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It doesn’t make a difference how beautiful your guess is.

It doesn’t make a difference how smart you are,

who made the guess, or what his name is.

If it disagrees with experiment, it’s wrong.

Richard P. Feynman
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SUMMARY

As AI continues to advance, human-AI teams are inevitable. However, progress in AI is

routinely measured in isolation, without a human in the loop. It is crucial to benchmark

progress in AI, not just in isolation, but also in terms of how it translates to helping humans

perform certain tasks, i.e., the performance of human-AI teams.

This thesis introduces a cooperative game – GuessWhich – to measure human-AI team

performance in the specific context of the AI being a visual conversational agent. GuessWhich

involves live interaction between the human and the AI. The AI, which we call Alice, is

provided an image which is unseen by the human. Following a brief description of the image,

the human questions Alice about this secret image to identify it from a fixed pool of images.

We measure performance of the human-Alice team by the number of guesses it takes

the human to correctly identify the secret image after a fixed number of dialog rounds with

Alice. We compare performance of the human-Alice teams for two versions of Alice.

Our human studies suggest a counter-intuitive trend – that while AI literature shows that

one version outperforms the other when paired with an AI questioner bot, we find that this

improvement in AI-AI performance does not translate to improved human-AI performance.

As this implies a mismatch between benchmarking of AI in isolation and in the context of

human-AI teams, this thesis further motivates the need to evaluate AI additionally in the

latter setting to effectively leverage the progress in AI for efficient human-AI teams.

xii



CHAPTER 1

INTRODUCTION

1.1 Motivation

As Artificial Intelligence (AI) systems become increasingly accurate and interactive (e.g .

Alexa, Siri, Cortana, Google Assistant), human-AI teams are inevitably going to become

more commonplace. To be an effective teammate, an AI must overcome the challenges in-

volved with adapting to humans; however, progress in AI is routinely measured in isolation,

without a human in the loop. In this work, we focus specifically on the evaluation of visual

conversational agents and develop a human computation game to benchmark their perfor-

mance as members of human-AI teams.

Visual conversational agents [1, 2, 3, 4] are AI agents trained to understand and commu-

nicate about the contents of a scene in natural language. For example, in Fig. 1.1, the visual

conversational agent (shown on the right) replies to answers questions about a scene while

inferring context from the dialog history – Human: “What is he doing?” Agent: “Playing

frisbee”. These agents are typically trained to mimic large corpora of human-human dialogs

and are evaluated automatically on how well they retrieve actual human responses (ground

truth) in novel dialogs.

Recent work has evaluated these models more pragmatically by evaluating how well

pairs of visual conversational agents perform on goal-based conversational tasks rather than

response retrieval from fixed dialogs. Specifically, [2] train two visual conversational agents –

a questioning bot Qbot, and an answering bot Abot – for an image-guessing task. Starting

from a description of the scene, Qbot and Abot converse over multiple rounds of questions

(Qbot) and answers (Abot) in order to improve Qbot’s understanding of a secret image

known only to Abot. After a fixed number of rounds, Qbot must guess the secret image
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from a large pool and both Qbot and Abot are evaluated based on this guess.

[2] compare supervised baseline models with Qbot-Abot teams trained through rein-

forcement learning based self-talk on this image-guessing task. They find that the AI-AI

teams improve significantly at guessing the correct image after self-talk updates compared

to the supervised pretraining. While these results indicate that the self-talk fine-tuned agents

are better visual conversational agents, crucially, it remains unclear if these agents are indeed

better at this task when interacting with humans.

1.2 GuessWhich

In this work, we propose to evaluate if and how this progress in AI-AI evaluation translates

to the performance of human-AI teams. Inspired by the popular GuessWhat or 20-Questions

game, we design a human computation game – GuessWhich – which requires collaboration

between human and visual conversational AI agents. Mirroring the setting of [2], GuessWhich

is an image-guessing game that consists of 2 participants – questioner and answerer. At the

start of the game, the answerer is provided an image that is unknown to the questioner

and both questioner and answerer are given a brief description of the image content. The

questioner interacts with the answerer for a fixed number of rounds of question-answer

(dialog) to identify the secret image from a fixed pool of images (see Fig. 1.1).

We evaluate human-AI team performance in GuessWhich, for the setting where the ques-

tioner is a human and the answerer is an AI (that we denote Alice). Specifically, we evaluate

two versions of Alice for GuessWhich:

1. AliceSL which is trained in a supervised manner on the Visual Dialog dataset [1] to

mimic the answers given by humans when engaged in a conversation with other humans

about an image, and

2. AliceRL which is pre-trained with supervised learning and fine-tuned via reinforcement

learning for an image-guessing task as in [2].

2



Figure 1.1: A human and an AI (a visual conversation agent called ALICE) play the proposed
GuessWhich game. At the start of the game (top), ALICE is provided an image (shown above
ALICE) which is unknown to the human. Both ALICE and the human are then provided a
brief description of the image. The human then attempts to identify the secret image. In each
subsequent round of dialog, the human asks a question about the unknown image, receives
an answer from ALICE, and makes a best guess of the secret image from a fixed pool of
images. After 9 rounds of dialog, the human makes consecutive guesses until the secret image
is identified. The fewer guesses the human needs to identify the secret image, the better the
human-AI team performance.

It is important to appreciate the difficulty and sensitivity of the GuessWhich game as an

evaluation tool – agents have to understand human questions and respond with accurate,

consistent, fluent and informative answers for the human-AI team to do well. Furthermore,

they have to be robust to their own mistakes, i.e., if an agent makes an error at a particular

round, that error is now part of its conversation history, and it must be able to correct itself

rather than be consistently inaccurate. Similarly, human players must also learn to adapt to

Alice’s sometime noisy and inaccurate responses.

At its core, GuessWhich is a game-with-a-purpose (GWAP) that leverages human com-

putation to evaluate visual conversational agents. Traditionally, GWAP [5] have focused on

human-human collaboration, i.e. collecting data by making humans play games to label im-
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ages [6], music [7] and movies [8]. We extend this to human-AI teams and to the best of our

knowledge, our work is the first to evaluate visual conversational agents in an interactive

setting where humans are continuously engaging with agents to succeed at a cooperative

game.

1.3 Contributions

More concretely, we make the following contributions in this work:

• We design an interactive image-guessing game (GuessWhich) for evaluating human-

AI team performance in the specific context of the AIs being visual conversational

agents. GuessWhich pairs humans with Alice, an AI capable of answering a sequence

of questions about images. Alice is assigned a secret image and answers questions

asked about that image from a human for 9 rounds to help them identify the secret

image.

• We evaluate human-AI team performance on this game for both supervised learn-

ing (SL) and reinforcement learning (RL) versions of Alice. Our main experimental

finding is that despite significant differences between SL and RL agents reported in

previous work [2], we find no significant difference in performance between AliceSL

or AliceRL when paired with human partners. This suggests that while self-talk and

RL are interesting directions to pursue for building better visual conversational agents,

there appears to be a disconnect between AI-AI and human-AI evaluations – progress

on former does not seem predictive of progress on latter. This is an important finding

to guide future research.

1.4 Thesis Outline

The structure of the remainder of this work is as follows:
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• In Chapter 2, we draw connections to relevant work on Visual Conversational Agents,

Human Computation and Dialog Evaluation.

• In Chapter 3, we describe Alice– the conversational agent being evaluated through the

GuessWhich game. Specifically, we discuss the backend neural architecture of Alice

and how it is pretrained using supervised learning (SL) and finetuned using reinforce-

ment learning (RL).

• In Chapter 4, we describe the GuessWhich game in detail. We start by describing the

players and gameplay in GuessWhich. Following this, we describe how we construct

the pool of images and discuss the player reward structure and evaluation protocols.

• In Chapter 5, we briefly describe the backend software architecture associated with

GuessWhich.

• In Chapter 6, we discuss and summarize the results obtained from our experiments. We

first discuss the performance of the human-AI teams in terms of retrieving the secret

image after 9 rounds of dialog, when the human is paired with AliceSL and AliceRL.

Following this, we discuss how retrieval performance changes across successive rounds

of dialog and multiple games for both human-AliceSL and human-AliceRL teams.

Next, we discuss the human subjects’ perception of the AI teammate and what kind

of questioning strategies do humans adopt in GuessWhich.

• In Chapter 7, we highlight some of the challenges associated with evaluation of human-

AI teams in GuessWhich– specifically, preventing knowledge leak and ensuring an

appropriate trade-off between engagement and fairness.

• In Chapter 8, we briefly conclude and summarize our findings to motivate evaluating

AI in the context of human-AI teams in addition to measuring progress in isolation.

5



CHAPTER 2

RELATED WORK

Given that our goal is to evaluate visual conversational agents through a human computa-

tion game, we draw connections to relevant work on visual conversational agents, human

computation games, and dialog evaluation below.

2.1 Visual Conversational Agents

Our AI agents are visual conversational models, which have recently emerged as a popular

research area in visually-grounded language modeling [1, 2, 3, 4]. [1] introduced the task of

Visual Dialog and collected the VisDial dataset by pairing subjects on Amazon Mechanical

Turk (AMT) to chat about an image (with assigned roles of questioner and answerer). [2] pre-

trained questioner and answerer agents on this VisDial dataset via supervised learning and

fine-tuned them via self-talk (reinforcement learning), observing that RL-fine-tuned Qbot-

Abot are better at image-guessing after interacting with each other. However, they do not

evaluate if this change in Qbot-Abot performance translates to human-AI teams.

2.2 Human Computation Games

Human computation games have been shown to be time- and cost-efficient, reliable, in-

trinsically engaging for participants [9, 10], and hence an effective method to collect data

annotations. There is a long line of work on designing such Games with a Purpose (GWAP)

[5] for data labeling purposes across various domains including images [6, 11, 12, 13], au-

dio [14, 7], language [15, 16], movies [8] etc. While such games have traditionally focused

on human-human collaboration, we extend these ideas to human-AI teams. Rather than

collecting labeled data, our game is designed to measure the effectiveness of the AI in the
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context of human-AI teams.

2.3 Evaluating Conversational Agents.

Goal-driven (non-visual) conversational models have typically been evaluated on task-completion

rate or time-to-task-completion [17], so shorter conversations are better. At the other end

of the spectrum, free-form conversation models are often evaluated by metrics that rely on

n-gram overlaps, such as BLEU, METEOR, ROUGE, but these have been shown to corre-

late poorly with human judgment [18]. Human evaluation of conversations is typically in the

format where humans rate the quality of machine utterances given context, without actually

taking part in the conversation, as in [2] and [19]. To the best of our knowledge, we are the

first to evaluate conversational models via team performance where humans are continuously

interacting with agents to succeed at a downstream task.

2.4 Turing Test

Finally, our GuessWhich game is in line with ideas in [20], re-imagining the traditional

Turing Test for state-of-the-art AI systems, taking the pragmatic view that an effective AI

teammate need not appear human-like, act or be mistaken for one, provided its behavior does

not feel jarring or baffle teammates, leaving them wondering not about what it is thinking

but whether it is.

In the following chapter, we formally define the AI agent Alice, describe the GuessWhich

game setup, and present results and analysis from human studies.
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CHAPTER 3

THE AI: ALICE

Recall from Chapter 1 that our goal is to evaluate how progress in AI measured through

automatic evaluation translates to performance of human-AI teams in the context of visual

conversational agents. Specifically, we are considering the question-answering agent Abot

from [2] as Abot is the agent more likely to be deployed with a human partner in real

applications (e.g . to answer questions about visual content to aid a visually impaired user).

For completeness, we will review this work in this section.

[2] formulate a self-supervised image-guessing task between a questioner bot (Qbot) and

an answerer bot (Abot) which plays out over multiple rounds of dialog. At the start of the

task, Qbot and Abot are shown a one sentence description (i.e. a caption) of an image

(unknown to Qbot). The pair can then engage in question and answer based dialog for a

fixed number of iterations after which Qbot must try to select the secret image from a pool.

The goal of the Qbot-Abot team is two-fold, Qbot should: 1) build a mental model of the

unseen image purely from the dialog and 2) be able to retrieve that image from a line-up of

images.

Both Qbot and Abot are modeled as Hierarchical Recurrent Encoder-Decoder neural

networks [1, 21] which encode each round of dialog independently via a recurrent neural

network (RNN) before accumulating this information through time with an additional RNN

(resulting in hierarchical encoding). This representation (and a convolutional neural network

based image encoding in Abot’s case) are used as input to a decoder RNN which produces

an agent’s utterance (question for Qbot and answer for Abot) based on the dialog (and

image for Abot). In addition, Qbot includes an image feature regression network that

predicts a representation of the secret image based on dialog history. We refer to [2] for

complete model details.

8



These agents are pre-trained with supervised dialog data from the VisDial dataset [1]

with a Maximum Likelihood Estimation objective. This pre-training ensures that agents can

generally recognize objects/scenes and utter English. Following this, the models are fine-

tuned by ‘smoothly’ transitioning to a deep reinforcement learning framework to directly

improve image-guessing performance. This annealed transition avoids abrupt divergence of

the dialog in face of an incorrect question-answer pair in the Qbot-Abot exchange. During

RL based self-talk, the agents’ parameters are updated by gradients corresponding to rewards

depending on individual good or bad exchanges. We refer to the baseline supervised learning

based Abot as AliceSL and the RL fine-tuned bot as AliceRL. [2] found that the AI-AI

pair succeeds in retrieving the correct image more often after being fine-tuned with RL. In

the following section, we outline our GuessWhich game designed to evaluate whether this

improvement between AliceSL and AliceRL in automatic metrics translates to human-AI

collaborations.
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CHAPTER 4

OUR GUESSWHICH GAME

4.1 Game Description

We begin by describing our game setting; outlining the players and gameplay mechanics. A

video of an example game being played can be found at https://vimeo.com/229488160.

Players. We replace Qbot in the AI-AI dialog with humans to perform a collaborative task

of identifying a secret image from a pool. In the following, we will refer to Abot as Alice

and the human player as H. We evaluate two versions of Alice – AliceSL and AliceRL,

where SL and RL correspond to agents trained in a supervised setting and fine-tuned with

reinforcement learning respectively.

Gameplay. In our game setting, Alice is assigned a secret image Ic (unknown to H) from

a pool of images I = {I1, I2, ..., In} taken from the COCO dataset [22]. Prior to beginning the

dialog, both Alice and H are provided a brief description (i.e. a caption) of Ic generated

by Neuraltalk2 [23], an open-source implementation of [24]. H then makes a guess about the

secret image by selecting one from the pool I based only on the caption, i.e. before the dialog

begins.

In each of the following rounds, H asks Alice a question qt about the secret image Ic in

order to better identify it from the pool and Alice responds with an answer at . After each

round, H must select an image I t that they feel is most likely the secret image Ic from pool

I based on the dialog so far. At the end of k = 9 rounds of dialog, H is asked to successively

click on their best guess. At each click, the interface gives H feedback on whether their guess

is correct or not and this continues until H guesses the true secret image. In this way, H

induces a partial ranking of the pool up to the secret image based on their mental model of

Ic from the dialog.

10
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Figure 4.1: GuessWhich Interface: A user asks a question to Alice in each round and Alice
responds with an answer. The user then selects an appropriate image which they think is
the secret image after each round of conversation. At the end of the dialog, user successively
clicks on their best guesses until they correctly identify the secret image.

4.2 Pool Selection

When creating a pool of images, our aim is to ensure that the game is challenging and

engaging, and not too easy or too hard. Thus, we construct each pool of images I in two

steps – first, we choose the secret image Ic , and then sample similar images as distractors

for Ic . Fig. 4.1 shows a screenshot of our game interface including a sample image pool and

chat.

Secret Image Selection. VisDial v0.5 is constructed on 68k COCO images which contain

complex everyday scenes with 80 object categories. Abot is trained and validated on VisDial

v0.5 train and val splits respectively. As the images for both these splits come from COCO-

train, we sample secret images and pools from COCO-validation to avoid overlap.

To select representative secret images and diverse image pools, we do the following. For

each image in the COCO validation set, we extract the penultimate layer (‘fc7’) activations
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of a standard deep convolutational neural network (VGG-19 from [25]). For each of the 80

categories, we average the embedding vector of all images containing that category. We then

pick those images closest to the mean embeddings, yielding 80 candidates.

Generating Distractor Images. The distractor images are designed to be semantically

similar to the secret image Ic . For each candidate secret image, we created 3 concentric

hyper-spheres as euclidean balls (of radii increasing in arithmetic progression) centered on

the candidate secret image in fc7 embedding space, and sampled images from each sphere

in a fixed proportion to generate a pool corresponding to the secret image. The radius of

the largest sphere was varied and manually validated to ensure pool difficulty. The sampling

proportion can be varied to generate pools of varying difficulty. Of the 80 candidate pools,

we picked 10 that were of medium difficulty based on manual inspection.

4.3 Data Collection and Player Reward Structure

We use AMT to solicit human players for our game. Each Human Intelligence Task (HIT)

consists of 10 games (each game corresponds to one pool) and we find that overall 76.7%

of users who started a HIT completed it i.e. played all 10 games. We note that incomplete

game data was discarded and does not contribute to the analysis presented in subsequent

chapters.

We published HITs until 28 games with both AliceSL and AliceRL were completed.

This results in a total of 560 games split between the agents, with each game consisting of

9 rounds of dialog and 10 rounds of guessing. Workers are paid a base pay of $5 per HIT

(∼$10/hour).

To incentivize workers to try their best at guessing the secret image, workers are paid a

two-part bonus – (1) based on the number of times their best guess matched the true secret

image after each round (up to $1 per HIT), and (2) based on the rank of the true secret

image in their final sorting at the end of dialog (up to $2 per HIT).

This final ranking explicitly captures the workers’ mental model of the secret image

12



(unlike the per-round, best-guess estimates), and is closer to the overall purpose of the game

(identifying the secret image at the end of the dialog). As such, this final sorting is given a

higher potential bonus.

4.4 Evaluation

Since the game is structured as a retrieval task, we evaluate the human-AI collaborative

performance using standard retrieval metrics. Note that the successive selection of images

by H at the end of the dialog tells us the rank of the true secret image in a sorting of the

image pool based on H’s mental model. For example, if H makes 4 guesses before correctly

selecting the secret image, then H’s mental model ranked the secret image 5th within the

pool.

To evaluate human-AI collaboration, we use the following metrics: (1) Mean Rank (MR),

which is the mean rank of the secret image (i.e. number of guesses it takes to identify the

secret image). Lower values indicate better performance. (2) Mean Reciprocal Rank (MRR),

which is the mean of the reciprocal of the rank of the secret image. MRR penalizes differences

in lower ranks (e.g., between 1 and 2) greater than those in higher ranks (e.g., between 19

and 20). Higher values indicate better performance.

At the end of each round, H makes their best guess of the secret image. To get a coarse

estimate of the rank of the secret image in each round, we sort the image pool based on

distance in fc7 embedding space from H’s best guess. This can be used to assess accuracy of

H’s mental model of the secret image after each round of dialog (e.g., Fig. 6.1b).
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CHAPTER 5

INFRASTRUCTURE

We briefly outline the backend architecture of GuessWhich in this chapter. Unlike most

human-labeling tasks that are one-way and static in nature (i.e., only involving a human

labeling static data), evaluating AI agents via our game requires live interaction between

the AI agent and the human. We develop a robust workflow that can maintain a queue of

workers and pair them up in real-time with an AI agent.

Figure 5.1: We outline the backend architecture of our implementation of GuessWhich. Since
GuessWhich requires a live interaction between the human and the AI, we design a workflow
that can handle multiple queues and can quickly pair a human with an AI agent.

We deploy AliceSL and AliceRL on an AWS EC2 [26] GPU instance. We use Django

(a Model-View-Controller web framework written in Python) which helps in monitoring

HITs in real-time. We use [27], an open source message broker, to queue inference jobs

that generate dialog responses from the model. Our backend is asynchronously connected
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to the client browser via websockets such that whenever an inference job is completed,

a websocket polls the AI response and delivers it to the human in real-time. We store and

fetch data efficiently to and from a PostgreSQL database. Fig. 5.1 shows a schematic diagram

of the backend architecture. Our complete backend infrastructure and code is available at

https://bit.ly/2KUCpBr for others to easily make use of our human-AI game interface.
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CHAPTER 6

RESULTS

6.1 AliceSL vs. AliceRL

We compare the performance of the two agents AliceSL and AliceRL in the GuessWhich

game. These bots are competitive with state-of-the-art visual dialog agents with respect

to emulating human responses and generating visually discriminative responses in AI-AI

dialog. [2] evaluate these agents against strong baselines and report AI-AI team results that

are significantly better than chance on a pool of ∼10k images (rank ∼1000 for SL, rank ∼500

for RL). In addition to evaluating them in the context of human-AI teams we also report

Qbot-Alice team performances for reference.

Table 6.1: Performance of Human-Alice teams with AliceSL and AliceRL measured by MR
(lower is better) and MRR (higher is better). Error bars are 95% CIs from 1000 bootstrap
samples. Unlike (Das et al., 2017b), we find no significant difference between AliceSL and
AliceRL.

Team MR MRR

Human-AliceSL 6.86 ± 0.53 0.27 ± 0.03

Human-AliceRL 7.19 ± 0.55 0.25 ± 0.03

In Table 6.1, we compare the performances of human-AliceSL and human-AliceRL teams

according to Mean Rank (MR) and Mean Reciprocal Rank (MRR) of the secret image based

on the guesses H makes at the end of dialog. We observe that at the end of each game (9

rounds of dialog), human subjects correctly guessed the secret image on their 6.86th at-

tempt (Mean Rank) when AliceSL was their teammate. With AliceRL as their teammate,

the average number of guesses required was 7.19. We also observe that AliceRL outperforms

AliceSL on the MRR metric. On both metrics, however, the differences are within the stan-
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dard error margins (reported in the table) and not statistically significant. As we collected

additional data, the error margins became smaller but the means also became closer. This

interesting finding stands in stark contrast to the results reported by [2], where AliceRL was

found to be significantly more accurate than AliceSL when evaluated in an AI-AI team.

Our results suggest that the improvements of RL over SL (in AI-AI teams) do not seem to

translate to when the agents are paired with a human in a similar setting.

(a) AliceSL and AliceRL perform about the
same for most games and outperform a base-
line model that makes a string of random
guesses at the end of each game.

(b) AliceSL and AliceRL perform about the
same, and clearly outperform a baseline model
that randomly chooses an image. As described
in Sec. 4.4, this is only a coarse estimate of the
rank of the secret image after each round of
dialog.

Figure 6.1: Mean rank (MR) of secret image across (a) number of games and (b) rounds of
dialog. Lower is better. Error bars are 95% confidence intervals from 1000 bootstrap samples.

MR with varying number of games. In Fig. 6.1a, we plot the mean rank (MR) of the

secret image across different games. We see that the human-Alice team performs about the

same for both AliceSL and AliceRL except Game 5, where AliceSL seems to marginally

outperform AliceRL. We compare the performance of these teams against a baseline model

that makes a string of random guesses at the end of the game. The human-Alice teams

outperform this random baseline with a relative improvement of about 25%.

AI-Alice teams versus human-Alice teams. In Table 6.2, we compare team perfor-

mances by pairing three kinds of questioners – human, Qbot (SL) and Qbot (RL) with

AliceSL and AliceRL (6 teams in total) to gain insights about how the questioner and Al-

ice influence team performances. Interestingly, we observe that AI-Alice teams outperform
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Table 6.2: Performance of Human-Alice and Qbot-Alice teams measured by MR (lower
is better). We observe that AI-AI teams outperform human-AI teams.

Team AliceSL AliceRL

Human 6.9 7.2

Qbot (SL) 5.6 5.3

Qbot (RL) 4.7 4.7

human-Alice teams. On average, a Qbot (SL)-AliceSL team takes about 5.6 guesses to

arrive at the correct secret image (as opposed to 6.86 guesses for a human-AliceSL team).

Similarly, a Qbot (RL)-AliceRL team takes 4.7 guesses as opposed to a human-AliceRL

team which takes 7.19 guesses. When we compare AI-AI teams (see Row 2 and 3) under

different settings, we observe that teams having Qbot (RL) as the questioner outperform

those with Qbot (SL). Qualitatively, we found that Qbot (SL) tends to ask repeating ques-

tions in a dialog and that questions from Qbot (RL) tend to be more visually grounded

compared to Qbot (SL). Also, note that among the four teams Alice does not seem to

affect performance across SL and RL.

Since we observe that Qbot (RL) tends to be a better questioner on average compared

to Qbot (SL), as future work, it will be interesting to explore a setting where we evaluate

Qbot via a similar game with the human playing the role of answerer in a Qbot-human

team.

MR with varying rounds of dialog. Fig. 6.1b shows a coarse estimate of the mean rank

of the secret image across rounds of a dialog, averaged across games and workers. As ex-

plained in Sec. 4.4 of Chapter 4, image ranks are computed via distance in embedding space

from the guessed image (and hence, are only an estimate). We see that the human-Alice

team performs about the same for both AliceSL and AliceRL across rounds of dialog in a

game. When compared with a baseline agent that makes random guesses after every round

of dialog, the human-Alice team clearly performs better.
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Statistical tests. Observe that on both the metrics (MR and MRR), the differences between

performances of AliceSL and AliceRL are within error margins. Since both standard error

and bootstrap based 95% confidence intervals overlap significantly, we ran further statistical

tests. We find no significant difference between the mean ranks of AliceSL and AliceRL

under a Mann-Whitney U test (p = 0.44).

6.2 Human perception of AI teammate

At the end of each HIT, we asked workers for feedback on Alice. Specifically, we asked

workers to rate Alice on a 5-point scale (where 1=Strongly disagree, 5=Strongly agree),

along 6 dimensions. As shown in Fig. 6.2, Alice was rated on – how accurate they thought

it was (accuracy), how consistent its answers were with its previous answers (consistency),

how well it understood the secret image (image understanding), how detailed its answers

were (detail), how well it seemed to understand their questions (question understanding)

and how fluent its answers were (fluency).

Figure 6.2: Worker ratings for AliceSL and AliceRL on 6 metrics. Higher is better. Error bars
are 95% confidence intervals from 1000 bootstrap samples. Humans perceive no significant
differences between AliceSL and AliceRL across the 6 feedback metrics.

We see in Fig. 6.2 that humans perceive both AliceSL and AliceRL as comparable in
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terms of all metrics. The small differences in perception are not statistically significant.

6.3 Questioning Strategies

Fig. 6.3 shows the distribution of questions that human subjects ask Alice in GuessWhich.

Akin to the format of the human-human GuessWhat game, we observe that binary (yes/no)

questions are overwhelmingly the most common question type, for instance, “Is there/the/he

...?” (region shaded yellow in the figure), “Are there ...?” (region shaded red), etc. The next

most frequent question is “What color ...?”. These questions may be those that help the

human discriminate the secret image the best. It could also be that humans are attempting

to play to the perceived strengths of Alice. As people play multiple games with Alice, it

is possible that they discover Alice’s strengths and learn to ask questions that play to its

strengths. Another common question type is counting questions, such as “How many ...?”.

Interestingly, some workers adopt the strategy of querying Alice with a single word (e.g.,

nouns such as “people”, “pictures”, etc.) or a phrase (e.g., “no people”, “any cars”, etc.). This

strategy, while minimizing human effort, does not appear to change Alice’s performance.

Fig. 6.4 shows a game played by two different subjects.
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Figure 6.3: Distribution of first n-grams for questions asked to Alice. Word ordering starts
from the center and radiates outwards. Arc length is proportional to the number of questions
containing the word. The most common question-types are binary – followed by ‘What color..’
questions.
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Figure 6.4: We contrast two games played by different workers with AliceSL and AliceRL
on the same pool (secret image outlined in green). In both cases, the workers are able to find
the secret image within three guesses. It is also interesting to note how the answers provided
by Alice are different in the two cases.
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CHAPTER 7

CHALLENGES

There exist several challenges that are unique to human computation in the context of

evaluating human-AI teams, for instance, making our games engaging while still ensuring

fair and accurate evaluation. In this chapter, we briefly discuss some of the challenges we

faced and our solutions to them.

7.1 Knowledge Leak

It has been shown that work division in crowdsourcing tasks follows a Pareto principle [28],

as a small fraction of workers usually complete a majority of the work. In the context of

evaluating an AI based on performance of a human-AI team, this poses a challenge.

Recently, [29] showed that human subjects can predict the responses of an AI more

accurately with higher familiarity with the AI. That is, a human’s knowledge gained from

familiarity with their AI teammate, can bias the performance of the human-AI team –

knowledge from previous tasks might leak to later tasks. To prevent a biased evaluation of

team performance due to human subjects who have differing familiarity with Alice, every

person only plays a fixed number of games (10) with Alice. Thus, a human subject can

only accept one task on AMT, which involves playing 10 games. The downside to this is

that our ability to conduct a fair evaluation of an AI in an interactive, game-like setting is

constrained by the number of unique workers who accept our tasks.

7.2 Engagement vs. Fairness

In order to improve user-engagement while playing our games, we offer subjects performance-

based incentives that are tied to the success of the human-AI team. There is one potential
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issue with this however. Owing to the inherent complexity of the visual dialog task, Alice

tends to be inaccurate at times. This increases both the difficulty and unpredictability of

the game, as it tends to be more accurate for certain types of questions compared to others.

We observe that this often leads to unsuccessful game-plays, sometimes due to errors accu-

mulating from successive incorrect responses from Alice to questions from the human. In

a few other cases, the human is misled by Alice by a single wrong answer or by the seed

caption that tends to be inaccurate at times. While we would like to keep subjects engaged

in the game to the best extent possible by providing performance-based incentives, issuing

a performance bonus that depends on both the human and Alice (who is imperfect), can

be dissatisfying. To be fair to the subjects performing the task while still rewarding good

performance, we split our overall budget for each HIT into a suitable fraction between the

base pay (majority), and the performance bonus.
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CHAPTER 8

CONCLUSION

In contrast to the common practice of measuring AI progress in isolation, this thesis proposes

benchmarking AI agents via interactive downstream tasks (cooperative games) performed

by human-AI teams. In particular, we evaluate visual conversational agents in the context

of human-AI teams. We design a cooperative game – GuessWhich – that involves a human

engaging in a dialog with an answerer-bot (Alice) to identify a secret image known to Alice

but unknown to the human from a pool of images. At the end of the dialog, the human is

asked to pick out the secret image from the image pool by making successive guesses.

Specifically, we studied how well progress in AI-AI (Qbot-Abot) teams measured in

isolation translates to human-AI team performance at GuessWhich when a human is paired

with Alice (Abot). We find that AliceRL (fine-tuned with reinforcement learning) that

has been found to be more accurate in AI literature than it’s supervised learning counterpart

when evaluated via a questioner bot (Qbot)-Alice team, is not more accurate when eval-

uated via a human-Alice team. This suggests that there is a disconnect between between

benchmarking of AI in isolation versus in the context of human-AI interaction. This discon-

nect implies that in order to effectively leverage the progress in AI for eventual downstream

human-AI collaborative settings, it is essential to evaluate AI in the context of human-AI

teams in addition to measuring progress on isolated benchmarks.

Additionally, we described the game structure and the backend architecture and discuss

the unique computation and infrastructure challenges that arise when designing such live

interactive settings on AMT relative to static human-labeling tasks. Our code and infras-

tructure are publicly available at https://bit.ly/2KUCpBr so as to enable others to make

use or build on top of our cooperative setting.
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