FA{S,T}TER SCALED MATCHING

Amihood Amir* Gruia Calinescut
Georgia Tech Georgia Tech

GIT-CC-93/40

July 1993

Abstract

The rapidly growing need for analysis of digitized images in multimedia systems
has lead to a variety of interesting problems in multidimensional pattern matching.
One of the problems is that of scaled matching, finding all appearances of a
pattern in a text in all discrete sizes. Another important problem is dictionary
matching, quick search through a dictionary of preprocessed patterns in order to
find all dictionary patterns that appear in the input text.

In this paper we provide a very simple algorithm for two dimensional scaled match-
ing. Qur algorithm is the first linear-time alphabet-independent scaled matching
algorithm. Its running time is O(|T|), where |T'| is the text size, and is independent
of |X|, the size of the alphabet.

Our technique generalizes to produce the first known algorithm for scaled dictio-
nary matching. We can find all appearances of all dictionary patterns that appear
in the input text in any discrete scale. The time bounds of our algorithm are
equal to the best known exact (no scaling) two dimensional dictionary matching
algorithms.

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280

*College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280; (404) 853-0083;
amir@cc.gatech.edu; Partially supported by NSF grant IRI-90-13055 and CCR-92-23699.

TCollege of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280; (404) 853-9389;
gruia@cc.gatech.edu.

1 Introduction

Recently the world has been witnessing a strong convergence of market forces such as the
computer industry, television, photo/films, library, and telephone. All these diverse industries
need to digitize and analyse digitized images [14]. A lacking crucial element in this multimedia
effort is the equivalent of “text string searching” in an image database [17].

Much theoretical progress has been made in recent years in the area of multidimen-
sional pattern matching. Exact two dimensional matching can now be done in in alphabet-
independent linear time [1, 16, 3, 2]. Approximate two dimensional matching, where one
seeks all appearances of a pattern P in text T with some possible errors, can be doneeffi-
ciently under various definitions of error [4, 8]. Scaled matching, where all appearances of a
pattern P scaled to any discrete size are sought in text T', can also be solved in linear time
for fixed finite alphabets [9].

Much progress has been made with dictionary matching as well. In the traditional pat-
tern matching model a single pattern is sought in a single text. Dictionary matching allows
preprocessing of a (possibly vast) dictionary of patterns. Subsequently, appearances of dic-
tionary patterns in various input texts are to be found quickly. Various algorithms for two
dimensional matching (static, dynamic, square patterns, rectangular patterns) were developed
[5, 6, 11, 13]. The two remaining fundamental problems in dictionary matching are 1) Scaled
dictionary matching and 2) Approximate dictionary matching.

This paper addresses the scaled two dimensional dictionary matching problem. The tech-
inques of [9] for scaled matching can not be generalized to multidimensions. The main idea
was analysing the text with the aid of power columns. Those are the text columns appearing
m — 1 columns apart, where P is an m X m pattern. This dependence on the pattern size
make the power columns useless where a dictionary of different sized patterns is involved.

In this paper we present a novel idea for solving the scaled dictionary matching problem
for a single pattern. This idea is significantly simpler than the algorithm of [9] and has
an additional advantage of being alphabet-independent. The previous scaled matching
algorithm had a worst case running time of O(|7|log |X|), where |T'| and |X| are the respective
sizes of the text and the alphabet. Our algorithm runs in time O(|T'|) for every alphabet.

We also show that this idea can be further developed to dictionary matching. We present
what is, to our knowledge, the first algorithm for scaled two dimensional dictionary
matching. Our algorithm solves the scaled dictionary matching problem for a static dictio-
nary of square pattern matrices in time similar to that of the non scaled algorithm [5]. Our
times are: O(|D|logk) preprocessing, where | D| is the total dictionary size and k& is the num-
ber of patterns in the dictionary, and O(|T'|logk) text scanning time, for input text 7. This
is identical to the time at [5], the best non-scaled matching algorithm for a static dictionary
of square patterns. It is somewhat surprising that scaling does not add to the complexity
of single matching nor dictionary matching.

This paper is organized as follows. In section 2, we give the problem definition and some

2 Amir and Calinescu

preliminaries. In section 3, we give the alphabet independent single pattern two dimensional
scaled matching algorithm. In section 4 we give the scaled dictionary matching algorithm.
We conclude with open problems and future research.

2 Problem Definition

Before we define the scaled matching problem, we introduced the following notation. The
string aa...a where the symbol a is repeated k times (to be denoted a*), is referred to as
scaling of the singleton string a by multiplicative factor k, or simply as a scaled to k. Similarly,
consider a string A = ay - - - a;. A scaled to k (AF) is the string af, ..., af.

The scaled string matching problem is defined as follows:
Input: Pattern P =py ---p,, and text T =ty - - - t,, where n > m.

Qutput: All positions in T" where an occurrence of P scaled to k starts, for any k =
L&)

Let P[m x m] be a two-dimensional matrix over alphabet ¥ (not necessarily bounded).
Then P scaled to s (P®) is the sm X sm matrix where every symbol P[i,j] of P is replaced
by a s x s matrix whose elements all equal the symbol in P[i, j]. More precisely,

str 1 ol

P, gl = PIICT T
Follwing [9] we define the problem of two-dimensional pattern matching with scal-

ing as follows:

Input: Pattern matrix P[i,j] ¢ = 1,...m;j = 1,...,m and Text matrix T[i,j] @ =
1,....,n;7=1,...,n where n > m.

Output: all locations in 1" where an occurrence of P scaled to s (an s-occurrence) starts,
n

forany s=1,...,[Z].

m

We defined the scaled matching problem on square texts and patterns for the sake of sim-
plicity only. Our alphabet independent result is also true for rectangular texts and patterns.

In [9], this problem was solved in time O(n?). However, the alphabet was finite. Over an
infinite alphabet, the Amir-Landau-Vishkin algorithm will achieve time O(n?logm). Added
deficiencies of that algorithm are that it is extremely complicated, and that the size of the pat-
tern m plays a crucial role in the text processing. Our algorithm is simple and straightforward,
and its time complexity is O(n?) for every alphabet.

Traditional Pattern Matching has dealt with the problem of finding all occurrences of a
single pattern in a text (under some definition of the word “occurrence”). While the case
of a pattern/text pair is of fundamental importance, the single pattern model is not always
appropriate. One would often like to find all occurrences of a set of patterns in a text. We
call such a set of patterns a dictionary. In addition to its theoretical importance, dictionary
matching has many practical applications. For example, in computer vision, one is often

Fa{s,t}ter Scaled Matching 3

interested in matching a template to a picture. In practice, one needs to match an enormous
set of templates against each picture. Clearly one would like an algorithm which is minimally
dependent on the size of the database of templates.

The static two dimensional dictinary matching problem is defined as follows. Given
a A set D (the dictionary) of patterns Pi[my X mq], Po[ma X ma], ..., Pr[mi x my] of total
length d = Ele m? all over alphabet Y. Preprocess the set in a way that enables solution to
the following problem:

Input: Text T[n X n] over alphabet X.

Output: All ordered pairs ([z,y], j) such that pattern P; matches the subsquare of text
beginning at location T'[z,y].

Amir and Farach [5] provided an algorithm for the static two dimensional dictionary
matching problem where the dictionary preprocessing was done in time O(dlogk) and sub-
sequent text scans took time O(n?logk). In [6], the dynamic two dimensional dictionary
matching problem was considered. In the dynamic version, patterns may be inserted to and
deleted from the dictionary. An algorithm was provided where a dictionary update takes time
O(|P|logd) (P is the pattern inserted or deleted) and the text scanning takes time O(n*log d).
Giancarlo [11] also obtained an algorithm for the dynamic two dimensional dictionary match-
ing problem, but his algorithm is less efficient. In [7] simple randomized algorithm for this
problem were presented.

All above algorithms assume that the patterns are squares (although the text need not
be). Idury and Schéiffer [13] showed an algorithm for dynamic two dimensional dictionary
matching of general rectangular patterns.

In this paper we show that our new scaled matching algorithm can be adapted to solve
the static two dimensional dictionary matching problem for square patterns in the same
time complexity as that of the exact matching case. The same technique can be used to
generalize the algorithms for other versions of the dictionary matching problem to the scaled
case.

3 Alphabet Independent Scaled Matching

3.1 Algorithm’s Idea and Data Structures

Our algorithm is based on the alphabet independent exact two dimensional matching al-
gorithm of Amir, Benson and Farach [1]. That algorithm has two stages, the candidate
consistency stage and the candidate verification stage.

In the candidate consistency stage, we check for every pair of text location if both locations
can be the start of a pattern appearance. A preprocessed witness table allows constant time
elimination of one of the two candidate sources, if they do not agree in every location of the
overlap. In [3, 16] there are two different algorithms that construct the witness table in time
O(m?). The candidate consistency stage takes time O(n?) [1].

4 Amir and Calinescu

In the candidate verification stage, a wave is employed to verify which of the non-conflicting
sources are indeed starts of pattern appearances. This stage is also done in time O(n?).

Main Idea of Algorithm:

For every scale s = 1,..., |] we divide the text into a [2] x | %] grid of s x s squares. Call
such a square an s-block. We do a constant amount of work per s-block. The total amount of
time is then

L7

77,2 2
Z—an.
S

s=1

It should be noted that the Amir-Landau-Vishkin scaled matching algorithm also tries to
employ this strategy. The problem is that the division into s-blocks is very complicated there.
We simply divide into the natural grid, and adjust the exact location at the end.

Our algorithm assumes the pattern is non-trivial. A lrivial paltern is a pattern where all
rows are equal or all columns are equal. It is easy to find all scaled appearances of a trivial
pattern. It is clear that in a non-trivial pattern there exist at least two consecutive rows that
are different and one of which has at least two different symbols.

Definition: Position [, j] of P is a pivot if the following conditions hold:
l.ie>1, m>7>1.
2. The strings P[i — 1;5 — 1,...,m] and P[i;5 — 1,...,m] are different.

3. one of the strings P[i — 1;5 — 1,...,m] and P[i;j — 1,...,m] contains two different
symbols.

The main property exploited by our algorithm is the following lemma.

Lemma 1: Consider an s-block starting at position T'[p,¢] (i.e. T[p,...,p+s—1;¢,...,q+
s—1]). If the pivot of a pattern’s s-occurrence starts within this s-block, then there is at most
one position in the s-block where that pivot may starts. That position is independent of the
pattern.

Proof: Five cases should be considered:

1. All characters of the s-block are the same.

Let [be the smallest column such that [> ¢ and such that 7'[¢,] — 1] # T'[¢,{], for i
ranging from ¢ — 1 to ¢ + s — 1, and let ¢y be the row where [appears. In words, [is
the closest change in symbol in the rows of the s-block, and the row preceeding it. If
the pivot is in the s-block, we are guaranteed such a change in the s-block or the block
immediately preceeding it.

Fa{s,t}ter Scaled Matching 5

The pivot must start in a column of the s-block that is sz columns away from [. Thus
the pivot, if it exists, must start in column ¢ + ((! — ¢)(mods)). The pivot’s row is
max(p, o).

(It is possible that no pivot exists in this s-block, but our concern is that we identify no
more than one possibility if a pivot exists.)

2. The s-block has two distinct symbols @ and b, with all elements in the first ¢ rows equal
to @ and all elements in the last s — 7 rows equal to b.

It is clear that if the pivot starts in the s-block, it has to start in row p + ¢, we only
need to establish the column. The smallest [such that [> ¢ and such that either
Tlg+i—1,1—-1]#Tlg+i—1,lJor T[¢g+ t,l — 1] # T[q + 7,!] determines the column
¢+ ((I = ¢)(mods)) as in the previous case.

3. The s-block has two distinct symbols @ and b, with all elements in the first ¢ columns
equal to ¢ and all elements in the last s — 7 columns equal to b.

Clearly, the pivot starts in column p + ¢. We need to establish the row. By definition,
the pattern row preceeding the pivot is different from the pattern row which the pivot
is on. Let 79 be the row in the s-block for which there exists the minimum ! such that
Tlio,j] = T[io — 1,7], Vj=1,...,1. iy is the row of the pivot.

4. There exist four alphabet symbols a, b, ¢, d, at least three of which are distinct, and there
exists location [, j] in the s-block, such that

, ifp<a<y ¢<y<y;

ifp<e<iy j<y<qg+s—1;
ifi<e<pt+s—1; ¢<y<y;

o iti<e<pts—1; j<y<qgts—1;

T[w7y] =

a
b
c
d

In this case if there is a pivot it must start in location 1'[¢, j].

5. All other cases - no pivot. O

We need to decide the start of the pivot in constant time for each s-block. The following
data structures allow us to do this.

Definition: Let [i, j] be a position on n X n text T

1. Let B,[i,j] be the largest integer [for which the two strings 77[¢; 7,7 + 1,...,n] and
Tli+ 1;5,j+ 1,...,n] are equal. In words, B,[i,] gives the longest common prefix of
rows ¢ and ¢ 4+ 1 starting at column j.

2. Let C,[t, j] be the largest integer [for which T'[¢,j] =T[¢,7+ 1]---=T[i,j+1—-1]. In
words, C,[7, j] gives the number of times that the symbol in 7'[¢, j] appears consecutively
starting at position [¢, j].

It is easy to construct B, and C in time O(nQ). We preprocess the columns of B, and C, for
range Minimum queries.

6 Amir and Calinescu

Let L =[ly,...,1,] be an array of n numbers. A Range Minimum query is of the form:

Given a range of indices [, ...,], where 1 < ¢ < j < n, return an index & ¢ < k < j
such that I = min{l;, ..., [;}.

In [10] it was shown that a list of length n can be preprocessed in time O(n) such that
subsequent range minimum queries can be answered in constant time. It is not hard to see
that a constant number of range minimum queries on B, and C) can handle the cases in the
lemma.

3.2 The Algorithm

The algorithm is a modification of the alphabet independent two dimensional matching algo-
rithm of [1]. The modification allows running the algorithm on an s-coarse text. An s-coarse
text is an [2| x |%] grid of s-blocks. We will discover all s-occurrences of the pattern by a

constant amount of work per s-block in the | 2] x | 2] grid. The algorithm below is to be run

separately for all s = 1,..., [Z].

m

Algorithm for Exact Matching of P’ in an s-coarse Text

Step 1 Calculate the unique pivot position for every s-block.

Step 2 Calculate the unique possible starting position of P* for every s-block. (Done by copying
the pivot position of that pattern appearance.)

Step 3 Candidate Consistency Stage.

Step 4 Candidate Verification Stage.

end Algorithm

As was shown in section 3.1 Steps 1 and 2 can be done in time O(|%]?). We will now
show a O([%]?) implementation of the Consistency and Verification Stages.

Consistency Stage

In the consistency stage, all pairs of possible pattern starting positions (sources) are com-
pared using the witness table. Either the two sources are compatible, i.e. agree on the overlap,
or one of the sources is eliminated.

When comparing two s-blocks, each one has a unique possible starting position. We call
this position its offset. If the witness table for the two sources identifies a conflict, it is sufficient
to check the bottom rightmost element of the s-block where the conflict lies. Regardless of
the offset of the sources, the last element lies in the scaled version of the conflicting position.

The situation is more complicated where the witness table indicates consistency. Here
different offsets may still cause a conflict. We handle the three possible cases:

1. Equal offsets. There is no conflict between the sources.

Fa{s,t}ter Scaled Matching 7

2. The two offsets differ in one index. Without loss of generality we may assume that index
is the column index. The situation is: Source ¢; at location [z,], and source ¢q at
location [z, y3]. If P® starting at ¢y overlaps P* starting at ¢y then there are two possible
cases:

(a) The ¢; appearance of P® agrees with the entire area where it overlaps the ¢; oc-
currence. In this case, both sources are compatible.

(b) There is a location in the overlap where the ¢; and ¢y occurrences conflict. This
last situation can only happen if somewhere in the overlap there is an s-scaled
appearance of a symbol a followed by an s-scaled appearance of a different symbol
b. This location can be found in constant time by a range minimum query of a
B, array of the pattern. Checking this text location will eliminate one of the two
sources.

3. The two offsets differ in their two indices. The situation here is very similar to the
previous one. Either the entire area of the overlap consists of a single symbol, in which
case there is no conflict, or we can decide in constant time where two different symbols
should occur and eliminate one of the two options.

Remark: At the conclusion of the Consistency Stage we have in each s-block at most one
possible source. Moreover, we also know that if there are pattern appearances at any of these
sources, they can not conflict on the overlap.

Important Observations:

1. Let ¢, ¢q, 3 be three nested nonconflicting sources resulting from the Consistency phase
of scale s, with ¢3 within ¢y and ¢y within ¢;. If ¢3 is verified to be a pattern occurrence
(in time proportional to the number of s-blocks), then we know that the area where ¢
and ¢y overlap ¢3, need not be checked. However, the s-blocks on the top edge and left
edge of ¢z were checked only relative to ¢3, so if ¢; and ¢y have different offsets, these
s-blocks need to be checked again. The important thing to note is that each s-block
need only worry about the source immediately above it, the source immediately to the
left of it and the source diagonally to its top-left. Any other sources will agree with
those three on the overlap. Thus, verifying at most three symbols for every s-block is
sufficient.

2. Let ¢o be a source nested within ¢;. If we check some s-block in the overlap while
trying to verify ¢z, and find a mismatch, this generally means a mismatch for ¢, since
they agree on the overlap. The possible exceptions are if this s-block is on an edge row
or column of ¢;, and the mismatch occured at the offset outside the boundary of ¢;.
This will necessitate separate handling of the first and last row and column of a pattern
occurrence.

Verification Stage

8 Amir and Calinescu

The verification is similar to the exact matching algorithm presented in [1]. The verifica-
tion algorithm for scale s follows.

4.1 Run a horizontal wave on the s-scale grid recording for each s-block, its position relative
to the nearest leftmost overlapping source, and the offset of that source. In an s-block
with a source, record its position and offset and the position and offset of its nearest
leftmost overlapping source.

4.2 Run a similar vertical wave recording the position relative to the source of the s-block
above as well as the offset. In case of a source change, record both.

4.3 For every s-block [z, y], record the relative position and offset of s-block [z — 1,y — 1].

4.4 For every s-block, verify that each of the s x s blocks starting at each offset is an s-
occurrence of the appropriate pattern symbol. (Implemented in constant time by a range
minimum query to 7).

4.5 Do a back wave to propagate the mismatches and cancel the appropriate sources. The
back wave should advance only m — 1 s-blocks, since the edge row and column need to
be checked separately.

4.6 Find all scaled s appearances of the first and last pattern row and column (string scaled
matching, can be done in linear time by [9] and appropriate range minima queries).
Discard all remaining sources where the edges do not match.

Verification Time: O(|%]?).

4 Dictionary Scaled Matching

We are now ready to solve the problem of scaled dictionary matching for a static dictionary
of squares. This is the scaled version of the problem solved by Amir and Farach in [5]. In
that paper an algorithm (henceforth refered to as AF') was presented that preprocessed the
dictionary in time O(dlogk), where d is the sum of the sizes of all dictionary patterns and
k is the number of patterns. The AF algorithm then finds all occurrences of all dictionary
patterns that appear in text 7" in time O(|T'|logk).

The main idea for scaling the AF algorithm is similar to the single pattern scaled matching
we presented before. Simply divide the text into a grid of s-blocks for each scale s = 1,..., [].
Subsequently, we run an adapted version of AF for each scale s, where the time complexity
per s-block is constant.

The details of the AF adaptations are similar to those presented above for the single
pattern scaled matching algorithm, and are left to the journal version of the paper. However,
we need to answer a major difficulty.

The “pivotal” reason our single pattern algorithm worked is that there could be at most
one position in an s-block where the pivot can start. While that unique position was found

Fa{s,t}ter Scaled Matching 9

independent of the pattern (lemma 1), it did assume knowledge of the pivot’s location in
the pattern. When dealing with a dictionary, the pivot of different patterns may occur in
different locations, and then lemma 1 will no longer guarantee at most one starting location
per s-block.

We solve this problem by guaranteeing that the pivot is in the same location in all dic-
tionary patterns. We will need a slight modification of the pivot definition, and an efficient
method of converting the patterns to and from a set of patterns with the same pivot location.

Assumption: We again assume that the patterns are non-trivial. If trivial patterns appear
in the dictionary they are taken out during preprocessing, and handled separately.

Definitions:

1. A diagonal pivot of mx m matrix P is the largest ¢ such that Rows P[1;1,...,m],..., P[i—
1;1,...m] are either all equal to each other or each consists of one repeating symbol,
and columns P[1,...,m;1],..., P[l,...m;i—1] are either all equal to each other or each
consists of one repeating symbol.

2. Let P be an m X m matrix, and let ¢ be the diagonal pivot of P. The reduced matriz
Pl of P is the square matrix P[i — 1,...,m;i—1,...,m].

Observations: Every non-trivial square matrix has a diagonal pivot. The pivot of every
reduced pattern Pl is in location PU[2,2].

Lemma 2: Consider an s-block starting at position 17'[p, ¢] (i.e. T'[p,...,p+s—1;q,...,q+s—
1]). If the diagonal pivot of a pattern’s s-occurrence starts within this s-block, then there is
at most one position in the s-block where that pivot may starts. That position is independent
of the pattern.

Proof: Similar to the proof of lemma 1.

Outline of Scaled Dictionary Matching Algorithm

Step 1 Preprocessing: Construct dictionary D whose elements are the reduced matrices of
the patterns in dictionary D. (The pivots of all patterns in dictionary D% are in the
same location, [2,2].) Preprocess this dictionary in a manner similar to the dictionary
preprocessing of AF.

Step 2 Text Scanning:

2.1 For s = 1,..., || construct the grid of s-blocks, and run a modification of algo-

rithm AF.

10 Amir and Calinescu

2.2 For every reduced pattern found, efficiently verify and output all original dictionary
patterns that start in a text position corresponding to the location of the reduced
part.

Implementation: In addition to preprocessing for range minimum queries over the B and
C' arrays, we also need suffix trees [15, 18] of the dictionary patterns and text, preprocessed
for constant time lowest common ancestor queries [12]. The suffix tree construction adds the
log k multiplicative factor to our complexity.

Using suffix trees of the run-length representation of text and pattern, as in [9], we can
answer the following queries in constant time:

Input: Text location Tz, y], and pattern subrow (or subcolumn) R = P[z;w,...,w+j].

Decide: If there is an s-occurrence of R starting at 7'[z, y].

Time: It is not difficult to see that Step 1 can be done in time O(dlogk). A modification
of AF on lines similar to our algorithm in section 3 enables accomplishing Step 2.1 in time
O(|T'|logk). We will show below that Step 2.2 can be implemented in time O(|7’|logk) and
that will conclude our algorithm.

Lemma 3: Let Pl be the reduced pattern of P. If there is an s-occurrence of Pl in location
[z,y] of T, it can be verified in constant time whether there is an s-occurrence of P in location

[—s(i—1), y—s(z—1)].

Proof: We distinguish between three types of diagonal pivot:

1. The first ¢ — 1 rows of the pattern are equal and the first + — 1 columns of the pattern
are equal. This case can be easily verified by two range minima queries on B arrays of
the text (to the right, and to the bottom).

2. Each of the first ¢ — 1 rows is a single repeating symbol but there are two consecutive
unequal rows. (In this case, the first ¢ — 1 columns are all equal.) This situation can
be verified by a range minimum query on the B array to the bottom (for the columns),
and a range minimum query on the B array to the bottom (for the rows).

3. Each of the first ¢ — 1 columns is a single repeating symbol but there are two consecutive
unequal columns. (In this case, the first ¢ — 1 rows are all equal.) This situation is
analagous the the previous one. O

The above lemma provides a linear time solution for Step 2.1, in case every reduced pattern
is obtained from a single dictionary pattern. In the general case, it is possible that several
dictionary patterns have the same reduced pattern. In this case, we have no apriori knowledge
of 7, and the situation becomes more complicated.

Fa{s,t}ter Scaled Matching 11

Lemma 4: Let P’ be the reduced pattern of patterns Py, ..., P;. If there is an s-occurence
of P’ in location [z,y], then we can find the largest P; whose s-occurrence appears in the
appropriate location of 7" in time O(log j).

Proof: We can divide the patterns {F;,..., P;} into three sets corresponding to the three
types of diagonal pivot defined in lemma 3. We will present the first type. Similar treatment
can be given to the other types.

1. This case can happen only if there is a square diagonal (left and above) to the start of
the s-occurrence of P’, consisting of a single repeating letter. The maximum such square
can be found by O(logm) range minima queries, where m is the size of the maximum
P; € {P1,...,P;}. This will essentially be a binary search. A series of O(logm) more
range queries will pick the maximal number of equal rows and columns. A final binary
search on the patterns of {P;,..., P;} will enable choosing the largest matching pattern
in time O(logj) < O(logk). O

5 Future Work

The pivot idea seems to be extendable to scale more general dictionary matching algorithms
that AF. We think that every known dictionary matching algorithm can be scaled without
degradation in its time complexity.

A very interesting remaining open problem is efliciently finding all scaled occurrences for
all scales, not just discrete scales. This is open even for one dimensional non-dictionary
string matching.

References

[1] A. Amir, G. Benson, and M. Farach. Alphabet independent two dimensional matching.
To appear, SIAM J. Comp., 1992.

[2] A. Amir, G. Benson, and M. Farach. Alphabet independent two dimensional matching.
Proc. 24th ACM Symposium on Theory of Computation, pages 5968, 1992.

[3] A. Amir, G. Benson, and M. Farach. The truth, the whole truth, and nothing but
the truth: Alphabet independent two dimensional witness table construction. Technical
Report GIT-CC-92/52, Georgia Institute of Technology, 1992.

[4] A. Amir and M. Farach. Efficient 2-dimensional approximate matching of non-rectangular
figures. Proc. of 2nd Symposium on Discrete Algorithms, San Francisco, CA, pages 212—
223, Jan 1991.

[5] A. Amir and M. Farach. Two dimensional dictionary matching. Information Processing
Letters, 44:233-239, 1992.

[6] A. Amir, M. Farach, R.M. Idury, J.A. La Poutré, and A.A Schéffer. Improved dynamic
dictionary matching. Proc. 4th ACM-SIAM SODA, pages 392-401, 1993.

12 Amir and Calinescu

[7] A. Amir, M. Farach, and Y. Matias. Efficient randomized dictionary matching algorithms.
Proc. 3rd. Combinatorial Pattern Matching Conference, pages 259-272, 1992. Tucson,
Arizona.

[8] A. Amir and G. Landau. Fast parallel and serial multidimensional approximate array
matching. Theoretical Computer Science, 81:97-115, 1991.

[9] A. Amir, G.M. Landau, and U. Vishkin. Efficient pattern matching with scaling. Journal
of Algorithms, 13(1):2-32, 1992.

[10] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for geometry
problems. Proc. 16th ACM Symposium on Theory of Computing, 67(135-143), 1984.

[11] R. Giancarlo. The suffix of a square matrix, with applications. Proc. 4th SODA, pages
402-410, 1993.

[12] D. Harel and R.E. Tarjan. Fast algorithms for finding nearest common ancestor. Com-
puter and System Science, 13:338-355, 1984.

[13] R.M. Idury and A.A Schiffer. Multiple matching of rectangular patterns. Proc. 25th
ACM STOC, page to appear, 1993.

[14] R. Jain. Workshop report on visual information systems. Technical Report Technical
Report, National Science Foundation, 1992.

[15] E. M. McCreight. A space-economical suffix tree construction algorithm. Journal of the
ACM, 23:262-272, 1976.

[16] K. Park and Z. Galil. Truly alphabet-independent two-dimensional pattern matching.
Proc. 33rd IFEFE FOCS, pages 247-256, 1992.

[17] A. Pentland. Invited talk. NSF Institutional Infrastructure Workshop, 1992.

[18] P. Weiner. Linear pattern matching algorithm. Proc. 14 IEEE Symposium on Switching
and Automata Theory, pages 1-11, 1973.

