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SUMMARY

The ever-growing wireless and mobile traffic constantly pushes wireless communica-

tion systems for higher data rate and better spectral efficiency. One of the key technologies

to meet such demand is the multi-input multi-output (MIMO) technique. By allowing

independent data streams to be transmitted and received simultaneously among multiple

antennas, MIMO scales up the system capacity by the minimum of the number of transmit

and receive antennas at high signal-to-noise ratio (SNR). It has been a major component in

the latest wireless communication standards, such as 3GPP LTE-Advanced and 802.11ac,

where MIMO systems are supported with up to eight spatial streams. With a new wave

of data-rate-hungry mobile applications (e.g., high definition video streaming, virtual and

augmented reality) coming, the next generation wireless communication systems are faced

with even higher demand on spectral efficiency. Large MIMO has been proposed, where

tens or hundreds of antennas are equipped at either or both ends of the communication

link. In such cases, it becomes critical to design high-performance receivers with afford-

able complexity. Other than spectral efficiency, new applications such as autonomous driv-

ing and remote surgery also have stringent reliability and latency constraint. For these use

cases, latency reduction and reliability improvement on existing systems are needed.

In practice, linear or successive interference cancellation (SIC) detection is often em-

ployed at the receiver in MIMO systems for its affordable complexity. However, due to their

sensitivity to ill-conditioned MIMO channels, the performance of linear and SIC detectors

is often far from optimal. Recent research has investigated the effect of channel quality on

detection performance, and various techniques are proposed that improve channel quality

before detection. The objective of this thesis is to further explore the relations between

channel quality and detection performance, develop efficient high-performance detectors

by improving channel quality for various large MIMO systems, and design low-latency

high-reliability transmission schemes for MIMO systems.
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Large MIMO systems can often be categorized into two types. Type-I large MIMO

refers to the case where large number of antennas exists at both sides of the communi-

cation link. For Type-I large MIMO, several lattice reduction (LR) algorithms have been

proposed to enhance channel quality and provide near-optimum bit error rate (BER) for

linear and SIC detectors. In this thesis, we first study the maximum information rate of

MIMO transmission with LR aided equalization. As antenna correlation becomes promi-

nent when MIMO size grows, we also investigate the effect of spatial correlation on the

complexity of LR algorithms.

Next, we apply LR techniques to improve the performance of the multiuser (MU)

MIMO system. At an MU MIMO uplink where each user equipment (UE) employs Alam-

outi code, the MU MIMO channel possesses specific structure that has not been fully

exploited by existing detectors. We develop LR aided detectors that utilize the special

properties of the channel and strike a better performance-complexity-tradeoff among com-

parisons. For an MU MIMO downlink where each UE has multiple antennas and receives

spatially multiplexed data streams, we present an LR aided linear joint transceiver design

that minimizes the sum of mean-squared error. It is worth mentioning that the proposed

schemes for MU MIMO work in both current and large MIMO.

LR algorithms successfully improve channel quality and performance of linear and SIC

detectors, but have two problems. First, most LR algorithms are mechanism-driven and

it is sometimes hard to link the quality of reductions to the performance of the MIMO

systems. Second, the design of LR is detached from the channel distribution. Existing LR

algorithms cannot learn from the channels they have operated on, which might limit their

performance. Utilizing techniques from reinforcement learning (RL), we design RL-based

LR algorithms that learn to efficiently reduce channel matrices according to pre-defined

objectives. Preliminary results show that RL-based LR algorithms are more adaptive, and

perform comparably to state-of-the-art LR-aided detectors with less DSP complexity.

For Type-II large MIMO (or massive MIMO), the number of antennas at one side of the

xxv



link is much greater than that at the other side. This is expected to result in better channel

condition (e.g., asymptotic orthogonality between channel responses for individual termi-

nals), which enables linear detectors (LDs) to achieve close-to-optimal performance. But

in reality, two facts affect the orthogonality of massive MIMO channel. First, practical

massive MIMO systems have limited numbers of antennas. Second, the behavior of the

propagation channel highly depends on the frequency of electromagnetic waves. There-

fore, we quantify the impact of limited number of antennas and propagation conditions on

channel quality and the performance of LDs. By studying the orthogonality deficiency of

the MIMO channel using an independent and identically distributed Weibull fading model,

we show that if the number of receive antennas exceeds a certain number while the number

of transmit antennas is fixed, the channel is in “good” quality for LDs to collect the same

diversity as that of the optimal detector with high probability in practice.

Other than spectral efficiency, future wireless applications may also demand high reli-

ability and low latency. Automatic repeat request (ARQ) has been shown to be a key tech-

nique to meet the reliability constraint but often at the cost of latency. Targeting MIMO

systems with linear detection at the receiver, we propose channel assisted (CA) strategies

for the ARQ process. The retransmission of a data frame is requested as soon as the re-

ceiver decides the estimated channel is “bad”. By skipping detection and demodulation of

data frames during “bad” channels, the receiver is able to improve its performance with re-

duced latency and complexity. From simulations, the proposed CA strategies dramatically

decrease the latency for basic and Type-I hybrid ARQ processes at low to moderate SNR

levels, while improving the reliability at high SNR regime.

xxvi



CHAPTER 1

INTRODUCTION

1.1 Motivation and state-of-the-art

The great advantage of multi-input and multi-output (MIMO) over single-input single-

output (SISO) transmission in channel capacity has been well established in the pioneering

work such as [1, 2, 3, 4]. At high signal-to-noise ratio (SNR), MIMO technology can scale

up the system capacity by the minimum of the number of transmit and receive antennas.

To reap the theoretical capacity gain, extensive work has been done on space-time coding

(STC) for MIMO systems (see e.g., [5, 6]), leading to a number of influential architec-

tures such as V-BLAST [7] and the Alamouti STC [8]. They are now key components for

modern wireless systems. For example, 3GPP LTE-Advanced supports up to eight lay-

ers spatial multiplexing in the downlink, and transmit diversity based on space-frequency

block coding (i.e., Alamouti scheme in the space-frequency domain) [9].

With a new wave of data-rate-hungry applications (e.g., high definition video stream-

ing, virtual and augmented reality) coming, next generation wireless communication sys-

tems are faced with even higher demand on data rate. Therefore, large MIMO has been

proposed, where tens or hundreds of antennas are equipped at either or both ends of the

communication link (see e.g., [10, 11, 12]). The drastic increase of antennas promises

extra degrees of freedom (DoF) and energy efficiency, but also calls for efficient high per-

formance receivers. Other than data rate, new applications such as autonomous driving

and remote surgery have stringent reliability and latency constraints. For these use cases,

latency reduction and reliability improvement on existing systems are desired. In the fol-

lowing, we will review the state-of-the-art in our problem scope.
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1.1.1 Detection schemes for MIMO systems

Large MIMO systems can often be categorized into two types. Type-I large MIMO refers

to the case where similar large number of antennas are equipped at both ends of the com-

munication link [12, 13]. Type-II large MIMO, or massive MIMO, is where one side of the

communication link has significantly larger number of antennas than the other. In [14], a

theoretical study of the capacity lower bounds of massive MIMO is carried out with linear

precoding and detection, where the imperfect channel estimation, pilot contamination, and

inter-cell interference are taken into account. A real-time massive MIMO testbed with 100

base station (BS) antennas is presented in [15], and its capability to simultaneously serve

up to 12 user equipments (UEs) in static indoor and outdoor scenarios is demonstrated.

Detection schemes for Type-I large MIMO systems

The detectors for MIMO system determine a vector of information symbols sent over a

MIMO communication channel. As an NP-hard problem, the brute-force maximum likeli-

hood detector (MLD) costs exponential complexity with respect to Nt, and is infeasible at

even moderate MIMO size (e.g., Nt = 10). At the other end of the complexity spectrum,

the linear detectors (LDs), such as matched filter, zero-forcing (ZF) and minimum mean-

squared error (MMSE) LDs, achieve polynomial complexity but lose bit error rate (BER)

diversity in general. This is due to their sensitivity to ill-conditioned MIMO channels.

Many detectors were proposed to strike a better performance-complexity-tradeoff. Among

them, tree search (TS) based detectors receive a lot of attention. Sphere decoding (SD), the

well-known depth-first TS detector, achieves near optimal BER with significantly lower

complexity than the brute-force MLD [16, 17]. But its average complexity is still exponen-

tial for each fixed SNR and it is inefficient for large MIMO or low SNR [18]. To reduce

the complexity of SD and achieve a fixed throughput, the width-first TS K-best detector

[19] keeps k best candidates at each layer, and performs close to SD when k is large. The

successive interference cancellation (SIC) detector [7], where symbols are successively de-
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tected and canceled out from the received signal vector, can be viewed as a special case of

K-best detector when k = 1. K-best detectors work in large MIMO since their complexity

can be adjusted by varying k.

Recently, several classes of detectors are proposed for Type-I large MIMO. One class

is based on local neighborhood search, where the detector iteratively updates a candidate

solution by searching its neighbors [20, 21, 22]. In likelihood ascent search (LAS) [20], a

candidate solution is updated by its neighbor that increases a likelihood function. Reactive

tabu search (RTS) explores beyond local optima by allowing “worse” moves, and prevents

cycling by making past moves as “tabu” for a (dynamically adjusted) period [21]. Although

obtaining near optimal performance with binary phase shift keying (BPSK) and lower-

order quadrature amplitude modulation (QAM), LAS and RTS perform poorly at higher-

order QAM. Layered tabu search improves BER for higher-order QAM, but suffers higher

complexity [22].

Another class of detectors is based on Bayesian inference [23, 24, 12]. The probability

data association based detector models noise-plus-interference as Gaussian, and performs

better with increasing MIMO dimension [23]. Belief propagation based detectors on factor

graphs and Markov random fields are reported in [24, 12]. However, their performance

also degrades at higher-order QAM. Interestingly, MIMO detection can also be solved with

Markov chain Monte Carlo (MCMC) methods by sampling the distribution of interests. In

[25], the stalling problem of conventional MCMC is handled by using randomized sam-

pling probabilistically. To improve BER at high-order QAM, a multiple restart strategy is

introduced in [26] to trade performance with complexity. With a relaxation of its problem

setup, MIMO detection can be solved with semidefinite programming (SDP) [27]. The

SDP relaxation based detectors ensure polynomial-worst-case complexity and collect full

receive diversity with BPSK, but their design often depends on the specific constellation,

and their performance degrades at higher-order QAM.

In short, the previously mentioned classes of detectors for Type-I large MIMO share
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some problems: 1) detection performance degrades and/or complexity increases with the

constellation size; 2) the detection process is carried out per signal vector, regardless of

whether the channel is static or not; and 3) theoretical bounds such as diversity of these

detectors are generally difficult to analyze, which hinders their applications in real-world.

The lattice reduction (LR) aided detectors form another important class of MIMO de-

tectors. Inspired by the link between channel condition and linear and SIC detection perfor-

mance, they set to find a reduced channel matrix of better quality through unimodular trans-

formation. The signal detection is then performed with respect to (w.r.t.) the reduced chan-

nel and unimodular-transformed back. Various definitions of “better” lead to numerous LR

algorithms, including the Seysen’s algorithms (SA) [28, 29] and Lenstra–Lenstra–Lovász

algorithm (LLL) [30]. The LLL and complex Lenstra–Lenstra–Lovász algorithm (CLLL)

based detectors [31, 32, 33, 34] are often preferred due to the available theoretical per-

formance bounds and average-case polynomial complexity [35, 36]. In [32, 33], CLLL

aided detectors are shown to collect full receive diversity. VLSI implementations of LR

algorithms further demonstrate their practicality [37, 38, 39]. To speed up the conver-

gence of CLLL and improve its applicability in large MIMO, Wen et al. developed an

efficient greedy CLLL in [40], which achieves full receive diversity and state-of-the-art

performance with much lower complexity. For efficient hardware implementation, fixed-

complexity CLLL is proposed in [41, 42] that explores a better column traversal strategy

and termination criterion, and has significant complexity advantage in large MIMO. Tar-

geting the direct reduction of BER for LDs, Zhou et al. proposed an element-based lattice

reduction (ELR) algorithm in [43], which shows superior BER with very low complexity.

Two attractive properties of LR aided detectors are worth noting: 1) LR is carried out

per channel matrix, and its complexity overhead can be very low when the channel is more

or less static, and 2) the complexity of LR is independent of the constellation size.

While it is important to evaluate the diversity and complexity of MIMO equaliza-

tion/detection schemes, the maximum information rate of MIMO transmission when cer-
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tain equalizer is employed serves as a useful metric to measure how the receiver utilizes

the channel from a theoretical standpoint [44]. Hereupon, we use the phrase “capacity of

an equalizer” to denote the maximum mutual information between the transmit and receive

signals when a certain equalizer is used. The capacity of zero-forcing equalizer (ZFE) is

studied in [44]. In [45], Ma and Zhang showed that the capacity difference between max-

imum likelihood equalizer (MLE) and ZFE is linked to the orthogonality deficiency (od)

of the dual of the channel matrix. Since LR aided equalizers has well established merits

in complexity and diversity but unknown capacity, the first motivation of this thesis is to

investigate the capacity of LR-aided equalizers.

Detection and precoding schemes for MU MIMO systems

In multiuser (MU) MIMO, a multi-antenna BS serves multiple UEs simultaneously over the

same spectrum, and achieves great spectral efficiency at the system level. Nowadays, two-

(or multi-) antenna UEs become common. At the uplink, Alamouti space-time code can

be applied at the multi-antenna UEs to enable transmit diversity. We term such systems as

space-time coded multiplexing (STCM) systems. As the number of active users increases

in the STCM system, efficient detectors are needed at the BS.

The existing detectors [46, 47, 48, 49] for STCM systems are often categorized as

group-based or direct detection detectors. Group-based detectors use ZF and MMSE crite-

ria to reduce the interference from other STC groups before decoding each STC group (see

e.g., [46]). Direct detectors convert the STCM model into the standard form of a MIMO

system and use existing MIMO detection schemes such as LD or SIC (see e.g., [47, 48]).

Direct detectors usually have a lower BER but higher complexity than group-based detec-

tors [48]. The complexity of direct LDs is reduced by utilizing the symmetric structures of

the equivalent channel matrix in [49]. However, linear and SIC detectors perform poorly

and lose diversity at high SNR. Directly applying LR aided detectors to the STCM systems

without adaptation incurs unnecessary computational cost. An et al. proposed an LR aided

5



detector for STCM systems in [50], but they investigated when the number of transmit an-

tennas equals four and only optimized the LR algorithm instead of the full detector. Thus,

the second motivation of this thesis is to design LR aided detectors for STCM systems

to strike a better tradeoff between BER and complexity at large MIMO by utilizing the

specific properties of the equivalent channel.

At the downlink of MU MIMO space division multiple access (SDMA) systems, to

combat multiuser interference (MUI), exploit channel state information (CSI), and opti-

mize system performance, the BS often uses precoding. The non-linear dirty-paper coding

(DPC) [51] achieves sum-rate capacity, but is computationally prohibited. A suboptimal

structure of DPC is the Tomlinson-Harashima precoding (THP) (see e.g., [52]), which em-

ploys modulo operation to reduce transmit power. Another non-linear precoding scheme

that achieves near-capacity is vector perturbation (VP) [53, 54], where the signal at the

transmitter is perturbed by a vector to minimize transmit power and MUI. However, the

complexity of the non-linear methods can still be too high for large MU MIMO with multi-

antenna UEs. Linear precoding is favorable in terms of computational complexity, but the

optimum linear transceiver is difficult to obtain directly. Joint iterative algorithms are de-

veloped (e.g. based on the mean-squared error (MSE) criterion [55, 56, 57, 58]), but they

can take long to converge and incur high complexity when multi-antenna UEs receive mul-

tiple data streams from the BS. Another approach is to solve the problem sub-optimally

with two steps. First, a preprocessing method is used to mitigate MUI (and noise) [59,

60, 61, 62, 63, 64]. Second, the system is optimized based on certain criteria, such as

mutual information rate, maximum SNR, and minimum sum of the MSEs [65]. Examples

of the stepwise designs include [66, 67, 68]. LR algorithm has been used to reduce MSE

for single user MIMO [65]. The third motivation is to develop an LR aided transceiver

architecture with the goal of minimizing sum of the MSEs of the MU MIMO downlink,

using the two-step process.
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Machine learning techniques for MIMO systems

LR algorithms improve channel quality and thus performance of linear detection, but have

two problems. First, LR algorithms are mechanism-driven, and in many cases it is hard to

link the quality of reductions to the performance of the MIMO systems. Second, the de-

sign of LR is detached from the channel distribution. Existing LR algorithms do not have

the ability to learn from the channels they have seen, which might limit their performance.

Recently, machine learning techniques have been applied to solve problems in MIMO sys-

tems [69, 70, 71, 72, 73, 74, 75, 76]. Reinforcement learning (RL) has been used for link

adaptation in MIMO orthogonal frequency division multiplexing (OFDM) system in [77],

and adaptive transmission in underwater acoustic channels in [78]. Noticing the similarities

between an RL agent and LR, the fourth motivation of the thesis is to design RL-based

LR algorithms that learn to optimize pre-defined objectives through trail-and-error in-

teractions with the channel environment.

Detection schemes for Type-II large MIMO (or massive MIMO) systems

The Type-II large MIMO, or massive MIMO, refers to the situation where the number of

antennas at BS is much greater than the users. Massive MIMO is attractive for its dramati-

cally increased capacity and energy efficiency and the asymptotically optimal performance

of linear detection under favorable propagation environment [10, 11]. But in reality, two

facts may invalid the assumption of favorable propagation and thus the optimality of the

LD. First, practical massive MIMO systems have limited numbers of antennas. Second,

the behavior of the propagation channel highly depends on the frequency of electromag-

netic waves. Massive MIMO has been considered for both sub-6 GHz and millimeter wave

(mmWave) technologies, whose basic transmission properties (e.g., diffraction and attenu-

ation) are quite different from each other. Therefore, the fifth motivation is to quantify the

impact of limited number of antennas and propagation conditions on the orthogonality

of massive MIMO channel, and thus on the performance of LDs.
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1.1.2 Techniques for low-latency high-reliability communications

Future applications such as autonomous driving and remote surgery not only demand high

data rate but also have stringent reliability and latency constraints. To support high-reliability

low-latency communications, where short- and medium-size packets dominate the traf-

fic, next generation wireless system demands re-visit of information theory for short- and

medium-size packet transmissions and protocol designs that factor the overhead of meta-

data [79]. For existing systems, high-reliability low-latency communications require reli-

ability improvement and latency reduction at all layers [80]. At the media access control

(MAC) and physical (PHY) layers, automatic repeat request (ARQ) techniques are criti-

cal in satisfying the reliability constraints without sacrificing the bandwidth efficiency [81,

82, 83, 84]. For the downlink transmission of ultra-reliable low-latency communications

(URLLC) traffic in a frequency-division-duplex based system, Anand et al. demonstrated

how Type-I hybrid automatic retransmission request (HARQ) can be used to meet the reli-

ability constraint and maximize URLLC capacity in high-load scenarios in [83].

The higher reliability introduced from ARQ comes at the price of higher latency. Re-

cently, many schemes are proposed to directly reduce latency and complexity of ARQ

process. For example, Turbo code has excellent error performance but its decoder pro-

cessing has major impact on latency. Berardinelli et al. proposed a technique to predict

Turbo decoder outcome before decoding happens to generate early HARQ feedback with

high accuracy in SISO systems in [85]. For single-input multi-output systems, Makki et al.

proposed a fast Type-II HARQ where some feedback signals and successive decoding are

omitted based on the link quality in [86]. Based on achievable rates of finite-length codes,

closed-form formulas for reliability, latency, and throughput are derived. Significant delay

reduction is demonstrated. However, their derivation is based on a quasi-static channel

model and information theoretic results on short packets transmission without considering

sub-optimal factors in practical systems.

As previously mentioned, practical systems are limited by power consumption and
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complexity constraints, and low-complexity LDs are often employed in reality [87]. Tak-

ing the usage of ZF LDs into account, Zhang et al. proposed a channel controlled (CC)

ARQ scheme for MIMO relay networks in [88]. The CC ARQ scheme relies on channel

conditions instead of error detection code to achieve joint cooperative and spatial diversity.

But the proposed scheme is not adaptive to noise level and thus compromises throughput at

high SNRs. On the other hand, due to the relation between channel quality and packet error

performance for LDs, feedback can be returned early to improve latency and complexity.

Thus, the sixth motivation is to propose channel assisted strategies to reduce latency and

complexity for the ARQ process, targeting linear receivers in MIMO systems.

1.2 Objectives

Now, we summarize the objectives of this dissertation. In this dissertation, we explore

the relations between channel quality and detection performance, develop efficient high-

performance detectors by improving channel quality for various MIMO systems, and de-

sign channel assisted strategies at receivers to reduce the latency/complexity and improve

the reliability of the ARQ process. Specifically, we

1. Derive the maximum information rate of MIMO transmission with LR aided equal-

izers and investigate the effect of spatial correlation on the complexity of LR algo-

rithms through simulations;

2. Design LR aided detectors that fully utilize specific structures of the STCM channel

to achieve better tradeoff between BER performance and complexity;

3. Design LR aided linear joint transceiver architecture to minimize sum of MSEs for

the MU MIMO downlink;

4. Design RL based LR algorithms that learn to perform reduction to optimize pre-

defined objectives, through trial and error interactions with the environment;
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5. Quantify the impact of MIMO size and propagation condition on channel orthogo-

nality and thus the performance of LDs in massive MIMO;

6. Design channel assisted strategies to reduce latency and complexity for basic ARQ

and Type-I HARQ process in MIMO systems with linear receivers.

1.3 Outline

The rest of the dissertation is organized as follows:

Chapter 2 introduces the background for MIMO system model, conventional MIMO

detectors, channel quality, LR algorithms, LR aided detection, and MU MIMO systems.

Chapter 3 presents results on the maximum information rate (denote as “capacity”) with

LR-aided equalizers in MIMO systems. We show that the capacity gap between MLE and

LR-aided ZFE is linked to the od of the dual of the lattice-reduced channel matrix. We

provide the conditions when the ergodic capacity of LR-aided LEs is greater than that of

LEs, as well as when their outage diversity is the same as that of MLE. We also study the

effect of spatial correlation on the complexity of LR algorithms.

Chapter 4 applies LR techniques to MU MIMO systems. We present pairwise element-

based lattice reduction (PELR) aided detectors for the STCM systems. By utilizing the

symmetric structure of the equivalent channel matrix, the proposed PELR aided detectors

approximately halve the complexity of the original ELR-aided detectors while keeping

similar BER performance. They also have lower BER and similar complexity compared

to other state-of-the-art detectors. Then, we present a linear joint transceiver design for

downlink transmissions of MU MIMO system using lattice reduction algorithms, based on

the minimum sum of the MSEs criterion and subject to a per-user power constraint. We

compare the error performance and complexity of our proposed design with several existing

schemes through simulations and show that our new design performs very well with low

complexity especially when each user is equipped with a large number of antennas (e.g.,

more than three) and receives spatially multiplexed data streams.
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Chapter 5 presents RL-based LR-aided detectors for MIMO systems. At the expense of

off-line training and storage, the RL-based LR-aided detectors learn the optimal reduction

strategies based on pre-defined objectives for various channel models. Preliminary results

show that RL-based LR-aided detectors perform comparably to state-of-the-art LR-aided

detectors, while offering less digital signal processing (DSP) complexity.

Chapter 6 examines od of massive MIMO channels and its relationship to performance

of LDs. The Weibull distribution is adopted for modeling the fading envelopes, and various

propagation channels are simulated by varying the Weibull parameters. By proposing an

approximate distribution of od, we show that for various propagation channels, if the num-

ber of receive antennas exceeds a certain number while the number of transmit antennas is

fixed, LDs achieve the same diversity as that of the MLD with high probability in practice.

Chapter 7 proposes channel assisted (CA) strategies at linear receivers to reduce latency

for basic ARQ and Type-I HARQ processes. From simulations, the proposed CA strate-

gies greatly decrease the latency for both ARQ processes at low to moderate SNRs, while

improve the reliability at high SNR regime.

Chapter 8 summarizes the contributions, provides future research directions, and con-

cludes this dissertation.
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CHAPTER 2

BACKGROUND

In this chapter, we review the background for MIMO system model, conventional detection

schemes, LR algorithms, LR aided detection, and MU MIMO systems.

2.1 MIMO systems

Consider a spatial multiplexing (SM) MIMO system with Nr receive and Nt transmit an-

tennas. The MIMO channel between the Nr receive and Nt transmit antennas is assumed

to be flat-fading and modeled by the matrix H , where Hm,n represents the random fading

coefficient between the m-th receive and n-th transmit antennas. By default, we assume

that Nr ≥ Nt, H has full rank, and that CSI is known at the receiver but unknown at

the transmitter. The transmit signal vector is denoted as s, where the individual symbol

sk, k = 1, · · · , Nt, is drawn from alphabet set S ⊂ Zj , and Rs = E(ssH) = σ2
sINt .

(·)H denotes Hermitian transpose, E(·) the expectation, and Ik an identity matrix with size

k × k. The receive signal vector is expressed as y, and the additive white Gaussian noise

(AWGN) vector is denoted as w, where E(wwH) = σ2
wINr . The system input-output

model can be written as

y = Hs+w. (2.1)

Note that, other than multi-antenna systems, various communication systems can be sub-

sumed into model (2.1), such as OFDM systems [89] and single carrier block transmission

systems [90].
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2.2 Conventional detection schemes for MIMO systems

At the receiver, with CSI and observations of y, detectors are adopted to obtain the es-

timated transmit symbol vector ŝ. When the transmit symbols are equal probable, the

optimal detector is the MLD (sometimes also called MLE). It is defined as

ŝmld = arg min
ŝ∈SNt

‖y −Hŝ‖2, (2.2)

where Sn is the n-ary Cartesian power of the alphabet set S, and ‖·‖ computes the l2 norm.

The computational complexity of MLD is O(|S|Nt), where | · | denotes the cardinality of

a set and O(·) is the Big-O notation. Thus, MLD is infeasible for large Nt. A common

way to mitigate inter-symbol interference is to apply linear equalization (LE). For example,

ZFE completely eliminates inter-symbol interference by applying the pseudo-inverse of the

channel matrix to the received signal y. The ZF equalized signal becomes

H†y = s+H†w, (2.3)

where (·)† denotes the Moore-Penrose pseudoinverse. Then, the ZF LD is defined as

ŝzf = Q(H†y), (2.4)

where Q(·) denotes quantization. To handle the noise enhancement of ZF, the MMSE

detector applies MMSE LE before quantization, and is defined as

ŝmmse = Q
((
HHH + σ2

wR
−1
s

)−1
HHy

)
, (2.5)

where (·)−1 denotes matrix inverse. The MMSE detector can be written in the same form as

the ZF LD [45]. Thus, we mainly use ZF for our analysis. SIC detectors perform decoding

and subtracting consecutively, and thus improve the effective SNR at every decoding stage
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and provide better performance than LDs [91]. The ZF SIC detector is defined as

QHy = y′ = Rs+QHw,

ŝk = Q

(
y′k −

∑Nt

l=k+1Rk,lŝl

Rk,k

)
, k = Nt, · · · , 1, (2.6)

where matrixQ andR are from the QR decomposition (QRD) ofH .

2.2.1 Performance evaluation: error rate, diversity, and capacity

Let P (·) computes the probability of an event and Q(x) denotes the Q-function. Let us

consider the pair-wise error probability (PEP) for system (2.1). When MLD is used,

P (s→ s′|H) = Q

√vec(HH)H(S − S′)(S − S′)Hvec(HH)

2σ2
w

 , (2.7)

where vec(·) returns an mn × 1 column vector whose elements are taken column-wise

from matrix (·)m×n, and S = blockdiag{s, s, · · · , s} ∈ CNrNt×Nr , where C denotes the

complex field. When H contains independent and identically distributed (IID) Nc(0, 1)

distributed entries, where Nc(a, b) denotes a complex normal distribution with parameters

a and b, the average PEP satisfies (see [91, p. 79])

P (s→ s′) ≤
(
‖s− s′‖2

4σ2
w

)−Nr

=

(
‖s− s′‖2

4

)−Nr
(

1

σ2
w

)−Nr

. (2.8)

Because of its per-symbol quantization, ZF LD effectively decomposes the MIMO

channel into Nt sub-channels. As a result, the equivalent system model becomes

xzf = s+ η, (2.9)
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where η is the equivalent noise vector with diagonal covariance matrixRzf defined as

(Rzf )k,k =
(
σ2
w(HHH)−1

)
k,k
, k = 1, · · · , Nt. (2.10)

Consider the PEP for the k-th transmit symbol,

P (sk → s′k|H) = Q

(√
|sk − s′k|2

2σ2
w (Rzf )k,k

)
. (2.11)

Thus the detected symbol with the largest (Rzf )k,k dominates the PEP at high SNR, and

reducing the maximum ofRzf can decrease PEP. Since (Rzf )
−1
k,k is Chi-squared distributed

with 2(Nr −Nt + 1) DoF, the average PEP at high SNR is (see [92])

P (sk → s′k) ≤
(
|sk − s′k|2

4

)−(Nr−Nt+1)(
1

σ2
w

)−(Nr−Nt+1)

. (2.12)

Given the SIC detector in (2.6), the PEP of the Nt-th transmit symbol is

P (sNt → s′Nt
|H) = Q

√ |sNt − s′Nt
|2R2

Nt,Nt

2σ2
w

 . (2.13)

Because the PEP of the Nt-th symbol bounds the overall PEP, increasing RNt,Nt can de-

crease PEP. Since 2R2
Nt,Nt

is Chi-squared distributed with 2(Nr − Nt + 1) DoF, at high

SNR, we have (see [91, p. 65] and [93])

P (sNt → s′Nt
) ≤

(
|sNt − s′Nt

|2

8

)−(Nr−Nt+1)(
1

σ2
w

)−(Nr−Nt+1)

. (2.14)

Diversity

As we have seen, when close-form expression is unavailable, error rate is described by their

upper bound. Another important parameter of error rate is diversity:

Definition 1. Suppose that P (error) is the average probability of error for a certain system
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as a function of SNR. The diversity is defined as

Gd = lim
SNR→∞

− logP (error)
log(SNR)

. (2.15)

Diversity shows how fast error rate decays with SNR. For IID complex Gaussian dis-

tributed MIMO channel, it has been proved that the diversity of LD and SIC detector is

Nr−Nt + 1 [91, 94], and the diversity of MLD is Nr. This can also be observed from Eqs.

(2.8), (2.12), (2.14).

Maximum mutual information (“Capacity”)

The maximum information rate of MIMO transmission when a certain equalizer is em-

ployed shows how the receiver utilizes the channel from a theoretical standpoint [44].

Hereupon, we use the phrase “capacity of an equalizer” to denote the maximum mutual

information between the transmit and receive signals when a certain equalizer is adopted.

The mutual information rate with MLE at the receiver is computed as (see e.g., [3, 45])

I(y; s|H) = H(y|H)−H(y|s;H) = H(y|H)−H(w), (2.16)

where I(X;Y ) represents the mutual information between two random vectors and H(·)

denotes entropy. Since the noise vector w is Gaussian,

H(w) = log2 det(πeσ2
wINr), (2.17)

where det(·) denotes the determinant of a matrix. Maximizing I(y; s|H) is the same as

maximizingH(y|H). Since E(yyH) = HRsH
H + σ2

wINr ,

H(y|H) ≤ log2 det
(
πe
(
HRsH

H + σ2
wINr

))
, (2.18)
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with equality when s is Gaussian distributed. Therefore, the capacity with MLE at the

receiver is:

Cml(H) = log2

(
det
(
RsR

−1
ml + INt

))
, (2.19)

where

Rml = σ2
w(HHH)−1 (2.20)

is the equivalent noise covariance matrix for MLE.

When ZFE is adopted, the equivalent system model is expressed in (2.9). The mutual

information between the transmit and receive signals is (see [44, 45])

I(xzf ; s|H) ≤ log2

det (πe (Rs +Rzf ))

det(πeRzf )
, (2.21)

with equality when s is Gaussian distributed. Thus, the capacity of ZFE is

Czf (H) = log2

(
det
(
RsR

−1
zf + INt

))
. (2.22)

At high SNR,

2Czf (H)

2Cml(H)
=

det(Rml)

det(Rzf )
=

det
(
(HHH)−1

)∏Nt

k=1

(
(HHH)−1

)
k,k

≤ 1, (2.23)

which shows the capacity difference between MLE and ZFE depends on how orthogonal

(H†)H is.

2.3 Channel quality

We have seen the error rate of the ZF and SIC detector being connected to (HHH)−1 and

RNt,Nt , and the capacity gap between ZFE and MLE at high SNR being connected to the

orthogonality of (H†)H . Now let us formally introduce two channel qualities that affect

detection performance. The first channel quality is od.
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Definition 2 (od). Consider an Nr ×Nt matrix H = [h1,h2, · · · ,hNt ] where hk denotes

H’s k-th column. We define the od of a channel matrixH as

od(H) = 1− det(HHH)∏Nt

k=1 ‖hk‖2
. (2.24)

Thus, od(H) is a random variable (RV) on the interval [0, 1]. The closer it is to 0, the

more orthogonalH is. As lemma 1 shows, od(H) directly relates to the diversity of LDs.

Lemma 1 ([45, Corollary 1]). For a random channel distribution, if od(H) ≤ ε, ∀H and

ε ∈ [0, 1), then LDs collect the same diversity as MLD does.

Also notice that the capacity gap between MLD and ZFE in (2.23) is a function of od.

At high SNR,

2Czf (H)

2Cml(H)
=

det
(
(HHH)−1

)∏Nt

k=1

(
(HHH)−1

)
k,k

= 1− od
(
(H†)H

)
≤ 1. (2.25)

The second channel quality we introduce is the maximum equivalent noise variance.

Definition 3. Given an Nr ×Nt matrixH and noise variance σ2
w, we define the maximum

equivalent noise variance as maxk σ
2
w

(
(HHH)−1

)
k,k

.

Looking at PEP of ZF LD in (2.12), reducing the maximum equivalent noise variance

improves the performance of LDs.

2.4 LR algorithms and LR aided detectors

Seeing the impact of channel quality on performance of LDs and SIC detectors, it is natural

to think of ways to improve channel quality before detection. This is the key idea behind

LR algorithms. Due to the discrete nature of the transmit symbols, the channel matrix that

acts on the data can be viewed as a (non-unique) basis of a lattice. In other words, the

18



channel matrixH spans a lattice L(H),

L(H) =

{
Nt∑
k=1

xkhk|xk ∈ Zj

}
, (2.26)

where hk is the k-th column vector of channel matrixH = [h1,h2, · · · ,hNt ]. From lattice

theory, we know there are multiple basis that span the same lattice. Thus, an LR algorithm

sets out to find a basis H̃ of better quality that spans the same lattice. This indicates that the

new and original basis are connected via unimodular transformation T , H̃ = HT . There

are various definitions of “better quality”, which leads to various LR algorithms. With LR,

the system model (2.1) can be re-written as

y = HTT−1s+w = H̃z +w. (2.27)

Because both T−1 and s have Gaussian integer entries, z also has Gaussian integers entries.

The detection of z is performed using e.g., MLD, LD, and SIC. ẑ is then transformed to

the original symbol domain, i.e., ŝ = T ẑ. Since H̃ is “better”, the error probability when

estimating z is generally smaller than that when estimating s directly.

Depending on the criterion of “better”, various LR algorithms have been developed,

such as Minkowski, Hermite Korkine Zolotareff (HKZ), Gauss [95], LLL [30], CLLL [33],

dual complex Lenstra–Lenstra–Lovász algorithm (DCLLL) [96], SA [97, 28, 29], and ELR

[43]. Among them, CLLL, SA, ELR are commonly used. An Nr ×Nt complex matrix H̃

is “CLLL reduced” if its QRD H̃ = Q̃R̃ satisfies the following conditions [33]:

|R(R̃l,k)| ≤
1

2
|R̃l,l|, |I(R̃l,k)| ≤

1

2
|R̃l,l|,∀l < k, (2.28)

δc|R(R̃k−1,k−1)|2 ≤ |R̃k,k|2 + |R̃k−1,k|2,∀k ∈ [2, Nt], (2.29)

where R(·) and I(·) takes the real and imaginary parts of a number, and δc is the parameter

of the CLLL algorithm, shown in Table 2.1.
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Table 2.1: The CLLL algorithm using MATLAB syntax [33, Table I]

Input: H , δc, Output: Q̃, R̃, T
(S1) [Q̃, R̃] = qr(H);
(S2) m = size(H , 2);T = Im; k = 2;
(S2) While k ≤ m
(S3) for n = k − 1 : −1 : 1

(S4) u = round
(

R̃(n,k)

R̃(n,n)

)
;

(S5) If u 6= 0

(S6) R̃(1 : n, k) = R̃(1 : n, k)− uR̃(1 : n, n);
(S7) T (:, k) = T (:, k)− uT (:, n);
(S5) end
(S5) end
(S5) if δc|R̃(k − 1, k − 1)|2 > |R̃(k, k)|2 + |R̃(k − 1, k)|2
(S6) swap the k − 1th and kth columns in R̃ and T
(S7) Θ = [α∗, β;−β, α] where α = R̃(k−1,k−1)

‖R̃(k−1:k,k−1)‖ , and β = R̃(k,k−1)

‖R̃(k−1:k,k−1)‖
(S8) R̃(k − 1 : k, k − 1 : m) = ΘR̃(k − 1 : k, k − 1 : m);
(S9) Q̃(:, k − 1 : k) = Q̃(:, k − 1 : k)ΘH ;
(S10) k = max(k − 1, 2);
(S11) else
(S12) k = k + 1;
(S12) end;
(S17) end

Another definition of reduction is “SA reduced”. Matrix H̃ is “SA reduced” if the

Seysen metric SA(·)

SA(H̃) =
Nt∑
k=1

‖h̃k‖2‖α̃Tk ‖2 (2.30)

achieves its minimum [28], where α̃k is the k-th row of H̃
†
. Other than the above two

definitions of reduction, matrix H̃ is “ELR reduced” [43] if the maximum equivalent noise

variance maxk C̃k,k is minimized, where C̃ = (H̃
H
H̃)−1.

But for SA and ELR, it is difficult (if not impossible) to compute the optimally reduced

basis. Thus, the corresponding LR algorithm computes a suboptimal basis through a se-

quence of reductions. In the ELR algorithm, at the l-th step, an unimodular matrix T l is

computed, which represents a translation between two columns in H̃ , so that the current

largest diagonal element of C̃ is reduced by the largest amount. The ELR algorithm is

shown in Table 2.2. d·c is the round operation and← is the assignment operator. Note that,
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an LR algorithm not necessarily reduces the channel quality defined in Section 2.3, except

for ELR. This motivates us to design learning based LR algorithms in Chapter 5.

Table 2.2: ELR and ELR-SLB algorithms [43, Table I]

Input: H , Output: H̃ , T
(S1) C̃ =

(
HHH

)−1
, T ′ = INt

(S2) Do
(S3) λl,k ← −

⌈
C̃l,k

C̃l,l

⌋
,∀l 6= k

(S4a) For the D-ELR-SLV: If the largest element of C̃ is irreducible, goto 11
(S4b) For the D-ELR-SLB: If all λl,k = 0, ∀l 6= k, goto 11
(S5) Find the largest reducible C̃k,k
(S6) Choose l = arg maxNt

l̃=1,l̃ 6=k ∆l̃,k

(S7) t′k ← t′k + λl,kt
′
l

(S8) c̃k ← c̃k + λl,kc̃l
(S9) c̃(k) ← c̃(k) + λ∗l,kc̃

(l)

(S10) While (true)
(S11) T = (T ′−1)H , H̃ = HT

2.5 MU MIMO systems

Now, we introduce two specific setups of the MU MIMO system.

2.5.1 The STCM system

Consider an STCM system of Nr receive and Nt transmit antennas, where Nr ≥ Nt/2 (see

[98]). The channel is narrowband and denoted by anNr×Nt matrixB = [b1, b2, · · · , bNt ],

where bk, k = 1, · · · , Nt are column vectors of size Nr × 1. The entry Bm,n in the channel

matrix B represents the channel coefficient between the n-th transmit and m-th receive

antennas. Without loss of generality, we apply Alamouti space-time code on every two

transmit antennas and formNt/2 transmit groups. The transmitted symbols are drawn from

alphabet set S. We denote the symbols transmitted in the l-th group at the first interval as

s2l−1 and s2l, and the symbols transmitted during two intervals in the l-th block as Sl,
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l = 1, · · · , Nt/2. Then,

Sl =

 s2l−1 s∗2l

s2l −s∗2l−1

 , (2.31)

where (·)∗ denotes conjugate. The signal at the receiver is

Y = BS +W , (2.32)

where S = [ST1 , · · · ,STNt/2]T is of size Nt × 2, (·)T denotes transpose, W = [w1,w2] is

the complex AWGN of size Nr × 2, w1 and w2 are of size Nr × 1, Y = [y1,y2] is the

receive matrix of size Nr × 2, and y1 and y2 are of size Nr × 1. The signal and noise

variances are σ2
s and σ2

w, respectively. We express the system model in (2.32) equivalently

as

y = Hs+w, (2.33)

where y = [yT1 ,y
∗T
2 ]T is the equivalent 2Nr × 1 receive vector, s = [s1, s2, · · · , sNt ]

T and

w = [wT
1 ,w

∗T
2 ]T . The equivalent channel matrix is of size 2Nr ×Nt and written as

H =

 b1 b2 · · · bNt−1 bNt

−b∗2 b∗1 · · · −b∗Nt
b∗Nt−1

 . (2.34)

2.5.2 The linear precoded MU MIMO downlink

We consider an MU-MIMO system downlink with Nu UEs (see e.g., [99]). Shown in

Figure 2.1, the BS has Nt transmit antennas, and the k-th UE has Nrk receive antennas.

Nr =
∑Nu

k=1Nrk is the total number of receive antennas. The channel from the BS to the

k-th UE is denoted by channel matrixHk ∈ CNrk
×Nt , and the total channel matrix isH =

[HT
1 ,H

T
2 , · · · ,HT

Nu
]T . We assume that BS knows H perfectly. The information symbol

vector for the k-th UE is sk ∈ Crk×1, where rk is the number of transmit data streams for

the k-th UE and rk ≤ Nrk . The total number of transmit streams is r =
∑Nu

k=1 rk ≤ Nr. The
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Figure 2.1: Block diagram of an MU-MIMO downlink, adopted from [99, Figure 1]

entries of sk are drawn from alphabet set S ⊂ Zj . The precoding matrix for the k-th UE

is F k ∈ CNt×rk . Thus, the total information symbol vector is s = [sT1 , · · · , sTNu
]T ∈ Cr×1,

whereRs = E(ssH) = σ2
sIr and the total precoding matrix is F = [F 1,F 2, · · · ,FNu ] ∈

CNt×r. The transmit signal after linear precoding is x = Fs, which is an Nt×1 vector and

satisfies the transmit power constraint tr(E(xxH)) = σ2
str(FF

H) ≤ Ptotal, where Ptotal

is the average transmit power for the downlink, and tr(·) computes the trace of a matrix.

The received signal at the k-th UE is yk = HkFs + wk, where wk ∈ CNrk
×1 is

the zero mean complex Gaussian noise with covariance σ2
wIrk at the k-th UE. Denoting the

decoding matrix of the k-th UE asGk, the estimated symbol vector at the k-th UE becomes

ŝk = Gk(HkFs + nk). We can stack the estimated symbol vectors ŝk, k = 1, · · · , Nu

together to form ŝ = [ŝT1 , · · · , ŝ
T
Nu

]T ∈ Cr×1 and express the system compactly as

ŝ = G(HFs+w), (2.35)

wherew = [wT
1 , · · · ,wT

Nu
]T ∈ CNr×1, andG = blockdiag{G1,G2, · · · ,GNu} ∈ Cr×Nr .
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Block diagonalization

With multi-antenna UEs, the linear block diagonalization (BD) [59, 61] can be used to

completely eliminate MUI and decompose the MU MIMO downlink channel into several

independent SU MIMO channels. The BD algorithm aims to find a precoding matrix F =

[F 1,F 2, · · · ,FNu ] which eliminates the MUI completely, i.e.,

H lF k = 0Nrl
×rk ,∀k 6= l, 1 ≤ l, k ≤ Nu. (2.36)

To do so, BD algorithm utilizes SVD operations to compute the precoding matrix of each

user. The columns of the k-th precoding matrix lie in the nullspace of H̄k,

H̄k = [HT
1 , · · · ,HT

k−1,H
T
k+1, · · · ,HT

Nu
]T . (2.37)

Let L̄k = rank(H̄k) and denote the SVD of H̄k as

H̄k = Ū kΛ̄kV̄
H
k , (2.38)

where Ū k is an (Nr − Nrk) × (Nr − Nrk) unitary matrix, Λ̄k is an (Nr − Nrk) × Nt

diagonal matrix and V̄ k = [V̄
(1)
k , V̄

(0)
k ] is an Nt × Nt unitary matrix. The last Nt − L̄k

right singular vectors V̄ (0)
k form an orthonormal basis of the nullspace of H̄k. In this way,

precoding matrix F k for the k-th UE can be designed as F k = V̄
(0)
k Ak, where Ak is an

(Nt− L̄k)× rk matrix that is designed alone by some optimization criteria, and this type of

design satisfies the zero MUI constraint in (2.36). The received signal after BD at the k-th

UE becomes

yk = HkV̄
(0)
k Aksk +wk, k = 1, · · · , Nu. (2.39)
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Generalized zero forcing channel inversion

To further reduce the complexity of BD, the generalized zero forcing channel inversion

(GZI) is proposed in [64], which uses matrix inversion and QRD to equivalently eliminate

MUI. First, the pseudo-inverse of channel matrixH is computed as

H† = HH(HHH)−1 = [Ĥ1, Ĥ2, · · · , ĤNu ]. (2.40)

Then, we perform QRD on Ĥk,

Ĥk = QkRk, k = 1, 2, · · · , Nu, (2.41)

where Qk is an Nt × Nrk unitary matrix and Rk is an Nrk × Nrk upper triangular matrix.

It can be seen that H lĤk = H lQkRk = 0Nrl
×Nrk

, ∀ k 6= l. Because Rk is invertible,

we have H lQk = 0Nrl
×Nrk

, ∀k 6= l. Thus by designing the k-th UE’s precoding matrix as

F k = QkAk, where in this case Ak is an Nrk × rk matrix that is designed alone by some

optimization criteria, zero MUI constraint in (2.36) is also satisfied. The received signal

after GZI at the k-th UE becomes

yk = HkQkAksk +wk, k = 1, · · · , Nu. (2.42)

To summarize, both BD and GZI effectively decompose an MU-MIMO system into K

parallel SU MIMO systems. But note that the matrix Ak left for further design is different

in dimension for BD and GZI, and this will result in different performance and complexity

between BD-based design and GZI-based design.

With the background reviewed, we derive the capacity of LR-aided equalizers in the

next chapter.
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CHAPTER 3

LR-AIDED EQUALIZATION: CAPACITY AND COMPLEXITY

In this chapter, we derive the capacity of LR aided equalizers in MIMO systems. We

also study the complexity of LR algorithms against spatial correlation. The content of this

chapter is adopted from our publications [100, 101].

3.1 Channel model

We adopt the system model described in (2.1). Kronecker correlation model [102, 103] is

used to describe the correlations between the faded envelopes of the MIMO sub-channels

H = Rr
1/2HwRt

T/2, (3.1)

where the Nr × Nt matrix Hw has IID complex Gaussian distributed entries with zero

mean and unit variance, the Nt × Nt matrix Rt and Nr × Nr matrix Rr are transmit and

receive correlation matrix, respectively, and represent the correlation of transmit/receive

signals across the elements of antenna array. Their relationship with channel correlation

matrix E(hhH) is given by E(hhH) = Rt ⊗Rr, where h = vec(H), and ⊗ denotes the

Kronecker product. It is assumed that Rt, Rr, E(hhH) all have full rank. Correlation co-

efficient is defined as the normalized correlation of signals across two neighboring antenna

elements. Transmit correlation coefficient and receive correlation coefficient are denoted

as ρt and ρr, respectively.
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3.2 Capacity of LR-aided equalizers in MIMO systems

3.2.1 Instantaneous capacity

The steps to derive the capacity of a certain equalizer is as follows: 1) identify if the noise

statistics is changed by equalization and detection process; and 2) build the equivalent

model between input signal vector and un-quantized output of the equalizer. Now, let us

derive the capacity of LR-aid MLE. Given the system model in (2.27), LR-aided MLE is

defined as

ẑlrml = arg min
ẑ∈SNt

z

‖y − H̃ẑ‖2, (3.2)

and ŝlrml = T ẑlrml. Sz is the alphabet set in LR domain by transforming S with T−1.

Since the statistics of noise is not changed, LR-aided MLE performs the same as MLE (see

[100]). Thus,

CLR
ml (H) = Cml(H) = log2

(
det
(
RsR

−1
ml + INt

))
. (3.3)

Now let us derive the capacity of LR-aided LEs. Given the model in (2.27) and defini-

tion of ZFE in (2.4), the equivalent transmission model becomes

xlrzf = z + ξ = T−1s+ ξ, (3.4)

where ξ is the equivalent noise vector. Due to the symbol-by-symbol detection of ZFE, the

covariance matrixRξ of ξ in Eq. (3.4) is diagonal and is defined as

(Rξ)k,k =
(
σ2
w(H̃

H
H̃)−1

)
k,k
, k = 1, ..., Nt. (3.5)

The mutual information when LR-aided ZFE is used is

I(xlrzf ; s|H) = H(xlrzf |H)−H(ξ|H). (3.6)
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Since ξ is Gaussian,

I(xlrzf ; s|H) ≤ log2

det
(
πe
(
T−1Rs(T

−1)H +Rξ

))
det(πeRξ)

, (3.7)

with equality when s is Gaussian. Therefore,

CLR
zf (H) = log2

(
det
(
RsR

−1
lrzf + INt

))
, (3.8)

whereRlrzf := TRξT
H is the effective noise covariance matrix for LR-aided ZFE.

When SNR is high, we have

CLR
ml (H) ≈ log2

(
det
(
RsR

−1
ml

))
, (3.9)

CLR
zf (H) ≈ log2

(
det
(
RsR

−1
ξ

))
, (3.10)

since det(THT ) = 1. We summarize our first proposition as follows.

Proposition 1. Given the MIMO system model in (2.27), the instantaneous capacity when

LR-aided MLE is used is the same as that when MLE is used. Also, the instantaneous

capacity when LR-aided LEs are used is less than or equal to that when LR-aided MLE is

used. i.e.,

CLR
zf (H) ≤ CLR

ml (H) = Cml(H).

Proof: See Appendix A.1. �

At high SNR, we quantify the gap between CLR
zf (H) and CLR

ml (H) as

CLR
ml (H)− CLR

zf (H) = − log2

(
1− od(H̃(H̃

H
H̃)−1)

)
. (3.11)

As od((H̃
†
)H) decreases, the capacity gap between LR-aided MLE and LR-aided ZFE
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narrows. Meanwhile,

CLR
zf (H)− Czf (H) = log2

1− od((H̃
†
)H)

1− od((H†)H)
. (3.12)

This result implies that LR algorithms that aim to reduce the od of the dual channel matrix

will provide larger improvement of instantaneous capacity than those that do not.

3.2.2 Ergodic capacity

For a fading channel with CSI at the receiver, the ergodic capacity is obtained by taking

expectation of the instantaneous capacity, i.e., Cergodic = EH (C(H)), From Proposition

1, we have

EH

(
CLR
zf (H)

)
≤ EH

(
CLR
ml (H)

)
= EH (Cml(H)) . (3.13)

Proposition 2. The ergodic capacity of LR aided LEs is greater than that of LEs at high

SNR if

EH

(
1− od((H†)H)

1− od((H̃
†
)H)

)
≤ 1. (3.14)

Thus, the ergodic capacity of the dual ELR aided LEs [43] is greater than that of the LEs.

Proof: See Appendix A.2. �

Figure 3.1 shows the ergodic capacity of various equalizers. The ergodic capacity of

MLE is greater than that of LR aided ZFE, and the ergodic capacity of LR aided ZFE is

greater than that of ZFE. Moreover, CLLL-aided ZFE has larger ergodic capacity gap to

MLE compared to other LR aided ZFEs. This is because CLLL does not attempt to reduce

the size of dual basis, and thus the od of the dual basis may be quite large.
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Figure 3.1: Ergodic capacity of various equalizers for 40× 40 MIMO.

3.2.3 Outage capacity

For a certain system, the probability that instantaneous capacity is smaller than a threshold

is denoted as P (C < Cth). The outage diversity order Go is defined as (see [45])

Go = lim
SNR→∞

− logP (C < Cth)

log(SNR)
. (3.15)

Proposition 3. The outage diversity of LR aided MLE is the same as that of MLE. The

outage diversity of the LR aided LEs is the same as that of MLE when the od of the reduced

channel matrix is bounded by a number less than one.

Proof: See Appendix A.3. �

In Figure 3.2, the outage diversity orders of different equalizers are plotted. First we

look at the solid lines. MLE achieves full outage diversity. ZFE loses outage diversity, since

od(H) does not have a bound smaller than one. ELR also does not have od(H̃) bounded by

a number smaller than one [43], and thus ELR aided ZFE loses outage diversity. CLLL and

DCLLL are able to bound od(H̃) and od((H̃
†
)H) by a number smaller than one [33], thus
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Figure 3.2: Outage diversity of various equalizers for 40× 40 MIMO.

CLLL-aided ZFE and DCLLL-aided ZFE are able to collect full outage diversity. It is also

noticed that although the curves of the ergodic capacity of DCLLL-, SA-, and ELR aided

ZFE are close in Figure 3.1, their outage probabilities here are different. The reason is

that different LR algorithms might produce different reduced channel matrices, so that the

distributions of the instantaneous capacity are different for different LR aided ZFEs. Then

we look at the dashed lines. The dashed lines are produced by enforcing a smaller-than-one

bound on od(H). Now we see that ZFE collects full outage diversity. Also since od(H)

are bounded by ε1 < 1, CLLL, DCLLL, and ELR are able to bound od(H̃) by ε2 < 1.

Thus, CLLL-, DCLLL-, and ELR aided ZFEs are able to collect full outage diversity.

3.3 Complexity of LR algorithms under spatial correlation

3.3.1 Equal transmit and receive correlation

To see how correlation affect the complexity of LR, we measure the complexity of LR al-

gorithms as the number of complex arithmetics divided by the number of receive antennas.

Figure 3.3 shows the complexity of various LR algorithms as both transmit and receive
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correlation coefficient increases, for 20× 20 MIMO, 64QAM. Complexity of LR(H̄) does

not vary too much when ρr = ρt ≤ 0.6. When ρr = ρt ≥ 0.7, except for ELR, complexity

increases. But when SNR is low, the ratio of increase is lower, because the complexity of

LR(H̄) is dominated by the scaled identity matrix when ρr = ρt is large.

3.3.2 Transmit or receive correlation

Now we examine how transmit (receive) correlation alone affects the complexity of LR

algorithms. Figure 3.4 shows the average complexity of LR(H̄) with different MIMO

sizes (Nr = Nt) and different (ρr, ρt) pairs. As observed, ELR has the lowest average

complexity while SA has the highest. The average complexity of DCLLL and CLLL are

in between that of ELR and SA, with DCLLL having lower complexity than CLLL. Also,

the average complexity of LR algorithms increases as ρr or ρt increases. Moreover, when

the correlation coefficient is small, receive correlation costs LR algorithm more in terms

of average complexity than transmit correlation. But when both the MIMO size and the

correlation coefficient is large, we notice that transmit correlation costs LR algorithm more

in terms of average complexity than receive correlation.

3.4 Chapter summary

In this chapter, first, we have studied the capacity of LR-aided equalizers. It has been

shown that the instantaneous capacity gap between MLE and LR-aided ZFE is greater

than or equal to zero and increases with od((H̃
†
)H), and that between LR-aided ZFE and

ZFE increases with
(

1− od((H̃
†
)H)
)
/
(
1− od((H†)H)

)
. For outage capacity, LR-aided

LEs collect the same outage diversity as MLE does if od of the reduced channel matrix is

bounded by a number smaller than one. Second, we studied the complexity of LR-aided

detectors when the MIMO channel is spatially correlated. We showed through simulations

that transmit correlation costs LR algorithms more in terms of complexity compared to

receive correlation when MIMO size and correlation coefficient are large.
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Figure 3.3: Average complexity of LR(H̄) for 20 × 20 MIMO systems, SNR = 10dB or
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In the next chapter, we will apply LR techniques in MU MIMO systems.
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CHAPTER 4

APPLYING LR TECHNIQUES TO MU MIMO SYSTEMS

In this chapter, we first present PELR aided detectors for the STCM systems. We then

present an LR aided linear joint transceiver design for downlink transmissions of the MU

MIMO system. The content of this chapter is adopted from our publications [98, 99].

4.1 Pairwise ELR aided detectors for the STCM system

The STCM system model has been introduced in Section 2.5.1. The equivalent channel

(2.34) has symmetric structure that allow us to reduce complexity. Our goal is to develop

LR aided detectors that utilize this structure fully. We propose the PELR aided detectors

[98], which has two core components, the PELR algorithms and the generalized pairwise

QRD.

Table 4.1: The proposed PELR and PELR-SLB for the STCM systems [98, Table I]

Input: H , Output: H̃ , T
(S1) H̃ = H , T = INt , C =

(
HHH

)−1
, C̃ = C

(S2) Do
(S3) λl,k ← −

⌈
C̃l,k

C̃l,l

⌋
, k = 1, 3, · · · , Nt − 1, l 6= k

(S4) PELR: If the largest element of C̃ is irreducible, break;
(S5) PELR-SLB: If all λl,k = 0, ∀l 6= k, break;
(S6) Find the largest reducible C̃k,k
(S7) l = arg maxNt

m=1,m 6=k ∆m,k

(S8) tl ← tl − λ∗l,ktk
(S9) C̃m,k ← C̃m,k + λl,kC̃m,l, m = 1, · · · , k − 1, k + 1, · · · , Nt

(S10) C̃k,m ← C̃∗m,k, m = 1, · · · , k − 1, k + 1, · · · , Nt

(S11) C̃k,k ← C̃k,k −∆l,k

(S12) h̃l ← h̃l − λ∗l,kh̃k
(S13) tlp ← CP (tl)
(S14) c̃kp ← CP (c̃k)

(S15) c̃(kp) ← CP (c̃(k))

(S16) h̃lp ← CP (h̃l)
(S17) While (true)
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PELR algorithms

The goal of the PELR algorithm is to reduce the maximum equivalent noise variance given

the equivalent channel matrix in (2.34) while exploiting the symmetric structure. The PELR

algorithms for it are shown in Table 4.1. We explain how they work in the following.

Definition 4. Let a and b be two vectors with size 2l × 1. Vector b is said to be Type-I

symmetric to vector a if and only if b = [−aHl+1:2l,a
H
1:l]

T . We call a, b a Type-I column

pair. Vector b is said to be Type-II symmetric to vector a if and only if b2n−1 = −a∗2n and

b2n = a∗2n−1, n = 1, .., l. In this case we call a, b a Type-II column pair. In both cases, we

denote that b =
−→
CP (a) and a =

←−
CP (b).

When a column pair a and b are two of the column vectors in a matrix and the column

index of vector a (or vector b) is k, we denote the column index of the other one as kp.

Lemma 2. For the channel matrix H in (2.34) (or its MMSE form H̄), C = (HHH)−1

has Nt/2 Type-II column pairs. At the first iteration, if the largest diagonal value Ck,k

can be reduced by its l-th column and row by ∆l,k, then Ckp,kp can be reduced by its lp-th

column and row by ∆l,k as well.

Proof: See Appendix B.1. �

Lemma 3. By having reductions between index pair (l, k) and (lp, kp) consecutively during

an iteration, the matrix C̃ remains the structure shown in (B.1) after every iteration.

Proof: See Appendix B.2. �

The lemmas show two advantages of the PELR algorithms in Table 4.1. First, the

pairwise reductions can be carried out iteratively, and the final reduced channel matrix

H̃ will maintain the symmetric structure, which enables further complexity reduction in

the following detection steps. Second, the updates of H̃ , T , C̃ resulting from the second

reduction during an iteration is computationally free. Note that in Steps 13 to 16 of in Table
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4.1, we use CP (·) to represent operations
←−
CP (·) and

−→
CP (·) for simplicity. We also abuse

the notation of CP (·) to include deriving both Type-I and Type-II column pairs.

Generalized pairwise QRD

After the PELR algorithms, the PELR-aided detectors perform linear or SIC detection

based on the reduced channel matrix H̃ (see [98] for details). Note that final reduced

channel matrix H̃ has symmetric structure. Since the QRD is a main and high-complexity

step for LD and SIC, based on the pairwise QR (PQR) in [104], we propose a generalized

PQR to exploit the symmetric property of H̃ and reduce its computational complexity. Dif-

ferent from the PQR in [104], the generalized PQR handles the scenarios when the input

is a reduced MMSE channel matrix. For PELR-aided MMSE linear or SIC detectors, the

reduced channel matrix is expressed as ˜̄H = [H̃
T
, σw/σsĨ]T , where H̃ has Nt/2 Type-I

column pairs and Ĩ has Nt/2 Type-II column pairs. Therefore, instead of using Steps 13

and 21 of Algorithm 2 in [104], we use the CP (·) operator to represent the way we com-

pute groups of two columns in Q based on both Type-I column pairs and Type-II column

pairs. The generalized PQR algorithm is shown in Table 4.2. It has approximately half of

the complexity of QRD, since (S6) and (S13) in Table 4.2 are computationally free.

4.1.1 Complexity analysis

We inspect the complexity of the proposed PELR-aided detectors. We count one complex

operation (e.g., multiplication, division, addition, subtraction) as one complex arithmetic

operation. For the complexity analysis throughout this chapter, we make use of some com-

plexity results about basic matrix operations from [105]:

• Matrix multiplication ofAm×n andBn×p: 2mnp.

• Inversion of matrixAm×m using Gauss elimination: 4m3/3.

• SVD of matrix Am×n (m ≤ n) when only diagonal matrix Σ containing singular
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Table 4.2: Generalized PQR for the STCM systems [98, Table II]

Input: H , Output: Q,R
(S1) R← 0,Q←H
(S2) for l = 1 : Nt/2
(S3) R2l−1,2l−1 ← ‖q2l−1‖
(S4) q2l−1 ← q2l−1/R2l−1,2l−1

(S5) R2l,2l ← R2l−1,2l−1

(S6) q2l ← CP (q2l−1)
(S7) for n = (l + 1) : Nt/2
(S8) R2l−1,2n−1 ← qH2l−1q2n−1

(S9) R2l,2n−1 ← qH2lq2n−1

(S10) q2n−1 ← q2n−1 −
∑2l

m=2l−1Rm,2n−1qm
(S11) R2l−1,2n ← −R∗2l,2n−1

(S12) R2l,2n ← R∗2l−1,2n−1

(S13) q2n ← CP (q2n−1)
(S14) end
(S15) end

values and unitary matrix V containing right singular vectors are calculated: 4n2m+

13m3.

First, we count the complexity of the PELR algorithm by the number of iterations and

the overall complex arithmetics operations. The PELR algorithm consists of preprocessing

that computes HHH and C, and the LR process. Due to the symmetric structure of H ,

computing HHH requires 2NrN
2
t . Similarly, due to the structure of HHH , computing

C requires 2/3N3
t . Denote the number of iterations of the PELR algorithm and that of the

ELR algorithm as iterp and iter. The total complex arithmetic operations of the PELR and

the ELR algorithm is then

θPELR =
2

3
N3
t + 2NrN

2
t + iterp (11.5Nt − 1 + 4Nr), (4.1)

θELR =
4

3
N3
t + 4NrN

2
t + iter (12Nt − 1 + 4Nr). (4.2)

Next we give the complexity of the generalized PQR and QR for the MMSE channel matrix.
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Note that the generalized PQR saves approximately half of the complexity of the QR.

θPQR(H̄) = (2Nr +Nt)N
2
t − (2Nr +Nt)Nt/2, (4.3)

θQR(H̄) = 2(2Nr +Nt)N
2
t + (2Nr +Nt)Nt. (4.4)

Lastly, the QRD is followed by the detection step and the transformation by T . Table 4.3

shows the complexity of the detection and transform step of the PELR-aided LD/SIC.

Table 4.3: PELR aided LD/SIC for the STCM systems [98, Table III]

Steps Detection (LD/SIC) Transform (T )
PELR-MMSE-LD 4N2

t + 4NtNr + 2Nt 2N2
t

PELR-MMSE-SIC 3N2
t + 4NtNr + 2Nt 2N2

t

4.1.2 Numerical results

Now we examine the complexity of the PELR algorithms, and the complexity and BER

of the proposed PELR-aided detectors. The complexity is measured by the number of

complex arithmetics. The detectors we compare with include MMSE-SIC, dual CLLL-

aided MMSE-SIC (δc = 3/4), ELR(-SLB) aided MMSE-SIC, and the proposed PELR(-

SLB) aided MMSE-SIC detectors. We define SNR as Ntσ
2
s/σ

2
w. Table. 4.4 compares the

complexity of various LR schemes by the average number of iterations when applied to

the MMSE channel matrix with 16 QAM, SNR = 25 dB and Nt = 2Nr. It shows that

PELR (PELR-SLB) approximately halves the average number of iterations of that of ELR

(ELR-SLB). As Nt grows, PELR has lowest average complexity while PELR-SLB has the

second lowest. Table. 4.4 also shows the average complexity of the detectors. The ELR

(-SLB) aided MMSE-SIC requires highest complexity due to computing the HHH and

C without utilizing symmetric structure of the channel matrix. The PELR (-SLB) aided

MMSE-SIC reduces the average complexity of the ELR (-SLB) aided MMSE-SIC to its

half and maintains similar average complexity compared to the MMSE-SIC and the dual
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Figure 4.1: BER of various detectors with 16QAM, SNR = 25dB, Nt = 2Nr [98, Figure
1]

CLLL-aided MMSE-SIC.

Figure 4.1 gives the BERs for various SICs with Nt varying from 20 to 100, 16 QAM,

SNR = 25dB, and Nt = 2Nr. We observe that the PELR (-SLB) aided MMSE-SIC is able

to achieve the same BER as the ELR (-SLB) aided MMSE-SIC. Both the PELR (-SLB)

aided MMSE-SIC and the ELR (-SLB) aided MMSE-SIC achieve better BER than the

dual CLLL-aided MMSE-SIC and MMSE-SIC. Figure 4.2 shows BER vs. SNR of various

SICs with 16 QAM, Nt = 80, and Nr = 40. The PELR aided MMSE-SIC performs the

same as the ELR-aided MMSE-SIC. The PELR-SLB aided MMSE-SIC and the ELR-SLB

aided MMSE-SIC achieve the lowest BER.

4.2 LR-aided linear joint transceiver design for MU MIMO downlinks

Now we look at the MU MIMO downlink introduced in Section 2.5.2. Our goal is to design

a transceiver architecture to minimize sum of MSE, subject to a per-user transmit power

constraint. Our design assumes that the number of transmit antennas at BS is greater than

or equal to the total number of receive antennas at UEs. It has two steps [99].
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MUI elimination

In the first step, we use either BD or GZI to eliminate MUI (see Section 2.5.2). We effec-

tively decompose the MU-MIMO system to Nu parallel SU-MIMO systems, and the k-th

UE receives

yk = ȞkAksk +wk, k = 1, · · · , Nu, (4.5)

where Ȟk equals HkV̄
(0)
k or HkQk depending on whether we use BD or GZI. Matrices

Ak will be designed in the second step.

Parallel optimization

After step one, we are dealing with Nu independent SU MIMO optimization problems.

Now we are going to optimize sum of the MSEs for each user independently subject to a

transmit power constraint. Denoting Pk as the transmit power constraint that we set for the

k-th UE, we have
∑K

k=1 Pk = Ptotal. The conventional linear joint transceiver design for
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Table 4.4: The complexity of various LR schemes and various detectors, Nt = 2Nr.

Nt 20 40 60 80 100

Iterations

D-CLLL 78 135 168 194 215
ELR-SLB 31 62 89 113 132
ELR 20 35 47 56 60
PELR-SLB 16 32 45 57 67
PELR 10 18 24 28 31

Complex arithmetics

MMSE-SIC 446 1691 3736 6581 10226
D-CLLL-MMSE-SIC 628 2015 4129 6999 10642
ELR-SLB-MMSE-SIC 1203 4294 9216 15980 24621
ELR-MMSE-SIC 1052 3960 8719 15331 23796
PELR-SLB-MMSE-SIC 602 2143 4603 7993 12299
PELR-MMSE-SIC 533 1993 4380 7693 11932

SU MIMO solves the optimization problem

min
Ak,Gk

E ‖ sk −Gk(ȞkAksk +wk) ‖2

tr(σ2
sAkA

H
k ) ≤ Pk.

(4.6)

Once we knowAk, the optimumGk is always the well-known MMSE equalization matrix

Gk = (AH
k Ȟ

H

k ȞkAk + σ2
wR

−1
s )−1AH

k Ȟ
H

k . (4.7)

The optimalAk andGk are given in [106]. The estimation error sk−ŝk has autocorrelation

matrix as

Re = (σ−2
w A

H
k Ȟ

H

k ȞkAk + σ−2
s Irk)−1. (4.8)

The diagonal elements ofRe are the MSEs of sk.

As shown in [65, 43], the MSE can be further reduced using ELR. If we assume Ak is

known and write Ḣk = ȞkAk as an Nrk × rk matrix, we have

yk = Ḣksk +wk. (4.9)

Using ELR algorithm, we get H̃k = ḢkT k. With the “better” H̃k, we can rewrite the
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model in Eq. (4.9) as

yk = ḢkT kT
−1
k sk +wk = H̃kzk +wk, (4.10)

where we recognize zk as the lattice-reduced-domain information symbols. Due to the fact

that entries of sk are from Zj and T k is unimodular, entries of zk remain in Zj . Given

matricesAk and T k, the optimum G̃k to minimize MSE of zk is computed as

G̃k = (H̃
H

k H̃k + σ2
wR

−1
z )−1H̃

H

k (4.11)

where Rz = E(zkz
H
k ). The estimation error zk − ẑk has autocorrelation matrix as (see

[65])

R̃e = T−1
k Re(T

−1
k )H . (4.12)

Because the ELR algorithm in [43] reduces the MSEs of zk and zk and sk form an one-to-

one mapping relationship, lower sum of the MSEs is achieved.

The optimization problem in lattice-reduced domain for each user is formally formu-

lated as:

min
Ak,G̃k,T k

E ‖ zk − G̃k(ȞkAkT kzk +wk) ‖2

tr(σ2
sAkA

H
k ) ≤ Pk,

T k ∈ GLrk(Zj)

(4.13)

where GLn(Zj) represents the group of n× n unimodular matrices, and zk = T−1
k sk.

We then apply the alternating algorithm in [65] to solve the above problem. Since in

[65] it is shown that usually one iteration is able to produce a converged result, we set the

maximum iteration number to one in our proposed design. Thus for every user, after one

iteration of the alternating algorithm, we get matrices Ak, T k and G̃k. Then, F k equals

V̄
(0)
k Ak orQkAk depending on whether we use BD or GZI.
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To summarize, with MUI elimination and parallel optimization, we have decomposed

the MU-MIMO system into Nu parallel SU-MIMO systems and designed for every user

the precoding matrix F k, the decoding matrix G̃k, and the lattice-reduced-domain trans-

formation matrix T k. The input-output model for the k-th UE is

yk = HkF kT kT
−1
k sk +wk = HkF kT kzk +wk. (4.14)

Upon receiving yk, the k-th UE estimates zk as ẑk = Q(G̃kyk), and ẑk is transformed

back to the original symbol domain via ŝk = T kẑk. Once again, we emphasis that because

matrix Ak is different in dimension for BD and GZI, BD-based design and GZI-based

design will have different performance and complexity.

Finally, the details of our proposed algorithm for the MU-MIMO system is shown in

Table 4.5. At (S6) of Table 4.5,A(0)
k is initialized as a scaled identity matrix whose scaling

factor is chosen to satisfy the per user transmit power constraint and whose dimensions are

chosen to work with matrix Ȟk and vector sk. At (S7), ELR algorithm is applied to the

extended matrix H̄k (see [107, 65]).

Table 4.5: Proposed algorithm for LR-aided joint MU-MIMO transceiver optimization
[99, Table I]

Input: H1,H2, · · · ,HNu , σ2
s , σ2

w Output: F 1,F 2, · · · ,FNu , G̃1, G̃2, · · · , G̃Nu , T 1,T 2, · · · ,TNu

(S1) If BD is used: [V̄
(0)
1 , V̄

(0)
2 , · · · , V̄ (0)

Nu
] = BD[H1,H2, · · · ,HNu ] Nu (4N2

t (Nr −m) + 13(Nr −m)3)
(S2) If GZI is used: [Q1,Q2, · · · ,QNu

] = GZI[H1,H2, · · · ,HNu ] 11
3
N3
t + 5

3
N2
t +Nu · 2m2(Nt − 1

3
m)

(S3) For k = 1 to Nu

(S4) If BD is used: Ȟk = HkV̄
(0)
k 2mNt(Nt −Nr +m)

(S5) If GZI is used: Ȟk = HkQk 2m2Nt

(S6) Initialize: A(0)
k = [P

1/2
k σ−1

s r
−1/2
k Irk ,0rk×(size(Ȟk,2)−rk)]

T

(S7) H̄k =
[
ȞkA

(0)
k ; σn

σs
Irk

]
2m2 · size(Ȟk, 2)

(S8) [H̃k,T k] = ELR(H̄k) 4m3 + 4
3
m3 + 20m·(number of basis updates)

(S9) ObtainAk O(max(size(Ȟk, 2),m)3)

(S10) G̃k = (TH
k A

H
k Ȟ

H

k ȞkAkT k + σ2
wR

−1
z )−1TH

k A
H
k Ȟ

H

k O(max(size(Ȟk, 2),m)3)

(S11) If BD is used: F k = V̄
(0)
k Ak 2mNt(Nt −Nr +m)

(S12) If GZI is used: F k = QkAk 2m2Nt

(S13) end
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4.2.1 Complexity analysis

In this section, we analyze the complexity of our proposed design by evaluating the number

of complex arithmetic operations. In the complexity analysis, we assume the number of

receive antennas to be the same for Nu users, i.e., Nrk = m for all k, and the number of

streams each user receives to be the same as the number of receive antenna, i.e., rk = Nrk =

m for all k. The complexity of the MUI elimination step is determined by the complexity

of BD or GZI. From [64], the number of complex arithmetic operations required is

Nu

(
4N2

t (Nr −m) + 13(Nr −m)3
)

(4.15)

for BD, and
11

3
N3
t +

5

3
N2
t +Nu · 2m2(Nt −

1

3
m) (4.16)

for GZI. The complexity of other steps of our algorithm is shown on the right part of

Table 4.5. For the ELR algorithm [43], 4m3 and 4
3
m3 arithmetic operations are required

at initialization to compute the gram matrix of H̄k and the inverse of gram matrix. Then,

around 20m complex arithmetic operations are required per basis update. From Table II of

[43], for an m × m matrix A with IID Rayleigh variable entries, the average number of

basis updates is approximately m. Though the entries of matrix H̄k is not IID Rayleigh,

we anticipate the average number of basis update to be close to the first order of m. The

complexity of our design will be further analyzed through simulations in the next section.

4.2.2 Numerical results

In this section, we compare the error performance and complexity of our proposed design

(BD-LR-J, GZI-LR-J) with several existing schemes: BD with linear MMSE receiver at

each UE (BD) [59], BD combined with conventional joint transceiver design that mini-

mizes sum of MSEs (BD-J) [66], successive minimum mean-squared error (SMMSE) pre-
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Figure 4.3: BER performance, where Nt = 24, Nrk = rk = 4, 6 users, 4QAM.
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Figure 4.4: BER performance, where Nt = 28, Nrk = rk = 4, 6 users, 4QAM.

coding combined with maximum SNR design (SMMSE-max-SNR) [62], regularized block

diagonalization (RBD) combined with maximum SNR design (RBD-max-SNR) [63], and

minimum total MMSE design (T-MMSE) [56]. Channel coefficients of each user’s chan-

nel Hk are modeled as IID complex Gaussian variables with zero mean and unit variance,
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Table 4.6: (a) Average computational complexity (106) for computing precoding and de-
coding matrices with Nt = 32 and 6 users. (b) Average computational complexity (106)
for computing precoding and decoding matrices with Nrk = 4 and 6 users.

2 3 4 5

BD-LR-J 1.46 1.19 1.36 1.94
GZI-LR-J 0.13 0.14 0.16 0.20
BD-J 1.45 1.18 1.34 1.91
T-MMSE 3.97 5.41 6.05 7.08
SMMSE-max-SNR 1.06 1.97 3.12 4.53
RBD-max-SNR 0.80 1.15 1.67 2.43

(a)

24 26 28 30 32

BD-LR-J 0.93 1.01 1.10 1.21 1.36
GZI-LR-J 0.09 0.11 0.12 0.14 0.16
BD-J 0.92 0.99 1.08 1.19 1.34
T-MMSE 2.66 3.34 4.12 5.02 6.05
SMMSE-max-SNR 1.61 1.93 2.29 2.69 3.12
RBD-max-SNR 1.16 1.27 1.39 1.52 1.67

(b)

and SNR = 10 log10

(
Ptotal

σ2
n

)
. For BD, BD-J and our proposed BD/GZI-LR-J, we assume

that transmit power is equally allocated to all users. For SMMSE-max-SNR, RBD-max-

SNR and T-MMSE, power allocation schemes among users are already included in those

designs. Figure 4.3 shows the error performance of the algorithms above for Nt = 24,

Nrk = rk = 4, 6 users, 4QAM . The maximum number of iteration is set to be 150 for

T-MMSE. BD-LR-J achieves the best BER performance than the other schemes, showing

more than 3dB gain than the others when BER = 10−5. In Figure 4.4, when the number of

transmit antennas increases, all schemes except BD enjoy performance improvement, and

BD-LR-J/GZI-LR-J enjoys approximately 3 dB gain over BD-J when BER = 10−5.

Now we plot the average total number of complex arithmetic operations required to

calculate the precoding matrices F k and decoding matrices Gk (for BD/GZI-LR-J, also

the LR domain transformation matrices T k) for each design except for BD. The maximum

number of iteration is set to 5 for T-MMSE and SNR is set to 25dB. First, we fixed the num-

ber of transmit antennas to be 32 and varies the number receive antennas (m) per user. In

Table 4.6(a), the iterative scheme T-MMSE has the highest complexity. The complexity of

BD-LR-J decreases and then increases with number of antennas per UE, because its com-

plexity is an interplay of Nt−Nr +m and m. The complexity of GZI-LR-J increases with

the number of antennas per UE, and remains lowest most of the time among all the com-
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pared schemes. Next, we fixed the number of receive antennas per UE to be 4 and varies

the number transmit antennas. In Table 4.6(b), T-MMSE still has the highest complexity,

and the complexity of GZI-LR-J remains the lowest among all the considered schemes.

4.3 Chapter summary

In this chapter, first, we proposed PELR-aided detectors for STCM systems at large MIMO

dimensions. By utilizing the symmetric property of the equivalent channel matrix, the pro-

posed detectors reduced approximately half of the complexity of the ELR-aided detectors.

With similar complexity, the PELR-aided detectors achieve better BER compared to other

state-of-the-art detectors. Then, we present a linear joint transceiver design for MU MIMO

downlink system using LR algorithms. In pursuit of a low complexity design, we first

completely eliminate MUI using existing methods (e.g., BD or GZI), and then for each

user, we formulate a transceiver optimization problem in lattice-reduced domain with the

goal of minimizing sum of the MSEs of information symbols, and solve it sub-optimally

using LR algorithms. The advantages of our proposed design in terms of performance and

complexity are demonstrated through numerical simulations.

In the next chapter, we delve into the details of LR algorithm and design learning-based

LR algorithms.
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CHAPTER 5

LEARNING-BASED LR ALGORITHMS

In this chapter, utilizing RL techniques, we design LR algorithms that learn to efficiently

reduce channel matrices according to pre-defined objectives, through trial-and-error inter-

actions with the channel matrices.

5.1 Reinforcement learning (RL)

Certain decision problems can be formulated using a Markov decision process (MDP)

framework, where an agent acts in an environment represented by states and gets feed-

back from the environment through a reward signal. When the state transition model and

reward function are known, MDPs can be solved by dynamic programming techniques

such as policy iterations or value iterations. In reality, the transition model and reward

function are most likely unknown. Thus, RL algorithms are used to learn a sequence of

actions to optimize certain accumulated rewards, based on trial-and-error interactions with

the environment. Its policy is represented by a table or a function approximator (e.g., neural

networks) and updated as learning goes on.

5.2 RL-based LR algorithms

There are many similarities between an RL agent and an LR algorithm. LR carries out a

sequence of elementary column operations to reduce a matrix. The column operations is

solely based on the channel matrix, which can be viewed as the environment. Based on

these similarities, an RL framework is proposed to solve the LR problem, shown in Figure

5.1. Using this framework, we then propose various RL-based LR algorithms, which differ

in their objective, action space and reward functions. We explore three objectives:
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Figure 5.1: RL-based LR algorithms.

• Minimize the od in (2.24);

• Minimize the Seysen metric SA(H) in (2.30);

• Minimize the largest diagonal element of the noise covariance matrixC = (HHH)−1.

Now we explain the definitions of state, action, and reward in detail.

5.2.1 The states

A state vector φ captures the characteristics of the environment in an RL problem, which,

in our case, is the channel matrix H . To reduce the length of the state vector, we set it

to be the real and imaginary parts of the upper triangular entries of Gram matrix G =

HHH . Thus, a state vector φ has a length of N2
t . To handle the continuous state space,

one usually uses either function approximation (e.g., tile coding, neural network) or state

space discretization. We adopt state space discretization (based on distributions of the state

values) as it enables simpler implementation. After that, we discretize the k-th element of

a state vector into Lk levels, k = 1, · · · , N2
t , giving finer discretization to more frequent

values. The total number of states is
∏N2

t
k=1 Lk.

5.2.2 The actions

In general, an RL agent has a set of actions that it picks from at each state. We define an

action as picking out an index pair (m,n), 1 ≤ m,n ≤ Nt andm 6= n, and update them-th
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column with the n-th column as

h̃m ← h̃m + λm,nh̃n, (5.1)

t̃m ← t̃m + λm,nt̃n. (5.2)

λm,n is computed according to the following three sets of actions:

• Asy (base on Seysen metric):

λm,n = −

⌈
0.5

(
α̃Tn α̃

∗
m

‖α̃m‖2
− h̃

H

n h̃m

‖h̃n‖2

)⌋
; (5.3)

• Aelr (base on noise covariance matrix):

λm,n =

⌈
C∗m,n
Cm,m

⌋
; (5.4)

• Asr (base on size reduction):

λm,n = −

⌈
h̃
H

n h̃m

‖h̃n‖2

⌋
. (5.5)

Note that λm,n might be zero. In that case, that action happens to have no effect on the

channel matrix. The cardinality of the action set is Nt(Nt − 1).

5.2.3 The rewards

We have defined an agent that interacts with the environment by taking actions at discrete

time step t. Now we introduce the definition of reward ω, a feedback signal from the

environment in response to the agent’s action a at state φ. To achieve different objectives,

we design reward differently. Here we provide three reward functions.
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• RWod:This reward reflects the amount of reduction of od and is defined as

ωt+1 =
od(H t)− od(H t+1)

od(H t+1) + ε
, (5.6)

where ε is a small constant (e.g., 10−8) to avoid a zero denominator.

• RWsy:This reward depends on the reduction of Seysen metric and is defined as

ωt+1 = SA(H t)− SA(H t+1). (5.7)

• RWelr:This reward depends on the noise covariance matrix and is defined as

ωt+1 = (Cm,m)t − (Cm,m)t+1 . (5.8)

5.2.4 Improving learning speed

To increase the learning speed of the RL agent, we propose “action set pruning” and “learn-

ing with supervision”.

Action set pruning

We have previously seen that an action a may have no effect on channel matrix at time step

t when (λm,n)t = 0. Therefore, it is of no use to take action a again at t + 1. On the other

hand, if (λm,n)t 6= 0, then (λm,n)t+1 = 0. In either case, we do not want to take action a

again since we know it will not have effect at φt+1. Thus, we propose using a set Su to

keep temporary “useless” actions and to prune the action set properly at each time step. We

always choose actions from action set minus those in Su. The algorithm to manage this set

is given in Table 5.1. A learning episode (i.e., one sequence of reductions) terminates when

the size of Su equals size of the action set.
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Learning with supervision

We allow RL agent to learn from existing LR algorithms (see e.g., [108]). Specifically,

during training, the RL agent is given the information on how the existing LR algorithms

would act, so that the RL agent can learn those actions first.

Table 5.1: Manage the set of temporarily “useless” actions

Output: Su, Input: Su, Nt

(S1) if |Su| == Nt(Nt − 1)
(S2) terminate current learning episode
(S3) else
(S4) choose at from actions not in Su
(S5) end
(S6) if (λm,n)t == 0
(S7) add at into Su
(S8) else
(S9) Su = {at}
(S10) end

5.2.5 Value-based RL

We adopt value-based RL algorithms, which have been successfully applied to solve prob-

lems of moderate size, such as improving performance of TCP (see e.g., [109, 110]). In

value-based RL, an agent learns the value of a state-action pair (φ, a), denoted as Q(φ, a),

which represents the value of being in state φ and performs an action a, and acts optimally

ever after. Denote the learned value function as Q̂(φ, a). At the start of training, the learned

value function over all state-action pairs is initialized (to zeros, random values, etc). It is

then updated at each time step based on the interaction between the RL agent and the en-

vironment. We adopt a temporal difference learning algorithm SARSA [111] to update the

estimated value function, i.e.,

Q̂(φt, at)
αt←− ωt+1 + γdQ̂(φt+1, at+1), (5.9)
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where x αt←− y means x = (1−αt)x+αty, αt is the learning rate as a function of time step

t, and γd ∈ (0, 1] is the discount factor that discounts future rewards. Assuming the learned

value function is close enough to the true Q(φ, a), the best action at state φ is given by

a = arg max
a′

Q̂(φ, a′). (5.10)

To balance exploration and exploitation (E2), we adopt the epsilon-greedy strategy, which

means that among the actions not in the set Su, we explore a random action with probability

εx, and otherwise stick to the best action currently known. The RL-based LR algorithm is

given in Table 5.2. Finally, based on the combinations of the action and reward, we propose

four RL-based LR algorithms:

• RL-SY, which uses action set Asy and reward functionRWsy;

• RL-YOD, which uses action set Asy and reward functionRWod;

• RL-ELR, which uses action set Aelr and reward functionRWelr;

• RL-SR, which uses action set Asr and reward functionRWod.

5.3 Complexity analysis

The complexity of the RL-based LR algorithms mainly comes from two parts. The first

part is regular DSP logic, including matrices updates and rewards computing. The second

part is RL, including state quantization, action selection, and value function update. First

we consider the DSP part. For state representation and simpler computation of λm,n in Eqs.

(5.5), (5.3), and (5.4), Gram matrix G = HHH , inverse Gram matrix C = (HHH)−1,

and matrix T are maintained and updated during reduction. Updating them takes about

24Nt real arithmetic operations due to the symmetric structure of G and C. Computing

λm,n and rewards in Eqs. (5.6), (5.7), and (5.8) costO(1) real arithmetic operation. Next we
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Table 5.2: The learning process of RL-based LR algorithm over n channel realizations

Procedure name: RL
Output: value function Q(·), Input: Nr, Nt,H

(1),H(2), · · · ,H(nchn)

(S1) initialize εx, γd, αt
(S2) initialize action set and state set
(S3) initialize value function Q(·)
(S4) for k = 1 : nchn

(S5) [H̃
(k)
,T (k)] = RL-H(H(k), εx, γd, odth)

(S6) end
Procedure name: RL-H
Output: H̃ ,T , Input: H , εx, γd, odth, Global: Q(·)
(S1) H0 = H , T 0 = I . od = od(H0).
(S2) t = 0
(S3) if od > odth
(S4) st = get state(H t), Su = {}. at = epsilon-greedy(φt,Q,Su).
(S5) while (1)
(S6) [m,n] = get columns(at), compute λm,n
(S7) if λm,n 6= 0
(S8) getH t+1, T t+1 as Eqs. (5.1), (5.2)
(S9) Su = {at}
(S10) else
(S11) add at into Su
(S12) end
(S13) if |Su| == Nt(Nt − 1)
(S14) break
(S15) else
(S16) φt+1 = get state(H t+1)
(S17) ωt+1 = rw(H t+1,H t)
(S18) at+1 = epsilon-greedy(φt+1,Q,Su)
(S19) Q(φt, at)

αt←− ωt+1 + γdQ(φt+1, at+1)
(S20) t = t+ 1
(S21) end
(S22) end
(S23) end
(S24) H̃ = H t, T = T t

consider complexity of RL. Quantizing the RL state takes O(N2
t ). Action selection takes

O(N2
t ). Value function update costs O(1). When learning process is sufficiently long, one

can set learning rate αt to zero, which means that rewards are no longer computed and

value function no longer updated. In that case, RL complexity is further reduced.

5.4 Numerical results

We compare the BER and complexity of our proposed RL-based LR algorithms with the

existing LR algorithms for MIMO detection. The existing LR algorithms include CLLL
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(δc = 0.75) [33], a greedy implementation of the SA [97], and ELR [43]. For the default

setup of RL-based LR algorithms, odth = 0.1, discount factor γd = 1, learning rate αt =

0.1, and exploration factor εx = 0.1. The elements of the state vector are discretized into L

levels, i.e., Lk = L, k = 1, · · · , N2
t . For Nr = Nt = 2, 3, 4, L = 100, 6, 2 respectively. All

LR algorithms work in conjunction with the MMSE-SIC (MSIC) detector. SD is used to

provide BER benchmark. To compare the complexity of various LR algorithms, we adopt

the real arithmetic operations. The following types of channel models are adopted: IID

complex Gaussian channel, and spatially correlated complex Gaussian channel.

5.4.1 IID complex Gaussian channel

Figure 5.2 shows BER performance of SD, RL-SY, RL-YOD, RL-SR, RL-ELR, CLLL,

SA, and ELR, at varying SNR, for 64 QAM, 4 × 4 MIMO. We see that SD achieves the

lowest BER, while RL-SY and RL-YOD learn to perform similarly with CLLL and SA.

RL-ELR outperforms ELR because it learns to carry out more basis update than ELR. On

the other hand, RL-SR performs the worst among its comparisons under 4×4 MIMO. This

shows that its action set has limitations in reducing channel matrix with MIMO size larger

than two. Table 5.3 shows BER for various detectors with MIMO size varying from 2 to 4,

at SNR 25dB. We see that CLLL performs slightly better than SA, RL-SY, and RL-YOD,

which hold the same BER performance. RL-ELR performs better than ELR. RL-SR loses

its performance at Nr = Nt = 4.

Table 5.4 shows number of real arithmetics for various LR algorithms with MIMO size

varying from 2 to 4, at SNR 25dB. For learning-based LRs, we plot complexity from the

DSP part. It is encouraging to see that learning-based LRs have lower DSP complexity

than SA and CLLL, even at MIMO sizes of three and four, where limited discretization

on value function degrades effect of learning. The savings in DSP complexity of RL-SY

and RL-YOD, compared to SA, mainly come from not computing or updating ∆ and λ

for every pair of columns of the channel matrix during reductions. RL-ELR has similar or
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Table 5.3: BER vs varying MIMO size, IID complex Gaussian channel, 64QAM, SNR =
25dB

SD SA CLLL ELR

Nr = Nt = 2 0.0013 0.0017 0.0017 0.0017
Nr = Nt = 3 2.4083 ∗ 10−4 4.8120 ∗ 10−4 4.0229 ∗ 10−4 6.7673 ∗ 10−4

Nr = Nt = 4 3.5375 ∗ 10−5 1.5147 ∗ 10−4 1.2629 ∗ 10−4 3.4215 ∗ 10−4

RL-SY RL-YOD RL-SR RL-ELR

Nr = Nt = 2 0.0017 0.0017 0.0017 0.0017
Nr = Nt = 3 4.8830 ∗ 10−4 4.9367 ∗ 10−4 5.3557 ∗ 10−4 5.3598 ∗ 10−4

Nr = Nt = 4 1.5791 ∗ 10−4 1.4136 ∗ 10−4 8.1615 ∗ 10−4 2.2723 ∗ 10−4

Table 5.4: Average number of real arithmetics operations vs varying MIMO size, IID
complex Gaussian channel, 64QAM, SNR = 25dB

CLLL SA ELR RL-SY RL-YOD RL-SR RL-ELR

Nr = Nt = 2 117.096 362.351 53.459 71.002 71.807 40.448 58.282
Nr = Nt = 3 488.298 1342.79 191.531 438.047 437.418 182.977 324.207
Nr = Nt = 4 1210.03 3097.10 414.305 1118.17 1239.13 475.698 871.395

higher complexity compared to ELR. But RL-ELR has better BER than ELR.

5.4.2 Spatially correlated complex Gaussian channel

In practice, MIMO channels are likely to be correlated, which affects the performance and

complexity of LR-aided detectors [99]. We incorporate Kronecker correlation model in

[102, 103] to describe the correlations between the faded envelopes of the MIMO sub-

channels (see (3.1)). In the simulation, we set ρt = ρr = 0.8, Nt = Nr = 2. Figure

5.3 shows BER performance of various detectors for 64 QAM, from which we see that

correlation at transmit and receive antennas degrades system BER performance. We also

see that learning-based LR-aided detectors are able to learn to perform similarly compared

to existing LR detectors. When comparing the DSP complexity in terms of real arithmetics

of various LRs in Figure 5.4, we see that complexity of learning-based LR algorithms and

existing LR algorithms suffers similarly with channel correlation. Thus, same as when

channel is IID, RL-SR, RL-ELR, RL-SY and RL-YOD have lower DSP complexity than

CLLL and SA, and RL-SR has the lowest DSP complexity among all.
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5.4.3 What do RL-based LR algorithms learn?

By design, we expect an RL-based LR algorithm to learn to pick out the optimal two

columns for reduction every time the RL-based LR algorithm “sees” a (partially reduced)

channel matrix, in order to maximize sum of rewards before an episode terminates. The RL-

based LR algorithm does so by learning the value of experiencing a channel matrix (state)

and picking out two certain columns (action). In this section, we show the learning process

of an RL-SY agent in 2×2 IID Rayleigh fading MIMO channels. For such MIMO channels,

it is not hard to compute the optimal sequence of reduction for maximum reduction of

Seysen metric. Also, due to action pruning with queue, the RL-SY agent only need to learn

to perform an optimal first step. Therefore, we show how RL-SY learns to perform a right

first step as it learns. Also, since we use tabular RL and discretize the value function into

a value table, the level of discretization affects how well RL agent distinguishes between

states and thus how well it learns.

In Figure 5.5, we plot the ratio of suboptimal decisions RL-SY performs as training

time goes on, when various levels of discretization L are used. Here one unit of training

time means 100 realizations of IID channel matrix. When L = 10, we see that the ratio

of suboptimal decisions drops quickly as training starts (from training time 0 to 5), and

oscillate between 0.28 and 0.29. This is partly because of the constant exploration factor

(εx = 0.1), which encourages the agent to explore actions that may be suboptimal. But

the high suboptimal decision ratio is also due to the small Lk that limits the ability of the

agent to distinguish channel matrices. By increasing the level of discretization L on value

function from L = 10 to L = 20, we observe a reduce in suboptimal decision ratio. But

further increase from L = 20 to L = 40 does not help. The reason may be the difficulty in

learning a larger size value table. We also plot the effect of exploration rate εx on the ratio

of suboptimal decisions in Figure 5.6. As training goes on, agents with smaller εx make

less suboptimal decisions. Nevertheless, the relatively large suboptimal decision ratios in

both Figures 5.5 and 5.6 implies the limitation of tabular RL.
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Figure 5.2: BER vs SNR, IID complex Gaussian channel, 64QAM, 4× 4 MIMO
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Figure 5.5: Effect of discretization level on learning of RL-SY. Training time is in the unit
of every one hundred channel matrices, 2× 2 MIMO.

5.5 Chapter summary

In this chapter, we proposed four RL-based LR algorithms, differing in their action set and

reward combination. We demonstrated the possibility of having diverse “reduce criteria”
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Figure 5.6: Effect of exploration factor on learning of RL-SY. Training time is in the unit
of every one hundred channel matrices, 2× 2 MIMO.

and then achieving reduction by an RL framework. We compared the BER and DSP com-

plexity of RL-based LR-aided detectors with existing LR-aided detectors for up to 4 × 4

MIMO. Simulation results show that RL-based LR-aided detectors achieve similar BER as

that of the existing LR-aided detectors. As for complexity, even when limited by small dis-

cretization level L (for 3× 3 and 4× 4 MIMO), the RL-based LR-aided detectors are able

to achieve lower DSP complexity compared to existing LR-aided detectors, which showed

the tradeoff between storage and computational complexity.

In the next chapter, we investigate the impact of size and propagation environment on

channel quality and the performance of LDs in massive MIMO systems.
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CHAPTER 6

OD OF MASSIVE MIMO CHANNELS: DISTRIBUTION AND RELATIONSHIP

WITH PERFORMANCE

In this chapter, we examine the impact of massive MIMO size and propagation environment

on the performance LDs. The content of this chapter is adopted from our publication [112].

6.1 Massive MIMO channel model

Consider a general spatial-multiplexing massive MIMO system with Nr receive and Nt

transmit antennas (Nr � Nt). Such system model includes the single-user and some

of the multi-user massive MIMO scenarios (see e.g., [113, 114]). The massive MIMO

channel is assumed to be narrowband and denoted by an Nr × Nt matrix H , where Hm,n

is the IID channel coefficient between the m-th receive and the n-th transmit antenna,

m = 1, · · · , Nr, and n = 1, · · · , Nt. Moreover, Hm,n is modeled by the complex Weibull

distribution [115, 116], i.e.,

Hm,n = (X + jY )
2
c , (6.1)

where X and Y are independent real Gaussian RVs with zero mean and one half variance,

and the positive real number c is the Weibull parameter. We choose the Weibull distribution

because of its excellence in modeling various propagation channels, including indoor and

outdoor sub-6 GHz channels, as well as indoor mmWave channels [117, 118, 119]. The

input-output relationship of the massive MIMO system is

y = Hs+w, (6.2)

where s is an Nt × 1 signal vector, y is the Nr × 1 receive vector, and w is an Nr × 1

zero mean complex Gaussian noise with E(wwH) = σw
2INr . Next, we examine od and
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its statistics as functions of Nr, Nt, and Weibull parameter c.

6.2 Statistics of od and performance of LDs

First, we derive the od of massive MIMO as Nr goes to infinity. Let hk and hp denote the

k-th and p-th (k 6= p) columns of the channel matrixH . We have

lim
Nr→∞

1

Nr

‖hk‖2 = E(|Hm,n|2) = Γ(1 + 2/c), (6.3)

lim
Nr→∞

1

Nr

hHk hp = |E(Hm,n)|2, (6.4)

lim
Nr→∞

1

Nr

HHH = v2INt + v111H , (6.5)

where Γ(z) =
∫∞

0
xz−1e−xdx is the Gamma function, 1 is anNt×1 column vector of ones,

v1 = |E(Hm,n)|2, and v2 = E(|Hm,n|2)− v1. Thus, given Nt,

lim
Nr→∞

od(H) = 1− vNt
2 (1 + v1Nt/v2)

Γ(1 + 2/c)Nt
. (6.6)

When 2/c is a positive integer, E(Hm,n) = 0, and thus v1 = 0, and limNr→∞ od(H) = 0.

When 2/c is not an integer, limNr→∞ od(H) depends on the value of c and Nt. We sample

three values of Weibull parameter c, c = 2, 3.6, 1, to model three different propagation

channels. We examine the mean E(·) and variance V (·) of od as functions of Nr and Nt

for these various propagation channels. As a result, we offer insights on the choice of

massive MIMO size for LDs to achieve desirable performance.

6.2.1 Rayleigh fading (c = 2)

When c = 2, the massive MIMO channel has Rayleigh fading envelopes. From Eq.

(6.6), limNr→∞ od(H) = 0. The mean and variance of od are given in [45]. Given Nt,

limNr→∞E(od) = 0 and limNr→∞ V (od) = 0. This confirms with [10, 11] that the mas-

sive MIMO channel with Rayleigh fading envelops offers asymptotically favorable prop-
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agation. But when Nt = Nr, limNr→∞E(od) = 1 and limNr→∞ V (od) = 0. Taking the

derivative of V (od) with respect to Nr, we notice that V (od) decreases monotonically as

Nr increases for small Nt (e.g., Nt = 2), while increases first and then decreases as Nr

increases for large Nt. We did not show the plots of E(od) and V (od) for c = 2 because

they are almost identical to those when c = 1.

6.2.2 LoS mmWave (c = 3.6)

Based on measurements in [119], we use c = 3.6 to denote an massive MIMO channel with

mmWave LoS connections between each pairs of the transmit and receive antennas. From

Eq. (6.6),

lim
Nr→∞

od(H) =


0.0845, Nt = 2,

0.7260, Nt = 8,

0.9998, Nt = 32.

(6.7)

It means that this massive MIMO channel is non-orthogonal even when Nr goes to infinity.

As shown in Figure 6.1, E(od) of LoS mmWave massive MIMO decreases with increasing

Nr and eventually converges to a non-zero value computed by Eq. (6.7). In Figure 6.2, we

see that E(od) increases as Nt increases. Given Nr = 512, we need to bound Nt by 18 so

that E(od) ≤ 0.99. In Figure 6.3, we plot V (od) of the LoS mmWave massive MIMO. For

Nt = 2, V (od) decreases monotonically as Nr increases. But for large Nt, V (od) increases

first and then decreases as Nr increases.

6.2.3 Severely fading (c = 1)

When c = 1, Weibull distribution becomes the negative exponential distribution, which

can be used to model a composite small-scale/shadowing fading, or a severely fading chan-

nel [119]. From Eq. (6.6), limNr→∞ od(H) = 0. Thus, severely fading massive MIMO

becomes orthogonal as Nr goes to infinity. Shown in Figure 6.1, compared to the LoS

mmWave channel, E(od) of the severely fading channel is much smaller at the same mas-

63



0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nr

E
(o
d
)

 

 

Nt = 2, c = 1

Nt = 8, c = 1

Nt = 32, c = 1

Nt = 2, c = 3.6

Nt = 8, c = 3.6

Nt = 32, c = 3.6

Figure 6.1: E(od) vs. the number of receive antennas Nr, Weibull fading [112, Figure
1(a)]
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Figure 6.2: E(od) vs. the number of transmit antennas Nt, Weibull fading [112, Figure
1(b)]

sive MIMO size. From Figure 6.2, we observe that when Nr = 128, 256, and 512, Nt

should not exceed 34, 50, and 70 in order to have E(od) < 0.99.
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Figure 6.3: V(od) vs. the number of antennas Nr, Weibull fading [112, Figure 1(c)]

6.3 Distribution of od and diversity of LDs

In this section, we investigate the probability density function (pdf ) of od for the massive

MIMO channel and link it to the performance of LDs.

6.3.1 Distribution of od

First, we consider a partially Rayleigh fading case: channels of Weibull fading (c 6= 2)

or random types of fading exist between Nr receive antennas and only one of the transmit

antennas, and channels of Rayleigh fading exist between Nr receive antennas and the rest

of the transmit antennas.

Proposition 4. H is an Nr × Nt matrix with IID entries. The entries in its k-th column

vector hk are Weibull distributed with parameter c (c 6= 2), and the rest of its entries are
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Figure 6.4: Distribution of od for IID fadings, Nr = 20 and Nt = 10 [112, Figure 2(a)]

Nc(0, 1). Then the pdf of od(H) is a scaled Meijer G-function,

f(x) =
Nt−1∏
n=1

Γ(Nr)

Γ(Nr − n)
·GNt−1,0

Nt−1,0

(1− x)

∣∣∣∣∣Nr − 1, · · · , Nr − 1

Nr − 2, · · · , Nr −Nt

 , (6.8)

where the Meijer G-function is defined in [120, p.374]. Furthermore, regardless of the

distribution of hk, the pdf of od(H) is the one shown in Eq. (6.8).

Proof: See Appendix C.1. �

Figure 6.4 shows the distributions of od(H) when a single column vector in the chan-

nel matrix H experiences Weibull or any other random fading, which is the same as the

distribution of od(H) whenH has IID Rayleigh fading envelopes.

For more general cases, we investigate the approximate distribution of od. Beta dis-

tribution approximates the distribution of od well when the MIMO channel experiences

Rayleigh fading [45], but does not fit well when the MIMO channel experiences more

general fading. Especially, Beta distribution fails to fit the tail of the complementary cumu-

lative distribution function (ccdf ) of od. To better fit the distribution of od in general cases,
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in this paper, we consider the generalized Kumaraswamy distribution (GKw) [121], which

is a continuous distribution of five parameters (i.e., ϑ1, · · · , ϑ5) on the interval [0, 1]. The

pdf of GKw distribution is

GKw(x;ϑ1, ϑ2, ϑ3, ϑ4, ϑ5) =
ϑ5ϑ1ϑ2x

ϑ1−1

B(ϑ3, ϑ4 + 1)
(1− xϑ1)ϑ2−1

·
(
1− (1− xϑ1)ϑ2

)ϑ3ϑ5−1 ·
(

1−
(
1− (1− xϑ1)ϑ2

)ϑ5)ϑ4
, (6.9)

where B(u, v) =
∫ 1

0
xu−1(1 − x)v−1dx. When ϑ1 = ϑ2 = ϑ5 = 1, GKw reduces to the

Beta distribution. Figure 6.5 shows that GKw fits od(H) much better compared to Beta.

Result 1: The od of a general MIMO channel matrix with IID Weibull distribution can

be modeled by GKw distribution as in Eq. (6.9).

In Table 6.1, we evaluate the goodness-of-fit (GOF) of GKw and Beta using three statis-

tical methods (see also [122]): log likelihood (LogL), Bayesian information criteria (BIC),

and residual sum of squares (RSS). When c 6= 2, GKw provides better GOF than Beta in

all three metrics.
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Table 6.1: Evaluating the GOF of GKw and Beta models via statistical methods on 5
datasets each containing 5× 106 samples of od, where (Nr, Nt) = (8, 2) [112, Table I]

Samples of od Statistical methods GKw Beta

c = 2
LogL 5442600 5442607
BIC 1.088512× 107 1.088518× 107

RSS 1.6348× 10−4 1.7965× 10−4

c = 1
LogL 5434390 5403768
BIC 1.086870× 107 1.080750× 107

RSS 1.69608× 10−3 7.21654× 10−1

c = 3.6
LogL 3314657 3306305
BIC 6.629236× 106 6.612579× 106

RSS 1.27482× 10−3 2.43866× 10−1

c = 2.5
LogL 5369373 5369302
BIC 1.073866× 107 1.073857× 107

RSS 2.4223× 10−4 1.42534× 10−3

c = 1.5
LogL 5404661 5404112
BIC 1.080924× 107 1.080819× 107

RSS 4.4714× 10−4 1.12555× 10−2

6.3.2 Diversity with probability

Given the GKw distribution of od, we know that the od of an massive MIMO system in

model (6.1) will not be bounded by a number smaller than one. Thus, by Lemma 1, LD

does not collect the same diversity as MLD when both Nr and Nt are finite. However,

in practice, we only evaluate a detector during a finite time interval. Based on a chosen

communication standard, a finite observation interval may translate to a number of channel

realizations. For example, with packet length in LTE standard, a time interval of 2.2 years

corresponds to at most 1012 channel realizations. To quantify the diversity of LDs within a

finite interval, we introduce diversity with probability.

Definition 5 (diversity with probability). For a random channelH , if P (od(H) ≥ ε1) <

ε2, where ε1, ε2 ∈ (0, 1), then LDs collect the same diversity as MLD does during n channel

realizations with probability pd = (1− ε2)n.

In fact, pd defines the probability of n channel realizations all having od smaller than

ε1. For example, if ε2 = 10−14, n = 1012, then pd = 0.99. Now we find out the constraint
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Table 6.2: Thresholds ofNr to collect full diversity for 2.2 years with pd = 0.99 (estimated
with linear interpolation) [112, Table II]

c = 2 c = 1 c = 3.6
Nt Nr ε1 Nr ε1 Nr ε1

2 8 0.99 14 0.99 11 0.99
4 13 0.99 18 0.99 19 0.99
8 25 0.99 29 0.99 46 0.99
16 58 0.99 61 0.99 353 0.999
32 166 0.99 184 0.99 702 1− 5× 10−10

64 544 0.99 720 0.99 21873 1− 10−14

on Nr given Nt and ε1 to achieve ε2 = 10−14. Given the pdf of od, the ccdf of od is

P (od(H) ≥ ε1) = 1− I(
1−

(
1−εϑ1

1

)ϑ2
)ϑ5 (ϑ3, ϑ4 + 1), (6.10)

where Ix(u, v) = B(u, v)−1
∫ x

0
wu−1(1−w)v−1dw is the incomplete Beta function ratio. In

general, given the Weibull parameter c, Eq. (6.10) is a function of Nr and Nt. In Table 6.2,

we estimate Nr so that for given ε1 and Nt, P (od(H) ≥ ε1) = 10−14 is satisfied. Given

Nt, ε1, and c, by using an Nr that exceeds the threshold shown in Table 6.2, LDs collect

the full diversity as MLD does for 2.2 years with probability 0.99. Figure 6.6 numerically

shows the same diversity achieved by ZF LD and MLD over 106 channel realizations.

6.4 Chapter summary

In this chapter, we study the performance of LDs in massive MIMO systems by investigat-

ing the od of massive MIMO channels. The Weibull distribution is adopted for modeling

the envelope fading and various propagation channels are simulated by varying the Weibull

parameter c. First, we study and compare the mean and variance of od as functions of Nr

and Nt for various channels, and offer insights on the choice of massive MIMO size for

LDs to perform desirably. Then, by modeling od using the GKw distribution, we estimate

the thresholds of Nr (given the propagation channel and Nt) needed for LDs to collect the

same diversity as the MLD does with high probability in practice.
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Figure 6.6: BER versus SNR of ZF LD and MLD, 4QAM [112, Figure 2(c)]

In the next chapter, we design channel assisted strategies at linear receivers to reduce

latency and complexity of the ARQ process.

70



CHAPTER 7

CA STRATEGIES FOR HIGH-RELIABILITY LOW-LATENCY

COMMUNICATIONS

The next generation wireless communication systems are designed to support diverse ser-

vices ranging from enhanced mobile broadband to high-reliability low-latency communi-

cations. For the latter, ARQ is an important technique to meet the reliability constraint but

often at the cost of latency. In this chapter, targeting MIMO systems with linear receivers,

we propose CA strategies to reduce latency for basic ARQ and Type-I HARQ processes.

7.1 System model

Figure 7.1 illustrates an ARQ system at PHY and MAC layers. The processing unit of

the MAC is in packets with length Lp bits, which contains Np payload bits and Nc cyclic

redundancy check (CRC) bits. Like in [86], we consider bursty communications, where an

idle time period exists between two subsequent packet transmissions. We use the stop-and-

wait (SAW) ARQ protocol for simplicity. To avoid excessive delay, we limit the maximum

number of times a packet can be transmitted to M . A packet is accepted if no error is

detected or M transmissions is reached. At the PHY, the system contains Nt transmit and

Nr receive antennas. In the following, we introduce the transmitter, channel, and receiver

model in detail.

7.1.1 Transmitter model

The left side of Figure 7.1 depicts the transmitter model used in the ARQ system. At the

transmitter, single-codeword transmission is used [123, 9]. The packet is sent down to the

PHY, channel coded (for HARQ) and modulated into Lp

Rc log2 |S|
symbols, where Rc is the

code rate and |S| is the size of the alphabet set S. We assume that the modulation scheme
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Figure 7.1: Layer architecture of a CRC-ARQ system

is chosen beforehand and fixed. The modulated symbols of the packet are multiplexed

into Nt transmit antennas, sent through the channel, and received by the Nr antennas at

the receiver. After sending a packet, if the M th transmission for that packet has not been

reached, the transmitter waits for an ARQ response from the receiver. If it receives an

acknowledgment (ACK), the transmitter starts transmitting a new packet. If it receives a

negative acknowledgment (NACK), the transmitter transmits the same packet again. On

the other hand, if the M th transmission for that packet has been reached, the transmitter

starts transmitting a new packet.

7.1.2 Channel model

Consider a narrowband fading MIMO channel model described by an Nr × Nt random

channel matrix H , where Hm,n denotes the channel coefficient between the n-th transmit

and m-th receive antenna. The equivalent discrete-time baseband input-output relationship

is expressed as

y = Hs+w, (7.1)
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where y is the Nr × 1 receive vector, s is an Nt × 1 symbol vector with E(ssH) = σ2
sINt ,

w is an Nr × 1 additive complex Gaussian noise vector with E(wwH) = σ2
wINr , and σ2

s

and σ2
w are the signal variance and noise variance, respectively. For convenience, we define

γ0 =
σ2
s

σ2
w log2 |S|

. (7.2)

We also make a few assumptions:

A1) The channel remains invariant during a packet, but varies independently among pack-

ets including retransmitted ones;

A2) an ACK or a NACK is sent to the transmitter through a separate error-free feedback

channel, which can be realized by using strong forward error correction (FEC) code;

A3) Channel is known at the receiver but not transmitter. Symbol and noise variances σ2
s

and σ2
w are also known at the receiver.

Assumption A2) allows us to focus on the utilization of channel quality and simplifies our

analysis. Assumption A3) saves channel resources and enables us to handle fast-fading

situation, where sending back channel information in time to the transmitter is challenging.

7.1.3 Receiver model

The right side of Figure 7.1 illustrates the structure of the receiver. When receiving a

packet, the receiver performs channel estimation based on the preamble. After attaining

the estimated channel, the receiver detects the modulated symbols based on system model

(7.1). Due to the constraint of complexity and power, the linear ZF receiver defined in Eq.

(2.4) is deployed. The detected symbols are then demodulated (and channel decoded for

HARQ). At the MAC layer of the receiver, CRC parity check is performed. If a packet error

is detected and the number of transmissions is smaller than the limitM , the ARQ generator

at the receiver sends a NACK to the ARQ controller at the transmitter through the feedback
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channel. If a packet error is not detected and M is not reached, the ARQ generator sends

an ACK instead. Note that although the probability of undetected error is small, it is not

neglected. Hereafter, we refer to the system described above as the CRC-ARQ system.

7.2 Performance metrics

In this section, we define the performance metrics including reliability, latency, and receiver

complexity for CRC-ARQ systems. The metrics will depend on system parameters such as

signal variance σ2
s , noise variance σ2

w, packet length Lp, number of antennasNt,Nr, and the

detection scheme used. However, when expressing the metrics, we treat these parameters

as constants and do not explicitly state the dependence. This simplification in notation is

also used when analyzing intermediate variables.

Now, we recall the definition of average packet error rate (PER). Let P (err|H) be the

probability of packet error given the channel realization H . Then the average PER P (err)

is defined as

P (err) = EH (P (err|H)) . (7.3)

7.2.1 Reliability

Reliability R of the CRC-ARQ system is measured by the probability that the receiver

accepts a packet with errors, which happens when CRC fails to detect error or packet is

received with errors for M transmissions. Now let us define two events:

• Ψd: the event that received packet contains detectable errors;

• Ψu: the event that received packet contains undetectable errors.
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From the definition, P (err) = P (Ψd) + P (Ψu). Then, based on assumption A1), the

reliability of the CRC-ARQ system is

R = P (Ψd)
M−1 (P (Ψd) + P (Ψu)) + P (Ψd)

M−2P (Ψu) + · · ·+ P (Ψd)P (Ψu) + P (Ψu)

=
P (Ψu)

(
1− P (Ψd)

M
)

1− P (Ψd)
+ P (Ψd)

M , (7.4)

where P (Ψd) = P (err) − P (Ψu). The smaller R is, the more reliable the CRC-ARQ

system is. Note that the reliability of the CRC-ARQ system is a function of P (err), the

average probability of undetected error P (Ψu), and the maximum number of transmissions

per packet M .

7.2.2 Average latency

Define latency τ as the number of channel uses to receive a packet. Let us define two

constants during each round: D (in channel uses) represents the ARQ feedback delay, and

%
(

Lp

Rc log2 |S|

)
represents the delay for detecting, demodulating, and decoding a packet of

length Lp [86]. The definition of %(·) relies on the employed coding scheme, and thus is

not specified. As we can see, τ depends on the number of transmissions K that a packet

needs, and K is an RV. Then,

τ(K) =


K Lp

Rc log2 |S|
+K%

(
Lp

Rc log2 |S|

)
+KD, K < M,

M Lp

Rc log2 |S|
+M%

(
Lp

Rc log2 |S|

)
+ (M − 1)D, K = M.

(7.5)

Thus, the average latency EK(τ(K)) for the CRC-ARQ system is

EK(τ(K)) =
1−MP (Ψd)

M−1 + (M − 1)P (Ψd)
M

1− P (Ψd)
·
(

Lp
Rc log2 |S|

+ %

(
Lp

Rc log2 |S|

)
+D

)
+

(
M

(
Lp

Rc log2 |S|
+ %

(
Lp

Rc log2 |S|

)
+D

)
−D

)
P (Ψd)

M−1, (7.6)
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where P (Ψd) = P (err)−P (Ψu). It can be seen that average latency of CRC-ARQ system

monotonically increases with M and P (err).

7.2.3 Receiver complexity

We define the receiver complexity Θ as the number of arithmetic computations required

to receive one information bit. Denoting the complexity to complete a task as θtask, the

receiver complexity Θ of receiving one information bit after K transmissions is

Θ(K) =
K

Lp −Nc

(θdetect + θdemod + θdecode + θdeCRC) , (7.7)

and EK(Θ(K)) = E(K)
Lp−Nc

(θdetect + θdemod + θdecode + θdeCRC).

7.3 The CA strategy for basic ARQ in SISO systems

To reduce latency of CRC-ARQ process, we utilize the relationship between the channel

quality and the average PER P (err). Since packets that experience “bad” channels are more

likely to be erroneous and require retransmissions, we may request a retransmission imme-

diately after channel estimation if we find that the channel quality falls below a threshold.

In this way, the steps of detection, demodulation, and decoding are skipped, and trans-

mission latency and receiver complexity are reduced. In the following, we explain how

to choose a metric for channel quality and design its threshold for the basic ARQ process

when Nr = Nt = 1 (i.e., the SISO system), and when ML decoding and coherent demod-

ulation are applied at the receiver. Note that ML decoding and ZF LD perform the same in

the SISO case. When the CA strategy is added to the CRC-ARQ system, we refer to the

system as the CA-CRC-ARQ system.
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7.3.1 CA-CRC-ARQ

In the SISO system, we choose the receive SNR γ = |h|2γ0 as the channel quality, where

h is the channel realization. Let us compute the average PER for SISO systems:

P (err) = Eh (P (err|h)) = Eγ (f (γ)) , (7.8)

where f(γ) is the PER under AWGN channel with receive SNR γ when ML decoding and

coherent demodulation are deployed. The exact expression of f(γ) for QAM can be found

at [124, Eq. (23)].

Thus, we place a CA module in between channel estimation and the detector, as shown

in Figure 7.2. If γ is smaller than a threshold γth, a NACK is sent to transmitter imme-

diately. Otherwise, the packet continues to be processed by the receiver. Therefore, for

CA-CRC-ARQ, the probability of packet error given receive SNR γ is

Pca(err|γ) =


f(γ), γ > γth,

1, γ < γth.

(7.9)

Thus,

Pca(err) = Eγ (Pca(err|γ)) =

∫ γth

0

p(γ)dγ +

∫ ∞
γth

f(γ)p(γ)dγ, (7.10)

where p(γ) is the pdf of γ. It can be seen that

Pca(err) > P (err), (7.11)

when γth is finite.
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Figure 7.2: CA-CRC-ARQ for SISO systems

7.3.2 Performance metrics of CA-CRC-ARQ

Reliability

Let us compute the reliability of CA-CRC-ARQ systems, denoted as Rca. Let Pca(Ψd|γ)

represents the probability of detected packet error of CA-CRC-ARQ given receive SNR γ.

Then,

Pca(Ψd|γ) =


P (Ψd|γ), γ > γth,

1, γ < γth,

(7.12)

and

Pca(Ψd) = Eγ(Pca(Ψd|γ)). (7.13)

Also, the probability of undetected packet error of CA-CRC-ARQ given γ is

Pca(Ψu|γ) =


P (Ψu|γ), γ > γth,

0, γ < γth.

(7.14)

Therefore,

Pca(Ψu) =

∫ ∞
γth

P (Ψu|γ)p(γ)dγ < P (Ψu), (7.15)
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where p(γ) is the pdf of γ. The reliability of CA-CRC-ARQ is

Rca = Pca(Ψd)
M−1P (err) + Pca(Ψd)

M−2Pca(Ψu) + · · ·+ Pca(Ψd)Pca(Ψu) + Pca(Ψu)

=
Pca(Ψu)

(
1− Pca(Ψd)

M
)

1− Pca(Ψd)
+ Pca(Ψd)

M − (Pca(err)− P (err))Pca(Ψd)
M−1.

(7.16)

From (7.16), increasing γth leads to larger Pca(err) (and Pca(Ψd)) but lower Pca(Ψu), which

has competing effects on reliability.

Average latency

If a packet is received after K total transmissions, where K̃ retransmission requests are

sent by the CA module, the latency τca(K, K̃) of the packet transmission is

τca(K, K̃) =


K · TCA + K̃

(
Lp

log2 |S|
+D

)
+ (K − K̃)

(
Lp

log2 |S|
+ %( Lp

log2 |S|
) +D

)
, K < M,

M · TCA + K̃
(

Lp

log2 |S|
+D

)
+ (M − K̃)

(
Lp

log2 |S|
+ %( Lp

log2 |S|
) +D

)
−D, K = M,

(7.17)

where TCA is the time in channel uses to make a CA decision. The probability that a packet

takes K total transmissions and K̃ CA re-transmissions is

Pca(K, K̃) =


CK̃K−1P (γ < γth)

K̃ (P (γ > γth)P (Ψd|γ > γth))
K−1−K̃

·P (γ > γth)(1− P (Ψd|γ > γth)), K < M,

CK̃M−1P (γ < γth)
K̃ (P (γ > γth)P (Ψd|γ > γth))

M−1−K̃ , K = M,

(7.18)

where Ckn denotes the number of k-combinations (without repetition) from a set of n distinct

elements, K = 1, 2, · · · ,M and K̃ = 0, 1, · · · , K − 1. Therefore, the average latency of

the CA-CRC-ARQ system is

EK,K̃(τca(K, K̃)) =
M∑
K=1

K−1∑
K̃=0

Pca(K, K̃)τca(K, K̃). (7.19)
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Note that increasing γth increases the number of retransmissions requested by CA module,

which can reduce latency and receiver complexity to a certain point.

Receiver complexity

If a packet is received afterK total transmissions, where K̃ retransmission requests are sent

by the CA module, the computational complexity Θca(K, K̃) of receiving one information

bit is

Θca(K, K̃) =
KθCA + (K − K̃) (θdetect + θdemod + θdeCRC)

Lp −Nc

, (7.20)

and

E(Θca(K, K̃)) =
M∑
K=1

K−1∑
K̃=0

Pca(K, K̃)Θca(K, K̃). (7.21)

7.3.3 The design of γth

Now we further analyze the effect of γth on the reliability and latency of CA-CRC-ARQ,

with the primary goal of improving latency without degrading reliability.

Proposition 5. For the CA-CRC-ARQ system, there theoretically exists γb > 0 so that

when 0 < γth ≤ γb, CA-CRC-ARQ system has better reliability than that of the CRC-ARQ

system.

Proof: See Appendix D.1. �

Now let us analyze the average latency of CA-CRC-ARQ. To simplify our analysis, we

consider the value range of γth so that Pca(err) ≈ P (err), i.e., the values of γth that are

close to zero. From the definition of delay for CRC-ARQ and CA-CRC-ARQ in Eqs. (7.5)

and (7.17), and given that TCA ≈ 0, we have

τca(K, K̃) < τ(K), ∀K̃. (7.22)
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On the other hand, we have

K−1∑
K̃=0

Pca(K, K̃) = Pca(Ψd)
K−1(1− Pca(Ψd)) ≈ P (Ψd)

K−1(1− P (Ψd)), (7.23)

where we have used the fact that if Pca(err) ≈ P (err) then Pca(Ψd) ≈ P (Ψd). Then it can

be shown that

E(τca) < E(τ). (7.24)

For the receiver complexity of CA-CRC-ARQ system, given θCA ≈ 0, we have Θca(K, K̃) <

Θ(K), ∀K̃. Because of Eq. (7.23), it can be shown that

E(Θca) < E(Θ). (7.25)

To summarize, we want γth to be in the range of (0, γb], and also sufficiently small

that Pca(err) ≈ P (err). Due to the difficulty of expressing γb in a closed-form, we use

a sub-optimal approach to select γth: we simply consider the second constraint. In other

words, we limit the difference Pca(err) − P (err) to a small number ε0, and determine γth

by exploring its one-to-one relationship with Pca(err)−P (err). The problem is formed as:

max γth (7.26)

s.t. Pca(err)− P (err) ≤ ε0. (7.27)

In our experiments, ε0 is determined by taking samples in near-zero value range and select-

ing ones that provide improved reliability and latency.

From Eqs. (7.8) and (7.10), the difference between the average PER of CA-CRC-ARQ

and CRC-ARQ is

Pca(err)− P (err) =

∫ γth

0

(1− f(γ))p(γ)dγ ≤ p(γ)

∫ γth

0

(1− f(γ))dγ, (7.28)
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Table 7.1: Design steps for the CA-CRC-ARQ protocols.

S1) Compute the average PER for the CRC-ARQ system, and identify the channel
quality that directly affects the average PER

S2) Add the CA module, which requests early ARQ feedback whenever the de-
termined channel quality is lower than a threshold

S3) Compute the average PER for the CA-CRC-ARQ system as a function of the
threshold

S4) Set the difference between the average PER of the CA-CRC-ARQ system and
that of the CRC-ARQ system to a small number ε, and find the corresponding
threshold

where p(γ) is the maximum of p(γ) on its support region. Thus, p(γ) depends on channel

distribution. For Rayleigh fading channel with unity gain, γ is an exponential distributed

RV with mean γ0, so p(γ) = γ−1
0 . Knowing p(γ) and f(γ) (see [124, Eq. (23)]), we may

set Eq. (7.28) to ε0 and numerically find γth. Table 7.2 gives γth for different average

receive SNR, 16-QAM, and Rayleigh channel.

7.3.4 Discussion

For continuous communications using selective repeat ARQ process or parallel SAW ARQ

processes (e.g., [9]), the idle time between subsequent (re)transmissions can be used for

sending other packets. But the advantage of our proposed scheme in terms receiver com-

plexity and reliability can still be shown. We summarize the steps to design the CA-CRC-

ARQ in Table 7.1. Next, we design CA-CRC-ARQ for various systems.

7.4 CA strategies for basic ARQ in MIMO systems

In this section, we propose CA strategies for basic ARQ process in MIMO systems.

7.4.1 The CA strategy for STC MIMO

Let us first consider an STC MIMO system with Nr receive and two transmit antennas.

Alamouti code is used at the transmitter. By constructing an equivalent channel matrix and
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carrying out ZF LD (see [94]), the input-output model in (2.32) becomes

qk = ‖H‖F sk + wk, k = 1, 2 (7.29)

where ‖ · ‖F denotes Frobenius norm of a matrix, which coincides with the SISO system

model. The receive SNR for this case is γ = ‖H‖2
Fγ0.

Therefore, for STC-MIMO systems, we can select the receive SNR γ as the channel

quality. Given threshold γth, if γ < γth, the receiver requests a retransmission of the packet

immediately. Otherwise, the packet proceeds to the detection module. The threshold γth

can be designed similarly as in the case of the SISO system. If we assume the MIMO

channel has IID complex Gaussian entries with zero mean and unit variance, then 2‖H‖2
F

is Chi-square distributed with 4Nr DoF. Thus, the maximum of p(γ) on its support region

can be found as

p(γ) =
2γ−1

0

22NrΓ(2Nr)
(4Nr − 2)(2Nr−1)e−2Nr+1, (7.30)

Substituting Eq. (7.30) into Eq. (7.28) and setting the latter to ε0, we can numerically find

γth again. For example, γth is shown in Table 7.2 for Nr = 4, Lp = 1080, 16-QAM.

7.4.2 The CA strategy for SM MIMO

Now let us consider the SM MIMO system with Nr receive and Nt transmit antennas,

described in model (7.1). The entries in the channel matrix are IID complex Gaussian

distributed with zero mean and unit variance. When ZF LD is used, the equivalent input-

output model is given in (2.9). Therefore, with ZF LD, the packet can be viewed as Nt sub-

packets where each one goes through a separate sub-channel with post processing SNR,

γk =
γ0(

(HHH)−1
)
k,k

, k = 1, · · · , Nt. (7.31)

The sub-channel SNRs are identically distributed Chi-square variables with 2(Nr−Nt+1)

DoF. The packet will be correctly received if each sub-packet is correctly received.
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Denote P (errk|γk) as the probability of error on the k-th sub-packet under post process-

ing SNR γk. Then, the probability of packet error for system model (7.1) with ZF LD is

P (err|H) = 1−
Nt∏
k=1

(1− P (errk|γk)) . (7.32)

Note that Eq. (7.32) assumes that sub-packet error events are independent of each other

given a fixed channel matrix H . Even though correlation exists between the equivalent

noise in the sub-channels, the correlation between sub-packet error events are greatly miti-

gated by the different variance that the equivalent sub-channel noise takes, and we find Eq.

(7.32) to be a close approximation to the PER conditioned on H . Thus, the average PER

is

P (err) = 1−
∫ Nt∏

k=1

(1− P (errk|γk)) p(γ1, · · · , γNt)dγ1 · · · dγNt , (7.33)

where p(γ1, · · · , γNt) is the joint density function of γ1, · · · , γNt .

Since the worst sub-channel dominates packet error probability, we select the minimum

sub-channel SNR to indicate the overall MIMO channel quality. The CA module is placed

in between channel estimator and detector, and request a retransmission when

min
k
γk ≤ γth. (7.34)

For CA-CRC-ARQ,

Pca(err|H) =


1, mink γk ≤ γth,

P (err|H), otherwise.
(7.35)

Thus,

Pca(err) = 1−
∞∫

εth

Nt∏
k=1

(1− P (errk|γk)) p(γ1, · · · , γNt)dγ1d · · · dγNt . (7.36)

84



Therefore,

Pca(err)− P (err) =

∫
∃γk<γth

Nt∏
k=1

(1− P (errk|γk)) p(γ1, · · · , γNt)dγ1 · · · dγNt . (7.37)

Then, following S4) in Table 7.1 for the CA-CRC-ARQ, γth can be found numerically

by setting Eq. (7.37) to ε0. We provide γth for SM-MIMO system with respect to pre-

processing receive SNR in Table 7.2. The reliability, latency, and receiver complexity can

be analyzed similarly as in section 7.3.

7.5 CA strategies for Type-I HARQ

Type-I HARQ is the simplest version of HARQ schemes, where packets are CRC and FEC

coded before modulation and transmission. At the receiver, channel decoding is performed

before CRC decoding. If CRC detects a packet error, a retransmission request is sent and

the same codeword will be transmitted again. For simplicity, we assume that receiver does

not buffer previously received packets. Now we consider CA strategies for Type-I HARQ

in SISO systems and MIMO systems.

7.5.1 The CA strategy for Type-I HARQ in SISO systems

To get the average PER in the case of coded packet transmission, we first compute the

average PER of coded packet transmission under the AWGN channel. Given the receive

SNR γ, for QAM, the PER can be approximated by (see [124])

f(γ) =


1, 0 < γ < γpn,

g1e
−g2γ, γ > γpn,

(7.38)

where g1, g2, γpn are from the least-squares fitting of the empirical PER curve. Note that

g1, g2, γpn depend on the packet length Lp and the modulation scheme. For 16-QAM and
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Lp = 1080, g1 = 4.6900, g2 = 0.5064, γpn = 6.0010.

Thus, we still choose γ as channel quality, and request a retransmission immediately

when γ falls below a threshold γth. Let us assume γth > γpn. Using Eq. (7.38), the

difference between average PER of CA-CRC-ARQ and CRC-ARQ is

Pca(err)− P (err) =

∫ γth

γpn

(
1− g1e

−g2γ
)
p(γ)dγ

≤ p(γ)

(
γth − γpn +

g1

g2

(
e−g2γth − e−g2γpn

))
, (7.39)

where p(γ) is the maximum of p(γ) on its support region. With Rayleigh fading channel,

p(γ) = γ−1
0 . Therefore, by setting Eq. (7.39) to a small number ε0, we can solve γth

numerically. Table 7.3 gives γth for different average receive SNR, for Rayleigh channel

and 16-QAM.

7.5.2 The CA strategy for Type-I HARQ in SM-MIMO

Now, we analyze the average PER of coded packet transmission in the SM-MIMO. Af-

ter channel coding, the coded packet is modulated and divided into Nt parts, each going

through a separate sub-channel. The post-processing SNR γk for the kth sub-channel is

given in Eq. (7.31). Given a fixed H , the symbol errors in each sub-channel can be

approximated as independent events. Thus, the average symbol error rate (SER) given

channel matrixH is

SER(H) =
1

Nt

Nt∑
k=1

P (ŝk 6= sk|γk) ≤ P (ŝk 6= sk|γm), (7.40)

where γm is the minimum sub-channel SNR. Then, we may approximate the upper bound

of the average PER given channel matrix H (i.e., P (err|H)) using f(γm), where f(γ)

is the coded PER under the AWGN channel with SNR γ. In other words, P (err|H) ≤

P (err|H) ≈ f(γm). Thus, we select the minimum sub-channel SNR as the channel quality
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Table 7.2: Empirical εth for basic ARQ, Rayleigh channel, Lp = 1080, 16-QAM, ε0 =
10−3.

SISO
10 log10(γ0) 0 4 8 12 16 20 24 28
|h|2γ0 7.503 7.825 8.196 8.630 9.151 9.797 10.631 11.777

ST-MIMO
10 log10(γ0) 0 1 2 3 4 5 6 7
‖H‖2

Fγ0 8.223 8.326 8.433 8.545 8.662 8.785 8.913 9.048

SM-MIMO
10 log10(Ntγ0) 8 12 16 20 24 28 32 36
mink

γ0
((HHH)−1)k,k

4.750 4.754 5.474 6.000 6.279 6.309 7.528 8.459

again. The CA module requests a retransmission when

min
k
γk ≤ γth. (7.41)

Now we calculate the average PER for CRC-ARQ and CA-CRC-ARQ. Based on previous

reasoning,

P (err) ≤
∫
f(γm)pm(γm)dγm := P (err), (7.42)

Pca(err) ≤
∫ γth

0

pm(γm)dγm +

∫ ∞
γth

f(γm)pm(γm)dγm := Pca(err), (7.43)

where pm(γ) is the distribution of the minimum sub-channel SNR of the MIMO channel,

and

Pca(err)− P (err) =

γth∫
0

(1− f(γm))pm(γm)dγm. (7.44)

Following S4) in Table 7.1 for the CA-CRC-ARQ, we set Eq. (7.44) to a small number

ε0 and find γth numerically. For the IID Rayleigh fading MIMO channel, we list γth with

respect to pre-processing receive SNR in Table 7.3.

7.6 Numerical results

In this section, we evaluate the reliability, latency, and receiver complexity of CA-CRC-

ARQ and CRC-ARQ schemes with simulations. We assume a narrowband Rayleigh fading
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Table 7.3: Empirical εth for Type-I HARQ, Rayleigh channel, Lp = 1080, 16-QAM. For
SISO, ε0 = 10−5. For SM MIMO, ε0 = 10−10.

SISO
10 log10(γ0) 12 15 18 21 24 27 30
|h|2γ0 3.9824103 3.9828300 3.9836669 3.9853351 3.9886565 3.9952564 4.0083184

SM MIMO
10 log10(Ntγ0) 16 20 24 28 32 36 40
mink

γ0
((HHH)−1)k,k

3.9819888 3.9819887 3.9819899 3.9819954 3.9820045 3.9820172 3.9820000

Table 7.4: Number of arithmetic operations taken by different modules to receive a packet
of length Lp

CA decision Detection Demod FEC decoding CRC decoding

2N2
t Nr +

4N3
t

3
+Nt 4N2

t Nr +
4N3

t

3
+ 2NrLp

Rc log2 |S|
Lp

Rc log2 |S|
26Lp LpNc

channel with a bandwidth of 1MHz. The packet length Lp is 1080, the CRC length Nc is

8, and the maximum number of transmissions M is set to 5. 16-QAM is used. We assume

that CA decision takes 0.01ms and ARQ feedback delay is 5ms [80]. For simplicity, we

treat %(·) as a linear function. We further assume that decoding time per symbol is 0.01ms

in SISO, 0.015ms in ST-MIMO, and 0.025ms in SM-MIMO systems. For Type-I HARQ,

rate-3/4 convolutional code is used, where each stage is 1-bit and constraint length is 7

[94, p.522]. The complexity in terms of arithmetic operations of each module in MIMO

systems is listed in Table 7.4. One addition, subtraction, multiplication and division are

counted as one arithmetic operation.

7.6.1 CA strategies for basic ARQ

In this section, we evaluate the CA strategy for basic ARQ process.

The CA strategy in SISO systems

First, we evaluate the performance of CRC-ARQ and CA-CRC-ARQ in uncoded SISO

systems. In Figure 7.3, we see that the reliability of CA-CRC-ARQ is significantly higher

than that of CRC-ARQ at high SNR. Figure 7.4 shows that CA-CRC-ARQ has much lower

latency than the other ARQ scheme. To compare the receiver complexity of the ARQ
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schemes, we first plot the average number of retransmission requests made by CA and

CRC in CA-CRC-ARQ and the number of retransmission requests in CRC-ARQ in Fig-

ure 7.5. We observe that a large portion of retransmission requests is made by CA in

CA-CRC-ARQ. Recall that for CRC-ARQ to request a retransmission, the receiver needs

to carry out detection, demodulation, and CRC decoding. For CA-CRC-ARQ, if the re-

transmission request is made by CA, the complexity cost is only due to making the CA

decision. This indicates that CA-CRC-ARQ reduces the complexity of ARQ compared to

CRC-ARQ, which is confirmed by Figure 7.6, showing CA-CRC-ARQ taking the lowest

average number of arithmetics to receive one information bit at the receiver.

In sum, when the pdf of the channel is bounded on its support region (e.g. Rayleigh dis-

tributed), we can find γth such that CA-CRC-ARQ greatly reduces latency and complexity

at low SNR and improves system reliability at high SNR. Similar to using a longer CRC,

employing CA strategy improves reliability. But quite different from having a longer CRC,

CA strategy greatly reduces latency and receiver complexity.

The CA strategy in STC MIMO systems

Now we examine performance of CA strategy in an Alamouti STC-MIMO system with

Nt = 2 and Nr = 4. In Figure 7.3, we observe that CA-CRC-ARQ slightly increases the

reliability of CRC-ARQ at high SNR. But as shown in Figure 7.4, CA-CRC-ARQ reduces

the latency of CRC-ARQ by a significant percentage at low to moderate SNRs, which is

desirable. Since a large portion of retransmission requests is made by CA in CA-CRC-

ARQ, its receiver complexity is the lowest among comparisons in Figure 7.6.

CA strategies in SM MIMO systems

Now we investigate the performance of CA-CRC-ARQ in the SM-MIMO system with

Nr = Nt = 4. Other than CRC-ARQ and CA-CRC-ARQ (denoted as CA-CRC-SNR), we

include results of the CC-ARQ [88], denoted as CA-CRC-OD in the figures. CA-CRC-OD
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Figure 7.3: Reliability of different ARQ schemes in SISO and 4 × 2 ST-MIMO systems,
Lp = 1080
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Figure 7.4: Latency of different ARQ schemes in SISO and 4 × 2 ST-MIMO systems,
Lp = 1080

controls the od of the channel matrix H , and requests a retransmission immediately when

od(H) ≥ 0.9962. Since LDs collect the same diversity as the MLD when od of the channel

matrix is bounded by a number smaller than one [45], CA-CRC-OD achieves full spatial
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Figure 7.5: Number of retransmission requests made by different ARQ schemes in SISO
and 4× 2 ST-MIMO systems, Lp = 1080
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Figure 7.6: Average number of flops required by different ARQ schemes to receive one
information bit in SISO and 4× 2 ST-MIMO systems, Lp = 1080

diversity.

In Figure 7.7, we see that the reliability of CA-CRC-SNR is higher than that of CRC-

ARQ and CA-CRC-OD at most of high SNR levels. In Figure 7.8, we see that CA-CRC-
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Figure 7.7: Reliability of different ARQ schemes in 4× 4 MIMO system, Lp = 1080

SNR has the lowest latency compared to the other two in low to moderate SNRs. CA-CRC-

OD also has lower latency compared to CRC-ARQ, but the advantage is less significant.

Figure 7.10 shows that at low SNR, CA-CRC-SNR serves a large percentage of the ARQ

request by CA module and saves the complexity. However, for CA-CRC-OD, since its re-

transmission criterion is not directly related to the packet error probability, it serves a small

number of the retransmission requests by CC module. Therefore, compared to CA-CRC-

SNR, the complexity reduction by CA-CRC-OD is smaller. The complexity advantage of

CA-CRC-SNR at low SNR can be seen in Figure 7.11.

7.6.2 CA strategies for Type-I HARQ

Now we examine the performance of CA strategy for Type-I HARQ process in SISO and

MIMO systems.

The CA strategy in SISO systems

Figure 7.12 shows the reliability of the ARQ schemes. We see that the reliability of CA-

CRC-ARQ is higher than CRC-ARQ at high SNR. Figure 7.13 shows the latency of the
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Figure 7.8: Latency of different ARQ schemes in 4× 4 MIMO system, Lp = 1080
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Figure 7.9: Number of retransmissions requested by CRC-ARQ schemes in 4× 4 MIMO
system, Lp = 1080

ARQ schemes. The latency of CA-CRC-ARQ is much lower than CRC-ARQ at low SNR.

We then plot the average number of arithmetics needed to successfully receive one informa-

tion bit at the receiver for the ARQ schemes in Figure 7.14. CA-CRC-ARQ significantly
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Figure 7.10: Number of retransmissions requested by CA module in 4× 4 MIMO system,
Lp = 1080
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Figure 7.11: Average number of flops required by different ARQ schemes to receive one
information bit in 4× 4 MIMO system, Lp = 1080

reduces the complexity of ARQ compared to CRC-ARQ. Recall that for CRC-ARQ to

request a retransmission, the receiver needs to carry out detection, demodulation, channel
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Figure 7.12: Reliability of different ARQ schemes in coded SISO system, Lp = 1080
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Figure 7.13: Latency of different ARQ schemes in coded SISO system, Lp = 1080

decoding, and CRC parity check. For CA-CRC-ARQ, if the retransmission request is made

by CA, the complexity cost is only due to CA decision making.
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Figure 7.14: Average number of flops required by different ARQ schemes to receive one
information bit in coded SISO system, Lp = 1080

The CA strategy in SM MIMO systems

Now we investigate the performance of CA strategy in the SM-MIMO system with Nr =

Nt = 4. Three ARQ schemes are evaluated and ZF LD is used. In Figure 7.15, we

see that the reliability of CA-CRC-SNR is higher compared to CRC-ARQ, but lower than

CA-CRC-OD at high SNR. This indicates that the selection of channel quality and the

design of threshold can be further improved, in the case of coded SM-MIMO systems.

At low SNR, CA-CRC-SNR serves a large portion of the retransmission requests by CA

module and saves the complexity cost. For CA-CRC-OD, since its retransmission criterion

is not directly related to the probability of packet error, it serves a fixed small number of

the retransmission requests by CA module. Therefore, compared to CA-CRC-SNR, the

complexity reduction of CA-CRC-OD is small. The latency and complexity advantage of

CA-CRC-SNR at low SNR can be seen in Figures 7.16 and 7.17.
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Figure 7.15: Reliability of different ARQ schemes in 4 × 4 coded MIMO system, Lp =
1080
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Figure 7.16: Latency of different ARQ schemes in 4× 4 coded MIMO system, Lp = 1080
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Figure 7.17: Average number of flops required by different ARQ schemes to receive one
information bit in 4× 4 coded MIMO system, Lp = 1080

7.7 Chapter summary

In this chapter, we proposed CA strategies for basic ARQ and Type-I HARQ process for

linear receivers in SISO and MIMO systems. The CA strategies work as follows: in SISO

systems, the receiver requests a retransmission immediately if the receive SNR is below cer-

tain threshold. In SM-MIMO systems, the linear receivers select the minimal sub-channel

post processing SNR as the channel quality and immediately request a retransmission when

it falls below certain threshold. As shown by simulations, the proposed CA strategies re-

duce average latency and receiver complexity at low to moderate SNR levels, and improve

reliability at high SNR regime, for both basic ARQ and Type-I HARQ process.
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CHAPTER 8

CONCLUSION

8.1 Contributions

In this dissertation, channel-quality-driven high-performance receivers are developed for

various MIMO systems, and channel assisted ARQ techniques are proposed for high-

reliability low-latency communications. The contributions include:

• We quantified the maximum information rate of MIMO transmission with LR-aided

linear equalizers employed. We studied the complexity of LR algorithms when the

MIMO channel is spatially correlated, and demonstrated the effect of SNR and cor-

relation coefficient on the average complexity of LR algorithms.

• We proposed PELR aided detectors for STCM systems at large MIMO dimensions.

By fully utilizing the symmetric property of the equivalent channel matrix, the pro-

posed detectors reduced approximately half of the complexity of the ELR aided de-

tectors. With similar complexity, the PELR aided detectors achieve better BER com-

pared to other state-of-the-art detectors.

• We presented a linear joint transceiver design for MU MIMO downlink system using

LR algorithms. We compared the error performance and complexity of our proposed

design with several existing schemes and show that our design performs very well

with low complexity especially when each user is equipped with a large number of

antennas (e.g., more than three) and receives spatially multiplexed data streams.

• We proposed four RL-based LR algorithms, differing in their objectives, action set

and reward functions. We demonstrated the possibility of having “customized” crite-

rion of reduction and achieving it using RL. Simulation results show that RL-based
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LR-aided detectors achieve similar BER and lower DSP complexity compared to

existing LR-aided detectors for up to 4× 4 MIMO.

• We studied the performance of LDs in massive MIMO systems of finite number of

antennas under various propagation conditions. We provided the thresholds of Nr

(given propagation channel and Nt) needed for LDs to collect the same diversity as

the MLD does with high probability in practice.

• We proposed CA strategies for basic ARQ and Type-I HARQ process for linear re-

ceivers in MIMO systems. Shown by simulations, the proposed CA-ARQ strategies

reduce latency and receiver complexity at low to moderate SNR levels, and improve

reliability at high SNR regime, for both ARQ processes.

8.2 Future research

To expand on the results from the proposed research, future research topics include:

• Develop LR algorithms for MU MIMO uplink where UEs may have different num-

ber of antennas and adopt different modulation schemes; Investigate the options of

power allocation and the impact of imperfect CSI in LR aided transceiver architecture

design for the MU MIMO downlink;

• Investigate deep RL based LR algorithms (e.g., deep Q-learning, actor-critic meth-

ods), to improve the performance of RL-based LR-aided detectors and enable high-

performance detection for large MIMO;

• Investigate the distribution of od and the performance of LDs in more complex multi-

user massive MIMO models; Investigate the impact of channel correlation on the

distribution of od and performance of LDs.

• Design and analyze CA strategies for frequency-selective MIMO systems; Combine

multiple channel qualities to decide whether to send early feedback; Modify CA
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strategies to consider when limited buffering of packets at the receiver is available.
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APPENDIX A

PROOF FOR CHAPTER 3

A.1 Proof of Proposition 1

Using Hadamard’s inequality, it can be shown that CLR
zf (H) ≤ CLR

ml (H).

A.2 Proof of Proposition 2

At high SNR, given (3.14) and with Jensen’s inequality, we have that

0 ≥ log2EH

(
1− od((H†)H)

1− od((H̃
†
)H)

)
≥ EH

(
log2

(
1− od((H†)H)

1− od((H̃
†
)H)

))

= EH (Czf (H))− EH

(
CLR
zf (H)

)
. (A.1)

From the definition of dual ELR algorithm and [43, Proposition 1], we have od((H†)H) ≥

od((H̃
†
)H) for every channel matrixH . Thus EH

(
log2

(
1−od((H̃

†
)H)

1−od((H†)H)

))
≥ 0.

A.3 Proof of Proposition 3

From (3.3), the outage diversity of LR-aided MLE is the same as that of MLE. When

od(H̃) ≤ ε1 < 1, by [45, Lemma 2], there exists ε2 so that od((H̃
†
)H) ≤ ε2 < 1. From

(3.3) and (3.11), we have

Cml(H)− CLR
zf (H) = CLR

ml (H)− CLR
zf (H) ≤ − log2(1− ε2) := C0, (A.2)

where C0 is a finite number. Thus, P (CLR
zf (H) < Cth) ≤ P (Cml(H) < Cth + C0). At

the same time, since CLR
zf (H) ≤ Cml(H), we have P (CLR

ml (H) < Cth) ≤ P (CLR
zf (H) <

Cth). Therefore, the outage diversity of LR-aided ZFE is the same as that of MLE.
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APPENDIX B

PROOF FOR CHAPTER 4

B.1 Proof of Lemma 2

Given the structure ofH in (2.34), we have

HHH =



M 1,1 M 1,2 ... M
1,

Nt
2

M 2,1 M 2,2 ... M
2,

Nt
2

... ... ... ...

M Nt
2
,1
M Nt

2
,1

... M Nt
2
,
Nt
2


, (B.1)

where

M l,k =

 bH2l−1b2k−1 + b∗H2l b
∗
2k bH2l−1b2k − b∗H2l b∗2k−1

bH2lb2k−1 − b∗H2l−1b
∗
2k bH2lb2k + b∗H2l−1b

∗
2k−1

 .
It is shown in (B.1) that HHH has Nt/2 Type-II column pairs. Thus, the diagonal of

HHH has Nt/2 pairs of real values. The matrix C has the same structure as HHH ,

and also has Nt/2 Type-II column pairs and Nt/2 pairs of real entries on its diagonal.

For the channel matrix in MMSE form, we have H̄ = [HT , σw/σsINt ]
T and H̄H

H̄ =

HHH+σ2
w/σ

2
sINt . Therefore,C = (H̄

H
H̄)−1 still has the same structure for the channel

matrix in MMSE form.

Suppose that at the first iteration, the largest diagonal value Ck,k can be reduced by its

l-th column and row by ∆l,k. From [43], we have λl,k = −
⌈
Cl,k

Cl,l

⌋
and ∆l,k = −|λl,k|2Cl,l−
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λ∗l,kCl,k − λl,kCk,l. If k < kp and l < lp, or k > kp and l > lp, then

λlp,kp = −
⌈
Clp,kp
Clp,lp

⌋
= −

⌈
C∗l,k
Cl,l

⌋
= λ∗l,k, (B.2)

∆lp,kp = −|λlp,kp |2Clp,lp − λ∗lp,kpClp,kp − λlp,kpCkp,lp

= −|λl,k|2Cl,l − λl,kC∗l,k − λ∗l,kC∗k,l = ∆l,k, (B.3)

where the last step is because that Cl,k = C∗k,l. Otherwise, we can similarly show that

λlp,kp = −λ∗l,k and ∆lp,kp = ∆l,k. Therefore, Ckp,kp can be reduced by its lp-th column and

row by ∆l,k.

B.2 Proof of Lemma 3

At the start of an iteration, let

h̃l =

 bl

−b∗l+1

 , h̃lp =

bl+1

b∗l

 , h̃k =

 bk

−b∗k+1

 , h̃kp =

bk+1

b∗k

 ,
where we assume that l < lp and k < kp (WLOG). From [43], after reductions between

index pair (l, k) and (lp, kp), we have h̃l ← h̃l−λ∗l,kh̃k and h̃lp ← h̃lp−λ∗lp,kph̃kp . In other

words, at the end of that iteration,

h̃l =

 bl − λ∗bk

−b∗l+1 + λ∗b∗k+1

 , h̃lp =

bl+1 − λbk+1

b∗l − λb∗k

 ,
where λl,k = λ, and λlp,kp = λ∗. This shows that after the two consecutive reductions,

columns h̃l and h̃lp remains a Type-I column pair. Therefore the structure of H̃ is main-

tained, and thus so is that of C̃.
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APPENDIX C

PROOF FOR CHAPTER 6

C.1 Proof of Proposition 4

Without loss of generality, assume k = 1. Let Q and R be the unitary matrix and upper

triangular matrix from the QRD ofH . Regardless of the fading distribution of h1, we first

show that: 1) The entries of R are independent of each other; 2) Rn,n, n = 2, · · · , Nt, are

such that 2R2
n,n are Chi-square distributed with 2(Nr − n + 1) degrees of freedom (DoF);

and 3) The off-diagonal entries, Rm,n for m < n, are Nc(0, 1). To prepare for the proof,

we denote a vector h having i.i.d. entries from Nc(0, 1) as h ∼ N I
c (0, 1) and establish the

following lemma.

Lemma 4. Let a random vector x of sizeN×1 beN I
c (0, 1), and letA be a random unitary

matrix on UN and independent of x, where UN is the set of order-N unitary matrices. Then,

y = Ax is N I
c (0, 1), and y is independent ofA.

Proof: See Appendix C.2. �

The proof of Lemma 4 is similar to the proof of Lemma 3.1 in [125], except that the

former addresses the complex case. Now we consider QRD with Householder transform

(HT) [126]. From the first column h1 of H , we derive an HT matrix A1 so that A1h1 =

r11e1, whereA1 only depends on h1/‖h1‖, e1 = [1, 0, · · · , 0]T , and r2
11 = ‖h1‖2. Then,

A1H = [A1h1, · · · ,A1hNt ] =

 r11 r12 · · · r1Nt

0 h
(2)
2 · · · h

(2)
Nt

 . (C.1)

Since h1 has i.i.d. entries,A1 and r11 are independent. According to Lemma 4, the column
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vectors  r1n

h(2)
n

 = A1hn, n = 2, · · · , Nt, (C.2)

are independent of r11 and each other, and are N I
c (0, 1). Thus, [r12, · · · , r1Nt ] and H2 =

[h
(2)
2 , · · · ,h(2)

Nt
] are independent of each other, and are N I

c (0, 1). Continuing the reduction

with H2 leads to an array of unitary matrices A1, · · · ,ANt−1 so that ANt−1 · · ·A1H =

R, where R is an upper triangular matrix. By previous reasoning, the entries of R are

independent of each other and satisfy condition iii). Also, during the n-th reduction (n ≥

2), since h(n)
n ∼ N I

c (0, 1), 2r2
nn is Chi-square distributed with 2(Nr − n + 1) DoF. Thus,

condition ii) is met.

Given conditions 1) to 3), we know 2
∑n−1

m=1 |Rm,n|2 is Chi-square distributed with

2(n − 1) DoF. We also know that a Chi-square distributed RV with 2k DoF is a Gamma

RV with parameters (k, 2). Therefore, by [127, p. 188], R2
n,n/(R

2
n,n +

∑n−1
m=1 |Rm,n|2) ∼

Be(Nr−n+1, n−1), where Be(a, b) means Beta distribution with parameters (a, b). Since

1− od =
∏Nt

n=2

(
R2
n,n/(R

2
n,n +

∑n−1
m=1 |Rm,n|2)

)
, 1− od is a product of Nt− 1 independent

Beta RV b1, · · · , bNt−1, where bk ∼ Be(Nr − k, k). By [128, Theorem 7] and a change of

variable, the pdf of od is then given in Eq. (6.8).

C.2 Proof of Lemma 4

The set of order-N unitary matrices UN forms a compact topological group. By [129], there

uniquely exists a normalized and left-translation-invariant measure µ given the set UN . In

other words, µ(UN) = 1 and µ(AU∗N) = µ(U∗N), where U∗N is any measurable subset of

UN and A is any element of UN . We assume in the following that all distributions are

measurable with the measure µ, and all integrals are computed with the measure µ.

Define f1(x) as the distribution of x, f2(A) the distribution of A, and f3(y,A) the
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joint distribution of (y,A). Considering two measurable sets Y and A , we have

∫
A

∫
Y

f3(y,A) dy dA = Prob ((y,A) ∈ Y ×A ) , (C.3)

where Prob(·) denotes the probability of random events. For a fixedA, we have

Prob(y ∈ Y |A) = Prob(x ∈ AHY |A)

(E1)
= Prob(x ∈ Y ) =

∫
Y

f1(x) dx, (C.4)

where the equality (E1) is due to the orthogonal invariance of complex Gaussian [91,

Appendix A], and the fact that x andA are independent. Thus, y has the same distribution

as that of x.

Substituting Eq. (C.4) into Eq. (C.3), we have

∫
A

∫
Y

f3(y,A) dy dA =

∫
A

f2(A)Prob(y ∈ Y |A) dA

=

∫
A

∫
Y

f2(A)f1(y) dy dA. (C.5)

Therefore, f3(y,A) = f2(A)f1(y) almost everywhere. Thus, y andA are independent.
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APPENDIX D

PROOF FOR CHAPTER 7

D.1 Proof of Proposition 5

Let us denote P (Ψd) as d, P (Ψu) as u. Let us represent Pca(Ψd) as d + ∆1(γth), and

Pca(Ψu) as u − ∆2(γth), By the definition of Pca(Ψd) and Pca(Ψu) in Eqs. (7.13) and

(7.15), we have

∆1(γth) =

∫ γth

0

(1− P (Ψd|γ))p(γ)dγ, (D.1)

∆2(γth) =

∫ γth

0

P (Ψu|γ)p(γ)dγ. (D.2)

We also know that ∆1(γth) ≥ ∆2(γth), with equality when γth = 0. Thus,

R−Rca =
u(1− dM)

1− d
+ dM − (u−∆2(γth))(1− (d+ ∆1(γth))

M)

1− (d+ ∆1(γth))

− (d+ ∆2(γth))(d+ ∆1(γth))
M−1. (D.3)

When γth = 0,R−Rca = 0. On the other hand,

∆′1(γth) = (1− P (Ψd|γth))p(γth), (D.4)

∆′2(γth) = P (Ψu|γth)p(γth). (D.5)
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Thus,

(R−Rca)
′ =∆′2(γth)

(
1 + · · ·+ (d+ ∆1(γth))

M−2
)

− (u−∆2(γth))∆
′
1(γth)

(
1 + · · ·+ (M − 2)(d+ ∆1(γth))

M−3
)

− (u+ d)∆′1(γth)(M − 1)(d+ ∆1(γth))
M−2. (D.6)

When γth = 0, we have

(R−Rca)
′
γth=0 =p(0) ·

(
P (Ψu|0)

(
1 + · · ·+ dM−2

)
− u(1− P (Ψd|0))

(
1 + · · ·+ (M − 2)dM−3

)
−(u+ d)(1− P (Ψd|0))(M − 1)dM−2

)
. (D.7)

Consider a moderate average receive SNR so that u� d and u� P (Ψu|0), we have

(R−Rca)
′
γth=0 = p(0) ·

(
P (Ψu|0)

(
1 + · · ·+ dM−2

)
−(1− P (Ψd|0))(M − 1)dM−1

)
. (D.8)

When L is large,

P (Ψu|0) + P (Ψd|0) = 1− P (err|0) = 1, (D.9)

thus

(R−Rca)
′
γth=0 = p(0) · P (Ψu|0)

M−1∑
k=1

dk−1(1− dM−k) > 0. (D.10)

Therefore, there exists γb so that when 0 < γth ≤ γb,R−Rca > 0.
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