformed vectors ~z1, ..., ~zm become degenerate (i.e. for a suf-

ficiently small value of r), an orthonormalization procedure is applied (of Gram-Schmidt

type), leading to a new basis (~w
(1)
1 , ..., ~w

(1)
m ) of orthonormal vectors. The first vector ~w

(1)
1 is

obtained by normalizing ~z1. The second, ~w
(1)
2 , is obtained by subtracting from the vector

~z2 its projection on ~w
(1)
1 and by normalizing the resulting vector. The third vector, ~w

(1)
3 ,

is obtained by subtracting from ~z3 its projections on ~w
(1)
1 and ~w

(1)
2 and by normalizing the

result. The other vectors of the new basis are obtained in a an analog way. Mathematically,
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the orthonormalization can be written as

~w
(1)
1 =

~z1
‖~z1‖

=
~y1
1

∥

∥~y1
1

∥

∥

~w
(1)
2 =

~z2 − <~z2,~y1>~y1

‖~y1‖
2

∥

∥

∥~z2 − <~z2,~y1>~y1

‖~y1‖
2

∥

∥

∥

=
~y1
2

∥

∥~y1
2

∥

∥

~w
(1)
3 =

~z3 − <~z3,~y1>~y1

‖~y1‖
2 − <~z3,~y2>~y2

‖~y2‖
2

∥

∥

∥
~z3 − <~z3,~y1>~y1

‖~y1‖
2 − <~z3,~y2>~y2

‖~y2‖
2

∥

∥

∥

=
~y1
3

∥

∥~y1
3

∥

∥

...

~w(1)
m =

~zm − <~zm,~y1>~y1

‖~y1‖
2 − · · · − <~zm,~ym−1>~ym−1

‖~ym−1‖
2

∥

∥

∥~zm − <~zm,~y1>~y1

‖~y1‖
2 − · · · − <~zm,~ym−1>~ym−1

‖~ym−1‖
2

∥

∥

∥

=
~y1

m

‖~y1
m‖ , (20)

where < · · · , · · · > is the dot product and ~y1
k is the kth vector of the orthogonalization

process, before normalization has been applied.

We then apply the next r Jacobian matrices (the matrices from Jr+1 to J2r) in chrono-

logical order to the new basis (~w
(1)
1 , ..., ~w

(1)
m ). We thus obtain a new set of vectors to

which the orthonormalization procedure is applied, leading to another orthonormal basis

(~w
(2)
1 , ..., ~w

(2)
m ). After repeating this procedure n times, the basis (~w

(n)
1 , ..., ~w

(n)
m ) is obtained.

Since the first vector of the Gram-Schmidt procedure is only normalized, it will point

toward the most unstable direction (associated to λ1) after a sufficiently large number of

stages. The mean rate of change, per iteration, of its length is the Lyapunov exponent λ1.

The other vectors of the Gram-Schmidt procedure lie in the subspace E2 which is spanned

by all the transformed vectors except the first one. Specifically, the second vector of the

procedure does not contain any contribution coming from the first exponent λ1 but contains

a contribution from λ2. The mean rate of change of the length of the second vector thus

leads to λ2. The other exponents are calculated in a similar way.

Therefore, the expression

ln
∥

∥

∥~y
(1)
k

∥

∥

∥+ ...+ ln
∥

∥

∥~y
(n)
k

∥

∥

∥

n
(21)

gives an estimation of the kth largest Lyapunov exponent λk.

We have assumed so far that the Jacobian matrices Jl are known. In case the dynamical
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model is known, the Jacobians can be computed directly from it. In case the model is un-

known, they must be estimated from experimental time series. The estimation of Jacobians

from time series is described in section (§2.6.2) for the case of systems that can be modeled

by a system of ordinary differential equations and in section (§4.3.1) in the case of delay

systems. In the remainder of the section, we explain how the Jacobian matrices can be

computed, when the model is known, in the case of systems that do not have delays.

In the case of a discrete-time system (4), the matrices Jl are simply the Jacobians of

the map ~φ at the different points ~xl of the orbit under consideration. Their determination

is therefore straightforward when the model, and therefore also the map ~φ, are known.

In the case of a continuous-time system, it is necessary to compute the jacobian matrices

of ~φh, which is the time-h map which associates to a vector ~x, the solution of (2), h units

of time after the system has gone through the state ~x. The jacobians Jl = J~φh(~xl) of ~φh at

~xl cannot be determined explicitly in general, but can be found as solutions of a differential

equation, called the variational equation. Consider ~φt(~x), the time-t map applied to the

state ~x, which is a function of t and ~x. By definition of the time-t map, we have

d~φt(~x)

dt
= ~F (~φt(~x)) .

By taking the jacobian of the two terms of the preceding expression, the variational equation

is obtained

dJ~φt(~x)

dt
= J ~F (~φt(~x))J~φt(~x) . (22)

It is a system of linear non-autonomous9 differential equations. The matrix J ~F (~φt(~x))

appearing in (22) can be computed explicitly when the model (2) is known. Since ~φ0(~x) = ~x,

the initial condition of the variational equation is J~φ0(~x) = I, where I is the identity matrix.

The integration of the variational equation and of the dynamical equation of the system

must be performed in parallel. Let’s assume that ~x0, ~x1, ~x2, ... represent successive states

of the dynamical system (2), on the same trajectory, and separated by a time step h.

Starting from an initial state ~x0, the dynamical equation (2) is integrated during h units

9since it coefficients are not constant.
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of time, leading to the value of ~x1. The variational equation is also integrated, at ~x0, for

a time h, giving the sought-after matrix J0 = J~φh(~x0). It is important to understand

that this integration of the variational equation necessitates the knowledge of the matrix

J ~F ( ~x1)[footnote 10], which can only be known because the dynamical equation has also

been integrated. The integration of the dynamical and variational equations starting from

~x1 leads to J1. The repetition of this procedure all along the trajectory under consideration

gives the different jacobian matrices.

2.5.3 Dimension and Entropy

The notions of dimension and entropy are used to characterize in a quantitative way chaotic

dynamical regimes.

Intuitively, the dimension corresponds to the quantity of information necessary to specify

the position of a point on the attractor with a given precision [36]. The dimension also gives

an order of magnitude of the number of variables that are needed to model the dynamics.

The classic topological dimension is not adapted to characterize strange attractors, and a

series of generalized definitions of dimension have been proposed. These definitions can be

applied to sets as complex as strange attractors and lead in these cases to non-integer values

of the dimension. The values of the different dimensions for low-dimensional attractors are

usually similar. The different definitions can be classified based on the fact that only metric

properties are used in the definition or that both metric and probabilistic properties are

used. This latter type of dimension divides an attractor into a set of regions of the phase

space and integrates in its definition the probability of visiting these regions. The capacity

dimension 11 and the correlation dimension are examples of the first type of dimension,

while the information dimension is an example of the second type. We present here, in a

relatively non-formal way, the defintions of capacity and information dimension only.

The capacity dimension DC of an attractor is

D = lim
ε→0

lnN(ε)

ln(1/ε)
, (23)

10that is a function of time.
11or capacity or Hausdorff dimension or Hausdorff-Besicovitch dimension.
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where N(ǫ) is the number of hypercubes of side ǫ that are necessary to cover the attractor.

This capacity dimension gives the same ”weight” to all the hypercubes.

The defintion of the information dimension DI gives more weight to the regions that

are more frequently visisted. It is defined as

DI = lim
ε→0

I(ǫ)

ln(1/ε)
, (24)

where I(ε) = −∑N(ε)
i=1 pi ln(pi), and pi is the probability that the trajectory goes through

the ith hypercube. The quantity I(ǫ) corresponds to the information (in the Shannon sense)

necessary to specify a state of the system with a precision ǫ.

The notion of entropy comes from information theory. It is used to quantify the ”ran-

domness” of a random variable. The definition of entropy, in the Shannon sense, is given

in section 4.4.1.2. In the context of chaotic regimes, the entropy gives an idea of the pre-

dictibility of a system (the larger the entropy, the less a system is predictable). As for the

case of dimension, several definitions of entropy exist, for example the Renyi entropies (of

which the Shannon entropy is a special case) and the Kolmogorov-Sinai entropy HKS. We

refer the reader to [31] for the definitions of the aforementioned quantities.

One of the reason why the Lyapunov spectrum is particularly interesting to determine is

because a dimension and entropy can be computed trivially from it. Specifically, the sum of

the positive Lyapunov exponents is an upper bound of the Kolmogorov-Sinai entropy [37],

as shows the following inequality, called the Pesin inequality

HKS ≤
∑

k:λk>0

λk . (25)

Under certain conditions, it has been proved that the two sides of inequality are equal [31].

Even more, it is actually often considered in the literature that the sum of the positive

exponents is equal the Kolmogorov-Sinai entropy (and the Pesin inequality is thus called

the Pesin identity).

A dimension, called the Lyapunov or Kaplan-Yorke dimension, can be computed from

the spectrum by

DL = k +

∑k
i=1 λi

|λk+1|
, (26)
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where
∑k

i=1 ≥ 0 and
∑k+1

i=1 ≤ 0. This means that the Lyapunov dimension is equal to

the (linearly interpolated) index for which the sum of the Lyapuov exponents, ordered by

decreasing values (13), is equal to zero. The Kaplan-Yorke conjecture [38] states that the

Lyapunov dimension is equal to the information dimension DI . This conjecture has been

proven to be true for certain low-dimensional systems. Even though there is no proof for

the general case, this conjecture is deemed to be valid in a great number of systems and is

frequently used in the literature.

2.6 Basics of time series analysis

Often the knowledge a scientist has of a physical system is a set of times series corresponding

to measured values, at discrete sampling times, of one or more variables of a continuous-

time dynamical system. One of the main challenges is to determine the characteristics of

a dynamical system from these experimental times series, with maybe the help of some

additional information on the nature of the system. Examples of characteristics that are

of particular interest are the type of dynamical regime, the geometry and dimension of the

attractor, and the Lyapunov spectrum. It can also be interesting to be able to predict the

system behavior and to perform noise reduction on experimental time series. Our aim here

is not to present all the different time-series analysis techniques, but only the ones that

have been used during the thesis work. In section 2.6.1, we explain how the phase space can

be reconstructed, which is the starting point of numerous time-series analysis techniques;

in section 2.6.2, we present the procedure to determine the Lyapunov spectrum from time

series in the case of a system that is not subjected to feedback. Section 4.3.1 in chapter 4

treats the case of delay systems.

2.6.1 Phase-space reconstruction

Knowing the state of a deterministic system and therefore of its phase space is of funda-

mental importance. We understand easily that a prediction of the behavior of a system can

only be performed if its state is known. This knowledge is also necessary for numerous time

series analysis techniques, for example for computing the Lyapunov exponents, for noise re-

duction and to determine the geometry of the attractor. Unfortunately, the scientist often
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only has the measure of a single state variable. It is therefore necessary to know ways to

reconstruct the phase space from the measured time series.

Mathematicians have found an answer to this problem in the notion of embedding of

an attractor. An embedding is a continuous and bijective function from a compact set

of phase space R
k to R

m, where m is called the embedding dimension12. This notion is

particularly interesting since it means that every state of the compact set (imagine it is an

attractor) can be represented in a unique way in R
m. In the following, R

m will be called

the reconstructed phase space. There are several ways to reconstruct a phase space but we

will present here only the most famous of all, which is called the method of delays. In this

method, the measure x(t) of a dynamical variable, is associated, for every t, to the vector

~S(t) = (x(t), x(t − ∆), x(t − 2∆), ..., x(t − (m − 1)∆)), which is made up of x(t) and the

values that x took at different times in the past, separated by a time interval ∆. Takens’

embedding theorem and its generalizations [39, 4] prove that an attractor reconstruction

by the delays method is an embedding if m > 2D, where D is the Haussdorf dimension

of the attractor. Moreover, it has also been proved that important quantities such as the

Lyapunov spectrum, attractor dimension, and Kolmogorov-Sinai entropy are invariant with

respect to this type of phase space embedding. This means that these quantities have the

same values in the ”real” phase space and in the reconstructed space, which is a particularly

interesting and useful property. Practically, one often has a time series (xn) which is a set

of measures of a dynamical variable, at different moments in time, separated by a time

interval h called the sampling time. The method of delays in this discrete case associates

to every element xn of the time series, a vector ~Sn

~Sn = (xn, xn−∆, xn−2∆, ..., xn−(m−1)∆) , (27)

where ∆ is the number of samples corresponding to the delay used in the method of delays.

It should be noticed that we use here, for simplicity reasons, the same notation for the delay

time in time units and for the number of samples corresponding to this delay. A common

misuse of the term ”embedding”, which we will use in the following, consists in saying that

12Contrary to the preceding notations, the phase space is noted here R
k.
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the time series has been embedded.

We end this section by giving some information on how to implement the method of

delays. It is essential to determine ”good” values of the number m of delayed variables

and of the delay ∆ used in the reconstruction. Takens’ embedding theorem tells us that a

lower limit of m is equal to two times the attractor dimension. When a time series analysis

is performed, however, this dimension is not generally known. Moreover, Takens’ theorem

does not give any information on the choice of ∆. From a mathematical point of view, the

embeddings for different values of ∆ are equivalent when applied to noiseless data. When

real-world (and therefore noisy) data is used, however, a good choice of ∆ greatly helps the

analyst. It is outside the scope of this manuscript to present and explain the motivations

of the different techniques that can be used to determine m and ∆. We only mention that

the so-called false nearest neighbors technique [40] is often used to determine m, and that

an order of magnitude of ∆ can be found by analyzing the autocorrelation function of the

time series as well as the mutual information13 between the time series ans a translation in

time of this time series. A description of these techniques can be found in [31].

2.6.2 Computation of Lyapunov exponents from time series of non-delay sys-

tems

Section 2.5.2 showed how the Lyapunov spectrum could be computed if the jacobians Jl

were known. These jacobians cannot be found by integrating the variational equation,

which is unkown since the dynamical model is itself unknown. We explain in this section

how these jacobians can be computed from a time series (xn). The estimation technique

has been proposed by Eckmann and Ruelle [41] and has been applied for the first time to

time series by Sano and Sawada [42] and by Eckmann et al. [43].

The first step is an embedding of the time series by the method of delays, leading to the

time series (~Sn) defined in the preceding section. In the reconstructed phase space spanned

by the vectors ~Sn, a map ~φh

13The concept of mutual information, which comes from information theory, is described in section 4.4.1.2.

29



~φh : R
m → R

m; ~Sn 7→ ~φh(~Sn) = ~Sn+1 , (28)

that associates to every state of the reconstructed phase space, the following state in this

same space, can be defined univocally. This map is a discrete model of the continuous-time

system.14

The second step consists in computing the jacobian matrices Jn = J~φh(~Sn). Of course,

the analytic expression of ~φh is unknown and the jabobians cannot be computed by a direct

derivation of the map ~φh. The technique used to compute the jacobians stems from the fact

they represent the linear part of the dynamics in a local approximation. Consequently, if

we determine the set Un(ǫ) = {i : ‖~Si − ~Sn‖ < ǫ}15 of neighbors of ~Sn, for a neighborhood

size ǫ, the jacobian can be obtained by minimizing

∑

i∈Un

∥

∥

∥

~Si+1 − Ĵn
~Si − ~an

∥

∥

∥

2
(29)

with respect to the elements of the estimated Jacobian matrix Ĵn, and with respect to

the vector ~an which is the constant part of the linear approximation of the dynamics in

a neighborhood of ~Sn. This corresponds to a local linear approximation of the dynamics.

Of course, Ĵn can be a good estimation of Jn if the neighborhood size is small enough

to justify a linear approximation. Determining the size of the neighborhoods that have

to be used in the numerical calculation is a non-trivial task. Neighborhood sizes must

be greater than the noise level to avoid fitting the noise rather than the deterministic

dynamics. Additionally, small neighborhoods can lead to a number of neighbors that is too

small to give statistically well determined values of the matrix Ĵn and the vector ~an. On

the contrary, if the neighborhoods are big, the influence of the nonlinearity of the map ~φh

can be important and the linear approximation (29) can lose its meaning. Even when the

neighborhood size has been determined, the search for neighbors itself (in high-dimensional

spaces) is nontrivial and necessitates specific search methods to limit the CPU and memory

14The reader should keep in mind that by numerically integrating a continuous-time system, a discrete
iterative model of the system is created.

15We choose arbitrarily the euclidian norm, which implies that the neighborhoods are hyperspheres of
radius ǫ.
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resources used. The appendix A briefly describes the ”box method” that we have used in

this work to search for neighbors.

The third and last step is the application of the computation technique of the Lyapunov

spectrum previously described in section 2.5.2, where the Jacobians Jn are here estimated

from time series in the way described in the second step.

Though this procedure can be applied in theory to time series produced a by delay

system, the high dimensionality of the attractors of delay systems make it practically im-

possible to reconstruct the attractors with an embedding technique. The specific analysis

techniques that have to be used for delay systems are described in sections 4.2 and 4.3.

2.7 Chaos synchronization

The synchronization of periodic oscillators is a well-known phenomenon that was described

for the first time by Huygens in the seventeenth century. He observed that two pendulums

positioned close to each other on a wall could synchronize their movements thanks to the

vibrations going from one pendulum to the other through the wall. It was long thought

that chaotic systems could not synchronize because of the property of sensitivity to initial

conditions. Fujisaka and Yamada [44, 45, 46] and Pecora and Carroll [47, 48, 49] proved

however this assumption to be false. In particular, Pecora and Carroll proved theoretically,

numerically, and experimentally that two unidirectionally coupled chaotic systems can be

synchronized. Chaos synchronization has since been observed in a large number of chaotic

systems. The main drive of this research on synchronization is the possibility to use it

for chaotic communication and encryption (cf.§2.8). More precisely, the synchronization of

chaos is used to recover an information-bearing message that has been hidden by mixing it

with a chaotic carrier.

Generally, synchronization can occur if two identical or similar chaotic oscillators are

used and if these oscillators are coupled. Figure 6 represents two oscillators that are uni-

directionally coupled by a coupling signal s(t)16. One of the oscillators will be called the

16The coupling can also be bidirectional.
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Emitter E Receiver S

Coupling signal  s(t)

Figure 6: Two unidirectionally coupled oscillators.

”emitter” (E) and the other one the ”receiver” (R). We call ~xe(t) the vector of the dynam-

ical variables of the emitter and ~xr(t) the vector of the dynamical variables of the receiver.

The oscillators are also often designated by the terms ”master” and ”slave” in the case of

unidirectional coupling: we use this latter terminology in chapter 3 that is devoted to the

study of the synchronization of unidirectionally coupled external-cavity lasers.

The synchronization is said to be identical or complete when ~xe(t) ≈ ~xr(t) is obtained a

certain time after the systems are coupled and up to a sufficiently small error. The synchro-

nization is said to be generalized [50] when a functional relation of the form ~xe(t) ≈ ~F (~xr(t))

is obtained17. There are other forms of synchronization but they are out of the scope of this

manuscript. Complete synchronization has been observed numerically and experimentally

for a wide range of systems and we refer the reader to section 2.9 for references. General-

ized synchronization is more difficult to observe but has been found in a limited number of

systems. It has been observed for example in the case of a laser that is optically pumped

by another chaotic laser [51]. It is also worth remembering that it has been conjectured [51]

that numerous results that have been interpreted as an absence of synchronization due to a

too weak coupling could actually correspond to generalized synchronization. The synchro-

nization of chaotic systems is an essential phenomenon in chaotic communications. The

principles of chaotic communications and how the synchronization of chaos is exploited is

presented in the next section.

17Complete synchronization can be considered a special case of generalized synchronization for which ~F
is the identity function.
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2.8 Chaotic communications

Keven Cuomo and Alan V. Oppenheim [52] were the first to realize chaotic communications

experimentally. They built a circuit version of the Lorenz equations and showed the pos-

sibility of using this system as a communication scheme to transmit a small speech signal.

The signal was hidden in the fluctuations of the x signal of the master circuit. The slave

circuit generated its own synchronized x′ signal and by subtracting x−x′ the speech signal

could be recovered. Since then, a large number of schemes that use the synchronization

of unidirectionally coupled chaotic systems for secure communication have been proposed.

These schemes fall into three main categories which we present in this section: chaotic

masking, chaos shift keying, and chaotic modulation. It is important to understand that

the encryption is realized at the physical level and that it is possible to also encrypt the

information-bearing signal with standard algorithmic techniques, as a complement.

We assume in the following that we have two unidirectionally coupled chaotic systems,

E and R, that synchronize in a finite time. To remain general, we do not specify the type

of chaotic system used or the way the synchronization is realized.

2.8.1 Chaotic Masking

In the case of chaotic masking, represented in Fig. 7, the information-bearing signal m(t)

is mixed with the chaotic output of the emitter xe(t). We have represented the special case

of an addition of these two signals. It is thus the sum s(t) = xe(t) +m(t) that propagates

through the transmission channel and that is injected into the receiver. A certain degree of

security will be associated with this form of communication if the properties of the chaotic

“carrier” are exploited correctly, namely its large spectrum and the noiselike appearance of

its time series. In particular, the amplitude of m(t) should be small compared to that of

xe(t) and its spectrum should be contained in the spectrum of xe(t). In this way, it will

be difficult to extract the message by an analysis of a time series or of the spectrum of the

transmitted signal (xe(t)+m(t)). Since a message m of small amplitude is added to a chaotic

carrier of much larger amplitude with large noiselike fluctuations, it is easy to understand

that the observation of the time series will hardly give any information on the message.
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Moreover the fact that the spectrum of the message in contained in that of the carrier

means that first, the fluctuations of the message will occur at a frequency similar to those

of the carrier, which contributes to hide the message at the temporal level, and second, that

it will be difficult to extract the signal through spectral filtering and spectral analysis. The

recovery of the message m(t) is possible in reason of the robustness of the synchronization of

chaotic systems. This means that the synchronization occurs even if small perturbations are

applied to the coupling signal or to the structure of the chaotic systems. The message can

be considered as a small perturbation which does not significantly affect the synchronization

process. Therefore, the chaos produced by the receiver, xr(t), follows its natural tendency

to synchronize with the carrier xe(t) only, and the message can be recovered by subtracting

xr(t) from xe(t). Of course, the synchronization of xr(t) with xe(t) is not perfect when a

perturbation is present and the smaller the perturbation (here it is the message), the better

the synchronization quality is. We understand that since the spectrum of the message must

Receiver REmitter E
+

+
-

+X
e
(t) m(t)

Xr(t)

s(t)

m(t)

Figure 7: Chaotic masking.

be contained in the spectrum of the chaotic carrier, the extent of the chaos spectrum sets the

maximal values of the bit rate that can be used to ensure the secrecy of the communication.

2.8.2 Chaos shift keying

In the case of the chaos shift keying technique, represented in Fig. 8, a parameter p of the

emitter system can take either of two values p0 or p1 depending on the value of the binary

information-bearing signal. The value of parameter p in the receiver, which is a copy of

the transmitter, is set to p0. Depending on the value of the binary message, the receiver

synchronizes or does not synchronize with the emitter. The message can therefore be re-

covered by an analysis of the synchronization error e(t), which is the difference between the
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the emitter chaotic signal xe(t) and the receiver chaotic signal xr(t). This type of commu-

nication will provide a certain degree of security if the chaotic attractors corresponding to

the different values of p are difficult to distinguish. The bit rate of the message is limited

by the synchronization time, i.e. the time needed for the receiver to synchronize with the

emitter, when the value of the emitter parameter p is turned to p0. It is easy to understand

-
+Receiver REmitter E

p p

Xe(t)

Xe(t)

Xr(t)Xe(t) =s(t)

p0

p1

p0

e2(t)

Figure 8: Chaos-shift keying.

that the duration of a bit must but larger than the synchronization time of the receiver.

This synchronization time thus limits the bit rate of the message.

2.8.3 Chaotic Modulation

Finally, the chaotic modulation technique is a concept that corresponds to the generic case

in which the information-bearing signal m(t) participates directly to the dynamics of the

chaotic emitter. More specifically, this means that m(t) must appear inside the equations

of the chaotic emitter. This is clearly not the case for chaotic masking but it could be

considered that chaos-shift keying is a special case of chaotic modulation. Figure 4 shows

that in the case of the optoelectronic emitter of wavelength chaos, the message is a current

that is injected in the electrode that tunes laser wavelength. This corresponds to chaotic

modulation. Chaotic modulation is the technique that has been used the most in the chaotic

communication schemes developed at the GTL-CNRS Telecom laboratory [25, 53, 54]. Since

the message participates directly to the system dynamics, it is reasonable to assume that

the masking can be made more efficient with this type of technique.

We have presented so far different ways of using chaotic dynamics to realize secure

communications. We will end this section by mentioning that there is another branch of
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chaotic communications that focuses on exploiting the information theoretic formalism of

chaos to code a message [55, 56, 57]. The idea is to manipulate the chaotic system to cause

its symbolic dynamics18 to track a prescribed symbol sequence.

In the next section, we present several experimental realizations of chaotic synchroniza-

tion and communication, with a focus on optical chaos.

2.9 Experimental realizations of chaotic communications

Since the discovery of chaos synchronization, a large number of research groups have demon-

strated chaos synchronization and communication experimentally. The first realizations

were based on nonlinear electronic circuits. Pecora and Carrol proved chaotic synchroniza-

tion using an unstable second-degree oscillator coupled to a hysteretic circuit [47, 49]. The

first demonstrations of chaotic communications have used a famous nonlinear circuit called

the Chua circuit [58, 59, 60] and an analog implementation of the Lorenz system [52, 61]19.

A host of other electronic systems have been used since then for chaotic communications

but it is beyond the scope of this work to list them all.

Synchronization of chaos produced by optical systems has also raised the interest of a

large number of researchers because of the potential applications in optical telecommuni-

cations and the higher bit rates than can be obtained. The first experimental realization

of optical synchronization goes back to 1994 when R. Roy and K. S. Thornburg obtained

the synchronization of two mutually coupled solid-state Nd:YAG lasers lying in the same

crystal [62]. In the same year, P. Colet and R. Roy proved numerically that a digital com-

munication between two unidirectionally coupled chaotic solid-state Nd:YAG lasers was

possible [63]. After these early experiments in solid-state lasers, interest has shifted toward

chaotic erbium-doped fiber ring lasers (EDFRLs) and semiconductor lasers. Pioneering

work in synchronization of EDFRL has been performed by G. D. VanWiggeren and R.

18The symbolic dynamics is the dynamics in a finite partition of the phase space, where each element of
the partition is associated with a symbol.

19The Lorenz system is a system of three coupled nonlinear ordinary differential equations modeling fluid
convection in the atmosphere. Edward Lorenz is well known for having been the first to observe chaotic
behavior numerically by integrating the aforementioned system of equations, which has been named after
him.
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Roy [64, 65] who showed that a 126 Mbit/s pseudorandom binary message could be trans-

mitted in a secure way. In later work [66], transmission of a 1 GHz sinusoidal signal was

demonstrated.

It is the synchronization of chaotic semiconductor lasers that has drawn most of the

attention because of their predominance in optical communications. There are different

ways of making the intensity of the light produced by a semiconductor laser vary in a chaotic

way as explained in section 2.4. But by far the most popular method is to use an external

feedback loop. The feedback can be either optoelectronic or fully optical. In the case of

external optical feedback, an external mirror reinjects in the laser cavity a fraction of the

light emitter by this laser. Lasers diodes subject to this type of feedback are called external-

cavity laser diodes (ECLs). The first simulation of the synchronization of unidirectionally

coupled chaotic ECLs goes back to 1996 [67] and the first experimental observations to

1999 [68] for synchronization on the microsecond timescale and 2000 [69] for synchronization

on the nanosecond timescale. Transmission of a 1 GHz sinusoidal signal with a chaotic

masking technique has been obtained in 2000 [70] and a very recent result (2005) proves the

experimental transmission of a 3.5 GHz signal [71]. It has also been proved numerically [72,

73] and experimentally20 [70] that the synchronization process is robust enough to allow

the extraction of an information-bearing signal even when the distortions induced by an

optical channel are taken into account. Chapter 3 is devoted to the numerical study of

the synchronization regimes of external-cavity edge-emitting and vertical-cavity surface-

emiiting lasers. Another interesting type of feedback is the optoelectronic feedback. A big

advantage of using this type of system in chaotic communications is that the synchronization

process does not depend on the polarization state of the optical field that gets to the receiver.

A first type of electronic feedback is being studied by the group of Jia-Ming Liu, in UCLA.

In their scheme, the output power of a semiconductor laser is detected by a fast photodiode

and then added, after a delay, to the diode’s injection current. Transmission of 2.5 Gbit/s

pseudorandom bit sequences has been demonstrated experimentally with this scheme [74].

A second class of systems with optoelectronic feedback has been developed at the University

20For an optical channel constituted by a short optical fiber only.
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of Franche-Comté and at the Georgia Tech Lorraine-CNRS Telecom laboratory, as explained

in section 2.4. This kind of setup is characterized by the fact that the laser diode is used

only as a light source and the nonlinear elements and the feedback loop are external to

the laser. This means that the parameters of the laser itself do not influence the chaotic

dynamics of the system. As an example of this type of realization, reference [25] presents

a generator of optical chaos in intensity which uses a Mach-Zehnder modulator subjected

to an optoelectronic delayed feedback from its output to its control electrode. A 3 Gbit/s

pseudo-random bit stream has been successfully transmitted with this type of generator,

using a chaotic modulation technique. Other realizations belonging to this class of feedback

include a generator of chaotic variations of the wavelength (cf. § 2.4.3) and of the phase [26]

of the optical field.

Some considerations on the security of chaotic communications are presented in next

section.

2.10 Security aspects

One way an eavesdropper can break a chaotic cryptosystem is by making a copy of the

chaotic emitter and by using this copy to obtain chaos synchronization and ultimately

recover the message. This supposes that the eavesdropper has some notion of the chaos-

generating system. It is easy to understand that the robustness of the synchronization

process plays an important and contrasting role. If the synchronization process is not robust

at all, even the authorized receiver will have a hard time extracting the message, especially

in the presence of a long optical channel. If the synchronization process is very robust, even

an eavesdropper with an approximate notion of the emitter’s architecture might be able to

recover the information-bearing signal. The very important process of synchronization and

its robustness is studied in great detail in chapter 3 in the case of coupled external-cavity

edge-emitting and surface-emitting lasers.

An eavesdropper might also try to break a chaotic cryptosystem by intercepting and

analyzing the signal transmitted between the emitter and the receiver. As we have explained

previously (cf.§ 2.6), time series analysis usually begins with a reconstruction of the phase
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space of the system, based on the measured time series (xn). This means that the full

dynamics of the system is reconstructed based only on the knowledge of a sequence of

measurements (xn). As we have seen in section 2.6, this is usually done by associating to the

sequence (xn), a sequence of vectors (xn, xn−∆, xn−2∆, ..., xn−(m−1)∆) which are constituted

by the measurement xn and m values of that measurement at different times in the past,

separated by a suitably chosen number of iterates ∆. Once the phase space has been

reconstructed, nonlinear time series analysis techniques can be used to estimate the system

parameters and for dynamical forecasting. This capability to predict the behavior of the

system has been used to break certain chaotic cryptosytems [75, 76]. This works because

the chaotic carrier only is predicted and the message can be obtained by comparing the

predicted time series with the measured one. In order to counter these attacks, it has been

proposed to use high-dimensional chaotic signals to hide the message [77, 78]. This is due

to the fact that the number m of delayed measurements that have to be taken into account

in the reconstruction of the phase space increases linearly with the dimension of chaos. It is

very difficult to work in very high-dimensional spaces because of the inevitable large sizes

of the vectors involved, of the long computations times and above all because unreasonably

long time series would have to be used to obtain statistically significant results. For this

reason, delayed systems seem to be good candidates for chaotic cryptosystems. They are

easy to realize and can at the same time produce very high-dimensional dynamics. For

example, we have seen that the generator of wavelength chaos described in section 2.4.3 can

be modeled by the following scalar nonlinear delay-differential equation

τRẋ(t) = β sin2[x(t− τ) + φ] − x(t) , (30)

where τ is the delay in the feedback loop, β is the feedback strength, φ is a phase shift, and

τR is the response time. Only one variable is present in this model, but at the same time the

phase space is infinite-dimensional: it is the functional space of differentiable functions on

an interval of length τ . This means that very high-dimensional dynamics can occur. Hegger

et al. [79] have shown, however, that in spite of the high dimensionality of delay systems,

it is possible to analyze these system in a low-dimensional projection of their phase space.
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And certain time-delay cryptosystems have been broken by working in this low-dimensional

system [80, 81]. This projection of the phase space can only be constructed however if the

value of the delay τ of the system is known. This is why it is particularly critical to hide

this value and we propose to examine the problem of the identification of the delay time in

chapters 4 and 5.
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CHAPTER III

SYNCHRONIZATION OF UNIDIRECTIONALLY

COUPLED EXTERNAL-CAVITY SEMICONDUCTOR

LASERS

3.1 Introduction

Semiconductor lasers are ubiquitous in the modern world. They are the principal source

of coherent light in optical telecommunications, they are used in optical storage devices,

in laser pointers, to cite only a few applications. It has rapidly appeared to the scientific

community that these devices are very sensitive to optical feedback, particularly because

of the low reflectivities of their facets. Optical feedback first appeared as a parasitic effect

due to unwanted reflections on an optical channel or on an optical storage device. Later,

the scientists realized that the large variety of dynamical regimes produced by laser diodes

subjected to optical feedback could be exploited in useful applications. Depending on the

operating conditions, the feedback can lead to a decrease of the linewidth, to a shift of

the laser frequency, or to a loss of coherence and to chaotic fluctuations of the dynamical

variables of the laser. The frequency shift induced by the optical feedback is being currently

exploited in commercially available wavelength-tunable laser diodes used in wavelength-

multiplexed systems. External-cavity lasers in the coherence collapse regime are one of the

most studied sources of optical chaos for chaotic communications. They are easy to realize

experimentally and the parameters of the feedback can be easily tuned experimentally. We

study in this chapter the synchronization of two unidirectionally coupled external-cavity

laser diodes. As was explained in the preceding introductory chapter, the details of this

synchronization process have important consequences for chaotic cryptosystems, in terms

of easiness of realization and security. It is therefore crucial to master this process to realize

efficient chaotic communications.



In section 3.2, we study the synchronization of edge-emitting semiconductor lasers, while

in section 3.3, we study the synchronization of vertical-cavity surface-emitting lasers.

3.2 Synchronization of external-cavity edge-emitting semi-

conductor lasers

In section 3.2.1, we present the main characteristics of edge-emitting semiconductor lasers

and the rate equation model we use to simulate their dynamical behavior. In section 3.2.2,

we present the Lang and Kobayashi model for the dynamical behavior of a semiconduc-

tor laser subjected to external optical feedback, and section 3.2.3 presents the model for

unidirectionally coupled external-cavity lasers. Two types of synchronization regimes are

identified in section 3.2.5; the regions of parameter space in which these occur are presented

in section 3.2.5; and finally, section 3.2.6 shows under which conditions it is possible to

observe a transition between the two synchronization regimes.

3.2.1 Semiconductor lasers and rate equations

We present here very briefly some of the characteristics of semiconductor lasers, and the

rate equation model that we use to model their dynamical behavior.

Most semiconductor lasers nowadays employ either a double heterostructure or a quantum-

well heterostructure [82]. We have represented in Fig. 9 a Fabry-Pérot edge-emitting double-

heterostructure semiconductor laser. A thin active layer of INGaAsP semiconductor ma-

terial is sandwiched between two layers of a different semiconductor material, InP, which

has approximately the same lattice constant. This creates a forward-biased diode when

an external voltage is applied, and the injection current J ensures a permanent supply of

electrons and holes (carriers1) in the active layer. The use of an heterostructure (i.e. of

different semiconductor materials) leads to a good transverse confinement of the carriers

and of the optical field. The carriers are trapped into the active region by the electrostatic

barriers created by the bandgap difference between the active and cladding layers2. The

1The two highest energy bands are the valence and conduction bands. In semiconductor materials, the
conduction band is separated from the valence band by an interval of forbidden energies, called the bandgap.
Free electrons in the conduction band and holes in the valence band are designated by the term carriers.

2The active layer material has a smaller bangap than the semiconductor material of the cladding layers.
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optical confinement comes from the fact that the active layer has a higher refractive index

than the surrounding cladding layers, and therefore behaves likes a dielectric waveguide

which confines the photons by total internal reflection. It is in this active layer that the

interactions that lead to the laser effect take place. The fundamental mechanism that leads

to the emission of coherent light is stimulated emission. Stimulated emission corresponds to

an electron-hole recombination stimulated by a photon existing in the semiconductor mate-

rial, which leads to the coherent amplification of the incoming photon through the creation

of a second photon, with the same energy, phase, propagation direction, and polarization

as the incoming photon3. Stimulated emission has to compete against photon absorption

processes. The state at which the rates of stimulated emission and photon absorption

are equal is called transparency, which corresponds to the appearance of population inver-

sion [82]. While above transparency there is a net amplification in the medium, it is not

enough to overcome the losses at the facets (mirrors), through which the light is emitted.

Coherent light is emitted only when the net optical gain overcomes both the internal losses

and the mirror losses. Practically, this means that the injection current must be larger

than a minimal value, called the threshold current. The remaining requirement to have

an autonomous laser is to have a resonant cavity which provides a feedback mechanism.

The resonant cavity provides frequency selection and the waves that verify the resonance

condition are called the longitudinal modes of the laser. There are different ways to realize

the resonant cavity. In Fabry-Pérot lasers, the resonator is a Fabry-Pérot cavity formed

by cleaving the wafer along parallel crystal planes, to create partially reflecting flat mirror

facets at the edges of the wafer. This type of edge-emitting laser usually emits several longi-

tudinal modes, separated several hundreds of GHz. Other realizations of the resonant cavity

have been proposed (most importantly in DBR and DFB edge-emitting lasers) which lead

to a single-mode emission which is highly desirable in optical telecommunications. A differ-

ent type of laser architecture is used in vertical-cavity surface-emitting lasers (VCSELs). In

these lasers, the cavity is vertical, and the mirrors are parallel to the wafer surface, resulting

3Spontaneous emission can also occur randomly, creating photons with no phase relation with those
resulting from stimulated emission.
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in vertical surface emission. These surface-emitting lasers are always single-mode because

of the very short length of their resonant cavity. A more detailed description of VCSELs

can be found in section 3.3.
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Figure 9: Double heterostructure Fabry-Perot edge-emitting laser.

In this work, we only consider single-mode semiconductor lasers, and until stated oth-

erwise, we will assume that the lasers are edge-emitters.

The dynamical behavior of a semiconductor laser can be modeled by a system of ordi-

nary differential equations called rate equations. These equations result from a semiclas-

sical approach in which the electric field is treated classically and the carrier population

and material polarization are treated according to quantum mechanics. Additionally, in a

semiconductor medium, the material polarization reflects almost instantly any change in

the electric field and in the carrier population. The polarization is therefore adiabatically

eliminated in the equations, leading to a system of two equations, one for the complex

electric field, and one for the carrier number

dE(t)

dt
=

{

1

2
(1 + iα)

[

G(N, |E|2) − 1

τp

]}

E(t) , (31)
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dN(t)

dt
=
J

e
− N(t)

τn
−G(N, |E|2)|E|2(t) , (32)

where:

• N(t) [dimensionless] is the normalized carrier number i.e. the normalized number of

electron-hole pairs in the active region.

• E(t) = A(t)eiφ(t) [dimensionless] is the slowly-varying complex electric field, corre-

sponding to the only longitudinal mode present. The complete complex electric field

is of the form F (t) = E(t)eiωt = A(t)eiΩ(t), where ω is the angular frequency of the

laser in a CW (continuous wave) regime, and Ω(t) is the total phase of the electric

field. The variable A(t) is the amplitude of the electric field, and φ(t) is sometimes

called the slowly-varying phase. The electric field is normalized in such a way that

the total number of photons in the active layer is equal to |E(t)|2 = A(t)2.

• α is the linewidth enhancement factor. It introduces a coupling between the amplitude

and the phase of the electric field. This coupling is due to the fact that a change in

the amplitude induces a change in the carrier number through (32), and that, in

semiconductor medium, a change in carrier number induces a change of the index of

refraction, and therefore also of the phase of the electric field.

• G(N, |E|2) [s−1] is the optical gain. The following expression is often used

G(N, |E|2) = GN (N −N0)/(1 + ε|E|2) , (33)

where GN [s−1] is the differential gain, N0 is the carrier density at transparency, and

ǫ [dimensionless] is the gain saturation coefficient, which takes into account phenom-

enologically the gain reduction with the optical power due to spatial and spectral hole

burning.

• τp [s] is the photon lifetime. The quantity 1/τp represents the total losses (in the

active layer and at the cleaved facets) per unit time.
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• τn [s] is the carrier lifetime. The quantity 1/τn represents the carrier recombination

rate by all processes other than stimulated emission.

• J [A] is the injection current and e is the absolute value of the electron charge.

Starting from (31), it is easy to determine the equation for the amplitude A and slowly-

varying phase φ of the electric field

dA(t)

dt
=

{

1

2

[

G(N,A2) − 1

τp

]}

A(t) , (34)

dφ(t)

dt
=
α

2
[G(N,A2) − 1

τp
] , (35)

The rate equation for the amplitude (34) expresses a competition between a gain term,

1
2G(N,A2), and a loss term, −1/(2τp). Laser emission occurs only if the gain is larger than

the losses. In the equation for the carrier number N , the term J/e represents the number

of carriers per unit time supplied by the injection current, and the terms −G(N,A2)A2(t)

and −N(t)/τn represent the carriers consumed by unit time, by stimulated emission and by

all the processes other than stimulated emission, respectively.

It is important to notice that only two variables, A and N , are independent. These two

variables can be found by solving the two equations (34) and (32) only, and the phase is then

obtained by solving Eq. (35). This means that a solitary semiconductor laser has only two

degrees of freedom and is therefore a class B laser in Arecchi’s classification (cf. §2.4.1). The

Poincaré-Bendixon theorem (cf. § 2.2) allows us to conclude that an autonomous solitary

edge-emitting semiconductor laser cannot behave chaotically.

3.2.2 External-cavity semiconductor lasers

3.2.2.1 The Lang and Kobayashi model

An experimental realization of coherent optical feedback is represented in Fig 10. In this

setup, an external mirror is used to reinject in the active layer, after a delay, a fraction of

the light emitted by the laser. This type of system is called an external-cavity laser. A

tunable attenuator in the external cavity is used to vary the power reinjected into the cavity.
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Depending on the operating parameters, the laser can be stabilized or destabilized by the

optical feedback. Under certain conditions, very hyperchaotic behaviors can be observed,

making these systems interesting for chaotic communications.

external
  mirror

Semiconductor 
      Laser

A(t)eiΩ(t)

  tunable  
attenuator

LLext

r3 r2 r1

Figure 10: Edge-emitting semiconductor laser subjected to external optical feedback.

In 1980, Lang and Kobayashi [83] propose the following model to describe the dynamical

behavior of a single longitudinal mode external-cavity laser

d[A(t)eiφ(t)]

dt
=

{

1

2
(1 + iα)

[

G(N,A2) − 1

τp

]}

A(t)eiφ(t) +
κ

τin
A(t− τ)eiφ(t−τ)e−iωτ , (36)

dN(t)

dt
=
J

e
− N(t)

τn
−G(N,A2)A2(t) . (37)

The only difference with respect to the solitary4 laser, is the term κ
τin
A(t− τ)eiφ(t−τ)e−iωτ ,

which represents the complex electric field fed back into the active layer by the external

mirror. The meaning of the additional quantities is the following

• κ is the dimensionless feedback parameter. The quantity κ2 corresponds to the ratio

between the power that enters the laser cavity because of the external feedback, to the

power that is reflected inside the cavity by the cavity mirrors. Experimentally, κ is

modified by varying the attenuation of the tunable attenuator present in the external

cavity.

• τin is the roundtrip time of light in the laser cavity. In the remainder of this manu-

script, we often use the quantity γ = κ/τin which is called the feedback rate.

4i.e. not subjected to external optical feedback.
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• τ is the roundtrip time of light in the external cavity. Typical values of τ are in the

range going from 0.1 ns to 10 ns, which correspond to cavity lengths going from 10

cm to 1m. Short cavities that are only a few centimeters long have been recently

studied [84, 85].

The quantity ωτ is often called the phase accumulation in the external cavity or the feedback

phase. Obtaining a specific value of ωτ necessitates an extremely precise (sub-wavelength

and therefore sub-micrometric) positioning of the external mirror. It is important to note

that the three variables A, φ, and N are no longer independent, and that chaotic solutions

can therefore exist. Additionally, the presence of a delay creates an infinite number of

degrees of freedom and potentially very high-dimensional dynamics. This model neglects

multiple reflections on the external mirror and is valid only for ”weak to moderate” feedback

(κ≪ 1).

From Eq. (36), it is easy to determine the equations of the amplitude and the phase of

the electric field

dA(t)

dt
=

{

1

2
[G(N,A2) − 1

τp
]

}

A(t) + γA(t− τ) cos[ωτ + φ(t) − φ(t− τ)] , (38)

dφ(t)

dt
=
α

2
[G(N,A2) − 1

τp
] − γ

A(t− τ)

A(t)
sin[ωτ + φ(t) − φ(t− τ)] . (39)

Despite its simplicity, this model has proved to be extremely successful. A great number

of experimentally observed dynamical behaviors have been reproduced with this model, and

some unknown behaviors have been predicted and later confirmed experimentally.

3.2.2.2 Stationary solutions and dynamical behavior

In the case of a solitary laser, the stationary solutions, which correspond to a laser in a

continuous-wave regime, can be easily found by imposing the following conditions in the

rate equations (32), (34), (35)

A(t) = AStat , (40)

Ω(t) = ωt+ φ(t) = ωStat , (41)

48



N(t) = NStat , (42)

where AStat, ωStat, and NStat are constants that correspond to the values of the amplitude,

frequency, and carrier number in a stationary regime. Neglecting the gain saturation, we

obtain the following stationary solution

NStat = N0 +
1

GN τp
, (43)

AStat =

√

J
e − NStat

τn

GN (NStat −N0)
, (44)

ωStat = ω . (45)

This solution exists only if the quantity in the square root in (44) is positive, which occurs

if the injection current is larger than the threshold current Jth given by

Jth =
eNStat

τn
=
eNth

τn
, (46)

where Nth = NStat is the carrier concentration at threshold. When the injection current is

larger than the threshold value, the laser emits coherent light whose intensity increases with

J , while the frequency and the carrier number remain clamped to the threshold values.

We consider now the case of a laser subjected to external optical feedback. Proceeding

similarly to the preceding case, and neglecting the gain saturation, it is found that an

external cavity laser has several stationary solutions whose frequencies ωStat are of the form

(1/τ)yZ , where yZ are the zeros of the function

f(y) = y − ωτ + γτ
√

1 + α2 sin[y + arctan(α)] . (47)

The values of the stationary carrier number and of the amplitude of the electric field are

given by

NStat = Nth − 2γτp
GN

cos(ωStatτ) , (48)

AStat =

√

J
e − NStat

τn

GN (NStat −N0)
. (49)

The number of stationary solutions of an external-cavity laser is therefore equal to the

number of zeros of the function f(y), represented in Fig. 11. A linear stability analysis
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shows that the zeros for which f(y) cuts the y axis with a negative slope correspond to

unstable stationary solutions called antimodes. When the y axis is cut with a positive

slope, the corresponding stationary solutions can be stable and are called external-cavity

modes.
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Figure 11: The zeros yZ of f(y) give the values of ωStatτ .

It is easy to see that when the feedback rate γ or the delay τ are increased, additional

stationary solutions appear by mode–antimode pairs, corresponding to saddle-node [4] bi-

furcations. When γ or τ are further increased, some of the modes can be destabilized

and chaotic attractor can appear near (in phase space) the formerly stable modes. Several

nearby chaotic attractors can merge and lead to a trajectory in phase space that visits all

of them in a process called chaotic itinerancy. The corresponding chaotic state is named

“fully-developed coherence collapse” and is an indication of high-dimensional chaos [86, 87].

A classification of the dynamical behaviors of external-cavity laser diodes has been

established for increasing feedback rates:

• Regime I: For very low feedback rates, only one external-cavity mode exists. The laser

linewidth is smaller or larger than that of the solitary laser, depending on the value

of the feedback phase.
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• Regime II: For larger feedbacks, mode hopping between the different existing external

cavity modes occurs.

• Regime III: When the feedback rate is increased, the frequency of mode hopping

decreases and in regime III, the laser oscillates in only one external cavity mode,

which is the mode of minimum linewidth.

• Regime IV: In this regime of moderate feedback, coherence collapse occurs. The

linewidth of the laser increases greatly and the output power varies chaotically.

• Regime V: In this regime of strong feedback, the laser oscillates in only one stable

mode and the linewidth is greatly decreased.

These different regimes have been observed both numerically with the Lang and Kobayashi

model and experimentally. Another interesting dynamical regime is the regime of “low-

frequency fluctuations” (LFF), which usually occurs for an injection current close to the

solitary laser threshold. A LFF regime is characterized by brutal dropouts of the mean

power of the laser, followed by progressive power buildups [88]. The brutal power dropouts

often occur at irregular times but, in certain cases, the time interval is almost constant,

and the regime is named “periodic LFF”. We refer the reader to the thesis manuscripts [89]

and [90] for more details on the various dynamical regimes of external-cavity lasers.

3.2.3 Unidirectionally coupled external-cavity lasers

As mentioned in the introduction, the synchronization of chaotic semiconductor lasers has

been extensively studied since these devices are key elements of all-optical communication

systems. In particular, external-cavity semiconductor lasers have attracted considerable

attention (see for example [91] and references therein). When we started our work on the

synchronization of ECLs, however, despite the relatively large literature on the subject, it

was not clear that there existed two different types of synchronization. We can cite as an ex-

ample the experimental paper [92] called “Experimental verification of the synchronization

condition for chaotic external-cavity diode lasers”. The authors claim to have verified the

synchronization condition, when it is only a synchronization condition for a specific regime.
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Moreover, the authors cite references that correspond to very different operating conditions

as if they corresponded to the same. We contributed to put the existence of two types of

synchronization into light [93, 94, 91], and we studied the robustness and stability regions

of these two synchronization regimes. As we mentioned before, the synchronization is a

particularly critical phenomenon for chaotic communications, thus we think this work can

be useful in real applications of secure communications using ECLs. When we began this

research, the importance of the presence or the absence of an external-cavity at the slave

laser was not clearly understood. We have studied this aspect also, in light of the results on

the two synchronization regimes. We should also cite the work that has been done during

a similar time frame by Murakami and Ohtsubo [95] and by Koryukin and Mandel [96].

We present in this section the model used for undirectionally coupled external-cavity

lasers. In section 3.2.4, we describe the different possible synchronized solutions. In Sec-

tion 3.2.5, we discuss the parameter regions in which the two types of synchronization occur,

and section 3.2.6 explains under which circumstances transitions betwen synchronization

regimes may occur.

Figure 50 shows schematically the setup of the system under study. The master laser

(ML) and the slave laser (SL) are identical semiconductor lasers with optical feedback from

external mirrors. We assume that the mirrors are positioned in such a way that the external

cavity length (defined as the distance between the laser facet and the mirror) is the same

for both lasers. The output of the ML is injected into the SL via the optical isolator (OI).

The rate equations for the complex electric fields and carrier densities in the lasers are the

Lang-Kobayashi equations, where the equation for the field in the SL contains an additional

term that accounts for the optical injection from the ML [97]. The equations are

Ėi =
1 + iα

2
[Gi(t) − 1/τp,i]Ei(t) + γiEi(t− τ) exp [−i(ωτ)i]

+ηEm(t− τc) exp [−i(ωmτc − ∆ωt)] , (50)

Ṅi = Ji/e−Ni(t)/τn,i −Gi(t)|Ei(t)|2 . (51)

Here, the indices i = m, s refer to the ML and the SL respectively. The term ηEm(t −

τc) exp[−i(ωmτc − ∆ωt)] in Eq. (50) exists only for the SL, and accounts for the light

52



injected from the ML. The quantity ∆ω = ωm − ωs is the frequency detuning between the

lasers, and η, the injection rate, measures the fraction of the output power of the master

laser that is injected into slave laser cavity.

We have assumed that the optical field does not experience any distortion during its

propagation from the master to the slave laser. We have also neglected the spontaneous

emission noise, which degrades the synchronization quality [98, 94].

BS

BS

OI

ML

SL

M

M

Figure 12: Schematic representation of unidirectionally coupled external-cavity lasers. ML:
Master Laser; SL: Slave Laser; OI: Optical Isolator; BS: Beam Splitter; M: Mirror.

To characterize the quality of the synchronization between the output intensities of the

lasers we calculate two correlation coefficients:

C1 =
< [Im(t+ τ1)− < Im >][Is(t)− < Is >] >

[< (Im(t)− < Im >)2 >< (Is(t)− < Is >)2 >]1/2
, (52)

C2 =
< [Im(t+ τ2)− < Im >][Is(t)− < Is >] >

[< (Im(t)− < Im >)2 >< (Is(t)− < Is >)2 >]1/2
, (53)

where τ1 = −τc, τ2 = τ − τc, and < · · · > represents time averaging. The regime of

isochronous synchronization with lag-time τc is characterized by a large value of C1, while

the regime of anticipated synchronization with lag-time τc − τ , is characterized by a large
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value of C2.

3.2.4 Time lagged synchronous solutions

If there is no frequency detuning (ωm = ωs = ω), Eqs. (50) and (51) can be rewritten as

İm(t) = [Gm(t) − 1/τp,m]Im(t) + 2γm

√

Im(t− τ)Im(t) cos ξm(t, τ) , (54)

ψ̇m(t) =
α

2
[Gm(t) − 1/τp,m] − γm

√

Im(t− τ)

Im(t)
sin ξm(t, τ) , (55)

Ṅm(t) = Jm/e−Nm(t)/τn,m −Gm(t)Im(t) , (56)

İs(t) = [Gs(t) − 1/τp,s]Is(t) + 2γs

√

Is(t− τ)Is(t) cos ξs(t, τ)

+2η
√

Im(t− τc)Is(t) cos ξms(t, τc) , (57)

ψ̇s(t) =
α

2
[Gs(t) − 1/τp,s] − γs

√

Is(t− τ)

Is(t)
sin ξs(t, τ)

−η
√

Im(t− τc)

Is(t)
sin ξms(t, τc) , (58)

Ṅs(t) = Js/e−Ns(t)/τn,s −Gs(t)Is(t) (59)

where Im, φm, Is, and φs are the intensity and the phase of the master and the slave

lasers [Em =
√
Ime

iφm , Es =
√
Ise

iφs , ξm(t, τ) = φm(t) − φm(t − τ) + ωτ , ξs(t, τ) =

φs(t) − φs(t− τ) + ωτ and ξms(t, τc) = φs(t) − φm(t− τc) + ωτc].

The two synchronization regimes are the following:

1. Anticipated synchronization. If the operating conditions and the internal parameters

of the lasers are identical, and the feedback levels of the master and the slave lasers

are related by the condition γm = γs + η, it can be shown that the synchronization

manifold is

Is(t− τ) = Im(t− τc) , (60)

ξs(t, τ) = ξms(t, τc) ⇒ φs(t− τ) − ωτ = φm(t− τc) − ωτc , (61)

Ns(t− τ) = Nm(t− τc) . (62)

This corresponds to the complete (or identical) synchronization of the coupled systems

with a lag time τc − τ . In the expression of the time lag, the term τc is due to the
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propagation time of light between the two lasers, while the term τ is due to the fact

that the master is a time-delayed system [99, 100]. When τc < τ , the optical field of

the slave laser at time t anticipates the optical field of the master laser at time t [99];

otherwise it lags behind. The lag time τc − τ is typical of unidirectionally coupled

time-delayed systems.

2. Isochronous synchronization. If the lasers have the same operating conditions, equal

feedback levels (γm = γs), equal internal parameters except maybe for the cavity

decays and the laser frequencies5, the following approximative synchronized solution

can be found

Is(t) = aIm(t− τc) , (63)

φs(t) = φm(t− τc) − ωτc + ∆φ + ∆ωt ,Ns(t) = Nm(t− τc) + ∆N , (64)

where a, ∆φ, and ∆N are constants. In this case, the slave laser synchronizes with the

injected field, and due to the finite speed of propagation, the slave laser always lags in

time behind the master laser. Since there is a functional relation between the states of

the master and slave systems, this corresponds to generalized synchronization [50] of

the coupled systems, with a lag time τc. The solution is approximative because certain

approximations have to be made to find it. We have not included here the relatively

long analytical developments that have to performed to determine this solution and

refer the interested reader to the reference [101].

We can also consider the case in which the slave laser is a solitary laser, subjected only to

optical injection from the master laser (open-loop scheme). In this case, when the injection

rate is equal to the master feedback rate (η = γm) a synchronized solution with a lag time

τc − τ exists. This synchronized solution is simply a special case of solution (60)-(62) when

the slave is not subjected to feedback (γs = 0). Several authors [102, 96, 103, 95] have

found that it is also possible to obtain a certain degree of synchronization with a lag time

τc with an open-loop scheme. With an open-loop scheme, however, a chaotic synchronized

5therefore this solution exists even in presence of a frequency detuning
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solution with a lag time τc does not exist, because in case 2 the lasers must be subjected

to the same feedback level. Koryukin and Mandel have shown [96] that, in the special case

η = γm, a perfectly synchronized solution with a lag time τc exists if the amplitude and

the phase of the slowly-varying optical field are periodic, with a period τ/N , where N is a

positive integer.

3.2.5 Synchronization regions

We have simulated Eqs. 50 and 51 for the realistic parameter values τ = 1 ns, τp = 2 ps,

τn = 2 ns, α = 5, Gn = 1.5× 104 s−1, N0 = 1.5× 108, ǫ = 5× 10−7, ωτ = 0 rad. We assume

that the internal parameters are identical for the two lasers.

First, we characterize the synchronization regions in the parameter space (frequency

detuning, injection rate). The synchronization regions strongly depend on the chaotic be-

havior of the master laser, which in turn is determined by the injection current and the

feedback level. Let us consider a situation in which the lasers operate well above threshold

(Jm = Js = 1.85Jth, where Jth = 14.7 mA is the threshold current of the solitary laser) and

the master laser is subjected to moderated optical feedback (γm = 10 ns−1). For these para-

meters the master laser is in the coherence collapse (CC) regime (cf. §3.2.2.2), characterized

by fast, chaotic intensity fluctuations (see Fig. 13).

In Fig. 14 (a) we show the synchronization region when the lasers are subject to the same

feedback level (γs = γm = 10 ns−1). The horizontal axis is the frequency detuning between

the lasers, the vertical axis is the optical injection rate, and the gray levels represent the

value of C1 (the dark gray represents large correlation). The synchronization region is broad,

allowing for frequency detunings up to tens of gigahertz, and is asymmetric. Figure 14 (b)

displays the same correlation coefficient as Fig. 14 (a) (and for the same parameter values),

but when the slave laser is subjected to CW optical injection. As was reported in Ref. [101]

for the case of an open-loop scheme, we find that the shapes of the chaotic synchronization

region [in Fig. 14 (a)] and the CW injection-locking region [in Fig 14 (b)] are similar. We

can see that the chaotic synchronization region is broader than the CW injection-locking

region. The similarity of the two regions suggests that isochronous synchronization is an
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Figure 13: Intensity fluctuations of the ML operating on the coherence collapse regime.
The parameters are: γm =10 ns−1, Jm = 1.85× Jth = 27.2 mA, τ = 1 ns, τp = 2 ps, τn = 2
ns, α = 5, Gn = 1.5 × 104 s−1, N0 = 1.5 × 108, ǫ = 5 × 10−7, ωτ = 0 rad.

injection-locking-type phenomenon.

Figures 15 (a) and (b) show the same quantities as Figs. 14 (a) and (b) but in the

case of an open-loop scheme (γs = 0). Again we observe that there is a similarity between

the chaotic synchronization region in Fig. 15 (a) and the CW injection-locking region in

Fig. 15 (b). Comparing Figs. 14 (a) and 15 (a) (which are plotted with the same gray-

scale), it is clear that the synchronization quality is in general lower when the slave laser

does not have its own feedback. For example, for zero frequency detuning and for the

maximum injection rate considered in Figs. 14 (a) and 15 (a) (η =50 ns−1), C1 = 0.999

for a close-loop scheme while C1 = 0.86 for an open-loop scheme. Moreover, in order to

obtain a correlation coefficient of 0.99 with an open-loop scheme, the injection rate has

to be increased to as much as 170 ns−1 for our parameter values. The lower degree of

correlation is a disadvantage when comparing open- and closed-loop schemes. Since the

coupling strength has a maximum value in a real experiment, it will not always be possible

to achieve a good degree of synchronization with an open-loop scheme. Similar results were

experimentally obtained in Ref. [103]: the injected power had to be about one hundred

57



Frequency Detuning  fm - fs  (GHz)
   

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

-0. 1

-0. 2

-0. 3

-0. 4

 
 

 -30  -20  -10 0 10 20 30
0

5

10

15

20

25

30

35

40

45

50

In
je

ct
io

n 
R

at
e 

 η
  (

ns
-1

)

C1

(( (a)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

-0. 1

-0. 2

-0. 3

-0. 4

Frequency Detuning  fm - fs  (GHz)    

In
je

ct
io

n 
R

at
e 

 η
  (

ns
-1

)
 

 

 -30  -20  -10 0 10 20 30
0

5

10

15

20

25

30

35

40

45

50
C1

(b)

Figure 14: (a) Correlation coefficient C1 as a function of the frequency detuning and the
optical coupling strength, when the slave is an external cavity laser subjected to chaotic
injection from the master laser. γm = γs =10 ns−1. (b) Correlation coefficient C1 as a
function of the frequency detuning and the optical coupling strength, when the slave is an
external cavity laser subjected to CW injection from the master laser. γs =10 ns−1. All
other parameters as Fig. 13.

times larger than the power fed back into the master laser cavity in order to observe good

synchronization with an open-loop scheme.

The difference in synchronization quality for the cases of a SL with or without feedback

at a lag time τc can be explained by the fact that when γm = γs, an analytical synchro-

nized solution exists (63-64). On the contrary, as discussed in the previous section, when

γs = 0 no such solution exists. Therefore, in the case of an open-loop scheme, chaotic

synchronization with a lag time τc corresponds to a direct generalization of CW injection-

locking, whereas in the case of a closed-loop scheme there is “true” synchronization in the

sense that a synchronized solution exists. As a consequence the synchronization with a

closed-loop scheme has advantages for applications where a high degree of synchronization

is required; it has the disadvantage, however, that additional components have to be used

in the experimental setup. In particular, the external mirror at the slave laser has to be

very carefully positioned such that the phase accumulations in the external cavities verify

(ωτ)m − (ωτ)s = (ωm − ωs)τ .

This fact is shown in Fig. 16, where we assume that the lasers have identical frequencies

but slightly different delay times. It is clear that small differences in the delay times strongly
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Figure 15: (a) Correlation coefficient C1 as a function of the frequency detuning and the
optical coupling strength, when the slave laser is subjected only to chaotic injection from
the master laser. γm =10 ns−1, γs = 0. (b) Correlation coefficient C1 as a function of the
frequency detuning and the optical coupling strength, when the slave laser is subjected only
to CW injection from the master laser. γs = 0 ns−1. (c) Correlation coefficient C2 as a
function of the frequency detuning and the optical coupling strength, when the slave laser is
subjected only to chaotic injection from the master laser. All other parameters as Fig. 13.
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degrade the synchronization quality.
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Figure 16: Correlation coefficient C1 as a function of the difference between the phase
accumulations in the external cavities of the slave laser, (ωτ)s, and of the master laser,
(ωτ)m. ∆ω =0, η = 25 ns−1, all other parameters as Fig. 13.

Since in the case of an open-loop scheme synchronization with a lag-time τc−τ is possible

when η = γm and ∆ω = 0, it is also interesting to study the value of C2, defined in Eq.

(15), in the parameter space (detuning, injection rate). This is displayed in Fig. 15 (c),

which shows C2 on the same gray-scale as Figs. 14 (a) and 15 (a). Comparing Figs. 15 (a)

and (c) it is clear that the correlation coefficient C1 calculated with a lag time τc is usually

larger than the correlation coefficient C2 calculated with a lag time τc − τ . However, when

η ∼ γm and for small detuning, C2 > C1. This is because when η = γm and ∆ω = 0

an analytic solution exists for synchronization with a lag time τc − τ , as discussed in the

previous section. We obtain a reasonable quality of synchronization for frequency detunings

up to a few GHz. Notice that in the two white regions in Fig. 15 (c) a certain degree of

antisyncronization occurs since the correlation coefficient is negative (the dynamics is not

anticorrelated, however, since in these regions C2 is at most -0.4).

Figure 17 shows the value of C2 when the slave laser is an external-cavity laser and its

feedback level is varied such that γs = γm − η. As mentioned before, this is a necessary
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condition for the existence of a perfectly synchronized solution with a lag time τc − τ ,

in the absence of frequency detuning. Since γs cannot be negative, we are restricted in

Fig. 17 to a maximum value of the injection rate η, which is the feedback rate of the master

laser, γm = 10 ns−1. It can be seen that even when there is no frequency detuning (in

this case a perfectly synchronized solution exists) synchronization does not occur for small

injection rates. This means that the synchronized solution is stable only for large enough

injection rates (and hence small enough slave feedback rates). Moreover, contrary to the

two preceding cases, a reasonably good level of synchronization is preserved for detunings

of only few GHz.
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Figure 17: Correlation coefficient C2 as a function of the frequency detuning and the optical
coupling strength, when γs = γm − η. All other parameters as Fig. 15.

As mentioned before, from the mathematical point of view the phase space of the ML

is infinite dimensional because of the delayed feedback. It is well accepted that the dimen-

sion of the chaotic attractor associated with the master-laser dynamics increases with the

feedback rate γm (and with the delay time τ). It is therefore interesting to determine how

the synchronization quality evolves when the master feedback rate is changed, and how the

minimum injection rate above which synchronization occurs depends on the master feedback

rate.
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Figure 18 displays the synchronization regions in the parameter space (master feedback

rate, injection rate) when there is no frequency detuning. In Fig. 18 (a) γs = γm, in Fig. 18

(b) γs = 0, and in Fig. 18(c) γs = γm − η. Since γs cannot be negative, in Fig. 18 (c)

the maximum value of η is γm. As in the previous figures, Figs. 18 (a) and (b) display the

value of C1, while Fig. 18 (c) displays the value of C2. It can be clearly seen that when γm

increases, the injection rate has to be increased in order to maintain the synchronization

quality. For example, when γs = γm a correlation coefficient C1 > 0.999 can be obtained

for an injection rate η > 20 ns−1 for γm = 10 ns−1, while η > 45 ns−1 for γm = 20 ns−1. In

the case of an open-loop scheme, an injection rate as high as 100 ns−1 leads to a correlation

coefficient C1 = 0.95 when γm = 10 ns−1 and C1 = 0.79 when γm = 20 ns−1. Since in

experiments the injection rate has a maximum value, it can be expected that there is a

maximum value of the master feedback rate above which high quality synchronization with

an open-loop scheme is not possible. Figure 18 (c) shows that in the case of anticipated

synchronization there is also the need to increase the injection rate when the master feedback

rate is increased. Moreover, one can notice that the larger the value of the feedback rate

γm, the closer η must be to γm in order to ensure good synchronization.

As we have seen, with an open-loop scheme it is possible to observe synchronization

with a lag time τc − τ (if η = γm), and also synchronization with a lag time τc. Therefore,

it might be that under adequate conditions the two regimes coexist (i.e. they occur for

identical or close parameter values). This possibility is studied in the next section.

3.2.6 Transitions between synchronization regimes

As we have seen, with an open-loop scheme it is possible to observe synchronization with a

lag time τc − τ (if η = γm), and also synchronization with a lag time τc. Therefore, it might

be that under adequate conditions the two regimes coexist (i.e. they occur for identical or

close parameter values).

Koryukin and Mandel [96] have recently shown that a transition between synchroniza-

tion with lag-time τc − τ to synchronization with lag-time τc occurs when the injection rate

η is slightly increased above γm or when the injection current Js is slightly decreased below
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Figure 18: Synchronization regions in the parameter space (master feedback rate, optical
coupling rate). (a) γs = γm, the value of C1 is plotted. (b) γs = 0, the value of C1 is plotted.
(c) γs = γm − η, the value of C2 is plotted. ∆ω = 0, all other parameters as Fig. 15.
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Jm. The parameters considered in [96] correspond to a master laser operating in the low fre-

quency fluctuations (LFF) regime (cf.§3.2.2.2). This regime occurs when the laser is biased

close to the threshold and subjected to weak to moderate feedback, and is characterized by

abrupt, random, intensity dropouts followed by deterministic, step-like recoveries.

In this section we analyze the possible transitions from one regime of synchronization

to the other, in the case of an open-loop scheme, and considering an injection current close

to threshold (such that the master laser operates in the LFF regime). Figures. 19 (a)

and (b) display the correlation coefficients C1 and C2, respectively, in the parameter space

(frequency detuning, injection rate). All other parameters are the same as in Figs. 15 (a),

(c) except that the injection current is lower (Jm = Js = 1.02Jth).
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Figure 19: Correlation coefficients C1 (a), C2 (b) as a function of the frequency detuning
and the optical coupling strength. γm =10 ns−1, γs = 0, Jm = Js = 1.02 = Jth =15 mA.
All other parameters as Fig. 15.

When comparing Fig. 19 (a) with Fig. 15 (a), it is clear that for lower current the

synchronization region with lag-time τc shifts down towards lower values of η. As could be

expected, Fig. 19 (b) shows that anticipated synchronization occurs when η is close to γm

and the frequency detuning is small. Since the injection rate for synchronization with time-

lag τc now is slightly larger than γm(=10 ns−1), and the injection rate for synchronization

with lag-time τc − τ is still η equal or close to γm, a small increase of η above η = γm
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will cause a transition from synchronization with lag-time τc − τ to synchronization with

time-lag τc. This is in agreement with the observations of Ref. [96].

This transition is illustrated in Fig. 20, which shows the ML and SL intensities, averaged

in time to simulate the typical bandwidth of the detectors used in experiments. Fig. 20 (a)

displays Im(t− τc) for a feedback level γm =10 ns−1, while Figs. 20 (b), (c) and (d) display

Is(t) for different injection rates. Notice that in Fig. 20 (a) Im is lagged τc in time. For

η = γm =10 ns−1 [Fig. 20 (b)] Is(t) is identical to Im(t− τc + τ), therefore Is(t) anticipates

the injected intensity Im(t − τc) by an anticipation time τ (=1 ns). If η is increased to

12 ns−1 [Fig. 20 (c)] we observe a transition to synchronization with lag-time τc. Notice

that the time traces shown in Figs. 20 (a) and 9 (c) are most of the time equal, the main

difference being a less pronounced drop-out in the intensity of the slave laser. On the

other hand, when η is decreased to 9 ns−1 [Fig. 20 (d)] synchronization with a lag time

τc − τ disappears (because the condition η = γm is not met any more), and a transition to

synchronization with a lag time τc does not occur (because the system is driven outside of

the synchronization region). Notice that the time traces shown in Figs. 20 (a) and 20 (d)

are completely different.

We also observe that, as previously reported in Ref. [96], when the injection current in

the slave laser Js is slightly decreased a transition to isochronous synchronization occurs,

however, this transition does not happen if Js is increased. In addition, we find that

the transition occurs when the slave laser photon lifetime, τp,s or the carrier lifetime τn,s

are decreased and when the slave carrier number at transparency N0,s is increased. The

parameter changes that lead to a transition to synchronization with a lag time τc always

correspond to a decrease of the solitary slave laser output power, Isol
s . We have checked the

generality of the above conclusion, by doing several parameter variations that compensated

one another. It is remarkable that an increase of the injection rate (that causes a transition

to synchronization with a lag time τc) and a decrease of the solitary slave laser power, Isol
s ,

both correspond to an increase of the ratio between the injected power and the solitary slave

power. A certain level of adequate parameter mismatch is needed to induce a transition

between synchronization regions, but if the mismatches become too large, synchronization
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Figure 20: Time traces of the time-averaged intensities. (a) Intensity of the master laser
(lagged τc in time) for γm =10 ns−1. Intensity of the slave laser for (b) η = γm; (c) η =12
ns−1; (d) η =9 ns−1. ∆ω = 0, all other parameters as Fig. 15.
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is lost. This is due to the fact that when the mismatch is too large, the chaotic attractors

of the master and slave systems become too different to allow synchronized chaotic orbits

[24]. We find that when τp,s, τn,s, Js are increased (all these changes yield an increase of

Isol
s ), neither type of synchronization occurs. If the injection rate η is increased (above γm),

however, we find again isochronous synchronization. Therefore, synchronization with a lag

time τc − τ only occurs for almost identical parameters while small parameter mismatches

either induce a transition to isochronous synchronization or destroy the synchronization.

Since in an experimental setup the lasers will not have exactly identical parameters, our

results suggest that it will be more likely to observe experimentally LFF synchronization

with a lag time τc than with a lag τc − τ where perfectly matched lasers and a strict

observation of the synchronization condition η = γm are needed.

Figure 21 shows as an example of these behaviors, the transitions that occur when a

mismatch on τn is considered. Fig. 21 (a) displays the time-averaged master laser intensity,

Im(t − τc) for a feedback level γm =10 ns−1 and a carrier lifetime τn,m = 2 ns, while

Figs. 21 (b), (c), (d) and (e) display the slave laser time-averaged intensity, Is(t) for different

injection rates and carrier lifetimes τn,s. When τn,s = τn,m = 2 ns [Fig. 21 (b)], complete

synchronization of Is(t) with Im(t − τc) occurs with a lag-time τ . When τn,s = 1.99 ns,

Is(t) [Fig. 21 (c)] synchronizes with Im(t− τc) [Fig. 21 (a)] (notice that the dropouts occur

nearly simultaneously, but the dropouts of the slave laser intensity are less pronounced).

When τn,s is increased to 2.01 ns, Fig. 21 (d) confirms that none of the two synchronization

regimes occur. In Fig. 21 (d) τn,s > τn,m and η = γm; however, if η is increased to 12 ns−1,

synchronization of Is(t) [Fig. 21 (e)] with Im(t− τc) [Fig. 21 (a)] occurs.

Figure 22 represents the correlation coefficient, C(τ∗), between the time-averaged Is(t)

and Im(t − τc + τ∗), as a function of the variable τ∗, for the four cases considered above.

When η = γm=10 ns−1 and τn,s = τn,m = 2 ns, the correlation coefficient exhibits a global

maximum at τ∗ = τ [Fig. 22 (a)], while for τn,s =1.99 ns there is a very pronounced

maximum located at τ∗ = 0 [Fig. 22 (b)]. When η = γm, τn,s =2.01 ns there is a much

less pronounced maximum located at τ∗ = τ [Fig. 22 (c)]. In this case, neither type of

synchronization occurs but there is still be a tendency to synchronization with a lag time
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Figure 21: Time traces of the time-averaged intensities. (a) Intensity of the master laser
(lagged τc in time) for γm =10 ns−1 and τn,m = 2 ns. Intensity of the slave laser for (b)
η = γm, τn,s = τn,m; (c) η = γm, τn,s =1.99 ns; (d) η = γm, τn,s =2.01 ns; (e) η = 13 ns−1,
τn,s =2.01 ns. ∆ω = 0, all other parameters as in Fig. 15.
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τc − τ during short intervals of time, explaining the maximum at τ∗ = τ . If τn,s is further

increased above τn,m, this tendency is completed lost. Finally, when η is increased up

to 13 ns−1, maintaining γm = 10 ns−1, an increase of τn,s to 2.01 ns again a maximum

located at zero is obtained. These results show that the function C(τ∗) can be a useful

tool for analyzing synchronization regimes of coupled chaotic systems, and is also a good

quantification of the synchronization error [104].
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Figure 22: Correlation coefficient as a function of the lag-time (as explained in the text).
Figs. (a), (b), (c), and (d) are for the same parameters as in Figs. 21 (b), (c), (d), and (e)
respectively.

In this section, we have identified which parameter changes induce transitions between

the two synchronization regimes, extending the results of Koryukin and Mandel [96]. As

we have mentioned previously, numerical [103] and experimental [95] studies indicate that

while synchronization with a lag time τc − τ effectively occurs when η = γm, the injection
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rate η must be much larger than γm in order to have synchronization with a lag time

τc. For example, the experimental results of Ref. [103] show that, in order to observe

synchronization with a lag time τc, the power that is optically injected into the slaver laser

must be at least one hundred times larger than the power that is fed back into the master

laser. Since the authors of Ref. [103] and [95] find that that the two types of synchronization

correspond to very different values of the injection rate, small injection rate or parameter

changes cannot lead to transitions between the two types of synchronization.

This seems to contradict the results presented in this section. It is important to notice,

however, that the dynamical regimes considered are different. In this section we considered

a master laser operating in the LFF regime, while in Ref. [103], [95] the authors consider

a master laser operating in the coherence collapse (CC) regime (has we have done in the

previous section). In order to clearly show how the synchronization regions depend on

the injected current, Fig. 23 displays the synchronization regions in the parameter space

(injection current, injection rate). We consider an open-loop scheme, C1 is represented in

Fig. 23 (a) and C2 in Fig. 23 (b). The white line displayed in Fig. 23 (a) corresponds to the

injection rate above which C1 is larger than 0.95. We see that for injection currents very

close to threshold a good level of synchronization with lag-time τc can be obtained with

small injection rates (η close to γm), but for larger injection currents, much larger injection

rates are needed.

In Fig. 23 (b), good synchronization with lag-time τc − τ occurs only when η is close to

γm. Notice that for injection currents close to threshold, C2 is relatively large even when η

is much larger than γm. In the parameter region (low J , large η) both C1 and C2 are large,

but C1 > C2 and it is isochronous and not anticipated synchronization that occurs. The

large value of C2 is due to the form of the chaotic intensity fluctuations in the LFF regime

[the averaged intensity oscillates with a period nearly equal to τ in between dropouts, see

Fig. 20 (a)]. Notice also that there is an interval of injection currents (roughly speaking,

for 1.1 < Jm/Jth < 1.3), in which anticipated synchronization is not stable.

Thus, we can conclude that only for injection currents close to threshold small parameter

variations can lead to transitions between different synchronization regimes because the
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Figure 23: Synchronization regions in the parameter space (injection current, optical cou-
pling rate). (a) The value of C1 is plotted. The white line corresponds to the threshold
injection rate above which C1 is larger than 0.95. For 1.15jth < j < 1.4jth approximately,
the threshold injection rate is larger than 10 ns−1 (b) The value of C2 is plotted. ∆ω = 0,
γs = 0, all other parameters as Fig. 15.

corresponding synchronization regions are close to each other in the parameter space. This is

not possible with larger injection currents, since in that case the two types of synchronization

occur in distant regions of the coupling strength.

3.2.7 Summary

We have studied numerically the synchronization of two unidirectionally coupled single-

mode chaotic semiconductor lasers based on a Lang-Kobayashi-type model. The master

laser is an external-cavity laser, while for the slave laser we considered two configurations:

an external-cavity slave laser (closed-loop scheme), and a laser subjected only to optical

injection from the master laser (open-loop scheme). Depending on the operating condi-

tions two different types of synchronization are found: synchronization with a lag-time

τc, which corresponds to the synchronization of the slave optical field with the injected

field (isochronous synchronization), and synchronization with a lag-time τc − τ (anticipated

synchronization).

We have shown that chaotic synchronization with a lag-time τc occurs in a similar

parameter region to the one in which stable CW injection-locking occurs. This form of
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synchronization is much more robust than the anticipated synchronization, which occurs in

a much narrower parameter region. Therefore it should be easier to implement in a real

chaotic communications scheme. We have also observed that the synchronization quality

is usually better in the closed-loop scheme than in the open-loop scheme; when the slave

laser is an external-cavity laser, however, the external mirror has to be carefully positioned,

since small differences in the delay times strongly degrade the synchronization quality.

We have analyzed the synchronization regions in the parameter space (master feedback

rate, injection rate), finding that an increase of the master feedback rate requires an increase

of the injection rate in order to obtain a good synchronization. In the case of the closed-loop

scheme, very good synchronization can occur even for a large value of γm, while in the case

of an open-loop scheme the chaotic intensity produced by large feedback levels is difficult

to synchronize with feasible injection levels.

Finally, we have studied the transitions between the two synchronization regimes for

an open-loop scheme, extending the results reported in Ref. [96]. We have shown that it

is only for injection currents close to threshold, that small parameter variations can lead

to transitions between the different synchronization regimes, because the synchronization

regions are close to each other in parameter space. On the contrary, for large injection

currents, transitions are not possible, since the two types of synchronization occur for very

different coupling strengths. We have also shown that not all parameter variations lead to a

transition from one synchronization regime to the other, but only the parameter variations

that increase the ratio between the injected power and the solitary slave laser output power.

When a parameter variation decreases this ratio, a transition to the other synchronization

regime does not occur, and the synchronization is lost.

The existence of two synchronization regimes has now been proved experimentally [103]

and is widely accepted. In addition, Kusumoto and Ohtsubo [105] have recently shown

numerically that, in the case of an open-loop scheme, it is possible to observe an anticipating

synchronization based on an injection-locking-type phenomenon.
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3.3 Synchronization of external-cavity vertical-cavity surface-

emitting lasers

3.3.1 Introduction

A vertical-cavity surface-emitting Laser (VCSEL) is a semiconductor microlaser diode that

emits light in a cylindrical beam vertically from the surface of a fabricated wafer. It offers

many advantages over edge-emitting lasers such as single-longitudinal-mode operation, low

threshold current, low cost, easy integration in two-dimensional arrays, and a cylindrical

beam. Contrary to edge-emitters, the polarization of the emitted light may switch between

two linearly polarized light (LP) states (x and y). A rich polarization dynamics is encoun-

tered in these devices. In particular, VCSELs can exhibit vectorial chaos, i.e. involving

both the intensity and the polarization of the electric field.

Very recent experimental results demonstrate the synchronization of unidirectionally

coupled external-cavity VCSELs [106, 107]. In these experiments, only one of the two

LP components is injected into the slave laser and it appears that one of the slave LP

modes synchronizes with the injected field, while the other is antisynchronized. The only

three published numerical studies of VCSEL synchronization [108, 109, 110] do not take

into account the vectorial nature of the electric field and cannot be used to explain the

recent experimental results. Therefore, it can be interesting to model coupled external-

cavity VCSELs to interpret these experimental results, and to determine which role the

polarization degree of freedom, which is specific to vertical-cavity surface-emitters, plays in

the synchronization phenomena.

Scire et al. [111] have shown that the polarization dynamics of VCSELs can be exploited

in an original chaos-shift keying scheme using two unidirectionally coupled VCSELs. The

authors claim that with this scheme, very high bit rates (hundreds of GHz) can be reached.

The VCSELs used in Ref. [111] are lasers with a saturable absorber surrounding the active

region. We propose to study the same kind of encoding but with conventional VCSELs,

with no saturable absorber, and subjected to an external-optical feedback. The advantages

are of eliminating the requirement of an uncommon type of VCSEL and generating a much
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higher-dimensional chaos than what can be achieved with a VCSEL with a saturable ab-

sorber. Moreover, we think that the synchronization technique used in Ref. [111], involving

a feedback control, is probably unnecessarily complex, and we propose to study a scheme

in which the slave is synchronized by optically injecting the master laser output into it.

In section 3.3.2, we present the main characteristics of vertical-cavity surface-emitting

lasers. The model used to simulate the dynamical behavior of VCSELs is presented in sec-

tion 3.3.3. It is the spin-flip model (SFM) developed by M. San Miguel, Q. Feng, and J. V.

Moloney [112], which is a four-level model that has proved to give results in good agreement

with the experimentally observed polarization dynamics of VCSELs. Section 3.3.4 presents

the model used for external-cavity VCSELs and some of the dynamical instabilities induced

by the optical feedback. Section 3.3.5 explains the synchronization phenomena between

two unidirectionally coupled VCSELs, for three different coupling configurations, and, fi-

nally, section 3.3.6 presents some preliminary results on polarization encoding that uses the

vectorial chaos produced by VCSELs.

3.3.2 Vertical-cavity surface-emitting lasers

A vertical-cavity surface-emitting laser has a different geometry than a conventional edge-

emitting laser. A short resonator cavity is perpendicular to a thin quantum-well active layer

(10-30 nm) and the optical beam is guided and emitted in the vertical direction (normal

to the wafer) as shown in Fig. 24. Because of the short active region, VCSELs have low

round-trip gains compared to edge-emitting lasers. The first VCSELs used metallic mirrors

of low reflectivities and had very large threshold currents. In current VCSEL structures, the

mirrors are distributed Bragg reflectors (DBR) formed by laying down alternating layers of

semiconductor material with a difference in the refractive index. These mirrors have very

high reflectivities (> 99.9%) which allow for reasonable threshold currents despite the low

round-trip gains. The cavity length is typically very short, about one to three wavelengths

of the emitted light (a few µs), and a VCSEL is therefore inherently single-mode. To

maximize the modal gain, the quantum-well structures are placed at the antinodes of the

standing wave of the resonant longitudinal mode. Spacing layers are needed to make the
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cavity length equal to an integer multiple of the emission wavelength. The geometry of the

cavity is cylindrical, resulting in a narrow circular output beam, and reducing the coupling

losses with optical fibers. This is a clear advantage over edge-emitters, which produce

very divergent elliptical beams. Another advantage comes from the fact that the vertical

structure makes the VCSELs compact and, allows for easy integration in two-dimensional

arrays.

In an edge-emitting laser, the polarization of the electric field is determined by the

structure. It is linearly polarized and the direction of the polarization is rigidly defined.

The circular symmetry of the VCSEL cavity implies that its polarization is not as well

stabilized. Due to cavity anisotropies, the polarization of a VCSEL is usually linearly

polarized, but the polarization can switch between two orthogonal linearly polarized states

(of directions x and y).

Light

p-DBR Mirror

n-DBR Mirror

p-spacer

n-spacer

QW active layer

Figure 24: Vertical-cavity surface-emitting laser.

75



3.3.3 The Spin-Flip Model and polarization dynamics

One would expect that the polarization degree of freedom influences the dynamics signifi-

cantly. We present briefly here the spin-flip model that describes the dynamical behavior

of a VCSEL, including the polarization dynamics. Polarization selection can be due to

the material dynamics of the different lasing transitions. When there is a transition that

corresponds to a change of the projection of the total material angular momentum on the

direction of propagation by + 1 (-1), emission of a quantum of light with right (left) circular

polarization occurs. The selection of a particular polarization state can also be due to the

anisotropies, geometry, and waveguiding effects of the cavity.

Jz=+1/2 Jz=-1/2

Jz=+3/2 Jz=-3/2

E- E+

  
  

 
Sγ 

 
Nγ  

Nγ 

Figure 25: Sketch of a four-level model of a quantum-well VCSEL.

The spin-flip model, proposed by San Miguel, Feng, and Moloney [112], incorporates

both the material and cavity properties. We recall that at the bottom of the conduction

band, the quantum number for the total angular momentum of the electron states is J =

1/2 [113]. In bulk material, the upper valence bands known as the heavy- and light-hole
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bands are degenerate at the center of the band gap and have a quantum number J for the

total angular momentum equal to 3/2, arising from considerations of spin-orbit coupling. In

VCSELs, the active layer is made of quantum wells which remove the degeneracy and give

the heavy-hole band, which is associated with projected angular momentum Jz = ±3/2, a

higher energy. Since the only allowed transitions are those which meet the selection rule

∆Jz = ±1, we are left with two allowed transitions between the conduction and heavy-

hole band. One possible transition is from Jz = 1/2 to Jz = 3/2 and is associated to left

circularly polarized light. The other possible transition is from Jz = −1/2 to Jz = −3/2, and

is associated to right circularly polarized light. In a first approximation, these transitions

can be described by a four level-model shown in Fig 25. The conduction band is replaced

by two levels populated by electrons with opposite spin orientations and projected angular

momentum Jz = ±1/2. The heavy-hole band is replaced by two levels populated by holes

with opposite spin orientations and projected angular momentum Jz = ±3/2. It can be

considered that a spin-up and a spin-down radiation channels exist and the carriers are

split into spin-up and spin-down carrier reservoirs. Various microscopic processes, loosely

named spin-flip relaxation processes, tend to mix the carriers of the two spin channels. The

spin-flip processes tend to balance the populations of the two channels.

On the basis of the previous considerations, and of the standard semi-classical ap-

proach, including adiabatic elimination of the material polarization, San Miguel, Feng, and

Moloney [112] have determined the following rate equation model for the VCSEL dynamics

Ė+ = κ(1 + iα) [(N + n− 1)E+] , (65)

Ė− = κ(1 + iα) [(N − n− 1)E−] , (66)

Ṅ = −γN

[

N − µ+ (N + n)|E+|2 + (N − n)|E−|2
]

, (67)

ṅ = −γSn− γN (N + n)|E+|2 + γN (N − n)|E−|2 . (68)

In this model, E+ is the slowly varying amplitude of the right circularly-polarized compo-

nent of the electric field, E− is the slowly-varying amplitude of the left circularly-polarized

component of the electric field, N is a normalized value of the total population inversion
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between the upper and lower states (i.e. of the total carrier number in excess of its value at

transparency), and n is a normalized value of the difference in the population inversions of

the spin-up and spin-down radiation channels. The parameters of the model are the decay

rate κ of the electric field in the cavity (1/(2κ) is the photon lifetime), the decay rate γN of

the total carrier number, the spin-flip relaxation rate6 γS , the linewidth enhancement factor

α, and the normalized injection current µ, which takes the value 1 at the lasing threshold.

This model can be rewritten in terms of the orthogonal linearly-polarized components

Ex and Ey of the electric field

Ex =
E+ + E−
√

(2)
, (69)

Ey = (−i)E+ − E−
√

(2)
. (70)

The model then becomes

Ėx = κ(1 + iα) [(N − 1)Ex + inEy] (71)

Ėy = κ(1 + iα) [(N − 1)Ey − inEx] (72)

Ṅ = −γN

[

N − µ+N(|Ex|2 + |Ey|2) + in(EyE
∗
x −ExE

∗
y)
]

, (73)

ṅ = −γSn− γN

[

n(|Ex|2 + |Ey|2) + iN(EyE
∗
x − ExE

∗
y)
]

. (74)

This original SFM model leads to stationary solutions that are linearly polarized modes. The

orientation of the modes, however, is undetermined by this model of field-matter interaction.

This is not consistent with the experimental observation that VCSELs often exhibit two

preferred orthogonal modes of linear polarization that coincide with crystal axis. These

preferred orientations are due to anisotropies of the laser cavity which have to be taken into

account. The two linearly polarized modes in VCSELs have a frequency splitting, which

is due to the birefringence of the medium, i.e. to the fact that the two modes “see” two

different indexes of refraction.7 This can be modeled by a linear phase anisotropy, given by

parameter γp. Moreover, the two modes have a slightly different gain-to-loss ratio, which is

modeled by the amplitude anisotropy parameter γa. When these anisotropies are included,

6It is the excess of γS over γN which accounts for the mixing of carriers with opposite value of Jz.
7The birefringence is usually due to the crystal structure, but can also be stress-induced.
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the rate equations of the x- and y-polarized components of the electric field become:

Ėx = κ(1 + iα) [(N − 1)Ex + inEy] − (γa + iγp)Ex

= −(κ+ γa)Ex − i(κα + γp)Ex + κ(1 + iα) [NEx + inEy] (75)

Ėy = κ(1 + iα) [(N − 1)Ey − inEx] + (γa + iγp)Ey

= −(κ− γa)Ey − i(κα − γp)Ey + κ(1 + iα) [NEy − inEx] (76)

The phase anisotropy γp leads to a frequency difference of 2γp between the x- and y-polarized

solutions. The amplitude anisotropy leads to different thresholds for these two modes.

As mentioned previously, it is typical to observe polarization instability in solitary VC-

SELs. It is often observed experimentally that when the VCSELs begins to lase, one linear

polarization mode dominates, but when the injection current is increased, the emission

switches to an orthogonal linearly polarized state [114]. Elliptically polarized light has also

been observed [115]. The spin-flip model, with anisotropies, reproduces most of the ex-

perimentally observed behaviors. A linear stability analysis of the SFM model [116] shows

regions in parameter space of monostability of either of the modes, of bistability, and of

instability of the two modes which explain why polarization switching can occur when the

injection current is increased. Numerical simulations of the model have confirmed the re-

sults and it appears, as could be expected, that the parameters whose interplay determines

the polarization dynamics are the spin-flip relaxation rate and the amplitude and phase

anisotropies.

Figure 26 represents the behavior of a solitary VCSEL when its injection current µ is

increased, determined by simulating the SFM model. We see that the laser emits a y-

polarized light when it is biased above threshold, and it switches to x polarization rather

abruptly when the injection current reaches about 1.25 times its value at threshold. There

is a small interval of values of µ, around 1.25, for which neither the x-polarized nor the y-

polarized component of the electric field is equal to zero. In that interval, states of elliptical

polarization, and of mixed polarization (partial polarization8), have been observed. When

8i.e. for which the fractional polarization [117] is smaller than 1.
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the injection current is larger than 1.5 approximately, we observe that again both linearly

polarized components are different from zero. In that region, for increasing values of µ, we

observe first states of elliptically polarized light, then states of partially unpolarized light

in which the polarization state varies periodically, with a period increasing with µ, until a

chaotically fluctuating state of polarization is reached for µ = 1.8 approximately. This type

of transition toward a chaotic regime corresponds to a period-doubling route to chaos (cf.

§ 2.2).

A useful graphical tool to represent the polarization state is the Poincaré sphere [117].

From the slowly varying electric field, three parameters, called the normalized Stokes pa-

rameters S1, S2, and S3 [117], can be computed and are the Cartesian coordinates of the

polarization state on a sphere of unitary radius called the Poincaré sphere. In case of po-

larized light, the Stokes parameters are constant in time and a fixed point on the Poincaré

sphere is associated to each state of polarization. Points that lie on the equator correspond

to linear polarization, those lying on the poles to circular polarizations, and points lying

anywhere else on the sphere correspond to the general case of elliptical polarization. For

incompletely polarized light, the Stokes parameters vary in time because the amplitudes of

Ex and Ey and their relative phases vary in time.

Figure 27 represents the intensities (which are proportional to the squares of the am-

plitudes of the electric fields) of the x− and y−polarized components of the electric field,

for four different values of the injection current µ, and Fig. 28 represents the corresponding

states of polarization on the Poincaré sphere. Case (a) corresponds to elliptical polariza-

tion, cases (b) and (c) to a periodic variation of the polarization state, and case (d) to

chaotic variation of the polarization state. In the case of elliptically polarized light, the x

and y components have constant amplitude and there is a constant difference between their

linearly-varying phases. The state of polarization is represented by a point on the Poincaré

sphere. In cases (b) and (c), the intensities associated to the two x and y components of

the electric field vary periodically, and the state of polarization varies on a closed curve on

the sphere, corresponding to a periodic variation of the polarization characteristics. In case
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Figure 26: Light-current characteristics of each linearly-polarized component of the electric
field (circles: y-polarized, squares: x-polarized). The powers are averaged over 20 ns. The
parameters are: κ = 300 ns−1, γN = 1 ns−1, α = 3, γS = 50 ns−1, γp = 10 ns−1, and γa =
0.1 ns−1.
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Figure 27: Intensities of the x- and y-polarized components of the electric field. (a) µ = 1.6,
(b)µ = 1.64, (c) µ = 1.68, (d) µ = 1.8. All the other parameters are the same as in Fig. 26.
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Figure 28: Poincaré sphere representation of the polarization state of light. (a) µ = 6,
(b)µ = 1.64, (c) µ = 1.68, (d) µ = 1.8. All the other parameters are the same as in Fig. 26.

(d), the x- and y- polarized components of the electric field have chaotically-varying am-

plitudes, their phase difference is time-dependent, and the polarization states wanders on a

big portion of the Poincaré sphere9, corresponding to a chaotic variation of the polarization

state. The light emitted by the laser is almost unpolarized10.

Semiconductors lasers subjected to optical injection and feedback have attracted con-

siderable attention. This is true for edge-emitters as well as for surface-emitters. In the

case of VCSELs, there is an additional degree of freedom created by the possible existence

of two linearly polarized modes. Several schemes have been considered in which the optical

injection or feedback is either isotropic (the two polarizations are injected or fed back) or

selective (only one polarization is injected or fed back). Additionally, in case of polarization-

selective injection, the injected field can be either parallel or orthogonal to the polarization

of the solitary slave laser.11 Depending on the configuration, the laser can be stabilized or

destabilized by the injected field, and polarization instabilities can also be either reinforced

9It does not move on a closed curve.
10i.e. the fractional polarization is close to 0.
11Assuming that we are in a case in which only one polarization is emitted.
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or suppressed by the injection (see [118, 119] and references therein).

We consider in the next section the case of a laser subjected to isotropic (or polarization-

preserving) optical feedback, which is the configuration used in the experimental results on

synchronization of VCSELs [106] and on chaotic communications with VCSELs [107].

3.3.4 External-cavity vertical-cavity surface-emitting lasers

It was initially thought that VCSELS should be almost immune to external feedback in

reason of the large reflectivities of their facets. The VCSELs have, however, much smaller

intracavity round-trip times τin compared to edge-emitters, which lead to similar feedback

rates [γ = κ/τin in Eq. (38)], even if the feedback parameters κ are lower. This means

that the sensitivity of VCSELs to optical feedback is similar to that of edge-emitting lasers.

The five dynamical regimes described in (3.2.2.2) have been identified in VCSELs [120],

but some behaviors specific to VCSELs, linked to polarization instabilities, have also been

observed (see Ref. [119] and references therein).

The external optical feedback is taken into account in the rate equations of the laser in

the same way as for edge-emitters (Lang-Kobayashi model, cf. §3.2.2.1). The rate equations

describing the dynamical behavior of an external-cavity semiconductor laser subjected to

external optical feedback are

Ėx = κ(1 + iα) [(N − 1)Ex + inEy] − (γa + iγp)Ex

+fxEx(t− τ) exp (−iωτ) , (77)

Ėy = κ(1 + iα) [(N − 1)Ey − inEx] + (γa + iγp)Ey

+fyEy(t− τ) exp (−iωτ) , (78)

Ṅ = −γN

[

N − µ+N(|Ex|2 + |Ey|2) + in(EyE
∗
x −ExE

∗
y)
]

, (79)

ṅ = −γSn− γN

[

n(|Ex|2 + |Ey|2) + iN(EyE
∗
x − ExE

∗
y)
]

, (80)

where τ is the optical delay, ω is the angular frequency of the laser in the absence of

anisotropies and feedback, ωτ is the feedback phase, and fx and fy are the feedback rates of
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the x- and y-polarized components of the electric field12. In the case of isotropic feedback

considered in this work, we have fx = fy = f .

We use the following values for the parameters of the SFM model: κ = 300 ns−1, γN =

1 ns−1, α = 3, γS = 50 ns−1, γp = 30 ns−1, γa = 0.5 ns−1. For this set of parameters,

the VCSEL exhibits polarization switching, from y-polarized to x-polarized light, when the

injection current in increased, for a value of the current of 1.2 approximately. We use,

in the remainder of this work, and unless stated otherwise, an injection current µ = 1.5,

corresponding to a solitary VCSEL emitting linearly x-polarized light of constant intensity

and linearly varying phase (CW regime). This is confirmed by Fig. 29 which represents the

intensities of the two linearly polarized components of the electric field of the solitary laser.

The carrier numbers N and n are also stationary.

The parameters of the external cavity are the external-cavity round-trip time τ = 3 ns,

the feedback phase ωτ = 6 radians, and the feedback rate f . In the following, we present

briefly the feedback-induced instabilities that occur when the feedback rate f is increased.

The effect of a modification of the delay τ is not presented in this manuscript. When an

isotropic feedback is introduced, the x- polarized mode is destabilized and undergoes a route

to chaos through quasi-periodicity (cf.§2.2) for increasing feedback rates.

Chaos appears for a feedback rate f of 1.3 GHz approximately. Figure 30 represents

a chaotic solution for a feedback rate f = 1.4 GHz. We see that the intensity of the x-

polarized mode fluctuates in an aperiodic way while the y-polarized mode is inactive, and

the light emitted by the laser is therefore linearly polarized along the x direction. It should

be noted that the y-polarized component does emit some light transiently, just after the

laser is switched on, but its intensity goes rapidly to zero. We also find that in this regime

the phase of the electric field does not vary linearly anymore. We have represented in Fig. 31

the corresponding carrier numbers N and n. We observe that the total population inversion

N varies chaotically, similarly to the intensity, while the population difference between the

two spin channels n is equal to zero (except in transient regimes, not represented here).

12The letter f is used here for the feedback rate instead of the letter γ that was used in edge-emitters, to
avoid any confusion with the parameters that represent the anisotropies.
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Figure 29: Intensities of the x- and y-polarized components of the electric field of the
solitary VCSEL. The parameters of the SFM model are µ = 1.5, κ = 300 ns−1, γN = 1
ns−1, α = 3, γS = 50 ns−1, γp = 30 ns−1, and γa = 0.5 ns−1.

When the feedback rate is further increased, the x-polarized components exhibits more

developed chaos, and the y-polarized mode is still equal to zero at steady state, though the

switch-on transients tend to become longer.

Figure 32 represents the intensities of the linearly-polarized modes for a feedback rate

f = 5 GHz. While for a feedback of 1.4 GHz (Fig. 30), the chaotic intensity looks like a

perturbed stationary solution in which the quasiperiodic route to chaos is still visible, for

a feedback rate of 5 GHz there is no trace of the bifurcations route as we observe that the

intensity has a pulse-like appearance. The transient emission in the y-polarized component

takes the form of a series of short pulses, separated by periods during which no light is

emitted along this component. Further increases of f lead to similar (and increasingly

obvious) pulse-like chaotic emission in the x-polarized mode and transient emission of short

pulses in the y-polarized component.

It is not until the feedback rate reaches a value of 30 GHz that some qualitative changes

appears. The x-polarized component still has a chaotic pulse-like intensity, and the y-

polarized components still emits pulses of light in a transient way only. But additionally,
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Figure 30: Intensities of the x- and y-polarized components of the electric field of the
external-cavity VCSEL, for a feedback rate f = 1.4 GHz, a delay τ = 3 ns, and a feedback
phase ωτ = 6 rad. All other parameters are as in Fig 29.
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Figure 31: Carrier number N and n for a feedback rate f = 1.4 GHz. All parameters are
as in Fig 29.
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Figure 32: Intensities of the x- and y-polarized components of the electric field of the
external-cavity VCSEL, for a feedback rate f = 5 GHz. All parameters are as in Fig 29.

when the intensity of the x component is filtered by a low pass filter of cutoff frequency of

a few hundreds of MHz, to simulate the filtering effect of a slowly responding photodiode,

sudden dropouts of the intensity followed by progressive build-ups appear. This behavior

of the filtered intensity and the underlying pulse-like behavior is characteristic of the LFF

regime described in section 3.2.2.2. Figure 33 represents the (unfiltered) intensities of the

x and y-polarized components for a feedback rate f = 30 GHz. The pulse-like emission

is obvious, and the pulses have width of several tens of picoseconds, again similarly to

what has been found in the LFF regime. The filtered intensity of the y-polarized mode is

represented in Fig. 34 and shows the chacteristics of LFF emission. The amplitudes of the

dropouts, which are relatively small for f = 30 GHz, increase with the feedback rate.

When the feedback rate reaches the value of 40 GHz, the y-polarized component of

the electric field emits light in the steady-state regime (and not only transiently), though

the x-polarized mode is still clearly dominant. Both components exhibit the emission of

short pulses as shown in Fig. 35. The total intensity, |Ex(t)|2 + |Ey(t)|2, represented in

Fig. 36 exhibits a similar pulsating behavior. In this regime in which both components
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Figure 33: Intensities of the x- and y-polarized components of the electric field of the
external-cavity VCSEL, for a feedback rate f = 30 GHz. All parameters are as in Fig 29.
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Figure 34: Filtered intensities of the x- and y-polarized components of the electric field
of the external-cavity VCSEL, for a feedback rate f = 30 GHz. All parameters are as in
Fig 29. A second-order Butterworth filter of 0.1 GHZ cutoff frequency is used.
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have nonzero amplitude, the carrier number n varies in time, expressing a (fluctuating)

unbalance between the populations of the spin channels. The filtered intensity of the x

component shown in Fig. 37 exhibits the build-ups and dropouts characteristic of the LFF

regime, while the y component shows a sort of anti -LFF, in which the dropouts are replaced

by sudden increases of the filtered power. It is interesting to note that the buildup periods

of the x component usually coincide with periods in which the intensity of the y component

decreases, a behavior which reflects a an antiphase behavior of the two components, which

occurs frequently in VCSELs [121, 122]. It should be noted that the antiphase is observed

here on the time scale of the filtered signals and not on the time scale of the unfiltered (fast-

pulsating) dynamics. Since both components have nonzero amplitude, the polarization of
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Figure 35: Intensities of the x- and y-polarized components of the electric field of the
external-cavity VCSEL, for a feedback rate f = 40 GHz. All parameters are as in Fig. 29.

light is not linear anymore. We checked that the state of polarization evolves chaotically

on the Poincaré sphere.

We end this section by emphasizing that the feedback-induced instabilities presented

in this section are fundamentally different from the ones described in the previous section,

which are intrinsic VCSEL instabilities enhanced by large injection currents.
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Figure 36: Total intensity emitted by the external-cavity VCSEL, for a feedback rate f = 40
GHz. All parameters are as in Fig. 29.
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Figure 37: Filtered intensities of the x- and y-polarized components of the electric field
of the external-cavity VCSEL, for a feedback rate f = 40 GHz. All parameters are as in
Fig 29. A second-order Butterworth filter of 0.1 GHZ cutoff frequency is used.
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3.3.5 Synchronization regimes

We consider VCSELS subjected to isotropic optical feedback, coupled in a unidirectional

way. We also assume that the two lasers have the same parameters. The additional degrees

of freedom introduced by the presence of two competing linearly-polarized modes also mean

that there are more ways to couple the lasers than in the case of edge-emitting lasers. We

consider here three configurations.

1. First configuration. In the first configuration, the two linearly-polarized components

of the electric field are optically injected into the slave laser, with the same injection

rate (isotropic or polarization-preserving injection). Since both the feedback and the

optical injection are isotropic, no polarization component is favored by the setup.

The setup is the same as the one represented in Fig 12 in the case of edge-emitters.

The optical injection into the slave laser is taken into account in a similar way to

what has been done in the case of edge-emitters. The rate equations for master laser

(superscript m) are

Ėm
x = κ(1 + iα)

[

(Nm − 1)Em
x + inmEm

y

]

− (γa + iγp)E
m
x (81)

+fm
x E

m
x (t− τ) exp (−iωmτ) ,

Ėm
y = κ(1 + iα)

[

(Nm − 1)Em
y − inmEm

x

]

+ (γa + iγp)E
m
y (82)

+fm
y E

m
y (t− τ) exp (−iωmτ) ,

Ṅm = −γN

[

Nm − µ+Nm(|Em
x |2 + |Em

y |2) + inm(Em
y E

m∗
x − Em

x E
m∗
y )
]

, (83)

ṅm = −γSn
m − γN

[

nm(|Em
x |2 + |Em

y |2) + iNm(Em
y E

m∗
x − Em

x E
m∗
y )
]

. (84)
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and for the slave laser (superscript s):

Ės
x = κ(1 + iα)

[

(N s − 1)Es
x + insEs

y

]

− (γa + iγp)E
s
x

+f s
xE

s
x(t− τ) exp (−iωsτ)

+ηxE
m
x (t− τc) exp [i(ωm − ωs)t] exp (−iωmτc) , (85)

Ės
y = κ(1 + iα)

[

(N s − 1)Es
y − insEs

x

]

+ (γa + iγp)E
s
y

+f s
yE

s
y(t− τ) exp (−iωsτ)

+ηyE
m
y (t− τc) exp [i(ωm − ωs)t] exp (−iωmτc) , (86)

Ṅ s = −γN

[

N s − µ+N s(|Es
x|2 + |Es

y|2) + ins(Es
yE

s∗
x − Es

xE
s∗
y )
]

, (87)

ṅs = −γSn
s − γN

[

ns(|Es
x|2 + |Es

y |2) + iN s(Es
yE

s∗
x − Es

xE
s∗
y )
]

, (88)

where ηy is the injection rate, τc is the propagation time of light between the two

lasers, and ωm−ωs is the frequency detuning between the master and the slave lasers.

The condition of isotropic feedback means that fm
x = fm

y and f s
x = f s

y .

2. Second configuration. In the second configuration, only one of the two linearly po-

larized components of the electric field is optically injected into the slave laser. One

polarization component is clearly favored in this setup. To model this system, in

equations (81), (82), (85), (86), either the injection rate in the x component, ηx, or

the injection rate in the y component, ηy, has to be set to zero.

3. Third configuration. In the third configuration, similarly to what has been done in

the experimental setup used to demonstrate the synchronization of VCSELs [106],

one of the linearly polarized components of the electric field is selected, rotated by

90 degrees, and injected into the open-loop slave (f s = 0). This can be realized by

half-wave plates placed between the master and the slave lasers. In this case, the
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equations of the linearly-polarized components of the electric field are

Ės
x = κ(1 + iα)

[

(N s − 1)Es
x + insEs

y

]

− (γa + iγp)E
s
x

+ηxE
m
y (t− τc) exp [i(ωm − ωs)t] exp (−iωmτc) , (89)

Ės
y = κ(1 + iα)

[

(N s − 1)Es
y − insEs

x

]

+ (γa + iγp)E
s
y

+ηyE
m
x (t− τc) exp [i(ωm − ωs)t] exp (−iωmτc) , (90)

where ηx = 0, when the x-polarized component is selected, rotated, and injected into

the slave, and ηy = 0, when it is the y-polarized component which is injected into

the slave, after being rotated. In these equations, ηx represents the injection rate

of the y-polarized component and ηy represents the injection rate of the x-polarized

component.

In the following, we describe the different synchronization regimes that can occur, de-

pending on the type of configuration used.

3.3.5.1 First coupling configuration

Similarly to what has been done in the case of edge-emitting lasers (cf. §3.2.4), we can look

for synchronized solutions of anticipating and isochronous type.

It is easy to show that in the absence of frequency detuning between the lasers (ωm =

ωs = ω), the following anticipating synchronization can occur between the complex electric

fields F (t) = E(t) expiωt and the carrier numbers:

Fm
x (t− τc) = F s

x(t− τ) ⇒ Em
x (t− τc) exp (−iωτc) = Es

x(t− τ) exp (−iωτ) , (91)

Fm
y (t− τc) = F s

y (t− τ) ⇒ Em
y (t− τc) exp (−iωτc) = Es

y(t− τ) exp (−iωτ) , (92)

Nm(t− τc) = N s(t− τ) , (93)

nm(t− τc) = ns(t− τ) , (94)

if the following conditions are met:

fm
x = f s

x + ηx ,

fm
y = f s

y + ηy . (95)

93



The synchronization conditions are similar to those found in the case of edge-emitting lasers

modeled by the Lang and Kobayashi model. They express that the master feedback rates

of the x and y components must be equal to the sum of the slave feedback rates and the

injection rates of the corresponding components. It is important to understand that these

conditions only ensure the existence, but not the stability, of a synchronized solution13. The

synchronization of the complex electric fields (F (t) = A(t) exp i(ωt + φ(t))) corresponds to

a synchronization of the amplitudes A(t) and of the phases Ω(t) = ωt+ φ(t) of the electric

field:

Am
x (t− τc) = As

x(t− τ) , (96)

Ωm
x (t− τc) = Ωs

x(t− τ) ⇒ φm
x (t− τc) = φs

x(t− τ) + ωτc − ωτ , (97)

Am
y (t− τc) = As

y(t− τ) , (98)

Ωm
y (t− τc) = Ωs

y(t− τ) ⇒ φm
y (t− τc) = φs

y(t− τ) + ωτc − ωτ . (99)

The preceding identities mean that the electric field produced by the slave, at a given time

t, synchronizes identically with the electric field that will be injected into it τ units of time

later, and the synchronization is therefore clearly a form of anticipating synchronization.

Figures 38 and 39 represent the synchronization of the master and slave laser intensities,

in a regime of feedback-induced instabilities in which both linearly polarized components

of the electric field are active, in the case of an open-loop slave (f s = 0). We observe that

the two components of the electric field synchronize perfectly, in an anticipating way. The

same is obviously true for the total master and slave intensities. Figure 40 shows that the

carrier densities nm and ns exhibit aperiodic behavior and evolve in a synchronous way.

Numerical simulations indicate that, similarly to the case of edge-emitting lasers, when

the slave isochronous feedback rate is equal to the master isochronous feedback rate (fm =

f s), an approximate isochronous solution of the following form exists, in the absence of

13It is also interesting to note this solution exists even if the master is subjected to anisotropic feedback,
if the injection rates are chosen correctly.
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Figure 38: (a) Intensities of the x- and y-polarized components of the master electric field.
(b) Intensities of the x- and y-polarized components of the slave. (c) Difference between the
synchronized intensities showing anticipating synchronization. Master isotropic feedback
rate fm = 40 GHz, slave feedback rate f s = 0 (open-loop), injection rate η = 40 GHz. All
other parameters are as in Fig. 29.
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Figure 39: Synchronization diagrams for the intensities of the x- and y- polarized compo-
nents of the electric field, revealing anticipating synchronization. Master isotropic feedback
rate fm = 40 GHz, slave feedback rate f s = 0 (open-loop), injection rate η = 40 GHz. All
other parameters are as in Fig. 29.
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Figure 40: (a) Master carrier number n and (b) synchronized slave carrier number. Master
isotropic feedback rate fm = 40 GHz, slave feedback rate f s = 0 (open-loop), injection rate
η = 40 GHz. All other parameters are as in Fig. 29.

frequency detuning14:

Am
x (t− τc) = axA

s
x(t) ,

φm
x (t− τc) = φs

x(t) + ∆φ ,

Am
y (t− τc) = ayA

s
y(t) ,

φm
y (t− τc) = φs

y(t) + ∆φ .

Nm(t− τc) = N s(t) + ∆N ,

nm(t− τc) = ns(t) , (100)

where ax, ay, ∆φ, and δN are constants. Figure 41 represents the synchronization diagrams

for the intensities of the master and slave lasers, when the feedback rates are fm = f s = 40

GHz, and the (large) injection rates are ηx = etay = 200 GHz. We observe good, though

not perfect, synchronization, and a linear fit of the data allows us to estimate the constants

ax = ay = 1.5.

14We have not checked the influence of frequency detuning on isochronous synchronization, but we expect
that a synchronized solutions also exists in presence of detuning.
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Figure 41: Synchronization diagrams for the intensities of the x and y polarized components
of the electric field, revealing isochronous synchronization. The correlation coefficients are
C1x = 0.994 and C1y = 0.988. Master isotropic feedback rate fm = 40 GHz, slave feedback
rate f s = 40 GHz, injection rate η = 200 GHz. All other parameters are as in Fig. 29.

The quality of the synchronization of the intensities of the master x- and y- polarized

components, with the corresponding intensities emitted by the slave, can be characterized

by the following correlation coefficients

C1x =
< [Im

x (t− τc)− < Im
x >][Is

x(t)− < Is
x >] >

[< (Im
x (t)− < Im

x >)2 >< (Is
x(t)− < Is

x >)2 >]1/2
, (101)

C1y =
< [Im

y (t− τc)− < Im
y >][Is

y(t)− < Is
y >] >

[< (Im
y (t)− < Im

y >)2 >< (Is
y(t)− < Is

y >)2 >]1/2
, (102)

C2x =
< [Im

x (t− τc + τ)− < Im
x >][Is

x(t)− < Is
x >] >

[< (Im
x (t)− < Im

x >)2 >< (Is
x(t)− < Is

x >)2 >]1/2
, (103)

C2y =
< [Im

y (t− τc + τ)− < Im
y >][Is

y(t)− < Is
y >] >

[< (Im
y (t)− < Im

y >)2 >< (Is
y(t)− < Is

y >)2 >]1/2
. (104)

Large values of C1x and C1y correspond to high-quality isochronous synchronization, while

large values of C2x and C2y are the signature of good anticipating synchronization.

Though we have shown the existence of anticipating synchronization in the system, this

does not mean that it will be observed, since it can be unstable. We have studied if this
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synchronization regime can be observed numerically for the different regimes of feedback-

induced instabilities described in section 3.3.4. We have considered first a configuration in

which the slave is not subjected to optical feedback (f s = 0), and therefore the injection

rates are ηx = ηy = fm, in order to verify the conditions for anticipating synchronization

(95). Figure 42 represents the correlation coefficients for the x-polarized mode, C1x and

C2x, when the injection rate ηx = ηy is varied from 0.5 GHz to 50 GHz. We observe that for

very small feedback rates (<1.5 GHz approximately), perfect anticipating synchronization

occurs (since C2x = 1)15. For these values of the feedback rate, the intensity emitted by

the master is not chaotic (i.e. it is stationary, periodic, or quasi-periodic), or it corresponds

to very low-developed chaos. When the feedback rate is larger than 1.5 GHz, the chaos

develops and the anticipating solution becomes unstable as the correlation coefficient C2x

drops sharply. Depending on the feedback rate, either complete desynchronization, or in-

tervals of anticipating synchronization, interrupted by bursts of desynchronization, occur.

The coefficient C2x starts to increase again for feedback values larger than 5 GHz approx-

imately. This increase in the anticipating correlation coefficient seems to be concomitant,

and perhaps linked, to the appearance of a pulse-like behavior in the intensity. It is not

until the feedback rate reaches a value of 17 GHz, approximately, that stable anticipating

synchronization occurs again, as the correlation coefficient remains equal to 1 from 17 GHz

to 50 GHz. The awakening of the y-polarized mode, that occurs around fm = 40 GHz,

does not seem to influence the quality of the synchronization, which is perfect, both for the

x and the y-polarized modes (not shown here for the y mode).

It is interesting to notice that for large master feedback rates, the value of the corre-

lation coefficient C1x for isochronous synchronization takes relatively large values. In the

configuration considered here though, it is fundamentally anticipating synchronization that

occurs, and the value of the coefficient C1x actually gives information on the shape of the

chaotic signal, rather than on the synchronization process. It is important to understand

that the only difference between the coefficients C1 and C2 is that in the master intensity

15Additionally, we have checked that anticipating synchronization does not only occur for exactly identical
master and slave parameters, but is reasonably robust to mismatches which would be inevitable in a real
experiment.
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used in the calculation of C2 is shifted by τ units of time with respect to the intensity used in

the computation of C1. To illustrate this, Fig. 43 which represents the injected x-polarized

intensity in the slave laser at a time t, Im
x (t − τc), the intensity that will be injected τ

units of time later Im
x (t− τc + τ), and the x-polarized intensity emitted by the slave at the

same time t. The master feedback rate is fm = 30 GHz and the conditions for anticipating

synchronization are met. We see that the slave intensity synchronizes perfectly with the

intensity that will be injected into it τ units of time later, therefore perfect anticipating

synchronization occurs and C2x = 1. We also see, however, that the slave intensity Is
x(t)

is very similar to the intensity that is injected into it Im
x (t − τc), leading to a large value

of C1x also. This large value of C1x does not indicate true isochronous synchronization,

but rather the fact that a pseudo-period τ exists in the chaotic intensity, so that even if it

is fundamentally Is
x(t) and Im

x (t − τc + τ) that synchronize, Is
x(t) and Im

x (t− τc) also look

similar because Im
x (t− τc + τ) and Im

x (t− τc) are similar to each other.
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Figure 42: Correlations coefficients C1x (circles) and C2x (crosses) for the synchronization
of the x-polarized components of the electric field. Slave feedback rate f s = 0 GHz, injection
rate ηx = ηy = fm. All other parameters are as in Fig. 29.

Many of the characteristics of this anticipating synchronization in VCSELs are similar to

those of anticipating synchronization in edge-emitting lasers, even when the two polarization
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Figure 43: (a) Intensity of the x-polarized component of the electric field injected into the
slave laser at a time t. (b) Intensity of the x-polarized component of the electric field that
will be injected into the slave laser at a time t+ τ . (c) Intensity emitted by the x-polarized
component of the electric field emitted by the slave at time t. Master isotropic feedback
rate fm = 30 GHz, slave feedback rate f s = 0 GHz, injection rate η = 30 GHz. All other
parameters are as in Fig. 29.
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components are active. For example, we find that the open-loop slave gives rise to the

most stable anticipating synchronization, as explained in the following. If we imagine that,

starting from a regime of stable anticipating synchronization with an open-loop slave (f s =

0), we introduce a feedback at the slave and increase the feedback rate (while decreasing

the injection rate so that ηx = ηy = fm − f s), bursts of desynchronization usually occur,

the frequency of the bursts increases with fm, and finally for a certain limit feedback rate

the anticipating synchronization becomes completely unstable. This same type of behavior

occurs in the anticipating synchronization of edge-emitting lasers.

The regime of isochronous synchronization also displays many characteristics that resem-

ble those observed in edge-emitting lasers. We have verified that the proportionality factors

ax and ay for the synchronization of the intensities, and the proportionality term ∆N for the

synchronization of the carrier numbers (100), varies with the injection rate (ηx = ηy = η),

even in the absence of frequency detuning, while the proportionality term ∆φ does not.

Similar behaviors occur in the case of isochronously synchronized edge-emitters [101].

As in the case of anticipating synchronization, we have studied the influence of a change

in the feedback rate (fm = f s) on the synchronization process. It appears that it is always

possible to find an injection rate that leads to isochronous synchronization. When the

feedback rates are low, the injection rate must be significantly larger than the feedback rate

to ensure synchronization, while for larger feedback rates, comparatively smaller injection

rates are necessary (i.e. the ratio ηS/f
m, where ηS is the injection rate ensuring a given level

of synchronization, decreases with fm.) This can be due to the fact that since η measures

the fraction of the master output power injected into the slave, and that this output power

increases with fm, the effective coupling between the two lasers increases with fm, for a

given η. For large feedback rates (fm = f s), even if it is isochronous synchronization that

occurs, we observe a large value of the correlation coefficient that measures anticipating

synchronization (C2i) in reason of the presence of a pseudo-periodicity in the intensity, as

explained above. Additionally, we observe that for large feedback rates, it is possible that

a good synchronization of the amplitudes occurs (large correlation coefficient), while the

phases exhibit bursts of desynchronization. It is important to note that the excitation of
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the y-polarized component of the electric field for large feedback rates does not seem to

affect qualitatively the synchronization process.

Finally, we mention that similarly to the case of edge-emitters, it is possible to observe

a certain degree of isochronous synchronization even when the slave is not subjected to

feedback (f s = 0), but the injection rate needed to obtain a given synchronization quality

is significantly larger than in the case of an external-cavity slave.

3.3.5.2 Second coupling configuration

In this configuration, the symmetry between the two linearly-polarized components is broken

since only one of the two components is optically injected into the slave laser. This can be

considered a first step toward the modeling of the experimental setup described in Refs. [106,

107], with which synchronization of chaotic VCSELs has been observed. We consider here

the case in which the x-polarized component only is injected (ηy = 0).

It is obvious that in the regimes in which only the x-polarized component of the master

electric field is active, setting the injection rate ηy for the y-polarized component to zero

does not have any physical effect and the synchronization regimes that can be observed are

those described in the previous section, for the first coupling configuration. The interesting

cases are therefore those for which the two components are active, and only the x-polarized

component is injected. The injection current of the slave laser is chosen here such that, in

the absence of optical feedback and injection, it emits x−polarized CW light.

It is clear that, in this configuration, perfect anticipating synchronization cannot occur

because the conditions (95) cannot be met since ηy = 0. This is shown in Fig. 44, which

represents the intensities produced by the two lasers, when the master laser is subjected

to a feedback rate f = 40 GHz, and the open-loop slave is subjected to optical injection

with a rate ηx = 40 GHz. In this condition, the anticipating synchronization condition

is met for the x component, but not for the y component. We see that, contrary to the

case in which ηx = ηy = 40 GHz (cf. Fig. 38), only the x-polarized component is active

at the slave laser, and perfect anticipating synchronization does not occur between the

x-polarized components. Since the y-polarized component of the electric field produced
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Figure 44: (a) Intensities of the x- and y-polarized components of the master electric field.
(b)Intensities of the x- and y-polarized components of the slave. (c) Difference between
the intensities. Master isotropic feedback rate fm = 40 GHz, slave feedback rate f s = 0
(open-loop), injection rates ηx = 40 GHz and ηy = 0. All other parameters are as in Fig. 29.

by the master is significantly smaller than the x-polarized component and consists of a

series of pulses, we still observe a tendency to anticipating synchronization between the x

components, especially during the periods of inactivity of the y component (between two

pulses). It is easy to understand that for regimes in which the y-polarized component has

a larger amplitude, anticipating synchronization between the x-polarized components does

not occur at all.

Isochronous synchronization seems to be due to the fact that a strong optical injection

in the slave forces this laser to synchronize (or lock) with the injected signal. It can be

interesting to determine if this also happens when only one of the components of the elec-

tric field is injected into the laser, either open-loop or closed-loop, as is the case in the

configuration studied here. We observe that for sufficiently large injection rates ηx, the

x-polarized component of the slave electric field synchronizes in an isochronous way with

the injected optical field. When this happens, the y-polarized component of the slave field is

inactive, whether the slave is subjected to feedback or not. When the slave is not subjected
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to feedback, it emits x-polarized light, and it remains x polarized when subjected to x-

polarized optical injection. When the laser is subjected to a feedback such that it activates

the y-polarized component, the injection of x-polarized light kills the y-polarized compo-

nent, while the x-polarized component synchronizes with the injected field. The quality

of the synchronization, between the x-polarized components of the electric field, when the

x-polarized component (only) is injected, is only slightly lower than the quality when both

components are injected, even if the x and y components have similar amplitudes.
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Figure 45: (a) Intensities of the x- and y-polarized components of the master electric field.
(b)Intensities of the x- and y-polarized components of the slave. (c) Difference between
the intensities. The correlation coefficient between the x-polarized components is 0.996.
Injection currents µm = µs = 2.5, master isotropic feedback rate fm = 25 GHz, slave
feedback rate f s = 25 GHz (open-loop), injection rates ηx = 100 GHz and ηy = 100 GHz.
All other parameters are as in Fig. 29.

Figures 45 and 46 represent the intensities of the master and slave lasers when both

components, or only the x-polarized components, of the master field are injected respec-

tively. The two lasers have a normalized injection current µm = µs = 2.5 and an isotropic

feedback rate fm = f s = 25 GHz, leading to feedback-induced instabilities in which both

components of the electric field are active. We see that the optical injection of the two

components, with an injection rate ηx = ηy = 100 GHz, leads to good synchronization of
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the x and y components of the slave with the corresponding components of the injected

field (C1x = 0.996 and C1y = 0.997). When the x-polarized component only is injected,

with an injection rate ηx = 100 GHz, the y-polarized component stops being active, and the

x-polarized component exhibits good isochronous synchronization with the injected light.

The synchronization quality is, however, slightly lower than in the case of isotropic injec-

tion (C1x = 0.980). This suggests that isotropic optical injection leads to a situation of

coexistence of the two linearly-polarized modes at the slave laser, which mimics better the

dynamics of the master laser, in which the two modes also coexist. This also means that

the coexistence, and competition, between the two modes, is not detrimental to the quality

of the synchronization.
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Figure 46: (a) Intensities of the x- and y-polarized components of the master electric field.
(b)Intensities of the x- and y-polarized components of the slave. (c) Difference between
the intensities. The correlation coefficient between the x-polarized components is 0.980.
Injection currents µm = µs = 2.5, master isotropic feedback rate fm = 25 GHz, slave
feedback rate f s = 25 GHz (open-loop), injection rates ηx = 100 GHz and ηy = 0. All other
parameters are as in Fig. 29.

In summary, it is not possible to observe perfect anticipating synchronization when only

one of two active linearly-polarized component is injected into the slave. A strong injec-

tion of one component induces, however, isochronous synchronization of the corresponding
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component of the slave electric field and kills the orthogonal component.

3.3.5.3 Third coupling configuration

This configuration reproduces the main characteristics of the experimental observation of

synchronization of chaotic VCSELs described in Refs. [106, 107]. In these experiments, the

master laser is subjected to isotropic feedback, and the x-polarized component of its electric

field is selected, rotated to the y polarization, and injected into an open-loop slave, which,

in the absence of optical injection, emits CW x-polarized light. This type of injection is

sometimes termed orthogonal optical injection, while the type of injection considered in the

second configuration is termed parallel injection.

The configuration considered here, like the one described in the previous section, clearly

favors one of the components of the electric field and it is easy to understand that perfect

anticipating synchronization cannot exist here in the general case.

Our simulations of the model (81)-(84), (87), (88), (89), (90), show that for large injec-

tion rates ηy, the polarization emitted by the laser switches from the x direction to the y

direction, following the polarization of the injected field. Moreover, the fluctuations of the

intensity of the light emitted by the slave synchronizes isochronously with the fluctuations

of the injected optical field. Figure 47 represents the intensities of the x- and y-polarized

components of the slave laser, when it is free-running (a), and when it is subjected to

strong orthogonal optical injection (b), as well as the injected intensity (c), for an isotropic

master feedback rate fm = 1.3 GHz, and an injection rate ηy = 50 GHz. We see that

the free-running slave emits x-polarized light and is in a CW regime, while under strong

injection of y-polarized light, the x-polarized component of the slave field stops lasing and

the y-polarized component is activated. Moreover, the y-polarized field emitted by the

slave synchronizes with the injected field. In particular, we find that the intensity of the

y-polarized component of the slave field, Is(t), synchronizes with the injected intensity,

Iinj(t) = Im
x (t − τc), up to a proportionality factor. The synchronization observed in this

case is therefore a form of isochronous synchronization, which is consistent with the exper-

imental observations reported in Ref. [107]. The synchronization is of good quality, as is
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Figure 47: (a) Intensities of the x- and y-polarized components of the electric field of the
solitary slave (ηy = 0). (b)Intensities of the x- and y-polarized components of the slave
when subjected to strong orthogonal injection (ηy = 50 GHz). (c) Intensity of the injected
field, Iinj(t), which is the x-polarized output of the master, rotated to y-polarization. The
correlation coefficient between Is

y(t) and Iinj(t) is 0.984. Master isotropic feedback rate
fm = 1.3 GHz, slave feedback rate f s = 0 GHz (open-loop), injection rates ηy = 0 GHz (a)
or 50 GHz (b), and ηx = 0. All other parameters are as in Fig. 29.
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shown by the correlation coefficient between the synchronized intensities, which is equal to

0.993.

This correlation coefficient is even larger than the one obtained for parallel optical

injection. Indeed, when the x-polarized output of the master laser is injected into the

open-loop slave, without being rotated, the correlation coefficient between the x-polarized

component of the slave and the injected field is of 0.958 only. In Fig. 48, we have compared

the quality of the synchronization of the slave with the injected field, under orthogonal and

parallel injection, for a given injection rate of 50 GHz , and for various master feedback

rates fm. We observe that for feedback rates smaller than 28 GHz, approximately, the

synchronization is better under orthogonal injection, even though a switching of polarization

is involved. For higher master feedback rates, the synchronization quality under orthogonal

injection drops sharply. In reference [107], it is suggested that synchronization should be

achieved at lower injection powers with orthogonal polarization. Our model allows us to

confirm these suggestions for an (upper limited) range of master feedback rates only16.

Hong et al. [106] have observed in their experiments that the y-polarized component

of the slave electric field synchronizes with the injected field, and that the x-polarized

component exhibits inverse synchronization (or antisynchronization) with this injected field.

Two variables are said to be antisynchronized when they tend to vary in opposite ways,

for example when one variable increases, the other decreases. This is characterized by

a negative value of the correlation coefficient between the two variables. We have shown

above, that under strong injection, the polarization of the light emitted by the slave switches

to the polarization of the injected field. We consider now weaker injections, for which the

x-polarized component has not been yet suppressed, and observe the behavior of the two

components of the slave field. Figure 49 represents the x and y components of the slave

field, and the injected field, for a feedback rate fm = 1.3 GHz, and an injection rate

ηy = 5 GHz. It is clear that the y-polarized component synchronizes with the injected field,

with a correlation coefficient of 0.71, while there is inverse synchronization between the

16It is important to remember that we consider here lasers that do not exhibit any frequency detuning.
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Figure 48: Correlation coefficient between the intensity of the injected field and the intensity
of the x-polarized component of the slave field (parallel injection) or of the y-polarized
component of the slave field (orthogonal injection). The master feedback rate fm is varied
from 0.5 GHz to 50 GHz. The injection rate is of 50 GHz, and the slave feedback rate is
f s = 0 GHz (open-loop). All other parameters are as in Fig. 29.
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x-polarized component and the injected field, characterized by a correlation coefficient of -

0.59. The x- and y-polarized modes clearly exhibit antiphase dynamics, which is common in

VCSELS, as mentioned before, and is probably due to the competition for carriers between

the two modes. What probably occurs is a synchronization of the y-polarized mode with

the injected field, and the antiphase dynamics between the x- and y-polarized components

creates mechanically an inverse synchronization between the x-polarized component and the

injected field. It is important to notice, however, that although the fluctuations in the x-
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Figure 49: (a) Intensities of the x- and y-polarized components of the electric field of the
slave when subjected to orthogonal injection (ηy = 5 GHz). (b) Intensity of the injected
field, Iinj(t), which is the x-polarized output of the master, rotated to y-polarization. The
correlation coefficient between Is

y(t) and Iinj(t) is 0.70 and the correlation coefficient between
Is
x(t) and Iinj(t) is -0.59. Master isotropic feedback rate fm = 1.3 GHz, slave feedback rate
f s = 0 GHz (open-loop), injection rates ηy = 5 GHz and ηx = 0. All other parameters are
as in Fig. 29.
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and y-polarized components of the slave field are clearly synchronized (or antisynchronized)

with the fluctuations of the injected field, their amplitude is much smaller than those of the

injected field. For larger injection rates, the amplitude of the fluctuations of the y-polarized

component becomes comparable to that of the injected field, and these fluctuations are

isochronously synchronized, but the x-polarised component stops lasing, and therefore no

inverse synchronization can be observed. In the experimental results of Hong et al. [106],

the amplitudes of the fluctuations of the injected intensity, and of the synchronized and

antisynchronized intensities of the slave are comparable; therefore, the results of Fig. 49

only show tendencies to a behavior similar to the experimental results, but do not reproduce

them. We have tried to find results that are closer to the experimental ones, by investigating

different values of the feedback rate, of the injection rate, and of the injection current. We

find consistently a competition between the two linearly-polarized components of the slave,

resulting in antiphase dynamics or alternate emissions in the two components. In the regime

of alternate emission, one of the linearly polarized components is active while the other one

is inactive or strongly suppressed, and vice versa. This regime is usually observed when the

injected intensity has a pulse-like appearance, i.e. for large values of the master feedback

rate. For the large injection rates that ensure a good synchronization quality, however,

the x-polarized component is usually completely inactive, and no antiphase dynamics, and

therefore no inverse synchronization, can be observed. Therefore, we only find relatively

low qualities of (concomitant) inverse and direct synchronization.

The experimental results of Hong et al. show relatively good quality of synchronization

and antisynchronization, with a slave experiencing fluctuations of similar amplitudes to

those of the injected field. We have not been able to reproduce completely these results.

We think, however, that there is a good chance that it should be possible to observe these

phenomena in the framework of the SFM model used here. We should try, for example,

to play with the parameters of the model to put the slave laser in a regime in which both

linearly-polarized components have a strong tendency to lase, hoping that this will still

be the case when the injection rate is such that good isochronous synchronization occurs.

Frequency detuning between the two lasers should also be considered since it usually plays
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an important role in the dynamics of optically injected lasers. For example, a frequency-

detuned y-polarized injection could have a lower tendency to make the laser switch and to

suppress the x-polarized component. Noise, and particularly spontaneous emission noise,

can play an important role in the competition between the components of the electric field,

especially for low feedback level, and should be considered. Since in an experimental setup,

it is difficult to suppress completely one of the linearly polarized components, we could

consider in the model that the injection of y-polarized light is accompanied by a low level of

optical injection of the x-polarized component also. Finally, it could be necessary to include

the presence of several transverse modes in the model, if large injection currents are used,

since these transverse modes can play an important role in this case.

3.3.6 Polarization encoding

Based on the experimental setup used for the demonstration of synchronization of chaotic

VCSELs [106], Won Lee et al. have shown experimentally that a 200 MHz sine waveform

could be transmitted to the receiver. The message is encoded in a standard way by modu-

lating the injection current. This type of setup does not exploit the polarization dynamics

which is a specificity of VCSELs, and the results of Won Lee et al. can be considered

as a transposition, in the context of VCSELs, of a technique used for chaotic communi-

cations using edge-emitters. Scire et al. [111] have proposed to exploit the polarization

dynamics of VCSELs in an original chaos-shift keying scheme using two unidirectionally

coupled VCSELs. In their theoretical setup, the phase relation between the two orthogonal

linearly-polarized components of the electric field is changed by a polarization modulator,

depending on the value taken by a binary information-bearing signal. The authors suggest

that this leaves unaffected the total emitted intensity. As is typical in a CSK scheme (cf.

§2.8), the x- and y-polarized components of the master and slave lasers desynchronize and

resynchronize at the rhythm of the information-bearing signal. According to the authors the

total intensities of the two lasers, however, remain synchronized all the time, and because

of this the resynchronization should happen on a ps time scale and not on a ns time scale,

as would be typical in a CSK technique using semiconductor lasers, since the relaxation
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oscillations17 are not involved any more in the resynchronization process.

Unfortunately, there are some shortcomings associated with this scheme. First of all,

the VCSELs used in Ref. [111] are lasers with a saturable absorber surrounding the active

region, which are an uncommon type of laser. Additionally, chaos is produced in this

scheme by the interplay of the (few) dynamical variables of the VCSEL itself, and therefore

it can only be low-dimensional. Finally, the synchronization scheme is relatively complex

since it involves a feedback mechanism that optically reinjects, in the slave, the difference

between the master and slave electric fields. We have examined if it is possible to realize

a similar setup, but using standard VCSELs, subjected to feedback, and synchronized by

direct optical injection of the master field in the slave. The advantage of using a master laser

subjected to feedback is that the chaos generated can be much higher dimensional than the

chaos generated by a solitary laser with a saturable absorber. Additionally, synchronization

by direct optical injection is easier to realize experimentally and a good synchronization

quality should be possible to obtain, as was shown above. Therefore we do not think it is

necessary to use the complex synchronization scheme that Scire et al. propose.

We use here the setup of the first coupling configuration described in section 3.3.5, in

which the slave laser is not subjected to feedback (f s = 0). We change the phase relation

between the x- and y-polarized components of the electric field, and therefore the polariza-

tion state, at the rhythm of an information-bearing digital pseudo-random message m(t),

of period T . Every T units of time, the message has a probability 1/2 of taking the value

0 or H, and the phase of the x-polarized component of the slave field is either unaffected,

or H radians are added to it for the duration of the bit. The setup can be modeled by

the system of equations of the first coupling scheme considered in section 3.3.5, except that

the equation for the x-polarized component of the electric field has to be modified in the

following way to take into account the modulation:

17The relaxation oscillations in the photon and electron populations are a manifestation of an intrinsic
resonance in which energy oscillates back and forth between these two populations.
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Figure 50: (a) Difference between the phases of the x- polarized components of the master
and slave electric fields. (b) Information bearing signal m. Master isotropic feedback rate
fm = 55 GHz, slave feedback rate f s = 0 GHz (open-loop), injection rates ηx = 55 GHz
and ηy = 55 GHz. All other parameters are as in Fig. 29.

Preliminary results suggest that it is possible to transmit an information-bearing signal

using this technique. We consider here a master laser subjected to an isotropic feedback

rate fm = 55 GHz, which leads to the concomitant emission of the two linearly-polarized

components and to a chaotic evolution of the polarization state on the Poincaré sphere. We

use anticipating synchronization, as the injection rates are chosen to be ηx = ηy = 55 GHz.

In the absence of the message m, perfect anticipating synchronization occurs between the

intensities of master and slave fields. The presence of a message m changes the evolution of

the state of polarization on the Poincaré sphere, but is undetectable on the intensity of the

electric field transmitted to the slave. Our simulations indicate that it seems to be possible
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to transmit a 10 Gbit/s message, of amplitude H = π/3, using this technique18. Figure 50

shows that the phases of the x-polarized component of the master and slave lasers experience

synchronization and desynchronization at the rhythm of the message m. This property can

therefore be used to recover the message, though an experimental realization would be non-

trivial. The intensities of the x-polarized components remain relatively well synchronized,

and they cannot be used to recover the message, as shown in Fig. 51. We also find, however,
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Figure 51: (a) Difference between the intensities of the x- polarized components of the
master and slave electric fields. (b) Information bearing signal m. Master isotropic feedback
rate fm = 55 GHz, slave feedback rate f s = 0 GHz (open-loop), injection rates ηx = 55
GHz and ηy = 55 GHz. All other parameters are as in Fig. 29.

that some periods of desynchronization occur during which it is impossible to recover the

information bearing signal. During these bursts of desynchronization, not only the phases,

but also the amplitudes and the carrier numbers desynchronize. Figure 52 represents the

evolution of the master and slave carrier and shows that a period of desynchronization

starts around t = 827 ns.19 These periods of desynchronization occur more frequently for

18Our simulations also indicate that it does not seem to be possible to transmit a message with such a
high bit rate using the technique based on a direct modulation of the injection current.

19It should be noticed that Figs. 50 and 51 correspond to an interval of time that precedes the burst of
desynchronization.
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high bit rates than for low bit rates. A bit rate of 10 Gbit/s seems to be the approximate

limit above which it becomes impossible to recover the message m, because of the absence

of synchronization. These preliminary results need to be confirmed by a more detailed
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Figure 52: (a) Master carrier number N . (b) Slave carrier number N . (c) Difference
between the master and laser carrier numbers showing a period of desynchronization starting
after 827 ns approximately. Master isotropic feedback rate fm = 55 GHz, slave feedback
rate f s = 0 GHz (open-loop), injection rates ηx = 55 GHz and ηy = 55 GHz. All other
parameters are as in Fig. 29.

study of the synchronization/desynchronization mechanisms under the effect of polarization

modulation.

3.3.7 Summary

We have studied the synchronization of external-cavity VCSELs on the basis of the spin-flip

model. We have considered a master laser subjected to isotropic optical feedback, while

different types of optical injection in the slave have been studied.

In the case of isotropic injection, we observe regimes of anticipating and isochronous

synchronization of the two linearly-polarized components of the electric field. The charac-

teristics of these synchronization regimes are similar to the characteristics of the anticipating

and isochronous regimes identified in edge-emitting lasers.
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The optical injection of only one of the linearly-polarized components of the electric field

clearly favors the corresponding component at the slave laser. For sufficiently large injection

levels, the component parallel to the injection synchronizes isochronously with the injected

field. If this component is inactive at the slave laser, the polarized optical injection activates

it, and if the orthogonal component is active, the optical injection kills it. In the case of

orthogonal injection, and for intermediate injection levels, the two linearly-polarized com-

ponents of the slave electric field can be active contemporaneously, and antiphase dynamics

between the two components is often observed. In this case, the component parallel to the

direction of the polarized injection tends to synchronize with the injected field, while the

other component experiences antisynchronization with the injected field. The component of

the electric field perpendicular to the injection is usually killed, however, before good syn-

chronization (and antisynchronization) occurs. We are confident that some modifications

of the operating conditions, and especially the inclusion of frequency detuning between

the lasers, should lead to the observation of good synchronization and antisynchronization,

consistently with the experimental results of Hong et al. [106, 107].

Finally, preliminary results indicate that it should be possible to realize chaotic com-

munications, between external-cavity VCSELs, in which the information-bearing signal is

coded on the polarization state of the master laser.
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CHAPTER IV

ANALYSIS OF TIME SERIES PRODUCED BY CHAOTIC

DELAY SYSTEMS

4.1 Introduction

It is well known that since delay systems have an infinite-dimensional phase space, they can

produce high-dimensional chaos, because of the infinite number of directions of evolutions

of the system in phase space. It is believed that the use of a complex chaos is useful in

chaotic communications because it leads to a better masking of the information-bearing

signal than when lowly-developed chaos is ued. We are interested in analyzing the delay

cryptosystems used at the GTL-CNRS Telecom Laboratory, in verifying that they can

indeed produce complex chaos, and in determining the conditions under which complex

chaos occurs. This will help the experimentalist determine the operating conditions that

lead to better encryption.

In the case of delay systems however, the standard techniques of time series analysis,

and of computation of the Laypunov spectrum from the dynamical model, described in

sections 4.2 and 4.3, fail because of the high dimensionality of the attractors. Special

techniques for delay systems have been developed by Farmer [123] in the case of a known

model, and by Hegger et al. [79, 124] when only time series are known. These techniques

are quite involved and we refer the reader to the aforementioned references for more details.

We will just give a flavor of the technique that uses time series analysis, because part of it

will also be useful for a delay time identification technique studied in the next section.

Section 4.2 describes the principles of specific techniques that can be used to analyze

time series produced by delay systems, while section 4.3 explains how these techniques can

be used to estimate the Lyapunov spectrum,, and how this spectrum can be computed when

the dynamical model is known. Section 4.4 is devoted to the identification of the delay of



a series of experimental chaotic delay emitters, which is the first step in the analysis of a

delay system. Section 4.5 shows briefly how the specific time series analysis techniques can

be used to identify, in certain cases, the nonlinear fucntion. Finally, section 4.6 is devoted to

the estimation of the Lyapunov spectrum of the Mackey-Glass system, and of the generator

of wavelength chaos, from times series and from the dynamical model.

4.2 Principles of the analysis of time series produced by

delay systems

We have seen in section 2.6 that the first step in time series analysis is an embedding of

the attractor in a phase space reconstructed by the method of delays. Since we want to

caracterize high-dimensional delay systems, this is not a practical thing to do1. It has been

shown indeed that the number of points of the time series necessary to determine deter-

ministic quantities by statistical methods increases exponentially with the attractor dimen-

sion [125, 126]. This is due to the fact that the number of variables that have to be used in

the method of delays increases with the attractor dimension. High-dimensional attractors

mean, therefore, that it is necessary to work in high-dimensional reconstructed spaces. It

is easy to understand that the number of elements of the time series must be very impor-

tant in order to find a sufficient number of neighbors of a point in such high-dimensional

reconstructed spaces and thus to obtain statistically significant results. Practically, for di-

mensions larger than 5, it becomes very difficult to determine the deterministic properties

of a system and thus to make the difference between high-dimensional chaos and colored

noise.

This section shows that it is nevertheless possible to determine deterministic quantities

of delay systems by exploiting their peculiar structure. Techniques that are tailored to delay

systems have to be used. We have been greatly inspired by the references [127, 128, 129,

79, 130, 131] for the presentation we give here. We consider first the simple case of a scalar

delay-differential system.

1Even if from a theoretical point of view, it would be possible to apply the Takens embedding theorem
to high-dimensional data coming from a delay system
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4.2.1 Scalar delay systems

A continuous-time scalar delay system can be described by a scalar delay-differential equa-

tion

ẋ(t) = F [x, x(t− τ)] , (106)

where τ is the delay, F is a real nonlinear function, and x ∈ R the dynamical variable.

As we have noted in section 2.3, the phase space is here the infinite-dimensional space of

functions defined on an interval of length τ .

In this delay system, the derivative of x(t) depends not only on the value of the dynamical

variable x at time t but also on its value at the time t − τ . This means that correlations

exist that are nonlocal in time. These nonlocal correlations allow for complex evolutions of

the system dynamics. It should be noted that these correlations are not easily detectable

by a visual analysis of the time series.

It is essential to notice that Eq. (106) is a constraint in the space spanned by ẋ(t), x(t),

and x(t− τ) and therefore the equation ẋ(t)− F [x, x(t− τ)] = 0 defines a two-dimensional

manifold, S, on which the system evolves. Equivalently, it can be said that the projection of

a trajectory of the system in the infinite-dimensional phase space on the three-dimensional

space (ẋ(t), x(t), x(t − τ) is confined on a surface S. It is important to understand that

in the general case the projection of a high-dimensional attractor on a space of dimension

three does not lead to a two-dimensional manifold. It is a specific property of delay systems.

The main idea behind the analysis techniques for delay systems is to work in the three-

dimensional space spanned by ẋ(t), x(t), and x(t − τ) instead of the infinite-dimensional

phase space. In particular, we show in this work that it is possible to identify the delay

(§ 4.2, § 4.3), to perform local linear approximations of the dynamics (§ 4.2), to identify

the nonlinear function (§ 4.5), to compute the Lyapunov spectrum, dimension, and entropy

(§ 4.3, § 4.6) by working in such a low-dimensional space. In the remainder of this section,

we explain how local linear approximations can be performed and how the delay can be

identified.

The presence of a delay in the dynamical system can be detected and its value can be
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identified by detecting the presence of the surface S in the three-dimensional space. There

are several ways to test the existence of this surface [128, 129, 79], but they are all based

on the study of the behavior of the system in a space (ẋ(t), x(t), x(t − τ∗)), where τ∗ is

an arbitrary delay. As discussed above, the surface only exists when τ∗ = τ since only in

this case does Eq. (106) define a constraint. In Ref. [128], the space (ẋ(t), x(t), x(t− τ∗)) is

divided in a large number of cubes and a filling factor is defined as the number of cubes that

are visited by the projection of the trajectory. When τ∗ = τ , a relatively small number of

cubes are visited given that the trajectory is confined to a surface, whereas when τ∗ 6= τ , a

larger number of cubes are visited. A maximal value of the filling factor is therefore expected

for the correct value of τ∗. We will use in this chapter another technique that employs local

linear approximations of the dynamics and that corresponds to the construction of a series

of planes tangent to the surface S. Since these approximations only make sense if a surface

is effectively spanned, a minimum of the approximation error is expected for τ∗ = τ .

Of course, one does not have the variable x in the form of a continuous function of

time, but as a set of N values xn of x taken at discrete times, separated by a time interval

h. This time interval can be a sampling period or an integration step. This discretiza-

tion implies that the phase space is also discretized: instead of an infinite-dimensional

function space, a vector space of dimension P is used. It is constituted by the vectors

(xn, xn−1, xn−2, ..., xn−(P−1)), where P − 1 = τ/h is the number of samples corresponding

to the delay τ of the system. To simplify notations, and without loss of generality, we will

assume that h = 1, which means that P−1 = τ . The preceding considerations are still valid

in this discretized phase space, even if a loss of information can result from the discretiza-

tion. In particular, it can be considered that the space (ẋn, xn, xn−τ ) is the discretized

version of (ẋ(t), x(t), x(t − τ∗)). In this space, S can be modeled by

ˆ̇xn = g1[~vn(τ)] , (107)

where ˆ̇xn is an estimation of the derivative obtained from the time series, g1 is a map from

R
2 to R and ~vn(τ) is a vector defined by ~vn(τ) = (xn, xn−τ ). The system dynamics can be
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modeled by the iteration

xn+1 = g2[~vn(τ)] , (108)

where g2 is a map from R
2 to R. It is important to note that this does not correspond to a

model of the attractor in phase space but to a reconstruction of the dynamical rule of the

scalar delay system.

It is possible to make a local linear approximation of the dynamics of the system in a

neighborhood of ~vn(τ∗):

xn+1 = an + bnxn + cnxn−τ∗ , (109)

where an, bn, and cn are the coefficients of the approximation and τ∗ is a delay expressed

as a number of samples2. A least squares method is used to determine the coefficients of

the approximation by minimizing the following quantity

e2n(τ∗) =
1

Card(Un)

∑

i∈Un

(xi+1 − an − bnxi − cnxi−τ∗)2 (110)

with respect to the coefficients in the approximation, in a small neighborhood Un(ǫ) = {i :

‖~vi−~vn‖ < ǫ} of ~vn = (xn, xn−τ ). The quantity Card(Un) represents the number of elements

of the set Un. The choice of the neighborhood size faces the same issues as those described

in section 2.6.2 and the search for neighbors itself is a nontrivial problem described in the

appendix A. The quantity e2n(τ∗) is obviously the error of the local linear approximation

in the neighborhood of the vector ~vn. An average approximation error can be defined as

E2(τ∗) =< e2n(τ∗) >n , (111)

where < · · · >n is an average taken on the whole time series. This quantity therefore

represents the average error of the local linear approximations all along the trajectory

under consideration. A global minimum of the function E2(τ∗) is expected for τ∗ = τ since

2It is better to approximate (108) rather than (107) because in this way we will avoid the problem of
estimating derivatives, which can be a difficult task in the presence of noise, and because the approximations
(108) will be useful to determine the Lyapunov spectrum.

122



it is only in this case that xn+1, xn, and xn−τ∗ are linked by a constraint and thus that the

approximations make sense.

We will present numerous applications of this identification method in section 4.4. It is

useful to notice that first, contrary to the standard embedding techniques, it is not necessary

that the trajectory has settled on the attractor (thus time series corresponding to transient

periods can be used) and second, that the techniques decribed hereabove are independent

of the dimension of the attractor. We end this section by noting that this type of local

linear approximations has been used by Zhou and Lai [80] to break a crtptosystem based

on a Mackey-Glass delay system.

4.2.2 Vectorial delay systems

We consider now the more general case of a system with d dynamical variables in which

one of its variables is involved in a delayed feedback. This type of system can be described

by an equation

d~x(t)

dt
= ~F (~x, x(l)(t− τ)) , (112)

where ~x ∈ R
k is the vector of dynamical variables and x(l) is the component of ~x ∈ ℜk that

is involved in the feedback. We assume that we only have a scalar time series, (xn), which

corresponds to the measure of a component of ~x.

The fact that only one variable of a vectorial system is measured must be taken into ac-

count in some way. Hegger et al. [79] have proposed to analyze these systems by combining

the technique for scalar delay systems described in the preceding section with a reconstruc-

tion of the unmeasured variables by the method of delays. More precisely, they propose to

work in a neighborhood of the vector

~vn = (xn, xn−1, xn−2, ..., xn−m+1, xn−τ , xn−τ−1, xn−τ−2, ..., xn−τ−m+1) .

If we compare the scalar case to the vectorial case, we notice that delayed variables of the

form xn−j and xn−τ−j have been added to reconstruct the variables that have not been

measured. It should be noticed that delayed variables have been introduced for xn−τ as
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well as for xn. This is based on an analogy between delay systems and input/output systems

[x(t− τ) is considered as an input of the system which is dealt with, as shown in [132], by

introducing it, with its delayed values, in the vector ~vn]. Hegger et al. suggest that m = 2k

should be sufficient to reconstruct the unobserved variables3. In a similar way to the case

of a scalar system, the following local linear approximation is performed

xn+1 = an+ <~bn, ~vn >= an +

m
∑

j=1

b(j)n xn−j+1 +

m
∑

j=1

c(j)n xn−τ∗−j+1 , (113)

where an, b
(j)
n and c

(j)
n are the coefficients of the local linear approximation. They can be

determined by a least squares method in a neighborhood of the vector ~vn. The search for

neighbors must thus be performed in this case in a space of dimension 2m. This non-trivial

problem is described in appendix A. It is possible to use these approximations to identify

the delay τ in a similar way to what has been done for scalar systems (§106).

It is important to understand that the additional delayed variables are used only to re-

construct the unobserved variables and not to reconstruct the full dynamics on the attractor

in the phase space. In particular, we work with vectors ~vn that evolve in a space whose

dimension, 2m, is independent of the attractor dimension. The attractor dimension can be

greatly superior to 2m and the application of the Takens’ embedding theorem to reconstruct

the dynamics on the attractor could require a number of delayed variables greatly superior

to 2m. In the case of a vectorial delay system, the time series analyst will have to work in

a space of larger dimension than in the case of a scalar delay system, but this dimension

is still much lower than the dimension of the reconstructed space that would have resulted

from the application of an embedding of the high-dimensional attractor.

As a conclusion, the peculiar structure of delay equations, in which only a small number

of variables is involved (only one variable in the case of a scalar system), can be used to

model locally the dynamical rule in a low-dimensional space, independently of the dimension

of the attractor. We have shown that these approximations can be used to identify the delay.

We show in the next section (4.3.1) that they can also be used to estimate the Lyapunov

3the reader should notice the analogy with condition on the number of variables of Takens embedding
theorem.
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spectrum.

4.3 Estimation of the Lyapunov spectrum of a delay system

We show here how the Lyapunov spectrum can be estimated in the case of delay systems.

Section 4.3.1 studies the case in which only a time series is known and section 4.3.2 considers

the case in which the dynamical model is known. In both cases, the techniques presented

in sections 2.5.2 and 2.6.2 cannot be used directly and thus specific techniques have to be

developed.

4.3.1 From the time series

We have explained in section 2.6.2 that the standard techniques used to extimate the spec-

trum involves making local linear approximations in a reconstructed phase space. We have

shown above (§4.2) that this procedure is not practicable in the case of high-dimensional

attractors.

The solution is to use the results of the preceding section and to work in the projection of

the phase space onto a low dimensional space instead of working in the (high-dimensional)

phase space itself. In this way, it is possible to find a sufficiently high number of neighbors

to determine statistically significant coefficients in the approximations. The computation

technique of the Lyapunov spectrum is due to Hegger et al. [124].

We consider here scalar delay systems (106). As explained in section 2.5.2, it is necessary

to determine the jacobian matrices of the time-h map that associates to the state of the

system in phase space at time t, the state of this system h units of time later. In the case

of delay systems of course, the phase space stricto sensu is not accessible directly since it

is infinite-dimensional: it is therefore necessary to work in a discretized phase space (which

is finite-dimensional). This space of dimension P (cf.4.2.1) is spanned by the vectors of the

form ~xn = (xn, xn−1, xn−2, ..., xn−τ ). Once again, to make things simple, we use the same

variable (τ) to designate the delay and the number of samples contained in the delay.
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Our aim is thus to determine the jacobians of the map

~φh : R
P → R

P ; ~xn = (xn, xn−1, xn−2, ..., xn−τ ) 7→ ~xn+1 = (xn+1, xn, xn−1, ..., xn−τ+1)

(114)

along the trajectory that corresponds to the analyzed time series. It is fundamental to notice

that it is only the first component xn+1 = ~φ
(1)
h (xn, xn−1, ..., xn−τ ) of ~φh that corresponds to

nontrivial dynamics. Its linearized behavior is of the form xn+1 = an + bnxn + cnxn−τ and

can be determined in the way indicated in section 4.2.1 (in a three-dimensional space).

The other components of ~φh simply select one of the components of ~xn (e.g. xn =

~φ
(2)
h (xn, xn−1, ..., xn−τ ) and correspond globally to a time shift of h units of time.

On the basis of the previous considerations, it is easily found that the jacobian matrix

of ~φh (in the discretized phase space) takes the following form

Jn =



























bn 0 · · · 0 cn

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0



























(115)

The elements of the first line can be obtained from the local linear approximation (109).

The local linear approximations described in section 4.2.1 can thus be used to determine

the jacobian matrices all along the trajectory. The computation of the Lyapunov spectrum

from these matrices then follows the procedure described in section 2.5.2.

In principle, we are now able to compute the Lyapunov spectrum of a system from

its time series. It is also necessary, however, to choose the values of a series of critical

parameters which influence the quality of the results. One of these parameters is the time

step h that discretizes the continuous-time system. The delay system is time-continuous and

its phase space is infinite dimensional, but with a finite time step h, the dimension shrinks

to τ/h. It is easily understood that h must be chosen small enough to reproduce the full

dynamics of the continuous-time system. Practically, this can be done by checking the

convergence of certain characteristic quantities when the value of h is decreased. Another
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critical parameter is the neighborhood size. If it is too small, the results can be statistically

ill-determined; if it is too large, the linear approximations lose their meaning. Moreover, in

the case of noisy time series, the neighborhoods must be large enough to ensure that it is

the deterministic dynamics, and not the noise, that is fitted.

The case of vectorial delay systems can be treated in a similar way by exploiting the

local linear approximations of the form (113).

4.3.2 From the model – Farmer’s method

In this section, we show how the Lyapunov spectrum can be determined when the dynamical

model (106) of a scalar delay system is known. We have shown in section 2.5.2 that in the

case of a system described by ordinary differential equations, this can be done by integrating

in parallel the dynamical model and the variational equation. In particular, the variational

equation was used to determine the Jacobians of the time-h map.

In the case of delay systems, a state of the system is no longer determined by the collec-

tion of the values of a finite set of variables, at a given time, but by a function of an interval

of length τ . Therefore the calculation procedure of the case of systems of ordinary differen-

tial equations cannot be applied directly. The first step is once again to discretize the phase

space by observing the system at instants separated by a time intervel h. This leads to a

space of dimension P whose elements are of the form (x(t), x(t − h), x(t− 2h), ..., x(t − τ)).

The Lyapunov spectrum can then be computed by using the Jacobian matrices of the time-

h map. We could derive the rate equations of the Jacobians, but to keep things simple, we

present Farmer’s approach [123] to compute the Lyapunov spectrum. Farmer uses the stan-

dard procedure for computing the spectrum described in §2.5.2 and applies it to the case

of scalar delay systems discretized as explained above. As in section 2.5.2, we start from

an orthonormal basis of the discretized phase space, that we call here
(

~δx1, ~δx2, ..., ~δxp

)

.

Farmer calls these vectors “separation functions”: it can be considered indeed that these

vectors are P discretized versions of functions defined on an interval of length τ . As in the

case of the standard procedure, the evolution of these separation functions under the linear
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part of the time-h map must be computed. Before the transformed vectors become degen-

erate, they must be orthonormalized by a Gram-Schmidt-like procedure. The accumulation

of these normalization factors gives the Lyapunov exponents as shown in formula (21)4.

Specifically, the evolution of the separation functions can be determined by linearizing

the dynamical equation (106) of the system. This linearization leads to the linear non-

autonomous delay-differential equation

dδx(t)

dt
=
∂F [x(t), x(t − τ)]

∂x(t)
δx(t) +

∂F [x(t), x(t − τ)]

∂x(t− τ)
δx(t− τ) . (116)

The integration of this equation using as initial conditions the values of the different compo-

nents of a separation function allows us to compute the evolution of the separation function.

If the evolution of all the separation functions is computed in this way and an orthonor-

malization procedure is applied, the Lyapunov spectrum can be determined as described

above. Further details can be found in Refs. [123, 133].

In the remainder of this chapter, we use the concepts presented so far on the analysis

of delay systems to determine important characteristics of several delay systems, and in

particular of several chaotic emitters used in chaotic cryptosystems. Section 4.4 is devoted

to the identification of the delay, section 4.5 to the identification of the nonlinearity, and

finally section 4.6 studies the estimation of the Lyapunov spectrum, of dimension, and of

entropy.

4.4 Delay identification

The delay is obviously the most important parameter of a delay system and its identification

is of fundamental importance for a time series analyst. Moreover, as we have mentioned

before, its identification can lead to breaking a chaotic delay cryptosystem. In addition to

the specific techniques based on local linear fits and filling factors presented in section 4.2,

some other standard techniques can be used to identify the delay. Section 4.4 is devoted to

the presentation of these techniques. The different identification methods are then applied

4We should consider that in formula (21), the vector ~y
(i)
k represents here the transformed kth separation

function, orthogonalized but not normalized, at the ith iteration.
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to several delay systems. Section 4.4.2 studies the case of the Mackey-Glass system, sec-

tion 4.4.3 the case of an optoelectronic system generating wavelength chaos, section 4.4.4 the

case of an optoelectronic generator of chaos in intensity, and finally section 4.4.5 examines

the case of an electronic system generating frequency chaos.

4.4.1 Identification Techniques

In the following, we present several quantities that can be used to identify a delay, namely

the autocorrelation, the autocovariance, and the mutual information.

4.4.1.1 Autocorrelation

The autocorrelation of a real random signalX(t) is the real function RX of two real variables

t1 and t2

RX(t1, t2) = E [X(t1)X(t2)] , (117)

where E represents the expected value. When a random process is stationary, its probability

laws are invariant with respect to a shift of the time origin. Direct consequences are that

the mean value mX of the process does not depend on time and the autocorrelation depends

only on the difference t1 − t2 = τ . The autocorrelation is therefore a function of a single

variable

RX(τ) = E [X(t)X(t − τ)] . (118)

If we assume additionally that the process is ergodic, the ensemble average performed by

the expectation operator can be replaced by a time average

RX(τ) = lim
T→+∞

1

2T

∫ T

−T
x(t)x(t− τ)dt , (119)

where x(t) is a realization of the random process X(t). We will mainly use the notion of

autocovariance defined in the general case by

CX(t1, t2) = E {[X(t1) −mX(t1)] [X(t2) −mX(t2)]} . (120)

The difference between autocovariance and autocorrelation lies in the fact that the former

is centered with respect to the mean value. When the process is stationary and ergodic, the
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autocovariance can be written as

CX(τ) = E {[X(t) −mX ] [X(t− τ) −mX ]} = RX(τ) −m2
X . (121)

The autocovariance measures, for a given value of τ , the tendency of the cloud of points

(x(t), x(t − τ)) to align along an oblique straight line. It measures therefore a linear link

between x(t) and a delayed version, x(t− τ), of x(t).

4.4.1.2 Mutual Information

The notion of mutual information comes from information theory. Consider a discrete

random variable X and call X the set of all possible realizations of X. We define first the

entropy H(X) of X:

H(X) =
∑

x∈X

p(X = x) log p(X = x) , (122)

where x is a realization of the random variable X. This quantity corresponds intuitively to

a measure of the quantity of information necessary to the description of X. If the logarithm

is in base 2, this quantity is measured in bits. Consider now two random variables X and

Y . X and Y represent the set of all possible realizations of X and Y respectively. The

relative entropy of X knowing Y , H(Y | X), is given by

H(Y | X) =
∑

x∈X

∑

y∈Y

p(X = x, Y = y) log p(Y = y | X = x) . (123)

The relative entropy corresponds to the quantity of information necessary to the description

of X knowing Y . From these two notions, the mutual information I(X,Y ) of two random

variables can be defined as

I(X;Y ) = H(X) −H(X | Y ) =
∑

x∈X

∑

y∈Y

p(X = x, Y = y) log
p(X = x, Y = y)

p(X = x)p(Y = y)
. (124)

We understand easily that this quantity corresponds to the reduction of the quantity of

information necessary to the description of X due to the knowledge of Y . The larger the

value of I(X;Y ), the more information Y contains on X.
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The dynamical systems studied in this thesis produce chaotic signals x(t), that can be

considered as realizations of a random process X(t). When the time is discretized (corre-

sponding to numerical integration or sampling), and when ergodicity is assumed, it can be

considered that the values x(ti), where ti is a time of observation of the system, correspond

to the different realizations of a random variable. Moreover, a discrete random variable

is obtained when the continuous-time density function is approximated by an histogram

(discrete distribution function). The interested reader can find further details on these in-

formation theoretical concepts in the book by Thomas M. Cover and Joy A. Thomas [134].

The mutual information between x(t) and x(t − τ), where τ is an arbitrary delay, can

be used to identify nonlinear nonlocal links in time due to the presence of a delay in the

system under consideration. It is useful to know that the mutual information computed

between x(t) and x(t− τ) is sometimes called “delayed mutual information”.

4.4.2 Mackey-Glass system

We consider here the famous Mackey-Glass system [8]. This system models the production

of blood cells in the human body. The generation of these cells is greatly influenced by the

delay that exists between the initiation of the cell production process and the liberation of

mature cells in the blood flow. The dynamical model that describes this system is a first

order differential equation

τRẋ(t) =
cx(t− τ)

1 + x(t− τ)10
− x(t) . (125)

This system is among the delay systems that have received the greatest attention from the

scientific community and is often considered as an archetype of delay systems. Figure 53

represents the nonlinearity of the Mackey-Glass system as well as a chaotic signal produces

by this system.

The reader should note that this nonlinearity has only one extremum and that, on the

contrary, systems used for chaotic encryption always use more complex nonlinearities which

have several extrema. The Mackey-Glass system is not a good candidate to perform chaotic

encryption. We use this sytem, that has been largely studied in the literature, to test all
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Figure 53: (a) Chaotic signal and (b) nonlinear function of the Mackey-Glass system.
τ = 46, τR = 10, c = 2.

the time series analysis techniques for delay systems. It is therefore used mainly to validate

our algorithms of time series analysis. Since we do not have a physical system that behaves

like the Mackey-Glass model, we analyze numerically generated time series.

We begin by studying the efficiency of the various delay identification techniques de-

scribed in section 4.4.1. Figure 54 represents the autocovariance of x(t). As could have been

expected, a global maximum is reached for τ∗ = 0. The global minima are reached for a

value of |τ∗| equal to 52, which is close, but larger, than the delay τ . This overestimation is

typical in the autocovariance technique. The autocovariance measures a link between x(t)

and a delayed version, x(t− τ∗), of x(t). If we imagine a pulse xi produced by the system

at time t, this pulse comes back into the system after a time τ due to the feedback, and the

system will only respond to that pulse after an additional time τR which is the response

time of the system. This illustrates why identifying the delay with the autocorrelation leads

to an overestimation caused by the system response time.

The mutual information technique has been applied in Fig. 55. In addition to the global

maximum reached for τ∗ = 0, a series of local maxima are observed for values of τ∗ that

are integer multiples of themselves. The deepest local maximum is reached for a value of

τ∗ equal to 51.5. The mutual information also leads to an overestimation of the delay, for
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Figure 54: Autocovariance of x(t). τ = 46, τR = 10, c = 2, h = 0.5.

the same reasons explained for the case of the autocovariance technique.

Finally, Fig. 56 represents the approximation error coming from local linear fits, defined

by formula (111), as a function of an arbitrary delay τ∗. The number N of samples is 41500

(corresponding to 450 intervals of length τ), and the neighborhood size ǫ is 1 percent of

the amplitude of the variations of x(t)[footnote5]. The global minimum is reached for a

value of τ∗ equal to 46, which corresponds exactly to the value of the delay τ [footnote6].

We see that this method does not lead to an overestimation of the system delay τ . This is

because it does not measure a link between x(t) and a delayed version of x(t), but it uses

the structure of the delay equation by performing, loosely speaking, an approximation of

the nonlinear function as a collection of linear functions of x(t) and x(t− τ∗).

We have checked on the Mackey Glass system that the technique based on an approxi-

mation error leads to a more accurate estimation of the delay time τ than the autocovariance

and the mutual information. It should be pointed out, however, that it requires, for a given

number of samples N , a much longer computation time.

5In the following, ǫ will always be expressed in this way.
6It is worth noticing that there is also a local minimum for a value of τ∗ slightly larger than τ , and

function of the response time τR of the system.
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Figure 55: Mutual information between x(t) and x(t−τ∗). τ = 46, τR = 10, c = 2, h = 0.5.
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Figure 56: Average approximation error. τ = 46, τR = 10, c = 2, h = 0.5, ǫ = 1%,
N = 41400 samples.
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4.4.2.1 Influence of the parameters N , ǫ, and h of the identification procedure

The average approximation error represented in Fig. 56 has been drawn for a given value

of the number of samples N , of the neighborhood size ǫ, and of the sampling period h. A

good choice of these values can be critical to a good estimation of the delay. This is why we

study in this section how the choice of these parameter values influences the identification

of the delay.

The first parameter that we study is the number N of samples in the time series.

Figure 57 represents the mean approximation error for different values of N . We notice that

the larger the number of samples is, the more pronounced the minimum is, but at the same

time even a relatively small number of samples (e.g. 5000) allows the identification of the

delay. It should be noted at this point that even if the estimation of the Lyapunov spectrum

uses the same local linear fits as the delay identification technique does, the number of

samples N that will be needed to ensure the convergence of the Lyapunov spectrum will be

much larger than the number needed to identify the delay.
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Figure 57: Influence of the number of samples N . τ = 46, τR = 10, c = 2, h = 0.5, ǫ = 1%.

Figure 58 represents the approximation error for a large range of values of the neighbor-

hood size ǫ, going from 0.5% to 20%. We notice that for all the values of ǫ considered, the
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delay τ can be identified. We also notice that large neighborhoods lead to more pronounced

maxima, but it should be pointed out at the same time that bigger neighborhoods means

larger numbers of neighbors to consider and larger computation times 7.

The last parameter in the delay identification procedure is the sampling time h. Fig-

ure 59 shows that when h increases, the minimum of the approximation error becomes more

pronounced and tends to become narrower also. This is because when τ∗ is different from τ ,

an approximation of the form xi+1 = ai + bixi + cixi−τ∗ is better when the sampling step is

small. When τ∗ is different from τ , the linear expression given is not a good approximation,

which leads to a high values of the approximation error when τ∗ 6= τ . But there will always

be a correlation between the terms xi+1 and xi and this correlation is weaker when the

corresponding time interval h is larger. This explains larger values of the approximation

error when h is bigger and thus the more pronounced maxima.
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Figure 58: Influence of the neighborhood size ǫ. τ = 46, τR = 10, c = 2, h = 0.5,
N = 20000.

Finally, it can be interesting to determine the precision with which the delay τ can be

obtained by the local fits technique. The preceding study on the influence of h can give us

7Bigger neighborhoods mean bigger “boxes” in the neighbor search algorithm (cf. appendix A).
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some indications in this matter. We know that obviously the minimal difference between

two successive values of the τ∗ is necessarily equal to the sampling period h, but two values

of the delay that differ by h do not lead necessarily to significantly different values of the

approximation error. Figure 59(b) shows that for h = 0.25, several values of τ∗ around τ

lead to almost identical values of the approximation error. This means that the error in the

determination of τ must be larger than 0.25. A closer look at Fig. 59 tells us that we can

only hope for an absolute error in the order of 0.5.
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Figure 59: Influence of the sampling period h. τ = 46, τR = 10, c = 2, ǫ = 0.01, N = 20000.

4.4.3 Optoelectronic system producing wavelength chaos

We consider here the optoelectronic emitter producing a chaos in wavelength described in

section 2.4.3. We recall that this system is described by the equation

τRẋ(t) = β sin2[x(t− τ) + φ] − x(t) , (126)

where τR is the response time, β the feedback strength, and φ an optical phase shift. This

system has been used to perform chaotic encryption [135] - [137] and has been our main

source of experimental data for time series analysis in reason mainly of the easiness with

which its experimental parameters can be tuned. We give in the next section a flavor of
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the dynamical behavior of the system, which will be useful to interpret the results on the

complexity of the system presented in section 4.6.2.

4.4.3.1 Influence of the parameters β and τ on the dynamics

We focus here on the influence of the feedback strength β and the delay τ on the dynamics.

Both parameters are easily tunable experimentally and have an important influence on the

system dynamics, which will also be studied in section 4.6.2 in terms of Lyapunov spectrum,

dimension, and entropy.

Figure 60 represents the bifurcation diagram when the feedback strength is varied from

1 to 30. The values of the system parameters correspond to typical experimental conditions.

This diagram represents the probability density function of the chaotic signal, in gray levels,

for the different values of β. The darker the gray, the higher the value of the probability

density is. It is seen that the transitions toward a fully developed chaos take place for values

of β smaller than 3. To better understand the bifurcation mechanisms, we have represented

in Fig. 61 the bifurcation diagram for values of β ranging from 1 to 3. In this figure,

however, it is the extrema of the chaotic signal, for each value of β, that are represented.

We see that, when β increases, the solution is first stationary, then periodic, with period 2τ ,

then the period doubles and reaches 4τ , followed by an inverse transition toward a periodic

solution of period 2τ . Close to β = 2.7, a chaotic solution appears that still bears a periodic

component, of period 2τ (T2 chaos [29]), and a fully-developed chaos appears when β is

larger than 3 approximatively. We also notice that when β increases, both the mean value

of the chaotic signal and the amplitude of the chaotic fluctuations increase.

It is important to know that the nature and localization of the bifurcations toward a

fully-developed chaos depend on the values of the other parameters of the system (such as

τ , φ, and τR) and on the initial conditions8. Whatever the route toward chaos is, however,

a regime a fully-developed chaos always appears when β is sufficiently large (around 5).

It is this chaotic regime, which is also the most complex, that is the most interesting for

encryption purposes.

8Refer to [29, 30] for more details
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Figure 60: Bifurcation diagram when β is varied. τR = 8.4 µs, φ = π/3, τ = 523 µs.

Figure 61: Bifurcation diagram when β is varied. τR = 8.4 µs, φ = π/3, τ = 523 µs.
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Figure 62 shows the bifurcation diagram, in terms of the pdf, when the delay τ is

increased, for a given (relatively high) value of the strength of the nonlinearity (β = 8)9.

For such a large value of β, x remains chaotic on the whole span of values of τ (in the

diagram, τ varies between 100 and 1000 µs). We also notice that contrary to the case of a

variation of β, the probability density function does not seem to be significantly influenced

by a variation of τ .

Figure 62: Bifurcation diagram when τ is varied. τR = 8.4 µs, φ = π/3, β = 8.

A bifurcation diagram is not the only way to characterize the dynamical behavior of a

system. The temporal evolution of the signal x, the probability density function, the portion

of the nonlinear function effectively visited, and the power spectral density of x can all give

some useful information. These quantities are represented in Figs. 63, 64, 65, and 66 for

values of β equal to 2.8, 3, 10, and 25, respectively. The reader should remember that the

power spectral density corresponds to the Fourier transform of the autocorrelation function.

The spectral estimation is performed by averaging several tens of simple spectral estimations

(Welch’s method). The portion of the nonlinear function that is represented is the one that

9This corresponds to the chosen value of β in section 4.6.2 for the study of the influence of the delay on
the Lyapunov spectrum. This relatively large value of β leads to a chaotic behavior of the system even when
the delay τ is quite small.
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is effectively visited by the signal x during a time span of several times the delay τ . The

case β = 2.8 corresponds to a ”T2 chaos”, whilst the other cases correspond to a ”fully

developed chaos”, as can be seen from the bifurcation diagram of Fig. 60. The comparison

of the different figures shows immediately that the number of extrema of the nonlinear

function increases with the value of β. Figure 63 reveals some distinctive features of the

chaos generated for β = 2.8. It is seen from the time series x that a periodic component

exists in the signal (of period 2τ), and this component is also found, with its harmonics,

in the spectrum. The probability density function is also peculiar since it is concentrated

mainly in two disjoint intervals of values of x, which is easily understood by looking at the

time series x. Increasing β to 3 leads to a significant change in the type of chaos produced
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Figure 63: T2 chaos for β = 2.8. τ = 523 µs, τR = 8.4 µs, φ = π/3.

by the system. A periodic component can no longer be seen, in an obvious way, neither in

the time series nor in the spectrum. The probability density function still shows similarities

with the case β = 2.8, but it should be expected that a further increase of the value of β

leads to the loss of the signature of the bifurcations that have lead to chaos. This can be

seen in the cases when β = 10 and β = 25: a periodicity can no longer be found neither
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in the time series nor in the spectrum. Increasing β leads to faster chaotic fluctuations, a

pdf that tends towards a gaussian law, and an increase of the number of active extrema

of the nonlinearity. The spectrum gets closer to that of a white noise, although it is seen

that it tends to decrease for increasing frequencies, due in part to the filtering effect of the

low-pass filter, whose cutoff frequency is 1/(2πτ) = 18.9 kHz.

It thus appears that the chaotic regimes that correspond to a high value of β have

characteristics that resemble those of a white gaussian noise. These regimes are those that

interest us the most for applications in secure communications.
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Figure 64: Chaotic signal for β = 3. τ = 523 µs, τR = 8.4 µs, φ = π/3.

The influence of τ is represented in Figs. 67, 68, and 69, that correspond to values

of the delay equal to 100, 523, and 1000 µs, respectively. As could be expected from an

onservation of the corresponding bifurcation diagram (Fig. 62), the dynamical behavior is

very similar for all the values of the delay considered here. In every case, the behavior of

the system resembles that of a white gaussian noise.
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Figure 65: Fully-developed chaos for β = 10. τ = 523 µs, τR = 8.4 µs, φ = π/3.
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Figure 66: Fully-developed chaos for β = 25. τ = 523 µs, τR = 8.4 µs, φ = π/3.
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Figure 67: Fully-developed chaos for τ = 100 µs. β = 8 , τR = 8.4 µs, φ = π/3.
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Figure 68: Fully-developed chaos for τ = 523 µs. β = 8, τR = 8.4 µs, φ = π/3.
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Figure 69: Fully-developed chaos for τ = 1000 µs. β = 8 , τR = 8.4 µs, φ = π/3.

4.4.3.2 Local linear fits

In this section, we study the delay identification problem by using the method based on local

linear fits. Similarly to what has been shown in section 4.4.2 for the Mackey-Glass system,

the autocovariance and autocorrelation would lead to an overestimation of the delay. More

details will be found in chapter 5. We examine the influence of the parameters N , h, and

ǫ on the identification process as well as the influence of the presence of an information-

bearing signal in the time series. We consider here the case in which the optoelectronic

system is in a regime of fully-developed chaos (β = 7, τ = 523 µs, τR = 8, 4 µs, φ = π/3).

The influence of the number of samples N and of the neighborhood size ǫ is represented

in Figs. 70 and 71, respectively. We see that the identification is possible for all the choices

of parameters considered here. More specifically, we notice that the bottom of the ”valley”

in the approximation error curve is composed of two very close values of the approximation

error, corresponding to two succesive values of τ∗ (522 µs and 523 µs). This technique

is therefore shown to lead to the identification of the delay with an uncertainty in the

order of one microsecond. The influences of N and ǫ are similar to those observed in the
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Figure 70: Influence of the number of samples N . β = 7, τ = 523 µs, τR = 8.4 µs, φ = π/3,
h = 1 µs, ǫ = 1%.
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146



510 523 530
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

τ*  (µs)

A
ve

ra
ge

 A
pp

ro
xi

m
at

io
n 

E
rr

or
  (

a.
 u

.)

515515 523 530
0

0.01

0.02

0.03

0.04

0.05

0.06

τ*  (µs)

h = 5 µs 

h = 2 µs 

h = 1 µs 
h = 0,5 µs 

h = 0.5 µs 

h = 1 µs 

(a) (b) 

Figure 72: Influence of the sampling period h. β = 7, τ = 523 µs, τR = 8.4 µs, φ = π/3,
N = 80000, ǫ = 2%.

case of the Mackey-Glass system. An increase of the number N of samples and of the

size ǫ of the neighborhoods leads to more pronounced maxima in reason of an increase of

the approximation error when τ∗ is different from τ . On the contrary, the value of the

approximation error when τ∗ = τ seems to be almost independent of N and ǫ. When

τ∗ = τ , the system trajectory lies on a surface S in the space (xi+1, xi, xi−τ ) and an

increase of N or ǫ leads to an increase in the number of neighbors taken into account in the

determination of local tangent planes through local linear approximations. The invariance

of the approximation error as a function of N and ǫ can be interpreted by the fact that

even when the smallest values of these parameters are considered, the tangent planes are

determined correctly and an increase of these parameters does not change the quality of

the local approximations. We notice, however, that if very large neighborhoods are used

(ǫ = 20%), the quality of the approximations decreases when τ∗ = τ . This is due to

the fact that with big neighborhoods, the curvature of the the S is revealed and a linear

approximation loses of its meaning, leading to higher approximation errors.

The influence of the sampling period h is represented in Figs. 72(a) and 72(b). Once
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again, the results confirm the conclusions drawn from the study of the Mackey-Glass system.

An increase of h leads to more pronounced and narrower valleys. Of course, since the

difference between two consecutive values of τ is equal to h, large values of h can lead to

large errors in the determination of the delay, as can be seen from Fig. 72. In Fig. 72(b),

we study more specifically the cases h = 1 µs and 0.5 µs. We observe that for these two

values of h, the bottom of the valley is constituted by two successive values of τ , spaced

by an interval of time equal to h. These two values correspond to two very close values of

the approximation error, meaning that the uncertainty in the determination of the delay is

in the order of h. For example, when h is equal to 1 microsecond, it is not clear whether

the delay is equal to 522 or 523 µs, and when h is equal to 0.5, there can be a hesitation

between 522.5 and 523 µs.

We have used so far a time series that corresponds exactly to the chaotic carrier x

produced by the dynamical equation (126). What an eavesdropper will usually have is a

mix of the chaotic carrier and the message m(t), as explained in section 2.8.3. Figure 73

shows the result of the identification technique when a message m(t) is included in the

time series analyzed. The regime used is fully-developed chaos and the message is a binary

pseudo-random bipolar signal whose amplitude is 5% of the maximal amplitude of the

chaotic carrier that would have been generated in the absence of a message. We observe

that the the approximation error is almost uninfluenced by the presence of the information-

bearing signal, and therefore that the identification of the delay is possible even when m(t)

is present in the time series.

We have checked that all the conclusions of this section hold idependently of the dy-

namical regime considered10 and that the influence of ǫ, N , and h is similar to the case

when no message is included. We conclude by emphasizing the fact that the identification

technique using local linear approximations is very ”robust”. By this we mean that a wide

range of the parameters (N , h, ǫ) can be used to identify the delay, independently of the

presence of a message.

10i.e. mainly when other values of β and τ are considered. Further details on this will be found in
section 5.2.
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Figure 73: Delay identification with and without a message. β = 7, τ = 523 µs, τR =
8.4 µs, φ = π/3, h = 0.5 µs, N = 80000, ǫ = 2%.

The two following sections investigate the identification of the delay of two other ex-

perimental setups that are being used at the GTL-CNRS Telecom laboratory for chaotic

encryption.

4.4.4 Optoelectronic system producing chaos in intensity

The chaos generator considered here is described in the publications [24, 138, 25] and

represented in Fig. 74. It uses an intensity electro-optic modulator subject to delayed

feedback on its control electrode. It is the output power of the modulator that is fed back

to this electrode, after having been detected by a photodiode. A continuous voltage Vb is

also applied to the control electrode of course and is used to determine the working point of

the modulator. The delay τ can be varied by changing the length of the optical fiber in the

feedback loop. The transfer function of the intensity modulator, which gives the evolution

of the output power I as a function of the voltage V applied to the control electrode, is

of the form I(t) = cos2[SV (t) + φ], where S is a proportionality factor characteristic of

the electro-optic efficiency of the modulator and φ is a phase shift that depends on the
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Figure 74: Chaos oscillator in intensity.

value of the voltage Vb. It is easy experimentally to make sure that a large number of

extrema of the nonlinear function are spanned by choosing a sufficiently large amplitude

of the signal applied to the control electrode. The resulting filtering effect of the different

elements composing this generator is modeled by a band-pass filter constituted by a first

order high-pass filter (whose time constant is τR
1 ) and of a first order low-pass filter (with

an associated time constant τR
2 ) in series.

This system is described by the integro-differential delay equation

x(t) +
τR
1 τ

R
2

τR
1 + τR

2

ẋ(t) +
1

τR
1 + τR

2

∫ t

−∞
x(τ)dτ = β cos2[x(t− τ) + φ] , (127)

where x is proportional to the output power of the modulator, and β in an experimentally

tunable factor that measures the strength of the feedback.

The introduction of the additional variable

y(t) = ẋ(t) , (128)

allows us to transform the integro-differential delay equation (127) into a system of two
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delay differential equations

ẋ(t) = y(t) (129)

τR
1 τ

R
2

τR
1 + τR

2

ẏ(t) = −β sin {2 [x(t− τ) + φ]} − 1

τR
1 + τR

2

x(t) − y(t) . (130)

We can therefore consider that we are facing the case, described in section 4.2, of a system

of differential equations in which only one variable (x) is subjected to feedback and in which

only one variable (x) is measured. It is thus natural to use local linear approximations of

the form

xi+1 = ai +

m
∑

j=1

b
(j)
i xi−j+1 +

m
∑

j=1

c
(j)
i xi−τ∗−j+1 . (131)

The notations are the same as in section 4.2.

We have represented in Fig. (75) the approximation error, for different values of the

number 2m of variables in the linear approximations, and the delayed mutual information.

The experimental time series used correspond to a regime of fully-developed chaos. The
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Figure 75: Delay identification. (a) Mutual information. (b) Local linear fits. N = 80000
samples, ǫ = 1%, h = 50 ps.

mutual information presents a very sharp maximum for a value of the delay equal to 42.2 ns.
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The approximation error has a very pronounced minimum, for a value of the delay equal to

42.1 ns, for all values of the number 2m of additional variables in the local approximations.

An experimental measure of the delay of the system leads to a value of 42.15 ns [139]. We

notice once again that the mutual information leads to a (slight) overestimation. The value

obtained by the method based on local approximations seems to be slightly under estimated.

It is important to know, however, that a lower bound of the error in the experimental

determination of the delay is of 40 ps and that the determination by the local approximations

could be closer to the real value than the experimental measure. We also notice that the

average approximation error is smaller when the number of additional variables is larger.

This can be explained by the increased quality of the approximations when more variables

are used.

It is important to notice that local linear approximations with m = 1, i.e. of the form

xi+1 = ai + bixi + cixi−τ , work to identify the delay even if these approximations have been

devised for a system modeled by a first order delay-differential equation, which is not the

case of the system considered in this section. The use of additional variables is therefore

not essential to identify the delay.

We end this section by mentioning that the experimentally measured time series are

significantly distorted since the 3 dB spectral width of the modulator is of the order of 6,5

GHz11 while the bandwidth of the oscilloscope used to take the measurements is of 5 GHz

only. Moreover, since the maximum sampling frequency is of 20 GHz, the spectral aliasing

is significant, which also leads to a distortion of the measured time series x. Despite this,

the identification method based on local approximations still works very well, proving once

again the robustness of the method.

4.4.5 Electronic system producing frequency chaos

We consider here another chaotic emitter that has been realized at the GTL-CNRS Telecom

laboratory for chaotic encryption. It is a purely electronic system that produces chaos in the

frequency domain and that has been described in the references [140, 141, 142, 143]. The

11Cette valeur a t mesure par un analyseur de spectre RF
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frequency chaos (FM-type signal) is produced by a voltage controlled oscillator (VCO).

This oscillator is subjected to a nonlinear delayed feedback that leads to the generation

of chaos. The nonlinearity is realized by three RLC filters in parallel that have three

different resonance frequencies. The dynamics is limited in the spectral domain by a low-

pass [140, 141] or a band-pass [142, 143] filter.

In the case in which a first-order low-pass filter is used, the system can be modeled by

the following delay differential equation

x(t) + τRẋ(t) = βF [x(t− τ)] , (132)

where τR is the time constant of the filter, β is a multiplicative factor of the nonlinearity

and x(t) is a quantity proportional to the input voltage of the VCO. The nonlinear function

F has the following form

F (x) =

∣

∣

∣

∣

∣

∣

3
∑

j=1

GiQi

1 − iQi

(

f0+Sxx(t)
fj

+
fj

f0+Sxx(t)

)

∣

∣

∣

∣

∣

∣

, (133)

where Gj and Qj represent the gain and the quality factor of the jth RLC filter, f0 is the

output frequency of the VCO in the absence of an input signal, and Sx is the conversion

factor between the normalized voltage x and the output frequency of the oscillator. This

nonlinear function is represented in Fig. 76 as a function of the output frequency f of the

VCO. It is highly nonlinear and has five extrema.

Another experimental realization uses a band-pass filter constituted by first-order low-

pass and high-pass filters in series. In this case, the following integro-differential equation

can describe the dynamical behavior of the system

x(t) +
τR
1 τ

R
2

τR
1 + τR

2

ẋ(t) +
1

τR
1 + τR

2

∫ t

−∞
x(τ)dτ = βF [x(t− τ)] , (134)

where τR
1 is the time constant of the high-pass filter and τR

2 is the time constant of the

low-pass filter.

The local approximations method has been applied to experimental time series and the

result is shown in Fig. 77. Figure 77 (a) is for a low-pass filter and Fig. 77 (b) is for a

band-pass filter, when m = 1 (cf. 131). We observe in both cases a very sharp minimum for
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Figure 76: Nonlinear function realized by three RLC filters in parrallel

τ = 518 µs, corresponding to the correct value of the delay. We notice once again that the

identification technique devised for first-order delay systems (i.e. when m = 1) works also

to identify system that are described by an integro-differential delay equation. We have

checked that the identification works for all possible chaotic regimes, in the low-pass as well

as in the band-pass case.

All the chaotic emitters we have tested have helped us prove that the local linear ap-

proximations provide an accurate and robust method to identify the delay from time series

produced by chaotic scalar or vectorial delay systems.

4.5 Identification of the nonlinear function

Our aim here is not to make an exhaustive presentation of all the techniques that can be

used to reconstruct accurately the nonlinear function; we will limit ourselves to a simple

technique, described in Ref. [127], that is closely linked to the technique of analysis of a

delay system presented in section 4.2.1.

We restrict ourselves to the special case of a system responding to a delay-differential
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Figure 77: Delay identification by the local linear approximations method. ǫ = 1% (a) low
pass filter (b) band pass filter. m = 1.

equation of the form

τRẋ(t) = F [x(t− τ)] − x(t), (135)

If textr represent a time at which x(t) reaches an extremum, the preceding equation can be

written, at that time textr, as

x(textr) = F [x(textr − τ)] . (136)

The nonlinear function can therefore be identified by finding a large number of different

times textr at which the time series reaches an extremum and then plotting x(textr) as a

function of x(textr−τ). It can be considered that the procedure described above corresponds

to the projection, on the plane spanned by x(t) and x(t− τ), of an extremal section of the

object described in the phase space. It is necessary of course to know the value of the delay

τ , which could be identified by one of the techniques described in section 4.4. Moreover,

the number of samples N must be sufficient to span the entire nonlinear function, or should

be sufficient to at least reveal its shape. It is also important to understand that the above

reasoning and conclusions, as in the case of the local linear approximations described in

section 4.2, are independent of the dimension of the chaotic attractor and do not require

the trajectory in the phase space to have settled on the attractor. It could even be thought

that it is preferable to have a high-dimensional attractor. A higher dimensional attractor
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means that larger portions of the phase space are visited and the reconstruction of the

nonlinearity is more complete. Similarly, the use of time series that correspond to transient

phases allows to take into account regions of the phase space that are not visited in a

steady-state regime.12

The identification technique has been applied to a time series obtained by numerically

integrating the Mackey-Glass system. The result is represented in Fig. 78. We observe

that the nonlinearity is well identified except for the fact that certain portions of it are not

reproduced. This is due to the fact that there are certain intervals of values of x in which

extrema rarely lie, and it is therefore difficult to determine the corresponding portion of the

nonlinear function. We see for example that there is not a single extremum that lies on the

”top” of the nonlinearity even though 500 intervals of length τ are used.
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Figure 78: Identification of the nonlinear function of a Mackey-Glass system. τ = 46,
τR = 10, c = 2, h = 0.5, N = 46000.

We have also applied the identification procedure to experimental time series produced

by the optoelectronic generator of chaos in wavelength and the electronic generator of

12i.e. when the trajectory has settled on the attractor.
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frequency chaos. The results are represented in Figs. 79 and 80. We observe that the shape

of the function can be identified but also that the results are very noisy. The presence of

noise on experimental time series is of course inevitable.
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Figure 79: Identification of the nonlinear function of the optoelectronic generator of wave-
length chaos. h = 1 µs. Experimental estimation of the parameter values: β = 7.2,
τ = 523 µs, τR = 8.4 µs, φ = π/3.

As a conclusion, the identification technique presented here, even if very simple, gives

an idea of the shape of the nonlinear function. Approximation techniques can of course be

used subsequently to determine the nonlinear function more accurately.

4.6 Computation of the Lyapunov spectrum, of dimension,

and of entropy

As we have explained before, it is useful to use high-dimensional chaos to ensure the se-

crecy of chaotic communications. We study here two quantities that are traditionally used

to characterize a chaotic regime: the attractor dimension and the entropy of the chaotic

process. Large attractor dimensions make traditional time series analysis techniques difficult

to apply to break the system and large entropies make the chaotic process more difficult to

predict, which also complicates the task for an eavesdropper. We are particularly interested
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Figure 80: Identification of the nonlinear function of the electronic generator of wavelength
chaos.

in determining the evolution of dimension and entropy when the delay and the feedback

strength are varied. Both of these parameters can be easily modified in the experimental

cryptosystems and knowing how the chaos characteristics evolve helps the experimentalist

determine the operating conditions to use for efficient chaotic communications. A few theo-

retical studies have shown that for certain delay systems, the dimension varies linearly with

the delay [123, 144, 145], whereas the entropy tends to saturate [123, 145] for large values of

the delay. Leberre et al. have even conjectured that this is a general property of delay sys-

tems. Additionally, some theoretical results show that the dimension increases linearly also

with the feedback strength [144], in the specific case of the ”Ikeda system” [146]. We wish

to verify these tendencies and determine some other ones on the Mackey-Glass system and

on the optoelectronic system producing wavelength chaos. We will determine the Lyapunov

spectrum both theoretically from the dynamical model, using Farmer’s method, and from

time series. The estimation from time series uses the specific time series analysis techniques

for delay systems presented previously in this chapter. Finally, we should mention that the

fact that delay systems used in chaotic cryptosystems really produce high-dimensional chaos
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has been a controversial issue. The estimation of dimension and entropy from experimental

times series of the wavelength chaos generator helps prove that chaos used in chaotic delay

cryptosystems is indeed high dimensional.

4.6.1 Mackey-Glass system

In this section, we consider again the Mackey-Glass system (125) and we choose initially

the same parameters as those used in section 4.4.2 for the delay identification problem (i.e.

τR = 10, c = 2, τ = 46). Figure 81 represents the first 20 Lyapunov exponents, computed

from the model by Farmer’s method and from a times series generated by numerically

integrating the Mackey-Glass equation (125).13 We have used a time series of N = 500000

samples, a neighborhood size ǫ = 1%, and a sampling period h = 0.5. Choosing a sampling

period h = 0.5 implies that the maximum number of exponents that can be computed is

τ/h = 92. We observe that the Lyapunov spectra computed from the model and from

a time series are almost identical. We are therefore confident in the accurateness of the

computation technique of the Lyapunov spectrum from a time series. As has been shown

in section 2.5.3, the Lyapunov dimension DL and the Kolmogorov-Sinai entropy HKS can

be found from the Lyapunov spectrum14. Figures 82 and 83 represent the evolution of

dimension and entropy, computed from a time series, as a function of the number n of

iterations (i.e. of the number of Jacobian matrices taken into account). We observe a

relatively quick convergence of dimension and entropy, though small oscillations remain

even for a large number of iterations (500000). We can tell from the figures that DL ≈ 5.1

and SKS ≈ 0.01. Since the dimension is of the order of 5, an analysis of the time series

using an embedding of the phase space would have imposed to work in a space of dimension

at least ten (cf.§ 2.6.1). Thanks to the specific technique described in section 4.3.1 and

used here, the Lyapunov spectrum has been estimated by working in a space of dimension

2 only.

13We thank Laurent Larger, Min Won Lee, and Eric Genin for some programs implementing Farmer’s
method.

14We assume in this section that the Kolmogorov-Sinai entropy is equal to the sum of the positive Lyapunov
exponents.
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Figure 81: The twenty largest Lyapunov exponents, computed from the dynamical equa-
tions and from a numerically generated time series. τ = 46, τR = 10, c = 2. N = 500000,
ǫ = 1%, h = 0.5.
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Figure 82: Lyapunov dimension as a function of the number of iterates. The results are
obtained by time series analysis. The parameters are the same as in Fig. 81.
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Figure 83: Kolmogorov-Sinai entropy as a function of the number of iterates. The results
are obtained by time series analysis. The parameters are the same as in Fig. 81.

It is important to understand that the results presented in the preceding figures cor-

respond to a choice of values of the parameters of the computation procedure. These

parameters are the neighborhood size ǫ, the number N of samples of the time series, the

sampling period h, and the frequency at which the re-orthonormalizations occur. It can

be difficult to determine the parameter values to use. The ultimate way to determine if

the estimated spectrum is correct is to compare it with the spectrum calculated from the

dynamical model. This is obviously not always possible. In the case of the Mackey-Glass

system, it appears that the spectral estimation is relatively robust with respect to variations

of the parameters of the procedure. By this we mean that even significantly different (but

reasonable) values of the parameters N , ǫ, and h lead to very similar spectra.

In general, the value of N is considered to be good if it is sufficiently large to ensure

the convergence of the Lyapunov spectrum. This means that all the exponents must be

arranged in decreasing order and that a further increase of N does not change the spectrum

significantly. Of course, this is not a proof of the exactness of the estimated spectrum since

we can be imagine that the convergence occurs towards an incorrect set of exponents. For

the Mackey-Glass system, a number of samples N in the order of 105 is sufficient to ensure
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convergence. We have also observed that the computed spectrum is not very sensitive to

neighborhood size. We have chosen to take ǫ = 1% to draw Fig. 81 but significantly smaller

or larger values of the neighborhood size lead to similar spectra. It is not surprising that

small values of the neighborhood size lead to a good determination of the spectrum since

the numerically generated time series are noiseless. The only thing that has to be taken

into account is that when small neighborhoods are used, the number of samples N has to be

increased to find sufficient numbers of neighbors to have statistically significant results. The

tendency to invariance of the spectrum with respect to an increase of the neighborhood size

is more surprising. It is probably due to the fact that the Mackey-Glass system is relatively

weakly nonlinear (in the sense that the nonlinear function has only one extremum) and

therefore large portions of surface S (defined in section 4.2.1) are close to planar15. Finally,

another important parameter, for Farmer’s method as well as for the estimation from time

series, is the integration step or the sampling period h, that sets the degree of disretization

of the phase space. The parameter h must be smaller than the time scale of the fastest

fluctuations of x. If h is too big, the discretization of phase space is too coarse and some

information on the system dynamics is lost. We have computed the Lyapunov spectrum for

different values of h and have observed indeed a convergence of the estimated spectra when

h decreases, and that large values of h lead to incorrect estimations. The value used to

draw the figures of this section (h = 0.5) has obviously been determined to be sufficiently

small to lead to a good estimation of the Lyapunov spectrum.

As explained in the introduction to this section, we are interested in determining the

evolution of the Lyapunov spectrum, of dimension, and entropy when the delay and the

feedback strength are varied. In the case of the Mackey-Glass system, we study the influence

of the delay only, since an increase of the parameter c, which can be considered as a feedback

strength, tends to stabilize the laser which leaves chaotic regimes. Figure 84 represents the

Lyapunov spectrum for four different values of the delay. The spectra have been estimated

from time series but we have checked that a computation based on the knowledge of the

15The reader should notice the nonlinear function of the Mackey Glass system has only one extremum
while the nonlinear functions of the systems used for secure communications often have several extrema
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dynamical model leads to the same results. We observe that an increase of the delay leads

to an increase of the number of positive exponents, leading inevitably to an increase of

the dimension. But a delay increase also leads to a decrease of the amplitude of all the

Lyapunov exponents. Figures 85 and 86 represent the evolution of the dimension and of

the entropy as a function of τ . We observe that the dimension varies linearly with the delay

while the entropy is almost unaffected by a change in the delay. Even if the number of

positive exponents increases with the delay, the amplitude of the exponents (positive and

negative) decreases, leading globally to an entropy that is almost constant as a function of

the delay. An increase of the delay ”activates” new direction of the phase space in which

perturbations are amplified but at the same time the rate of change of the perturbations

decreases in all directions.
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Figure 84: The twenty largest Lyapunov exponents, estimated from time series, for four
different delay values. τR = 10, c = 2. N = 250000, ǫ = 1%, h = 0.5.

4.6.2 Optoelectronic system producing wavelength chaos

We consider in this section the optoelectronic system described in sections 2.4 and 4.4.3

and modeled by Eq. (126)

τRẋ(t) = β sin2[x(t− τ) + φ] − x(t) .
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Figure 85: Lyapunov dimension as a function of the delay τ . The parameters are the same
as in Fig. 84.
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Figure 86: Kolmogorov-Sinai entropy as a function of the delay τ . The parameters of the
analysis are the same as in Fig. 84.
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We are especially interested in studying the influence of the delay τ and the feedback

strength β on the Lyapunov spectrum. Both of these parameters are easily tunable experi-

mentally and there influence on the system dynamics has been studied in section 4.4.3.1.

We assume first that the dynamical model is known and that the spectrum can be esti-

mated by Farmer’s method. Figure 87 represents the Lyapunov spectrum for four different

values of the delay τ and Fig. 88 represents the dimension and entropy as a function of

delay. The parameters are the same as those considered in section 4.4.3. The observations

are similar to the case of a Mackey-Glass system. When the delay is increased, the number

of positive exponents increases, but at the same time, the amplitude of all the exponents

decreases. The attractor dimension evolves linearly with the delay, while the entropy is

almost constant. The influence of the feedback strength β on the Lyapunov spectrum
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Figure 87: The 200 largest Lyapunov exponents, computed by Farmer’s method, for four
different values of the delay. h = 0.42 µs, β = 8, τR = 8.4 µs, φ = π/3.

is represented in Fig. 89 and its influence on the dimension and entropy is represented in

Fig. 90. An increase of the feedback strength influences the Lyapunov spectrum differently

than an increase of the delay. If in both cases, the number of Lyapunov exponents and

thus the dimension increases (linearly), the entropy also increases with β while it remains

constant as a function of τ . We observe that when the feedback strength is increased,
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Figure 88: (a) Dimension as a function of delay. (b) Entropy as a function of delay.
h = 0.42 µs, β = 8, τR = 8.4 µs, φ = π/3.

the number of positive exponents increases, and the amplitude of all the exponents also

increases. This explains that the entropy increases with the feedback strength, and it in-

creases linearly as can be seem from Fig. 90. We have shown hereabove that the attractor

dimension increases linearly with both the feedback strength and the delay. It is possible

to express these two tendencies by the following empirical formula

DL ≈ 0.35β
τ

τR
. (137)

This formula has a similar form to the one found by Dorizzi et al. in the case of an Ikeda

system [144].

Before considering the estimation of the spectrum from time series, we will try to in-

terpret the evolution of the entropy as function of β and τ using the results (presented in

section 4.4.3)) on the influence of β and τ on the pdf of x. We had observed that for a fully-

developed chaos, which is what we consider here, the pdf is close to gaussian. Moreover,

Figs. 64 to 69 show that the (gaussian) pdf is invariant with respect to a change in the delay

τ while an increase of β leads to an increase of the mean and the variance of the gaussian

distribution. Similarly, the bifurcation diagrams 60 and 62 show significant changes in the
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Figure 89: The 200 largest Lyapunov exponents, computed by Farmer’s method, for four
different values of the delays. h = 0.42 µs, τ = 523 µs, τR = 8.4 µs, φ = π/3.
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Figure 90: (a) Dimension as a function of the feedback strength β. (b) Entropy as a
function of the feedback strength. h = 0.42 µs, τ = 523 µs, τR = 8.4 µs, φ = π/3.
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chaotic regime when β is increased but not when τ is increased. Information theory tells us

that the entropy,16 in the Shannon sense, of a continuous gaussian random variable of vari-

ance σ2 is given by H = (1/2) log(2πeσ2) [134]. The observation of the probability density

functions can give us an idea of the evolution of the entropy. When τ is modified, the pdf

does not change and so the entropy does not either; when β is increased, the variance of

the probability distribution increases, and so does the entropy. Of course, this reasoning is

limited by the fact that the entropy considered here is the Shannon entropy of information

theory and is not the same entropy as the one that is found from the Lyapunov spectrum.

Nevertheless, the observation of the pdf seems to give a good idea of the evolution of the

Kolmogorov-Sinai entropy with the feedback strength and the delay.

We consider now the estimation of the Lyapunov spectrum from experimental time

series. The experimental setup used is the one described in section 2.4 and represented in

Fig. 4. The parameter β can be easily tuned experimentally by changing the gain of an

amplifier of the feedback loop and the delay τ can also be tuned easily by changing the

frequency of the oscillator that drives the delay line.

The first step in the time series analysis is of course the identification of delay τ . We

use for this the technique based on local linear approximations. Figure 91 represents the

average approximation error as a function of the arbitrary delay τ∗ for three different values

of the neighborhood size ǫ. This technique leads once again to a sharp minimum in the

average approximation error and to the identification of the delay, which is τ = 523 µs.

We have checked that the identification works in all the possible dynamical regimes of the

system and that the influence of parameters ǫ, h, and N on the identification is the same

as what as been described in section 4.4.

The second step is the estimation of the Jacobian matrices from experimental time

series. We observe that the estimated spectrum is much more sensitive to the values of

the parameters of the estimation procedure than in the case of the Mackey-Glass system.

This sensitivity is probably due to a series of factors: the chaos is higher dimensional, the

nonlinearity is more “complex” (in particular it has several extrema while there is only

16or more precisely the differential entropy
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Figure 91: Delay identification from experimental time series. h = 1 µs. Experimental
estimation of the parameter values: β = 8.1, τ = 523 µs, τR = 8, 4 µs, φ = π/3.

extremum in the Mackey-Glass case), and finally noise is present on the experimentally

generated time series considered in this section.

The sampling period h is one of the critical parameters of the procedure. It must be

sufficiently small with respect to the delay to allow the evaluation of the several hundreds

of positive Lyapunov exponents17 we anticipate in the case of the chaos in wavelength. The

discretization of the phase space cannot be too fine-grained, however, since the presence

of noise limits the useful information that can be extracted from successive samples, since

they correspond to variations that are in the order of the noise level. Moreover, the number

of elements of the Jacobian matrices of the time-h map, in the discretized phase space (cf.

section 4.3.1), increases as the inverse of the square of the sampling period h. We understand

that we will also be limited by computation time constraints. In the measurement made on

the chaos in wavelength system, we have considered a minimal sampling step of 1 µs, which

leads to Jacobians that have 5232 elements. Smaller sampling steps lead to unreasonably

long computations.

17The reader should recall that the dimension of the discretized phase space, and thus the number of
exponents that can be evaluated, is τ/h
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Another especially critical parameter is the neighborhood size ǫ. In the presence of

noise, small neighborhoods can give results that are more influenced by the noise than

the deterministic dynamics. Large neighborhoods, on the other hand, do not allow to

reconstruct all the details of the dynamics. We have observed that the spectrum and

therefore also the estimated values of the dimension and entropy are strongly influenced

by the neighborhood size. Figures 92 and 93 represent the evolution of the Lyapunov

dimension, estimated from experimental time series, as a function of ǫ, for two different

values of the feedback strength β. Additionally, the dotted line corresponds to the value

of the dimension computed by Farmer’s method, assuming that the model is given by Eq.

(126), and using experimentally estimated values of the parameters β, τR, φ, and τ . The

dimension takes a high value for small neighborhoods, then decreases rapidly with ǫ and

finally it keeps an approximately constant value for even larger neighborhoods. When ǫ is

very small, the influence of noise is very strong and it is not surprising to find large values

of the dimension. When large neighborhoods are used, the effect of noise is decreased

but at the same time certain details of the dynamics are lost. This is why we observe

that for large values of ǫ, the dimension is almost independent of ǫ, but at the same time

it is underestimated. Large neighborhoods create an averaging of the phenomena that

contributes to decrease the influence of noise but at the same time it cancels some of

the details of the dynamics. This is particularly critical for the high-dimensional system we

examine. The nonlinearity presents numerous extrema and therefore the surface S (cf.4.2.1)

must be very ”curved” and large neighborhoods lead to approximation by tangent planes

that make little sense and mask the subtleties of the dynamics. We have represented in

Fig. 94 the Lyapunov spectrum estimated from experimental time series, for two values

(ǫ = 0.75 % and ǫ = 2 %) of the neighborhood size, as well as the spectrum found by

Farmer’s method. In the case in which ǫ = 0.8%, the effect of noise is significant and a

large number of exponents are overestimated. When ǫ = 2%, the effect of noise is not as

critical but the exponent values are underestimated, leading to an underestimation of the

dimension.

The last parameter of the estimation procedure is the number N of samples of the time
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Figure 92: Dimension estimated from experimental time series as a function of the neigh-
borhood size ǫ (solid line). The dotted line corresponds to the dimension computed by
Farmer’s method. Parameters of the estimation procedure: N = 300000, h = 1 µs. Exper-
imentally estimated values of the system parameters: β = 3.6, τ = 523 µs, τR = 8.4 µs,
φ = π/3.
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Figure 93: Dimension estimated from experimental time series as a function of the neigh-
borhood size ǫ. The dotted line corresponds to the dimension represented by Farmer’s
method. Parameters of the estimation procedure N = 300000, h = 1 µs. Experimentally
estimated values of the system parameters: β = 9, τ = 523 µs, τR = 8.4 µs, φ = π/3.
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Figure 94: Lyapunov spectrum estimated from experimental time series and by Farmer’s
method. Parameters of the estimation procedure N = 300000, h = 1 µs. Experimentally
estimated values of the systems parameters: β = 3.6, τ = 523 µs, τR = 8.4 µs, φ = π/3.

series. It must be sufficiently large to ensure statistically significant approximations and a

convergence of the spectrum. We find that we typically need several hundreds of thousands

of samples to observe convergence. It is worthwhile to notice that this is significantly more

than the number of samples necessary to identify the delay of the system (cf.§ 4.4.3).

Even though we have shown that the estimation of the Lyapunov spectrum from time

series is arduous, we have tried to determine the evolutions of the dimension and entropy

with β and τ . We have chosen a neighborhood size of (2 %) which is the smallest value of ǫ

that lies in the zone for which the dimension DL is constant as a function of ǫ. Figures 95

and 96 represent the effect of a variation of β on the estimation of the dimension and entropy

respectively. We observe that even though the dimension and entropy are underestimated,

the tendencies to a linear variation of these quantities with β, predicted by Farmer’s method,

is also found from a time series analysis of experimental data.

The study of the influence of the delay has proved to be more problematic. We have

observed that the estimated spectrum tends to be invariant as a function of the delay.18 This

18for the minimal neighborhood size ǫ corresponding to the region in which the dimension is a constant
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Figure 95: Lyapunov dimension as a function of β. Parameters of the estimation procedure:
N = 300000, h = 1 µs. Experimentally estimated values of the system parameters: τ =
523 µs, τR = 8.4 µs, φ = π/3.
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Figure 96: Entropy as a function of β. Parameters of the estimation procedure: N =
300000, h = 1 µs. Experimentally estimated values of the system parameters: τ = 523 µs,
τR = 8.4 µs, φ = π/3.
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is probably due to the fact that the time series that we have measured to study the influence

of the delay all correspond to extremely high chaos dimensions (at least 200, according to

Farmer’s method). Such dimensions probably imply that it is absolutely necessary to chose

small neighborhoods to reveal the system dynamics, but this is impossible because of the

noise present in the measurements. In addition to the phenomena described hereabove,

the differences between the spectra estimated by Farmer’s method and from experimental

time series might be due in part to differences between the actual and the experimentally

estimated values of the system parameters and to the quantization of the measured time

series.

We end this section by emphasizing that one must be careful with the conclusions that

can be drawn from the estimation of the Lyapunov spectrum from experimental time series.

As we have seen above, the results are very sensitive to the choice of the parameters of the

estimation procedure. Moreover, for a given set of parameter values, it is possible to observe

a convergence of the spectrum, as a function of the number of samples, to an incorrect set

of values. This fallacious behavior can easily lead to hasty and incorrect conclusions. It

seems difficult to draw conclusions on the dimension and entropy of this high-dimensional

chaotic system based on time series analysis only. The results obtained from the dynamical

model constitute a very important, and probably indispensable, benchmark.

4.7 Conclusion

In this chapter, we have used specific techniques for delay systems, based on local linear

models of the dynamics, to analyze experimental and numerically-generated time series of

different chaotic delay systems.

We have shown that the identification of the delay is possible for systems that can

be modeled by a scalar delay-differential equation (Mackey-Glass system, optoelectronic

generator of wavelength chaos, and electronic system producing frequency chaos, when a

low-pass filter is used), as well as for vectorial systems modeled by an integro-differential de-

lay equation (electronic generator of frequency chaos using a band-pass filter, optoelectronic

function of ǫ.
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system producing chaos in intensity). We have observed that, contrary to the identification

techniques based on autocorrelation and mutual information, the technique based on local

linear approximations leads to the exact (non-overestimated) delay value. We have also

found that this technique is very robust. In particular, we have observed that the identifi-

cation is possible for a large range of values of the internal parameters of the identification

procedure, and in presence of an information-bearing signal. It has also been possible to

estimate, from time series, the nonlinear function of the Mackey-Glass system and of the

generator of wavelength chaos.

Finally, we have estimated the Lyapunov spectrum, the chaos dimension, and entropy,

from numerically-generated time series of a Mackey-Glass system, and from experimental

time series produced by the generator of wavelength chaos. In both case, we have compared

the spectrum estimated from time series with the spectrum estimated from the dynamical

model. In the case of the Mackey-Glass system, we have observed a very good correspon-

dence between the two spectra. We have verified that the dimension increases linearly with

the delay, while the entropy is independent of the value of the delay. In the case of wave-

length chaos, the computation of the spectrum from the dynamical model shows that the

dimension increases linearly with the delay and the feedback strength, while the entropy

also increases linearly with the feedback strength, but does not increase with the delay. The

estimation of the Lyapunov spectrum from experimental time series has proved to be more

problematic. We have not been able to find a satisfactory agreement between the spectrum

calculated from the time series and from the model. We believe the disagreement is due

to the presence of noise on the time series, and to the concomitant fact that we try to

estimate the spectrum of a very hyperchaotic system, whose nonlinear function has many

active extrema. We have nevertheless been able to confirm that the dimension and entropy

tend to vary linearly with the feedback strength.
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CHAPTER V

IDENTIFICATION OF THE DELAY TIMES IN SINGLE-

AND MULTIPLE-DELAY SYSTEMS

5.1 Motivations

Even though delay systems can experience very high-dimensional dynamics, if the value

of the delay is known, these systems can be analyzed in a low-dimensional space, as was

shown in chapter 4. Several studies have demonstrated that certain chaotic delay systems

could be broken. Zhou and Lai [80] and Ortin et al. [147] have shown that a Mackey-Glass

cryptosystem could be broken. Udaltsov et al. [81] and Ortin et al. [148] have demon-

strated that, under certain conditions, the nonlinear dynamics of the cryptosystem based

on the optoelectronic generator of chaos in wavelength could be extracted, and that the

information-bearing signal could be found by analyzing the time series produced by this

system. The common feature of the analysis techniques used by these different authors is

that the first step of the analysis is to identify the delay time. Once the value of the delay

is known, it is possible to analyze the delay cryptosystem without the need to reconstruct

the full (potentially very high-dimensional) dynamics. This has to be avoided in order to

ensure the confidentiality of a chaotic communication and therefore it is crucial to be able

to hide the delay.

One of the possible ways to increase the difficulty of the delay identification problem is to

modify the architecture of the delay system to include several feedback loops. In section 5.2,

we examine the delay identification problem in the case of chaotic systems subjected to one

delayed feedback, and in section 5.3 we analyze different types of systems with two delays.

Section 5.4 presents our conclusions and perspectives for future work.



5.2 One-delay cryptosystems

We have described in section 4.4.1 different techniques that can be used to identify the delay

of a scalar or vectorial delay system, from a times series (xn). These include the autocorre-

lation of (xn), the delayed mutual information between (xn) and (xn−τ∗), where τ∗ is an ar-

bitrary delay, and the average approximation error of a series of local linear fits performed in

the low-dimensional space (xn+1, xn, xn−1, ..., xn−m+1, xn−τ∗ , xn−τ∗−1, ..., xn−τ∗−m+1). Other

techniques exist; for example1, Ortin et al. [147, 148] have proposed to use global discrete

nonlinear models of the form:

xn+1 = MNL(xn, xn−1, ..., xn−m+1, xn−τ∗ , xn−τ∗−1, ..., xn−τ∗−m+1) , (138)

where MNL is a nonlinear function obtained by a neural network divided in two modules,

one for the non-feedback part, and one for the feedback part. In the case of scalar systems,

we can take m = −1 for the global nonlinear model, as well as for the local linear models.

The common point of these different techniques is that they analyze the system in a low-

dimensional projection of the (infinite-dimensional) phase space, as is explained in the

following.

We consider, for the sake of clarity, a system described by a scalar delay-differential

equation

ẋ(t) = F [x, x(t− τ)] , (139)

but similar considerations apply in the case of vectorial delay systems. Because the pre-

ceding equation defines a constraint in the three-dimensional space (ẋ(t), x(t), x(t − τ)), it

is inevitable that a projection of a trajectory in the phase space, on this three-dimensional

space, lies on a surface S. If we had access to the space (ẋ(t), x(t), x(t − τ∗)), where τ∗ is

an arbitrary delay, we could detect, with adequate methods, the presence of the surface S,

when τ∗ = τ , and therefore identify the delay. We do not have access to this space, how-

ever, but only to a discretized version of it, (ˆ̇xn, xn, xn−τ ), where ˆ̇xn is an estimation of the

derivative, or similarly to (xn+1, xn, xn−τ ). If the discretization is good enough to reproduce

the characteristics of the continuous-time system, it should also be possible to detect the

1A list of possible techniques can be found in Ref. [149] and in references therein.
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presence of the surface in a discretized version of the three-dimensional space. Additionally,

if a structure is present in the space (xn+1, xn, xn−τ ), its projection on the plane (xn, xn−τ∗),

for example, could also be detected by appropriate techniques, when τ∗ = τ , and therefore

lead to the identification of the delay. It is to be noted that the projection we consider here

is not the projection of the complete surface S, but the projection of the structure which

is described by a trajectory of the system on the surface S. It is also to be noted that

there is no guarantee that this type of projection leads necessarily, in the general case, to

an identifiable structure. Both the autocorrelation and the mutual information technique

measure a relationship between xn and xn−τ∗ . The autocorrelation measures a linear link,

and is therefore not the most adequate when highly nonlinear systems are studied. The mu-

tual information measures a nonlinear link and is a statistical quantity. Therefore it takes

into account the probability that a given region of the discretized projected phase space

(xn, xn−τ ) is visited by the projection of the trajectory, and can therefore reveal structures

that are not purely geometric. This technique should work if the discretization is good

enough, and if there is a detectable structure in the projection of the infinite-dimensional

phase space on the two-dimensional space (xn, xn−τ ), i.e. if the set defined by (xn, xn−τ ) is

measurably different from the set defined by (xn, xn−τ∗), when τ∗ is different from τ . The

techniques based on a series of local linear fits of the form

xn+1 = an + bnxn + cnxn−τ∗ , (140)

and on the global nonlinear model use the discretized three-dimensional space (xn+1, xn, xn−τ ).

Both of these techniques should work to identify the delay of a scalar delay system, if the

discretization were good enough. In the case of the local linear models, even though the

models are linear, since they are local and not global, they can be used to identify a nonlinear

system.

In the following, we consider the case of the generator of wavelength chaos described in

sections 2.4.3 and 4.4.3, which is described by the scalar delay-differential equation

x(t) + τRẋ(t) = β sin2[x(t− τ) + φ] . (141)

In Figs. 97 and 98, we have represented the autocovariance of the time series (xn), the
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delayed mutual information, the average approximation error of a series of local linear fits

(140), and the projection of a trajectory on the (xn, xn−τ ) plane. We have considered two

different values of the feedback strength β (β = 5 and 25), for a sampling time h = 1 µs.

It is to be noted that a value of β of 25, as considered in Fig. 98, corresponds to the upper

limit of what can be done experimentally, and corresponds to a very high dimension and

entropy (DL ≈ 500). We observe that, in every case, there is an identifiable structure in the

plane (xn, xn−τ ), and it is possible to identify the delay of the system. The only method

that fails is the autocovariance, in the case in which β=25. The autocovariance measures,

for each value of τ∗, the tendency of the cloud of points (x(t), x(t − τ)) to align along an

oblique straight line. There is such a tendency for small values of β (see Fig. 97), when the

system is only slightly nonlinear. For large values of the feedback rate, there is no tendency

to align along an oblique straight line, as the cloud of points has a vertical axis of symmetry,

and the delay cannot be identified from the autocovariance (see Fig. 98). Both the mutual

information and the method based on local linear fits lead to the identification of the delay,

even though the peak in the mutual information, and the valley in the average fitting error,

become sharper with increasing β. As noted in section 4.4, the mutual information leads

to an overestimation of the delay in the system, due to the influence of the response time

of the system. One advantage of the mutual information over the average approximation

error coming from local models, however, is that it involves a much shorter computation

time. We have checked, with our collaborators Silvia Ortin and Luis Pesquera, that the

technique based on a global nonlinear model also leads to the identification of the delay.

When the feedback strength β is increased, we observe that the fluctuations of x tend to

become faster and the amplitude of these fluctuations increases. Figure 99 represents the

delayed mutual information, around τ∗ = 0, computed from a time series (xn), for β = 3.5

and β = 25. We observe that the mutual information decreases more rapidly for large values

of β. This means that the statistical link that exists between, for example, two successive

samples of x(t), decreases with increasing β. Thus it might be necessary to choose smaller

sampling times, for increasing β, to ensure that the discretization reproduces faithfully the

characteristics of the continuous-time system and to help identify the delay. Therefore, it is
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Figure 97: Identification of the delay produced by the optoelectronic emitter of chaos in
wavelength. The parameters are: β = 5, τ = 523 µs, τR = 8, 4 µs, φ = π/3. The sampling
time is h = 1 µs.

not surprising that the value of the delayed mutual information for τ∗ = τ decreases with

increasing β, while the average approximation error, for τ∗ = τ , increases with increasing β

(see Figs. 97 and 98). Similarly, it is also logic that peak in the mutual information, and the

valley in the average approximation error, tend to become sharper with increasing β since,

for example, the link between x(t − τ) and x(t − τ + h) tends to decrease for increasing

values of β. And the flat portion of the average approximation error curve corresponds to

error values that increase with increasing β, since the (linear) link between xn+1 and xn

decreases. We can conclude that, in the case of the one-delay system described by Eq.(141),

an increase of β may lead to the need to use smaller sampling times, leading to longer

computation times, but we find that the identification of the delay is always possible, even

for extremely large values of β (which lead to a chaos of large dimension and entropy).

We have seen that an increase of the feedback strength β leads to a decrease of the

link that exists between two successive samples, leading to a more difficult identification

of the delay, for a given sampling time. This phenomenon is not observed when the delay
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Figure 98: Identification of the delay produced by the optoelectronic emitter of chaos in
wavelength. The parameters are: β = 25, τ = 523 µs, τR = 8, 4 µs, φ = π/3. The sampling
time is h = 1 µs.
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Figure 99: Delayed mutual information for two different values of the feedback strength β.
The parameters are: τ = 523 µs , τR = 8, 4 µs , φ = π/3.

parameter τ is increased. This also means that we do not expect any change in the difficulty

to identify the delay, when the delay itself is increased. This is represented in Figs. 100

and 101, which correspond to delay values of 500 and 1000 µs, respectively. The figures

confirm that doubling the value of the delay itself does not lead to any significant change

in the difficulty to identify the value of the delay.

The previous observations indicate that it is always possible to identify the delay of

the optoelectronic generator of chaos in wavelength, using techniques such as the mutual

information or the approximation error coming from a series of local linear fits. We have

found that this is also true for all the delay systems presented in section 4.4, and for

external-cavity lasers (described in chapter 3), even though these systems use other types

of nonlinearities than the one involved in the emitter of wavelength chaos, and some of

them are vectorial. It is interesting to note that the techniques used here for the scalar

emitter of wavelength chaos also work for vectorial systems. For example, simple local linear

approximations of the form xn+1 = an + bnxn + cnxn−τ∗ are sufficient to find the delay of
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Figure 100: Identification of the delay from a time series of the optoelectronic generator
of chaos in wavelength. The parameters are: τ = 500 µs , β = 7 , τR = 8, 4 µs , φ = π/3.
The sampling time is h = 1 µs.
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Figure 101: Identification of the delay from a time series of the optoelectronic generator
of chaos in wavelength. The parameters are: τ = 1000 µs , β = 7 , τR = 8, 4 µs , φ = π/3.
The sampling time is h = 1 µs.
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a vectorial system. The use of additional delayed variables, as described in section 4.2.2,

leads to lower values of the approximation error, but is not indispensable to identify the

delay. In conclusion, cryptosystems based on single-delay systems do not seem to provide

a sufficient security level, despite the fact that they can produce chaotic signals of large

dimension and entropy. In the next section, we try to determine if multiple-delay systems

can provide a better security level.

5.3 Two-delay cryptosystems

Very recently, two chaotic emitters with two delayed feedback loops have been realized

experimentally [150, 151], and the authors have suggested that their use might increase the

security level of chaotic communications. Additionally, the numerical simulation of a chaotic

system with three delays [152] has also suggested that systems with multliple feedback loops

might lead to an increased security. It is in this context that we have decided to study the

delay identification problem in the case of systems with multiple delays. It is interesting

to determine if some architectures of multiple delay systems can lead to a better security

in terms of the concealment of the values of the delays. We consider here three different

systems subjected to two delayed feedback loops. The systems studied in sections 5.3.1

and 5.3.3 can be considered as generalizations of the generator of wavelength chaos in which

a second feedback loop has been added. The system under consideration in section 5.3.2 is

a semiconductor laser diode subjected to two optical feedbacks.

5.3.1 Delay system subjected to two delays: first configuration

The block-diagram of the system under consideration here is represented in Fig. 102. The

basic elements of this diagram are the same as the basic elements of the diagram of Fig. 1,

which represents typical chaotic emitters used at the GTL-CNRS Telecom laboratory. The

arrangement of the elements is different, however, as two feedback loops are present. Each

feedback loop comprises a delay τi and a nonlinear element NLi. If we assume that the

filter is a low-pass filter, the scalar delay-differential equation describing the dynamics of

the system is

x(t) + τRẋ(t) = β1NL1 [x(t− τ1)] + β2NL2 [x(t− τ2)] , (142)
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Figure 102: Block diagram of the first configuration of chaotic emitter with two feedback
loops.

where τ1, NL1, β1 and τ2, NL2, β2 are the delays, nonlinear functions, and feedback

strengths, respectively, of two feedback loops. If we consider that the two nonlinear func-

tions are of the form βisin
2(· · · + φi), the equation becomes

x(t) + τRẋ(t) = β1 sin2 [x(t− τ1) + φ1] + β2 sin2 [x(t− τ2) + φ2] . (143)

This equation could correspond to a generator of chaos in wavelength, to which a second

feedback loop has been added in the way represented in Fig. 102. It is also essentially

the same equation as the one describing the dynamics of the experimental system used in

Ref. [150], that has been proposed to increase the security level of chaotic communications

using delay systems. We find that, unfortunately, it is easy to identify the delay values

using the same techniques as the ones employed for single-delay systems in the preceding

section. Figure 103 represents the delayed mutual information for the system described

by Eq.(143), for very large feedback strengths β1 = β2 = 50. We observe that even for

such strong feedbacks, it is possible to identify clearly the two delays. The application of

the technique based on local linear fits and on a global nonlinear model lead to the same

conclusions. We have checked that these results hold irrespective of the values of the delays

and of the feedback strengths. Strong feedbacks may require to use smaller sampling times,

but it is still always possible to identify the delays with the same techniques that work for

single-delay systems. Additionally, we have also used different types of nonlinear functions

in the feedback loops and, even in this case, the delays can be identified.
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Figure 103: Identification of the delays from a time series of the system with two feedback
loops given by Eq. (143). The parameters are: β1 = β2 = 50, τ1 = 500 µs, τ2 = 385 µs,
φ1 = φ2 = 0.74π, τR = 5 µs. The sampling time is h = 0.25 µs.

When the values of the two delays are identified, it is certainly possible to analyze

and break a cryptosystem using techniques such as those described in chapter 4. We can

thus conclude that this type of system with two feedback loops, and in particular the

system proposed in Ref. [150], does not lead to a significant increase in the security level

of chaotic communications, because the delays can be identified using the same techniques

as for systems with a single delayed feedback loop. The authors of Ref. [150] argue that

the increased security comes from the higher dimensionality created by the presence of a

second delay. We find that, for the approach considered here, the dimension is not the

most relevant factor to characterize the security. This is because an increase of the delay

values leads to an increase of the dimension of chaos, but not of the difficulty to identify

the delays, as was also found in the case of single-delay systems (cf. section 5.2).

186



5.3.2 Semiconductor laser subjected to two optical feedbacks

Semiconductor lasers with to two optical feedbacks have been the subject of several studies

which show that depending on the conditions, the second feedback can lead to the stabi-

lization of the semiconductor laser [153, 154, 155], or to the production of high-dimensional

chaotic dynamics [156]. We consider here conditions such that the intensity produced by

the laser exhibits fully-developed chaos. In Ref. [151], it is suggested that the use of hyper-

chaotic laser diodes subjected to delayed feedback from two external mirrors could lead to

better security in chaotic communications. In this section, we examine this problem from

the point of view of the identification of the delay times.

A semiconductor edge-emitting laser subjected to two optical feedbacks can be modeled

by a generalization of the Lang and Kobayashi (cf. § 3.2.2.1) equations:

d[A(t)eiφ(t)]

dt
=

{

1

2
(1 + iα)

[

G(N,A2) − 1

τp

]}

A(t)eiφ(t)

+γ1A(t− τ1)e
iφ(t−τ1)e−iωτ1

+γ2A(t− τ2)e
iφ(t−τ2)e−iωτ2 , (144)

dN(t)

dt
=
J

e
− N(t)

τn
−G(N,A2)A2(t) , (145)

where γ1, γ2 are the feedback rates of the two feedbacks, and τ1, τ2 are the round-trip times

of light in the external cavities. The other parameters have been described in sections 3.2.1

and 3.2.2.

We find that for this system too, it is possible to identify the two delays with the same

identification techniques as those used in the case of a single-delay system. Figure 104

represents the delayed mutual information2, applied to a time series of the intensity A2(t)

of the laser, for two very different values of the feedback rates, γ1 = γ2 = 10 GHz, and

γ1 = γ2 = 100 GHz (strong feedback), and for delay values of 1 ns and 0.77 ns. We observe

that, for the two feedback levels, it is possible to identify the delays. It even seems that the

stronger feedback leads to a more clear identification of the delays, because the main peaks

in the mutual information, corresponding to the delay values, are not accompanied by side

2Other methods, like the local linear models, lead to the same conclusion.
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peaks that can make the identification more difficult. The width of the peaks is smaller,

however, for stronger feedback.
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Figure 104: Delayed mutual information in the case of an edge-emitter laser diode subjected
to two delayed optical feedbacks. The feedback rates are: (a) γ1 = γ2 = 10 GHz, (b)
γ1 = γ2 = 100 GHz, and the delays are τ1 = 1 ns and τ2 = 0.77 ns. The other parameters
are as in Fig. 13. The sampling time is h = 5 ps.

We have tried a wide range of parameter values and find consistently that the two delay

values can be identified. The only case in which the identification is problematic, occurs

when the feedback rates are small, and the two delay values are very close. In this case, the

concomitant effect of the side peaks and of the (relatively large) width of the main peaks,

can make the identification of the two delay values relatively difficult. Since the delay values

are very close to each other, however, the system might behave like a single-delay system

and it might not be necessary to find the values of the two delays to analyze the system.

The two configurations of systems with two delays considered so far do not increase

significantly the security level of chaotic cryptosystems, since the two delay values can be

determined by the same techniques that are used to identify single-delay cryptosystems. It

is to be noted that the two types of systems considered so far have in common that in their

model, the nonlinear functions are applied to each delayed term x(t − τi) separately, and
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then added. In the next section, we consider a system in which the nonlinear function is

applied to the sum, x(t− τ1) + x(t− τ2), of the delayed terms.

5.3.3 Delay system subjected to two delays: second configuration

We consider here a system based on the block diagram represented in Fig. 105. In this case,

the two delay elements are put in parallel to create two feedback loops. The two feedback

loops use the same filter, nonlinearity, and amplifier. In the case of a low-pass filter, this

+

+
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Filter

Delay  τ
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Delay  τ
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Figure 105: Block diagram of the second configuration of chaotic emitter with two feedback
loops.

system can be modeled by the following equation

x(t) + τRẋ(t) = βNL1 [x(t− τ1) + x(t− τ2)] . (146)

In the case in which the nonlinearity is of the form sin2(· · · + φi), the model becomes

x(t) + τRẋ(t) = β sin2 [x(t− τ1) + x(t− τ2) + φ] . (147)

This equation can be that of a generator of chaos in wavelength to which a second delay line

has been added. Such a system is currently being realized [157] at the laboratoire d’optique

P.-M. Duffieux of the Institut Femto-ST.

The dynamical behavior of this system has some apparent common features with that

of a single-delay system. It is particularly interesting to note that a large feedback strength

β leads to rapid fluctuations of the dynamical variable x, to a Gaussian probability density

function, and to a spectrum that looks like that of a white noise3, as in the case of a

3Therefore, no frequency in relation with the delay times appears in the spectrum.
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single feedback (cf. section 4.4.3). This is shown in Figs. 106 and 107, which represent the

variable x, its pdf, and its power spectrum, for a feedback strength β = 25, in the case of

a single feedback loop, and of two feedback loops, respectively. This means that for an
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Figure 106: System with one feedback loop. β = 25 , τ = 500 µs , τR = 5 µs , φ = 0.74π.

eavesdropper, there is no obvious sign of the presence of a second delay.

Despite these characteristics, we find that the delay identification problem has become

more difficult. When the feedback strength is large, so that several extrema of the nonlinear

function are involved in the dynamics, it becomes impossible to find the delay values using

the techniques that have been successful for single-delay systems. Figure 108 represents

the result of the application of the identification techniques that make the use of delayed

mutual information and of local linear fits, to the case of the two-delay system, for a

feedback parameter β = 25, and for two delays values τ1 = 500 µs and τ2 = 385 µs. We

observe that none of the techniques gives any sign of the presence of the delays, while the

single-delay chaotic emitter described by Eq. (141) can be identified, for the same feedback

strength (β = 25), and even for much larger feedback strengths. The first configuration of

system with two delays, described in section 5.3.1, can also be identified for larger feedback

strengths (cf. Fig. 103). All the other identification techniques that have been devised for
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Figure 107: System with two feedback loops. β = 25 , τ1 = 500 µs , τ2 = 385 µs ,
τR = 5 µs , φ = 0.74π.
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Figure 108: Mutual information and local linear fits applied to the system with two feedback
loops given by Eq. (147). The parameters are β = 25 , τ1 = 500 µs , τ2 = 385 µs ,
τR = 5 µs , φ = 0.74π. The sampling time is h=1 µs. The arrows indicate graphically the
delay values.
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single-delay systems, including the one based on a global nonlinear model of the form (138),

or on local linear approximations of the form (113), also fail [149, 158, 159, 160]. Decreasing

greatly the sampling time does not help either, contrary to what happens in the case of

systems with a single delay. Additionally, these results hold when the difference between

the delay values is varied. We should mention, however, that for small feedback strengths

β, it is possible to identify the two delays using techniques such as the delayed mutual

information. This is probably because for small feedback strengths, only a small portion

of the nonlinearity is exploited, and the system is not very nonlinear. In this context, the

approximation sin2[x(t− τ1)+x(t− τ2)] ≈ sin2[x(t− τ1))+ sin2(x(t− τ2)] can be made, and

we thus go back to the configuration studied in section 5.3.1.

We should remember that the techniques used in Fig. 108 to identify the delays try to

measure, in some way, the presence of a structure in the plane (xn, xn−τ∗), in the case of

the mutual information, and in the space (xn+1, xn, xn−τ∗), in the case of the local linear

fits. The equations (143) and (147) of the systems with two delays define, however, a

constraint in the four-dimensional space (ẋ(t), x(t), x(t − τ1), x(t − τ2)), which guarantees

the existence of a structure in this space only. If we assume that we perform a sufficiently

good discretization of the system, the projection of a trajectory of the phase space, on the

space (xn+1, xn, xn−τ1 , xn−τ2) should reveal the presence of a structure. It is not guaranteed,

however, that a projection on a lower-dimensional space, like (xn, xn−τi) or (xn+1, xn, xn−τi)

leads to an identifiable object, even for a very good discretization. This depends on the

system considered.

We have represented in Figs. 109 and 110 the projection of a trajectory on the spaces

(xn+1, xn, xn−τ1) and (xn, xn−τ1), respectively, in the case of the system subjected to two

delayed feedbacks described by Eq.(143) (first configuration). We observe that a structure is

detectable in these spaces. The same is true in the spaces (xn+1, xn, xn−τ2) and (xn, xn−τ2).

This explains why, in the case of the first configuration of multiple-delay systems considered

in section 5.3.1, it is possible to identify the delays using techniques such as the mutual

information and local linear fits of the form (140), which have been devised for single-delay

systems.
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Figure 109: Representation of the system described by Eq. (143) in the space
(xn+1, xn, xn−τ1). The parameters are β1 = β2 = 25 , τ1 = 500 µs , τ2 = 385 µs , τR = 5 µs ,
φ = 0.74π. The sampling time is h=0.25 µs.
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Figure 110: Representation of the system described by Eq. (143) in the plane (xn, xn−τ1).
The parameters are β1 = β2 = 25 , τ1 = 500 µs , τ2 = 385 µs , τR = 5 µs , φ = 0.74π. The
sampling time is h=0.25 µs.
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Figures. 111 and 112 represent the projection of a trajectory on the spaces (xn+1, xn, xn−τ1)

and (xn+1, xn−τ1), respectively4, in the case of the system subjected to two delayed feed-

backs described by Eq.(147). We observe that no structure can be seen in these spaces, even

though the sampling period is very small. The same is true in the spaces (xn+1, xn, xn−τ2)

and (xn+1, xn−τ2). Decreasing even further the sampling period does not help. This is why

in the case of the first configuration of multiple-delay systems considered in section 5.3.1,

it is impossible to identify the delays using techniques such as the mutual information and

local linear fits of the form (140).
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Figure 111: Representation of the system described by Eq. (147) in the space
(xn+1, xn, xn−τ1). The parameters are β = 25 , τ1 = 500 µs , τ2 = 385 µs , τR = 5 µs ,
φ = 0.74π. The sampling time is h=0.1 µs.

The fact that decreasing the sampling period does not help identify the delays means

that the reason why the identification fails is not a bad discretization of the continuous-

time system. The reason is that the identification is not being performed in the correct

space. In the case of Eq. (147), the dynamics is such that no structure can be revealed

in the subspace (xn+1, xn, xn−τi), contrary to Eq. (143). It is therefore necessary, in this

4We have chosen to observe the projection of the attractor in the plane (xn+1, xn−τ ) instead of in
(xn, xn−τ ), because it is usually easier to identify a structure (if it is present), in the former plane than in
the latter one.
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Figure 112: Representation of the system described by Eq. (147) in the plane (xn+1, xn−τ1).
The parameters are β = 25 , τ1 = 500 µs , τ2 = 385 µs , τR = 5 µs , φ = 0.74π. The
sampling time is h=0.1 µs.

case, to work in the “full” space (xn+1, xn, xn−τ1 , xn−τ2), in which Eq. (147) defines a

constraint if the discretization is good enough. It is not possible to represent graphically the

structure described in this four-dimensional space, but we find that its projection onto the

three-dimensional space (xn+1, xn−τ1 , xn−τ2) also leads to an identifiable structure, which is

represented in Fig 113.

On the basis of the previous observations, we can conclude that it is necessary to work

in the space (xn+1, xn, xn−τ1 , xn−τ2), or in the space (xn+1, xn−τ1 , xn−τ2), to identify the

delay values.

We propose to generalize the technique of local linear models to the case of systems with

two delays, by working in the space (xn+1, xn, xn−τ∗

1
, xn−τ∗

2
). In this space, the following

local linear approximations can be performed:

xn+1 = an + bnxn + cnxn−τ∗

1
+ dnxn−τ∗

2
, (148)

where an, bn, cn, and dn are the coefficients of the local approximations, and τ∗1 , τ∗2 are

arbitrary delay values. We expect that a minimization of the average fitting error, of the

entire time series considered, as a function of the two variables τ∗1 and τ∗2 , should lead to
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Figure 113: Representation of the system described by Eq. (147) in the space
(xn+1, xn−τ1 , xn−τ2). The parameters are β = 25 , τ1 = 500 µs , τ2 = 385 µs , τR = 5 µs ,
φ = 0.74π. The sampling time is h=0.1 µs.

an identification of the two delays, if the discretization is sufficiently fine. It is also possible

to generalize the global nonlinear model (138) by adding a series of variables to take into

account the second delay. This model takes the form

xn+1 = MNL(xn, xn−1, xn−τ∗

1
, xn−τ∗

2
) . (149)

The nonlinear function MNL can be realized, for example, using a neural network divided

in three modules, one for the non-feedback part, and one for each feedback.

Figure 114 represents the average approximation error of a series of local linear fits

of the form (148), in a rectangular area of values of τ∗1 and τ∗2 , for a strong feedback

strength (β = 15). We observe a steep valley in the approximation error around the

correct values of the delays. This valley corresponds to the detection of the presence of

a 3-dimensional manifold in the four-dimensional space (xn+1, xn, xn−τ1 , xn−τ2). This is

because the local linear approximations (148) define hyperplanes tangent to the manifold,

and these approximations only make sense if an underlying manifold exists, i.e. if the

correct delay values are used.

We can therefore identify the two delays from a time series produced by the system
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Figure 114: Approximation error as a function of the two unknown delay values τ∗1 , and
τ∗2 , in the case of the system with two feedback loops given by Eq. (147). The parameters
are β = 15 , τ1 = 500 µs , τ2 = 385 µs , τR = 5 µs , φ = 0.74π.

described by Eq. (147), with no overestimation. These results hold even for very large

values of the feedback strength, when the difference between the values of the delays is

varied, and if a band-pass filter is used in place of the low-pass filter5.

It should be noted, however, that the computation time is much larger than when local

linear approximations with a single delay [of the form given by Eq. (140)] are used. This

is the mechanical consequence of the fact that the two delay values are searched for in an

area, instead of in an interval. Since for given values of the delays, the approximations

(140) and (148) necessitate similar computation times, if it takes a time T to compute

the approximation error in an interval of values of τ∗ of length L, it will take a time T 2,

approximately, to compute the approximation error in a region of values of τ∗1 and τ∗2 of

area L2.

We also notice that the width of the valleys in the approximation error decreases with

increasing feedback strength β. Figures 115, 116, and 117 represent the average approxi-

mation error for feedback strengths β of 5, 10, and 25, respectively. Similarly to the case

5leading to an integro-differential equation with two delays.
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of single-delay systems, the decrease in the width of the valleys observed in these figures

is due to the rapid decrease of the link existing between x(t) and x(t + h), for increasing

β. For large values of β (for example β = 25), the valley is extremely thin, which means

that an eavesdropper which tests values of the delays close to the correct ones, will have

no indication of the fact that he is close to the correct values. Therefore, he will have to

perform a systematic “blind” search for the correct delay values. While for lower feedback

strengths, larger valleys mean that an eavesdropper knows when he is close to the delay

values. In this sense, we can consider that increasing the feedback strength β leads to an

increase of the security, because the computation time to identify the delays will be greater,

on average.
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Figure 115: Approximation error as a function of the two unknown delay values τ∗1 , and
τ∗2 , in the case of the system with two feedback loops given by Eq. (147), for a feedback
strength β = 5. The other parameters are τ1 = 500 µs , τ2 = 385 µs , τR = 5 µs , φ = 0.74π.

Finally, we mention that preliminary results show that the approximation error of a

global nonlinear model of the form given by Eq. (149) leads to similar results. We are

confident that it should also be possible to identify the delays using information theoretic

concepts, adapted to the presence of a second delay.
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Figure 116: Approximation error as a function of the two unknown delay values τ∗1 , and τ∗2 ,
in the case of the system with two feedback loops given by Eq. (147), for a feedback strength
β = 10. The other parameters are τ1 = 500 µs , τ2 = 385 µs , τR = 5 µs , φ = 0.74π.
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Figure 117: Approximation error as a function of the two unknown delay values τ∗1 , and τ∗2 ,
in the case of the system with two feedback loops given by Eq. (147), for a feedback strength
β = 25. The other parameters are τ1 = 500 µs , τ2 = 385 µs , τR = 5 µs , φ = 0.74π.
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5.4 Conclusion and perspectives

Cryptosystems with a single delayed feedback loop do not appear to be secure because

several techniques exist to identify the value of the delay. Once the delay is known, the

cryptosystem can usually be broken. Cryptosystems that use several delayed feedback loops

have been suggested to be more secure. We have examined three different types of chaotic

cryptosystems subjected to two delayed feedbacks. We have shown that in the case of the

generalization of the generator of wavelength chaos in which a nonlinear function is applied

to each delayed term separately, and in the case of a semiconductor laser subjected to two

optical feedbacks, it is possible to identify the delays using the same techniques that work

for single-delay systems. In the case of the generalization of the generator of wavelength

chaos in which a nonlinear function is applied to the sum of the delayed terms, however,

these techniques fail. We have proposed some adapted techniques that have enabled us

to identify this latter type of system too. An eavesdropper will have more difficulty in

identifying the delays, however, since these adapted techniques involve longer computation

times. Additionally, we have found that it is interesting to use strong feedbacks, since this

makes the identification of the delays more difficult. Finally, we mention that adaptations of

the identification techniques, performed in the spirit of the work presented here, should lead

to the identification of the three delays of the cryptosystem recently proposed in Ref. [152].

Preliminary results show that when two different, and suitably chosen, filtering elements

are used in two delayed feedback loops, only one of the delays can be identified, even when

the specific techniques for systems with two delays are used. This type of configuration

could be interesting for cryptographic purposes. Another way to hide the delay value of a

chaotic cryptosystem is to modulate it at the emitter. It has been shown [161, 162] that,

under certain circumstances, the modulation makes the identification of the delay impossible

with standard techniques, while it is still possible to synchronize the receiver and decode

the message. Using the techniques described in this chapter, we have been unable so far

to identify the delay in this kind of system, and it would be particularly interesting to

determine some techniques to do so.
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CHAPTER VI

CONCLUSION

This work was devoted to the numerical study of several topics lying in the field of chaotic

communications.

In chapter 3, we have studied numerically the synchronization of two unidirectionally

coupled single-mode chaotic edge-emitting semiconductor lasers based on a Lang-Kobayashi-

type model. The master laser is an external-cavity laser, while for the slave laser we con-

sidered two configurations: an external-cavity slave laser (closed-loop scheme), and a laser

subjected only to optical injection from the master laser (open-loop scheme). Depending on

the operating conditions two different types of synchronization are found: synchronization

with a lag-time τc, which corresponds to the synchronization of the slave optical field with

the injected field (isochronous synchronization), and synchronization with a lag-time τc − τ

(anticipating synchronization).

We have shown that chaotic synchronization with a lag-time τc occurs in a similar

parameter region to the one in which stable CW injection-locking occurs. This form of

synchronization is much more robust than the anticipated synchronization, which occurs in

a much narrower parameter region. Therefore it should be easier to implement in a real

chaotic communications scheme. We have also observed that the synchronization quality

is usually better in the closed-loop scheme than in the open-loop scheme; when the slave

laser is an external-cavity laser, however, the external mirror has to be carefully positioned,

since small differences in the delay times strongly degrade the synchronization quality.

We have analyzed the synchronization regions in the parameter space (master feedback

rate, injection rate), finding that an increase of the master feedback rate requires an increase

of the injection rate in order to obtain a good synchronization. In the case of the closed-loop

scheme, very good synchronization can occur even for a large value of γm, while in the case

of an open-loop scheme the chaotic intensity produced by large feedback levels is difficult



to synchronize with feasible injection levels.

Finally, we have studied the transitions between the two synchronization regimes for

an open-loop scheme, extending the results reported in Ref. [96]. We have shown that it

is only for injection currents close to threshold, that small parameter variations can lead

to transitions between the different synchronization regimes, because the synchronization

regions are close to each other in parameter space. On the contrary, for large injection

currents, transitions are not possible, since the two types of synchronization occur for very

different coupling strengths. We have also shown that not all parameter variations lead to a

transition from one synchronization regime to the other, but only the parameter variations

that increase the ratio between the injected power and the solitary slave laser output power.

When a parameter variation decreases this ratio, a transition to the other synchronization

regime does not occur, and the synchronization is lost.

The existence of two synchronization regimes has now been proved experimentally [103]

and is widely accepted.

We have also studied, in chapter 3, the synchronization of external-cavity vertical-cavity

surface-emitting lasers on the basis of the spin-flip model. We have considered a master

laser subjected to isotropic optical feedback, while different types of optical injection in the

slave have been studied.

In the case of isotropic injection, we observe regimes of anticipating and isochronous

synchronization of the two linearly-polarized components of the electric field. The charac-

teristics of these synchronization regimes are similar to the characteristics of the anticipating

and isochronous regimes identified in edge-emitting lasers.

The optical injection of only one of the linearly-polarized components of the electric field

clearly favors the corresponding component at the slave laser. For sufficiently large injection

levels, the component parallel to the injection synchronizes isochronously with the injected

field. If this component is inactive at the slave laser, the polarized optical injection activates

it, and if the orthogonal component is active, the optical injection kills it. In the case of

orthogonal injection, and for intermediate injection levels, the two linearly-polarized com-

ponents of the slave electric field can be active contemporaneously, and antiphase dynamics
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between the two components is often observed. In this case, the component parallel to the

direction of the polarized injection tends to synchronize with the injected field, while the

other component experiences antisynchronization with the injected field. The component of

the electric field perpendicular to the injection is usually killed, however, before good syn-

chronization (and antisynchronization) occurs. We are confident that some modifications

of the operating conditions, and especially the inclusion of frequency detuning between

the lasers, should lead to the observation of good synchronization and antisynchronization,

consistently with the experimental results of Hong et al. [106, 107].

Finally, preliminary results indicate that it should be possible to realize chaotic com-

munications, between external-cavity VCSELs, in which the information-bearing signal is

coded on the polarization state of the master laser.

In chapter 4, we have used specific techniques for delay systems, based on local linear

models of the dynamics, to analyze experimental and numerically-generated time series of

different chaotic delay systems.

We have shown that the identification of the delay is possible for systems that can

be modeled by a scalar delay-differential equation (Mackey-Glass system, optoelectronic

generator of wavelength chaos, and electronic system producing frequency chaos, when a

low-pass filter is used), as well as for vectorial systems modeled by an integro-differential de-

lay equation (electronic generator of frequency chaos using a band-pass filter, optoelectronic

system producing chaos in intensity). We have observed that, contrary to the identification

techniques based on autocorrelation and mutual information, the technique based on local

linear approximations leads to the exact (non-overestimated) delay value. We have also

found that this technique is very robust. In particular, we have observed that the identifi-

cation is possible for a large range of values of the internal parameters of the identification

procedure, and in presence of an information-bearing signal. It has also been possible to

estimate, from time series, the nonlinear function of the Mackey-Glass system and of the

generator of wavelength chaos.

Finally, we have estimated the Lyapunov spectrum, the chaos dimension, and entropy,

from numerically-generated time series of a Mackey-Glass system, and from experimental
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time series produced by the generator of wavelength chaos. In both case, we have compared

the spectrum estimated from time series with the spectrum estimated from the dynamical

model. In the case of the Mackey-Glass system, we have observed a very good correspon-

dence between the two spectra. We have verified that the dimension increases linearly with

the delay, while the entropy is independent of the value of the delay. In the case of wave-

length chaos, the computation of the spectrum from the dynamical model shows that the

dimension increases linearly with the delay and the feedback strength, while the entropy

also increases linearly with the feedback strength, but does not increase with the delay.

The estimation of the Lyapunov spectrum from experimental time series has proved to be

more problematic. We have not been able to find a satisfactory agreement between the

spectrum calculated from the time series and from the model. We believe the discrepancy

is due to the presence of noise in the time series, and to the concomitant fact that we try to

estimate the spectrum of a very hyperchaotic system, whose nonlinear function has many

active extrema. We have nevertheless been able to confirm that the dimension and entropy

tend to vary linearly with the feedback strength.

Cryptosystems with a single delayed feedback loop do not appear to be secure because

several techniques exist to identify the value of the delay. Once the delay is known, the

cryptosystem can usually be broken. Cryptosystems that use several delayed feedback loops

have been suggested to be more secure. We have examined three different types of chaotic

cryptosystems subjected to two delayed feedbacks. We have shown that in the case of the

generalization of the generator of wavelength chaos in which a nonlinear function is applied

to each delayed term separately, and in the case of a semiconductor laser subjected to two

optical feedbacks, it is possible to identify the delays using the same techniques that work

for single-delay systems. In the case of the generalization of the generator of wavelength

chaos in which a nonlinear function is applied to the sum of the delayed terms, however,

these techniques fail. We have proposed some adapted techniques that have enabled us to

identify this latter type of system too. An eavesdropper will have a harder time identify-

ing the delays, however, since these adapted techniques involve longer computation times.

Additionally, we have found that it is interesting to use strong feedbacks, since this makes
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the identification of the delays more difficult. Finally, we mention that adaptations of the

identification techniques, performed in the spirit of the work done here, should lead to the

identification of the three delays of the cryptosystem recently proposed in Ref. [152].

Preliminary results show that when two different, and suitably chosen, filtering elements

are used in two delayed feedback loops, only one of the delays can be identified, even when

the specific techniques for systems with two delays are used. This type of configuration

could be interesting for cryptographic purposes. Another way to hide the delay value of a

chaotic cryptosystem is to modulate it at the emitter. It has been shown [161, 162] that,

under certain circumstances, the modulation makes the identification of the delay impossible

with standard techniques, while it is still possible to synchronize the receiver and decode

the message. Using the techniques described in this chapter, we have been unable so far

to identify the delay in this kind of system, and it would be particularly interesting to

determine some techniques to do so.
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APPENDIX A

NEIGHBOR SEARCHING TECHNIQUES

The problem of neighbor searching often arises when the time series analyst tries to deter-

mine some local properties in the phase space of a system, or in a projection of this phase

space1. For example, noise reduction, local prediction, and the estimation of the Lyapunov

spectrum require to work in the neighborhood of a state. During the thesis, it has been

necessary to search for neighbors to model locally a chaotic delay system (section 4.2).

This appendix is devoted mainly to present the simple and efficient technique we have

used to find the neighbors of an element of a k-dimensional space. A detailed description

of the different methods to search for neighbors can be found in Refs. [163, 31].

Assuming that we have a set of N vectors xn in a k-dimensional space, the aim of a

neighbor searching method is to determine, for each xn, the set of all the vectors xm, that

are inside the ball centered in xn and of radius ǫ (ǫ is the neighborhood size). Equivalently,

it is necessary to determine the set of indices

Un(ε) =
{

m | ‖xm − xn‖p < ε
}

, (150)

where ‖· · · ‖p is the Lp norm.2

The simplest way to find the neighbors of a set of N points is to compute the N2/2

distances between all the pairs of points. Though simple, this method is often impractical

because of the large computation times involved when the number of points is important.

More efficient techniques must be used. Box-assisted methods provide a substantial gain in

computation time and are at the same time easy to implement. In the remainder of this

appendix, we present the principles of box-assisted methods.

1This latter case makes reference to the specific analysis techniques for delay systems.

2The Lp norm of a vector xn is defined by ‖xn‖p =
�Pk

i=1 |xn,i|
p
�1/p

, where xn,i represents a component

of the vector xn. The special case p = 2 corresponds to the standard Euclidean norm.



In a box-assisted method, the k-dimensional space is divided into a grid of boxes (or

hypercubes) of side length ǫ, and all the vectors are placed in one of the boxes. The search

for neighbors of a vector is thus limited to the hypercube that contains this vector and to the

adjacent hypercubes3. When implementing the method, it is important to be able to place

the vectors in the boxes without wasting memory. In particular, since each box contains

a different number of vectors, it is important to allocate the correct memory size to each

box. The elements of every box will be contained in a N-dimensional vector POINTS. An

POINTS

BOXES

Figure 118: Matrix BOXES and vector POINTS.

analysis of the set of N vectors tells us how many vectors fall in each box. The information

on the number of elements of each box enables us to divide POINTS in such a way that to

each box is associated a contiguous section of memory, whose size is exactly that needed

to contain all the vectors of the box. Moreover, to minimize the memory required by the

algorithm, the space of dimension k is divided in boxes of dimension two, whatever the value

of k is. This means that we work on a projection of the k-dimensional space on a plane,

and subsequently extract the neighbors in dimension k among the neighbors in dimension

two. The vector POINTS is represented in Fig. 118. It contains the indices of the vectors

that lie in the boxes. The indices of vectors that are in the same box follow each other in

POINTS. The matrix BOXES, represented in Fig. 118, is used to determine the location

3This reasoning is valid for any type of norm. We have chosen arbitrarily to use the Euclidean norm
(p = 2).

207



of the boxes in the vector POINTS. Each element of this matrix corresponds to a box, and

points toward the section of POINTS that contains the indices of the vectors of that box.

Before beginning to look for neighbors, it is necessary to determine the matrix BOXES by

counting the number of vectors that fall into each box. The vector POINTS is then filled

using the information contained in BOXES.

When it is necessary to look for the neighbors of a vector, the first thing to do is to

determine the box in which it lies, i.e. the element of BOXES that points towards this

box. The indices of the neighbors are then found in the vector POINTS, at the position

determined by BOXES. This box-assisted technique leads to a significant decrease of the

computation time.
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