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SUMMARY

This dissertation explores the intersection of information retrieval and universal

source coding techniques and studies an optimal multidimensional source representa-

tion from an information theoretic point of view. Previous research on information

retrieval particularly focus on learning probabilistic or deterministic source models

based on primarily two different types of source representations, e.g., fixed-shape

partitions or uniform regions. We study the limitations of the conventional source

representations on capturing the semantics of the given multidimensional source se-

quences and propose a new type of primitive source representation generated by a

universal source coding technique. We propose a multidimensional incremental pars-

ing algorithm extended from the Lempel-Ziv incremental parsing and its three com-

ponent schemes for multidimensional source coding. The properties of the proposed

coding algorithm are exploited under two-dimensional lossless and lossy source cod-

ing. By the proposed coding algorithm, a given multidimensional source sequence

is parsed into a number of variable-size patches. We call this methodology a parsed

representation.

Based on the source representation, we propose an information retrieval frame-

work that analyzes a set of source sequences under a linguistic processing technique

and implemented content-based image retrieval systems. We examine the relevance

of the proposed source representation by comparing it with the conventional repre-

sentation of visual information. To further extend the proposed framework, we apply

a probabilistic linguistic processing technique to modeling the latent aspects of a

set of documents. In addition, beyond the symbol-wise pattern matching paradigm

xiii



employed in the source coding and the image retrieval systems, we devise a robust pat-

tern matching that compares the first- and second-order statistics of source patches.

Qualitative and quantitative analysis of the proposed framework justifies the superi-

ority of the proposed information retrieval framework based on the parsed represen-

tation. The proposed source representation technique and the information retrieval

frameworks encourage future work in exploiting a systematic way of understanding

multidimensional sources that parallels a linguistic structure.
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CHAPTER I

INTRODUCTION AND BACKGROUND

The widespread deployment of digitizing systems has greatly accelerated the accu-

mulation of digital information. The need for prompt and intelligent access to stored

information has bolstered a wide range of research in the field of informatics, especially

content-based image retrieval (CBIR). A particular challenge arises from the fact that

a major portion of the accumulated information is represented in its raw digital form,

such as photographic images, and is in general difficult to organize in a semantically

sensible structure for easy access. A text-based database is conventionally organized

based on a list of (automatically extracted) keywords and in their alphabetical order;

in contrast, the organization of a picture database is not as straightforward, unless

text annotation, which requires intensive labor and may not be sufficiently compre-

hensive, is available. Hence, analyzing multidimensional data and extracting features

from them for the purpose of organization and retrieval is a challenging task.

In this dissertation, we present a new comprehensive framework for information

retrieval that can effectively deal with multidimensional discrete sources and bridge

the gap between the sources and human semantics. Specifically, we are interested in

a universal source coding algorithm as a source characterization and a feature extrac-

tion technique. Since Shannon opened the realm of information theory [72], many

universal source coding algorithms have been proposed. Some of which are preva-

lent in many data compression applications. The algorithm that is of our interest

is the Lempel-Ziv incremental parsing algorithm (LZ78) [97], which parses the given

discrete source into distinct phrases while constricting the dictionary. Since the sta-

tistical distribution of the given source is implicitly embedded into the dictionary, in

1



the proposed information retrieval systems, we use the dictionary as a rich resource

for analyzing the given sources. However, LZ78 can deal only with a one-dimensional

source sequence, it is desired to develop such a source coding technique that can en-

code a multidimensional source. Based on the universal source coding technique, we

will consider feature extraction algorithms and their applications to information re-

trieval problems. In this dissertation, we focus on image retrieval applications, but the

underlying source characterization technique can be applied to arbitrary dimensional

sources, e.g., audio signals in one dimension, video sequences in three dimensions,

images in two dimensions.

Our goal in this dissertation can be divided into four key parts:

• We develop a new universal source coding technique for a multidimensional

finite discrete sequence and evaluate the performance of its lossless and lossy

implementations.

• We develop an image retrieval framework that uses the features extracted by the

multidimensional universal source coding algorithm, implement image retrieval

systems based on the proposed framework, and evaluate the performance of the

systems.

• We validate the source representation induced by the universal source coding

technique under a visual information analysis.

• We develop a probabilistic framework for information retrieval by formulating

robust pattern matching into a semantic analysis model.

To tackle the aforementioned two main problems, universal source coding and image

retrieval, an abundance of literature has been reported for the last decades. In this

dissertation section, we briefly review prior work on the image retrieval problems,

followed by various universal source coding techniques.

2



1.0.1 Related work in Image Retrieval

The basic structure of an image retrieval system consists of three fundamental compo-

nents: query processing, visual feature extraction, and similarity measure. According

to the Merriam-Webster dictionary [53], query is defined as a question in the mind.

Although we assume the query in one’s mind precisely points to the target object, a

rendered query may contain some distortions caused by many sources, for example,

dialect or accent in spoken query, misleading textual expression in text query, and

incorrect choice of image example in image query. Such query distortions need to be

distilled by query processing so as to bring out the true intent embedded in the query

expression. In the processing of visual feature extraction, images stored in a database

are analyzed, and numeric descriptors capturing specific visual characteristics, called

features [11, Sec. 1.4], are extracted. After an image retrieval system constructs

feature databases for the stored images, the similarity between the feature of each

image and the feature extracted from an issued query is computed in a domain where

semantic similarities of whole or specific images can be relevantly defined. Although

these three components are described separately here, they are required to be coher-

ently devised or implemented according to the types of input queries, characteristics

of target images, and computational constraints. Finally, the image retrieval system

sorts the retrieved images according to the computed similarities and renders them on

an output device. A schematic overview of the basic structure of an image retrieval

system is depicted in Figure 1.

Generally, image retrieval systems are categorized into three groups by their

modality of queries:

1. Text-based image retrieval: The query in one’s mind is represented as keywords,

phrases, or sentences. Systems in this category process the given query to

reduce semantic distortions and inflections and extract keywords from phrases

or sentences. Then, the system searches for a match between the processed

3
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Figure 1: A schematic overview of an image retrieval system.

keywords and the keywords associated with each image in the database. This

is adopted in many popular image search engines, e.g., Google and Yahoo!.

2. Content-based image retrieval: This type of system accepts imagery queries,

such as hand drawing and exemplary images, that convey the full or a part of

the desired images. The first processing of the system is to extract appropri-

ate features from the issued query and to map them onto a semantic feature

space where a similarity between the desired semantic concept and those con-

cepts each image contains can be computed. The systems for hand drawing

and exemplary images are widely called query-by-sketch systems and query-by-

example systems, respectively.

3. Interaction-based image retrieval: Systems in this group are capable of interact-

ing with the users for several purposes, e.g., clarifying the given query, narrowing

down the search range of database, and requesting feedback from the rendered

images (so called relevance-feedback). A comprehensive overview can be found

in [29, 70, 94].

In addition to the aforementioned system groups with single modality queries, there

have been composite image retrieval systems that are capable of multimodal queries.
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For example, those systems reported in [16, 39, 45] can process such queries that are

rendered both in text and in image, and the system proposed in [59] was designed to

deal with audiovisual queries. In this dissertation, we limit our focus on the CBIR

systems.

Since the inception of a CBIR system by IBM QBIC [25] in the commercial do-

main and MIT Photobook [55, 64] in a research domain, a number of CBIR sys-

tems have been devised based on various feature extraction techniques and similar-

ity measures. In most of the CBIR systems, visual features are formed from small

chunks of visual information by typically two types of techniques: fixed-block parti-

tion [10,15,23,32,37,56,60,66,75,77–79,90] and image segmentation [26,41,61,81,91].

In the fixed-block partition technique, on the one hand, processing of imagery data

involves a square of pixels. Once a given image is partitioned into a number of blocks,

pixel statistics, such as color histogram and texture configuration, are estimated from

each individual block. Some of the CBIR systems based on a fixed-block partition

train the image codebook by vector quantization (VQ) so as to construct a visual

“lexicon” that captures visual “semantics” under some minimum average distortion

criteria [15,32,37,77–79,90]. Since many natural objects are not tessellations of square

blocks, a fixed-block partition is usually inferior in representing an image of natural

objects. Conversely, image segmentation techniques are employed for extracting ob-

ject or sub-object regions in a given image. However, it is widely recognized that

machine segmentation of images is still a long way from mimicking the way a human

would identify real world objects. A more comprehensive study on feature extrac-

tion techniques for CBIR can be found in [21]. Note that references above are only

examples of related work in image retrieval, not meant to be exhaustive. Extensive

surveys of CBIR can be found in [17, 69, 74, 80].
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1.0.2 Related work in Universal Source Coding

The recent proliferation of universal lossless data compression is undoubtedly due to

the seminal papers [96, 97] by Lempel and Ziv under their theoretical underpinning

of [46,95]. The most remarkable benefit of their codes, which differentiate themselves

from other universal lossless data compression methods (e.g., Huffman coding [31]

and arithmetic coding [67]), is that without any prior knowledge of the statistical

distribution of the given source, their algorithms asymptotically achieve a source

rate approaching the entropy of the source. There have been three main streams

of subsequent research on the Lempel-Ziv algorithm since then. One stream is to

develop algorithms of higher coding efficiency [54,86]. Another stream has worked on

lossy compression algorithms that incorporate a distortion measure for the underlying

pattern matching schemes. Instead of reconstructing the exact source symbols, these

algorithms generate approximate symbols with a substantially reduced amount of

coding resources. Following initial attempts made by Morita [57] and Steinberg [76]

without addressing the issue of asymptotic optimality, there have been a series of

studies along this line [3, 40, 42, 43, 87, 88, 92]. It is worth noting that  Luczak et

al. demonstrated in [51] that a straightforward lossy extension of the Lempel-Ziv

algorithm cannot achieve the optimal rate-distortion but the generalized Shannon

entropy. The third direction is to design algorithms that are capable of dealing with

higher dimensional discrete sources since many discrete data in a variety of media

processing applications are naturally arranged as multidimensional arrays. To the

best of our knowledge, the first attempt was made by Lempel and Ziv [47], followed

by Sheinwald et al. [73]. In [47], a given two-dimensional source is linearized to

fit for the use of the one-dimensional coding scheme, as many subsequent research

efforts do. Nevertheless, coding optimality in a higher dimensional space has not been

extensively studied.
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A substantial amount of literature has also been written on lossy source cod-

ing for higher dimensional sources, mainly aiming at image compression applica-

tions [2, 6, 12, 18, 24, 65]. One promising lossy two-dimensional source coding algo-

rithm, called two-dimensional pattern matching compression (2DPMC), was proposed

in [1]. Using additional lossless compression algorithms on top of the lossy scheme, the

2DPMC was demonstrated to have a coding performance similar to JPEG [33,63] im-

age compression with an affordable complexity. The central theme of the above effort

lies in the idea of approximate pattern matching, which is essential not only in data

compression but also in other media processing applications. However, most of the

previous image coding research has a limited scope on pattern matching, and further

understanding of multidimensional patterns and the performance of such matching

algorithms is needed.

In this dissertation, while we are interested in the investigation of efficient source

coding algorithms based on approximate pattern matching, here we are motivated by

the ability of universal coding algorithms in adaptively capturing the source statistics

(or model) through the use of a “dictionary.” We consider existing lossy coding

algorithms, such as JPEG [33], JPEG2000 [34], and H.264 [36], rather mature in

achieving their objectives in coding efficiency. The main cue to understanding the

importance of pattern matching based universal source coding is that it effectively

identifies approximate repetitiveness of subsets of source symbols since the occurrence

pattern has great potential for understanding and analyzing the given source, and that

it compresses the source with an affordable amount of coding resources.

1.0.3 Organization of the dissertation

A detailed study on LZ78 is provided and a multidimensional incremental parsing al-

gorithm is presented in Chapter 2. Three component schemes of the proposed parsing

algorithm along the line of the three components of LZ78 are provided. The parsing
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algorithm is implemented into lossless and lossy image compression whose perfor-

mance is compared with that of existing compression algorithms based on pattern

matching. In Chapter 3, an information retrieval framework based on the source rep-

resentation generated by the incremental parsing is proposed and implemented into

content-based image retrieval systems. In Chapter 4, a probabilistic framework for

information retrieval by formulating robust pattern matching into a semantic analysis

model is presented. An in-depth analysis of trained model is also provided in the same

chapter. In the two types of image retrieval systems proposed in Chapters 3 and 4,

the set of query images for evaluating their performance are a portion of a given im-

age database. In Chapter 5, we evaluate the noise robustness of the retrieval systems

with perturbed query images generated from various types of distortions. Finally, in

Chapter 6, we summarize the contributions to and conclusions of our research and

discuss possible avenues of future work.
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CHAPTER II

MULTIDIMENTIONAL INCREMENTAL PARSING FOR

UNIVERSAL SOURCE CODING

2.1 Introduction

A multidimensional incremental parsing algorithm for multidimensional discrete sources,

as a generalization of the Lempel-Ziv incremental parsing algorithm, is investigated

in this chapter. We address three essential component schemes in designing multidi-

mensional incremental parsing for universal source coding: the construction of a hier-

archical structure for multidimensional source coding, the augmentation of dictionary,

and maximum decimation matching. Next, we propose two distortion functions for

maximum decimation approximate pattern matching in order to design a lossy source

coding scheme. We then apply the proposed schemes in the design of lossless/lossy

image compression algorithms. The performance of our algorithm is compared to

that of the Lempel-Ziv-Welch (LZW) algorithm [86], its lossy extensions, and the

2DPMC. Note that the 2DPMC originally consists of three compression components,

a pattern matching, an enhanced runlength coding, and an arithmetic coding. In this

dissertation, the 2DPMC with only the pattern matching scheme is considered for a

fair comparison.

In the next section we briefly review the Lempel-Ziv incremental parsing rule

(LZ78) for one-dimensional lossless source coding. The design of multidimensional

incremental parsing (MDIP) for lossless source coders is discussed and its three es-

sential component schemes are suggested in Section 2.3. We provide two distortion

functions for approximate pattern matching in order to implement universal lossy

source coders for two-dimensional images in Section 2.4. A performance comparison

9



of the suggested implementations with other pattern matching based source coders is

provided in Section 2.5, and a discussion and final remarks are found in Section 2.6.

2.2 Review of Lempel-Ziv Incremental Parsing Code

An essential operation of the LZ78 algorithm is to parse the given source sequence into

a number of distinct phrases and to construct a dictionary containing the previously

registered patterns of symbols. Let X = {Xi}
n
i=1 be a stationary ergodic sequence

taking values from a finite alphabet A with cardinality |A| < ∞. The LZ78 starts

with an empty dictionary D = ∅, finds the dictionary index j at which the encoder

gives the longest match, and augments the dictionary with the last parsed phrase

Dj appended with the next source symbol Xi at the kth coding epoch, denoted by

Dj ◦Xi. It then transmits the codeword {j, Xi} corresponding to the index and the

symbol.

The LZ78 has three main parsing steps: pattern matching, codeword assignment,

and dictionary augmentation. Since it is aiming at reconstructing the given sym-

bols without information loss, it searches the longest dictionary entry that is exactly

matched with the source symbols at the corresponding coding point. Then, to trans-

mit the codeword to the decoder at each coding epoch, it spends ⌈log2 Γ⌉+ ⌈log2 |A|⌉

bits, where ⌈x⌉ denotes the least integer not smaller than x, and Γ corresponds to the

number of dictionary entries, or equivalently same as the number of distinct phrases.

Thus, the total length of the code is

L(X) = Γ · (⌈log Γ⌉+ ⌈log |A|⌉). (1)

Throughout this dissertation, log x = log2 x. Often the decoder can efficiently syn-

chronize the construction of the dictionary and hence the encoder is allowed to spend

only ⌈log k⌉+ ⌈log |A|⌉ bits for each phrase because the number of dictionary entries
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at kth coding epoch is precisely k. Therefore, L(X) is reduced to

L(X) =

Γ
∑

k=1

(⌈log k⌉+ ⌈log |A|⌉). (2)

It is known that for a given stationary ergodic source, the average number of bits per

symbol L(X)/n approaches the entropy of the given source H(X) as n→∞ [14].

2.3 Design of Multidimensional Incremental Parsing

As mentioned in Section 2.1, a majority of research on multidimensional universal

source coding tried to generate a one-dimensional source sequence from a given mul-

tidimensional source with the aid of a scanning scheme so that the LZ78 or equivalent

coding algorithms could be employed. For example, in [47], the Peano-Hilbert plane-

filling curve is used for this purpose. However, it is not clear that such a linearization

method represents the most suitable method for analyzing the local property of a

given source. In this section, we propose a generalized incremental parsing rule for

multidimensional universal lossless source coding and introduce three essential com-

ponent schemes, which are the counterparts of the three essential procedures in the

LZ78 algorithm.

Suppose that we are given an m-dimensional closed convex paralleloid X, m-

paralleloid in short,

X = {Xx1,··· ,xm
: 0 ≤ xi < ni, i = 1, · · · , m, (x1, · · · , xm) ∈ Z

m}, (3)

where Xx1,··· ,xm
takes a value from a finite alphabet A and ni denotes the num-

ber of elements along the ith axis yi. Let ~x denote the m-dimensional index vector

(x1, · · · , xm)T . X(~x) denotes the symbol at ~x in the paralleloid, and X(~0) denotes

the symbol at the origin, presumably the top-left symbol if m = 2. Examples of a

two- and a three-dimensional paralleloids are provided in Figure 2.
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n1

n2

X(~0)

(a)

n1

n2

n3

X(~0)

(b)

Figure 2: Examples of a two- and a three-dimensional paralleloids, sized of (n1, n2)
and (n1, n2, n3), respectively.

We now define the multidimensional sequence patch X(~x;~a)

X(~x;~a) = {Xx̄1,··· ,x̄m
: xi ≤ x̄i < xi + ai, i = 1, · · · , m}, (4)

with an integer vector ~a = (a1, · · · , am)T ∈ Z
m. Thus, in X(~x;~a), ~x denotes the top-

left corner, called an anchor point, and ~a denotes the dimension of the subset. In the

previous example of a two-dimensional paralleloid, X(~0) is equivalent to X(~0; (1, 1)).

Before proceeding to the detailed algorithm, let us define two complementary sets,

E and Ec. If an encoder outputs any codeword for symbol X(~x), then the ~x is in E.

Thus, when an encoder starts generating codewords for a given source, all ~x is in Ec,

not in E. Now, we define the decimation field F(~x) as follows:

F(~x) =











0, ~x ∈ E

1, ~x ∈ Ec.
(5)

Also,

F(~x;~a) = {Fx̄1,··· ,x̄m
: xi ≤ x̄i < xi + ai, i = 1, · · · , m}. (6)

Obviously, F(~x) is equivalent to F(~x; (1, 1)) as in the previous example.

Now, we discuss the principles of a multidimensional suffix, which define how a

multidimensional patch is constructed. Suppose that we are given an m-dimensional

paralleloid symbol patch with size n1×· · ·×nm in the space formed by m orthogonal
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axes, y1, · · · , ym. As an example of a two-dimensional patch shown in Figure 3, the

patch is prescribed to be constructed from a one-symbol patch.It then grows along

the axis y1 by appending corresponding suffixes until it becomes an n1×1 patch. The

patch now grows along the axis y2 by appending an n1 × 1 suffix to form an n1 × n2

patch. In general, this procedure is repeated until the constructed patch becomes an

n1 × · · · × nm patch. This principle of a multidimensional suffix helps one to avoid

any suffix ambiguity for a given patch. With the help of this principle, one can easily

construct a multidimensional suffix tree. For an example of a one-dimensional suffix

tree for the LZ78, the reader is referred to [68, Ch. 2].

Now, we are in a position to comment on the multidimensional growing database

model, the dictionary in short, which is a set of multidimensional patches. Given

a dictionary D and a patch X(~x;~a), we define the dictionary D ⇐ X(~x;~a) as the

dictionary D augmented by X(~x;~a). We define two additional operations | · | and [·].

|D| denotes the number of elements of D, and |Dj| refers to the number of symbols of

the jth patch. Also, [Dj] corresponds to the area vector ~a of the jth patch element.

2.3.1 Maximum Decimation Matching

As reviewed in Section 2.2, the LZ78 consists of three major schemes: pattern match-

ing, codeword assignment, and dictionary augmentation. We refer to the counterpart

of pattern matching in the multidimensional incremental parsing code as maximum

decimation matching (MDM). The decimation level of a match is defined as the num-

ber of symbols that can be encoded with the given match. Since it is probable that

some symbols could be already encoded at a previous coding epoch, each decimation

level is less than or equal to the number of symbols of each match. An MDM scheme

searches the match, at which the decimation level for the given source sequence is

maximized. We identify two categories of MDM: absolute MDM and approximate

MDM.
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Figure 3: An n1×n2 patch is constituted from a single symbol patch by appending
suffixes. The shaded sequences correspond to the suffix of the patch.

In the absolute MDM, at each coding epoch, the encoder finds the match at an

arbitrary anchor location from the given source sequence. It inevitably involves high

complexity for computing decimation levels at a large number of anchor points, while

it gives the highest decimation level and requires the least number of coding epochs.

Since the anchor point at each coding epoch in the absolute MDM is arbitrary, the

encoder needs to spend additional bits for transmitting the anchor location informa-

tion to the decoder. On the other hand, in the approximate MDM, the encoder finds

the maximum decimation match at a fixed anchor point, which is specified by a pre-

determined heuristic scheme. Since both the encoder and the decoder can estimate

each anchor point, this scheme does not require any additional bits for the anchor

location.

For a better understanding of this, we consider an example of a two-dimensional

binary source (|A| = 2). Suppose that we are given a 3× 6 binary source as depicted

in Figure 4 and the encoder employs a raster scanning scheme to determine anchor

points. At each coding epoch, the encoder attempts to find matches from the dictio-

nary with a distortion function. Let ρ : A×A → [0,∞) be a nonnegative distortion

function, and ρ(x, y) equals zero if x = y and one otherwise.

14



0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 0 1 0

Figure 4: Example of two-dimensional incremental parsing for the binary source.
The encoder follows the approximate MDM criterion. The shaded area corresponds
to those where matches are found and previously coded. The symbol at the anchor
point (1, 2) is specified in a bold box.

Let us define the distortion function for the given two patches X and Y as follows:

ρ(X,Y) =
1

|X|

∑

~x∈[X]

ρ(X(~x),Y(~x)). (7)

The set of indices, at which the dictionary entry satisfies the following criterion, is

obtained as

H = {j | ρ (Dj, X(∆; [Dj ])) = 0, for 0 ≤ j < |D|}, (8)

where ∆ corresponds to the current anchor point. The index of the maximum deci-

mation match is

kmax = argmax
k∈H







∑

~x∈F(∆;[Dk])

F(~x)







. (9)

Consider that the encoder now attempts to find a match at the anchor point

∆ = (1, 2) in the example. By (7) and (8), the encoder finds the relevant dictionary

indices {1, 6, 7}. Among the three matches, D6 is the maximum decimation match

because the decimation levels of the three matches are 1, 2, and 1 for D1, D6, and D7,

respectively. It then transfers the index of the match using ⌈log |D|⌉ bits with the set

of augmentative symbols using overhead bits. However, different from the original

one-dimensional Lempel-Ziv algorithm, it is required to have additional schemes for

transmitting the set of augmentative symbols in multidimensional cases.
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Table 1: Anchor points, match indices, and dictionary entries generated at each
coding epoch from the example of binary source in Figure 4.

Coding Anchor Match Dictionary Dictionary

Epoch Point Index Index Entry

0 (0,0) null 0 0

1 (0,1) null 1 1

2
[

0
1

]

2 (0,2) 0
3 [0 0]

4

[

0
1
0

]

3 (0,3) 2
5

[

0 1
1 0

]

6
[

1
0

]

4 (0,4) 1
7 [1 1]

5 (0,5) 6 8

[

1
0
0

]

6 (1,0) 5 9
[

0 1 1
1 0 0

]

2.3.2 Hierarchical Structure of Multidimensional Incremental Parsing

Remember that the LZ78 encoder generates a symbol phrase formed by appending

the next source symbol to the last parsed phrase and augments the dictionary with

the phrase. It then transmits one augmentor sequence at a rate proportional to the

size of the alphabet. This is for adapting the dictionary to a given source along the

sequence so that it achieves a longer match with the dictionary entries at remaining

coding epochs. For an m-dimensional source sequence, the encoder is prescribed to

generate m augmentative entries along all the m axes at each coding epoch. In the

previous example, at the third coding epoch, the match found is “0” and the encoder

augmented the dictionary with the two entries, [0 1]T and [0 0].

However, if the number of dimension is high and the found match is considerably

large, the encoder needs to transmit the necessary number of bits for the augmen-

tative symbols. For instance, the given source is of three dimensions with a size of

10 × 10 × 10 and the encoder finds the maximum decimation match with a size of
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3 × 3 × 3 at the current anchor point. In this case, as generally depicted in Figure

5, it obviously has three augmentative sets of symbols that have nine symbols along

one axis, respectively. Thus, at this epoch, without encoding, the encoder would

need to transmit 27 symbols using ⌈27 · log |A|⌉ bits as well as the dictionary in-

dex. Obviously, the augmentation symbols need proper coding. We identify a general

approach to resolving this problem: one should employ an (m-1)-dimensional incre-

mental parsing code to generate codewords for the augmentative set of symbols in

the m-dimensional incremental parsing code. Repeatedly, the (m-1)-dimensional al-

gorithm is to be operated with the help of the (m-2)-dimensional algorithm and so

on. Therefore, we hence suggest that the m-dimensional incremental parsing code be

hierarchically structured on a basis of all the lower dimensional parsing algorithms.

This procedure is reminiscent of marginalization of the probability space.

2.3.3 Dictionary Augmentation

Although there is no parameterized probability model associated with any variable-to-

fixed length code such as the LZ78, as previously addressed, the number of encoded

bits per source symbol asymptotically achieves the source entropy for a stationary

ergodic source. This is due to the parsing of the source symbols, which is the fun-

damental behavior of a universal variable-to-fixed length code. Such a code for one-

dimensional sequences parses a given source sequence into variable length phrases and

then assigns a codeword that has a fixed length. Basically the parsing followed by the

dictionary augmentation incorporates the estimation of the probability of the given

sequence by taking advantage of the frequency of occurrences of source sequences.

For a more thorough understanding of the estimation of source probability es-

timation, let us consider the construction of a suffix tree. Because of the principle

of the multidimensional suffix provided earlier in this section, one can represent the

dictionary by a multidimensional sequence tree in a tractable fashion.
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n1

n2

n3

1× n2 × n3 patch
at (∆1 + n1, ∆2, ∆3)

n1 × 1× n3 patch
at (∆1, ∆2 + n2, ∆3)

n1 × n2 × 1 patch
at (∆1, ∆2, ∆3 + n3)

y1

y2

y3

Figure 5: Three-dimensional symbol patch with a size of n1 × n2 × n3 has three
augmentative set of symbols that is to be appended into the dictionary. The sequence
space is formed by three orthogonal axes, y1, y2, and y3. The anchor point is at
(∆1, ∆2, ∆3).

Let π be a node corresponding to an m-dimensional patch in a suffix tree, the root

node π0 has the null patch, and γd(π) denotes the number of descendent nodes at

π. According to the principles of the multidimensional suffix, each patch can append

symbols along the y1 axis first, and then along the y2 and the other axes sequentially.

Thus, for example, a 2 × 2 × 1 patch in three-dimensional source symbols can have

descendent nodes with 2× 3× 1 or 2× 2× 2 patches. However, it is not allowed to

have descendent nodes with 3× 2× 1 because the patch grew along the y1 axis. The

number of new augmentative symbols along yi axis is
∏i−1

k=1 nk, and the maximum

number of descendent nodes at node π is

γm(π) =
m
∑

i=cm

|A|
Qi−1

k=1
nk , (10)

where cm = min{c | ni = 1 for 1 ≤ c < i < m + 1, c ∈ Z, i ∈ Z} is the index of axis

to which the patch can append symbols along. At the kth coding epoch, Γm(k) is the

total number of augmented nodes, and Γf (k) is the total number of fully augmented

nodes at which γd(π) is equivalent to γm(π). When a new node π′ is appended to

the dictionary D, the encoder finds the deepest node πj , which can only have π′ as a

descendent node. After appending the given node to D, it then updates the variables
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γd(π′), γm(π′), γd(πj), Γm(k), and Γf (k). The complete algorithm of the construction

of a multidimensional suffix tree is presented in Algorithm 1.

Algorithm 1 Construction of a multidimensional suffix tree

Initialize: Γm(0)← 1, Γf(0)← 0, k ← 0, D← ∅
Input: a new node π′

k ← k + 1
Find the deepest node πj

D⇐ π′ under πj

γm(π′)← by (10), γd(π′)← 0
γd(πj)← γd(πj) + 1, Γm(k)← Γm(k) + 1
if γd(πj)=γm(πj) then

Γf (k)← Γf(k) + 1
end if

The suffix tree corresponding to the example of a two-dimensional binary source

given in Figure 4 is provided in Figure 6.

When a new patch π′ is required to be appended to D, it is obvious that π′ can

be a descendent of one of [0], [0 1]T , [0 0], [0 1 0]T , [0 1; 1 0], [0 1; 1 0; 1 1], [1], [1 0]T ,

[1 1], and [1 0 0]T . One can notice that no node can be a descendent of the root

node because it is fully augmented. The number of candidate nodes, one of which

will be an ascendent node of π′, is easily computed by Γm(k) − Γf(k), denoted by

Γp(k). Finally, the probability of a π′ given the concurrent D is

P (π′ | D) = P (π′ | πΓm−1, · · · , π1, π0) =
1

Γp(k)
. (11)

In this example, P (π′ | D) = 1/10.
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]
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0
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0
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ˆ
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ˆ

1 1
˜
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Figure 6: The suffix tree constructed by the two-dimensional binary source given in
Figure 4. As can be seen, this is equivalent to the tree-structured dictionary of Table
1. The pair of numbers next to each node is (γm(π), γd(π)). At the current coding
epoch, Γm(k) is 11, and Γf(k) is 1 because of the root node π0.

Finally, the probability of the given multidimensional source X is computed as

P (X) = p(πΓ | πΓ−1, · · · , π0)p(πΓ−1, · · · , π0)

= p(πΓ | πΓ−1, · · · , π0) p(πΓ−1 | πΓ−2, · · · , π0)

· · · p(π2|π1, π0) p(π1|π0) p(π0)

=
Γ
∏

k=1

1

Γp(k)
, (12)

where Γ is the total number of distinct patches for the given X. Consequently, the

self information of X is estimated as

I(X) = − log2

Γ
∏

k=1

1

Γp(k)
(bits). (13)

Summarizing all three essential component schemes, we now look at the entire

algorithm for the multidimensional incremental parsing code. For a given source X,

the encoder first finds the maximum decimation match at the current anchor point ∆.

It transmits codewords for the match to a decoder. While encoding the augmentative
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patches with lower dimensional parsing codes, the encoder augments the dictionary

with the patches. The complete algorithm is given in Algorithm 2.

Algorithm 2 Multidimensional incremental parsing for lossless source coding

Input: source sequence X, source dimension ~n = [n1 · · ·nm]T

Output: encoded bit sequence B

∆← ~0, D← ∅, F(·) = 1
while ∆ < ~n do

H← eq. (8)
if H is not null then {Maximum Decimation Matching}

B← kmax by eq. (9), ~a← [Dkmax
]

else

B← {null}, ~a← ~1
end if

for i = 1 to m do

ai ← ai + 1
Encode new symbols in X(∆;~a) by Algorithm 2 {Hierarchical Encoding}
D⇐ X(∆;~a) by Algorithm 1 {Dictionary Augmentation}

end for

F(∆; [Dkmax
]) = 0 {Decimation Field Update}

Move ∆ somewhere F(∆) = 1
end while

2.4 Implementation of Universal Lossy Source Coder

In this section, we set our focus on universal lossy source coding by extension of

the multidimensional incremental parsing code suggested in Section 2.3. Using an

approximate pattern matching algorithm, the encoder can search such matches that

have more symbols than those by the absolute pattern matching, and it retains fewer

dictionary entries during the coding process. As a result, it may require fewer cod-

ing iterations as well as lower computing resources such as the number of bits, the

amount of memory, and the amount of computation. However, it inevitably involves

a distortion between the original symbols and the approximate symbols.

Design of a universal lossy source coder for a multidimensional source can be

achieved by redefining the schemes from the incremental parsing code. First, with a
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given distortion bound ε, we redefine the approximate pattern matching as follows:

H = {j | ρ (Dj ,X(∆; [Dj])) < ε, 0 ≤ j < |D|, ε ∈ R+} , (14)

where ρ is a distortion function. We now propose two classes of distortion functions

for approximate pattern matching, the local average distortion and the local minimax

distortion. In order to construct a general framework, we employ a threshold τ for

each source symbol. τ can be understood to represent a certain perceptual significance

of the corresponding symbol. If we design a compression algorithm for such signals

that are to be consumed by humans, τ might be the perceptual threshold. Given

two sets of patches, the reference patch X and the approximate patch X̂, the local

average distortion is

ρa

(

X, X̂
)

=
1

|X|





∑

~x∈[X]

∣

∣

∣

∣

∣

max{0, |X(~x)− X̂(~x)| − τ(~x)}

τ(~x)

∣

∣

∣

∣

∣

p




1/p

, (15)

where p is a real number. If the distance between the two symbols, |X(~x)− X̂(~x)|, is

lower than the threshold τ(~x), it is considered that X̂(~x) is not distorted, even though

|X(~x)− X̂(~x)| > 0. The average of each distortion for each symbol is then computed

in a similar fashion to a weighted Lp norm. The set of indices whose dictionary

patches have εa-bounded distortions at the kth coding epoch is

Ha = {j | ρa (Dj ,X(∆k; [Dj])) ≤ εa, 0 ≤ j < |D|, εa ∈ R+} . (16)

Using the same threshold τ(~x), the local minimax distortion is defined as

ρm

(

X, X̂
)

= max
~x∈[X]

{

max

(

0,
|X(~x)− X̂(~x)| − τ(~x)

τ(~x)

)}

. (17)

The set of indices by εm-bounded distortion at the kth coding epoch is

Hm = {j | ρm (Dj ,X(∆k; [Dj])) ≤ εm, 0 ≤ j < |D|, εm ∈ R+} , (18)

where εm is typically set to 0.
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At each coding epoch, the encoder constructs the set of indices with respect to the

distortion criterion; then it measures the decimation level of each candidate patch.

Finally, it selects the match of the index kmax that gives the highest level of decimation

by (9). Since the overall algorithm is similar to Algorithm 2, the details are omitted.

2.5 Experimental Results

In this section, we implement both lossless and lossy image compression algorithms

to evaluate the performance of the universal source coder described in Section 2.3

and Section 2.4. For both image compression experiments, we use gray images with

256 quantization levels (i.e., |A| = 256). For a better compression efficiency, we make

two modifications: the dictionary initially contains 256 entries covering all the pixel

values, and the encoder does not transmit any information about the augmentative

symbols. These variations can be viewed as those similar to LZW. Since a decoder

eventually receives all the pixel information, it can reconstruct the source symbols in

a lossless manner with memory manipulations.

2.5.1 Lossless Image Compression

In this experiment, we compare, in terms of the coding performance, a two-dimensional

implementation of the MDIP algorithm with the LZW algorithm, which is a one-

dimensional variable-to-fixed length code based on pattern matching. In order to

facilitate the use of LZW, the given image is vectorized into a long one-dimensional

vector through concatenation of the columns. Although results are not provided here,

we have tried other scanning methods such as row-wise reading and the Peano-Hilbert

curve [47]. We could not observe any statistical correlation between the scanning

method and the resultant images in terms of coding efficiency, which is also reported

in [3, Section 4], [2]. At each coding epoch, the anchor point ∆ moves in a similar

manner to the raster scan. If the symbol at the next anchor point is already encoded,

those symbols are skipped so that F(∆) = 1 at any time.
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We have tested a number of images, but results of five of them are provided

here. The test images are shown in Figure 7. Table 2 shows the comparison of the

two algorithms. The dimensions and the entropies of the images are first given. The

average bitrates L(X)/n and L(X)/|X|, the number of distinct patches Γ, the number

of dictionary entries |D|, and the number of referred dictionary entries |D|∗ for both

coding algorithms are provided.

We observe that, for both cases, the average bitrates of the MDIP are higher than

those of the LZW. This is mainly because the MDIP appends its dictionary with

twice as many entries at each coding epoch. For the image “Bank,” the dictionary

of the MDIP contains approximately 52% more entries than that of the LZW. How-

ever, another comparison of |D∗| attracts our attention because the higher number of

referred entries implies that the MDIP scheme can efficiently capture the structure

of the source regardless of its redundancy. Figure 8 shows the average bitrates in the

encoding process of both coding algorithms.

Table 2: The lossless compression results of the MDIP are compared to those of
the LZW with a columwise linearization method. H(X ) denotes the one-dimensional
entropy rate of a given image. Γ denotes the number of distinct patches. |D|∗ is the
number of referred dictionary entries.

Images Bank Barbara Bike Lena

Dimension 5122 5122 5122 5122

H(X ) (bits/symbol) 7.66 7.63 7.61 7.45

L(X)/n 6.63 7.45 7.07 6.57
Γ 109788 122416 116572 108877

LZW
|D| 110042 122671 116728 109131
|D|∗ 31547 31944 30956 31441

L(X)/|X| 6.88 7.90 7.27 7.02
Γ 109436 123759 116752 111371

MDIP
|D| 167683 178202 172013 170276
|D|∗ 34022 34878 33784 33603

If the number of symbols is relatively small, the average bitrates for the MDIP

are considerably lower than for the LZW, which implies that the inherent ability of

the MDIP for source characterization outperforms that of the LZW.
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(a) (b)

(c) (d)

(e)

Figure 7: Standard images used in the experiments. Quantization levels are 256.
(a), (b), (c), and (d) are used for the experiments of lossless compression. (a), (c),
(d), and (e) are for those of lossy compression. (a) Bank, (b) Barbara, (c) Bike, (d)
Lena, (e) San Francisco.
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(b) Lena

Figure 8: Average bitrates as the encoding proceeds. (a) is of the image “Bank,”
(b) is of the image “Lena.”

Figure 9 depicts the histogram of the reference rates of the encoder outputs to the

dictionary entries. Since the reference rate for the source alphabets is too high, the

first 256 entries are excluded in these figures. We notice that the two encoder outputs

are obviously not equiprobable; the empirical distribution of the outputs of the LZW

are 0.474 and 0.526 for 0’s and 1’s, respectively, and those of the MDIP are 0.475

and 0.525. If one wants to achieve a higher coding rate, employing additional lossless

coding schemes can be considered.

2.5.2 Lossy Image Compression

Based on the framework of the universal lossy source coder described in Section 2.4, we

now design image compression algorithms with the two distortion functions in order

to evaluate the performance of the MDIP. Regarding the local average distortion (15),

p is set to 2 so that it becomes a weighted L2 norm. By changing εa, the compression

algorithm upperbounds the distortion of each approximate pattern matching. For the

local minimax distortion (17), εm is set to 0 as typical. It is worth noting that many

lossy universal source coders, such as [18,24,42], compute the distortion over symbols

for corresponding pattern matching by averaging local distortions.
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(a) LZW (b) MDIP

Figure 9: Reference rate of the dictionary entries for the LZW and the MDIP. Note
that the first 256 entries of each dictionary are excluded. Test image is “Lena.” (a)
is by the LZW and (b) is by the MDIP.

It is known that the average distortion is not a good model in the sense of human visual

perception because human eyes are more sensitive to salient image regions [62]. Thus,

the comparison of the compression algorithms guided by the two different distortion

functions in various distortion measures is meaningful only in the sense of image

compression. Regarding the noise threshold τ(~x), we introduce the just noticeable

distortion (JND) model proposed by Chou et al. [13], in which they consider three

human visual sensitivity models: the base sensitivity, the luminance sensitivity, and

the texture sensitivity. For both distortion metrics, any distortion below the JND

at each pixel location is considered invisible. In order to compare the reconstructed

images with the original, we introduce two types of image fidelity measures: the

mean structural similarity (MSSIM) [82] and the peak-signal-to-noise ratio (PSNR).

Because of the manipulation of the structural information, the MSSIM is known to

be effective for measuring suprathreshold compression distortions. The range of the

MSSIM value is from 0.0 to 1.0, where 0.0 corresponds to a total loss of all structural

similarity and 1.0 to having a noise transparent image. The PSNR is traditionally

27



derived from the mean-squared error (MSE) as

PSNR = 10 log10

(

(2q − 1)2

MSE

)

, (19)

where MSE = 1
n

∑n
i (xi − x̂i)

2 and q is the number of quantization bits for pixel.

Similar to the setup for lossless image compression, we set |A| = 256 and the anchor

point ∆ sweeps a given image from top-left to bottom-right in a similar manner to

the raster scan. In this experiment, we use four test images, “Bank,” “Bike,” “Lena,”

and “San Francisco.” 1 For performance comparison, we also implemented lossy

extensions of the LZW with the similar distortion measures as in the MDIP.

Figure 10 shows the comparison of the five compression algorithms: two from

the MDIP, two from the LZW, and the 2DPMC. The top three figures, which are of

PSNR, imply that the MDIP-A encodes a given image with minimum signal distortion

at the same bitrate. However, as the bottom three figures show, the MDIP-M gives

minimum perceptual distortion although its PSNR is lower than that of MDIP-A.

Figures 11-14 show the images by the MDIP-M, MDIP-A, and 2DPMC. From the

images by the MDIP-A, one can observe block artifacts on flat regions, while the

corresponding PSNRs are still higher than those by the MDIP-M. In all, these results

indicate that the MDIP algorithms make better use of the source statistics that are

captured into the dictionary. Figure 15 illustrates the estimated bitrates computed

during the encoding procedure at the target fidelity. The estimated bitrate of the

MDIP-M decreases rapidly as in the initial coding stage and does not show any sharp

change so that the eventual bitrate is almost 1.5 bpp lower than the 2DPMC.

1Observe that the “Lena” image used for performance analysis in [1] is not con-
sistent with the image used in this dissertation. This incongruity resulted in differ-
ent coding performances from those provided in the dissertation. The images in this
dissertation and in [1] can be retrieved from http://www.ece.rice.edu/∼wakin/images/ and
http://www.cs.purdue.edu/homes/spa/Compression/2D-PMC.html, respectively.
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2.6 Discussions

In this chapter, we present a framework for multidimensional incremental parsing,

which is a generalization of the Lempel-Ziv incremental parsing algorithm. We present

three essential component schemes in the design of multidimensional incremental pars-

ing for universal lossless source coding; namely, the hierarchical structure of multidi-

mensional source coding, the dictionary augmentation, and the maximum decimation

matching.

To evaluate the performance of the proposed algorithm for lossless compression,

we compared it with an existing universal source coding algorithm, the LZW, which

works for one-dimensional discrete sequences. The result shows that the coding effi-

ciency of the image compression algorithm based on the MDIP is behind the LZW.

Nevertheless, it is observed that the MDIP scheme can efficiently capture the struc-

ture of the source.

By giving two types of the distortion functions, the local average distortion and the

local minimax distortion (corresponding to a weighted L2 norm and the L∞ norm),

a framework for lossy extension of the MDIP algorithm is proposed. In lossy image

compression experiments, it is shown that the proposed MDIP outperforms a state-

of-the-art image compression algorithm based on two-dimensional pattern matching,

2DPMC in terms of signal distortion and perceptual fidelity. In almost all cases,

the MDIP with the local average distortion criterion gives the highest PSNR among

the five lossy image compression algorithms. The images by MDIP with the local

minimax distortion criterion, nevertheless, have the best perceptual fidelity among

all, which are evaluated by the object image fidelity metric MSSIM.

Although the experiments provided here are mainly on image compression, the

fundamental framework of MDIP can also lead to the design of higher dimensional

universal lossless/lossy source coding algorithms. To the best of our knowledge, no

general framework of the Lempel-Ziv incremental parsing for a higher dimensional
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source has been reported so far. Although the image compression results shown in

this chapter are not comparable to the state-of-the-art image compression algorithms,

such as JPEG or JPEG2000, the properties of the MDIP addressed in this chapter

point to worthwhile considerations not only in data compression but also in data

modeling and feature extraction.
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Figure 10: Comparison of compression performances of five algorithms. MDIP-
A, MDIP-M, LZW-A, and LZW-M correspond to the MDIP with the local average
and the local minimax distortion, and the LZW with the local average and the local
minimax distortion, respectively. (a) and (d) are the results of “Bank,” (b) and (e)
are of “Lena,” (c) and (f) are of “San Francisco.”
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(a) MDIP-M (b) MDIP-A

(c) 2DPMC

Figure 11: (a) is the result of minimax distortion at 0.60 bpp with PSNR=29.27dB
and MSSIM=0.8516. (b) is of the average distortion at 0.60 bpp with PSNR=29.96dB
and MSSIM=0.8248. (c) is of the 2DPMC at 0.60 bpp with PSNR=26.32dB and
MSSIM=0.7725.
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(a) MDIP-M (b) MDIP-A

(c) 2DPMC

Figure 12: (a) is the result of minimax distortion at 0.49 bpp with PSNR=30.07dB
and MSSIM=0.8115. (b) is the result image of the average distortion at 0.49
bpp PSNR=30.54dB and MSSIM=0.7993. (c) is of the 2DPMC at 0.49 bpp with
PSNR=26.33dB and MSSIM=0.7261.
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(a) MDIP-M (b) MDIP-A

(c) 2DPMC

Figure 13: (a) is the result of minimax distortion at 0.57 bpp with PSNR=27.18dB
and MSSIM=0.7325. (b) is of the average distortion at 0.57 bpp with PSNR=27.26dB
and MSSIM=0.7150. (c) is of the 2DPMC at 0.57 bpp with PSNR=25.84dB and
MSSIM=0.6682
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(a) MDIP-M (b) MDIP-A

(c) 2DPMC

Figure 14: (a) is the result of minimax distortion at 0.60 bpp with PSNR=26.52dB
and MSSIM=0.8207. (b) is of the average distortion at 0.60 bpp with PSNR=26.46dB
and MSSIM=0.7915. (c) is of the 2DPMC at 0.60 bpp with PSNR=23.55dB and
MSSIM=0.7218.
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Figure 15: Estimated bitrates as the compression algorithms proceed. The test
image is “Lena.” The target PSNR is 30dB.
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CHAPTER III

IPSILON: INCREMENTAL PARSING FOR SEMANTIC

INDEXING OF LATENT CONCEPTS

3.1 Introduction

The success of linguistic information retrieval has inspired the adaptation of linguistic

processing techniques for visual information analysis followed by CBIR systems, as

discussed in Section 1.0.1. The theory of linguistics teaches us the existence of a hier-

archical structure in linguistic expressions, from letter to word root, and on to word

and sentences. By applying syntax and semantics beyond words, one can further rec-

ognize the grammatical relationship among words and the meaning of a sequence of

words. This layered view of a spoken language is useful as it allows effective analysis

and automated processing for humans and machines. Thus, it is interesting to ask

if a similar hierarchy of representation of visual information does exist. A class of

techniques that have a similar nature to the linguistic parsing is found in universal

source coding, i.e. the Lempel-Ziv incremental parsing scheme (LZ78) [97]. The LZ78

is designed for compressing a given one-dimensional source sequence in an optimal

way. The fundamental operation of the scheme is to parse a given sequence into a

number of phrases that contain the same amount of information while constructing a

dictionary with previously registered patterns of symbols. Since the parsing scheme

reconstructs the given source with the minimum number of occurrences of dictio-

nary entries, it is known that the coding algorithm is asymptotically optimal for a

stationary ergodic source.

Although LZ78 has been successfully employed in many data compression applica-

tions, due to the dimensional constraint, it cannot be readily used in multidimensional
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data compression. This previously motivated us to design a multidimensional incre-

mental parsing scheme for universal source coding in the previous chapter. Instead of

using any particular scanning pattern, it parses a given multidimensional source into

a number of multidimensional patches and assigns the same number of bits to the

codewords in the dictionary. It has been experimentally verified that it asymptoti-

cally captures the source statistics into the dictionary and outperforms other existing

universal lossy data compression algorithms.

In this chapter, based on the parsing scheme, we propose a query-by-example

CBIR framework that uses the dictionary entries generated in the coding procedure

as features of the given image and applies them to the LSA paradigm. In order

to compare the effectiveness of the use of the dictionaries by incremental parsing

(IP), we implemented a benchmark system that uses a visual dictionary trained by

VQ [27]. To see the effect of the perceptual distortion bound on visual information

analysis, we also tried three different perceptual distortion thresholds in the proposed

retrieval system. The performance of these systems, in terms of retrieval precision, is

compared with that of one of the recent systems, the SIMPLIcity proposed by Wang

et al. [48, 81]. By the analysis of the latent semantic dimensions, we experimentally

justify the relevance of the proposed image retrieval framework.

The rest of this chapter is organized as follows. In the next section, we briefly

review incremental parsing algorithms for universal source coding. A typical setup of

latent semantic analysis is discussed in Section 3.3. We provide detailed implemen-

tations of the proposed and the benchmark systems in Section 3.4. A performance

comparison of the suggested implementations with the SIMPLIcity system is pre-

sented in Section 3.5. A discussion and the final remarks are found in Section 3.6.
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3.2 Incremental parsing

In the proposed research, the query image and the images in a database are repre-

sented as a number of variable-size patches by a multidimensional incremental parsing

algorithm. Then, the occurrence pattern of these parsed visual patches are fed into

a semantic analysis framework. Before proceeding to a detailed implementation of

visual dictionary generation and image retrieval system, we briefly review two incre-

mental parsing algorithms in this section.

3.2.1 Lempel-Ziv Incremental Parsing

In 1977 and 1978, Lempel and Ziv consecutively developed two universal source cod-

ing algorithms, called the Lempel-Ziv sliding window (LZ77) [96] and the Lempel-Ziv

incremental parsing (LZ78) [97]. These two algorithms have been widely employed

in many data compression applications because of the fact that without any prior

knowledge of the statistical distribution of the given source, the algorithms asymp-

totically achieve a source rate approaching the entropy of the source. As mentioned

above, the LZ78 is of our interest because it implicitly embeds source statistics into

the dictionary.

An essential operation of the LZ78 algorithm is to parse the given source sequence

into a number of distinct phrases and to construct a dictionary containing the pre-

viously registered patterns of symbols. The algorithm has three main parsing steps:

pattern matching, dictionary augmentation, and codeword assignment. At each cod-

ing epoch, the algorithm searches the longest dictionary entry that is exactly matched

with the source symbols at the corresponding coding point. Then, it augments the

dictionary with the last parsed phrase appended with the next source symbol. Next, it

transmits the match index and the new symbol to a decoder with ⌈log2 Γ⌉+⌈log2 |A|⌉

bits, where ⌈x⌉ denotes the least integer not smaller than x, |A| denotes the cardi-

nality of a finite alphabet A, and Γ corresponds to the number of dictionary entries
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and the number of distinct phrases. Thus, the total length of the code for the given

source X is

L(X) = Γ · (⌈log2 Γ⌉+ ⌈log2 |A|⌉). (20)

It is known that for a stationary ergodic source of length n, the average number of

bits per symbol L(X)/n approaches the entropy of the given source H(X) as n→∞.

3.2.2 Multidimensional incremental parsing

Although the LZ78 scheme has been implemented in many data compression appli-

cations and extensively studied in many research sectors, it still has a fundamental

limitation: the coding algorithm applies only to one-dimensional source sequences.

There hass been a plethora of research on multidimensional universal source coding

based on generating a one-dimensional source sequence from a given multidimensional

source with the aid of a scanning scheme. However, it is not clear that any of the

linearization methods is suitable for analyzing the local property of a given source.

Thus, in Chapter 3 we devised a multidimensional incremental parsing scheme for

universal source coding Instead of using a scanning method, the proposed scheme

parses the source into variable size patches and achieves outstanding performance

compared with existing algorithms. The algorithm can be implemented for lossless or

lossy compression depending on the selection of a pattern matching function. Here we

are interested in a two-dimensional lossy compression scheme. As the counterparts

of the three essential procedures in LZ78, the parsing algorithm consists of three es-

sential component schemes: maximum decimation matching, hierarchical structure of

multidimensional source coding, and dictionary augmentation. Here we focus on the

maximum decimation matching rather than all three. A detailed description on the

three component schemes can be found in Chapter 3.

As LZ78 does, the multidimensional incremental parsing scheme starts with an
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empty dictionary. At each coding epoch, it first searches the dictionary for the maxi-

mum decimation patch that matches the two-dimensional source at the current coding

point according to a given distortion criterion, and then augments the dictionary with

two new entries for two-dimensional source coding. Let X be a two-dimensional vec-

tor field taking values from a three-dimensional finite vector, each element of which

represents each color component, i.e. red, green, and blue (RGB). X̂ denotes an ap-

proximation of X. The design of a lossy color image compression can be achieved by

the following minimax distortion function:

ρm

(

X, X̂
)

= max
~x∈X

{

max
c∈{r,g,b}

(

0,
|Xc(~x)− X̂c(~x)| − Tc(~x)

Tc(~x)

)}

, (21)

where Tc(~x) is the threshold of the corresponding color component at the location

~x ∈ Z
2. Regarding Tc(~x), we use the color just-noticeable distortion (JND) model

proposed by Yang et al. [89], denoted by a 3-tuple Tjnd = (TY , TCb, TCr), in which

the visibility thresholds of the two chrominance components in YCbCr domain are

computed in addition to the baseline JND model for the luminance component. Since

the images that we are dealing with are represented in 8-bit RGB color component

format, the JND model needs to be transformed from YCbCr to RGB by the following

conversion matrix:












Tr

Tg

Tb










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


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


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






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











. (22)

Since we deal with visibility threshold values, not the pixel values, we modified the

YCbCr-to-RGB pixel conversion matrix, introduced in the ITU-R BT.601-4 [35], to

this threshold conversion matrix.

The JND values derived here represent the threshold levels of noise visibility be-

low which a human will not be able to perceive the noise. To achieve a supra-

threshold color image compression, we introduce a minimally-noticeable distortion

41



(MND) model as follows:

Tmnd = Tjnd × θjnd, (23)

which is simply multiplying every element of JND by a constant scale factor θjnd > 1.0.

Since the patches are of variable size, they do not always fit the image like regular

tiles, and there may be overlap with previous patches. As mentioned above, the

algorithm finds the match that covers a maximal previously uncoded area, which is

referred to as a maximum decimation matching. Note that the decimation level of a

match is defined as the number of symbols that can be encoded with the given match.

We first define two complementary sets E and Ec. If the source symbol at location

~x, denoted by X(~x), is already coded, then ~x is in E; otherwise, it is in Ec. Let us

define the decimation field F(~x) as follows:

F(~x) =











0, ~x ∈ E

1, ~x ∈ Ec.
(24)

Also, we define the decimation field area for an area vector ~a ∈ Z
2 as follows:

F(~x;~a) = {Fx̄1,x̄2
: xi ≤ x̄i < xi + ai, i = 1, 2}. (25)

Given a dictionary D, we define two operations | · | and [·]. |D| denotes the number

of elements of D, and [Dj ] refers to a vector whose element represents the number of

pixels of the jth patch along each axis. The set of indices by εm-bounded distortion

at the current coding epoch is

Hm = {j | ρm (Dj ,X(∆; [Dj])) ≤ εm, 0 ≤ j < |D|, εm ∈ R+} , (26)

where ∆ corresponds to the current coding location. εm is typically set to 0. At each

coding epoch, the encoder constructs the set of indices with respect to the distortion

criterion; then it measures the decimation level of each candidate patch. Finally, it

selects the match of the index kmax that gives the highest level of decimation by

kmax = argmax
k∈Hm







∑

~x∈F(∆;[Dk])

F(~x)







. (27)
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At each coding epoch, once the maximum decimation match is found, the algo-

rithm appends two new entries to the dictionary, each of which is obtained by ap-

pending pixels along the horizontal and the vertical axes. For example, if the match

found is of size n1× n2, the new entries then are of (n1 + 1)× n2 and n1× (n2 + 1) in

size. Note that for an m-dimensional incremental parsing, m augmentative patches

of m-1 dimensions generated along all the m axes are appended into the dictionary

at each coding epoch.

Figure 16 shows the four largest patches that were used when an image is com-

pressed using the proposed incremental parsing algorithm. The arrows point to the

locations of the patches in the image. The patches the algorithm generates can be

used to form an intermediate representation, which in combination with linguistic

processing techniques, can be used to build a visual dictionary that will facilitate the

association of semantic information from images.

3.3 Latent Semantic Analysis

Document retrieval has been extensively studied for decades and widely implemented

into many commercial products. Recent advances are primarily due to the successful

approaches to two fundamental problems in linguistic information processing: syn-

onymy and polysemy. To deal with these two, there have been a number of research

on representations of documents. One of the successful techniques is LSA [19], which

summarizes a given document by a number of hidden concepts, rather than by con-

ventional term counts. The main idea behind LSA is that a bag of words preserves

enough relevant information for semantic retrieval.

LSA first defines a mapping of words and documents onto a semantic vector space.

Suppose that we have a collection of N documents D = {d1, · · · , dN} and a lexicon

with M words W = {w1, · · · , wM}. Based on the vector space model [71], a document

is represented as an M-dimensional vector.
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Figure 16: Example of the two-dimensional incremental parsing for image compres-
sion.

Collated together, they form an M × N co-occurrence matrix L = {li,j}, where li,j

denotes the number of occurrences of word wi in document dj. Bellegarda et al.

reported in [4] that by taking inter- and intra-document normalization into account,

the co-occurrence matrix can also be represented in word-counts weighted by a term-

frequency normalized-entropy. The normalized entropy of ith word ǫi is

ǫi = −
1

log N

N
∑

j=1

li,j
ti

log
li,j
ti

, (28)

where ti =
∑N

j=1 li,j is the total number of times the ith word occurs in D. The value

ǫi indicates the singularity of the ith word. We construct a co-occurrence matrix

Ln = {l̃i,j} that is normalized by document size and word entropy as follows:

l̃i,j = (1− ǫi)
li,j
nj

, (29)

where nj is the total number of words present in the jth document.

For document retrieval, a given query (document) is projected onto the word space

to find the closest documents to the query. Instead of mapping onto a full-rank space,

LSA projects the documents onto a subspace of reduced dimensionality, called latent

semantic space. LSA uses the standard singular value decomposition (SVD) [28] to

decompose the co-occurrence matrix into Ln = UΣV T , where U and V are unitary
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matrices, and the superscript T denotes matrix transpose. Then, taking the K largest

singular values in Σ, L can be approximated as L̂n,K = Û Σ̂KÛT . L̂n,K captures the

K most salient ensembles of the words. Given a vector q that represents a query in

the word-space, one can map the corresponding query vector onto the reduced space

by

q̂ = Σ̂−1
K UTq. (30)

The similarity between the jth document in the corpus and the query vector q can

be computed as

s(d̂j, q̂) =
d̂T

j q̂

||d̂j|| ||q̂||
, (31)

where d̂j is the vector corresponding to the jth document in the K-dimensional re-

duced space. A value of s(d̂j, q̂) = 1.0 means the two documents are semantically

equivalent, while for s(d̂j , q̂) < 1.0 decreasing values denote decreasing similarity

between the documents.

To apply the LSA paradigm to image retrieval, the co-occurrence matrix is gen-

erated with images from an image database and patches from a visual dictionary as

illustrated in Figure 17. The similarity between images are computed by (31). In

consideration of the effect of dimensionality reduction, instead of choosing one par-

ticular value for K, we will study the effect of different Ks on the performance of

image retrieval systems.

3.4 Implementation of Image Retrieval Systems

To evaluate the performance of the proposed image retrieval framework compared

with that of existing ones, we implemented four image retrieval systems; three use the

parsed representation based on incremental parsing with different perceptual distor-

tion thresholds, and one uses the conventional vector quantization for visual pattern

analysis.
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Figure 17: An illustrative example of a co-occurrence matrix of images and patches.

The four image retrieval systems are designed upon the same database, and the same

query images are used for performance evaluation. A detailed description of the

implementations and the database is given in this section.

3.4.1 Image Database

We implement the image retrieval systems using 20,000 images obtained from the

Corel Stock Photo Library, stored in JPEG format with size 384×256 or 256×384.

The boundary regions of all the images are cut off since some of them have black

boundaries. Note that although a majority of researchers use the database, the Corel

database has been heavily criticized because of the bias and the quality of the database

[58, 61]. For example, the ontology used in labeling the images of the database is

not precisely defined, and several images of the same scene are taken with a small

angle change. Thus, there are sensible doubts about the use of the database in the

evaluation of an image retrieval or an annotation system. One way to mitigate this

criticism is to define a new set of ontology and associate each image with one of them

or more.

In many image retrieval systems or in many pattern recognition applications, it is

assumed that without exception every image is categorized into only one group. We

argue here that each image can be a realization from multiple visual sources. Hence,

rather than categorizing images into classes, which are non-overlapping universal
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groups, we classify them according to their visual concepts, which are overlapping

groups. Thus, it is allowed that one image may contain more than one concept or

may not belong to any. From the image database, we identify 15 visual concepts,

examples of which are presented in Figure 18. Among the 20,000 images, there are

9,039 images with one concept, 323 images with two, and 12 with three. Table 3

presents the number of images in each visual concept. All the remaining 10,199

images are not associated with any visual concept listed in the table. The remaining

images are of paintings, apes, fowls, antiques, etc. Note that paintings and portraits

are not identified with such concepts as “human” or “snow.” The relevance of the

number of visual concepts and the image semantics depends on the reader’s point of

view. If those are associated with any of the listed concepts, the performance will be

improved more than those shown in the results of the current system. From the image

corpus, we randomly chose 600 image queries, each of which contains only one visual

concept. Table 3 also presents the number of query images in each visual concept.

3.4.2 IPSILON systems

As discussed in Section 3.3, to analyze a given text document corpus under the LSA

framework, the co-occurrence matrix is constructed by counting the word occurrences

in each text document. For an image corpus, before constructing the co-occurrence

matrix, we first have to generate a visual dictionary with which all the images from

the corpus can be reconstructed. One ideal way is described as follows: one manually

constructs a dictionary with any symbols of any size. Once the occurrence patterns of

all the images are analyzed with a given distortion criterion, such dictionary entries

that are not used in the reconstruction are pruned off.
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Visual
concept

1 2 3 4 5 6 7 8

# of images 821 101 257 212 1343 587 908 227
# of queries 36 28 40 42 56 36 55 33

Visual
concept

9 10 11 12 13 14 15

# of images 1054 1145 1655 211 365 107 515
# of queries 40 27 62 16 53 40 36

Table 3: Number of images and queries in each visual concept.

Since the number of dictionary entries in this case is colossal, we consider a sequential

way of dictionary generation. Among many sequential generation schemes, one naive

way is to encode all or some of the images separately with the incremental parsing

scheme and merge all the dictionary entries into one. However, since there may exist

duplicate entries across the dictionaries, after the compression step, all the dictionary

entries are required to be compared with each other by a similarity measure, and the

duplicated ones are pruned off. Assuming that the parsing algorithm generates ne

entries separately over the N images, the complexity is of the order O(n2
eN

2). Thus,

we consider an efficient approach with moderate complexity. At each compression

iteration, a given kth image is encoded with the dictionary Dk−1 generated at the

previous iteration. By encoding all the N images, one can generate the dictionary

with redundant entries. To make the dictionary more compact, one may prune those

dictionary entries that are not used in reconstructing the N images. An alternative

heuristic for a more efficient construction is that for every np image during the encod-

ing procedure, those dictionary entries that are not used for encoding the previous np

images are pruned, and the dictionary with reduced entries is fed back to the encoding

step. This heuristic leads the dictionary to bear the larger patches for more frequent

visual patterns and vice versa. A comprehensive schematic of the visual dictionary

generation process is depicted in Figure 19.
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Figure 18: Visual concepts identified from the Corel Photo Stock Library.

Ik
Feature

Extraction
k < np

yes
Dk

no Dictionary
Pruning

k < N

yes

no
DL

Figure 19: Schematic overview of visual dictionary generation by the incremental
parsing. Ik is the kth image in the database, np is the number of images for the task
of pruning the unused entries, and N is the total number of images. DL is the visual
dictionary.

In this experiment, we randomly chose 1,200 images for the generation of the vi-

sual dictionary, without considering the number of visual concepts of each image. In

the implementation, np is set to 100. As discussed in Section 3.2.2, we use an MND

model for a supra-threshold image compression. By selecting three different values,

θjnd=1.6, 2.0, and 2.5, we constructed three different visual dictionaries. Figure 20

depicts the number of entries during the generation of visual dictionary. At every

iteration of the generation process, the dictionary is appended with new entries. At

every np image, the unused entries in the dictionary are pruned so that the number of

the entries drops significantly. After approximately 400 images, the number of entries

oscillate without any major change.
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Figure 20: Number of entries in the process of the generation of the visual dictionary.

The number of entries in the dictionaries are 171,329, 128,673, and 94,142 for θjnd=1.6,

2.0, and 2.5, respectively. Once each visual dictionary is generated, three corre-

sponding co-occurrence matrices are constructed by analyzing the occurrence pat-

terns of the visual patches. Their dimensions are 171329×20000, 128673×20000,

and 94142×20000. The densities of the matrices are 0.0208, 0.0207, and 0.0213 for

θjnd=1.6, 2.0, and 2.5, respectively. In the LSA framework described in Section 3.3,

the co-occurrence matrix is projected onto a lower dimensional space and the simi-

larities between images are computed on the space by (31).

3.4.3 Image retrieval with vector quantization

One of the contributions of this research lies on the source representation by the

aforementioned variable size patches for visual information analysis. Different from

the proposed technique, many of the existing visual information analysis techniques in

image retrieval systems extract features from regular blocks of fixed sizes. To compare

the proposed technique with the conventional approach, we design an image retrieval

system that constructs its visual dictionary by a fixed-block representation trained

by VQ as a reasonable benchmark system. Similar to the proposed system shown

in Section 3.4.2, we first construct a visual dictionary, then generate a co-occurrence
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matrix for the given image corpus, and retrieve images for a given query image.

In this VQ-based system, each color image represented in RGB color compo-

nents is partitioned into 8×8 blocks. The dimension of the VQ codebook is therefore

8×8×3=192. Because the average number of pixels of the visual dictionary formed

by the incremental parsing algorithm with θjnd=1.6 is approximately 63, a similar

square block size, here 8×8, is chosen. Also, the number of codewords in the desired

codebook is the same as the number of visual dictionary entries at θjnd=1.6, which is

171,329.

Since we have 20,000 images and each image is represented with 1536 data points,

we are required to train the 192-dimensional quantizer with over 3 million points,

of which the computation requirement is tremendous. Thus, rather than generating

data points by all the images and all the data points, we limit the number of images to

10,000. In addition, from each image we train each individual codebook, which contain

128 codewords. Now, we train the 192-dimensional quantizer with 1,280,000 training

data points. Since the training process still experiences the curse of dimensionality,

we manually separated the training data points into four groups and trained four

separate codebooks. To train these quantizers, we use the Linde-Buzo-Gray (LBG)

algorithm [27, 50], which guarantees that the distortion from one iteration to the

next does not increase. It is worth noting that in the training process we observed a

number of empty cells, which do not contain any data point. To correct this problem,

we place these codewords in the vicinity of the highest population codeword as is

commonly done in VQ training. Once the four codebooks are generated separately,

they are merged into one codebook that we use as a visual dictionary.

Table 4 shows average peak-signal-to-noise ratio (PSNR) values for reconstructed

images both for the incremental parsing and VQ.
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Red Green Blue

IP θjnd=1.6 24.26 24.50 22.04
IP θjnd=2.0 23.00 23.37 21.17
IP θjnd=2.5 21.62 22.08 20.09

VQ 26.60 26.88 26.85

Table 4: Average PSNRs in each color channel for all the images.

The PSNR is traditionally derived from the mean-squared error (MSE) as

PSNR = 10 log10

(

(2q − 1)2

MSE

)

, (32)

where MSE = 1
n

∑n
i (xi− x̂i)

2 and q is the number of quantization bits for each pixel.

In the table, the PSNR values for VQ are higher than those for the incremental

parsing due to the nature of VQ that minimizes the average distortion. Examples of

the reconstructed images by the techniques are provided in Figure 21. Although the

number of codewords in the dictionary formed by the VQ is the same as the number

of entries in the dictionary by incremental parsing with θjnd=1.6, the reconstructed

images by the VQ gives higher fidelity than the one by incremental parsing.

Similar to the image retrieval systems implemented in Section 3.4.2, the co-

occurrence matrix is generated with the visual dictionary and projected onto a reduced

space, and finally, the similarity between images is computed. The image retrieval

system with VQ is essentially the same as that with IPSILON except the following

two points. First, the incremental parsing minimizes the number of visual patches

used in the reconstruction of a given image under a prescribed distortion bound, while

VQ minimizes the average distortion of the reconstructed image. Second, the visual

patches in the incremental parsing is of variable size, while the shape in VQ is fixed.

These two factors are the key to their differential performances.
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(a) IP θjnd=1.6 (b) IP θjnd=2.0 (c) IP θjnd=2.5 (d) VQ

Figure 21: Examples of reconstructed images. Average PSNRs across the color
components are (a) 24.09 dB, (b) 23.01 dB, (c) 21.83 dB, and (d) 27.31 dB.

3.5 Experimental Results

We demonstrate the performance of the IPSILON systems and the benchmark system

using a database of 20,000 images of natural scenes and compare with that of one of

the recent image retrieval systems, the SIMPLIcity. The SIMPLIcity algorithm first

segments a given image into a few regions based on the k-means algorithm. Then

by a semantic classification method, the image is categorized into one of four groups

(graph versus photograph and textured versus non-textured) so that the retrieval

system limits the search range in the entire database. The similarity between images

is computed by an integrated region matching (IRM). For a detailed description of

SIMPLIcity, the reader is referred to [81].

3.5.1 Retrieval Precision Evaluation

A common practice in information retrieval for performance evaluation is to use pre-

cision/recall tests. Since the number of retrieved images that are to be rendered on a

user interface of the system is limited, it is pragmatic to focus on a few most relevant

images without examining the entire retrieved image group. Let m denote the num-

ber of visual concepts, which is 15 in this experiment. ni and qi denote the number
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of images and queries in the ith visual concept, as shown in Table 3. Let si,j be the

number of relevant images for the jth query in the ith concept, j = 1, · · · , qi. r is the

number of most relevant images that we are interested in. In this experiment, r is

in {20, 40, 100}. The r-most relevant precision for the jth query in the ith concept is

computed as

si,j

r
, (33)

and the average precision for all the queries in the ith concept is

qi
∑

j=1

si,j

r · qi
. (34)

By taking the nonuniform prior shown in Table 3, we define the weight wi for the ith

concept as

wi =
m · ni
m
∑

i=1

ni

. (35)

Finally, the total average precision for all the queries is

m
∑

i=1

wi

qi
∑

j=1

sij

r ·
m
∑

i=1

qi

(36)

To evaluate the performance of all five systems, all 600 query images were em-

ployed. We provide a few retrieved examples for illustration in Figure 22 because

of space limitations. Figures 22 (e) and (f) compare two different characteristics of

the two systems. For the same query image of “brown and white horses on a grass

field,” we observe that the SIMPLIcity tries to retrieval such images that contain the

concepts of “brown and white horses” while IPSILON focuses more on finding the im-

ages of “horses on a grass field.” Similar examples are shown in Figures 22 (a) and (b).
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Figure 22: Comparison of IPSILON and SIMPLIcity. For IPSILON, θjnd=1.6 and
K=800 are chosen. The upper-left image of each set of images is the query image.
Each number below each image is the index of visual concept.

For the query of “pink fireworks on dark sky,” we understand that the SIMPLIc-

ity attempts to retrieve the images of “pink object on dark background,” while IP-

SILON aims at “pink scattering.” We agree that the above subjective understanding
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depends on the reader’s perspective. Nevertheless, it is reasonable to observe that

the SIMPLIcity depends more on shape and color of an image than IPSILON does

since the SIMPLIcity algorithm is based on a segmentation technique that results in

a region-specific semantic matching. On the other hand, the patches that underlie

IPSILON are morphologically lower level representations than regions or objects. The

patches seem to lead to reasonable image representation for visual semantic analysis.

From the overall subjective performance evaluation, the proposed IPSILON system

efficiently captures the enlisted semantic concepts and provides more precise results

as compared with the SIMPLIcity system.

We now evaluate the total average precisions of the IPSILON systems and the

benchmark system across a different number of reduced space dimensions. Figure 23

provides the total average precision of all five systems for the same queries and the

same image database. It is obvious that the total average precisions of the IPSILON

systems are significantly higher than those of the benchmark system and the SIMPLIc-

ity system. In addition, from this comparison, we carefully argue that the fixed-block

representation, which underlies the VQ-based retrieval system, may not be effective

for visual information analysis. We will see further supporting evidence later in this

section. As shown in Figure 23 (c), even when r=100, the total average precisions

of the IPSILON systems are much higher than those of the other two by as much

as 0.1. For the three rs, the precisions notably decrease at K < 500, which means

approximately 500 latent concepts are captured from the image corpus by LSA.

Figure 24 compares the average precisions of the five retrieval systems. For all

15 visual concepts, the retrieval precisions of the IPSILON systems are significantly

higher than those of the two other systems. Except for the visual concepts “beach-

coast’ and “tiger,” the precisions of the proposed systems are over 0.30. For a few

visual concepts, i.e., “flower,” “horse,” “racing,” and “sunset,” the average precisions

of the IPSILON systems are over 0.2 higher than the other two at r=20.
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Figure 23: Comparison of the five image retrieval systems over the LSA dimensions.

Table 5 provides a numerical comparison of the total average precisions. Obviously,

different perceptual distortion in visual pattern matching does not have serious effects

on the retrieval precision, although allowing looser perceptual thresholds in image

compression result in poor reconstruction fidelity as shown in Figure 21.

From Figures 23 and 24 and Table 5, we observe that the parsed representation

organized by incremental parsing outperforms the fixed-block representation trained

by VQ in visual information analysis for image retrieval. For an in-depth justification,

we analyze the LSA dimensions formed by the two different techniques. Figure 25

provides two-dimensional illustrations of latent semantic dimensions of images and

visual words. For all four plots, x-axis and y-axis correspond to the first and the

second LSA dimensions.
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Figure 24: Comparison of average precisions of the five image retrieval systems for
each visual concept. r=20 and K=800.

The two dimensions in each plot correspond to the two orthogonal axes that cap-

ture the first and the second largest eigenvalues of the given co-occurrence matrix.

Note that only those data points with large magnitude are specified in this figure.

In Figure 25 (a), the superimposed images on the corresponding locations have three

primary visual concepts, e.g., “underwater,” “blue sky,” and “bright sky.” It is im-

portant to note that the two similar semantic concepts, “blue sky” and “bright sky,”

are well differentiated so that these two concepts are not confused in the proposed

retrieval systems.
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IPSILON IPSILON IPSILON
θjnd=1.6 θjnd=2.0 θjnd=2.5

VQ SIMPLIcity

r=20 0.502 0.480 0.470 0.322 0.381
r=40 0.435 0.431 0.419 0.294 0.323
r=100 0.353 0.355 0.352 0.250 0.264

Table 5: Total average precisions of the image retrieval systems. K=800.

On the other hand, it is shown in Figure 25 (b) that the fixed-block representa-

tion primarily considers black regions dominant in the first two LSA dimensions;

most of the superimposed images in the figure are those with large black areas from

various semantic concepts such as “orchid,” “fireworks,” “birds,” “flowers,” “beach,”

and even “sunset.” Figure 25 (c) shows two primary axes along which two sets of

visual patches are superimposed. These two sets of patches are well differentiated

and used to represent the three visual concepts shown in Figure 25 (a). However, as

shown in Figure 25 (d), most of the image blocks trained by VQ are clustered around

the origin, and it is not clear if those blocks capture semantically meaningful visual

information.

3.6 Discussions

In this dissertation chapter, we have proposed a new representation of visual informa-

tion generated by a universal source coding technique and applied it to the design of

IPSILON, a CBIR system. With a multidimensional incremental parsing technique,

as a multidimensional extension of the Lempel-Ziv incremental parsing, a given image

is compressed and the accompanying dictionary is generated. It is previously verified

that the statistics of a given source is implicitly embedded in the dictionary. With the

incremental parsing technique, a given image is decomposed into a number of patches

of variable size. This patch can be thought of as a morphological interface between

elementary pixels and a higher level representation than the conventional fixed-block

representation.

59



0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4

-0.4


-0.3


-0.2


-0.1


0


0.1


0.2


0.3


(a) Parsed representation

-0.4
 -0.35
 -0.3
 -0.25
 -0.2
 -0.15
 -0.1
 -0.05
 0


-0.6


-0.5


-0.4


-0.3


-0.2


-0.1


0


(b) Fixed-block representation

0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07

-0.05


-0.04


-0.03


-0.02


-0.01


0


0.01


0.02


0.03


(c) Parsed representation

-0.02
 -0.015
 -0.01
 -0.005
 0

-0.02


-0.015


-0.01


-0.005


0  


0.005


(d) Fixed-block representation

Figure 25: Two-dimensional illustrations of latent semantic dimensions of images
and patches.

The proposed image retrieval framework uses the dictionary entries generated in the

coding procedure as features of the given image and employs the LSA paradigm for

deriving the semantic relationship among images. We have designed three image

retrieval systems with different perceptual distortion thresholds. For an objective

evaluation of the performance of the IPSILON systems, we compare them with those

of two other systems: a benchmark system that uses fixed-block representations of

visual information trained by VQ and the SIMPLIcity system based on an image

segmentation technique. These five systems are tested with 20,000 images of natural

scenes and 600 query images. The experimental results show that the proposed parsed

representation efficiently captures the visual semantics appeared in the image corpus
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and that the image retrieval systems based on the parsed representation outperform

the other systems in terms of retrieval precision.

However, the proposed framework has methodological limitations:

1. LSA basically assumes that the lexicon enumerates all the words appeared in

a corpus. If an image contains unseen visual patterns to the visual dictionary,

the image may not be appropriately analyzed by the current framework and, in

turn, may not be correctly retrieved.

2. As shown in the experimental results, the proposed framework is not robust

to pixel variational distortions. This is mainly due to the pixel-wise distortion

criterion.

3. Currently, a full search technique is employed for generating the occurrence

vectors of images, which is computationally demanding.

4. A fundamental limitation of a query-by-example CBIR system is that it can only

deal with imagery queries. Frequently, users of CBIR systems may experience

difficulty in accessing those images that reflect users’ query in mind.

To overcome these limitations, one may consider the following approaches in future

work:

1. By employing numerical or statistical detection techniques, a visual dictionary

could be adaptively updated for unseen images. Also, rather than the current

pixel-wise distortion criterion, one may consider first- and second-order statistics

of pixel values for visual pattern matching.

2. Organizing the visual dictionary into a tree-structured dictionary along some

components, e.g., dominant colors, perceptual salience, will reduce computa-

tional complexity for dictionary search.
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3. As extending the current framework, one may consider probabilistic modeling

of a given corpus for dealing with heterogeneous queries, such as hand-drawing,

keywords, and even spoken query.
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CHAPTER IV

ASPECT MODELING OF PARSED REPRESENTATIONS

FOR IMAGE RETRIEVAL

4.1 Introduction

The IPSILON systems proposed in the previous chapter are content-based retrieval

systems, which accept imagery queries. As discussed in Chapter 1, users of CBIR sys-

tems may experience difficulty in accessing relevant images that reflect users’ query

in mind. The LSA paradigm on which the IPSILON systems are based cannot readily

allow projecting heterogeneous queries onto the vector space model. In addition, the

LSA technique has considerable limitations. The fundamental assumption of LSA is

that words and documents form a joint Gaussian distribution. In a context of count

data, it is known that Poisson or negative binomial distribution is more appropriate for

term counts [52, Section 15.4.3]. Another drawback of LSA is that since the approx-

imate co-occurrence matrix is also a Gaussian distribution, it may contain negative

entries for occurrence counts, which is obviously an unsuitable approximation for term

counts. To overcome the limitations of LSA, which underlies the IPSILON systems,

we study probabilistic linguistic processing techniques in this chapter. Probabilistic

linguistic analysis provides great potential for a flexible framework of information

retrieval in many aspects. First, heterogeneous queries as well as imagery queries can

be mapped into a probabilistic source model by supervised/unsupervised learning al-

gorithms. Second, one can achieve a generative model of a given corpus and train the

model with either observed or unobserved documents. Third, in turn, since a given

document is modeled as a probability distribution of a set of hidden parameters, the

document can be easily analyzed in an understandable fashion.
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Different probabilistic document models have been proposed in literature [5,9,30].

Their models arise from a similar assumption: Humans usually compare text doc-

uments based on topic similarities, not based on word similarities. The topics of a

text document are not explicitly obtained but can be estimated from a document

corpus, and they represent a document in a compact epitome. The basic assump-

tion of this type of document modeling is that a document is a mixture of hidden

variables, commonly referred to as latent aspects. The latent aspects are drawn from

multinomial distributions over words of each text corpus. It has been shown that

latent aspects learned from a corpus well follow document topics identified by hu-

mans [5, 30]. Among the probabilistic document models, we focus on probabilistic

latent semantic analysis (PLSA) [30] in this chapter because the other two [5, 9] are

variational models of PLSA except for the probability model of documents.

In visual information analysis applications, e.g., image retrieval and annotation,

a considerable number of techniques that take advantage of the aspect modeling by

PLSA have been reported in literature. Most of them extract visual features from

fixed-block partition [10, 23, 56] or image segments [91]. As discussed in Chapter 1,

many natural objects are not tessellations of fixed shape blocks and image segmenta-

tion is yet far from mimicking the way a human identifies real world objects. However,

it is unclear that such representations of visual information are the best practice in

higher level processing of images. To tackle this problem, we developed a multidi-

mensional incremental parsing scheme proposed in Chapter 2 and applied it to the

design of image retrieval systems in Chapter 3. In this chapter, based on the parsing

scheme, we propose a query-by-example probabilistic CBIR framework which uses the

dictionary entries generated in the coding procedure as features of the given image.

Once the co-occurrence matrix of a given image corpus is generated, we train the

aspect model by PLSA and design image retrieval systems, called AMPARS (Aspect

Modeling of PArsed RepreSentation). To compare the effectiveness of the use of the
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dictionaries by incremental parsing (IP) under PLSA framework, we implemented a

benchmark retrieval system that uses a visual dictionary trained by VQ [27]. Also,

the performance of these systems, in terms of retrieval precision, is compared with two

systems: the IPSILON system proposed in Chapter 1 and the SIMPLIcity proposed

by Wang et al. [48,81]. By analyzing the aspect model parameters, we experimentally

justify the relevance of the parsed representation in image retrieval framework.

One of the notable differences of AMPARS systems compared with the previous

systems is the pattern matching scheme. IPSILON systems use a minimax distor-

tion function (21) for evaluating the perceptual similarity of visual patches. By the

minimax distortion function, the pattern matching scheme searches the dictionary

entries whose perceptual distortions are bounded within a just-noticeable distortion.

As shown in Chapter 2, this pattern matching shows high efficiency in perceptually

based lossy data compression. However, a desirable attribute of pattern matching

in image retrieval systems is to minimize semantic discrepancy and not to minimize

perceptual distortion. One alternative way beyond the pixel-wise perceptual distor-

tion measure is to compare the first- and second-order statistics of given patches.

One of the recent measures in this regard is the structural similarity measure (SSIM)

proposed by Wang et al. [82]. It has been experimentally verified in [8] that SSIM

is robust to various types of image perturbations that are not sensitive to human

eyes, e.g., geometric transformation, contrast variation, brightness variation and so

on. Since SSIM is originally designed for comparison of gray-scale images, we propose

a variation of SSIM for the measurement of color image patches.

The rest of this chapter is organized as follows: in the next section we briefly review

probabilistic latent semantic analysis. In Section 4.3, we study a class of structural

similarity index measures and propose a new measure for color image similarity. We

provide detailed implementations of the proposed and the benchmark image retrieval

systems in 4.4. The performance comparison of the four systems is presented in
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Section 4.5. A discussion and final remarks are found in Section 4.6

4.2 Probabilistic Latent Semantic Analysis

Suppose that we have a collection of N documents D = {d1, · · · , dN} and a lexicon

with M words W = {w1, · · · , wM}. Based on the vector space model [71], a doc-

ument is represented as an M-dimensional vector. From the observation of a given

corpus, we can compute the empirical distribution p(w, d) that corresponds to the

term-document co-occurrence in LSA. Basically, PLSA estimates the term-document

joint distribution P (w, d) that minimizes the Kullback-Leibler (KL) divergence with

respect to the empirical distribution p(w, d) subject to K latent aspects, as opposed

to the L2 norm minimization performed by LSA. In aspect modeling, each document

is a mixture of latent aspects zk ∈ Z = {z1, · · · , zK}.

PLSA model has two independence assumptions. First, observation pairs (wi, dj)

are generated independently. Second, the pairs of random variables (wi, dj) are con-

ditionally independent given the hidden aspect zk, i.e.,

P (wi, dj|zk) = P (wi|zk)P (dj|zk). (37)

The joint distribution of the observation pairs is the marginalization over the K latent

aspects zk as follows:

P (wi, dj) = P (dj)P (wi|dj) (38)

= P (dj)
∑

zk∈Z

P (wi|zk)P (zk|dj) (39)

Figure 26 illustrates a PLSA graphical model and the conditional independence as-

sumptions of the PLSA model shown in (39). A document dj is first selected with

the probability P (dj), and an aspect zk is selected from the conditional probability

P (z|di). According to the conditional probability P (w|zk), each word wi is selected.
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Figure 26: Graphical model for PLSA for a corpus with N documents and an
M-word lexicon. Shaded nodes are observed. Square boxes denotes that they are
replicated the number of times indicated in the top-left corner.

4.2.1 Learning Model Parameters

The estimation of the conditional probability distributions P (wi|zk) and P (zk|dj) can

be resolved by applying the expectation-maximization (EM) technique [20], which

maximizes the likelihood function of the observed data

L =

N
∏

j=1

M
∏

i=1

P (di)

K
∑

k=1

P (zk|dj)P (wi|zk)p(wi,dj), (40)

or equivalently the log-likelihood function

logL =

N
∑

j=1

M
∑

i=1

p(wi, dj) log P (wi, dj). (41)

This is equivalent to the minimization of the cross entropy of the empirical distribution

p(w, d) and the term-document joint-distribution P (w, d)

H(p(w, d), P (w, d)) = −
N
∑

j=1

M
∑

i=1

p(wi, dj) log P (wi, dj), (42)

which is also equivalent to minimizing the Kullback-Leibler (KL) divergence of p(w, d)

and P (w, d). The EM algorithm alternates in two steps: an expectation (E) step

and a maximization (M) step. In an expectation step, the conditional probability

distribution of the latent aspect zk, given the observation pair (wi, dj), is computed

based on the previous estimates of the parameters:

P (zk|wi, dj) =
P (wi|zk)P (zk|dj)

∑K
k′=1 P (wi|zk′)P (zk′|dj)

. (43)
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In a maximization step, the parameters of the multinomial distribution P (wi|zk) and

P (zk|di) are replaced with the updated conditional probability distribution P (zk|wi, dj):

P (wi|zk) =

∑N
j=1 p(wi, dj)P (zk|wi, dj)

∑M
i=1

∑N
j=1 p(wi, dj)P (zk|wi, dj)

, (44)

P (zk|dj) =

∑M
i=1 p(wi, dj)P (zk|wi, dj)

p(dj)
. (45)

The initial values for P (wi|zk) and P (zk|dj) can be set to either uniform or random

distributions. The variability of solutions obtained from various initial conditions is

observed small in [30]. The output of the EM algorithm under PLSA is the two multi-

nomial distributions P (w|z) and P (z|d), from which the joint distribution P (w, d) is

estimated.

4.2.2 Overfitting Control

The PLSA algorithm described above focuses only on maximizing the likelihood func-

tion to fit a model to a given corpus. However, the likelihood cannot be a measure

of the quality for unseen test data. Thus, one has to control the tradeoff between the

predictive performance on the training data and on unseen data by a regularization

term. In [30], Tempered Expectation-Maximization (TEM) is introduced to deal with

this problem. In a standard EM, only the E step is replaced with

Pβ(zk|dj, wi) =
P (zk)[P (wi|zk)P (dj|zk)]β

∑K
z′
k
=1 P (z′)[P (wi|z′k)P (dj|z′k)]β

, (46)

where β is a control parameter that scales the likelihood function. In the TEM

algorithm, β is first set to 1.0. If the performance of the likelihood function improves,

β does not change in the TEM. Otherwise, β is updated as β=ηβold with η < 1.0.

4.2.3 Learning a New Document

When an unseen document dnew is given, the conditional probability P (z|dnew) can be

estimated by the folding-in method proposed in [30]. By fixing the previously learned
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models P (z) and P (w|z) in the EM algorithm, one can estimate the P (z|dnew) which

maximizes the likelihood of the document dnew with respect to the P (z) and P (w|z).

4.3 Structural Similarity Index

The most commonly used objective quality measure is the mean squared error (MSE),

commonly expressed as peak-signal-to-noise ratio (PSNR), which is known to be in-

adequate as a measure of perceptual distortion. A number of perceptual measures

have also been proposed [22, 62]. These measures have relied upon certain explicit

low-level models of human perception that account for sensitivity to subband noise

as a function of spatial frequency, local luminance, and the contrast or effect of tex-

ture masking. Another recently proposed class of quality measures, known as the

structural similarity (SSIM) [82, 85], is not based on explicit models of the HVS or

measurements of noise sensitivities, but instead, account for higher-level functionali-

ties of the HVS, and in particular, make use of the fact that it can extract structural

information (in the form of relative spatial covariance) from the viewing field. An

important property of SSIM metrics is that they allow imperceptible point-by-point

distortions, such as spatial and intensity shifts and contrast and scale changes, and

only respond to significant structural changes. Thus, they are expected to be more

effective at measuring suprathreshold compression distortions, which affect the struc-

ture of an image.

4.3.1 Review of Structural Similarity Measures

There are several SSIM implementations, both in the image domain and the wavelet

domain. The basic SSIM metric presented in [82], combines three terms: a luminance

term, a contrast term, and a structure term. Given two images or partial images x

and y, the luminance component is defined as

l(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1
, (47)
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where µx and µy are the means of the two images. The contrast comparison term is

defined as

c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2
, (48)

where σ2
x and σ2

y are the variance of the two images. The structure term is defined as

s(x,y) =
σxy + C3

σxσy + C3

, (49)

where σxy is the covariance between the two images. These three terms are combined

to give a composite measure of structural similarity:

SSIM(x,y) = l(x,y)αc(x,y)βs(x,y)γ, (50)

where α, β, and γ are positive weights. Following the parameter settings in [82],

α = β = γ = 1 and C3 = C2/2, we get a specific implementation of SSIM quality

metric

SSIM(x,y) =
(2µxµy + C1) (2σxy + C2)

(µ2
x + µ2

y + C1) (σ2
x + σ2

y + C2)
. (51)

The basic SSIM index proposed in [82] is a real number in the range [−1, 1]. A more

general form of this metric can be found in [82]. The spatial domain SSIM has been

shown to provide good quality prediction across a variety of artifacts, but is highly

sensitive to spatial translation.

The complex wavelet domain implementation (CWSSIM) [84] allows imperceptible

spatial translations as well as small rotations and scaling changes. The CWSSIM of

a given subband is given by

Sc(cx, cy) =

2

∣

∣

∣

∣

∑

i

cx,ic
∗
y,i

∣

∣

∣

∣

+ C

∑

i

|cx,i|
2 +

∑

i

|cy,i|
2 + C

, (52)

where cx and cy are the wavelet coefficients corresponding to two images or image

patches, c∗ denotes the complex conjugate of c, and C is a small positive constant.
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Note that the mean of the wavelet coefficients (except the base-band) is zero due to

the bandpass property of the wavelet transform. The overall metric value is computed

as the mean of the CWSSIM subband indexes. The main idea of this quality metric

is that the relative phase patterns of the wavelet coefficients contain the structural

information of the local image features and the image distortion generates a nonhomo-

geneous perturbation to phase components. A variation of this metric, the weighted

CWSSIM (WCWSSIM), was proposed by Brooks et al. [7, 8], whereby the subband

indexes are weighted based on the human contrast sensitivity function. The subband

weights are derived by the normalized contrast sensitivity over a spatial frequency

range as follows:

ws =

∫ um

0

C(u)Hs(u) du
∫ um

0

Hs(u) du

. (53)

Here, um is the maximum spatial frequency at given viewing parameters, C(u) is the

frequency response of the CSF, and Hs(u) is the wavelet subbands. The WCWSSIM

incorporates an explicit models of subband sensitivity to noise, and thus provides a

link to the perceptual metrics described above.

Although the above SSIM indexes primarily focus on comparing the structural

information from the images, it has not been used in texture comparison applications

since the original SSIM is too constrained to capture the perceptual similarity of two

textures. Zhao et al. in [93] replaced the structure term with structural texture

terms that are sensitive to local textual statistics. The first-order autocovariance in

the horizontal direction is defined as

ρx(0, 1) = E{(xi,j − µx)(xi,j+1 − µx)}/σ2
x (54)

The autocovariance in the vertical direction is defined in a similar fashion. The

texture term in the horizontal direction is formulated as

c0,1(x,y) = 1− 0.5(|ρx(0, 1)− ρy(0, 1)|)p, (55)
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which gives a real number in the range [0,1]. In [93], p is set to 1. These horizontal

and vertical texture terms are combined with the luminance and the contrast terms

in the original SSIM as follows:

STSIM(x,y) = l(x,y)
1
4 c(x,y)

1
4 c0,1(x,y)

1
4 c1,0(x,y)

1
4 . (56)

In [93], they experimentally showed that the proposed STSIM performs well for tex-

ture retrieval applications.

The structural similarity measures mentioned above only account for measuring

the similarity of gray-level images. An attempt for measuring the structural similarity

of color images and video sequences were made by Wang et al. [83]. Although they

aim at evaluating the overall fidelity of two video sequences, a part of their method

can be used for measuring the structural similarity of two color images. For jth

sampling window in ith video frame, the structural similarity is measured on YCbCr

domain as follows:

SSIMij = wY SSIMY
ij + wCbSSIMCb

ij + wCrSSIMCr
ij (57)

where the weights are fixed to be wY = 0.8, wCb = 0.1, and wCr = 0.1, respectively.

The structural similarity of ith video frames are

Qi =

∑Rs

j=1 wijSSIMij
∑Rs

j=1 wij

, (58)

where Rs denotes the number of sampling windows per video frame and wij is the

weighting value given to the jth sampling window in the ith frame. The overall quality

of the entire video sequence is given by

Q =

∑F
i=1 WiQi
∑F

i=1 Wi

, (59)

where F is the number of frames and Wi is the weighting value assigned to the ith

frame.
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4.3.2 Color Structural Texture Similarity Measure

Remember that we are interested in an information retrieval framework that takes

advantage of lossy universal source coding schemes. In IPSILON systems proposed in

Chapter 3, as a lossy source coding scheme, we implemented a lossy two-dimensional

incremental parsing scheme with the minimax distortion function (21). As mentioned

in Section 4.1, the distortion function for a universal coding in visual information

analysis, not perceptual image compression, aims at measuring semantic discrepancy

rather than perceptual distortion between patches. In this regard, structural simi-

larity measures are of our interest due to the following advantages. First, since they

are based on higher-orders statistics, not based on the pixel-wise distortion, they are

robust to geometric distortions, such as rotation, shift, scaling, and so on. Second,

the luminance term of the measure alleviates the effect of luminance or brightness

change. However, there has been no structural similarity measure that takes into

account color images or image patches in image retrieval applications. Thus, we

here propose a color structural texture similarity measure (CTSIM) for a matching

criterion of the universal source coding.

Let x and y be two images or image patches to be compared represented in

three color components, i.e., red, green, and blue (RGB). When each image patch

is represented in YCbCr domain as x = {xY ,xCb,xCr} and y = {yY ,yCb,yCr} we

observed rich textures of the luminance component. Thus, we propose to use the

STSIM for Y component and the original SSIM for Cb and Cr components as follows:

CSTSIM(x,y) = wY STSIM(xY ,yY ) + wCbSSIM(xCb,yCb) + wCrSSIM(xCr,yCr),(60)

where wY , wCb, and wCr are the weights for each component. In this implementation,

we set wY =0.6, wCb=0.2, and wCr=0.2, respectively. Also, for SSIM, we follow the

parameter settings shown in [82]: C1 = (K1L)2, C2 = (K2L)2, L = 255, K1 = 0.01,

and K2 = 0.03. From our experiment, the proposed CSTSIM efficiently captures the
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textual information of a given patch and compares it with that of other patches. Also,

the CSTSIM is robust to color mean shift, contrast variance of luminance component,

and so on.

4.4 Implementation of Image Retrieval Systems

We have implemented two image retrieval systems for an objective evaluation of the

proposed framework; one uses the parsed representation based on the incremental

parsing and the other uses the conventional vector quantization for visual information

analysis. Both of them are under the same aspect modeling paradigm. The perfor-

mance of the systems are compared with that of one of the recent image retrieval

systems, SIMPLIcity [48, 81], which is based on an image segmentation technique.

In this section, a detailed description of the implementation of the two systems is

provided.

4.4.1 Image database

We implemented the proposed and the benchmark image retrieval systems using

20,000 images obtained from the Corel Stock Photo Library, which is the same as

the database used for the IPSILON systems in Chapter 3. Also, the specifications

with regard to the definition of the visual concepts, the number of images, and the

number of query images in each visual concept, are provided in Figure 18 and Table

3.

4.4.2 AMPARS system

The proposed image retrieval system parses the given images into a number of variable-

size patches, which we refer to as a parsed representation, by a two-dimensional in-

cremental parsing algorithm. Then the latent aspects of the occurrence pattern of the

parsed representations are trained under the PLSA paradigm. The semantic similar-

ity between two images is computed with the likelihood of the images on the concept
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space formed by the latent aspects. A detailed implementation of the proposed AM-

PARS systems is provided in the following section.

4.4.2.1 Two-dimensional Incremental Parsing

Among recent influential achievements in universal source coding, the most notable

are the two coding algorithms proposed by Lempel and Ziv in 1977 and 1978, called

the Lempel-Ziv sliding window (LZ77) [96] and the Lempel-Ziv incremental pars-

ing (LZ78) [97]. Since then, they have been not only widely applied to many data

compression applications but also extended to a variety of source coding algorithms,

e.g., lossless coding schemes for nonstationary sources or multidimensional sources

and lossy source coding algorithms. Their success is primarily due to the fact that

without any prior knowledge of the statistical distribution of the given source, the al-

gorithms asymptotically achieve a source rate approaching the entropy of the source.

In particular, we are interested in the LZ78 because the statistics of the given source

implicitly are embedded into its dictionary.

Although the LZ78 scheme has been successfully implemented in many data com-

pression applications, it has a fundamental limitation: the coding algorithm pertains

to only one-dimensional discrete source sequences. For multidimensional source se-

quences, a source scanning scheme is employed to generate a one-dimensional source

sequence from the given sequence. This limitation motivated us to devise a multi-

dimensional incremental parsing scheme for universal source coding. In Chapter 2,

the incremental parsing scheme is implemented into lossy image compression algo-

rithms with the two distortion functions: local average distortion and local minimax

distortion. Also, for the pattern matching of the coding scheme, the scheme searches

the dictionary for the maximum decimation patch. The experimental results show

that the coding efficiency of the proposed scheme outperforms other existing pattern-

matching based image compression algorithms. Also, when applied to image retrieval
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systems, the scheme parses the given visual information into a number of variable-size

visual patches, and the proposed image retrieval systems shows significantly improved

retrieval efficiency compared to those systems based on the conventional representa-

tions of visual information.

However, in spite of the improved performance of the image retrieval systems, it

is yet to be confirmed that the incremental parsing scheme implemented is relevant

for semantic matching of the given image patches. A desirable attribute of pattern

matching in image retrieval systems is to minimize semantic discrepancy and not to

minimize perceptual distortion. One alternative way beyond the pixel-wise perceptual

distortion measure is to compare the first- and second-order statistics of given patches.

Thus, we propose a different type of pattern matching criterion and implement an

incremental parsing scheme for the applications of visual information analysis.

Let X be a two-dimensional vector field taking values from a set of three-dimensional

finite vectors. Each element of the vector represents each color component, here red,

green, blue (RGB), respectively. X(~x) denotes the symbol vector at the location

~x ∈ Z
2. Also, we define a subset of X for an area vector ~a ∈ Z

2 as follows:

X(~x;~a) = {X(x̄1, x̄2) : xi ≤ x̄i ≤ xi + ai, i = 1, 2}. (61)

Given a dictionary D, we define two operations | · | and [·]. |D| denotes the number of

elements of D, [Dj] refers to an area vector whose element represents the number of

pixels of the jth patch along each axis, and |Dj| corresponds to the number of symbols

of the jth patch. At the current pattern matching location, called an anchor point,

denoted by ∆, the set of dictionary indices by ǫs-bounded similarity at ∆ is

Hs = {j | CSTSIMmax − CSTSIM(Dj, X(∆; [Dj])) ≤ ǫs, 0 ≤ j ≤ |D|, ǫ ∈ R+}, (62)

where CSTSIMmax is the maximum value of CSTSIM, equivalent to 1.0, and ǫs denotes

the bound of the structural similarity. In the proposed implementation, we manually

set ǫs to 0.015. At each epoch, the parsing scheme constructs the set of indices
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following the similarity measure. Then, it selects the maximal match index kmax by

kmax = argmax
k∈Hs

{|Dk|} . (63)

Once the maximal match is found, the scheme appends the dictionary with two

new entries, each of which is obtained by appending pixels along the horizontal and

the vertical axes. After the pattern matching and the dictionary augmentation are

finished, ∆ moves following a predetermined heuristic method. In the proposed im-

plementation, a raster scanning order is employed for the movement of ∆. Note that,

in Chapter 2, it is shown that either the raster scanning or other types of scanning

order, e.g. column-wise scanning order, does not provide any considerable difference

in terms of coding efficiency.

4.4.2.2 Generation of Visual Dictionary

In the aspect modeling of text document, a given text corpus is represented in its

empirical distribution p(w, d) by counting the number of words occurred in each docu-

ment. For an image corpus, we train the aspect model from the empirical distribution

of the image-patch observations by PLSA. To generate the empirical distribution, we

first have to generate a visual dictionary with which all the images from the corpus

can be reconstructed. We follow the heuristic shown in Section 3.4.2: at each coding

iteration, a given image is encoded with the dictionary updated at the previous iter-

ation. For every np image during the encoding procedure, the dictionary entries that

are not used for encoding the previous np images are pruned, and the dictionary with

reduced entries is fed back to the coding step.

In the proposed system, we set np to 100 and randomly chose 1,200 images for

the generation of visual dictionary. Figure 27 plots the number of dictionary entries

during the generation of the visual dictionary for the proposed incremental parsing

scheme.
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Figure 27: Number of entries in the process of the generation of visual dictionary.

As the coding scheme proceeds, the number of dictionary entries increases, and at

every np image, the unused dictionary entries are pruned so that the number of en-

tries decreases to a considerably lower number. It is observed that the number of

entries oscillates without any major change. The number of entries in the resulting

dictionary is 151,390 for ǫs = 0.015.

4.4.2.3 Aspect Modeling by PLSA

Once the visual dictionary is generated, the occurrence patterns of the visual patches

in the dictionary are analyzed for the 20,000 images in the database. Let n(w, d)

denote the co-occurrence count matrix of the image corpus for the given dictionary.

Since the number of the occurrence of each document is heterogeneous, the distribu-

tion of occurrences within each image is smoothed out as follows:

p(wi|dj) =
n(wi, dj)

n(dj)
, (64)

where n(dj) =
∑M

i=1 n(wi, dj). By assuming a-priori distribution of the image uniform,

i.e., p(d) = 1/N , we get p(w, d) = p(w|d)p(d). In [4], by taking inter- and intra-

document normalization into account, the co-occurrence count matrix can be weighted

by a term-frequency normalized-entropy. The normalized entropy of ith word εi is

εi = −
1

log N

N
∑

j=1

n(wi, dj)

n(wi)
log

n(wi, dj)

n(wi)
, (65)
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where n(wi) =
∑N

j=1 n(wi, dj) is the total number of times the ith visual patch occurs

in the image corpus. The empirical distribution p(w, d) is weighted by the normalized

entropy εi as follows:

pn(wi, dj) = (1− εi)p(wi, dj). (66)

For learning the latent aspects of a given image corpus by PLSA, the number of

latent aspects, K, is manually set to 500. Before learning the PLSA model by EM,

P (z|d) and P (w|z) are randomly initialized. The EM algorithm is executed until

the log-likelihood function (41) converges. The condition of convergence for the EM

algorithm is defined as

log
Lnew

Lold
< 0.05. (67)

Once the latent aspects are modeled, the similarity between the query image and

each image in the database is then computed. Generally, the similarity measure be-

tween documents under the PLSA paradigm is still an open problem. In other words,

there is no measure that works for every information retrieval application. In one

conventional approach, each document is represented as a vector from the origin on

the latent space formed by the trained aspects. Then, the document similarity is

measured by the cosine of the degree between the two vectors. One other approach

is to use the Kullback-Leibler (KL) divergence [44] for the given conditional proba-

bilities of the jth document dj and the query document dq, i.e., P (z|dj) and P (z|dq),

respectively. For two discrete random variables, p, and q, the KL divergence is defined

as:

DKL(p||q) =
∑

x∈X

p(x) log
p(x)

q(x)
(68)

The KL divergence is commonly referred to as the relative entropy or the KL distance.

However, since the KL divergence is a non-commutative measure of the difference

between two probability distributions, it is not symmetric and does not satisfy the
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triangle inequality; in turn, it is not a metric. The KL divergence is always non-

negative and is zero if and only if p = q. Typically, p represents the true distribution

of the random variable, and q denotes an approximation of p. It has two problems

for practical distance measure. First, as mentioned previously, it is not a metric

and does not satisfy D(p || q) 6= D(q || p). Second, it gives ∞ when pi 6= 0 and

qi = 0. To overcome the aforementioned problems, Lin proposed the Jensen-Shannon

divergence [49]. It is defined as follows:

DJS(p || q) = DKL(p ||m) + DKL(q ||m), (69)

where m = (p + q)/2. The Jensen-Shannon divergence is symmetric and satisfies

DJS(p || q) = DJS(q || p). Also, it does not give ∞ if either pi 6= 0 or qi 6= 0. In the

proposed image retrieval system, the similarity between the jth image and the query

image is computed with the Jensen-Shannon divergence as

s(dj, dq) = DJS(P (z|dj) ||P (z|dq)). (70)

4.4.3 Fixed-block Representation under PLSA

One considerable difference between the proposed image retrieval system and the

conventional systems is the source representation for visual information analysis. As

mentioned previously, many of the existing image retrieval systems extract features

from fixed-size image blocks or image segments. To compare the performance of the

proposed system with that of the conventional approach, we design an image retrieval

system based on the fixed-block image representations trained by vector quantization

(VQ) as a benchmark system.

The benchmark system has the same components as the AMPARS system except

that the visual dictionary is trained by VQ, and the co-occurrence of image partitions

and images is generated accordingly. Then, the latent aspects of the block-image

empirical distribution are trained by PLSA. Finally, the similarity between the two

documents is computed by (70).
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Similar to the image retrieval system with VQ shown in Chapter 3, each color

image is partitioned into 8 × 8 blocks. Thus, the dimension of the VQ codebook

is 8 × 8 × 3 = 192. To train the quantizers, we use the Linde-Buzo-Gray (LBG)

algorithm [27,50]. A detailed description of this training process is provided in Section

3.4.3.

Table 6 provides average peak-signal-to-noise ratio (PSNR) values for reconstructed

images for three coding schemes: the incremental parsing used in IPSILON, the in-

cremental parsing used in the proposed AMPARS system, and VQ. The PSNR values

for VQ are higher than those for the incremental parsing schemes because of the

nature of VQ that minimizes the average distortion. The PSNR values for the incre-

mental parsing in AMPARS system are significantly lower than the other two. This

is due to the fact that the structural similarity measure used in the parsing scheme

normalizes the luminance and the contrast components so that the match found by

the proposed CSTSIM may have different luminance from that of the reference patch.

Figure 28 provides the examples of the reconstructed images by the three techniques.

Compared to the original image, the reconstructed image by VQ has blur distortion

but no salient perceptual discrepancy. In the image by the incremental parsing in

IPSILON, we observe block artifacts on the “sky” and the “mountain” region of the

image, but the image contains similar textual and color components on most of the

regions. However, in the image by the incremental parsing in AMPARS, it is ob-

vious that the color of the “mountain” is not the same as that in the other three

images, and there are significant block-artifacts on the “sky” region. Nevertheless,

we can still understand that the image is of “mountain,” “blue sky,” and “snow on

the mountain.”
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Red Green Blue

IP in AMPARS ǫs=0.015 18.82 17.38 14.77
IP in IPSILON θjnd=1.6 24.26 24.50 22.04

VQ 26.60 26.88 26.85

Table 6: Comparison of average PSNRs of three coding schemes.

(a) Original (b) IP in AMPARS ǫs=0.015

(c) IP in IPSILON θjnd=1.6 (d) VQ

Figure 28: Examples of reconstructed images. Average PSNRs across the color
components are (b) 17.98 dB, (c) 23.84 dB, and (d) 24.86 dB.

4.5 Experimental Results

We present in this section the retrieval results and the performance evaluation of

four image retrieval systems: the proposed AMPARS system, the IPSILON system,

the benchmark system, and the SIMPLIcity. IPSILON and AMPARS systems use

the parsed representations induced by the incremental parsing algorithms, while the

benchmark system is based on the fixed-block representation of visual information

trained by VQ. Aspect modeling learned by PLSA technique underlies the benchmark

and the AMPARS systems, while the IPSILON systems analyzes the given image

corpus by LSA. By the k-means clustering algorithm, the SIMPLIcity partitions a
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given image into a few regions, then the semantic similarity between the regions of

the two given images is computed by an integrated region matching (IRM). For a

detailed description of SIMPLIcity, the reader is referred to [48, 81].

Those systems are implemented with the same image databases and evaluated

with the same query images. In many information retrieval applications, the perfor-

mance of a retrieval system is commonly evaluated by precision/recall tests. Since

the number of documents or images in recent databases is too large to compute the

recall, we focus on a few most relevant images without examining the entire retrieved

images. As provided in Chapter 1, the retrieval performance is measured by the total

average precision. For m visual concepts, the average precision for the r-most relevant

precision is

qi
∑

j=1

si,j

r · qi
, (71)

where qi denotes the number of query images in the ith visual concept and si,j means

the number of relevant images for the jth query in the ith concept. The total average

precision for all the queries is defined as

m
∑

i=1

wi

qi
∑

j=1

si,j

r ·
m
∑

i=1

qi

, (72)

where wi = (m · ni)/(
∑m

i=1 ni) and ni refers to the number of images in the ith visual

concept.

Figure 29 compares the average precisions of the four retrieval systems. At r=20,

for 11 visual concepts among 15, the average precisions of the proposed AMPARS sys-

tem are significantly higher than those of the other three systems. Especially, for those

concepts, “food-dish,” “snow-glacier,” “mountain-forest,” “sunset,” and “tiger,” the

average precisions of the AMPARS system are over 0.1 higher than the other two.
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Figure 29: Comparison of average precisions of the four image retrieval systems for
each visual concept.

Also, at r=40 and r=100, the average precisions of the AMPARS system are con-

siderably higher, particularly for those concepts, “fireworks,” “mountain-forest,” and

“sunset.” Table 7 provides a numerical comparison of the total average precisions for

the four retrieval systems. The total average precisions of the proposed AMPARS

system are over 0.10 higher than the other three systems at all the rs, r=20, r=40,

and r=100. When compared under the same aspect modeling paradigm, the AM-

PARS system outperforms the benchmark VQ system in terms of retrieval precision.
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AMPARS IPSILON VQ SIMPLIcity

r=20 0.602 0.502 0.420 0.381
r=40 0.550 0.435 0.380 0.323
r=100 0.457 0.353 0.324 0.264

Table 7: Total average precisions of the four image retrieval systems.

Note again, the only difference between the proposed and the benchmark system

is that the proposed one uses the parsed representation by the incremental parsing

that minimizes the number of visual patches used in the reconstruction of an given

image, while the benchmark system uses the fixed-block representation by VQ that

minimizes the average distortion of the reconstructed images.

Figures 30 and 31 illustrate the conditional probability distribution P (d|z) for the

two maximums of P (z) in the modeling of the benchmark system and the proposed

system. Due to the limitation of space, we only provide the distributions of the images

of the 20 highest P (d|z). Also, the corresponding images are superimposed on each

plot. In Figure 30 of VQ, the latent aspects, which are the highest probabilities of

P (z), are at P (zk = 206) and P (zk = 133). These two latent aspects correspond to

the two concepts, “black background” and “ground color.” However, as seen from

the images that have the highest probabilities of P (d|zk = 206) and P (d|zk = 133),

we observe that the two latent aspects are not closely related to particular objects.

On the other hand, as shown in Figure 31 pertaining to the incremental parsing, the

two latent concepts reflect the two concepts: “green trees” and “desert.” These two

concepts are directly matched with the two visual concepts, “desert-pyramid” and

“mountain-forest,” among the 15 visual concepts that we identified from the image

corpus.

Figures 32 and 33 provide the latent aspect decomposition and the probabilities of

the words of the corresponding latent aspects for two images, “sunset” and “flower.”
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Figure 30: Conditional probability distributions of P (d|z) for the two maximums
of P (z) in the benchmark system based on the fixed-block representation trained by
VQ.

In Figure 32, we observe that the image consists of three image regions: sun with

yellow, sky with orange, and sea with deep blue and brown. In the parsed represen-

tation, the variable-size patches of the top three latent aspects are in orange, yellow,

and dark brown color that correspond to the concepts, “sky,” “sun,” and “sea,” re-

spectively. Conversely, in the fixed-block representations, the image blocks of the top

three latent aspects are in brown and gray, which are mostly for the “sea” regions.

Similarly, in Figure 33, the variable-size patches of the two latent aspects represent

the “pink and red flowers,” and the patches of the other matches with the “green

leaves.”
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Figure 31: Conditional probability distributions of P (d|z) for the two maximums
of P (z) in the proposed system based on the parsed representation generated by
incremental parsing.

However, the fixed-block patches of the two latent aspects are for the “green leaves.”

This irrelevancy of the fixed-block representations is mainly due to the nature of VQ.

Since the size of the image blocks is fixed, the occurrence patterns of blocks in VQ are

dominated by the size of the regions. In turn, these comparisons justify that relaxing

the constraint of the size of image blocks significantly affects the efficiency of visual

information analysis.
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(a) Image “Sunet”
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Figure 32: The probability distribution of latent aspects P (z|d) for the given image
“sunset” and the probability of words for three latent aspects of the highest proba-
bility.
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(a) Image “Flower”

0
 100
 200
 300
 400
 500

0


0.2


0.4


0.6


0.8


1


Aspect index


P
(z

|d
)


aspect
301


aspect
465

aspect
470


(b) Parsed Representation

0
 100
 200
 300
 400
 500

0


0.2


0.4


0.6


0.8


1


Aspect index


P
(z

|d
)


aspect
54


aspect
260
 aspect
351


(c) Fixed-block Representation

0


0.01


0.02


0.03


0.04


0.05


P
(w

|z
)


(d) Parsed Representation,
zk=301

0


0.01


0.02


0.03


0.04


0.05


P
(w

|z
)


(e) Parsed Representation,
zk=465

0


0.01


0.02


0.03


0.04


0.05


P
(w

|z
)


(f) Parsed Representation,
zk=470

0


0.01


0.02


0.03


0.04


0.05


P
(w

|z
)


(g) Fixed-block Representa-
tion, zk=54

0


0.01


0.02


0.03


0.04


0.05


P
(w

|z
)


(h) Fixed-block Representa-
tion, zk=260

0


0.01


0.02


0.03


0.04


0.05


P
(w

|z
)


(i) Fixed-block Representation,
zk=351

Figure 33: The probability distribution of latent aspects P (z|d) for the given image
“flower” and the probability of words for three latent aspects of the highest probabil-
ity.
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4.6 Discussions

In this chapter, we have proposed a probabilistic framework of content-based image re-

trieval based on the parsed representation and implemented AMPARS system. With

a multidimensional incremental parsing technique, as an extension of the Lempel-Ziv

incremental parsing, a given image is parsed into a number of patches of variable

size. These patches can be thought of as a morphological interface between ele-

mentary pixels and a higher level representation beyond the conventional fixed-block

representation. The incremental parsing technique is implemented with a new struc-

tural similarity measure that compares the first- and second-order statistics of image

patches. By a dictionary generation heuristic approach, a visual dictionary for a given

image corpus is generated. For an image corpus, we train the aspect model from the

empirical distribution of the image-patch observations by PLSA. The semantic simi-

larity between the given two images is computed by the Jensen-Shannon divergence

of the two conditional probabilities of the latent aspects. We have implemented two

image retrieval systems: one is the proposed AMPARS system, and the other is a

benchmark system that uses fixed-block representations of visual information trained

with VQ. The performance of these two systems is compared with two existing sys-

tems: IPSILON based on the incremental parsing with the minimax distortion under

the LSA paradigm and the SIMPLIcity system based on an image segmentation tech-

nique. These four systems are tested with 20,000 images of natural scenes and 600

query images. The experimental results show that the proposed framework reason-

ably captures the visual semantics appeared in the image corpus and the AMPARS

system, based on the proposed probabilistic analysis framework, outperforms other

systems in terms of retrieval precision.
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CHAPTER V

ROBUSTNESS EVALUATION OF IMAGE RETRIEVAL

SYSTEMS

5.1 Introduction

In Chapters 3 and 4, we have proposed two types of image retrieval frameworks

based on a universal source coding technique. Also, we have extensively compared

the performance of the proposed image retrieval systems with that of existing systems

in terms of retrieval precision for a given set of query images. However, the image that

a user issues for pointing to the query in the user’s mind may contain some distortions

among the following three. First, the query issued may be in a heterogeneous shape

although it is semantically homogeneous, we call this visual synonymy. Second, the

query may be analyzed and understood as a different target from the one that the

user desired, we call this visual polysemy. Third, the user issues incorrect or distorted

visual queries, called visual ambiguity. Thus, to practically evaluate the performance

of image retrieval systems, one has to take the noise robustness into account as well

as retrieval precision.

In this chapter, we perform the robustness evaluation of the image retrieval sys-

tems described in Chapters 3 and 4. We set our focus on more specific image per-

turbations: scale variations, geometric variations, additive noise, and statistical pixel

variation. In Section 5.2, we introduce nine different types of image perturbations and

the detailed implementations of them. Section 5.3 provides the experimental results

of the aforesaid image perturbations for the image retrieval systems in the previous

two chapters. Section 5.4 discusses the results.
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5.2 Simulation of Image Perturbations

In the performance evaluation of the image retrieval systems in the two previous

chapters, each query image is a complete image as stored in the database. In many

practical image retrieval systems, the query image may not be the same image as the

desired one in the database. We thus performed a number of experiments on the eval-

uation of the robustness of the image retrieval systems. All of the 600 query images

are distorted by nine different types of image perturbations. Therefore, we generated

a total of 5400 query images. Figure 34 shows examples of the nine image perturba-

tions, such as scale variation, rotation, sharpness variation, additive noise, cropping,

brightness variation, and shifting. Detailed descriptions of the nine perturbations are

as follows:

1. Scale variation: The spatial resolution of each image with size 384×256 or

256×384 is changed to 480×320 or 320×480 for up-sampling and to 288×192

or 192×288 for down-sampling using the bi-cubic interpolation filter [38].

2. Rotation: Along the center of each image, the image is rotated by 45◦ in a coun-

terclockwise direction. The bi-cubic interpolation filter is also used. Boundary

pixels are extrapolated with the nearest pixels of the image.

3. Sharpness variation: Each image is blurred by convolving each color component

with a rotationally symmetric two-dimensional Gaussian lowpass filter

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (73)

where x and y are in [−7, 7]. σ is manually set to 1.3 at which a human can

barely identify the blurred scene.

4. Additive noise: Each image is contaminated with a Gaussian noise with µ=0.0

and σ2=0.002.
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(a) Original (b) 1 - Scale up 25% (c) 2 - Scale
down 25%

(d) 3 - Rotate
45◦

(e) 4 - Blur with
a 15×15, σ = 1.3
Gaussian filter

(f) 5 - Gaus-
sian noise, µ =
0, σ2 = 0.002

(g) 6 - Cropping
50%

(h) 7 - Brighten
15%

(i) 8 - Darken
15%

(j) 9 - Horizon-
tal shifting by
10%

Figure 34: Examples of nine image perturbations for the robust evaluation of the
image retrieval systems.

5. Cropping: The center portion of each image with size 192×128 or 128×192 is

cropped. Each cropped image contains partial objects on the scene, but the

semantics of the scene can still be recognized by a human.

6. Brightness variation: All the pixel values of each image are added or subtracted

by 0.15× µx, where µx is the mean of the pixel values in each color channel.

7. Shifting: All the pixels of each image are horizontally shifted by 25 pixels for

384×256 images or 38 pixels for 256×384 images, respectively. As in the per-

turbation of rotation, the boundary pixels are extrapolated with the nearest

pixels of the image.

For the evaluation of the IPSILON systems, the occurrence vector for each per-

turbed image is generated with the corresponding visual dictionary. Then, each vector

is normalized and weighted by (28). Let us denote the perturbed query vector by qp.

By (30), the vector is projected onto the K-reduced space as q̂p = Σ̂−1
K UT qp. Then,

the similarity between the perturbed query vector q̂p and each image vector is com-

puted by (31). Note that in this experiment, we focus only on the case of K=800.
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For the evaluation of the AMPARS system, each perturbed query image qp is

represented as an empirical distribution P (qp). Then, the conditional probability

P (z|qp) is estimated by the folding-in method proposed in [30]. In such a method,

the likelihood of the query image with respect to the learned model P (z) and P (w|z)

is maximized.

5.3 Experimental Results

In this section, we evaluate the noise robustness of the IPSILON and the AMPARS

image retrieval systems by comparing them with existing image retrieval systems.

We first generate 5400 query images, having 600 images for each image perturbation.

With each set of 600 query images, we evaluate the average precision and the total

average precision of the image retrieval systems. For both evaluations, we measure

the retrieval precision for the top 20 most relevant images, i.e., r is set to 20.

5.3.1 IPSILON Systems

Figure 35 summarizes the results of the five retrieval systems: three are the IPSILON

systems with different perceptual distortion thresholds, one is the benchmark the VQ

system under the LSA paradigm, noted as “VQ+LSA,” and the other is the SIM-

PLIcity system. Note that for the IPSILON and the VQ systems, the LSA dimension

K is set to 800. From the figure, we observe that the IPSILON systems and the

benchmark system are robust to geometric transformations, such as scale variation,

rotation, cropping, and shifting. The poor performance of the proposed systems for

the pixel value variations, e.g., brightness variation, sharpness variation, and additive

noise, can be attributed to the pattern matching criterion because the prescribed dis-

tortion function (21) depends on the computation of pixel-by-pixel distortion not on

the statistics of pixel values in the patch. On the other hand, the SIMPLIcity system

is robust to most of the image perturbations except cropping. Since the SIMPLIcity
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system attempts to find the best correspondences of each image segment, the tech-

nique is fragile against partial segment matching. Table 8 compares the total average

precisions of the five systems for the perturbed queries. Among the IPSILON sys-

tems, the system with θjnd=2.0 shows the best precision, but the precision differences

among the IPSILON systems are not significant. For the six image perturbations (1,

2, 3, 4, 6, and 8), the total average precisions of IPSILON with θjnd=2.0 are signifi-

cantly higher than those of the SIMPLIcity and the VQ systems. In all, the proposed

technique is fairly robust to various image perturbations.

5.3.2 AMPARS Systems

In this section, the robustness performance of the AMPARS system is compared with

that of three image retrieval systems: IPSILON with θjnd=1.6, the benchmark VQ,

and the SIMPLIcity systems. To avoid confusion, “VQ+PLSA” denotes the bench-

mark VQ system under the PLSA paradigm. The LSA dimension K for IPSILON is

set to 800. Figure 36 provides the results of the four retrieval systems. As noticed,

the results for the IPSILON and SIMPLIcity systems are the same as those provided

in Figure 35. The average precision of the proposed AMPARS system outperforms

that of the other systems for seven types of perturbations (1, 2, 3, 4, 7, 8, and 9).

In particular, the performance for brightness change has been significantly improved

compared to the results of the IPSILON systems. This is primarily due to the char-

acteristics of SSIM metrics; the luminance term of SSIM mitigates the effect of the

brightness change. On the other hand, the two perturbations, blur (5) and Gaussian

noise (6), notably exacerbate the average retrieval precision of the AMPARS system.

These poor results are because the two perturbations, blur and Gaussian noise, seri-

ously affect the structure term in the SSIM or the texture term in the STSIM. Brooks

et al. in [8, Sec. IV-A] report their experimental results that local pixel variations,

e.g., blur and additive noise, significantly degrade the structural similarity measures.
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Perturbation Index org 1 2 3 4 5

IPSILON θjnd = 1.6 0.502 0.451 0.481 0.459 0.424 0.415
IPSILON θjnd = 2.0 0.480 0.468 0.484 0.468 0.430 0.419
IPSILON θjnd = 2.5 0.470 0.459 0.476 0.460 0.422 0.415

VQ+LSA 0.322 0.359 0.361 0.358 0.356 0.355
SIMPLIcity 0.381 0.401 0.408 0.389 0.348 0.416

Perturbation Index 6 7 8 9

IPSILON θjnd = 1.6 0.422 0.425 0.419 0.428
IPSILON θjnd = 2.0 0.425 0.428 0.423 0.432
IPSILON θjnd = 2.5 0.421 0.425 0.421 0.429

VQ+LSA 0.349 0.341 0.332 0.335
SIMPLIcity 0.303 0.429 0.363 0.420

Table 8: Total average precision of IPSILON, the benchmark VQ, and the SIM-
PLIcity systems for nine types of image perturbations. r is set to 20.

Table 9 compares the total average precisions of the four systems for the perturbed

queries. The total average precision of the proposed AMPARS system for the six

image perturbations (1, 2, 3, 6, 7, 8, and 9) are substantially higher than the other

systems. In particular, for the five perturbations (2, 3, 6, 7, 8, and 9), the precisions

are over 1.00 higher than the other systems.

5.4 Discussions

In this chapter, we undertook the evaluation of the noise robustness of image retrieval

systems. First, we studied three different types of visual distortions: visual synonymy,

visual polysemy, and visual ambiguity. Also, the detailed implementations of the

nine image perturbations that are of interest and the experimental procedure for the

performance evaluation are provided.

For the robustness evaluation of the IPSILON systems, we compared the five im-

age retrieval systems: three IPSILON systems with different perceptual thresholds,

the benchmark VQ system under the same framework that underlies the IPSILON

systems, and the SIMPLIcity system.
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Perturbation Index org 1 2 3 4 5

AMPARS 0.602 0.587 0.637 0.562 0.364 0.093
IPSILON 0.502 0.451 0.481 0.459 0.424 0.415

VQ+PLSA 0.420 0.521 0.512 0.491 0.480 0.509
SIMPLIcity 0.381 0.401 0.408 0.389 0.348 0.416

Perturbation Index 6 7 8 9

AMPARS 0.588 0.624 0.596 0.642
IPSILON 0.422 0.425 0.419 0.428

VQ+PLSA 0.451 0.461 0.440 0.521
SIMPLIcity 0.303 0.429 0.363 0.420

Table 9: Total average precision of AMPARS, IPSILON, the benchmark VQ, and
the SIMPLIcity systems for nine types of image perturbations. r is set to 20.

The experimental results show the proposed IPSILON systems, especially the sys-

tem with θjnd=2.0, are fairly robust to various image perturbations. It is observed

that the proposed systems are comparatively less robust for the pixel value variations,

e.g., brightness variation, sharpness variation, and additive noise. This weak perfor-

mance can be attributed to the pattern matching criterion of the IPSILON systems,

which is the minimax distortion function, because it depends on the computation of

pixel-by-pixel distortion.

In the evaluation of the AMPARS system, we compared the four image retrieval

systems: AMPARS, IPSILON with θjnd=1.6, the benchmark system based on VQ,

and the SIMPLIcity system. From the robustness evaluation of the AMPARS system,

we observed the improved retrieval performance of AMPARS compared with that of

the IPSILON systems except two types of perturbations, blur and Gaussian noise.

These two types of perturbations notably exacerbate the retrieval performance of the

AMPARS system. These poor results can be attributed to the structural similarity

measure, the pattern matching criterion of the AMPARS system.

Although the two proposed matching functions, the minimax distortion (21) and

the CSTSIM (60), do not perform well for all the image perturbations introduced, we

observed the performance improvement of the robustness evaluation from IPSILON
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to AMPARS by applying a different class of pattern matching criterion. A deeper

study on the pattern matching criterion that guarantees a higher retrieval precision

and an improved noise robustness is an open problem.
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Figure 35: Comparison of the IPSILON systems with the benchmark VQ and the
SIMPLIcity systems for nine types of image perturbations.
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Figure 35: (Continued.) Comparison of the IPSILON systems with the benchmark
VQ and the SIMPLIcity systems for nine types of image perturbations.
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Figure 36: Comparison of the AMPARS system with IPSILON, the benchmark VQ,
and the SIMPLIcity systems for nine types of image perturbations.
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Figure 36: (Continued.) Comparison of the AMPARS system with IPSILON, the
benchmark VQ, and the SIMPLIcity systems for nine types of image perturbations.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

6.1 Contributions

The information retrieval frameworks that have been proposed so far have a funda-

mental limitation in source representation. A proper and efficient representation of a

given multidimensional source has been received increasing attention from such areas

as universal source coding, pattern recognition, and machine learning. In this disser-

tation, we have presented a new information retrieval framework based on a universal

source coding technique, in particular incremental parsing algorithms. Given the

motivation that the Lempel-Ziv incremental parsing algorithm achieves the optimal

coding performance by efficiently parsing a given source sequence, we have applied

the optimal parsing scheme to information retrieval problems by parsing given multi-

dimensional sources. The original Lempel-Ziv incremental parsing pertains only to a

one-dimensional source sequence. Thus, in Chapter 2, we have devised a multidimen-

sional incremental parsing algorithm and studied the three component schemes. The

algorithm was implemented into two-dimensional data compressions with two differ-

ent distortion functions, and their performance was compared with that of existing

image compression algorithms based on pattern matching. The proposed incremental

parsing algorithm parses a given two-dimensional sequence into a number of variable

size patches, each of which contains the same amount of bit information from an in-

formation theoretic standpoint. We call this methodology the parsed representation.

In Chapter 3, we have proposed a scheme for a visual dictionary generation with

which we analyze the occurrence patterns of a given image corpus. Based on the
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vector space model, each image is represented as an occurrence vector. Once a patch-

image co-occurrence matrix is formed by collecting all the vectors, it is projected

onto a lower-dimensional space where the similarity between images is computed. We

have implemented three image retrieval systems with different perceptual distortion

thresholds and evaluated the performance of retrieval precision with two other image

retrieval systems. We have designed an image retrieval system based on a fixed-

block representation trained by VQ under the same LSA paradigm. The other is

the SIMPLIcty system based on an image segmentation technique. The performance

evaluation showed that the proposed IPSILON systems significantly outperform the

other two image retrieval systems in terms of retrieval precision. We also studied

the latent semantic dimensions of the parsed and the fixed-block representations and

showed that the parsed representation induced by the incremental parsing algorithm

is efficient in a semantic analysis of two-dimensional information.

Although the proposed IPSILON framework efficiently captures the visual se-

mantics of given imagery information, the framework has several limitations against

a flexible framework for information retrieval. Thus, in Chapter 4, we exploited a

probabilistic framework for information retrieval and implemented an image retrieval

system with a new type of pattern matching criterion. Though the probabilistic

framework is implemented as a content-based image retrieval system, called AM-

PARS, along the same line as the IPSILON systems, the framework can be potentially

extended to broader types of systems over the content-based systems. The pattern

matching, which underlies the AMPARS system, is an extension of the structural

similarity measure. The measure computes first- and second-order statistics of given

patches to compute the four structural components: luminance, contrast, horizon-

tal texture, and vertical texture. Although the proposed pattern matching criterion

yields poor image reconstruction results, it is observed that the measure is efficient in

the semantic comparison of visual patches. The experimental results provided that
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the proposed AMPARS systems showed superior performance compared with three

image retrieval systems: the IPSILON, a benchmark system based on fixed-block

representations, and the SIMPLIcity.

In Chapters 3 and 4, we have evaluated the image retrieval systems in terms of

retrieval precision. However, the image that a user issues for pointing to the query in

the user’s mind may contain some distortions. Therefore, in Chapter 5, we have tested

the noise robustness of the systems with perturbed queries. The query images that

are used for the evaluation of the retrieval precision are distorted by nine different

types of image perturbations. The experimental results show that the two proposed

systems are fairly robust against the distorted query images. The IPSILON systems

are particularly robust to geometric perturbations, while the AMPARS system is

robust to most of the perturbations except sharpness variation and additive noise.

We attributed the performance degradation to the characteristics of the proposed

structural similarity measure.

The contributions of this dissertation can be summarized as the following list of

journal publications:

• S. H. Bae and B.-H. Juang, “Multidimensional Incremental Parsing for Univer-

sal Source Coding,” IEEE Transactions on Image Processing, vol. 17, no. 11,

pp. 1837-1848, Oct., 2008

• S. H. Bae and B.-H. Juang, “IPSILON: Incremental Parsing for Semantic Index-

ing of Latent Concepts,” submitted to IEEE Transactions on Image Processing

2008

• S. H. Bae, B.-H. Juang, and T. N. Pappas, “Aspect Modeling of Parsed Rep-

resentations for Image Retrieval,” submitted to IEEE Transactions on Image

Processing
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6.2 Avenues of Future Research

Significant progress on the problem of source representation toward visual informa-

tion analysis has been made in this dissertation. Although not mentioned explicitly,

the proposed source representation induced by the incremental parsing algorithm can

be considered as an initial morphological interface between primitive source symbols,

here pixels, to a higher level representation toward human semantics. A fundamental

problem in the research of visual information analysis, e.g., image retrieval and im-

age annotation, is the way to fill the gap between the multidimensional source and

human semantics. We believe there exists a systematic view of these two ends, a

visual representation hierarchy as shown in Figure 37. In the diagram, patches by

the incremental parsing are the interface between image pixels and the higher level

representations, e.g., objects and scenes. At each stage of the hierarchy, we can also

add combinations of elements to obtain super-regions (that relate two or more seg-

ments or patches) and super-objects (that relate two or more objects). These are

analogous to n-gram modeling in language processing [52]. However, deeper beneath

and permeating this structure are the perceptual attributes of texture, color, and

shape. We believe this hierarchy may be similar to the broad phonetic classes in a

human language. A systematic study on the construction of this hierarchy will be an

interesting research topic.

Another problem will be an extension of the aspect modeling technique, which is

a generative model of a given document corpus for a given word lexicon. It estimates

the term-document joint distribution P (w, d) with respect to the empirical distri-

bution p(w, d). In the proposed image retrieval framework, documents and words

correspond to images and patches, respectively. To go beyond the query-by-example

paradigm, a new probabilistic model needs to be considered. One way is to devise a

technique that can take semantic keywords into account by modeling a patch-image-

keyword joint distribution P (w, d, y), where y ∈ Y = {y1, · · · , ys} denotes a semantic
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Figure 37: Block diagram of the visual representation hierarchy.

keyword.

We believe that this modeling can solve many problems, e.g., keyword-based infor-

mation retrieval, image annotation, and so on.

To compare the proposed image retrieval systems, we evaluated the performance

of the systems in terms of retrieval precision and noise robustness. However, we only

dealt with a limited number of aspects of the robustness issues. The two types of

distortions, visual synonymy and visual polysemy, are still crucial issues in robust

evaluation. A more thorough and comprehensive strategy of robust evaluation will

be an important step toward an objective and a practical evaluation of image retrieval

systems.
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