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SUMMARY 

Model-Based Decision Support Systems (MDSS) are prominent in many professional 

domains of high consequence, such as aeronautics, emergency management, military command 

and control, healthcare, nuclear operations, intelligence analysis, and maritime operations. An 

MDSS generally uses a simplified model of the task and the operator to impose structure to the 

decision-making situation and provide information cues to the operator that is useful for the 

decision-making task. Models are simplifications, can be misspecified, and have errors. 

Adoption and use of these errorful models can lead to the impoverished decision-making of 

users. I term this impoverished state of the decision-maker model blindness. A series of two 

experiments were conducted to investigate the detrimental consequences of model 

blindness on human decision-making and performance and how those consequences can 

be mitigated via an explainable AI (XAI) intervention. This dissertation also reports 

simulation results that motivated the experiments by demonstrating the impact of model 

blindness and model blindness mitigation technique on performance. The experiments 

implemented a simulated route recommender system as an MDSS with a true data-

generating model (unobservable world model). In Experiment 1, the true model generating 

the recommended routes along with additional non-recommended routes and the associated 

attribute information was misspecified to different levels to impose model blindness on 

MDSS users. In Experiment 2, the same route-recommender system was employed with a 

mitigation technique to overcome the impact of model-misspecifications on decision 

quality. Overall, the results of both experiments provide little support for performance 

degradation due to model blindness imposed by misspecified systems. The behavior 

captured in Experiments 1 and 2 showed minimal sensitivity to the different misspecified 
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statistical environments participants operated within. There was strong evidence of the impact 

of recommended alternatives and participants’ reliance or deviation from them between 

conditions. The XAI intervention provided valuable insights into how participants adjusted 

their decision-making to account for bias in the system and deviated from choosing the model-

recommended alternatives. The participants' decision strategies revealed that they could 

understand model limitations from feedback or explanations and adapt their strategy 

accordingly to account for misspecifications in the model. The results provide strong support 

for evaluating the role of decision strategies in the model blindness confluence model. These 

results help establish a need for carefully evaluating model blindness during the development, 

implementation, and usage stages of MDSS. 



 1 

CHAPTER 1. INTRODUCTION 

 With the increasing popularity of Artificial Intelligence (AI) techniques, like 

machine learning, because of its proven ability to model a large amount of complex data 

and biological phenomenon, big tech companies, data scientists, medical professionals, and 

almost every large workplace is investing more time and funding to deploy these 

technologies (Doyen & Dadario, 2022). However, deploying these technologies without 

proper evaluation in complex socio-technical environments can have huge consequences 

on the end users and the organization. People are often faced with decisions in which they 

have to choose from the recommended alternatives provided by algorithms such as 

Amazon’s product or Netflix’s content recommender systems. Similar recommender 

systems, commonly known as Model-based Decision Support Systems (MDSS) (Power & 

Sharda, 2007), are often used to aid professionals’ decision-making in many high-stakes, 

high-consequence domains such as aeronautics, emergency management, military 

command and control, healthcare, nuclear plant operations, intelligence analysis, and 

maritime operations. MDSS often uses task and operator models to provide the operator 

with cues, attributes, or decision alternatives to aid decision-making. MDSS are ubiquitous 

in many professional domains of high consequence. Given the prevalence of MDSS, it is 

surprising that work in model evaluation and human performance has not been leveraged 

to its full potential to evaluate these tools’ characteristics and quality. 

1.1 Thesis Motivation/Problem Statement 

Analogous to how Google filters search results based on user search history and how 

social media websites (e.g., Facebook and Twitter) envelop their users into an information 
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bubble using past click-data to present customized information (Eady et al., 2019). 

Professional operators like intelligence analysts, pilots, physicians, etc., can be put into an 

accessible cue bubble via MDSS (Eady et al., 2019; Lawrence et al., 2018; van Leeuwen 

et al., 2021). This happens because models are simplifications, can be misspecified, and 

have errors (Marakas, 2003). The impoverished decision-making of the user due to the 

adoption, use, and limitations of model(s) is defined as Model Blindness (Parmar et al., 

2021). There is a need for acknowledgment and empirical investigation of the issue of 

model blindness before implementing MDSS in a high-consequence decision-making task. 

This is important because users of MDSS might tend to lose perspective regarding model 

limitations after adopting and using decision support systems, which can lead to subsequent 

impoverished decision-making. The same term “model blindness” was coined in a similar 

context by an economist, Gittins (2012), to draw attention to simplifications of economic 

theories and rational models, which usually leave out important elements like irrational 

decision makers. This reduction of all complications from economic theories and models 

makes economists prone to the risk of an occupational hazard called “model blindness” 

(Gittins, 2012). 

The consequences of errorful models are acknowledged by the US Department of 

Defense’s AI ethical principles (Figure 1) adopted recently by the department for the 

design, development, deployment, and use of any AI capabilities by the DoD (Board, 

2019). Figure 1 shows the DoD’s five major principles that aim to make AI systems more 

ethical and useful, and all of them indirectly reach the concept of reducing model blindness 

or making users or designers aware of potential model blindness. The issues identified by 

DoD are not unique to the Defense community; recently, Doyen and Dadario (2022) also 
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identified similar challenges to AI implementations in healthcare and identified 12 plagues 

of AI (Figure 2) that are affecting both deployment and adoption of AI in healthcare. O'Neil 

(2016) also referred to the algorithms implemented in all domains of our lives, like credit 

scoring and employee evaluation algorithms, as “Weapons of math destruction” due to 

their hidden data variables and unreliable recommendations. Hence, we can see constant 

criticisms of these AI/model-based systems due to their limitations and the consequences 

they can have on people. The literature indicates a dire need for more formal investigations 

of these model-based systems in controlled lab-based and naturalistic decision-making 

environments before any real-world implementations. 

 

Figure 1. DoD’s principles for responsible Artificial Intelligence (adapted from Board 
(2019)) 
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Figure 2.  12 plagues of AI in healthcare affecting the deployment process. Image taken 
from Doyen and Dadario (2022). 

1.2 Research Questions  

As recommended by DoD’s principles, the results of this dissertation experiments 

can contribute toward making MDSS more traceable, reliable, governable, responsible, and 

equitable. This dissertation empirically evaluates the confluence model (discussed in detail 

in Chapter 2) of operator performance under model blindness proposed by Parmar et al. 

(2021) to understand the consequences of model blindness on human performance and 

explore ways to mitigate those consequences. The studies conducted to achieve this goal 

were designed to answer the following broad research questions (RQs): 

RQ1: How does the model misspecifications in an MDSS impose model blindness 

on users? How does that manifest in their decision-making, performance, confidence, and 

trust in the MDSS (main effect of model misspecification)? 
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RQ2: How does presenting model-recommended alternatives with additional 

decision alternatives for decision-making task help or hurt a decision-maker’s choice 

selection (main effect of recommender)? Does it interact with the level of misspecification 

in the model producing those alternatives (Interaction between recommender and 

misspecification levels)? 

RQ3: How can misspecified models bias the human decision-making process and 

decision-strategy selection? When do users detect issues with the recommended 

alternatives presented by an MDSS? Do they deviate from MDSS recommendations or 

choose to continue relying upon them? 

RQ4: How do decision makers optimize and adjust their strategies when there is bias 

or misspecification in MDSS that can be detected from available feedback? Do they adjust 

their strategy to overcome bias and match true world feedback? 

RQ5: Does presenting natural language explanations help calibrate decision-makers 

to the capabilities and limitations of an MDSS and consequently improve performance? 

Does it mitigate the consequences of model blindness to some extent? 

1.3 Study Summary 

To test the research questions presented above, I conducted a series of two 

experiments by systematically controlling for misspecification levels in the MDSS model, 

recommended alternatives’ availability, and explanation availability. Both experiments 

implemented a simulated route recommender system as an MDSS with a true data-

generating model (unobservable world model). The MDSS presented seven routes, each 
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with six associated decision attributes to the participant, and participants were given the 

explicit goal of picking the best route. Chapter 3 discusses the experiments in detail, 

including how the MDSS was simulated. 

 In Experiment 1, I manipulated the MDSS model’s misspecification level (no 

misspecification, soft misspecification, and hard misspecification) and the presence of 

MDSS-preferred recommended routes (three preferred routes vs. no preferred routes) as 

between-subjects manipulation. As shown in Figure 3, the true data generating model 

presenting the seven routes and the associated attribute information is misspecified at two 

levels (soft misspecification and hard misspecification). Random noise is added in all 

models used in the experiment as there is never a perfectly accurate model available in 

uncertain and high-consequence decision-making environments. Experiment 1 tested how 

direct manipulations of model blindness imposed by MDSS affect the decision-making 

process and performance. In Experiment 2, the same route-recommender system was 

employed along with a mitigation technique to overcome the impact of model-

misspecifications (soft and hard) on decision quality. The mitigation technique provided 

participants with a natural language explanation (explainable-AI intervention) of 

misspecification in the model as a warning message before the decision task. The 

explanation in Experiment 2 helped investigate whether the consequences of model 

blindness can be mitigated by making users aware of the shortcomings of the model that 

are causing the MDSS to present lower-quality route alternatives.  
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Figure 3. Models used in the route recommender system developed for experiments 

 Overall, the results of both experiments help address some of the research questions 

mentioned above. It provides little support for performance degradation due to model 

blindness imposed by misspecified systems. The behavior captured in Experiments 1 and 

2 showed minimal sensitivity to the different misspecified statistical environments 

participants operated within. There was strong evidence of the impact of recommended 

alternatives and participants’ reliance or deviation from them between conditions. The 

explainable-AI intervention provided valuable insights into how participants adjusted their 

decision-making to account for bias in the system and deviated from choosing the model-

recommended alternatives. The participants' decision strategies revealed that they could 

understand model limitations from feedback or explanations and adjust their strategy 

accordingly to account for misspecifications in the model. The results provide strong support 

for evaluating the role of decision strategies in the model blindness confluence model. The 

confluence model will be discussed in detail in the next section while reviewing background 

research on this dissertation topic.   
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CHAPTER 2. BACKGROUND LITERATURE  

 MDSS are often implemented to make multi-objective decisions in domains with 

high uncertainty, high information overload, time pressure, and dynamic changes in the 

task. MDSS usually provides multiple (or single) courses of action recommendations with 

or without the associated information cues. The widescale implementation of MDSS in one 

form or the other indicates the enormous benefits of using MDSS. MDSS type DSS are 

widespread because (Beemer & Gregg, 2008; Marakas, 2003; Turban et al., 2001): (1) It 

decreases decision-making time, (2) Enhances the problem-solving and decision-making 

process, (3) Improves both decision making process and quality of decision, (4) It provides 

the ability to solve complex problems beyond human reach due to amount of data or 

processing needs to be required. 

2.1 Prevalence of MDSS in High-Consequence Decision-Making Tasks  

 MDSS are prevalent in maritime operations and often involve generating multiple 

probabilistic courses of action for the operator. For example, TMPLAR (Tool for Multi-

Objective Planning and Asset Routing) is a DSS developed to address the asset routing 

problem for the Naval and commercial shipping (Avvari et al., 2018). The tool provides 

recommended paths (see Figure 4) comprising waypoints and associated arrival and 

departure times, asset speed, and bearing. The recommended paths and associated 

schedules are optimized based on several objectives (decision attributes) like voyage time, 

distance, fuel efficiency, asset vehicle limits, navigator-specified deadlines, etc. Other tasks 

where TMPLAR-like tools are being frequently implemented are counter-smuggling 

operations (COAST-Courses of Action Simulated Tool) and dynamic autonomous aerial 

systems’ operations under uncertainty (SCOUT- Supervisory Control Operations User 

Testbed) (Mishra et al., 2017). 
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Figure 4. Path A and B are two paths recommended by TMPLAR’s algorithm with the 
wait times schedule for each waypoint via which Hurricane Joaquin could be avoided. 
Image taken from (Avvari et al., 2018). 

 In healthcare, MDSS are implemented in the form of clinical decision support 

systems (CDSS), which primarily provide information or suggestions to the physicians at 

point-of-care to combine their knowledge with support from the CDSS (Sutton et al., 

2020). CDSS are typically integrated with Electronic Health Records (EHRs) or 

Computerized Provider Order Entry (CPOE) (Sutton et al., 2020). A CDSS is usually used 

to provide patient-specific assessment or recommendations to a physician deciding on a 

diagnosis or treatment (Sim et al., 2001). AI-based medical services are also becoming 

common for tasks like automated evaluation of X-rays in radiology, skin cancer detection 

from patient-uploaded images in a mobile app, telehealth services, and so on (Cadario et 

al., 2021). 

 Although unnoticed, model-based systems exist in almost all aspects of everyday 

life, including low and high-consequential decisions. Many do not provide information 

cues (attributes) or alternatives but give only one final decision (presumed best by the 

algorithm). Especially in the healthcare domain, there is a lot of pushback and a lack of 
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trust by both patients and care providers concerning the use of automatic recommenders or 

AI-based systems, particularly when such systems seek to replace expert physicians 

(Longoni et al., 2019; Promberger & Baron, 2006). Algorithmic Decision-Making Systems 

(ADMS) (Rebitschek et al., 2021), like employee-selection aids for making hiring 

decisions, are also becoming increasingly popular and face a lot of distrust issues (Diab et 

al., 2011). 

 Many recommender systems implement algorithms to reduce choice overload and 

present the decision-maker with a reduced set of options to choose from (Jameson et al., 

2015). Some recommender systems provide only one recommendation with or without 

explaining why the specific recommendation was provided (Jameson et al., 2015). Jameson 

et al. (2015) emphasizes the important distinction between models of choice (providing 

one single action choice or autonomous systems) and models of choice support (providing 

information cues or multiple action alternatives) in the context of these systems. This 

dissertation focuses primarily on models of choice support, but models of choice will face 

more dire consequences of model blindness. 

2.2 Model Blindness using MDSS 

 Figure 5 presents a simplified architecture of an MDSS that mimics the framework 

of the route-recommender system used in this dissertation. As shown in the framework, 

there are five main components of an MDSS: database, decision support model, 

recommender model, user interface, and decision-maker. Although the limitations in model 

components (both decision support and recommender) of MDSS are primary sources of 

model blindness, the amount of model blindness imposed on users and its subsequent 

consequences can be exacerbated by limitations in all other components of MDSS as well. 

I explicitly focus on probabilistic (non-deterministic) models implemented in uncertain 
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domains. Model input can be affected by the data quality in the database, and model output 

can be affected by how information is presented on the user interface and how the human 

decision-maker processes it. Below are some of the limitations that each component of 

MDSS can suffer from, consequently imposing a state of model blindness on the user. 

 

Figure 5. MDSS architecture with risk and hazard cue examples from naval ship 
navigation tasks 

• A database(s) contains all possible information necessary for the decision-making task. 

It can suffer from errors, selection bias, and missing information (Baeza-Yates, 2016). 

E.g., In 2014, Twitter launched a bot, “Tay,” whose tweets became sexist and racist 

within 24 hours because it learned from data gathered using biased user tweets (Baeza-

Yates, 2016). 

• A decision support model of MDSS uses algorithms to analyze information from the 

database to identify a few relevant alternatives (or relevant information) identified best 

by the model for a decision-making task. Hence, the decision support model imposes a 

filter that only lets some relevant information pass through it. This model can exhibit 

bias and fail to operationalize context, tasks, and operator variables appropriately, 
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limiting their ability to discriminate the relevancy of the information necessary to 

support decision-making, hence imposing model blindness on users. 

• A subsequent recommender model imposes another filter on the alternatives identified 

as best by the decision support model. A recommender algorithm usually uses ranking-

based algorithms to determine which alternatives are most relevant (preferred choice 

set) for decision-making. Hence, further reducing the choice set for users. This model 

is also prone to errors and misspecifications, leading to model blindness.  

• Subsequently, the output of these model filters again goes through the visualization 

process imposed by the user interface. The whole data visualization field attempts to 

help with aspects of presenting data before the data reaches a visual interface. The user 

interface can suffer from limitations due to information presentation and interaction 

bias (Baeza-Yates, 2016), cue accessibility, and saliency (Payne, 1980; Wickens et al., 

2015). E.g., using loud sounds, bright flashing lights, highlighting some information 

cues, etc. These can subsequently impose another interface-imposed filter on the model 

output through which users receive the information.  

• Finally, the decision-makers will also modify the information while processing 

information presented on the interface to make a decision based on their task objectives, 

knowledge, strategy choices, etc. The decision-makers come with their own biases  

(Mosier & Fischer, 2010), like automation misuse or disuse, over-trust or under-trust, 

and a tradeoff between goals; these add to the challenges faced by MDSS. E.g., blind 

compliance (Mosier & Fischer, 2010) by the user of MDSS can lead to less active 

information search and situation assessment or focusing on salient alternatives rather 

than evaluating all available alternatives. 

2.2.1 Reasons behind MDSS component limitations 

 The presence of uncertainty in these complex, probabilistic, and multi-objective 

decision-making environments is the primary cause of these MDSS limitations, as 
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presenting completely accurate (deterministic) information is impossible. Moreover, 

because there is a tradeoff between avoiding information overload and providing all 

relevant information to operators—one can never provide all the available information 

(Woods et al., 2002)—model blindness results from a tradeoff that cannot be entirely 

eliminated. There are two sources of uncertainty in the multi-objective decision-making 

tasks that I am focusing on: epistemic and aleatory (Cerutti et al., 2022; Fox & Ülkümen, 

2011; Hora, 1996). Aleatory uncertainty refers to the inherent irreducible uncertainty due 

to probabilistic variability (inherently random effect, e.g., flipping a fair coin). Epistemic 

uncertainty is the scientific uncertainty in the model of the process due to limited data and 

knowledge. Both sources of uncertainty will be operating in the route recommender system 

simulated for this dissertation. Going back to Figure 2, the added random noise to the true 

data generating model and the probabilistic nature of the task I model is clearly aleatory. 

Epistemic is more akin to model misspecification (cues misweighted or missing) due to 

lack of knowledge. I think one acknowledges epistemic uncertainty whenever one use a 

model—all models are simplifications (Box & Luceno, 1997, p. 6).  

 The filters arising in the MDSS in Figure 5 due to these uncertainties operating in 

the decision-making environment can be systematic (or intentional) or emergent 

(unintentional). These filters can arise from issues ranging from clear and known design or 

modeling choices that intentionally leave some information out of the algorithm, like social 

media information bubbles. These filters can also emerge due to constraints in the decision 

environment, like noisy information, incomplete knowledge, and tradeoffs. Shah and 

Oppenheimer's (2008) effort reduction principle posits that decision-makers tend to use the 

information cues that are most easily accessible (easy to retrieve from memory or made 

readily available by other means like DSS) in their decision-making. Therefore, the less 

accurately MDSS identifies relevant information and the extent to which access to 

irrelevant information is enhanced, the more likely it is that decision-making performance 
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will degrade. As domains become more complex and the reliance on models to aid 

decision-making increases, the implications of model blindness will become increasingly 

important. 

2.3  Confluence Model of Operator Performance Under Model Blindness 

In previous work (Parmar et al., 2021), we proposed a confluence model of operator 

performance under model blindness and demonstrated the impact of model blindness on 

performance via simulations. The proposed confluence model (Figure 6) posits that 

performance degradation due to model blindness imposed on the decision-maker depends 

on the match or mismatch between the interaction of three components- model, decision 

context, and human decision strategy. These components can consequently lead to model-

limited, data-limited, or strategy-limited performance. This taxonomy is inspired by 

Norman and Bobrow's (1975) theory of data-limited vs. resource-limited processing, where 

resource-limited processing occurs when an increase in the amount of processing resources 

allocated to the task leads to improvement in performance. Contrary to this, in data-limited 

processing, performance is only influenced by the quality of data available, and no amount 

of additional processing resources can enhance performance in a task. Performance 

degradation and decision quality are often operationalized in terms of proportion correct, 

sensitivity, choosing Pareto-optimal alternatives, and expected value or utility in decision-

theory literature (Payne et al., 1993). 
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Figure 6. Confluence model of operator performance under model blindness 

2.3.1 Model-limited performance 

Model-limited performance manifests when the degradation of performance occurs 

because of the limitations of the model. One way to operationalize model-limited 

performance is when the number of relevant cues provided by the MDSS is less than that 

which can be utilized via the decision maker’s decision strategy. Another way to 

operationalize model-limited performance is when misspecifications in the model degrade 

the quality of the alternative set presented to the decision-maker and consequently impact 

the decision quality. 

2.3.2 Strategy-limited performance 

Decision-maker’s strategy selection is a mode by which an individual evaluates 

alternatives and associated attributes and makes a final choice out of multiple presented 

options. People's decision strategies can broadly be classified as compensatory or non-

compensatory. Compensatory processes involve making tradeoffs between attributes (e.g., 

weighing differentially, adding pros and cons) (Kurz-Milcke & Gigerenzer, 2007). In 
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contrast, non-compensatory processes make no trade-offs (e.g., heuristic strategies like 

Take The Best)  (Kurz-Milcke & Gigerenzer, 2007). 

Strategy-limited performance manifests when performance degradation occurs 

because of the limitations in the decision maker’s strategy selection. Even with the best 

model output (all relevant cues or top alternative set), the decision-maker fails to achieve 

optimal performance. For this dissertation, I operationalize strategy-limited performance 

as the number of information cues provided by the model exceeds the utilization of the 

decision maker’s strategy, particularly under time pressure or attention (dual-task) 

demands (Payne et al., 1993). 

2.3.3 Context-limited performance 

Context-limited performance manifests when the information environment limits 

performance. One way to think about how the information environment can limit 

performance is by the severity of the tradeoffs between attributes. When an environment is 

friendly (positive inter-attribute correlations), the decision-maker can maximize all 

attribute dimensions (Shanteau & Thomas, 2000). However, the decision-maker cannot 

maximize all attributes when the environment is unfriendly due to tradeoffs (negative inter-

attribute correlations)—the decision-maker must give up value on one attribute dimension 

to gain value on others. When decision-makers implement less-than-optimal decision 

strategies, performance degradation tends to worsen as the inter-attribute tradeoffs increase 

in severity (Payne et al., 1993; Shanteau & Thomas, 2000). The experiments in this 

dissertation only implemented an unfriendly decision environment due to the unfriendly 
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environment being a more common problem for MDSS in complex multi-objective 

decisions. 

2.4 Framework to Empirically Evaluate the Confluence Model 

I propose a framework (Figure 7) to evaluate the implications of model blindness for 

the three categories of performance degradation shown in Figure 6. In the framework, the 

MDSS comprises a filter (the detailed version shown in Figure 5) by which the decision 

support and recommender model implicitly filter out some cues while making others 

available to the decision-maker. The accuracy of the model filters will impact the model 

blindness imposed on the operator’s performance. Note that the extent to which the 

negative consequences of an inaccurate model filter impact performance will depend on 

the decision context and the selected strategy. The decision strategy lens adapted from 

Brunswik (1952) will determine how different cues presented by the model will converge 

to final decision on the human side via their strategy selection, leading to strategy-limited 

performance. Some strategies listed inside the lens use fewer cues than others or weigh 

cues disproportionately, causing a potential for strategy-limited performance in some 

decision contexts. The decision context (friendly vs. unfriendly) will also impact how the 

final decision will be model-limited. Decision context will act as a moderator for the 

model’s impact on performance leading to operator performance being more or less likely 

to be model limited in unfriendly and friendly environments, respectively.  
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Figure 7. Framework for model blindness’s impact on performance showing how the 
three components of the confluence model interact with each other 

 

Researchers can leverage the framework to address several essential questions 

empirically. What type of DSS can minimize the impact of model blindness? What is the 

minimum permissible level of model blindness that can still result in optimal performance? 

Which decision strategies are most robust to the model blindness imposed by a particular 

system or aid in a specific decision context? What levels of unfriendliness in the 

environment cause substantial performance degradation? What mitigation approach works 

best to reduce performance degradation imposed by MDSS? By manipulating various 

independent variables in an experimental setting as either between-subjects or within-

subjects factors to measure performance degradation, these important questions, as well as 

others, can be investigated empirically.  
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For example, the level or amount of model blindness imposed by a tool can be 

manipulated via intentionally presenting irrelevant cues along with relevant cues, filtering 

out some relevant cues, or withholding relevant cues. Similarly, the level of MDSS can be 

manipulated in ways ranging from providing only information cues to providing multiple 

possible ranked probabilistic decision alternatives to evaluate the impact of model 

blindness imposed by different levels of automation for DSS on human performance. 

Similarly, environment friendliness or unfriendliness can also be manipulated. Also, 

different mitigation strategies for model blindness can be tested similarly.  

  This dissertation aims to evaluate the proposed framework empirically by 

manipulating the level of model blindness in an MDSS via misspecifying the model that 

will affect the quality of the alternative set along with the quality of information attributes 

presented to the participant (Experiment 1). The participants will be recommended to 

follow one decision strategy in an unfriendly decision context. The next sub-section 

presents some simulation work done to evaluate the framework and motivate the proposed 

experiments for this dissertation. 

2.5 Simulations to demonstrate how performance degradation can manifest via 

model blindness 

This section presents a series of simulations to demonstrate how performance 

degradation can manifest via model blindness. The general simulation methodology was 

an abstraction of a naval fleet-movement task using custom code developed in Wolfram 

Mathematica (Parmar et al., 2021). The steps in the simulation are illustrated in Figure 8: 

map generation, defining areas of hazards (areas to avoid) and objectives (areas to complete 
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mission objectives), including their size and overlap, application of values and probabilities 

to the hazard and objective areas, route generation (many 1000s were generated), simulated 

mission planners that down-selected the routes, and decision making (route selection) via 

simulated commanders. The disjunctive probability that the route alternatives led to 

successful mission completion (avoided hazards and completed objectives) defined their 

objective utilities. Also, different MDSSs were simulated by the amount of error they 

exhibited. The simulated commanders utilized the different decision strategies (see Table 

1) that had access only to cues (route attributes) provided by the hypothetical MDSS. 

Specifically, the route alternatives provided to the simulated commanders were defined by 

six attributes or cues reflecting the values and probabilities of hazards (e.g., air and sea 

threats, etc.)  and objectives (e.g., surveillance and reconnaissance missions) derived from 

the simulated map. We implemented the proportion of utility loss as the performance 

measure (see Equation 1), where higher numbers translate to worse performance.   

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 −  𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
 

(1) 
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Figure 8. Illustration of the general simulation methodology of the naval fleet-movement 
task. 

Table 1. Decision strategies used in the naval-fleet movement task simulations 

Decision strategy Description 

Weighted 
Additive 
(WADD) 

Apply true weights to cues and select the option with highest sum 

Maximax Selects the option that maximizes the probability of best-case 
outcome 

Equal Weights Weight each attribute 1/n and select option with the highest sum 

Maximin Picks the option that minimizes the probability of worst-case 
outcome 

Conjunctive Options must exceed some minimum threshold for each attribute 

Disjunctive Options must exceed some minimum threshold for only one 
attribute 

Lexicographic Assess options via attributes based on validity order; select an 
option based on the first cue that discriminates 
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2.5.1 Model Blindness due to information cues’ quality 

In the first demonstration (Figure 9), we simulated hypothetical MDSS of varying 

levels of model blindness where only a subset (3 most relevant vs. 3 least relevant) cues 

were available to the simulated commander (we provide the performance under the 

complete set of 6 cues for comparison). Unsurprisingly, the simulation results indicated a 

larger utility loss when the hypothetical MDSS presented the least-relevant cues to the 

simulated commander. Note also that the simulation demonstrates that the strategy used by 

the operator can contribute to the performance decrement or the robustness of the decision-

making against utility loss due to model blindness. For example, the Maximax strategy 

shows robustness to the level of blindness in this decision context, although the robustness 

comes at the cost of suffering utility loss under all model blindness conditions. Note that if 

we had implemented a different utility function (e.g., survival probability), we would 

expect Maximin to have exhibited robustness to catastrophic failure (Ben-Haim, 2006).   

 

Figure 9. Utility loss under different levels of model blindness (information-quality) and 
decision strategies 
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2.5.2 Model Blindness due to decision choice alternatives 

The following demonstration illustrates a situation where the hypothetical MDSS 

and the simulated mission planners provide alternatives to support the commander’s 

decision. In this simulation, the MDSS presents Pareto-optimal (high-quality) alternatives, 

dominated (low-quality) alternatives, or alternatives via a random draw for the simulated 

commanders. The simulation results (Figure 10) indicate more utility loss when the 

hypothetical MDSS had the potential to select alternatives that were not Pareto-optimal. 

Again, this simulation demonstrates the limitation of the MDSS leading to more utility loss 

via model blindness from withholding higher-quality alternatives from the commander. It 

is important to note that the hypothetical MDSS is similar to many existing systems that 

can generate 1000s of alternatives for decision-makers to choose from, so context-sensitive 

rules are needed to filter out what are estimated to be lower-utility options. The models’ 

ability to deliver high-quality alternatives given the decision context is necessary to avoid 

utility loss. 
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Figure 10. Utility loss under different levels of model blindness as a function of the 
quality of the alternatives provided by the MDSS (Pareto-optimal, Dominated, and 
Random) and decision strategies. 

 

2.5.3 Other variables affecting performance 

Task characteristics such as time pressure and cognitive load can affect the amount of 

information (number of cues) that operators can attend to and utilize. Both time pressure 

and cognitive load can be characterized as imposing a sort of blindness on the operator who 

cannot incorporate the complete set of MDSS-presented cues into their decision strategy. 

Specifically, we implemented time pressure and cognitive load by limiting each decision 

strategy to a random draw of only three (out of the six) presented cue values.  

Figure 11 illustrates the results from a simulation where the operators’ attentional 

access to the presented cue set via the MDSS is compromised due to time pressure or 

insufficient capacity (because of dual-task cognitive load). Although the compensatory 

decision strategies (CONJ, WADD, EQWEIGHTS) exhibit the least utility loss overall, 

they show a more considerable relative increase in utility loss under time pressure or 

cognitive load than the heuristic (non-compensatory) strategies.   



 25 

 

Figure 11. Utility loss results from varying levels of time pressure/cognitive load while 
using different decision strategies. 

 The simulation results presented in this section show how the quality of the 

alternative set, relevancy of information cues, and extrinsic factors like time pressure and 

workload are really important to prevent performance degradation for users using different 

decision strategies while processing information presented by the MDSS. Experiment 1 in 

this dissertation aimed to test the results found via these simulations in an empirical setting 

by manipulating both quality of the available alternative set and information cues 

associated with those alternatives via introducing misspecification (epistemic uncertainty) 

in the model of the MDSS. 

2.6 Model Blindness Mitigation Strategies 

The previous sub-sections in this chapter establish a need to acknowledge and evaluate 

the challenge of model blindness posed by MDSS. The next obvious step is the need to 

explore ways to mitigate the consequences of model blindness on users. Model blindness 

mitigation strategies can be developed by borrowing from the already growing research 

areas in human factors psychology and computer science of system observability (Woods 



 26 

& Sarter, 1998), transparency, explainable AI (Páez, 2019), counterfactual reasoning 

capabilities, and so on. However, none of these areas address all three components of the 

proposed confluence model. Some recommendations for designers and developers of 

MDSS include (1) developing smart filtering models which are context-sensitive, (2) 

providing what-if capabilities (Heuer Jr & Pherson, 2010), (3) using ensemble models of 

tasks and users to reduce errors in the models’ (Mangiameli et al., 2004), (4) providing 

decision influence diagrams (Papamichail & French, 2005), (5) communicating where the 

operators are in the trade space of information overload vs. providing all relevant 

information, (6) providing access to hidden information cues upon request from the user, 

(7) providing explanations and confidence in model recommendations, and (8) 

communicating to the operators about misspecifications or errors in the model. In general, 

there is a need to make users aware of the model blindness.  

2.6.1 Simulations for Model Blindness Mitigation via Ensemble Modeling  

The simulation results in Figure 12 show an example of a model blindness mitigation 

technique. The utility loss experienced as a result of model blindness can be at least 

partially mitigated via ensemble models, where the ensemble model in the simulated 

context was an aggregation of several “noisy” single models into a composite. The 

simulation is similar to the one presented in Figure 9, where a hypothetical MDSS presents 

a subset of cues to the operators to support their decision-making. The sigma at the bottom 

of the panels of Figure 12 indicates the level of error associated with a single model or a 

group (ensemble) of models providing the cues to the operators. The utility loss associated 

with model blindness is mitigated to the degree that the model(s) suffers lower error. 

Although the ensemble models in this simulation didn’t replace missing or withheld cues, 
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the cues made available to the simulated operator via the MDSS were more accurate (via 

averaging across the ensemble models) when presented to the operators leading to lower 

utility loss. Once again, this simulation demonstrates that the performance decrement or 

the robustness of the decision-making against the utility loss imposed via model blindness 

varies greatly with respect to the decision strategy used by simulated decision-makers.     

 

Figure 12. Utility loss of operators using different decision strategies with access to a 
single or ensemble suite of models with varying levels of error or uncertainty (higher 
values of sigma represent more model error) 

2.6.2 Model Blindness Awareness  

  Similar to the concepts of Situation Awareness (SA) (Endsley, 1995) or Risk 

Situation Awareness (RSA) (Parmar & Thomas, 2020), there is a need for MDSS 

developers to design for operator’s model blindness awareness. Being aware of model 

blindness can facilitate users to shift their decision strategies, impute missing information, 

spend more time evaluating the role of missing or irrelevant information, etc. There is a 

metacognitive aspect of knowing some information is missing or low quality vs. not 
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knowing at all. Designing the MDSS to shift its functioning modes is not enough to 

promote a shift of decision strategies or imputation of missing information by operators. 

Communicating where operators are in trade space can lead to user calibration by making 

the user aware of the level of blindness imposed by the system. In the context of adaptive 

automation, Woods and Cook (2006) emphasize that the adaptive capacity of a system 

should be known to the user. Most current adaptive systems make users learn through 

tangible experiences regarding how systems behave under disruptions and abnormal 

conditions, neglecting the role of active and constant user calibration to system capabilities. 

Similarly, in the case of model blindness, it is not possible for users to know what is 

misspecified in the MDSS. Although they might be able to understand what is incorrect 

from their experience with the DSS, like physicians and nurses learning to ignore irrelevant 

alerts given by Electronic Health Records due to desensitization to alerts (Kizzier-

Carnahan et al., 2019); this calibration technique is not optimal. 

 Mitigating model blindness, in general, can help systems become more resilient. 

Resilient systems can promote cooperative cognition between humans and machines rather 

than merely building technologically advanced systems (Woods, 1993). Calibration of 

users to MDSS capabilities and limitations can prevent over-reliance or under-reliance on 

MDSS. Providing explanations for why information is presented or hidden can make users 

more aware of the system’s capabilities and contribute to explainable AI (XAI) literature, 

which currently only focuses on explaining the model's outcomes.   

2.6.3 Explainable AI 

The underlying hypothesis behind building more transparent, explainable, or 

interpretable systems is providing users the capability to understand the system leading to 

better trust in intelligent systems (Chen et al., 2014; Mercado et al., 2016; Miller, 2019).  

Explainable Artificial Intelligence (XAI) is the area of research that facilitates different 
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types of understanding of the system. XAI researchers aim to build interpretative models, 

which are an accurate and reliable representation of black-box models used by AI agents, 

provide information about model limitations, and provide good comprehensibility for the 

user (Páez, 2019).  

Providing complete transparency and understanding of a model is a challenge in 

uncertain and complex problems. Páez (2019) argues that explaining training sets, weights, 

and biases for complex and opaque machine learning (ML) models will not help understand 

the model's outcome. Because finding a causal pathway is not possible in models like 

stochastic (non-deterministic) models, deep neural networks, and so on. For such a model, 

the author emphasizes that the focus should be on understanding the model's decisions (or 

outcomes) rather than understanding the model itself. Researchers support this approach 

because it also helps provide explanations that cater to the user's level of expertise or 

understanding rather than the developer of the system. According to Páez (2019), the 

explanations do not require a truthful representation of these complex black-box models to 

make them understandable. These explanations' main goal is not to explain the functioning 

of the underlying model but provide valuable information for users and practitioners in an 

understandable way (Ehsan & Riedl, 2019). Diagrams, graphs, or maps can also be 

presented to enhance understanding without any explicit explanations (Páez, 2019). These 

explanations are generally used as a form of post-hoc interpretability in XAI literature to 

build confidence and develop understanding between humans and AI agents, especially in 

situations where AI fails or behaves unexpectedly (Ehsan & Riedl, 2019).  

 Ehsan and Riedl (2019) conducted a case study to show the benefits of using 

automated rationale generation to provide natural language explanations of an AI agent 
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playing a game involving a sequential decision-making task (past actions affect future 

actions). The study implemented a neural network to translate game state and action 

information into natural language explanations. The results identified a need for correct 

contextual data to make the automated rationales satisfying (adequate justification) for end-

users. Users were also found to prefer detailed rationales that help build a complete mental 

model of users. Computer-based explanations to improve the trust and confidence levels 

of users are widely used in some form or the other (Dhaliwal & Benbasat, 1996; 

Papamichail & French, 2005). Dodson et al. (2013) also tested the efficiency of the system 

that generates conversational English language explanations for an academic advising 

system for completing courses to earn a degree.  

I argue that methods in the XAI research, although capable of reducing model-

limited performance, can potentially enhance the problem of model blindness instead of 

mitigating it. There are multiple reasons for this: (1) Adding a rationale generation 

component to an already blind model of an AI system can lead to overconfidence and 

overtrust rather than awareness of model blindness. (2) To explain one opaque model 

causing blindness, we are adding another one (explanation-generation model). Now users 

are double-blind – both due to misspecifications in the AI model and the XAI model of 

plausible rationales to reach one final reasoning, (3) These methods are mostly focused on 

model output. They are not doing a great job of helping the operator understand the 

conditions under which the model will perform well and when it is likely to fail.   

Increasing the trust and reliance on AI agents is a primary goal for XAI research. 

Lack of user trust is considered one of the major challenges for ML models used in high-

stakes environments of parole decisions or medical diagnosis (Páez, 2019). Trust in 
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automation is also a widely researched topic in the human factors literature and is 

implemented to improve operator reliance and calibration on automated systems. However, 

I argue that there can be unintended consequences for improving trust in the MDSS in the 

presence of model blindness. Explaining an MDSS’s outcomes to the operator can be 

harmful if irrelevant information is not getting filtered out by the model. Presenting and 

explaining an irrelevant information cue or decision choice can instill a development of an 

inferior mental model by the decision-maker. It will worsen the impact of model blindness 

because the operator might already inherently believe that it has to be relevant in some 

form if the system presents something.    

 Experiment 2 of this dissertation mitigated model blindness imposed on users via 

MDSS model misspecifications. The mitigation technique used an XAI intervention aimed 

to create model blindness awareness instead of the traditional XAI approach of improving 

reliance and trust. Participants were provided with natural language explanations 

containing information about misspecification in the model of an MDSS. Results show 

how users adjust their decision-making, trust, reliance, and confidence in MDSS when they 

are made aware of the misspecifications. The next section discusses the methodology and 

results of both experiments in detail.  
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CHAPTER 3. METHOD AND RESULTS 

The two experiments reported in this section utilize a simulated MDSS adapted to 

address different research questions posed previously. The experiments implemented a 

simulated model-based route recommender system (Figure 13) as an MDSS that 

participants used for a route planning decision task. The task required participants to find 

the best route to deliver critical shipments for COVID-19 patients from one geographical 

location to another via a route that involves a majority fleet movement and some ground 

shipping. Each decision-maker was presented with seven routes as decision alternatives. 

Each route was defined by utility values (ranging from 0 to 100) on six critical attributes 

to be evaluated for route-selection decisions. The higher the value of the decision attribute, 

the better utility it has, so participants were expected to maximize the value of all attributes 

for optimal performance. The six attributes were assigned arbitrary labels based on 

objectives important for routing problems—  some of them adapted from Avvari et al. 

(2018) attributes for TMPLAR’s asset routing problem and attributes used by Illingworth 

and Feigh (2021) for the disaster relief planning task. The attribute labels include time 

efficiency, fuel efficiency, obstacle avoidance (e.g., road closures, route deviations), 

weather hazard avoidance (flooded roads, hurricanes), en-route availability of extra 

supplies (vaccine shipments, medication shipments), and en-route ability to do 

humanitarian aid (deliver materials to people in need).  



 33 

 

Figure 13. Route Recommender System interface for control groups in Experiment 1 

3.1 Model-based Route Recommender System Development  

The development of MDSS for this study involves (1) generating attribute values for 

all six attributes associated with all seven routes presented by the MDSS and (2) generating 

images with seven routes superimposed on a world map. Both steps were performed using 

two different custom codes in Wolfram Mathematica. 

3.1.1 Model-Based Attributes Value Generation 

For this study, I chose an equal weights model as the true data-generating (Figure 3) 

model for the MDSS. It was referred to as the true model because it reflected the true state 

of the world for the MDSS. An equal weights model requires that all attributes be given 

equal value to achieve an optimal decision (See Equation 2). The equal weights model 

made the decision-making task of appropriate complexity because the study implemented 

an unfriendly decision environment involving a negative inter-attribute correlation 

between three pairs of attributes (a total of six attributes), leading to increased sensitivity 
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to weights for an optimal decision due to tradeoffs. Participants also received instructions 

that strongly implied using an equal weights decision strategy to ensure they incorporated 

tradeoffs while making route-planning decisions (See APPENDIX A for detailed 

participant instructions). 

 
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) = �(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ×

1
6

)
6

𝑖𝑖=1

 (2) 

                 

 The flow chart in Figure 14 lists the steps (from Mathematica code) involved in 

producing one trial (six attribute values for all seven routes) for MDSS. For each trial, 

many route alternatives (150 routes) were generated from which the true model found the 

seven best routes based on the highest ranked utility values (See Equation 2). The attribute 

values for all six attributes for 150 routes were generated by randomly drawing pairs from 

a copular binomial distribution with an average correlation of -0.7 between pairs of 

attributes (3 pairs). This negative correlation created unfriendly environments 

characterized by severe tradeoffs between decision attributes. The true model gave each 

attribute an equal weight of 1/6 (~0.16) and used the attribute values obtained from copular 

distribution to calculate the utility (See Equation 2) of all 150 routes. Following this, utility 

loss (see Equation 1) for each route was calculated with reference to the route with the 

highest utility. The top seven routes with the lowest utility loss values comprised the best 

alternative set that the true MDSS presented to the participants. However, as discussed 

before, models are always simplifications, and a true 100% accurate model doesn’t exist in 

real-world scenarios when MDSS are implemented in uncertain decision-making tasks. 
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Due to this, the true model was not presented to the participants but was used to provide 

feedback and evaluate participant decisions compared to the true state of the world. The 

participants received seven routes (along with their decision attribute values) down-

selected from 150 routes by either an accurate (no misspecification), soft, or hard 

misspecified model, as discussed earlier in Figure 3.  

 

Figure 14. Steps to generate a set of 6 attribute values for the top 7 routes and top 3 
recommended routes by an MDSS  

Random noise (Normal Dist [0,0.015]) was added to the attribute values for all 150 

routes as real-world data always has some noise level due to multiple sources of 

imperfections, e.g., errors in sensors collecting data leading to aleatory uncertainty. The 
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accurate model used the exact weights of 1/6 as the true model but used noised attributes 

to calculate utility and utility loss for each route and ranked them to identify the top seven 

routes and corresponding attribute values. Along with aleatory uncertainty, the 

misspecification models had epistemic uncertainty due to incorrectly weighted cues. The 

soft misspecified model was misspecified such that it overweighted the first attribute 

(2/6~almost double) and equally weighted the other five attributes such that the total weight 

sum is equal to one. As the name suggests, the hard misspecified model was misspecified 

to a greater extent than the soft. It overweighted the first and third attributes (2/6~ almost 

double) and equally weighted the other four such that the total weight sum was equal to 

one. Table 2 shows the attribute weights of each model. 

Table 2 Attribute weights for each model (misspecification in bold) 

 Attribute 1 
Time 

Attribute 2 
Fuel  

Attribute 3 
Obstacles 

Attribute 4 
Extra 

Supplies 

Attribute 5 
Hazards 

Attribute 6 
Humanitarian 

Aid 

True Model 0.167 0.167 0.167 0.167 0.167 0.167 

Accurate 
Model 

0.167 0.167 0.167 0.167 0.167 0.167 

Soft 
Misspecified 
Model 

0.3 0.14 0.14 0.14 0.14 0.14 

Hard 
Misspecified 
Model 

0.3 0.1 0.3 0.1 0.1 0.1 

 

The utility and utility loss for the top seven routes and attribute values were 

different in all four models because of the different weights (Table 2) the model gave while 
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producing the seven alternatives. Hence, the set of seven alternative routes differs between 

each model. Table 3 shows the output ranks (based on the true model) for one trial for each 

model’s top seven route alternatives. For example, the table shows that the 55th ranked 

route by the true model is identified as the third best route by the hard model, hence 

showing the implication of model misspecification on the quality of alternatives presented 

by the model.  

Table 3. Example trial: True ranks (out of 150 routes) of route alternatives ranked as top 
7 by each model 

Model-based 
route ranks 

True ranks of routes out of 150 routes used to find 7 top routes by 
each model 

True Model Accurate Model Soft 
Misspecified 

Model 

Hard 
Misspecified 

Model 

1st best route 1 1 11 21 

2nd best route 2 2 21 27 

3rd best route 3 3 12 55 

4th best route 4 5 3 18 

5th best route 5 4 26 41 

6th best route 6 8 4 26 

7th best route 7 7 27 11 

 

The whole process in Figure 14 was repeated forty times to generate forty trials 

with seven alternatives and associated attribute values from all four models. Table 4 shows 

the descriptive statistics (mean true rank and standard deviation) for the top seven routes 
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generated by all three models for all forty trials used in the experiment. The first, second, 

and third best routes became the model-recommended set of routes for the participants and 

were presented in a different color for the experimental conditions. The details of the 

experimental conditions will be discussed in the next section.  

Table 4. Descriptive statistics for true route ranks (out of 150) of top seven routes by all 
models for all 40 trials used in the experiments 

Model-based 
Rank of Routes 

Accurate Model Soft Misspecified 
Model 

Hard 
Misspecified 

Model 

Mean 
Rank 

SD Mean 
Rank 

SD Mean 
Rank 

SD 

1st best route 1.10 .30 3.10 3.47 8.78 10.87 

2nd best route 2.05 .68 4.58 4.01 13.23 12.99 

3rd best route 3.24 .53 7.10 6.20 20.93 24.46 

4th best route 4.24 1.02 8.38 6.11 20.87 21.79 

5th best route 4.98 1.05 9.37 6.68 24.27 19.09 

6th best route 6.38 1.55 10.90 7.77 25.68 20.55 

7th best route 7.55 1.50 13.35 7.60 34.20 24.39 

 

3.1.2 Route Images Generation on World Maps  

Around two hundred seventy routes were generated on a 100×100 grid (Figure 15) in 

Wolfram Mathematica by calculating the shortest distance between a fixed start and 

endpoint using Dijkstra’s shortest path algorithm (Dijkstra, 1959). The shortest distance 

changes for each route because some portion of the grid was randomly deleted from the 
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shortest-path calculation in every iteration of route generation. Seven routes were randomly 

picked from all 270 routes for each trial. The only constraint for selecting seven routes was 

that they are spread out on the grid and have little or no overlap to avoid confusion by 

participants in distinguishing them. The x and y coordinates for each vertex of the routes 

were converted to distance in miles for different start and end positions on a world map 

defined using their longitude and latitude values. The seven routes were drawn on the world 

map using the position for each vertex (Figure 16). The latitude and longitude values for 

each start and end destination for all 40 trials were randomly extracted using the Classic 

Searoutes website. 

 

Figure 15. Seven routes generated on a 100×100 grid in Mathematica 

 

https://classic.searoutes.com/routing?speed=13&panama=true&suez=true&kiel=true&rivers=block&roads=block
https://classic.searoutes.com/routing?speed=13&panama=true&suez=true&kiel=true&rivers=block&roads=block


 40 

 

Figure 16. Routes generated in the grid are superimposed on a world map and labeled from 
A-G 

3.2 Experiment 1: Investigating the Impact of Model Blindness on Decision-making  

The goal of the first study in this dissertation was to show how misspecifications in 

MDSS’ model impose model blindness on users and how that impact decision-makers' 

performance, decision-making process, trust, and confidence in the system. Another 

important goal was to show how models can bias human-decision making and enhance the 

impact of model blindness by presenting a few salient alternatives to the users. The 

experiment was designed to help understand how model-limited and strategy-limited 

performance can manifest in this study's route-planning task involving an unfriendly 

environment. Both model misspecification and the presence of recommended alternatives 

were manipulated systematically to investigate this issue of model blindness.  
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3.2.1 Design 

The experiment was designed using PsychoPy software (Peirce et al., 2019; Peirce 

et al., 2022) for participants to perform a route-planning task using the route-recommender 

system described in the previous section. The experiment was a 2 (Route Recommender 

System) x 3 (Model Misspecification) between-subjects design, as shown in Figure 17. The 

recommender system manipulation had two levels: (1) three MDSS-preferred 

recommended routes absent (Figure 13), and (2) three MDSS-preferred recommended 

routes present (Figure 18). The model misspecification manipulation had three levels: (1) 

accurate model (no misspecification), (2) soft misspecified model, and (3) hard 

misspecified model. The soft misspecified model overweighted the attribute “Time 

Efficiency.” The hard misspecified model overweighted the attribute “Time Efficiency” 

and “Obstacle Avoidance.” The dependent measures included performance (response rank 

and utility loss), trust score, calibration (Brier score), reliance on preferred routes, and 

participants’ route choices (used to extract decision strategy). All the conditions with 

preferred routes absent served as control conditions for the corresponding experimental 

conditions with preferred routes present. The experiment required three separate control 

groups for the corresponding experimental groups because the set of seven routes and 

corresponding decision attribute values were different based on the level of 

misspecification in the MDSS, which determined the quality of the whole alternative set 

and recommended set (Table 3). So, comparing the hard misspecified experimental 

condition to an accurate control condition was inappropriate. Because even though 

participants in the hard misspecified condition received additional decision support from 

the recommended set (top 3 routes), the quality of all seven alternatives presented was 
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much better for the accurate control condition compared to the hard experimental condition 

on average. Also, the recommender was much more accurate in no misspecified conditions. 

 

Figure 17. Design for Experiment 1 

In order to prevent any order effects in the experiment, I randomized every aspect 

of the experiment. Participants were randomly assigned to the six experimental 

conditions. The order in which the six attributes were presented was randomized across 

participants, but the order was constant for the same participant to avoid confusion in 

attribute label reading. The route labels (A-G) in the 40-trial images were also 

randomized using a balanced Latin square (Online Calculator). The route labels stayed 

the same for the same trial image for all six conditions. The preferred routes (top 3 

identified by each MDSS) were colored differently (solid yellow vs. dashed red in Figure 

18). 

 

https://cs.uwaterloo.ca/%7Edmasson/tools/latin_square/
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Figure 18. Route Recommender System interface for experimental groups in Experiment 
1 and 2 (with system preferred route set represented as solid yellow lines and additional 
recommended routes represented as dashed red lines) 

 

3.2.2 Participants 

193 participants were recruited to participate in Experiment 1. Participants for this 

study were recruited from the Georgia Tech Sona experiment management system and 

were compensated with 1.5-course credit. Any student at Georgia Tech with normal or 

corrected-to-normal vision was eligible to participate in Experiment 1. I planned to recruit 

at least 180 participants for Experiment 1, i.e., at least 30 for each condition. The proposed 

sample size was obtained by performing an a-priori power analysis in GPower software. 

Given this proposed sample size and assuming an alpha of 0.05, I anticipated being able to 

detect a medium effect size of approximately cohen’s f = 0.31 (cohen’s d = 0.62) with 80% 

power. The data collection for this experiment began on May 17th, 2022. Before beginning 
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data collection, the study was pre-registered, and pre-registration is available on OSF 

(https://osf.io/p5dkb). 

3.2.2.1 Exclusion Criteria 

The data for 180 participants were included in the analysis. The remaining 

participants were excluded for the following reasons: pilot participants (5), participants 

with more than 10% (4 trials) of trial response data missing (4), participants who needed a 

long break during the experiment (2), and participants who accidentally exited code (2). 

Block randomization was used to achieve an equal minimum number of participants in 

each condition. Data collection was paused after accommodating exclusion criteria, when 

I reached the target number of participants in each condition. 

3.2.2.2 Participant Demographics from Pre-Study Questionnaire 

I only have demographics questionnaire responses for 158 participants (88% 

participants) as the pre-study questionnaire (See APPENDIX B) was added to the study 

after beginning data collection for this study. The mean age for 156 participants (2 didn’t 

report) was 19.23 years (Range: 18-26 years). The gender distribution for participants is 

presented in Table 5, and their major distribution at Georgia Tech is presented in Figure 

18. Computer Science was the most represented major among participants. The majority 

of participants (78%) had past experience playing video games (No experience- 10%, 

Missing Data- 12%). The majority of participants (82%) also had past experience with 

AI-based recommender systems (e.g., Netflix movie recommendations, Amazon product 

recommendations, Health and Fitness apps) in their day-to-day life (No experience- 4%, 

Missing data- 14%). A small number of participants (12%) had also taken a 

https://osf.io/p5dkb
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course/worked with recommender systems in the past (No course- 73%, Missing data- 

14%). 

Table 5. Gender distribution of participants in Experiment 1 

Gender Percentage of Participants 

Female 31% 

Male 54% 

Non-binary/Non-conforming / Other 2% 

Didn’t report 1% 

Missing Data 12% 

 

 

Figure 19. Major distribution of participants in Experiment 1 



 46 

3.2.3 Procedure 

Participants were seated at a desk with a computer in Decision Processes Lab at the 

School of Psychology at Georgia Tech to complete all the tasks involved in the experiment. 

The entire experiment, including the consent form at the beginning and the debriefing at 

the end of the experiment, was administered using PsychoPy software installed on 

participant computers.  

As shown in Figure 20, the experiment protocol started when participants provided 

informed consent at the start of the experiment and background demographics information 

(See  APPENDIX B for the pre-study demographics questionnaire). Following that, they 

received instructions about the route-recommender system and what decision task they had 

to perform (See APPENDIX A for detailed participant instructions). Participants were 

instructed that they would be provided with an AI-based route recommender system that 

would present seven routes and corresponding attributes where a higher attribute value 

would mean better value (or utility). The participants would click on button A-G, shown 

on the right of route images in Figure 13 (control group) or Figure 18 (experimental group) 

to look at attributes corresponding to each route (see Experiment Video). 

https://gtvault-my.sharepoint.com/:v:/g/personal/sparmar34_gatech_edu/EVZ6k4QwnfRFoosjNLJT2GkBPu0VcAsHKszylxMIklh7ZA?e=1WhVvY
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Figure 20. Procedure steps for Experiment 1 

The system was presented as AI-based to the participants due to the familiarity of the 

general population with this term in everyday life compared to an MDSS. As remote 

operators, they had to perform a route planning task (sea + ground shipping) to deliver 

critical care shipments from one location to another in urgent need using the provided AI-

based route recommender system. At the start of the experiment, the initial instructions 

explained in detail what the route recommender system was and what each decision 

attribute meant. Participants were instructed to use all the presented information and that 

each piece of information was equally important for an optimal decision. By instructing 

participants to use all information equally, I wanted to prime participants to use an equal 

weights decision strategy as the true model underlying the route-recommender system was 

an equal weights model. The participants received four dummy learning trials at the start 
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of the experiment to learn how the route-recommender system interface worked. After that, 

participants were presented with 40 trials on which they had to choose the most optimal 

route out of the seven. After each trial, participants were asked to rate their confidence in 

their decision (Figure 21). Following that, they received feedback (Figure 22) regarding 

where their chosen route ranked out of the seven routes on which they made their decision 

choice. The feedback was aimed at helping participants learn what attribute weights the 

true model uses to pick the most preferred alternative. At the end of the experiment (after 

40 trials), participants were administered a trust scale measuring their trust in an AI-based 

recommender system. After the trust scale, participants responded to the post-study 

questionnaire determining their experience with the study and their past experience with 

recommender systems in general (See APPENDIX C for the post-study questionnaire). 

Finally, in the end, participants were provided a debrief summary of what this experiment 

was trying to study. 

 

Figure 21. Confidence judgment elicitation 
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Figure 22. Feedback presented to participants after each trial 

 

3.2.4 Validation of Task Ecology through Simulation 

Before beginning participant data collection, I investigated whether the ranked 

feedback presented in this experiment had enough statistical properties for participants to 

learn task ecology (attribute weights and inter-attribute correlation) over the course of the 

experiment (a total of 40 trials) through simulations. I performed ordinal logistic regression 

with ranked feedback as the criterion and all six decision attributes as predictors using R 

software for statistical analysis.   

A simulated decision-maker randomly picked one route alternative out of 7 on all 

40 trials, which yielded one random response sample. Then ordinal regression was run 
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using the feedback rank and corresponding attribute weights for the random sample 

generated by a simulated decision-maker. Due to high multicollinearity among decision 

attributes, ordinal regression failed to converge for many random samples. To check the 

likelihood of the regression model not converging, I ran 100 random samples for each 

model, including hard, soft, and accurate. The hard model failed to converge 23 times, the 

soft model failed to converge 8 times, and the accurate model always converged.  

Table 6. Ordinal regression weights for 20 random samples of decision choices (route-
choices of 20 random simulated participants on 40 trials) 

MDSS Model Average beta weights (Number of samples with p<0.05) 
 

β1 β2 β3 β4 β5 β6 

Accurate Model -0.038 
(16) 

-0.035 
(16) 

-0.039 
(15) 

-0.036 
(14) 

-0.041 
(17) 

-0.033 
(15) 

Soft 
Misspecified 
Model 

-0.0004  
(0) 

-0.063 
(20) 

-0.063 
(19) 

-0.059 
(20) 

-0.055 
(19) 

-0.06 
(20) 

Hard 
Misspecified 
Model 

-0.01   
(1) 

-0.07 
(20) 

-0.016 
(3) 

-0.06 
(20) 

-0.067 
(20) 

-0.07 
(20) 

 

For each model, I randomly picked 20 random samples that converged on ordinal 

regression out of 100 samples. That can be assumed to be a response from 20 simulated 

decision-makers acting randomly during the experiment in all three control conditions. 

Table 6 shows the average beta weights for 20 random samples with 40 decision choices 

each. The table also shows how many samples, out of 20, the beta weight was significant 
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(p<0.05). For the accurate model, all the beta weights (standardized regression coefficients) 

were almost equal in magnitude, indicating that each attribute value must be weighted 

equally to achieve lower ranked feedback from those values, thus indicating the use of 

equal weights true model for optimal performance. Also, most attributes were significant 

on 14-17 samples out of 20. However, not all of them were statistically insignificant in the 

same sample. The number indicates that for some random samples, one or two attributes 

were statistically insignificant. This might have happened because of the presence of 

multiple highly correlated predictors that the decision-maker might not need information 

from all sources to succeed in a task, i.e., the value on one attribute can compensate for the 

value on another. 

For the soft misspecified model, the beta weight for the first attribute (β1) was not 

statistically significant in any of the 20 samples, and its magnitude was also much lower 

compared to the other five attributes indicating that the participants would have to 

underweight or completely ignore this attribute to select a lower ranked (best route) route 

alternative. They would also have to give equal value to the other five attributes to perform 

well. This again validated the weights that participants would have to put into selecting the 

best alternative as the soft misspecified MDSS overweighted (double) the first attribute 

while generating and presenting the top 7 routes to the participants. The participants would 

have to compensate for this overweighting via MDSS by underweighting that attribute and 

weighing others equally.  

For the hard misspecified model, the beta weights for the first attribute (β1) and the 

third attribute (β3) were not statistically significant for most of the 20 random samples, and 

their magnitude of beta values was also much lower compared to the other four attributes 
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indicating that the participant would have to underweight or completely ignore these 

attributes to select a lower ranked alternative (best route). They would also have to give 

equal value to the other four attributes to perform well in the route planning task. This 

again validated the weights that participants would have to put into selecting the best 

alternative as the hard misspecified MDSS overweighted (double) the first and the third 

attributes while generating and presenting the top 7 routes to the participants. Participants 

would have to compensate for this overweighting via MDSS by underweighting those two 

attributes and weighing others equally.  

These results helped validate that the ranked feedback had enough statistical 

information to learn and understand how to weigh attributes appropriately during the 

experiment. Hence, these results served as motivation to start data collection with ranked 

feedback in the study. 

3.2.5 Dependent Measures in the Study 

The following sub-sections discuss different dependent measures used in this study 

and the reasoning for using them as dependent variables. 

3.2.5.1 Performance Measures 

Response rank was measured as the selected route’s ordinal rank out of the seven 

presented routes by the MDSS on each trial. It varies from 1 to 7. It mimics the ranked 

feedback that participants received after each trial. 
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Outcome was measured as a binary variable indicating whether participants picked 

the top-ranked route or not. In each trial, participants received a score of 1 when they picked 

the first best route and received a score of 0 when they picked any other route.  

Global utility loss was based on the utility of the true best alternative produced by 

the true equal weights model (using true weights and attribute values without any noise). 

The global utility loss was measured using (see Equation 3) using the utility of the true best 

alternative out of 150 routes used by the true model to develop the MDSS.  

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 150 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)− 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣𝑒𝑒(𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 150 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
  (3) 

Local utility loss was based on the true utility of the best alternative presented by 

the MDSS to participants in each trial. It is derived by using the global utility loss values 

available for each route using Equation 4. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

− 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

(𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 7
 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑊𝑊𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

(𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 7
 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

− 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

(𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 7 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠)

  (4) 

Response rank, outcome, and local utility loss are MDSS-centric performance 

measures in which participants’ performance was evaluated based on the alternatives they 

received. These measures solely assessed performance based on the information that 

participants received from MDSS during the experiment. With response rank being similar 

to the ranked feedback that participants received, the outcome being equivalent to 

participants’ absolute success on each trial, and local utility loss evaluated participant 
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performance based on the absolute true accuracy of the tool. On the other hand, global 

utility loss was based upon the true best alternative produced by the true equal weights 

model defining the true state of the world for the MDSS used in the study. 

3.2.5.2 Confidence Judgement and Calibration 

Participants rated their confidence in their route choice after each trial decision on 

a 0 (not at all confident) to 100 (completely confident) continuous scale. Per trial 

confidence judgments of participants was used to measure the calibration of participants’ 

confidence to the actual outcome of their decision using Brier scores (BS) (see Equation 5) 

as analyzed by Parmar and Thomas (2020). Brier score is the most common metric for the 

analysis of confidence judgment (Brier, 1950; Murphy & Winkler, 1977; Yates, 1990). The 

Brier score (BS) is a proper scoring rule that provides a measure of the accuracy of 

confidence judgments. Hence, in this case, it helped measure how much participants' 

confidence judgments were calibrated with the actual MDSS accuracy. 

 
𝐵𝐵𝐵𝐵 =  

1
𝑁𝑁

 �(𝑐𝑐𝑡𝑡 − 𝑜𝑜𝑡𝑡)2
𝑁𝑁

𝑇𝑇=1

 (5) 

 

The Brier score is described by Equation 5, where N is the total number of 

probability or confidence assessments, ct is the tth confidence judgment, and ot is the 

outcome index for the tth confidence judgment. If the event occurs (if a participant selects 

the correct route out of seven), then ot =1, and if the event does not occur (if a participant 

selects the incorrect route out of seven), then ot =0. The outcome index is equivalent to the 
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outcome measure described previously as one of the performance measures. Thus, the Brier 

score is the average squared deviation between the confidence of the decision-maker and 

the outcome index (Brier, 1950; Murphy & Winkler, 1977; Yates, 1990). The lower the 

Brier score for a set of predictions, the better the predictions are calibrated (i.e., less error 

in predictions). 

3.2.5.3 Reliance and Trust in MDSS 

Participants’ reliance on MDSS was derived as a binary measure only for 

experimental conditions. If participants chose a route alternative from the set of three 

preferred routes (solid yellow lines in Figure 18), their reliance was scored as 1 on that 

trial. If participants chose a route alternative from the set of four non-preferred routes 

(dashed red lines in Figure 18), their reliance was scored as a 0 on that trial.  

Reliance on any automated system depends on users’ trust in the system (Lee & 

See, 2004). Therefore, the participants’ trust in the MDSS was also measured at the end of 

the experiment. The participants were administered a 4-point Likert-based trust scale 

(Table 7) developed by Ashoori and Weisz (2019) to measure trust in the AI-based DSS. 

The authors developed this scale by re-wording items and pooling from multiple scales 

(including (Jian et al., 2000)) already available in the trust in the automation literature that 

evaluates different aspects of user trust. Ashoori and Weisz (2019) developed a separate 

scale, as most existing trust scales focus on autonomous systems rather than AI-based or 

model-based systems that provide decision support to the participants.  
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Table 7. Items of trust scale by Ashoori and Weisz (2019) grouped by the facet of trust 
the items focus on (*reverse scored items) 

Trust Facet Trust Scale Items 

Trustworthiness This decision-making process is trustworthy 

I would change one or more aspects of this decision-making process 
to make it trustworthy* 

This decision-making process will produce a fair outcome for the 
person affected by the decision 

The decision-maker needs more information about how the AI 
model was trained and tested in order to trust the process* 

Reliability This decision-making process would always make the same 
recommendation under the same conditions 

The outcome of this decision will be consistent with other decisions 
made for other people 

Technical 
Competence 

The use of an AI model is appropriate in this scenario 

This decision will be made based on reliable information 

I trust that the technical implementation of the AI model is correct 

Understandability It is easy to understand what this decision-making process does 

I understand how this decision-making process works 

Personal 
attachment 

I am confident in this decision-making process. I feel that it works 
well 

I am wary of this decision-making process * 

I like this decision-making process 

 

 



 57 

3.2.6 Analysis and Results 

Linear mixed-effects models were used to analyze all continuous repeated measure 

DVs (response rank, utility loss, Brier score, and confidence judgments), and generalized 

linear mixed-effects models were used to analyze repeated measure binary DVs (reliance 

and outcome) for the complete experiment design with participants as the random effects 

grouping factor. A two-way ANOVA with post hoc comparisons was used for trust scores, 

which were measured once per participant. 

For all my DVs, I expected to find significant main effects of both independent 

variables: recommender [conditions: yes (with recommender preferred 3 routes vs. no 

(without recommender preferred 3 routes)] and model misspecification (conditions: 

accurate, soft, and hard). I also expected to see a significant interaction between model 

misspecification and recommender. However, little to no evidence was found for the main 

effect of model misspecification and an interaction between recommender and model 

misspecification for most of my DVs. For most DVs, there is only evidence for the main 

effect of the recommender. The following sub-sections discuss the results organized by 

DVs. 

3.2.6.1 Performance Measures 

Response rank 

Figure 23 shows the mean rank of participant route choices by each condition in 

the experiment. The response rank is based on the true model (out of 7 presented routes) 

and mimics feedback received by participants on each trial. A lower rank means better 
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performance on trial as the experiment task was to find the 1st ranked route on each trial. 

A repeated measures ANOVA using a linear mixed-effects model was used to test the 

effect of recommender availability and model misspecification on participant decision 

choices using response rank as a continuous variable. The trial ID variable, which 

represents the 40 different trials (scenarios) that participants received in each condition, 

was also included as a predictor in the model to test if the performance varies significantly 

across different trials. It is important to remember that participants in different 

misspecification conditions received different attribute values for the same trial ID due to 

misspecification, however the true model is same for each trial ID across conditions.  

The ANOVA summary table is shown in Table 8. Participants response ranks 

differed significantly between recommender conditions (χ2 (1) = 6.23, p = .013). The 

response rank for participants with recommender was lower (better performance) 

compared to participants without recommender (Mean Difference= 0.172). The main effect 

of trial ID (χ2 (39) = 859.78, p < 0.001) was also significant, indicating a difference in their 

difficulty level affecting performance. The interaction between trial ID and model 

misspecification (χ2 (78) = 670.99, p < 0.001) was also significant, indicating that 

performance on different trials varied significantly across conditions. Some trials were 

more difficult than others at some misspecification levels (Figure 24). 
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Figure 23. Mean response rank (out of 7) of selected route by model misspecification and 
recommender conditions 

 

Table 8. Linear mixed models: Likelihood ratio tests for response rank  

Effect df ChiSq p 
Model Misspecification 

 
2 

 
2.839 

 
0.242 

 

Recommender 
 

1 
 

6.226 
 

0.013 
 

Trial ID 
 

39 
 

859.795 
 

< .001 
 

Model Misspecification  × Recommender 
 

2 
 

2.153 
 

0.341 
 

Model Misspecification  × Trial ID 
 

78 
 

670.988 
 

< .001 
 

Recommender × Trial ID 
 

39 
 

38.847 
 

0.477 
 

Model Misspecification  × Recommender × Trial ID 
 

78 
 

85.922 
 

0.252 
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Figure 24. Mean response rank (out of 7) of the selected route by model misspecification 
and recommender conditions for all trial IDs 

 

There was no significant main effect of model misspecification or interaction 

between model misspecification and recommender. I predicted that participants in accurate 

and hard recommender conditions would perform better than participants in their 

corresponding no recommender (control) conditions. This was because of the additional 

support provided by the recommender system that displayed highly accurate routes in the 

recommended three routes. The prediction for hard condition was exploratory. I predicted 

the trend because participants received a highly misspecified MDSS in the hard 

recommender condition, which might make it easier to detect that the recommender 

suggests less valuable alternatives, and participants can deviate from the recommender and 

use their own judgment or recommended EQ weights policy to make the route-decision. 
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The evidence for hard and accurate conditions can be seen from significant main effect of 

recommender. I also predicted that participants in the soft recommender condition would 

perform worse than the corresponding soft control condition. However, no evidence was 

found for this prediction. This prediction was exploratory and counterintuitive. I expected 

this trend because participants might find it difficult to overcome slightly misspecified 

support by a recommender. Participants might take longer (more trials) to overcome the 

soft misspecified recommender until they realize that the recommender system is not very 

accurate.  

For all control conditions, I expected performance to worsen with increasing 

misspecification from accurate to soft to hard. This was because the quality of the 

alternative set degraded with the increase in the MDSS level of misspecification. For all 

recommender conditions (experimental), I expected that the order of performance 

degradation would be first accurate, then hard, then soft condition. This is again because 

of difficulty overcoming a slightly misspecified system (soft) that has a higher probability 

of being correct sometimes compared to a highly misspecified system (hard), which has a 

high probability of being wrong most of the time.  

Outcome 

The outcome measure was coded as a binary variable with a score of 1 on trials 

when the best route was selected and 0 on trials with any other ranked route selection. This 

DV was implemented to test if a more conservative scoring approach reveals performance 

differences across conditions. All the predictions for outcome DV were the same as the 

response rank DV. The proportion of trials with outcome equal to 1 for all conditions is 
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shown in Figure 25.  A repeated measures ANOVA using a generalized linear mixed effects 

model with binomial family and logit link function was used to test the effect of model 

misspecification, recommender availability, and trial block on the outcome. The trial block 

was used instead of trial ID as a predictor in generalized linear mixed effects model as the 

large number of levels of trial ID cannot be estimated by the model for available data. The 

trial block is ordinal variable with 4 levels with each level comprising 10 trials in order of 

presentation. No significant effects were found (Table 9). Hence, no evidence was found 

for the predicted main effect of model misspecification, recommender availability, and an 

interaction between the two. No significant difference in participants’ ability to select the 

best outcome changed with the level of misspecification and/or recommender availability. 

 

Figure 25.  Mean outcome (proportion of trials with the best route selected) by model 
misspecification and recommender conditions 
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Table 9. Generalized linear mixed models: Likelihood ratio tests for outcome 

Effect df ChiSq p 
Model Misspecification 

 
2 

 
3.527 

 
0.171 

 

Recommender 
 

1 
 

1.500 
 

0.221 
 

Trial Block 
 

3 
 

0.647 
 

0.886 
 

Model Misspecification × Recommender 
 

2 
 

0.497 
 

0.780 
 

Model Misspecification × Trial Block 
 

6 
 

5.690 
 

0.459 
 

Recommender × Trial Block 
 

3 
 

3.002 
 

0.391 
 

Model Misspecification × Recommender × Trial Block 
 

6 
 

6.539 
 

0.366 
 

 

Local utility loss  

 The local utility loss (Figure 26) is again a performance measure with the same 

predictions as response rank and outcome. The lower utility loss is considered better. A 

repeated measures ANOVA using a linear mixed-effects model was used to test the effect 

of recommender availability and model misspecification on participant decision choices 

using local utility loss as a continuous variable. The trial ID was also included as a predictor 

in the model to test if the local utility loss varies significantly across different trials. The 

ANOVA summary table is shown in Table 10. The significant effects are similar to the 

response rank effects presented before. Participants’ local utility loss for their selected 

routes differed significantly between recommender conditions (χ2 (1) = 5.62, p = .018). 

The local utility loss for route choices of participants with recommender was lower (better 

performance) compared to participants without recommender (Mean Difference= 0.031). 

The main effect of trial ID (χ2 (39) = 909.92, p < 0.001) was also significant, indicating a 

difference in trial difficulty level affecting performance. The interaction between trial ID 

and model misspecification (χ2 (78) = 988.37, p < 0.001) was also significant, indicating 

that performance on different trials varied significantly across conditions. Some trials were 

more difficult than others at some misspecification levels. The local utility loss and 
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response rank measures were normalized (z-scores) by Trial ID to account for item 

difficulty, and the same ANOVA models were rerun. However, the results stayed the same, 

except the main effect of Trial ID was non-significant, as expected due to normalization. 

 

Figure 26. Mean local utility loss of selected route by model misspecification and 
recommender conditions 

Table 10. Linear mixed models: Likelihood ratio tests for local utility loss of selected 
route 

Effect df ChiSq p 
Model Misspecification 

 
2 

 
2.597 

 
0.273 

 

Recommender 
 

1 
 

5.627 
 

0.018 
 

Trial ID 
 

39 
 

909.922 
 

< .001 
 

Model Misspecification × Recommender 
 

2 
 

2.592 
 

0.274 
 

Model Misspecification × Trial ID 
 

78 
 

988.372 
 

< .001 
 

Recommender × Trial ID 
 

39 
 

39.129 
 

0.464 
 

Model Misspecification × Recommender × Trial ID 
 

78 
 

72.591 
 

0.652 
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Global utility loss 

The global utility loss (Figure 27) is again a performance measure like local utility 

loss, with a lower value being considered better. However, global utility loss evaluates 

participants’ route choice in comparison to the true global best route generated by the true 

equal weights model. It compares route choices to the true world for MDSS instead of just 

seven presented alternatives. As it represents the true world, I expected it to follow the 

order of misspecification (main effect) for both levels of the recommender. The global 

utility loss should increase as the quality of the alternative set gets worse with increasing 

misspecification. However, global utility loss measure performance in comparison to true 

global best alternative and hence, should be unrelated to local task-specific measures like 

trust, confidence, and reliance. A repeated measures ANOVA  using a linear mixed-effects 

model was used to test the effect of recommender and model misspecification on 

participant decision choices using global utility loss as a continuous variable. The trial ID 

was also included as a predictor in the model to test if the global utility loss varies 

significantly across different trials. The ANOVA summary table is shown in Table 11. 

Participants’ global utility loss for their selected routes differed significantly between 

model misspecification conditions (χ2 (2) = 188.12, p < .001). The post-hoc contrasts show 

significant differences in global utility loss between all three groups in order of 

misspecification:1) accurate condition has lower global utility loss compared to soft 

(MD=0.014; z = 5.16; p<0.001), 2) accurate condition has lower global utility loss 

compared to soft (MD=0.049; z = 17.71; p<0.001), and 3) soft condition has lower global 

utility loss compared to hard (MD=0.034; z = 12.56; p<0.001).  
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The main effect of trial ID (χ2 (39) = 1512.28, p < 0.001) was also significant, 

indicating a difference in their difficulty level affecting performance. The interaction 

between trial ID and model misspecification (χ2 (78) = 931.76, p < 0.001) was also 

significant, indicating that performance on different trials varied significantly across 

misspecification levels. Some trials were more difficult than others at some 

misspecification levels. The interaction between trial ID and recommender (χ2 (39) = 55.26, 

p =0.044) was also significant, indicating that performance on different trials varied 

significantly between both recommender conditions. 

Table 11. Linear mixed models: Likelihood ratio tests for global utility loss of selected 
route 

Effect df ChiSq p 
Model Misspecification 

 
2 

 
188.125 

 
< .001 

 

Recommender 
 

1 
 

2.780 
 

0.095 
 

Trial ID 
 

39 
 

1512.280 
 

< .001 
 

Model Misspecification × Recommender 
 

2 
 

0.685 
 

0.710 
 

Model Misspecification × Trial ID 
 

78 
 

931.764 
 

< .001 
 

Recommender × Trial ID 
 

39 
 

55.261 
 

0.044 
 

Model Misspecification × Recommender × Trial ID 
 

78 
 

92.814 
 

0.121 
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Figure 27. Mean global utility loss of selected route by model misspecification and 
recommender conditions 

3.2.6.2 Confidence Judgement and Brier Scores 

Although I expected the Brier scores of the participants’ confidence judgments to 

follow a similar pattern as performance, the Brier Scores were expected to be less sensitive 

to misspecifications in the MDSS than performance because the confidence elicitation was 

on a per-trial basis before participants received performance feedback. Moreover, 

performance was more dependent on the MDSS’s absolute accuracy, while confidence was 

based on the more subjective assessment of the decision makers’ choice. 
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Figure 28. Mean confidence judgment score by model misspecification and recommender 
conditions 

Two repeated measures ANOVA using a linear mixed-effects model were 

conducted to test the effect of recommender availability and model misspecification on 

participant confidence judgments (Figure 28) and Brier scores (Figure 29). The trial ID 

was also included as a predictor in both models to test whether confidence judgments or 

Brier scores change significantly across different trials. The ANOVA summary tables are 

shown in Table 12 and Table 13. 



 69 

 

Figure 29. Mean Brier score by model misspecification and recommender conditions 

 

For confidence judgments, none of the predicted main effects of model 

misspecification and recommender availability or an interaction between the two were 

found reliable. The only effects observed were main effect of trial ID (χ2 (39) = 222.9, p < 

0.001) and the interaction between trial ID and model misspecification (χ2 (78) = 200.25, 

p < 0.001).  
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Table 12. Linear mixed models: Likelihood ratio tests for participants' confidence 
judgments in their selected route 

Effect df ChiSq p 
Model Misspecification 

 
2 

 
3.520 

 
0.172 

 

Recommender 
 

1 
 

3.177 
 

0.075 
 

Trial ID 
 

39 
 

222.900 
 

< .001 
 

Model Misspecification × Recommender 
 

2 
 

1.110 
 

0.574 
 

Model Misspecification × Trial ID 
 

78 
 

200.252 
 

< .001 
 

Recommender × Trial ID 
 

39 
 

42.475 
 

0.324 
 

Model Misspecification × Recommender × Trial ID 
 

78 
 

90.178 
 

0.163 
 

 

For Brier scores, the main effect of model misspecification was significant (χ2 (2) 

= 7.07, p = 0.029). The main effect of trial ID (χ2 (39) = 650.38, p < 0.001) and the 

interaction between trial ID and model misspecification (χ2 (78) = 359.94, p < 0.001) were 

also statistically reliable. The post-hoc contrasts for model misspecification indicate 

significant differences between accurate vs. hard and soft conditions:1) the accurate 

condition had significantly lower Brier scores compared to soft (MD=0.043; z = 5.16; 

p=0.01), 2) the accurate condition had lower Brier scores compared to hard (MD= 0.037; 

z = 17.71; p=0.03), and 3) the Brier score for the soft condition was not significantly 

different from hard (MD= 0.005; z = 12.56; p=0.76). Hence, participants' Brier scores were 

only calibrated when the system was highly accurate compared to misspecified systems. 

There was no difference between soft and hard conditions’ Brier scores, even though they 

differ in accuracy. 
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Table 13. Linear mixed models: Likelihood ratio tests for Brier score (calibration) 

Effect df ChiSq p 
Model Misspecification 

 
2 

 
7.066 

 
0.029 

 

Recommender 
 

1 
 

0.688 
 

0.407 
 

Trial ID 
 

39 
 

650.379 
 

< .001 
 

Model Misspecification × Recommender 
 

2 
 

1.753 
 

0.416 
 

Model Misspecification × Trial ID 
 

78 
 

359.940 
 

< .001 
 

Recommender × Trial ID 
 

39 
 

34.390 
 

0.680 
 

Model Misspecification × Recommender × Trial ID 
 

78 
 

80.431 
 

0.403 
 

 

3.2.6.3 Reliance and Trust in MDSS 

Reliance 

The reliance measure was coded as a binary variable with a score of 1 on trials 

when the participant’s selected route belonged to the recommended set in the experimental 

condition and 0 on trials when it was a non-recommended route. The corresponding control 

conditions’ reliance was also calculated based on their corresponding recommended set 

from the experimental condition. This estimated how likely participants in the control 

conditions (without any recommender) were to pick the recommended routes in 

experimental conditions. 

The proportion of trials with reliance equal to 1 for all conditions is shown in Figure 

30. The proportion of trials with reliance equal to 1 for all conditions over trial block order 

is shown in Figure 31. A repeated measures ANOVA using a generalized linear mixed 

effects model with binomial family and logit link function was used to test the effect of 

model misspecification, recommender, and trial block on reliance (Table 14). The trial 

block was used instead of trial ID or trial order as a predictor in the generalized linear 

mixed effects model as the large number of levels of trial ID cannot be estimated by the 
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model for the available data. The trial block is an ordinal variable with 4 levels, with each 

level comprising 10 trials in order of presentation.  

The main effect of the recommender (χ2 (1) = 12.03, p < 0.001) was significant, 

indicating a difference in reliance when the recommender was available vs. not. This was 

an expected effect indicating a manipulation check that participants are likely to use a 

recommender when it is present, even if it is misspecified. The interaction between 

recommender and model misspecification (χ2 (78) = 931.76, p < 0.001) was also 

significant. Reliance is the only variable in Experiment 1 for which this predicted 

interaction effect was significant. The post-hoc planned contrasts for interaction effect 

show following differences:1) recommender conditions has significantly higher reliance 

compared to no-recommender control conditions (MD=0.196; z = -3.63; p<0.001), 2) the 

accurate recommender condition has significantly higher reliance compared to the accurate 

control condition (MD=0.128; z = -3.89; p<0.001), 3) the soft recommender condition has 

significantly higher reliance compared to the soft control condition (MD=0.065; z = -2.10; 

p=0.036), and 4) reliance in the hard recommender condition does not significantly differ 

from the hard control condition (MD=0.004; z = -0.127; p=0.899). 

I predicted that the odds of selecting a recommended route (reliance) would 

decrease as a function of trial progression in both hard and soft misspecified conditions but 

that it remains relatively constant for the accurate condition. However, no evidence was 

found for the prediction as there were no significant trial block effects. I also expected that 

reliance would be lowest on recommended set in the hard condition followed by soft and 

that accurate would have the highest reliance among recommender conditions because of 

the increase in the accuracy of the preferred route set. 
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Table 14. Generalized linear mixed models: Likelihood ratio tests for reliance on the 
recommended set 

Effect df ChiSq p 
Model Misspecification 

 
2 

 
4.018 

 
0.134 

 

Recommender 
 

1 
 

12.030 
 

< .001 
 

Trial Block 
 

3 
 

7.443 
 

0.059 
 

Model Misspecification × Recommender 
 

2 
 

6.816 
 

0.033 
 

Model Misspecification × Trial Block 
 

6 
 

6.952 
 

0.325 
 

Recommender × Trial Block 
 

3 
 

4.841 
 

0.184 
 

Model Misspecification × Recommender × Trial Block 
 

6 
 

8.600 
 

0.197 
 

 

 

Figure 30. Mean reliance (proportion of trials when selected route belonged to 
recommended set) by model misspecification and recommender conditions 
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Figure 31. Mean reliance (proportion of trials when selected route belonged to 
recommended set) by model misspecification and recommender conditions for all trial 
blocks 

 

Omnibus Trust Scores 

As trust was only measured once in the experiment, a two-way ANOVA examined 

the effect of model misspecification and recommender availability on the omnibus trust 

score. The omnibus trust score was measured by taking the mean of participant responses 

on all 14 items of the scale (Table 7). The mean trust score plotted by condition is shown 

in Figure 32. No significant main effects or interactions were found (Table 15). Figure 33 

shows the mean trust score for each facet of trust described before, plotted by condition. 

Similar to omnibus trust scores, two-way ANOVAs were conducted for each facet of trust, 

but no significant effects were found. Hence, there is no evidence that participants’ trust in 

the route recommender system differs between the different conditions of the experiment. 
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I predicted to see a main effect of model misspecification for trust score, where 

participants’ trust would be in the order of misspecification, with accurate having the 

highest trust from the participants, then soft misspecification, then hard. This is because 

trust in a system is proportional to the accuracy and reliability of the information provided 

by that system (Lee & See, 2004). I also predicted an interaction effect where trust would 

be better in the accurate experimental condition than in the accurate control condition. 

Counter-intuitively, I expected the trust in the soft and hard control conditions would be 

higher than in the corresponding soft and hard recommender conditions. The presence of 

misspecified recommenders can lead to distrust in MDSS in experimental conditions, 

plausibly making the trust score even worse than in control conditions. However, no 

statistical evidence was found for this prediction. 

 

Table 15. Two-way ANOVA: Test of between-subject effects for omnibus trust scores 

Predictor Type III 
Sum of 
Squares 

df Mean 
Square 

F p 

Intercept 408.330 1 408.330 2395.86 .000 

Recommender .131 1 .131 .771 .381 

Model 
Misspecification 

.160 2 .080 .470 .626 

Recommender 
× Model 
Misspecification 

.042 2 .021 .124 .884 

Error 28.803 169 .170   
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Figure 32. Mean omnibus trust score by model misspecification and recommender 
conditions 

 

 

Figure 33. Mean trust score for individual trust facets measured by the trust scale by 
model misspecification and recommender conditions 
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3.2.6.4 Learning 

Participants' learning was evaluated by testing their response rank across trial 

presentation order (Figure 34) and trial block order (Figure 35) to see if the response rank 

gets lower (performance improvement) with trial progression. A repeated measures 

ANOVA using a linear mixed-effects model was used to test the effect of recommender, 

model misspecification, and trial presentation order on participant response rank (Table 

16). Another repeated measures ANOVA using a linear mixed-effects model was 

conducted to test the effect of recommender, model misspecification, and trial block order 

on participant response rank (Table 17). No evidence for the learning effect was found in 

both the repeated measures models. The main effect of the trial order, as well as the trial 

block, was not statistically significant nor any interaction with them were significant. This 

was expected to occur, as shown previously, performance across different trial IDs 

significantly differs across conditions. Hence, the difference in the difficulty of different 

scenarios might have affected the ability to detect any reliable learning effects in the task. 

 

Table 16. Linear mixed models: Likelihood ratio tests for response rank to evaluate 
learning over trial presentation order 

Effect df ChiSq p 
Model Misspecification 

 
2 

 
2.769 

 
0.250 

 

Recommender 
 

1 
 

6.226 
 

0.013 
 

Trial Order 
 

39 
 

45.569 
 

0.218 
 

Model Misspecification × Recommender 
 

2 
 

2.137 
 

0.344 
 

Model Misspecification × Trial Order 
 

78 
 

87.153 
 

0.224 
 

Recommender × Trial Order 
 

39 
 

32.189 
 

0.772 
 

Model Misspecification × Recommender × Trial Order 
 

78 
 

65.307 
 

0.847 
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Figure 34. Mean response rank by model misspecification and recommender conditions 
over trial presentation order 

 

Table 17. Linear mixed models: Likelihood ratio tests for response rank to evaluate 
learning over trial block order 

Effect df ChiSq p 
Model Misspecification 

 
2 

 
2.779 

 
0.249 

 

Recommender 
 

1 
 

6.247 
 

0.012 
 

Trial Block 
 

3 
 

1.949 
 

0.583 
 

Model Misspecification × Recommender 
 

2 
 

2.142 
 

0.343 
 

Model Misspecification × Trial Block 
 

6 
 

3.974 
 

0.680 
 

Recommender × Trial Block 
 

3 
 

0.757 
 

0.860 
 

Model Misspecification × Recommender × Trial Block 
 

6 
 

6.071 
 

0.415 
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Figure 35. Mean response rank by model misspecification and recommender conditions 
over trial block presentation order 

 

3.3 Experiment  2: Investigating a Model Blindness Mitigation Technique   

The goal of the second study in this dissertation was to mitigate model blindness 

imposed on users via MDSS model misspecifications. The route recommender system from 

Experiment 1 was augmented by adding natural language explanations about 

misspecifications. The aim was to test whether XAI intervention can help calibrate 

decision-makers to the capabilities and limitations of an MDSS and consequently improve 

performance. This experiment was designed to understand how model-limited and 

strategy-limited can be mitigated in a complex decision-making task in an unfriendly 

environment.  
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3.3.1 Design 

This experiment implements a model-blindness mitigation technique for the two 

misspecified conditions with MDSS-preferred recommended routes from Experiment 1: 

hard and soft. Both control and experimental conditions for hard and soft misspecified 

MDSS from Experiment 1 served as control conditions for the mitigated soft and hard 

experimental conditions for this experiment (Figure 36). The experiment was a 3 (Route 

Recommender System) x 2 (Model Misspecification) between-subjects design, as shown 

in Figure 36. The recommender system manipulation had three levels: (1) three MDSS-

preferred recommended routes absent (Figure 13), (2) three MDSS-preferred 

recommended routes present (Figure 18), and (3) three MDSS-preferred recommended 

routes present with bias explanation (Figure 37). The model misspecification manipulation 

had two levels: (1) soft misspecified model and (2) hard misspecified model. 

I implemented a “model blindness awareness” technique, where I mitigated model 

blindness by informing decision-makers about the misspecification in the model. This was 

done by providing a natural language explanation (adapted from XAI literature) of 

misspecification to the participants. The explanation message for the soft condition is 

shown in Figure 37.  
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Figure 36. Design for Experiment 2 

 

 

Figure 37. Bias explanation message for soft misspecified MDSS 

3.3.2 Participants 

62 new participants were recruited to participate in Experiment 2 explanation 

conditions, and all were included in the analysis. Participants' inclusion criteria, exclusion 

criteria, compensation, and everything else were the same as in Experiment 1. After 

combining data from both experiments for soft and hard model misspecification conditions, 
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Experiment 2 used the total data of 182 participants – at least 30 for each condition for 

analyses for a complete full-factorial design with a total of 6 conditions. The soft 

explanation condition has 32 participants. 

3.3.2.1 Participant Demographics from the Pre-Study Questionnaire 

The participant demographics look very similar to that of Experiment 1. It was 

expected because only 60-62 participants differed between both experiments’ full 

datasets. I only have demographics questionnaire responses for 168 participants (92% 

participants) as the pre-study questionnaire (See APPENDIX B) was added to the study 

after beginning data collection. The mean age for 165 participants (3 didn’t report) was 

19.38 years (Range: 18-27 years). The gender distribution for participants is presented in 

Table 18, and their major distribution at Georgia Tech is presented in Figure 37. 

Computer Science was the most represented major among participants. The majority of 

participants (84%) had past experience playing video games (No experience- 8%, 

Missing Data- 8%). The majority of participants (85%) also had past experience with AI-

based recommender systems (e.g., Netflix movie recommendations, Amazon product 

recommendations, Health and Fitness apps) in their day-to-day life (No experience- 5%, 

Missing data- 10%). A small number of participants (12%) had also taken a 

course/worked with recommender systems in the past (No course- 79%, Missing data- 

10%). 
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Table 18. Gender Distribution of participants in Experiment 2 

Gender Percentage of Participants 

Female 31% 

Male 58% 

Non-binary/ Non-conforming / Other 3% 

Didn’t report 2% 

 Missing Data 6% 

 

 

Figure 38. Major distribution of participants in Experiment 2 
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3.3.3 Procedure 

The procedure (Figure 38) was similar to Experiment 1, and all dependent measures 

and analyses stayed the same. The same 40 trials of soft and hard recommender conditions 

were used for their respective mitigation conditions. The only difference from Experiment 

1 was the presence of an explanation. The participants were reminded every five trials 

about the attribute overweighted by the MDSS so they could use the information to 

underweight those attributes in their decision-making (See APPENDIX A) for detailed 

participant instructions).  

 

Figure 39. Procedure steps for Experiment 2 
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A participant in the soft mitigation condition received an explanation, as shown in 

Figure 37. The explanation message explicitly prompted participants to underweight the 

misspecified attribute – “time efficiency.” A similar explanation message was shown in the 

hard condition, which asked participants to underweight both misspecified attributes – 

“time efficiency” and “obstacle avoidance.” Two additional questions were added to the 

post-study questionnaire for Experiment 2 to get participant feedback on the presented 

explanation message (See APPENDIX C for the post-study questionnaire). 

3.3.4 Analysis and Results 

All analyses for Experiment 2 are same as Experiment 1 and organized in the same 

order. For all my DVs, I expected to find significant main effects of both independent 

variables: recommender [conditions: explanation (with explanation message and 

recommender preferred 3 routes), yes (with recommender preferred 3 routes), no (without 

recommender preferred 3 routes)] and model misspecification (conditions: soft and hard). 

I also expected to see a significant interaction between model misspecification and 

recommender. However, little to no evidence was found for the main effect of model 

misspecification, the main effect of recommender, and the interaction between 

recommender and model misspecification for most of my DVs. The following sub-sections 

discuss the results organized by DVs. 
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3.3.4.1 Performance Measures 

Response rank 

Figure 40 shows the mean rank of participant route choices by each condition in 

Experiment 2. A repeated measures ANOVA using a linear mixed-effects model was used 

to test the effect of recommender and model misspecification on participant decision 

choices using response rank as a continuous variable. The trial ID (scenarios) variable was 

also added as a predictor in the model. The ANOVA summary table is shown in Table 19. 

The main effect of trial ID (χ2 (39) = 971.36, p < 0.001) was significant, indicating a 

difference in the difficulty level of different trials affecting performance. The interaction 

between trial ID and model misspecification (χ2 (39) = 462.87, p < 0.001) was also 

significant, indicating that performance on different trials varied significantly across model 

misspecification conditions. The interaction between trial ID and recommender (χ2 (78) = 

113.88, p = 0.005) was also significant, indicating that performance on different trials 

varied significantly across recommender conditions. The performance for all trial IDs 

across conditions is shown in Figure 41. 

Table 19. Linear mixed models: Likelihood ratio tests for response rank  

Effect df ChiSq p 
Model Misspecification 

 
1 

 
0.186 

 
0.666 

 

Recommender 
 

2 
 

3.509 
 

0.173 
 

Trial ID 
 

39 
 

971.360 
 

< .001 
 

Model Misspecification × Recommender 
 

2 
 

1.808 
 

0.405 
 

Model Misspecification × Trial ID 
 

39 
 

462.868 
 

< .001 
 

Recommender × Trial ID 
 

78 
 

113.880 
 

0.005 
 

Model Misspecification × Recommender × Trial ID 
 

78 
 

90.268 
 

0.162 
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Figure 40. Mean response rank (out of 7) of selected route by model misspecification and 
recommender conditions 

 

Figure 41. Mean response rank (out of 7) of the selected route by model misspecification 
and recommender conditions for all Trial IDs 
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 I predicted a main effect of recommender where participants in explanation 

conditions would perform better (lower mean rank) than control conditions (without 

explanation – both yes and no recommender conditions). I also predicted a main effect of 

model misspecification, where participants in the soft condition would perform better than 

the hard condition, because the soft condition requires the adjustment (underweighting) of 

only one attribute and adjusting (underweighting) for two attributes simultaneously was 

required in the hard condition. I also predicted an interaction between recommender and 

model misspecification. There were no significant main effects of model misspecification 

or recommender, nor the interaction between model misspecification and recommender. 

Thus, the data provided no statistical evidence for the main effects or interaction 

predictions for mean route ranks.  

Outcome 

All the predictions for outcome DV were the same as the response rank DV. The 

proportion of trials with the outcome equal to 1 for all conditions of Experiment 2 is shown 

in  Figure 42. A repeated measures ANOVA using a generalized linear mixed effects model 

with binomial family and logit link function was used to test the effect of model 

misspecification, recommender availability, and trial block on the outcome. No significant 

effects were found (Table 20). Hence, no evidence was found for the predicted main effect 

of model misspecification, recommender, or their interaction. No significant difference in 

participants’ ability to select the best outcome changed with the misspecification or 

recommender level. 

 



 89 

Table 20. Generalized linear mixed models: Likelihood ratio tests for outcome 

Effect df ChiSq p 
Model Misspecification 

 
1 

 
0.605 

 
0.437 

 

Recommender 
 

2 
 

3.494 
 

0.174 
 

Trial block 
 

3 
 

1.267 
 

0.737 
 

Model Misspecification × Recommender 
 

2 
 

1.947 
 

0.378 
 

Model Misspecification × Trial block 
 

3 
 

2.129 
 

0.546 
 

Recommender × Trial block 
 

6 
 

3.001 
 

0.809 
 

Model Misspecification × Recommender × Trial block 
 

6 
 

5.963 
 

0.427 
 

 

 

Figure 42.  Mean outcome (proportion of trials with the best route selected) by model 
misspecification and recommender conditions 
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Local utility loss 

The local utility loss (Figure 41) is again a performance measure with the same 

predictions as response rank and outcome. The lower utility loss is considered better. A 

repeated measures ANOVA using a linear mixed-effects model was used to test the effect 

of recommender and model misspecification on participant decision choices using local 

utility loss as a continuous variable. The trial ID was also included as a predictor in the 

model to test if the local utility loss varies significantly across different trials. The ANOVA 

summary table is shown in Table 21. The significant effects are similar to the response 

rank effects presented before. The main effect of trial ID (χ2 (39) = 1109.40, p < 0.001) 

was found significant, indicating a difference in trial difficulty level affecting performance. 

The interaction between trial ID and model misspecification (χ2 (39) = 844.02, p < 0.001) 

was also significant, indicating that performance on different trials varied significantly 

across misspecification conditions. Some trials were more difficult than others at some 

misspecification levels. 

 

Table 21. Linear mixed models: Likelihood ratio tests for local utility loss of selected 
route 

Effect df ChiSq p 
Model Misspecification 

 
1 

 
1.866 

 
0.172 

 

Recommender 
 

2 
 

2.514 
 

0.285 
 

Trial ID 
 

39 
 

1109.398 
 

< .001 
 

Model Misspecification × Recommender 
 

2 
 

1.345 
 

0.510 
 

Model Misspecification × Trial ID 
 

39 
 

844.021 
 

< .001 
 

Recommender × Trial ID 
 

78 
 

97.054 
 

0.071 
 

Model Misspecification × Recommender × Trial ID 
 

78 
 

89.559 
 

0.175 
 

 



 91 

 

Figure 43. Mean local utility loss of selected route by model misspecification and 
recommender conditions 

Global utility loss 

The global utility loss (Figure 44) is again a performance measure like local utility 

loss, with a lower value being considered better. However, global utility loss evaluates 

participants’ route choice in comparison to the true global best route generated by the true 

equal weights model. It compares route choices to the true world for MDSS instead of just 

seven presented alternatives. As it represents the true world, I expected it to follow the 

order of misspecification (main effect) for all levels of the recommender. A repeated 

measures ANOVA using a linear mixed-effects model was used to test the effect of 

recommender and model misspecification on participant decision choices using global 

utility loss as a continuous variable. The trial ID was also included as a predictor in the 
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model to test if the global utility loss varies significantly across different trials. The 

ANOVA summary table is shown in Table 22. 

Participants’ global utility loss for their selected routes differed significantly 

between model misspecification conditions (χ2 (2) = 99.27, p < .001). The soft condition 

had significantly lower global utility loss compared to the hard (MD= 0.032). This main 

effect of model misspecification only serves as a manipulation check for the experiment 

that there were significant differences in the accuracy of the MDSS at two misspecification 

levels that were also reflected in participant performance. The main effect of trial ID (χ2 

(39) = 1814.68, p < 0.001) was also significant, indicating a difference in their difficulty 

level affecting performance. The interaction between trial ID and model misspecification 

(χ2 (39) =481, p < 0.001) was also significant, indicating that performance on different 

trials varied significantly across misspecification levels. Some trials were more difficult 

than others at some misspecification levels. 

 

Table 22. Linear mixed models: Likelihood ratio tests for global utility loss of selected 
route 

Effect df ChiSq p 
Model Misspecification 

 
1 

 
99.267 

 
< .001 

 

Recommender 
 

2 
 

2.229 
 

0.328 
 

Trial ID 
 

39 
 

1814.676 
 

< .001 
 

Model Misspecification × Recommender 
 

2 
 

2.083 
 

0.353 
 

Model Misspecification × Trial ID 
 

39 
 

480.997 
 

< .001 
 

Recommender × Trial ID 
 

78 
 

98.418 
 

0.059 
 

Model Misspecification × Recommender × Trial ID 
 

78 
 

93.607 
 

0.110 
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Figure 44. Mean global utility loss of selected route by model misspecification and 
recommender conditions 

 

3.3.4.2 Confidence Judgement and Brier Scores 

 Similar to Experiment 1, I expected for Experiment 2 that confidence and 

calibration would be correlated with performance measures. I also expected a better 

calibration (lower BS) to model misspecification levels in explanation conditions 

compared to corresponding control conditions (main effect of recommender) because 

direct information about misspecification was presented to participants via explanation.  

Two repeated measures ANOVA using a linear mixed-effects model were 

conducted to test the effect of recommender and model misspecification on participant 

confidence judgments (Figure 45) and Brier scores (Figure 46). The trial ID was also 
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included as a predictor in both models to test whether confidence judgments or Brier scores 

change significantly across different trials. The ANOVA summary tables are shown in 

Table 23 and Table 24. 

For confidence judgments, none of the predicted main effects of model 

misspecification and recommender or their interaction were found reliable. The only 

effects observed were the main effect of trial ID (χ2 (39) = 259.94, p < 0.001) and the 

interaction between trial ID and model misspecification (χ2 (39) = 114.59, p < 0.001).  

For Brier scores, again, the predicted main effects of model misspecification and 

recommender or their interaction were not statistically significant. The main effect of trial 

ID (χ2 (39) = 656.50, p < 0.001) and the interaction between trial ID and model 

misspecification (χ2 (39) = 190.48, p < 0.001) were significant. The three-way interaction 

between trial ID, model misspecification, and recommender (χ2 (78) = 132.90, p < 0.001) 

was also statistically significant. 

 

Table 23. Linear mixed models: Likelihood ratio tests for participants' confidence 
judgments in their selected route 

Effect df ChiSq p 
Model Misspecification 

 
1 

 
1.033 

 
0.309 

 

Recommender 
 

2 
 

3.333 
 

0.189 
 

Trial ID 
 

39 
 

259.939 
 

< .001 
 

Model Misspecification × Recommender 
 

2 
 

1.807 
 

0.405 
 

Model Misspecification × Trial ID 
 

39 
 

114.587 
 

< .001 
 

Recommender × Trial ID 
 

78 
 

76.791 
 

0.517 
 

Model Misspecification × Recommender × Trial ID 
 

78 
 

88.151 
 

0.202 
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Table 24. Linear mixed models: Likelihood ratio tests for Brier score (calibration) 

Effect df ChiSq p 
Model Misspecification 

 
1 

 
0.024 

 
0.877 

 

Recommender 
 

2 
 

5.877 
 

0.053 
 

Trial ID 
 

39 
 

656.497 
 

< .001 
 

Model Misspecification × Recommender 
 

2 
 

1.637 
 

0.441 
 

Model Misspecification × Trial ID 
 

39 
 

190.482 
 

< .001 
 

Recommender × Trial ID 
 

78 
 

92.018 
 

0.133 
 

Model Misspecification × Recommender × Trial ID 
 

78 
 

132.904 
 

< .001 
 

 

 

Figure 45. Mean confidence judgment score by model misspecification and recommender 
conditions 
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Figure 46. Mean Brier score by model misspecification and recommender conditions 

 

3.3.4.3 Reliance and Trust in MDSS 

For both reliance and trust measures, I predicted that participants’ trust and reliance 

would worsen in the explanation conditions compared to their control conditions as the 

explanation explicitly informs participants about the error in the system.  

Reliance 

The proportion of trials with reliance equal to 1 for all conditions is shown in Figure 

47. The proportion of trials with reliance equal to 1 for all conditions over trial block order 

is shown in Figure 48. A repeated measures ANOVA using a generalized linear mixed 
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effects model with binomial family and logit link function was used to test the effect of 

model misspecification, recommender, and trial block on reliance (Table 25). 

The main effect of the recommender (χ2 (2) = 8.35, p= 0.015) was significant, 

indicating a difference in reliance when the recommender was absent, present, or present 

with an explanation. The post-hoc contrasts show the following differences:1) 

recommender conditions has significantly higher reliance compared to the explanation 

conditions (MD=0.067; z = 2.92; p=0.003), 2) reliance in the explanation conditions does 

not significantly differ from its no recommender controls (MD=0.-33; z = -1.376; p=0.169), 

and 3) reliance in the recommender conditions does not significantly differ from its no 

recommender controls (MD=0.034.; z = 1.538; p=0.124). Hence, participants' reliance in 

the explanation conditions does not differ from that of participants that had no 

recommended set. Hence, providing explicit explanations does reduce reliance on a 

misspecified system even though no performance changes were detected between 

misspecification conditions.  

The three-way interaction between model misspecification, recommender, and the 

trial block was also significant (χ2 (6) = 16.21, p= 0.013). The interaction effect patterns 

are illustrated in Figure 48. No consistent patterns can be observed from this interaction 

effect. The performance across trial blocks at different levels of recommender varies with 

participants in the hard misspecification condition performing worse than soft for some 

blocks, the pattern reverses for other blocks, and for some blocks, the performance level 

stays the same for both levels of misspecification. 

 



 98 

Table 25. Generalized linear mixed models: Likelihood ratio tests for reliance on the 
recommended set 

Effect df ChiSq p 
Model Misspecification 

 
1 

 
0.298 

 
0.585 

 

Recommender 
 

2 
 

8.359 
 

0.015 
 

Trial block 
 

3 
 

4.178 
 

0.243 
 

Model Misspecification × Recommender 
 

2 
 

1.846 
 

0.397 
 

Model Misspecification × Trial block 
 

3 
 

1.247 
 

0.742 
 

Recommender × Trial block 
 

6 
 

2.987 
 

0.810 
 

Model Misspecification × Recommender × Trial block 
 

6 
 

16.210 
 

0.013 
 

 

 

Figure 47. Mean reliance (proportion of trials when selected route belonged to 
recommended set) by model misspecification and recommender conditions 
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Figure 48. Mean reliance (proportion of trials when selected route belonged to 
recommended set) by model misspecification and recommender conditions for all trial 
blocks 

 

Omnibus Trust Scores 

As trust was only measured once in the experiment, a two-way ANOVA was 

conducted that examined the effect of model misspecification and recommender 

availability on the omnibus trust score. The omnibus trust score was measured by taking 

the mean of participant responses on all 14 items of the scale (Table 7). The mean trust 

score by conditions is shown in Figure 49. Figure 50 shows the mean trust score for each 

facet of trust by conditions. Similar to omnibus trust scores, two-way ANOVAs were 

conducted for each facet of trust. The ANOVA summary table for omnibus trust scores is 

shown in Table 26. 



 100 

For the omnibus trust score, the main effect of recommender was found to be 

significant (F(2)= 4.33,p=0.015). The post-hoc Tukey’s HSD test shows that trust in the 

explanation condition was significantly lower than trust in the no recommender (control) 

condition (MD: .225,  p= 0.011). A similar main effect of recommender and post-hoc 

comparison results was found for trust scores for the scale's trustworthiness facet (F(2)= 

3.045, p=0.050; MD=.205, p= 0.04), technical competence facet (F(2)= 4.33, p=0.015; 

MD= .305, p= 0.013), and personal attachment facet  (F(2)= 3.86,p=0.023; MD= .275 p= 

0.017). The trust score between conditions was not significantly different for the reliability 

and understandability facets of the scale. 

Table 26. Two-way ANOVA: Test of between-subject effects for omnibus trust scores 

Predictor Type III 
Sum of 
Squares 

df Mean 
Square 

F p 

Intercept 415.289 1 415.289 2325.49 .000 

Recommender 1.549 2 .774 4.336 .015* 

Model 
Misspecification 

.122 1 .122 .682 .410 

Recommender × 
Model 
Misspecification 

.130 2 .065 .363 .696 

Error 30.716 172 .179   
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Figure 49. Mean omnibus trust score by model misspecification and recommender 
conditions 

 

Figure 50. Mean trust score for individual trust facets by model misspecification and 
recommender conditions 
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3.3.4.4 Learning 

Participants' learning was evaluated by testing their response rank across trial 

presentation order (Figure 51) and trial block order (Figure 52) to see if the response rank 

gets lower (performance improvement) with trial progression. A repeated measures 

ANOVA using a linear mixed-effects model was used to test the effect of recommender, 

model misspecification, and trial presentation order on participant response rank (Table 

27). Another repeated measures ANOVA using a linear mixed-effects model was 

conducted to test the effect of recommender, model misspecification, and trial block order 

on participant response rank (Table 28). No evidence for the learning effect was found in 

both the repeated measures models. The main effects of the trial order, as well as the trial 

block, were not statistically significant. The trial block and recommender interaction was 

significant (χ2 (6) = 13.07, p= 0.042). However, there was no clear performance 

improvement (decreasing rank) pattern with trial block progression. Hence, it is difficult 

to draw any specific conclusions about this interaction effect using Figure 52. 

Table 27. Linear mixed models: Likelihood ratio tests for response rank to evaluate 
learning over trial presentation order 

Effect df ChiSq p 
Model Misspecification 

 
1 

 
0.173 

 
0.678 

 

Recommender 
 

2 
 

3.486 
 

0.175 
 

Trial order 
 

39 
 

38.534 
 

0.491 
 

Model Misspecification × Recommender 
 

2 
 

1.789 
 

0.409 
 

Model Misspecification × Trial order 
 

39 
 

54.570 
 

0.050 
 

Recommender × Trial order 
 

78 
 

87.870 
 

0.208 
 

Model Misspecification × Recommender × Trial order 
 

78 
 

61.635 
 

0.913 
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Figure 51. Mean response rank by model misspecification and recommender conditions 
over trial presentation order 

 

Table 28. Linear mixed models: Likelihood ratio tests for response rank to evaluate 
learning over trial block order 

Effect df ChiSq p 
Model Misspecification 

 
1 

 
0.174 

 
0.677 

 

Recommender 
 

2 
 

3.489 
 

0.175 
 

Trial block 
 

3 
 

6.243 
 

0.100 
 

Model Misspecification × Recommender 
 

2 
 

1.789 
 

0.409 
 

Model Misspecification × Trial block 
 

3 
 

2.168 
 

0.538 
 

Recommender × Trial block 
 

6 
 

13.069 
 

0.042 
 

Model Misspecification × Recommender × Trial block 
 

6 
 

4.514 
 

0.607 
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Figure 52. Mean response rank by model misspecification and recommender conditions 
over trial block presentation order 

3.4 Participant’s and Conditions’ Best-fit Decision Strategy 

The Bayesian approach was used to assess the fit of each strategy (from Table 1) to 

the participant's choice profiles— the best-fit strategy was the one that was most likely 

given the participant's pattern of route selections. It was interesting to look at whether 

participants followed more compensatory strategies accounting for tradeoffs, like EQ 

weights, conjunctive, and so on, or do they chose to follow more non-compensatory 

heuristic strategies, like lexicographic. This strategy-fitting helped investigate the role of 

decision strategies on performance, as discussed in the proposed model blindness 

confluence model (Figure 6), and provided insights about when strategy-limited 

performance manifests under a model-limited and context-limited decision task. The 

strategies were estimated in three ways: (1) for each experimental condition (collapsed 
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across all participants in that condition), (2) for each participant (collapsed across all trials), 

and (3) for each participant for every trial block. The strategies were determined using 

Bayesian model fitting explained in detail later in this section.  

The implemented Bayesian analyses take the attribute-weighting properties of 

different decision strategies into account when deriving predictions concerning the 

probability of obtaining a particular route choice under a particular attribute-weighting 

scheme (decision strategy). The attribute weights for all the strategies are shown in Table 

29. The first step in the analyses was operationalizing the attribute weightings for each 

decision strategy based on the decision task. The strategies were operationalized for the 

estimation processes as follows:  

• A weighted additive (WADD) strategy applies true weights to the attributes and selects 

the option with the highest utility. In the case of the route recommender system, WADD 

will be equal weights for accurate conditions, soft corrective weights for soft 

conditions, and hard corrective weights for hard conditions. The corrective weights are 

the approximate weights that should be used to overcome the misspecification imposed 

by the model via ignoring misspecified attributes. The corrective weights strategies set 

misspecified attributes equal to 0 because the task ecology validation analysis on 

random samples of simulated responses before data collection showed that these 

attributes should be weighted approximately 0 to improve performance on any random 

sample of route selections (Table 6).  Hence, all three WADDs were included in the 

Bayesian analyses; their weights are shown in Table 29, which were used to calculate 

the utility of each route. 
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• A lexicographic strategy is a heuristic strategy that was implemented by 

operationalizing it as giving weight to only one attribute out of all six presented for all 

seven routes, and the route choice from the lexicographic strategy should be the route 

with the highest value on that attribute. Table 29 shows six different lexical strategies 

(Lex1-Lex6) as each of them is operationalized by giving a weight “1” to only one 

attribute out of 6 and weighting all others as “0”. The utility for all seven routes was 

calculated separately by each lexicographic strategy.  

• A MaxiMax strategy picks the alternative that maximizes the probability of the best-

case outcome. Hence, it was operationalized as taking the maximum of three attributes 

that were in the same direction (positively correlated with each other) to get the utility 

of a route. The attributes were time efficiency, obstacle avoidance, and hazard 

avoidance. 

•  A MaxiMin strategy picks the alternative that minimizes the probability of the worst-

case outcome. Hence, it was operationalized as taking the maximum of the remaining 

three attributes in the same direction (positively correlated with each other) but 

negatively correlated with the attributes used in the MaxiMax strategy. The attributes 

were fuel efficiency, humanitarian aid, and extra supplies. Here, I take the maximum 

these attributes instead of the minimum, as the attributes in the study were coded such 

that a higher number always means better.  

• A random strategy was also added to the model to evaluate if participants were picking 

the route randomly. A random strategy does not require attribute weightings, as a 

participant is equally likely to pick any route randomly. 
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• A conjunctive strategy requires that the selected alternative must exceed some 

minimum threshold for each attribute. This was operationalized by taking a minimum 

of all six attributes for each route to get the utility of that route.  

• A disjunctive strategy requires that the selected alternative exceed some minimum 

threshold for only one attribute. This was operationalized by taking a maximum of all 

six attributes for each route to get the utility of that route. 

Table 29.  Strategy weights for all six attributes : A1- Time Efficiency, A2- Fuel 
Efficiency,  A3- Obstacle Avoidance, A4- Additional Supplies, A5- Weather Hazard 
Avoidance, A6- Humanitarian Aid 

Decision Strategy Weights Used for Each attribute for Utility Calculations 

{ A1, A2, A3, A4, A5, A6} 

Equal Weights  { 1/6, 1/6, 1/6, 1/6, 1/6, 1/6 } 

Soft Corrective 
Weights 

{ 0, 1/5,1/5, 1/5, 1/5, 1/5 } 

Hard Corrective  
Weights 

{ 0, 1/4, 0, 1/4, 1/4, 1/4 } 

Lexicographic 1 
(Attribute 1) 

{ 1, 0, 0, 0, 0, 0 } 

Lexicographic 2 
(Attribute 2) 

{ 0, 1, 0, 0, 0, 0 } 

Lexicographic 3 
(Attribute 3) 

{ 0, 0, 1, 0, 0, 0 } 

Lexicographic 4 
(Attribute 4) 

{ 0, 0, 0, 1, 0, 0 } 

Lexicographic 5 
(Attribute 5) 

{ 0, 0, 0, 0, 1, 0 } 

Lexicographic 6 
(Attribute 6) 

{ 0, 0, 0, 0, 0, 1 } 
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Table 29. Continued  

Decision Strategy Weights Used for Each attribute for Utility Calculations 

{ A1, A2, A3, A4, A5, A6} 

Maxi Max Max of Attribute 1, 3, and 5 

Maxi Min Max of Attribute 2, 4, and 6 

Conjunctive Minimum of all six attributes for each route 

Disjunctive Maximum of all six attributes for each route 

Random Strategy Randomly choosing any route. Each route is equally likely to be 
picked on each trial. 

 

After calculating each route’s utility by every decision strategy based on their 

corresponding attribute values and weights from Table 29, the probability of participants 

selected route-choice under each decision strategy was calculated using the traditional 

choice axiom shown in Equation 6 (Luce, 1959). Following this, the natural logs of the 

probability for each route choice of a participant for every trial were added to derive the 

log-likelihood for that participant (see Equation 7) under each decision strategy.  The G2 

and Bayesian information criteria (BIC) were then calculated in the standard way by using 

Equations 8 and 9. The lower the BIC values mean the model is a better fit. Therefore, each 

participant’s best-fit decision strategy will be the one with the lowest BIC out of all 

strategies.  

The same steps from Equations 7-9 were repeated to get the best-fit decision 

strategy for each participant’s every trial block by calculating log-likelihood by each trial 

block (4 blocks) instead of aggregating over all trials. The same steps were also repeated 
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to get each experimental condition’s best-fit decision strategy by calculating log-likelihood 

by taking the sum over all trials for all participants in that condition. 

 𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒′𝑠𝑠 𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
∑ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒7
𝑖𝑖=1

 
(6) 

𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

=  � ln(𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒′𝑠𝑠 𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖)
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛.𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖=1

 

(7) 

𝐺𝐺2 = −2 × 𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (8) 

𝐵𝐵𝐵𝐵𝐵𝐵𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐺𝐺2 + 𝑘𝑘 × ln(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) (9) 

Best fit decision strategy by condition  (aggregated over all participants) 

The best-fit decision strategy for each condition in the experiments, their 

corresponding BIC values, and a BIC value for random strategy are shown in Table 30. A 

BIC difference between two statistical models of 0 to 2 is not considered enough evidence, 

2 to 6 is considered positive evidence, 6 to 10 is considered strong evidence, and >10 is 

considered very strong evidence in favor of a model with lower BIC value (Liao & Fasang, 

2021). The BIC difference for best-fit strategies in Table 30 is much >10 for all conditions 

compared to their corresponding random strategy BIC values.  
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Table 30. Best fit strategy and BIC values for each condition 

Model 
Misspecification 

Recommender  Best Fit 
Decision 
Strategy 

BIC- Best Fit 
Decision 
Strategy 

BIC- 
Random 
Strategy 

Accurate No Equal Weights 4533.56 4677.27 

Yes Conjunctive 4497.99 
 

4657.81 

Soft No Soft Corrective 
Weights 

4481.93 4673.38 

Yes Soft Corrective 
Weights 

4486.47 4673.38 

Explanation Soft Corrective 
Weights 

4682.71 4829.09 

Hard No Equal Weights 4438.68 4669.48 

Yes Hard Corrective 
Weights 

4622.14 4657.81 

Explanation Hard Corrective 
Weights 

4477.03 4813.52 

 

I predicted that participants in hard misspecified conditions would be better fit by 

EQ weights compared to soft and accurate for both no and yes recommender conditions. 

This prediction was counter-intuitive and based on the reasoning that participants in the 

hard condition would have to put the most effort into finding the best route due to 

misspecifications. On the other hand, accurate condition participants can still have an 

optimal performance by using less than optimal strategies due to the near-perfect accuracy 

of the MDSS. The support for this evidence is only present for no recommender hard 

condition which has EQ weights as the best-fit strategy and lowest BIC out of three 
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misspecification levels. The participants in the accurate recommender condition were best-

fit by the conjunctive strategy. The participants in all soft conditions were fit best by the 

soft corrective weights. The participants in recommender and explanation hard conditions 

were also best fit by their respective hard corrective weights. This additional effort by 

participants in misspecified conditions of the experiment using compensatory corrective 

weights maybe explains why there were not many performance differences between 

different model misspecification levels. As proposed in the model-blindness framework, 

participants’ strategies might compensate for model limitations to some extent, thus model-

limited performance degradations in hard and soft conditions can be mitigated. I expected 

participants to fit better by their respective corrective weights for explanation conditions. 

There was evidence for this prediction for both hard and soft explanation conditions. 

Hence, participants’ best-fit decision strategy does reflect their efforts to incorporate the 

explanation message. 

Best-fit decision strategy by participants 

Figure 53 shows the percentage of participants fit different decision strategies 

included in the analysis by all conditions in both experiments. It is worth mentioning here 

that equal weights, conjunctive, soft corrective weights, and hard corrective weights are all 

compensatory strategies taking into account most attributes in decision-making; hence, 

they are also statistically very similar and competing strategies in estimation. In all 

conditions, the maximax, maximin, disjunctive, random strategy, and most lexical 

strategies fit the least number of participants. Figure 54 shows the same data as Figure 53 

by grouping strategies based on their characteristics. Participants fit by equal weights, soft 

corrective, hard corrective, MaxiMin, MaxiMax, and conjunctive strategies were grouped 
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as participants following compensatory strategies. Participants fit by disjunctive, and any 

of the lexicographic strategies were grouped as participants following non-compensatory 

strategies. 

 

Figure 53. Percentage of participants fit by different decision strategies by conditions 

 

More participants in the accurate condition with recommender used compensatory 

strategies compared to non-compensatory or random in comparison to control condition 

participants. Hence, presenting highly accurate recommended routes helped participants to 

use more optimal strategies to improve performance. On the other hand, for participants in 

soft conditions, there was a slight increase in the proportion of participants using non-

compensatory strategies in recommender and explanation conditions compared to the no-

recommender condition. For hard conditions, explanation availability made more number 

of people follow less than optimal non-compensatory strategies compared to both control 
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conditions (yes and no recommender). This might indicate a negative impact of presenting 

an explanation which can lead to overconfidence and the use of less-optimal strategies by 

some users. For no recommender conditions, the accurate condition had the lowest 

percentage of participants following compensatory strategies compared to soft and hard. 

This trend was reversed for recommender conditions as the accurate condition had the 

highest percentage of participants following compensatory strategies, then hard, and the 

soft had the lowest percentage of participants using compensatory strategies. Explanation 

conditions had an almost identical number of people in both soft and hard conditions using 

compensatory strategies. 

These observations from decision strategies are interesting, given that there were 

no significant differences in participants' performance levels in most experimental 

conditions. Hence, participants in this dissertation study overcame some level of model-

limited performance by using better decision strategies (reducing strategy-limited) 

performance.  

For Experiment 1, I predicted that participants in hard misspecified conditions 

would better fit by equal weights compared to soft and accurate for both no and yes 

recommender conditions. No consistent evidence for this prediction was found as there are 

a lot of individual differences in participants’ best-fit strategies. I also predicted that there 

would be greater variability in decision strategies among participants in the hard condition 

compared to soft and accurate conditions. Participants had to overcome the 

misspecification and find the best strategy to improve performance. However, no consistent 

evidence for this prediction can be seen in Figure 53. 
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For Experiment 2, I predicted that participant decision strategies for explanation 

conditions would mimic their respective corrective weights more closely compared to their 

corresponding control conditions from Experiment 1. This was because the explanation 

message directly indicated participants to underweight attributes by explicitly spilling 

information about how they were overweighted in the MDSS algorithm. Both hard and soft 

explanation conditions have more participants fitting by either actual corrective weights 

(soft/hard) or lexical strategies compared to their controls from Experiment 1. Thus 

providing an indication of the positive impact of providing an explanation even though 

much evidence about performance improvements was not found.  

 

Figure 54. Percentage of participants fit by either compensatory or non-compensatory 
strategies or a random strategy by conditions 
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Best fit strategy by participant and trial block  

I predicted that decision strategies would better fit the actual model weights 

(respective WADDs- EQ, soft, and hard) as a function of the trial block progression due to 

learning. However, no clear evidence can be found for this prediction in Figure 55 and 

Figure 56. It is also evident from the learning results presented before. There was no 

significant performance difference found with trial block progression.  

 

Figure 55. Percentage of participants fit by either compensatory or non-compensatory 
strategies or a random strategy in each trial block by conditions 

 

In all trial blocks in Figure 56, the majority of participants are now fit by non-

compensatory strategies. However, it is important to note here that strategy estimation via 
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block is more prone to model estimation errors and should be trusted less than estimation 

via aggregating all participants or conditions due to very few data points available in each 

block. This might be why the results are completely reversed compared to strategy fits by 

participants and by conditions shown before.  

 

Figure 56. Percentage of participants fit by different decision strategies in each trial block 
by experimental condition 

3.5 Participant’s Actual Attribute Weights in the Task as Decision Strategy 

After estimating the best-fit decision strategies for participants from a list of pre-

determined strategies or attribute-weighting schemes, I also freely estimated the actual 

weights each participant gave to each attribute. The attribute weights were determined by 

using data for all seven routes presented on all forty trials to the participants. A participant’s 

selected route was given a score of 1, and the remaining 6 routes on each trial were given 

a score of 0 to get the route-selection DV. A linear regression model with route selection 
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as DV and values of six attributes as predictors was run without an intercept for each 

participant separately. The obtained standardized regression coefficients (β) for each 

attribute were equivalent to the weight given to that attribute by the participant. The β-

weights should be almost equivalent for all attributes for a participant following an equal 

weights strategy.  Figure 57 shows the mean β-weights for participants by condition.  

On average, participants in the soft explanation condition negatively weighted 

(underweighted) “time efficiency,” as instructed by the explanation message. A similar 

trend was also observed for participants in the hard explanation condition as they, on 

average, negatively weighted (underweighted) “time efficiency” and gave a negligible 

weight to the “obstacle avoidance” attribute, as instructed by the explanation message. 

Hence, the explanation did help participants shift their attribute weights more toward 

respective corrective weights.  

Participants also demonstrated a general bias towards some attributes, leading them 

to underweight extra supplies and humanitarian aid attributes for accurate and soft 

conditions, and humanitarian aid attribute for the hard condition. This bias led to 

participants’ deviation from the equal weights strategy in Experiment 1 conditions. This 

probably indicates the sensitivity of participants’ to attribute label names, leading them to 

ignore attributes that sound less important based on the task context of delivering supplies. 
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Figure 57. Mean regression coefficients of participants’ route choices regressed on 
attributes by condition 

3.6 Feedback and Experience Questionnaire Analysis 

Participants were asked to rate their experience with playing video games and how 

often they follow recommender suggestions (See APPENDIX B and C for the 

questionnaire). The experience level was correlated with participants’ performance in the 

task. Participants were also asked to respond to free-text feedback and experience questions 

about the route-recommender system, which were analyzed using thematic analysis using 

multiple raters. 

3.6.1 Rank order correlation between choice rank (performance) and experience level 

Participants rated on a 5-point Likert scale (Very often, often, occasionally, rarely, 

never) how often they play video games and follow recommender system 
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recommendations. A rank order correlation shows a small significant negative correlation 

(τ= -0.114, p=0.024) between participants’ experience playing video games and their mean 

route-choice rank. That means performance gets better (rank decreases) with the increase 

in video game experience. A rank order correlation also shows a small significant positive 

correlation (τ=0.143, p=0.012) between participants’ experience playing video games and 

their recommender use. The correlation between recommender use and performance (τ=-

0.003, p=0.95) was not significant. 

3.6.2 Content Analysis Results   

Content analysis (thematic analysis) was conducted for the free-text open-ended 

responses of participants to three questions in Experiment 1 and five questions in 

Experiment 2 (see APPENDIX C for the post-study questionnaire). The questions and 

corresponding coding categories are shown in Table 31. Table 32 shows an example of 

participant responses to AI limitations (Question 1) and consequent performance impact 

(Question 2) questions for all conditions in both experiments. Two researchers worked 

together to develop the themes for each question by following both the top-down and 

bottom-up approaches. The top-down approach focused on study design and question 

context to develop themes relevant to the question asked. The bottom-up approach focused 

on looking through a few participant responses to refine the previously identified themes 

and add more themes. Each identified theme served as a coding category. The researchers 

tried to create categories that are as mutually exclusive as possible so that raters can classify 

a participant's response into only one category with the least conflict.  
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Four undergraduate researchers acted as four raters (R1, R2, R3, and R4) to classify 

responses into categories. Four raters coded all questions in random pairs of two-raters 

coding 50% of answers for each question. Raters were blind to the knowledge about which 

experimental condition each response belonged. Cohen’s kappa (κ) was calculated to 

measure inter-rater reliability between two raters. Two kappas were calculated for two pairs 

of raters, who coded 50-50 data for each question (Table 33). The κ of 0.4-0.74  is usually 

considered moderate to good agreement between raters (Altman, 1990; Landis & Koch, 

1977). Based on this range, most of the rater pairs had moderate to good agreement, except 

for the first half of Question 4 and the second half of Question 5, which had an unacceptable 

level of agreement (κ<0.4). For these two response sets, a third rater, R3 or R4, was 

assigned to code both questions again. Their kappas with the previous raters are also shown 

in Table 33. The coded data from the third rater was selected for both questions as the third 

raters seemed to have a moderate agreement with the other two raters. The rater R3 usually 

had the highest agreement with any other rater for all other questions. Hence, whenever 

R3-coded responses were available, data were selected from R3. Otherwise, coded data 

was randomly picked from the other three raters.  
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Table 31. Themes/data coding categories identified for each question 

# Questions Coding Categories 
1 Please describe any 

limitations/issues you 
noticed with the AI-based 
route recommender 
system. 

No errors or issues with AI 
Inconsistent/unreliable / Inaccurate 
system/Lack of transparency 
Biased or unknown weights 
Confusing/incorrect visual display graphics 
More information needed 
No response from participant 
Other 

 

2 How did the limitations 
you listed above (if any) 
affect your performance in 
selecting the best route in 
the experiment today? 

No impact on performance 
Ignored AI/Didn't follow AI/ Used own judgment 
Affected trust in system/ confidence in decision 
Described decision strategies used (participant's 
strategy) 
No response from participant 
Other 

 

3 What additional 
information would you 
prefer to receive 
about/from the AI-based 
route recommender 
system? 

No additional information needed 
Weights/Sums/Average  
Better feedback on performance 
Explanation about AI 
No response from participant 
Other 
 

 

4 Please describe any 
limitations/issues you 
noticed with the "warning 
message" you received 
about the error in the AI-
based route recommender 
system provided to you. 

No issues with warning message 
Misleading 
Repetitive 
Inadequate/confusing/vague 
No response from participant 
Other 

 

5 What additional 
information would you 
prefer to receive about the 
AI-based route 
recommender system via 
the "warning message"? 

No additional information 
needed 
More explanation about bias 
Direction/magnitude of bias 
Weights 
No response from participant 
Other 
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Table 32. Example participant responses to limitation and performance impact question 

 

Model 
Misspecification 

Recommender Participant comments [Limitations; Performance 
Impact] 

Accurate 

No “The system needs more evidence to make it more 
trust worthy. Also, I feel like in each round of the 
game the priorities were different, I could not find a 
pattern to help me choose the best outcome.” 

“It made it hard to decide which route was the best 
because I had no previous knowledge of which 
qualities of the route plan are more important.” 

Yes “i noticed it was hard to figure out the AI's model 
for picking the best path, even after analyzing many 
scenarios. it was hard to figure out what the 
recommender valued” 

“my performance was affected because it was hard 
to know what categories the route recommender 
valued over others.” 

Soft 

No “There were no issues, I was not sure whether some 
of the categories had more weight than the other 
categories because if that was the case, I would have 
made my decisions differently.” 

“I tried figuring out which set of numbers had the 
higher average, some sets confused me because 
there were multiple zeros so I tried to go with the 
option that had the most consistent and somewhat 
high set of numbers. Sometimes it was the best 
option and other times it was not.” 

Yes “There were times in which the AI system would 
recommend routes with more 0 attributes than 
"high" (80-100) attributes, which made me a little 
wary. There were also times where I selected a 
recommend route and it would turn out to be the 
sixth best route, and other times where a non-
recommended route would be second or first. At 
times, it felt like the recommended routes were 
randomly selected.” 
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Table 32. Continued. 

Model 
Misspecification 

Recommender Participant comments [Limitations; Performance 
Impact] 

Soft  Yes “It affected my performance as I began to solely rely 
on the numbers, only using the recommender if I was 
truly stuck.” 

Explanation “I didn't know how much more importance was 
placed on time-efficiency in comparison to the other 
variables.” 

“It affected my performance in choosing as I didn't 
fully know when to decide between a low time 
efficiency value route and route with high values for 
other variables.” 

Hard 

No “I feel like at times it maximized for high averages 
(no zeros), and other times it looked for the highest 
raw summation” 

“I'd just generally try to roughly add stuff up, early 
on I was discounting routes which had 0s in certain 
areas (like hazardous avoidance), but later I just 
looked through everything and counted up which 
route had the highest +90 answers/highest raw 
estimate” 

Yes “Personally I tried to avoid options with 0s because 
I was aiming for a balance - I noticed that at times 
the AI did not take this route of reasoning.” 

“Sometimes I would disagree with the AI's routes 
and disregard them after seeing so many 0s - it 
essentially hindered the AI's reliability at times as 
well.” 

Explanation “I was unsure how much bias was impacting the 
rating values for the two affected fields.” 

“Often I didn't select the most optimal routes 
because I believe I was unable to properly gauge 
how much bias was impacting the AI outputs values. 
Typically, the AI routes would produce the highest 
scores, but it was hard to gauge how that translated 
to an actual score without bias” 
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Table 33. Inter-rater reliability between raters for all questions for 50% data 

Question Raters Number 
of 

responses 

Cohen’s Kappa 
(κ) 

% agreement Data 
selected 

1 R1, R2 108 .477 58% R1 
R3, R4 108 .492 60% R3 

2 R1, R4 108 .494 60% R4 
R2, R3 108 .537 66% R3 

3 R2, R4 108 .528 64% R2 
R1, R3 108 .671 76% R3 

4 

R1, R4 
31 

.378 52% 
R3 R1, R3 .597 71% 

R4, R3 .534 64% 
R2, R3 31 .746 71%   R3 

5 R3, R4 31 .537 61% R3 
R1, R2 

31 
.315 42% 

R4 R1, R4 .481 58 % 
R2, R4 .466 58 % 

 

 

Question 1: Limitations/issues with the route recommender system 

 Participants’ responses to Question 1 indicated they found two major limitations of 

the recommender system irrespective of the experimental condition (Figure 58). Firstly,  

participants felt that the system was inconsistent, unreliable, inaccurate, and was not 

transparent. Second, participants also felt that the system was using biased or unknown 

attribute weights in weighing the presented route attributes. Figure 58 shows that the 

proportion of participants who felt attribute weights were biased in explanation conditions 

was much higher than in corresponding control conditions. This might be attributed to the 

explicit and direct explanation message they received. Interestingly, the proportion of 

participants who requested more information about the recommender system are the ones 
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who received recommended routes compared to participants in no recommender control 

conditions. 

 

Figure 58. Limitations/issues identified with the route recommender system via open-
ended participant responses 

Question 2: Impact of limitations on participant performance 

Participants’ responses to Question 2 asked them to talk about the performance 

impact of the limitations they identified in the system.  Most Participants talked about how 

the system negatively impacted their performance, trust in the system, or confidence in 

their decision. Many participants also described what weighting schemes (decision 

strategies) they used to evaluate routes and associated attribute weights to compensate for 

those system limitations. Figure 59 shows the proportion of participants in each condition 

and what category their response belonged to. More participants in the hard conditions (at 

all levels of recommenders) said that they ignored or didn’t follow the recommender 

system and used their judgment compared to the soft and accurate conditions. This is 
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consistent with the prediction that it was easier for participants in the hard conditions to 

detect the issues with the system than in the soft conditions.  

 

Figure 59. Performance impact of limitations with the route recommender system via 
open-ended participant responses 

Question 3: Additional information needed about the route recommender system  

 Most participants indicated they needed more details or an explanation of the AI 

algorithm. The majority of them also indicated a need for exact weights for attributes or 

sum or averages for each route across the six attributes for easy comparison and decision 

choice. Figure 60 shows the proportion of participants in each condition and what category 

their response belonged to. More participants in the soft condition indicated a need for 

better feedback on performance compared to the accurate and hard conditions for both yes 

and no recommender levels. 
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Figure 60. Additional information requested by the participants about the route 
recommender system via open-ended responses 

Question 4: Limitations/issues with the explanation message and Question 5: 
Additional information needed in the explanation message 

Only participants in the explanation conditions responded to Questions 4 and 5. 

Figure 61 and Figure 62 show the proportion of participants and what category their 

responses belonged to for both questions. Even though we believed that the explanation 

message was very straightforward and provided more information than conventional XAI 

interventions provide, most participants, especially for the hard condition, found that the 

explanation message was inadequate, vague, and confusing (Figure 61). Many participants 

also asked for more information about the bias or exact attribute weights, magnitude, or 

direction of the bias in both soft and hard conditions  (Figure 62). 
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Figure 61. Limitations/issues identified with the explanation message via open-ended 
participant responses 

 

 
 

Figure 62. Additional information requested by the participants in the explanation 
message via open-ended responses 
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 Overall, the content/themes analysis provides some interesting insights into how 

participants of these dissertation experiments understood the misspecifications in the 

system and errors in the recommender and adapted their decision-making process. It also 

provided insights into what worked or didn’t work for the route recommender system and 

explanation messages. This qualitative data helps explains some of the quantitative results 

presented before. These conclusions will be discussed more in the general discussion 

section. 
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CHAPTER 4. DISCUSSION 

The primary goal of this dissertation was to formally investigate the role of model 

blindness imposed by model-based decision support systems implemented in dynamic, 

uncertain, multi-objective, and high-consequence decision-making environments. The 

dissertation also examined a mitigation technique for misspecified models to calibrate 

users' decision-making under model blindness. The aim was to empirically evaluate our 

proposed model blindness confluence model (Parmar et al., 2021), which was supported 

via simulations presented earlier in Chapter 2. The confluence model comprised three 

components— the MDSS, the task's decision context, and the user's decision strategy. Each 

component can potentially lead to performance degradation. 

4.1 Results Summary and Discussion 

Experiment 1 of this dissertation took the first step in elucidating how model 

blindness can manifest in a user’s decision-making process by carefully manipulating 

model misspecification and recommender availability and evaluating various performance 

measures, trust, confidence, and decision strategies. The route recommender system also 

provided a unique capability to participants, allowing them to deviate from the 

recommended set by presenting additional alternatives. The results only provide partial 

evidence for participants’ performance degradation due to model blindness. This 

experiment does not provide strong support for many of the hypothesized effects related to 

model misspecification levels. The performance improvement (rank and local utility loss) 

was observed for participants only when recommended routes were presented to them 

compared to participants without any recommender. Global utility loss was the only 
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measure that differed across model misspecification levels. Although this global level 

performance difference is unrelated to local measures like trust, confidence, etc., this can 

be a manifestation of trust miscalibration which will be discussed later. Participants' Brier 

scores were also found to be only calibrated when the system was highly accurate 

compared to misspecified systems. There was no difference between soft and hard 

conditions’ Brier scores, even though the recommender system differed in accuracy 

between those conditions. 

Interestingly, the predicted interaction effect for model misspecification and 

recommender was only observed for the reliance measure. Participants were likely to rely 

on recommender (pick routes from the recommended set) when it was present compared 

to when it was not for the accurate and soft conditions. However, for the participants in the 

hard conditions, there was no reliance difference between those with and without the 

recommender. Hence, participants with and without recommender were equally likely to 

pick from those three routes whether it is recommended or not. This can be interpreted as 

no effect of recommender for participants in the hard condition. This finding is interesting 

as the prediction was that participants in the hard condition with the recommender would 

find it easier to detect the recommender’s poor quality and avoid over-reliance. In contrast, 

the prediction for the participants in the soft condition with recommender was that slight 

misspecification could be more detrimental for users as it might lead to over-reliance due 

to the recommender being correct sometimes. 

Experiment 2 implemented a unique way of presenting XAI-type explanations to 

reduce the impact of model blindness imposed on users in the misspecified conditions from 

Experiment 1. The results of Experiment 2 are similar in trend to the Experiment 1 results. 
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Experiment 2 only provided partial evidence for the success of presenting explanations to 

create model blindness awareness among users. The results did show awareness among 

participants through decision strategies, but no reliable performance differences were 

observed between conditions with or without explanations. The Brier score calibration 

followed the same patterns as Experiment 1, with no calibration differences between soft 

and hard misspecification levels. The participants’ reliance on the recommended set in the 

explanation conditions does not differ from those without the recommender. However, 

participants’ reliance on the recommended set in the explanation conditions was 

significantly lower than participants in the recommender conditions without the 

explanation. Hence, providing explicit explanations does reduce reliance on a misspecified 

system even though no performance changes were detected between the levels of 

misspecification. This provides evidence to support that presenting natural language 

explanations can help calibrate decision makers to the capabilities and limitations of an 

MDSS, although it didn’t improve performance.   

Explicit explanations also played a role in participants’ trust score calibration, as 

trust decreased compared to the conditions without a recommender. Surprisingly, 

participants’ trust in the explanation conditions significantly reduced from no 

recommender to explanation conditions for the scale's trustworthiness, technical 

competence, and personal attachment facets. The understandability and reliability facets 

were not different between any conditions of both experiments. Hence, trust turns out to 

be a concerning and counter-intuitive measure, as providing an explicit statement about 

bias was the only form of 'feedback' that significantly reduced participant trust in the 

system. However, this is not the first time we have seen these issues with trust measures; 
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in one of our previous studies (Parmar & Thomas, 2020), people were highly sensitive to 

DSS’s accuracy and showed significant performance and Brier score differences with 

accuracy changes. However, trust scores still didn’t change between conditions in that 

study, and they remained at neutral levels with a 5-point Likert scale. The follow-up 

exploratory analysis in that study also showed that trust was only found to be calibrated to 

operators’ objective performance when the tool was highly accurate. Learning from those 

findings, we chose a different and more appropriate measure of trust for the given task 

context and also used a 4-point forced Likert scale without the neutral option of ‘Neither 

Agree nor Disagree”. However, trust still didn’t change even though participants' global 

utility loss (a measure of absolute tool accuracy) significantly differed between conditions 

in both experiments. 

Trust and reliance are considered to be positively correlated measures in trust 

literature, as reliance (or use) of any automation depends on its trustworthiness (Lee & See, 

2004; Muir & Moray, 1996). In this study, there were significant changes in reliance 

between conditions for both experiments; however, the trust didn’t vary as expected. To 

further test how trust and reliance are related in our task, a Pearson correlation was 

calculated between mean reliance and omnibus trust score across participants. The two 

were not significantly correlated, r=0.036, p=0.578>0.05. There was also no significant 

correlation between trust and performance, r= -0.094, p=.149>0.05. A study by Dzindolet 

et al. (2003) showed the results opposite to what we found. In their study, authors found 

that providing an explanation about situations when an automated aid presenting target 

present vs. absent (binary choice) decision support might fail (can give false alarms) and 

telling participants that the aid is not perfect led to improved reliance and trust compared 
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to no explanation conditions. Interestingly, they also found that participants considered the 

trustworthiness of a superior aid higher than an inferior aid, but they were found to rely on 

both equally likely. I think, in our case, reliance changes and reduces with explanations 

because we have presented participants with additional alternatives to choose from when 

they feel the system is making poor recommendations. Reliance changes in this dissertation 

study might also be attributed to an explanation message explicitly telling participants that 

MDSS is always misspecified, instead of telling them, like Dzindolet et al. (2003), that aid 

might be wrong on some trials. Based on these results, it seems as though the construct 

validity of trust in automation measures is of concern (Stuck et al., 2022). 

No reliable and consistent learning effects across trial order or block order were 

observed in either experiment. The lack of an observed learning effect might be attributed 

to differences in the difficulty level across the different trial scenarios. The trials 

(scenarios) show significantly different performance across misspecification and 

recommender levels. Even though performance, trust, confidence, reliance, and learning 

provided partial support for the hypothesized effects, the decision strategy analyses 

provided useful insights into participants’ decision-making processes that could explain 

some of those results. The decision-strategy model-fitting analysis aggregated by condition 

showed the participants' route choices were best-fit by the equal weights, or corrective 

weights for misspecified conditions, and conjunctive and equal weights for accurate 

conditions.  Hence these results indicate that decision-makers adapt their strategies when 

there is bias or misspecification in MDSS that can be detected from available feedback. 

The participants adjusted their decision strategy to either match true world feedback (non-

explanation conditions) or overcome bias (explanation conditions). The same trend was 
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also observed from participants’ actual β-weights obtained from their route choice and 

corresponding attribute values presented in the task using linear regression. On average, β-

weights for participants in the explanation condition showed that they could incorporate 

explanation messages into their decision-making to approximately move towards 

respective hard and soft corrective weights. Participants in all non-explanation conditions 

showed sensitivity towards attribute label names in their average β-weights, causing them 

to underweight some attributes that might sound less important for the decision task of 

delivering the shipment. Participants in those conditions were still weighing other attributes 

almost equally. 

 The decision-strategy model-fitting analysis by participants showed that more 

participants used non-compensatory strategies in explanation conditions compared to no-

explanation control conditions. This might explain why there weren’t any performance 

improvements with explanations, as some participants found our straightforward 

explanation message challenging to incorporate into decision-making. This was evident 

from their post-study questionnaire response, in which most participants found the 

explanation message misleading, confusing, and vague and requested to receive more 

information. Hence, these results indicate a need for XAI researchers to consider the role 

of decision strategies more carefully when implementing any XAI capability in systems. 

The accurate condition with recommender had the most participants using compensatory 

strategies compared to the hard condition with recommender, and the soft condition with 

recommender had the least number of participants using compensatory strategies. The 

accurate condition with recommender afforded participants the highest chance for success 

with additional effort, followed by the hard misspecification, most likely because the hard 



 136 

misspecification was easier to detect compared to the soft misspecification. The trend was 

reversed for the accurate condition without recommender (controls) as it had the lowest 

percentage of participants using compensatory strategies compared to hard and soft 

(controls). 

4.2 Conclusion 

Although, the results of this dissertation were not conclusive in terms of 

performance changes. It revealed some important characteristics about how users are prone 

to model blindness and how their trust in the system only changes when they are explicitly 

told that the system’s algorithm is biased towards specific attributes. Also, their confidence 

is only calibrated to accuracy when the system is highly accurate. The decision-strategy 

analyses and simulation results in this dissertation provided further evidence for the 

important role of the decision-strategy component of Parmar et al.'s (2021) proposed model 

blindness confluence model. Participants also frequently described their detection of an 

error in AI and how they changed their decision strategies to improve performance on the 

task in the post-study questionnaire, indicating participants’ ability to adapt to model 

misspecification levels. Overall, the experiments provide little support for model-limited 

performance due to model blindness imposed by misspecified systems. The behavior 

captured in Experiments 1 and 2 showed minimal sensitivity to the different misspecified 

statistical environments participants operated within. There was evidence of the impact of 

recommender presence and reliance. The participants' strategies showed that they could 

understand model limitations and adjust their strategies accordingly to account for 

misspecifications in the model. Hence, not enough evidence was found for how performance 
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will be strategy and model-limited under an unfriendly context-limited environment with 

severe tradeoffs operating.  

Finally, I think the motivation, caliber, experience level of participants (experience 

with recommenders and video games), and background (the majority were CS majors) also 

played a significant role in good performance levels in all conditions of both experiments. 

This is also evident from the quality of detailed responses in the comments they added to 

the post-study questionnaire, where most participants asked for more information about the 

attribute-weighing scheme of the MDSS algorithm. The results also indicate that people 

can adapt their behavior to misspecifications to achieve a good performance level even 

though they might not have metacognitive awareness about the misspecifications. Even 

though calibration (Brier score) was tied to performance but ideally, both raw confidence 

score and trust were not. The lack of differences between those measures indicates a lack 

of metacognitive awareness about misspecifications. Hence, participants can still suffer 

from model blindness but achieve good-enough performance levels. Finally, this 

dissertation's results also help understand the challenges with measuring and evaluating 

trust in a model blindness situation, as having high or low trust might not reflect anything 

about reliance, performance, or confidence. 

4.3 Limitations and Confounds 

Since this study was unique and among the first ones to investigate model blindness 

confluence model in an experimental paradigm, most of the limitations in design can be 

realized in hindsight. In hindsight, one limitation I see is a significant difference in the 

difficulty level of some scenarios, which was reflected in participant performance. Hence, 
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detecting any performance changes or learning effects between conditions was difficult. I 

could have controlled for that in the experiment design instead of randomly generating 

scenarios following the required statistical structure of the task. However, in real-world 

automation, the difficulty levels do change significantly based on task conditions. Usually, 

automation fails when an abnormally tricky situation occurs, affecting trust, reliance, and 

confidence in trust in automation literature (Dzindolet et al., 2003; Dzindolet et al., 2001; 

Johnson et al., 2004; Muir, 1994; Muir & Moray, 1996). Another extraneous variable that 

could have been handled more carefully was labeling attributes. Because the decision 

strategy analyses showed participants were underweighting attributes like “extra supplies” 

and “humanitarian aid” in some conditions as it sounded less important than other attribute 

labels like “time”, “fuel”,  “hazards” and “obstacles”. I think calling the shipment of 

healthcare supplies in instructions might have led to this bias, even though the same 

instructions told participants that all attributes are equally important. 
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CHAPTER 5. IMPLICATIONS AND FUTURE RESEARCH 

The results of this dissertation provided partial empirical support for the confluence 

model of operator performance proposed by Parmar et al. (2021). However, the results did 

provide insights into trust and confidence-related barriers in MDSS implementations. It 

also showed the important role decision strategies could play in the success or failure of 

any XAI manipulations. Although performance changes were not detected, this might be 

attributed more to the experiment design and range restriction in our participants. It does 

not indicate that model misspecification didn’t affect decision-making, as other measures 

did provide partial support for some of the hypothesized effects. 

5.1 Implications 

This dissertation research has theoretical and practical contributions as it combines 

research from decision-making, human factors, and XAI literature to propose a model 

blindness confluence framework and empirically test it. Through decision-strategy fits, the 

dissertation results demonstrated that there might be negative consequences to making 

users aware of model blindness through XAI explanations, as some participants were found 

leaning towards non-compensatory strategy fits in those conditions. Hence, it presents 

researchers with decision-strategy fitting as a tool to evaluate any XAI intervention before 

system-level implementations. The reliance and trust results also help establish a need for 

providing additional information and alternatives to users instead of providing a forced 

recommendation for more thoughtful decision-making. It will also help avoid over-reliance 

on automated systems. 
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 The results also support the argument raised in Parmar et al. (2021) that model 

blindness should be considered before adopting an MDSS technology in a high-

consequence and multi-objective decision-making environment; as we can see, there is a 

range of variables that needs to be considered for appropriate adoption of any MDSS. The 

results also show an advantage of, at minimum, making human operators aware of issues 

related to model blindness so they can move towards more corrective decision strategies. 

Some of the formal evaluations of model blindness presented in this dissertation, along 

with subsequent follow-up experiments in the future, can become a part of the design 

philosophy used by model and system developers. Model blindness evaluation, awareness, 

and consequent mitigation will eventually provide ways to build Responsible, Equitable, 

Traceable, Governable, and Reliable DSS as proposed by DoD’s AI guidelines (Board, 

2019). The results also have implications for basic research in judgment and decision-

making of how people’s algorithm adoption and aversion behaviors manifest (Dietvorst & 

Bharti, 2020), particularly that people are able to adapt their decision strategies to the level 

of algorithmic misspecification. Also, we found support that people were using 

compensatory strategies instead of relying on heuristic strategies in our multi-objective 

tasks, consistent with previous findings within the Adaptive Decision Maker (Payne et al., 

1993) as opposed to simply engaging in effort reduction via heuristic use (Shah & 

Oppenheimer, 2008). 

5.2 Future Directions 

As the next step, I plan to replicate this study at another university to test the 

difference in results between the two population samples. It will help better understand the 

differences in performance between conditions. The current experiments can also be 
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replicated in the future by using stronger misspecification and more attributes and 

alternatives so that corrective strategy and equal weights are more apart in their statistical 

estimation and more micro-level conclusions can be drawn. Future work can also extend 

the current experiments for multiple different conditions, including testing different 

mitigation techniques. It can evaluate the proposed mitigation technique in Experiment 2 

by manipulating the quality of explanation, e.g., accurate complete explanation, accurate 

partial explanation, inaccurate complete explanation, inaccurate partial explanation, etc. 

The type of explanation can also be manipulated to see differences between people’s 

understanding of model vs. outcome-based explanations. As discussed earlier, Páez (2019) 

and other XAI researchers usually recommend focusing more on model outcome-focused 

simplified explanations. However, the results of this study, and those from judgment and 

decision-making literature (Newell et al., 2009; Steinmann, 1976; Todd & Hammond, 

1965), provide support for presenting more process-based feedback concerning the MDSS 

misspecification instead of outcome feedback to improve learning in a multiple-cue 

probabilistic environment. In this study, I presented participants with process feedback 

about how the model of MDSS is misspecified, and participants were found to adapt to that 

explanation. An alternative to this explanation could be outcome feedback that would 

provide feedback on the MDSS's performance or calibration level without explaining why 

the model is performing a certain way and why it might fail. This suggested explanation 

manipulation will help understand how the consequences of model blindness depend on 

the quality and type of mitigation and what can be the consequences of inaccurate 

mitigation. Future work can also test different types of model misspecification except for 

cue-weighting, e.g., missing vs. complete set of cues.  



 142 

Future work should also focus on challenges posed by model blindness apart from 

performance degradation, such as system brittleness, trust issues affecting MDSS adoption 

behavior by users, and algorithm aversion (Dietvorst & Bharti, 2020). Auditing MDSS for 

its potential to cause model blindness is also a necessary next step. Through a series of 

multiple experiments, future work can quantify the framework and develop metrics of 

model blindness analogous to the one implemented in this paper (Figure 6) appropriate for 

various tasks that can generate signals of risk or performance degradation that an MDSS 

might impose on operators. Metrics like these can also assess the performance degradation 

that an MDSS might impose on operators using different decision strategies within the 

same context. Hence, providing a range of conditions under which an operator’s 

performance under model blindness will be more or less likely to be model-limited. 
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APPENDIX A. INSTRUCTIONS PRESENTED TO 

PARTICIPANTS 

Consent Form Page 1 

*Image of consent form* 

Click the “ACCEPT” button to proceed. 

Instructions Page 2: 

Welcome to the Decision Processes Lab! 

Thank you for agreeing to participate in this study! To begin, you will first learn to play 

our Route Planning Game using an AI-based Route Recommender System. 

You must read all of these instructions very carefully to develop a good understanding of 

what you will do during the game. 

Please do not take any notes during the game. 

Instructions Page 3 (Control Conditions): 

Mission-Planning tasks for asset routing like the one you will do in today’s experiment are 

prevalent in commercial and navy shipping maritime operations. There has been a lot of 

research on developing decision support tools to support these tasks. 

Today, you have to take on the role of a remote route-planning operator. You will be 

responsible for planning a route for delivering critical care shipment for COVID-19 



 144 

patients from one geographical location to another via a route that involves a majority fleet 

movement and some ground shipping. The game will start with a practice round where you 

learn how to perform the route-planning task.  

To achieve this goal, you will be provided with a Route Recommender System, an 

artificially intelligent system that helps make decisions by presenting routes and relevant 

information associated with routes. The Route Recommender System presents a set of 

seven best routes (represented as solid yellow lines) that are identified as top routes by the 

system to meet task goals.  

The goal is to choose the best route for every scenario out of the top seven routes presented 

by the  Route Recommender System. All scenarios will have one best correct route out of 

the seven presented.  

Instructions Page 3 (Experimental Recommender and Mitigation Conditions): 

Mission-Planning tasks for asset routing like the one you will do in today’s experiment are 

prevalent in commercial and navy shipping maritime operations. There has been a lot of 

research on developing decision support tools to support these tasks. 

Today, you have to take on the role of a remote route-planning operator. You will be 

responsible for planning a route for delivering critical care shipment for COVID-19 

patients from one geographical location to another via a route that involves a majority fleet 

movement and some ground shipping. The game will start with a practice round where you 

learn how to perform the route-planning task.  
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To achieve this goal, you will be provided with a Route Recommender System, an 

artificially intelligent system that helps make decisions by presenting routes and relevant 

information associated with routes. The Route Recommender System presents a set of three 

routes (represented as solid yellow lines) that are identified as top routes by the system to 

meet task goals. The system also provides a set of four additional routes (represented as 

dashed red lines) to choose from. You are free to pick any route you would like to.  

The goal is to choose the best route for every scenario out of the top seven routes presented 

by the  Route Recommender System. All scenarios will have one best correct route out of 

the seven presented.  

Instructions Page 4  

To help complete the route-selection task, you can review how each route scores on six 

attributes that are critical for decision-making in this task. The six attributes include time 

efficiency, fuel efficiency, obstacle avoidance (e.g., road closures, route deviations), 

weather hazard avoidance (flooded roads, hurricanes), en-route availability of extra 

supplies (vaccine shipments, medication shipments), and en-route ability to do 

humanitarian aid (deliver materials to people in need). The score on each attribute ranges 

from 0 to 100. A higher number means a particular route is better on a given attribute, e.g., 

a value of 90 on time efficiency attribute means the particular route is highly time-efficient, 

a value of 10 on weather avoidance attribute means the route is encountering a lot of 

hazards and not doing great in avoiding hazards. 

You have to use all the presented attribute information. Each piece of information is equally 

important for an optimal decision. You have to optimize all attributes to meet multiple 
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objectives (e.g., maximize time efficiency while maximizing weather hazard avoidance) 

via your route selection.  

You will also be provided ranked feedback about your chosen route after every choice. 

Instructions Page 5 

Try to do the best you can and utilize the feedback presented to you as much as you can.  

You will not be given any information other than feedback to learn more about the 

relationship between route attributes and the best possible routes.  

Instructions Page 6 

You are now ready to play the practice round of the Route-Planning Game! 

If you have any questions or are unsure of your task, ask the experimenter before beginning 

the game. 

Instructions for the practice round (4 trials): 

Click button (white squares) A-G (for routes A-G) to look at the attribute values for each 

route. 

Make sure to select the route you believe is best, and press SUBMIT button to complete 

each scenario. 

Instructions Page 7 

Practice Round Ends here! 
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You are now ready to play the Route-Planning Game! 

If you have any questions or are unsure of your task, ask the experimenter before beginning 

the game. 

Instructions Page 8 

Game Completed!  

Good job picking the routes! You did great today!  

Instructions Page 9: Debriefing 1 

Thank you for your participation! 

We are interested in investigating your decision-making when using the route information 

provided by a recommender system using an algorithm. Participants in different conditions 

of the experiment receive a recommender system with different levels of accuracy, 

affecting the quality of information they receive. We are trying to understand better how 

misspecifications and errors in algorithms can affect human decision-making. 

The work has the potential to improve recommender systems used in high consequence 

decision-making tasks like medical diagnosis, navy ship routing, routing UAVs 

(Unmanned Aerial Vehicles), etc.  

Instructions Page 10: Debriefing 2 

Due to the sensitive nature of the research process, please do not discuss this procedure 

with other people that may participate in this experiment. 
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If you do not have any questions, you can gather your belongings and quietly leave the lab. 

If you have questions regarding the study, please talk to the experimenter available in the 

lab. You may also contact the experimenters via the email addresses listed on the SONA 

page for the experiment you used to sign up for the study.  

If your participation in this study has upset you, please contact Georgia Tech’s Office of 

Research Integrity Assurance. 

THANK YOU AND GOODBYE! 

 

  



 149 

APPENDIX B. PRE-STUDY DEMOGRAPHICS 

QUESTIONNAIRE 

Question Response 
format 

Response Options 

What is your age (in years)? Free-text 
response 

Textbox 

What is your gender? Forced-
choice 

Female, Male, Non-binary or 
Non-conforming, or Other, 
Prefer not to say 

What is your major at Georgia Tech Free-text 
response 

Textbox 

Do you have any experience playing 
computer-based video games? 

Forced-
choice 

Yes, No 

How often do you play computer-based 
video games? 

Forced-
choice 

Very Often, Often, 
Occassionally, Rarely, Never 
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APPENDIX C. POST-STUDY FEEDBACK AND EXPERIENCE 

QUESTIONNAIRE 

 

Question Response 
format 

Response Options 

Please describe any limitations/issues you 
noticed with the AI-based route 
recommender system? 

Free-text 
response 

Textbox 

How did the limitations you listed above (if 
any) affect your performance in selecting 
the best route in the experiment today? 

Free-text 
response 

Textbox 

What additional information would you 
prefer to receive about/from the AI-based 
route recommender system? 

Free-text 
response 

Textbox 

Please describe any limitations/issues you 
noticed with the "warning message" you 
received about the error in the AI-based 
route recommender system provided to 
you? * 

Free-text 
response 

Textbox 

What additional information would you 
prefer to receive about the AI-based route 
recommender system via the "warning 
message"? * 

Free-text 
response 

Textbox 

Do you have any experience using AI-
based recommender systems (e.g., Netflix 
movie recommendations, Amazon product 
recommendations, Health and Fitness 
apps) in your day-to-day life? 

Forced-
choice 

Yes, No 

How often do you use recommendations 
provided by any AI-based recommender 
systems (e.g., Netflix movie 
recommendations, Amazon product 
recommendations, Health and Fitness 
apps) in your day-to-day life? 

Forced-
choice 

Very Often, Often, 
Occassionally, Rarely, Never 
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Question Response 
format 

Response Options 

Have you ever taken a course or worked 
with recommender systems? 

Forced-
choice 

Yes, No 

*Explanation conditions only 
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