
l{n . ,--\/ -tIS 1..0 \ i-- '- 'IS t:. 
SCNT ~D-\U.e..c... 

RECONSTRUCTION AND ROBUST REDUCED-ORDER OBSERVATION OF FLEXIBLE VARIABLES 
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Most models intended for real-time control of distributed parameter systems such as flexible manipulators rely on 
N-modal approximation schemes[l]. Measurements made on flexible systems yield time varying quantities which are 
linear combinations of the system states. This paper discusses reconstruction and estimation of flexible 
variables from multiple strain measurements for use in state feedback control of flexible manipulators. 
Reconstruction is proposed for obtaining flexible mode amplitudes from the measurements, and estimation for the 
modal velocities. Reduced order observers are briefly reviewed, and then application to flexible manipulators is 
discussed. Design of the observer for estimation of the velocities is discussed with regard to robust 
implementation. The performance of the observer is examined experimentally for several specifications of the 
error dynamics. 

Organization 
The first section will present the general form of a 
truncated assumed mode model which has been investi
gated by many researchers [2,3,4]. The second section 
will discuss reconstruction of the flexible mode am
plitudes from measurements. This will be followed by 
an application of reduced order observers to estimate 
modal velocities, and design for robust implementa
tion. The last section will evaluate performance of 
the system. 

Assumed Mode Model 
Assumed modes is one approximate modal scheme which 
has repeatedly been applied to flexible manipula
tors[2,3,4]. The dynamics of the system is described 
by a rigid body rotation coupled with assumed vibra
tory modes, this is depicted in figure 1 for a one 
link arm. 
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Flexible Manipulator 
Figure 1 

Utilization of separable descriptions for the vibra
tory modes provides for the elimination of spatial 
dependence in the truncated model. Separability in 
this instance refers to describing the flexible 
deflections as a series modes which are products of 
two functions, one a function of a spatial variable, 
and the other a function of time. The position of the 
beam can then be noted as; 

w(x, t)= X8(t)+l:<Pi (x)qi (t) .. for i=1,2 ... n (1) 

',. 

The distributed character of the flexible manipulator 
is taken into account via integral expressions over 
the spatial domain of the entire system in forming 
kinetic and potential energy expressions. The dynamic 
equations can be generated from Lagrange's equations 
applied to the energy expressions, and generalized 
forces. 

d laKEI _ aPE = Q. (2) 
dt a~i a~i 1 

where the ~i are the coordinates, and Q. are the 
generalized forces associated with each co6rdinate. 
The resulting dynamic system can linearized and 

__ org!'lnized into a 1 inear state space model as; 

8 8 

ql 0 ql 0 

q2 q2 

= ------------------- + ----- u (3) 

8 8 

ql q1 M-1Q 

q2 
-M-1K 0 

q2 

where M and K are respectively mass and stiffness 
matrices resulting from the spatial integrations, 

Measurement and Reconstruction 
Joint angles, and joint rotational speeds can be 
measured directly as for rigid manipulators, however 
for state· feedback control of manipulator flex
ibility it is desirable to make direct measurements 
of the modal variables. Three types of measurement 
are currently receiving attention for controlling 
flexibility in manipulators, optical measurement of 
end point position[5], optical measurement of 
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ndeflection[6], and measurement of strain on the 
link[7]. The measurement selected for this work is 
strain. Strain measurement has the following positive 
aspects: 

Measurement isolates beam variables from 
rigid motions. 

No restrictions on work envelope, or 
positioning. 

High compatibility with harsh industrial 
environments subjecting the sensors to 
process sprays of oils, solvents, and 
dispersed solids. 

Low cost sensor, and driving electronics 
with simple technology base. 

Additionally the development presented here can be 
applied to optical measurements of deflection. 
Measurement zeroes observed in end point position 
measurements[5] may adversely effect application of 
reconstruction to this means of measurement. 

Strain Relationships 
The moment at any location along the beam is related 
to the curvature of the beam: 

M = EIa2w(x,t) (4) 

ai 
The stress of the fibers along the surface of the 
beam due to bending can be determined from the 
moment: 

a = Mc 
r 

(5) 

The strain due to bending is then: 

(6) e: = a 
E 

The strain can now be given in terms of the beam 
deflection w(x,t): 

e:(x,t) = ca 2w(x,t) (7) 

ai 
Assumed mode representation of the flexible deflec
tions can be expressed by: 

w(x,t) ~CPi(x)qi(t) (8) 

The strain can then be represented in terms of the 
assumed modes as: 

= c~q.(t)~.(x) 
, 2' 

dx 

e:(x,t) (9) 

This can be expanded to clearly show the contri
butions of each flexible mode to the measurement of 
strain at a location x=a on the beam. 

~n(a )qn(t)] 
di 

For strain measurements at several locations a, b, 
... ,m this relationship can be presented in matrix 
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form: 
e:(a,t) c~l(a) c~2(a) 2 • .. c~ (a) ql n 

dx 2 di dx2 

db, t) cit1(b) cit2(b) 2 
."c~n(b) q2 

= d/ d/ d/ 
(11) 

q3 

e:(m,t) cit1(m) cit2(m) 2 ... cd=t,(m) 
d/ d/ d/ 

qn 

The relationship depicted above relates the flexible 
variables to the strain measurements, and can be ex-
pressed as a variable transformation T-l. 

(12) 

The desired form of the transformation however is to 
"reconstruct" the flexible mode amplitudes from the 
strain measurements. 

q = Te: (13) 
Inversion of the transformation T-l may be difficult 
if the number of measurements is different than the 
number of modes to be identified. If there are more 
measurements than modes to be estimated, least 
squares may be applied. Based upon previous exper
imental results[8] it was decided to investigate a 
model based upon two assumed modes with recon
struction accomplished from two strain measurements. 
This case results in a square matrix T-l. Sensor 
locations for this case can be selected which provide 

"', 'i ndependent measurement of the two modes assuri ng 
,.that T exi sts. 

Luenberger Reduced Order Observers 
Direct measurement and reconstruction provides joint 
angle, joint velocity, and modal amplitude data for 
the controller. A reduced order observer can be de
signed to estimate the missing modal velocity am
plitudes. The main advantage of a reduced order 
observer over full state estimation lies in com
putational savings, this translates into higher 
sampling frequencies during implementation. 
The following paragraphs summarize the work of 
Luenberger[9], and Gopinath[10] reviewing the de
velopment of the equations which describe the 
behavior of reduced order observers. Assuming that 
reconstruction provides an accurate measurement of 
the flexible mode amplitudes, truncation of the model 
depicted by equation (8) to two modes has the 
familiar linear systems representation: 

x = Ax + Bu (14) 

y = ex 
u = Ky 

(15) 
(16) 

where the unmeasured states correspond to the modal 
velocities. The system can be directly partitioned 
into measured and unmeasured states as follows; 

I~;I = I~;~----~;;I I~;I + I~;I lui 
( 17) 

c 
/6 ~I (18) 
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Xl are the m measured states while x2 are the unmea
sured states to be estimated. Figure 2 presents a 
block diagram of a reduced order observer which is 
described by; 

Z = A22z - LC(x2 - z) + A2lxl + B2u (19) 

u 

r---~~--~>-------Z 

Figure 2. Reduced Order Observer 

z is the estimate of the states x2' The error dynam
ics for this system can be obtained by subtraction of 
equation 22 describing the unmeasured states from the 
estimation equation 19. 

e2 = (A22 - LA12)e2 
e2 = x2 - z 

(20a) 
(20b) 

This estimate however depends directly upon measure
ment of the states to be determine. The dependence on 
measurements of x2 can be eliminated via substitution 
of 24 with the following result; 

. z = (A22 - LAI2)z + LXI - LAIIxI + (21) 

(B2 - LBl)u 
This result although direct allows little insight, 
and may cause some confusion. The following deriva
tion follows a more heuristic path, and provides more 
insight into the derivation process. To accomplish 
this, first cull the expressions for the unmeasured 
states from equation 17; 

X2 = A22x2 + A2lxl + B2u (22) 
The quantity, 

(23) 

which appears in equation 22 can be considered as a 
known input as it contains only measured and computed, 
quantities. The expressions for the measured states 
can be pulled out and reorganized as; 

Xl - Allxl - Blu = A12x2 (24) 
The terms to the left side of the equal sign; 

Xl - Allxl - Blu (25) 
contain only measured quantities, their derivatives, 
and the computed inputs u. Combining equati ',n 22, and 
24 results in an estimation equation; 

Z = (A22-LAiz)z + AZlxl + L(xl-AllXl-Bl) (26) 

+ B2u 
Equation 26 provides an observation of the l ~easured 
states, based on state measurements, :he time 
derivative of the measurements, and the inputs. 

". 
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Additionally, the measurement gain L appears to have 
the ability to specify the error dynamics. This 
equation is represented in block diagram form in 
figure 3. 

u 

h ___ X, 

Figure 3. Observer Dependent on Measurement 
and Measurement Derivatives 

z 

Adaptation for Implementation 
The resultant observation equation 26 meets the 
objective of controlling the rate at which the error 
converges, and eliminates the sensitivity to initial 
states as the process proceeds. The equation does, 
however, require the time derivative of the measured 
states. The time derivative of the measured states 
may be the variables it is desired to estimate. This 
is indeed the case for the flexible arm. 
Figure 4 depicts an estimation system which does not 
require knowledge of the time derivative of the state 
measurements. This is accomplished by utilizing the 
followin9 substitution. 

LXI = (A22 - LAI2)LxI (27) 

H ____ X' 

z 

Figure 4. Observer Dependent on Measurement 
Only 

Insertion of this result into the estimation equation 
21 yields; 

W = (A22 - LA12)w + [(AZI -LAIl) + (28) 

(A2Z - LA12)L]xI + (B2 - LBl)u 
where, 

z = w + LXI (29) 
The motivation for this substitution is more apparent 
by noting the adjustments made to figure 3 in 
deriving the observer shown in figure 4. This ad
justment effectively pushes the time derivative of 
the measurement through the integration block. 

r; 

~: . : 

, . 



Gopinath[10J showed that the error dynamics remain 
unchanged. 

Application of Reduced Order Observers to Single 
Link Flexible Arms 
This section describes the application of the general 
reduced order observer to the flexible manipulator. 
Reconstruction of the modal amplitudes is treated 
separately, and the following development considers 
these quantities as inputs for the estimation of the 
modal velocities. 
Following the earlier partitioning scheme for mea
sured, xl, and unmeasured, x2' states. The state 
vectors for the flexible manipulator can then be 
organized as; 

xl T = [e,q1,Q2'" ,qn,e] (30) 
T - •• • x2 - [q1,q2'" ,qnJ (31) 

where the requirement is to form an estimate z of the 
modal velocities contained in the x2 state vector. 
This form is directly compatible with the state space 
formulation derived in the dynamic modeling section. 
Conversion of the continuous estimation equations 
developed above to digital form appropriate for 
implementation in a micro-processor is accomplished 
by direct duality. 

'Specification of the Measurement Gain L 
Selection of the measurement gain matrix L for the 
flexible arm system is not as direct as that implied 
by a casual glance at error dynamic equation 20. The 
estimation equation for the modal velocities of an 
nth mode series is depicted in equation 32. 

w = [FJnxnw + [L'J nxn+2x1 + [B'Jnxlu 

F = A22-LA12 
L'= (A2l - LA11) + (A22 - LA12)L 

B' = B2 - LB1 
z = w + LXI 

(32a) 

(32b) 
(32c) 
(32d) 
(32d) 

Specification of estimator dynamic matrix F in 
equation 32a above results in n2 equations. The 
measurement gain matrix L' however will have n2+2n 
terms. Thus, specification of the error dynamics does 
not completely determine the elements of L. This will 
occur whenever more state measurements are made than 
states to be estimated. This allows significant 
freedom to the designer, and use of this freedom to 
improve system robustness will be discussed next. 

Pole Placement and Robust Observers 
The design freedom mentioned earlier can be used to 
increase the robustness of the observer system. By 
examining figure 5, a block diagram of the control 
implementation, it is apparent that the observer 
utilizes commanded torque as opposed to the actual 
torque. If the depicted system is broken at node A, 
which would correspond to the servo-amp for the motor 
turned off, the earlier discussion of poles for the 
combined observer/plant system does not apply. The 
poles are no longer separable, and the observer 
displays "closed loop" poles described by; 

(33) 
K2 is a gain vector associated with modal velocities. 
These poles are not identified in the earlier dis
cussion for observer design. Initial disturbances are 
readily available to this system via state mea
surement, and unstable poles quickly result in esti-

mates which saturate the system. This results in an 
experimental system with a "hard start" behavior. 

A Plant 
node 

u- computed Torque 

z 
Observer 

Figure 5. Controller Implementation 

Problems of a similar nature were discussed by [llJ, 
and the reduction of sensitivity to this problem was 
termed an increase in robustness. The equations for 
the closed loop observer poles are combined with the 
equations for the observer dynamic matrix for deter
mining the elements of the measurement gain matrix L. 

Experimental Investigation 
Real-time experiments were conducted to investigate 
modeling assumptions, and observer design perfor
mance. The major issues arising during implementation 
result from truncation of the modal series made to 
achieve a low order model, and hardware performance. 
Balas[12] considered the possibility of control 
"spill-over" into the higher neglected modes having 
deleter10us effects. Also, the proximity of the 
flexible poles to the imaginary axis makes the system 

. intolerant of unmodeled phase terms introduced by 
hardwa,re[13]. .: 

Experimental Setup 
This section describes the experimental apparatus 
used to measure the observer performance. The system 
consists of a four foot long flexible arm with pay
load, DC torque motor with servo-amp, signal condi
tioning with A/D conversion for data acquisition, 16 
bit computer system for implementation of control 
algorithms, and D/A conversion for torque signal 
output. 
The processor is equipped for hardware computation of 
floating point operations with a characteristic time 
for 32 bit multiplications of 19 micro-seconds. A 
torque motor is driven by a high internal gain DC 
servo-amp configured with a sense resistor on the 
motor output to act as a current source. The 
physical configuration of the flexible arm, torque 
motor, and sensors is represented in figure 6. 

Control Algorithm 
A linear quadratic steady state regulator with 
prescribed degree of stability[14J was designed and 
implemented for a two mode model. The controller 

···design was executed for a sample and hold system. An 
optimal regulator design was selected with gains 
large enough to contrast the performance of the 
observer dynamic specifications. At low gains 
stability is hardly a problem, and at very large 
gains, component performance begins to cloud the 
observations. 
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Measured Performance 
The first issue investigated was the impact of the 
controller cycle time. The reconstruction, obser
vation, and control algorithm executed at roughly 178 
Hz more than ten times the flexible frequency to be 
controlled, yet only twice the fourth modal frequency 
and four times the third. The first four clamped 
modes of the system are presented in table 1. 

/'UOUIIIOTOI 
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Figure 6. Experimental Configuration 

Natural Frequencies(Hz) 
Table 1 

Mode Measured Calculated 
1 2.08 2.096 
2 13.92 13.989 
3 41. 38 41. 524 
4 81.18 81. 225 

The effect of the controller cycle time was examined 
by considering the step responses of a collocated 
controller (sensor and actuator at the same location) 
using joint angle, and joint velocity executing at 
500Hz as shown in figure 7, and at the speed of 
observer/controller, 178Hz shown in figure 8. The 
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Figure 7. Collocated Controller, 500Hz 

joint angle, and strain at the base of the beam were 
captured to characterize the time response. The gains 
utilized were the same as for the joint angle and 
joint velocity of the optimal regulator. The longer 
cycle time associated with the 178Hz controller 
resulted in a noticeable increase in the excitation 
of the third flexible mode. The amplitude of the 
flexible vibration is not as dramatic as the strain 
response. 

.500 
rads 

150 
~c 

.... ,., .... Jolnt Angle 
• .................................................... u ..................... . 

Joint 
Angle 'Strain at Base 

Strain 
at Base 

-500 ... } 
~c 

-;!~~ L_--:,,..;,e""9~m--L-..L--.l..---;st:G:::c:-L-.--''----1---l.--:3;;:.s'B 
Figure 8. Collocated Controller, 178Hz 

Next the observer/regulator combination was implem
ented with the discrete poles equivalent to negative 
real poles at two and a half times the flexible poles 
being examined. The relationship between the flexible 
modes is shown in table 2. 

Relationship 
and 

Modal Frequency 

2.08Hz 
13.92Hz 

Table 2 
between Flexible Modes 
Observer Poles 

Equivalent Continuous Pole 
Case 1(2.5x) Case 2(5.0X) 

-5.2 -10.40 
-34.8 -69.60 

The result for this observer is shown in figure 9. 
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Figure 9. Observer Step Response, Poles 2.5 

Times Faster than Dynamics 

The controller was most sensitive to the modal ve
locity gains produced by the observer. The instabil
ities did not occur in the modes which were being 
treated by the truncated model, but in the modes 
truncated from the model. The fourth mode at 81Hz 
also had increased response although not apparent in 
the response. This is due to measurements and control 
torques aimed at the first two flexible modes 
"spilling" over into the higher untreated modes. 
The measurement was repeated for an observer with 

- poles at five times the flexible mode being treated. 
The relationship between the poles and the flexible 
modes is presented in table 2. The response for this 
observer/controller combination is shown in figure 
10. This controller does a very good job controlling 
the first two flexible modes, reducing the amplitude 
of the strain and quickly damping the vibration. The 
untreated third mode however is still noticeably 
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'excited, and the power spectrum indicated increased 
excitation of the fourth mode. 
At higher gains, especially modal damping gains, even 
this observer yielded unstable results in the higher 
modes, even though the controlled modes were consis
tently well damped. The indicated trend is to push 
the ?bserver poles farther and farther to the left, 
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Figure 10. Observer Step Response, Poles 5.0 
Times Faster than Dynamics 

however, placing the faster observer pole equivalent 
to ten times the second mode's results in charac
teristic times for the observer approaching the cycle 
time of the controller. The response for this 
observer/controller combination is depicted in figure 
11. This combination resulted in significant 
excitation of the third mode, and for the first time 
a dramatic response in the fourth mode. This is 

Figure 11. Observer Step Response, Poles 10 
Times Faster than Dynamics 

counter to the trend, and most likely represents a 
fatal combination of increased noise sensitivity as 
the observer poles are pushed father to the left, and 
aliasing resulting from the controller cycle rate. 

Conclusions 
Reconstruction and observation of flexible variables 
for use in controlling a single link flexible arm has 
been successfully demonstrated. The results indicate 
that the observer poles must be placed at least five 
times the flexible mode being estimated, and possibly 
faster for higher gains. Control spill-over was 
observed in several of the cases investigated, and 
this spill-over was aggravated by slow observers to 
the point of unstable responses for some designs. A· 
dominant factor in the design of high performance 
observers/controllers for flexible systems appears to 

be the response of the higher modes. Future work 
might well focus on consideration of the higher modes 
in the design phase, if not the implementation. The 
application of passive damping[15], treating the 
neglected higher modes, may reduce the performance 
requirements of the observer/control system. 
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