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Abstract 
The Reconfigurable Modular 
Manipulator System (RMMS) consists of modular links 
and joints which can be assembled into many manipulator 
configurations. This capability allows the RMMS to be 
rapidly reconfigured in order to custom tailor it to spe
cific tasks. An important issue, related to the RMMS, 
is the determination of the optimal manipulator configu
ration for a specific task. In this paper, we address the 
problem of mapping kinematic task specifications into a 
kinematic manipulator configuration. For the design of 2 
degrees-of-freedom planar manipulators, an analytical s0-

lution is derived. Since, for problems with more than 2 
design parameters, analytical solutions become impracti
cal, we have also developed a numerica.l approach for the 
design of 6 degrees-of-freedom manipulators. 

1 Introd uction 
There has been an increasing interest in the kinematic 
properties of robot manipulators such as workspace fea
tures [3, 6, 19, 11], dexterity criteria. [1, 17, 20] and in
verse kinematics [10, 14]. In parallel with the research 
efforts on kinematic analysis of manipulators, the prob
lem of kinematic design has been addressed. It is con
cluded in [8, 15, 18], that an elbow manipulator with zero 
link offsets, is optimal with respect to working volume 
and dexterity. The optimality measures considered in 
the above mentioned articles are task independent. They 
don't guarantee that there is no better manipulator for 
a specific task. In [16], task specificity is included, as

suming though that an elbow configuration is optimal for 
any task. Only the size of the manipulator and its base 
position are considered as design parameters. 

The work reported in this paper is motivated by our 
research on the development of a Reconfigurable Modu
lar Manipulator System [13], [4]. This system consists 
of a set of joints and links of varying specifications, with 
consistent mechanical and electrical interfaces. The joints 
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and links can be connected rapidly to obtain manipulators 
with varying performance specification. 

To effectively utilize the capabilities provided by the 
RMMS concept, it is important to address the issue 
of 'Configuring a manipulator from Task Requirements'. 
Different tasks require different manipulator configura
tions. Therefore, it is important to establish method
ologies that generate an appropriate manipulator con
figuration, given a set of kinematic and dynamic task 
specifications. Kinematic requirements are those task re
quirements that affect only the kinematic structure of the 
manipulator, while dynamic requirements affect both the 
kinematics and dynamics of the manipulator. Examples 
of kinematic requirements are workspace volume, ma.xi
lIlum reach and maximum positional error. Examples of 
dynamic requirements are maximum payload, maximum 
joint velocities and maximum joint accelerations. 

In this paper, we present both analytical and numerical 
approaches for determining the kinematic structure (or 
Denavit-Hartenberg parameters) of a manipulator given 
a set of task specifications. 

2 Problem Statement 
The exact problem solved in this paper is the determi
nation of the kinematic structure of a manipulator that 
satisfies the given kinematic requirements. Since the kine
matic structure of a manipulator can be described un
ambiguously by its Denavit-Hartenberg parameterll, we 
can translate the problem into the determination of the 
DH-parameters. The kinematic requirements taken into 
consideration are: 

1. Reachability: the specified set, WR, of posi
tions/orientations, p = (x, y, z, fJ, 'P, t/J) E W R , has 
to be inside the reachable workspace of the manipu
lator. 

2. Joint angles: the joint angles must be within the 
specified limits. 

In order to make the problem solvable, we make the fol
lowing assumptions: 

1. All the design parameters can vary continuously. 

2. Only non-redundant serial link rotary manipulators 
are considered. 

1 henceforth abbreviated to DH-parameters. 
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3. The robot base position is fixed and known. 

4. The last three axes of 6-DOF spatial manipulators 
intersect in a point. 

5. No self-collision is considered. 

In this paper, the, problem statement is limited to 
reachability and joint limit specifications. This enables 
us to clearly explain the b8.sic concepts of the proposed 
design method. Rowever, the approach is more general 
and has been extended to include obstacle avoidance and 
manipulability specifications. Furthermore, the assump
tion of non-redundancy has been relaxed, so that also the 
kinematic structure of redundant manipulators can be de
signed [9]. 

3 General Mathematical For
mulation 

3.1 Kinematic Space 

According to the Denavit-Rartenberg convention, 3 pa
rameters are needed to describe each link of a rotary ma
nipulator [2]. These 3 parameters are the link length ai-I, 

the link twist £ri-1 and the link offset di. A fourth DR
parameter, the joint angle 9i, does not characterize any 
dimensional parameter of a rotary serial link manipula
tor but merely its position, and therefore is not a design 
parameter. 

To facilitate the development of our design approach, 
we define the DH-configuration space as a 3n-dimensional 
space with the 3n DR-parameters as base elements (3 
DR-parameters for each of the n links). A manipula
tor with n rotary joints can be. represented by a vec
tor, v dh = [00, ao, d1, ... , an-I, £rn -1, dn]T, of 3n DR
parameter!;, which corresponds to one specific point in 
the DR-configuration space. And vice versa, each point 
in the DR-configuration space corresponds to one specific 
n-DOF rotary manipulator. The vector, q =.[9}, ... , 9n f 
of n joint variables, can be viewed as a point in the n
dimensional joint space. Each point 'in this space rep
resents one specific posture of the manipulator and con
versely, each manipulator posture corresponds to exactly 
one point in the joint space. A point P = [x, y, z, t? , tp, tP f 
in the 6-dimensional task space (or cartesian space), corre
sponds to a physical point and direction in the base frame 
of the manipulator. 

To make the kinematic relation2 easier to use in differ
ent forms (e.g. as in inverse kinematics), it is useful to 
introduce the idea of the kinematic space. The (4n + 6)
dimensional kinematic space is the cartesian product of 
the DR-configuration space, the joint space and the task 
space. The base-elements of the kinematic space thus in
clude the 3n DR-parameters, the n joint variables and 
the 6 position/orientation parameters of the end effector. 
This implies that a manipulator in a certain posture at 

2By kinematic relation we mean the relationship between 
joint positions and end effector position, and not the Jacobian 
relations between joint velocities and end effector velocities. 
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a certain point, can be represented as one point in the 
kinematic space. 

3.2 Mathematical Formulation Using 
the Concept of the Kinematic Hy
perplane 

As mentioned before, the kinematic relation can be viewed 
as a mapping from the joint space into the task space. 
The disadvantage of this representation is that the map
ping is different for each manipulator. The concept of 
kinematic space can be exploited to overcome this dis
advantage, since we can formulate, in this space, all the 
kinematic relations of all the n-DOF rotary manipulators. 
Indeed, the kinematics of any n-DOF manipulator can be 
described by the following equation, which corresponds to 
a 4n-dimensional hyperplane (henceforth called kinematic 
hyperplane) in the kinematic space: 

~T~T~T ... ~-lT= ~T (1) 

where :-IT is the transformation from the (i-1)-th frame 
to the i-th frame [2]. 

An example of the use of the kinematic hyperplane, 
is the determination of the workspace of a specific ma
nipulator. Specifying the 3n DR-parameters £ri-1, ai-I, 
di (i = 1, ... , n), corresponds to intersecting the 4n
dimensional kinematic hyperplane with 3n of (4n + 5)
dimensional hyperplanes. This yields an n-dimensional 
solution (the dimensionality of the solution corresponds 
to the n joint angles that are still free to be chosen). 
To determine the reachable workspace we project this n

dimensional hyperplane on the (x, y, z)-space. 
Instead of obtaining the workspace given the kinematic 

parameters of a manipulator, we are interested in exactly 
the opposite problem: given a required workspace WR, 
determine the kinematic configuration. This problem can 
be formulated mathematically, using the concept of the 
kinematic hyperplane. We achieve this in two steps. First, 
consider the set of all the kinematic configurations that 
can reach one specific point/orientation, Pi. This set 
is the intersection of the kinematic hyperplane with six 
(4n + 5)-dimensional hyperplanes, given by the following 
equations: 

x= Xi t? = t?i 
Y=Yi tp = tpi (2) 
z= Zi tP = tPi 

The solution of this set of eq~ations will, in general, be 
an infinite set of manipulators. We can find such a set of 
manipulators for each point in W R. 

In the second step we take the intersection of all the 
solutions (each for a different position Pi) found in step 
one. This yields the set of manipulators that can reach 
every point in WR. An exact mathematical formulation 
of the problem is thus: 

Find Vdh [ao,£ro,d1, ... ,an_1,£rn _1,dn ]T 
such that for each Pi E W R : 39i(i = 1, n), 



Figure 1: A Simple 2-DOF Example 

for which: 
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and where 8mini and 8maxi are the joint limits of 
joint i. In order to achieve our goal, we will exploit the 
availability of the closed form inverse kinematics solution 
[7, 10, 14]. This solution appears as a 161h order polyno
mial in the tangent of the half-angle of one of the joint 
variables. To account for the case when the point Pi is 
outside the reach of the manipulator, we have developed 
a computation scheme called "Generalized Inverse Kine
matics" which, in the case of non-reachable points, gen
erates complex joint angles [9]. 

4 Analytical Solution for a 2-
DOF Planar Manipulator 

4.1 Example 

We consider the problem of designing a 2-DOF planar ma
nipulator, that has only two design (or DH-) parameters: 
the link lengths 11 and h. Figure 1 shows the variables 
and the notation. 

The exact design problem addressed is: Given a finite 
set of reachable points (x, 31) E W R and limits on the 
joint angles 81 and 82 , determine a pair of link lengths 
(11, 12 ) such that the planar manipulator is able to reach 
all the points in W R. More specifically, the joints limits 
are ±7r/4 for 81 and ±5r/6 for (J2. The points (x, 31) E WR 
are depicted with an 'x' in Figure 2. 

4.2 The Inverse Kinematics 

The inverse kinematics of this planar manipulator are ex
pressed as follows: 

(
X2 + 2 +/2 12) 

arctan 2(31, x) - arccos ~ 2 (4) 
2/1 x 2 + 312 

x 

x 

-45G :!:;O, ~4S" 

x 

·2 x 

Figure 2: Graphical depiction of the problem state
ment. 

(5) 

It is more convenient to rewrite (4) and (5) as a function 
of u and v, where: 

81 82 
V = tan( 2)' andu = tan( 2) (6) 

From Equation (5) we obtain expressions for u and v: 

(x 2 + 31 2
) - (11 + h)2 

(x 2 + 312) - (11 - ' 2)2 

31 - k2 kl - X 
V==--=--

x + kl k2 + 31 

(7) 

(8) 

where: 

4.3 

11 + 12 cos 82 

12 sin 82 

(9) 

(10) 

Mathematical Formulation of the 
Task Specifications 

The task specifications considered in this example are 
reachabi/ity and joint limits. The Generalized Inverse 
Kinematics, as given by Equations (7) and (8), will in 
general yield complex solutions for u. Indeed, u 2 is nega
tive when 

../x2 + 312 < III - hi (11) 

or (12) 

This corresponds to the cases for which the point (x, 31) 
is outside the reach of the manipulator. The reachability 
constraint can be expressed as: 

Imag(u) = 0 (13) 

The mathematical formulation of the whole problem is 
then: 

SS8 



Find (11, h) ,such that for each point (x, Y) E 
WR: 3(81 ,82) and (v, u), for which: 

{ 

Imag(u) = 0 
81 ~ 8minl 
82 ~ 8min2 
81 $ 8maxl 

, 82 $ 8max2 

4.4 Analytical Solution 

(14) 

In this section, we develop expressions for the bounds on 
the feasible region in the {II, h}-plane (i.e. the region 
containing the admissible solution sets (II, 12», We derive 
analytical expressions for: 

1. Bounds due to reachability constraints. 

2. Bounds due to joint limits on 81 . 

3. Bounds due to joint limits on 82. 

The reachability bound is described analytically by 
Equations (11) and (12), or Equation (13). These equa
tions define the admissible solution pairs (11, h), that de
scribe a manipulator that can reach the point (x, y) with
out joint limits. This region is bounded by the three 
straight lines: 

d 

d 

d 

(15) 

(16) 

(17) 

In order to find an expression for the bounds due to 
the joint limits on 81 , we first derive the equation that 
describes the admissible solution pairs (h, 12) that can 
reach the point (x, y) with the joint angle 81 fixed. If we 
define the angle /3 as in Figure 1, the following expression 
holds: 

(dS~:/3r - Cl~s~:;S/3r =1 (18) 

Equation (18) represents a hyperbola with both asymp
totes at 45 degrees, focal axis parallel to the h-axis, center 
at (d cos/3, 0) and a vertex distance of d sin/3. The bound 
due to joint limits on 81 can-now be found by choosing the 
maximum permissible /3-value. This hyperbola is labeled 
'b' in Figure 3. 

The starting point for the deduction of the equation 
representing the bounds due to joint limits on 82 is Equa
tion (7). If we perform a rotation of 45 degrees, transform
ing the {h, 12} DR-configuration space into the space with 
base variables {p = \i?, q = \/;2}, we obtain: 

2 sin2(~) d2 _ 2p2 
U =---=----

cos2( ~) d2 - 2q2 
(19) 

The above expression can be written as: 

2p2 cos2( ~2) + 2q2 sin2( ~) = d2 cos2( ~) + d2 sin2( ~) 
(20) 
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or: 

(21) 

This is the equation of an ellipse with an axis of 
d/(-12 cos(82/2» in the p-direction and an axis of 
d/( -12 sin( 82/2» in the q-direction. The bound, labeled 
'c' in Figure 3, is found for the maximum permissible value 
of 182 1. 

For each point (x, y), we thus obtain 5 bounding curves. 
The bounds that border the feasible region are called "ac
tive" (e.g. bound "c"), while "passive" bounds do not 
touch the feasible region at all, i.e., there exists an active 
bound that is more restrictive. For problems with multi
ple points in WR, the number of bounds can become very 
large, but the set of active bounds will usually remain 
small. 

One can now pick any pair (11, h) inside the feasible 
region, as a solution to the design problem. However, in 
general, for spatial manipulators, the DH-configuration 
space has 3n dimensions and the analytical bounds are 
highly non-linear hyperplanes. Therefore, it becomes very 
hard to construct the set of active bounds and to find 
a tuple, that is "inside" .all the active bounds, since we 
cannot visualize the solution anymore. In that case, a 
numerical solution procedure is more appropriate. In the 
next section, we develop a numerical approach that can 
be used for the design of spatial manipulators. We show 
its efficacy by applying it to the 2-DOF design problem 
and comparing the results with the analytical approach. 

5 Numerical Solution 
In the previous sections, we formulated the design prob
lem in terms of the Generalized Inverse Kinematics. At 
first sight, the constraints look like a simple set of non
linear equations for which standard solution methods are 
applicable. However, as we mentioned earlier, the GIK 
have multiple solutions (8 for a 6R serial manipulator 
that has the last three axes inters.ecting at a point). Each 
solution corresponds to a possible posture of the manip
ulator. Thus, for each point P E W R and a given set of 
DH-parameters, the GIK yield ei~ht sets of joint vari
ables: (8P), ... , 8~1), (8i2), ... ,8/», ... (8i8>, ... , 8~8», 
where the superscript denotes the posture number. For 
each posture, a separate set of (in)equalities representing 
the task requirements, is formulated. The manipulator 
fulfills all the task requirements, ifthe set of (in)equalities 
is satisfied for at least one set (8ij), ... ,8~j). For in
stance, the reachability task specification is satisfied when 
a point, Pi, is reachable in at least one posture but does 
not require that Pi has to be reachable in all eight pos
tures possible. This implies that the problem is not for
mulated as a set of (in)equalities that have to be satisfied 
simultaneously, but merely as a juxtaposition of subsets 
of simultaneous (in)equalities for which only at least one 
subset has to be satisfied. 

The algorithms found in the literature to solve a set 



of non-linear equalities and inequalities cannot handle 
the above formulation, however, there is one approach 
'penalty function method' [12] which can be adapted to 
this more complex formulation. 

The basic idea of the penalty function approach is to 
translate the problem of finding a feasible solution for a set 
of constraints into a minimization problem. For instance, 
consider the following set of constraints: 

{ 
Ci(X) 
Cj(x) 

o 
~ 0 

(i = 1,/) 
(j = I,m) 

(22) 

This set of constraints is transformed into the penalty 
function: 

I 

F(x) = :L)Ci(XW + L[max(0,cj(x))]2 (23) 
j=] 

with the property that all the constraints are satisfied 
simultaneously if and only if the function F(x) is equal to 
zero. Otherwise, F(x) has a strictly positive value. 

This approach is not directly applicable to our problem 
due to the fact that the constraints only have to be satis
fied for one of the eight postures. This can be included in 
the penalty function formulation by evaluating the func
tion F(q(j» for each posture, j, and considering only the 
minimum of these eight values: 

Fpoint p(Vdh) = min {F( q(l»), F(q(2», ... , F( q(8»)} 
(24) 

where Vd.h is the vector of DH-parameters. Indeed, this 
function is zero when at least one of the postures has a 
zero penalty and thus satisfies all the constraints. The to
tal penalty for a certain manipulator is obtained by sum
ming over all the points Pi E W R: 

(25) 
The disadvantage of this approach is that local minima 
are introduced. In order to find a solution that satisfies 
all the constraints, we need to find the global minimum, 
using a global optimization procedure. 

5.1 Numerical Solution 
In Section 4, it was illustrated that analytical bounds for 
the feasible region can be found when the number of de
sign parameters is small. Here, we continue the 2-DOF 
example and compare the analytical solution with the nu
merical solution, obtained as explained above. 

Equations (14) express the task requirements as a set of 
equalities and inequalities. The problem of solving this set 
of (in)equalities is converted into an optimization proD-
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Figure 3: Numerical solutions for example 1. 
Numerical solutions (indicated with 'x'). 
Analytical bounds: 

a) Bound due to reachability constraints. 
b) Bound due to joint limits on 8], 18]1 :::; 7r/4. 
c) Bound due to joint limits on 82, 1821 :::; 57r/6 

lern, with the following penalty function: 

F(/],/2 ) = L: 
(x,y)EWR 

min [Imag(v(}»)]2 
j=],2 + [Imag(u(})W 

+ [max(0,8min] - 8~})W 
+ [max(O, 8~j) - 8maxd]2 

+ [max(O, IJmin2 - 8~1)W 
+ [max(O, 8~}) - 8max2)F 
} 

(26) 
The penalty function in general has local minima. 

Therefore, a global optimization procedure is needed, even 
for this simple example. We chose simulated annealing [5] 
and the results for 100 runs of the simulated annealing al
gorithm are shown in Figure 3. 

Each 'x' represents a final solution of the optimization 
procedure. l:he initial guesses for the 100 runs are gener
ated using III- random number generator and are uniformly 
distributed over the region (0 ~ I] ~ 3,0 :::; 12 ~ 3). The 
solutions of the optimization procedure are all inside the 
feasible region bordered by the analytical bounds. This 
implies that the approach presented in this section works 
well for this simple example. In [9], more complex exam
ples are presented to prove the validity and generality of 
the approach. 

6 Summary 

In this paper, we have proposed an approach to solve the 
kinematic design problem, i.e., the determination of the 



Denavit-Hartenberg parameters of a non-redundant ma
nipulator with joint limits, that can reach a set of specified 
points/orientations. This problem was first formulated 
mathematically, using the concept of the kinematic hy
perplane in the kinematic space. The problem statement 
was further concretized through a generalized formulation 
of the inve;se kinematics, which resulted in an analyti
cal solution for the design for 2 degrees-of-freedom planar 
manipulators. In order to extend the capabilities of the 
solution procedure to spatial problems with six degrees
of-freedom, a numerical approach was developed. Using a 
global optimization procedure, the penalty of a manipu
lator design was minimized, resulting in an optimal kine
matic configuration to perform the specified task. A sim
ple 2-DOF planar manipulator example shows that the 
numerical solutions correspond perfectly with the analyt
ical solution. 
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