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SUMMARY 

With S a linearly ordered set with the least upper bound property, 

with g a non-increasing real-valued function on S, and with A densely 

defined dissipative linear operator, an evolution system M is developed 

to solve the modified Stieltjes integral equation M(s,t)x = x + 

A((L) s/ tdgM( #,t)x). An affine version of this equation is also con­

sidered. Under the hypothesis that the evolution system associated with 

the linear equation is strongly (resp. weakly) asymptotically convergent, 

an evolution system is used to strongly (resp. weakly) approximate solu­

tions to the closed operator equation Ay = -z. 
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CHAPTER I 

INTRODUCTION 

If X" is a Banach space, if A is a linear function from D(A) in 

)T to *X, and if g is a function from the real numbers, R, to R which is 

of bounded variation on each finite interval of R, then the integral 

equation 

o 
(1) M(t,0)x = x + / dgAM(«,0)x 

t 

permits a highly detailed theory. In case A is continuous, the theory 

for the modified Stieltjes integral equation 

o 
(2) M(t,0)x * x + (R) / dgAM(-,0)x 

t 

is subsumed by Mac Nerney in [ 6 ] , In case A is continuous and each of 

(I-(g(s")-g(s))A)"1 and (I-(g(s)-g(s+))A)"1 exists for each s in R, 

much of the theory for 

o 
(3) M(t,0)x = x + (L) / dgAM(-,0)x 

t 

is subsumed by results due to Herod in [4]. If A is dissipative, linear, 

and has dense domain, and if g = -I, then equations (1), (2), and (3) are 

equivalent and the theory has been developed in great detail. Yosida in 

[11] gives a thorough account. In Chapter III here, under the hypotheses 

that A is linear, dissipative, and densely defined, and that g is 
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non-increasing, the theory for equation (3), and for an affine version 

of (3), is offered. 

The motivation for the development of the detailed theory of 

Chapter III is to obtain in Chapter IV an iterative process to solve 

the equation 

(4) Ay = z 

for y. In [1], Browder and Petryshyn consider the related equation 

(5) y - Ty = z . 

Under the hypotheses that T is a continuous linear operator from X_ to 

X_ and that lim T11 x exists for each x in X, it is established in [1] 

that if z is in the range of (I-T), then the iterative process * n + ^ = 

z + Tx n converges to a solution y of (5). Contained in [2] is a weak 

convergence version of [1]. In [9], Martin generalizes the Browder-

Petryshyn paper to solve (4) with A continuous, using the product 

integral techniques of Mac Nerney [6]. What is offered in Chapter IV 

is a generalization of Martin's results to the present setting in which 

A is linear, dissipative, and densely defined. Strongly and weakly 

convergent iterative processes for (4) are discussed. Also, a test is 

given to determine whether z in (4) is in the range of A. 

The results here are most closely parallel to those given by 

Mac Nerney in [8], by Herod in [4], and by Martin in [9]. What follows 

is a detailed summary of the results of each. 

In Mac Nerney [8], one lets S be a linearly ordered set and 

lets 0A + be the collection of functions from H = {(s,t) in S x s such 



that s >_ t} to R to which a belongs only in case 

(i) if (x,y) is in H, then a(.x,y) _> 0, and 

(ii) if each of (x,y) and (y,z) is in H, then a(x,y) + ct(y,z) = 

a(x,z). 

One lets 0M + be the collection of functions from H to R to which y 

belongs only in case 

(i) if (x,y) is in H, then y(x,y) >̂  1, and 

(ii) if each of (x,y) and (y,z) is in H, then u(x,y)u(y,z) = 

y(x,z). 

Established first is that there is a reversible function E + from 0A + to 

0M + such that 

(i) if (s,t) is in H, if c > 0, and if E +(a) = u, then there 
m n 

is a subdivision {w } of {s,t} such that if {u } is a refinement 
p p=0 P p=0 

m 
of {w } , then 

P p=0 

m n 
u(s,t) - e < n (1 + a(w l f w )) < n (1 + a(u ,u )) < y(s,t) 

p=l ^ ^ p=l ^ " 

and 

m n 
ct(s,t) + e > I (y(w i,w ) - 1) > I (y(u u )- 1) > a(s,t), 

p=l F P p=l ^ ^ 

and 
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(ii) if t is in S and if E +(a) = u, then y(*,t) is the only 

function f(*) which is of bounded variation on each interval {£,t} with 

£, >_ t and which satisfies the integral equation 

t 
f CQ = 1 + (R) / a[f] for each £ _> t — the latter 

integral being the limit, in the sense of successive refinements, of 

n n 
estimates J a(u ,,u ) f(u ), based on subdivisions {u } of the 

P=i P - 1 P P P p=0 

interval {£,t}. 

One next lets OA be the collection of functions from H to the Lipschitz 

functions from X. to X_ to which V belongs only in case 

(i) there is an a in 0A + such that if (s,t) is in H and if 

each of x and y is in X_, then |V(s,t)x - V(s,t)y| _< a(s,t) |x - y| , 

(ii) V(s,t)0 = 0 for each (s,t) in H, and 

(iii) if each of (s,t) and (t,u) is in H, then V(s,t) + V(t,u) = 

V(s,u); 

and one lets OM be the collection of functions from H to the Lipschitz 

functions from X to X to which M belongs only in case 

(i) there is a y in 0M + such that if (s,t) is in H and if 

each of x and y is in T , then 

|(M(s,t)x - x) - (M(s,t)y - y ) | < (y(s,t)- 1)| x - y|, 



(ii) M(s,t)0 = 0 for each (s,t) in H, and 

(iii) if each of (s,t) and (t,u) is in H, then M(s,t)M(t,u) = 

M(s,u). 

The main result in [8] is the following: 

Theorem. There is a reversible function E from OA to OM such 

that each of the following is true: 

(i) if E(V) = M, if (s,t) is in H, if x is in X, and if e > 0, 

m n 
then there is a subdivision {w } of {s.t} such that if {u } 

P p=0 P p=0 
m 

is a refinement of {w } , then 
P p=0 

n 
|M(s,t)x - n (I+V(u ,u ))| < e and 

p=l P i 

i t 

|v(s,t)x - I (M(u ,u )- I)x| < e, and 
p=l p _ i p 

(ii) if t is in S and x is in X_, then M(«,t)x is the only solu­

tion f(») of the integral equation 

t 
f ( 0 = x + (R) / Vf(-), each C > t, 

which is of bounded variation on each interval {£,t} with E, >_ t. 

In [ 4 ] Herod relaxes the condition that the order-additive func­

tion V have Lipschitzian values. One supposes that S is a set with a 
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linear ordering such that {s ,_>} has the least upper bound property and 

that {G,+,|,|} is a complete normed Abelian group. If D is a closed 

subset of G, and if V is a function such that if (x,y) is in H, then 

V(x,y) is a function from D to G such that 

(i) if each of (x,y) and (y,z) is in H, and if P is in D, then 

V(x,y)P + V(y,z)P = V(x,z)P, 

(ii) if (a,b) is in H, then there is a non-decreasing function 3 

from S to R such that if P is in D and e > 0, then there is a number 

6 > 0 such that |Q - P| < <$ implies |v(x,y)P - V(x,y)Q| < (S(x) - 0(y))e 
whenever a >_ x _> y >^ b, 

(iii) if a > b, then D is contained in the range of (I - V(a,b)); 

and if P and Q are in D, then |(I - V(a,b))P - (I - V(a,b))Q| > |P - Q|, 

and 

(iv) if a > b and P is in D, then there is a non-deereasing 
n 

function a from S to R such that if {s } is a non-inereasing 
p p=0 

sequence in [b,a] and a >_ x >̂  y >̂  b, then 

n -1 

|V(x,y) n (I - V(s s )) P| < a(x) - a(y), 
p=l " V 

it then follows from the properties of V that the evolution system M 
y -1 

defined by M(x,y)P = 1 1 ( I - V ) P exists and that if b is in S and P 
x 

is in D, then the only function g which is of bounded variation on each 

finite interval of S and which satisfies 
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b 
g(x) = P + (L) / V[g] for each x _> b 

x 

is given by g(x) = M(x,b)P. The application of [4] to (3) is immediate 

provided A is continuous, linear, and dissipative for one may put V(x,y)= 

C & C Y ) - g(x))A, taking for (G,+,|"|} the additive group of continuous 

linear operators on X_with the usual norm. In case A is continuous, 

linear, and (I - (g(s ) -g(s+))A) 1 exists for each s in R (Harsher re­

strictions on g are needed if ( S , > ) does not have the least upper bound 

property), let 3 > 0 be such that A - 3 1 is dissipative. If (u,v) is an 

interval in {S,>} such that g(v) - g(u) < 3 then (I -(g(v)- g(u))A) * = 

( 1 - 3(g(v) - g(u)))" 1 (I - ! . G[g(Y) ^ l \ u ) ) ( A " Application 

of [4] with V(s,t) = 
r t 
/ dg(l - 3 D G ) _ 1 

s 
v 

(A - 3 1 ) for each {s,t} such that 

u >_ s >_ t ̂> v now gives that II (I - dgA) * exists. On a given interval 
u 

{x,y} in { S , > K there are at most finitely many s such that 
7 - 1 Y - 1 (g(s ) - g(s )) _> B , leading quickly to the fact that II (I - dgA) 

x 

exists and solves equation (3). A separate proof of the results from 

[4] to be used here appears in Chapter III below. It should be noted 

that the least upper bound property on {S,>^} needed in [4] is not needed 

here. 

In [9], Martin generalizes the results of Browder and Petryshyn 

to solve (4) with A continuous, using the product integral techniques 

of Mac Nerney [6]. One supposes that g is a non-increasing function 
from S to R with lim g(t) = -00. The evolution system M defined by 

t-*+°° 
t 

M(s,t)x = II (I + dgA)x is said to be strongly asymptotically convergent 
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only in case lim M(t,0)x exists for each x in X.- Under the hypothesis 
that M is strongly asymptotically convergent, it is shown that Q, de­
fined by Qx = lim M(t,0)x, is a continuous projection of X_ onto the null 

t-*+°° 

space of A and that the closure of the range of A is the null space of 

Q. Using Q one can then show that if z is in X and W(s,t)x = 

II* (I + dg(A + z))x, then these are equivalent: (i) z is in the range 
of A; (ii) for each x in X_, lim W(t,0)x exists and is a solution y of 

t++°° 0 0 

Ay = -z; and (iii) there is an increasing, unbounded sequence (t,} 
K k=l 

in S and an x in X_ such that w-lim W(t, ,0)x exists. It was the desire 

to extend the results of Martin to discontinuous operators A which led 

to the study here. 

In furtherance of this topic, using techniques developed here, 

Lovelady in [5] accounts for a class of ergodic methods with application 

to equation (4) in case A is linear, dissipative, and densely defined. 

Especially, Lovelady has shown that if X_ is reflexive and C(n,0)x = 

/ n exp(tA)x dt, then lim C(n,0)x exists and a strongly convergent 
o n̂ +°° 

approximation scheme for (4) is yielded. 
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CHAPTER II 

NOTATION AND PRELIMINARY COMPUTATIONS 

Notation. Let X be a Banach space with norm |•|, and let I be 

the identity map on X ; The norm of a continuous linear transformation 

B from X^ to X is also denoted by | B | , i.e., | B | = sup {|Bx| : x is in 

X_ and | x | = l } . If A is a linear function from a subset D(A) of X_ to X.» 

then A is said to be dissipative only in case for each X > 0, 

(i) (I - XA) 1 exists and has domain all of ) T and 

(ii) |(I - XA)' 1! 1 i. 

Henceforth, A will always denote a dissipative linear function from D(A) 

in X to X such that D(A) is dense in X . 

In what follows, elements from {(I - XA) 1 : X > 0} appear fre­

quently. As in Yosida [11], the notational convention—J^ = (I - n ^A) \ 

each n > 0—is made. The Hille-Yosida Theorem gives that, for t >. 0» 

exp(tA) exists, is non-expansive, and has many other well-known proper­

ties. Results along the same lines using continued products form the 

first part of the discussion which follows. 

Henceforth, S denotes a linearly ordered set with the least 

upper bound property; R, the real numbers; and g, a non-decreasing 

function from S to R. (The least upper bound property on S is dropped 

in a special subsection of Chapter III. The reader wishing to cite 

Herod's results and thus move quickly to the main results here will 
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wish to keep the least upper bound property.) If F is a function 

_ _ m 
from D(F) in X to X, and if {r } is a sequence in S, then 

p p=0 
m -1 
H (I - (g(r ) - g(r ĵ ))F) is defined inductively by 
P=j P P " 

-1 

n (I - (g(r ) - g(r ))F) 

-1 m -1 (I - (g(r.) - g(r. 1))F) n (I - (g(r ) - g(r j))F) 
J J p=j+1 p p 

-1 with the agreement that II (I - (g(r ) - g(r ,))F) = 1 . When the 
p=m+l p p " 

m m 1 

sequence {r } is clear, II (I - dg_F) is written in place of the 
p p=0 p=j ^ 

m -1 more cumbersome II (I - (g(r ) - g(r ,))F) . Occasionally, one 
p=j P p " 

-1 m -1 writes II (I - dgF) in place of II (I - dg,F) . If each of s and t 
r k==l K 

is in S with s > t, and if x is in Y, then by IIt (I - dgF) _ 1x, one 

means the limit, in the sense of successive refinements of sub-
m m 

divisions {r } of {s,t}, of estimates II (I - dg F)~ s. In par-
p p=0 p=l p 

ticular, if z is in T , then z = IIt- (I - dgF) - 1x only in case for each 

m n 
e > 0, there is a subdivision {r } of {s,t} such that if {u } 

p p=0 p p=0 
m -1 is a refinement of {r } , then I z - IT (I - dgF) x| < e . In case H 

p p=0 u 



_ t 
is a function from S to )C, (L)/ dgFH(*) refers to the limit, in the 

s 
m 

sense of successive refinements, of estimates £ de FH(r ^ ) ; and 
p=l ^ p ~ 

t m 
(R)/ dgFH(«). of estimates I dg FH(r ). 

s p=l P p 

Preliminary Computations. Three observations needed in 

Yosida's development of exp(tA) are useful here. 

Lemma 0.1. Suppose that B is a continuous linear transformation 

from X to r. These are equivalent: 

(i) For each X > 0, (I - XB)" 1 exists, has domain all of T t 

and | (I - XB)" 1! £ 1, 

(ii) For each t > 0, |exp(tB)| < 1. 

Proof. Since B is continuous, one has three representations 

for exp(tB), i.e. 

+00 

exp(tB) = I (k!) _ 1t kB k 

k=0 

lim (I • ~ B ) n 

lim (I - t B ) " k 

k-H-oo 1 1 

From the last representation, it is clear that if (i) is true, then 

|exp(tB)| <_ 1 for each t >_ 0. 
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+ 0 0 

In case (ii) is true and 3 > 0, one may put H L = / $e 3sexp(sB)ds 
0 o 

+ 0 0 +oo 

Then | H J <_ / 3e~^ S |exp(sB) |ds < / (-e"^s)Bexp(sB)ds = 1. Noting that 
o o 

+oo 

(I - g" 1B)H R = H R + / (-e~6s)Bexp(sB)ds P S

 0 

1 4 . 0 0 0 0 

= H 3 + [-e~3sexp(sB)] 
0 0 

- / $e~^Sexp(sB)ds 
o o 

= I 

and putting 3 = A 1 gives that (ii) implies (i); and the lemma is 

established. 

Lemma 0.2. For each x in X, lim J x = x. 

Proof. Since J = (I - n *A) * for each n > 0, one has n ' 
(I - n _ 1A)(I - n ^ A ) ' 1 = I, so 

(I - n^A) 1x = x + n *A(I - n 1A) *x. 

If x is in DfA), then A and J commute, so J x - x = n *J Ax. Hence, v J ' n ' n n ' 
|J x - x| < n _ 1|Ax| from which it follows that lim J x = x if x is in 1 n 1 — 1 1 _̂  n 

n -» -+oo 

D(A). If x is not in D(A) and e > 0, then there is an element y in 

D(A) such that |x - y| < e/4. One has 

|(Jn - I)x| < |(Jn - I)(x - y)| + |(Jn - I)y| 

1 (U nl + UI)|x - y| + (Jn - D y 

< 2|x - y| + |(Jn - l)y . 

< f • n^lAyl. 



There exists an N so that n" |Ay| < e/2 for each n > N. Hence, 

|j^x - x| < e for each n > N, and the result follows at once. 

Lemma 0.3. If A is a linear function from D(A) in to )C, and 

if, for some X > 0, (I - XA) 1 exists, has domain all of X , and is 

continuous, then A is closed. 

oo 

Proof. Suppose that {x } is a sequence in D(A), and that 
n=l 

lim x = y and lim Ax = P. Then 
n-K» n n+oo n 

y - XP = lim x - lim XAx n n n-*+oo n-*+°° 

= lim (I - XA)x . 

Since (I - XA)" 1 is continuous and has domain all of )f, one has that 

(I - XA) *(y - XP) = lim x = y. So y is in D(I - XA) and, hence, is 
n-H-oo n 

in D(A). One has (I - XA)y = y - XP, so Ay = P. 

Several computations which are needed frequently in the develop 

ment of 11(1 - dgA) 1 in the present case are now summarized in Lemma 1 

Lemma 1. Suppose that x q is in D(A), y is in I , n > 0, and 

m 
{X,} is a sequence of non-negative numbers. Then for each 

K k=l 

k = 1,2,...,m, 

(i) (I - ^AJ^) 1 exists, has domain all of X_, is continuous, 

and |(I - \ A J n ) _ 1 | < 1, 
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(ii) | ( I - X j U ^ - 1 x o - ( I - ^ A ) " 1 x 0 | < X k|(J n - I ) A x 0 | , 

m m 

(iii) | N (i - XkAj ) " A x o - N (i - A , A ) x o| 

k=l k=l 0 

m 
1 ( 1 A K ) |(Jn - I)Axo| , and 

k=l 
m , m . 

(iv) | N (I - A.AJ ) " A Y - N (I - A . A ) ~ Y| 
k=l K n k=l K 

< inf {2|x - y| + |(J - I)Ax|} 
xeD(A) n 

Proof. First, AJ = n(J - I) so AJ is continuous. Hence, ' n v n J n 
exp(tAJn) = exp(tn(JR - I)) = exp(-nt) expCtnJ^). Now |exp(tnJn)| = 

oo oo 

| I ( k ! ) - 1 ^ ) ^ k | < I (kl)'1 (nt)k = exp(nt), so |exp(tAJ )| < 1 
k=0 n ~~ k=0 n ~ 

and the normed estimate of (i) follows from Lemma 0.1. 

Since A is linear, the operators A, (I - X^AJ^) and (I - A^A) 1 

all commute. The resultant identity, 

(I - AjA ^ r V - -AI)Axo, 

gives (ii) at once. 

For differences of products, one has 

m m 

m r j -l m -1 
I . U N D - X kAJ n) N (I - X kA) XQ -
3=1 4c= 1 k=j+l 



n (i - x aj y l n (i - x^r'x }| < 
k=l K n k=j K 0 J -

m j-l 1 m I | n (I - \AJ n (I - X.A)"A||(I - X.AJ ) x - (I - X A) 
j=l k=l K n k=j+l K 3 n o 3 

m < Y X. (J - I)Ax from ( i i ) . 
— J i 3 n ' o1 K J 

3 = 1 

Finally, for each x in D(A), 

m m , 
I n (i - x,aj y l

y - n (i - x A ) _ i
y | < 

k=i K n k=i K 

m , m , 
| n (i - x̂ aj ) _ i(x - y)| + | n (i - x aj ) _ 1 ( x - y)| + 
k=l K n k=l K n 

m ~ m , 
| n (i - x, aj ) x - n (i - x a)'x| < 
k=i K n k=i K 

m 
2|x - y| + ( \ X, ) | (J - I)Ax|. Since this inequality holds 

k=l K n 

for each x in D(A), (iv) follows at once. 
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CHAPTER III 

DEVELOPMENT OF THE PRODUCT INTEGRALS 

The Linear Case. A linear realization of a non-linear result due 

to Herod [4] is the following, which will be generalized in this paper: 

Theorem 2. Suppose that g is a non-increasing function from S 

to R and that B is a continuous, dissipative, affine transformation 

from to X. If each of s and t is in S with s > t, then 

(i) M(s,t) = S N t ( I - dgB)" 1 exists, 

(ii) If each of x and y is in Y, then |M(s,t)x - M(s,t)y| £ 

I * - y\ * 

(iii) If r is in S and s > r > t, then M(s,r)M(r,t) = M(s,t), 

(iv) If x is in T, then M(*,t)x is the only function F which 

is of bounded variation on each finite interval of S and 

which is a solution of the integral equation 

t 
F(s) = x + (L)/ dgBF(-). 

s 

Remark 2.1. It will be seen that the convergence of the esti­

mates to gH^CI - dgB) 1 is uniform in the following sense: 

Let each of s and t be in S with s ̂ > t, and let each of e and c 

n 
be positive. There exists a subdivision {r } of {s,t} such that if 

p p=0 
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m n 
x is in X with |x| < c, and if f.v } is a refinement of (r } , then 

~ Pp-0 P p=0 

(g(vp) - gCVp.^^B)-^! < e 

(g(vp) - g(v p. 1))B)" 1x| < e 

for k = 0,1,...,m. 

Remark 2.2. The assertion of uniqueness in (iv) of Theorem 2 is 

not done here. First, it is not crucial to the proofs of Theorems 3 and 5. 

Second, the inequalities which establish uniqueness appear at the end 

of the proof of Theorem 3. Since the assertion of uniqueness, estab­

lished for discontinuous operators A later, implies that assertion in 

the continuous case, there is little to be gained from a uniqueness 

proof here. 

Theorem 2 has an exceedingly complex proof. One already familiar 

with the result may wish to move directly to Theorem 3. The proof given 

below does have the advantage that it does not require that S have the 

least upper bound property. Hence, Theorem 2 is here improved. The 

proof is simplified somewhat by making the following observations first. 

Computational Observations. Suppose that L is linear and dissipa­
tive, that 3 > a > 0, that i \ } n is a non-negative number sequence, 

~ ~~ K k=l 
_ 2 that each of x and z is in X, and that y is in D(L ). Then 

m 
^ ( 1 - dg B ) ' ^ - n (I 
'k p=k+l 

and 

Vk -1 k n K(i - d gB) x - n (i 
P=i 



(i) (I - 3(L + z ) ) ' l x = (I - eU'̂ x + 3z), 

(ii) n (I - X,CL + z)) _ 1x = n (I - X tL) _ 1x + 
k=l K k=l K 

n k . 
I n ci - X L ) x, z, 

k=l p=l p K 

(iii) |(I - 3L)" 1y - exp(3L)y| < y 3 2 | L 2 y | , 

Civ) | 5 (I - X kL) _ 1y - n exp(X^L)y| < ±- \ X^2|L 
k=l K k=l K k=l 

n 
1 k=l 

n k n k 
(v) | I ( It (I - X L) _ 1)X y - £ C n expCX L))A.y 

k=l p=l p K k=l p=l p K 

1 k=l K 

(vi) |exp(3L)y - y| < 3]Ly|, 

Cvii) |exp( I X L)C I X )y - \ [ I exp(X L)]X y| 
k=l K k=l k=l p=l p K 

< ( I A,) 2|Ly|, and 
k=l K 

n (viii) If I X, = 3 - ct, then 
k=l K 

(I - 3L) _ 1y - [ n (I - X VL) _ 1]CI - oO-D'Vl 
k=l K 

< (3 - a)a|L2y| + (3 - a)2|L y|. 
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Proof. First, if (I HU- • 7.))" x - P, then x - (J - M.)!' - 3Z 
and (i) follows. Repeated application of (i) gives (ii) since 

n -1 -1 -1 n -1 IT (I - 3(L + z)) x = (I - X.L) l X z + (I - A.L) II (I - X (L + z)) x k=l i l l 2 p 

= n ( I - X D ^ X + I N ( I - U ) - \ z 
k=i K k=i P=i p k 

The inequality of (iii) is due to Trotter [10]. One has 

(I - 3L)_1y - (I - |L)"2y = (|)2(I - f-L)-2(I - 3L)_1L2y , so 

(I - 3L) y - (I - | I.)" y| 1 (|)2|L2y|. Now, 
~n 1 ~n+l 

(I - 3 2 ~ n L ) ~ ^ y - (I - 3 2 " 1 1 _ 1 L ) ^ y| = 

2 N | X CI - 3 2 ~ n L ) " k + 1 [ ( I - 3 2 " \ r 1
 - CI - 3 2 " n _ 1 L ) * 2 ] 

k=l 

[CI - 3 2 " n ~ 1 L ) - 2 ] 2 n " k y } | < 

f | CI - B 2 - n L ) - 1 y - CI - 3 2 - n " V 2 y | < 
k=l 

C 2 N ) C 3 2 " n - 1 ) 2 | L 2 y | = i- 3 2 2 - n | L 2 y | . 

Since exp ( $ L ) y = lim CI - 3 2 ~ n L ) ~ y, one has | (I - 3L) y - E X P C 3 L ) y | < 
n-*» 

1 } B 2 2 - n | L 2 y | =IS2|L2y|. 
n=0 H * 

One extends observation (iii) to a non-negative number sequence 

{X,} n thus: 
K k=l 



n n 
| n (] - A L ) " y - II cxp(A I.)y| -
k=l k-1 k 

n k - 1 n 
| I ( N (I - X L ) ) ( 1 - A kL) - exp(AkL)) N exp( L)y| < 
k=l p=l v k=k+l 

I |(I - A L ) " 1 / - e x p ^ D y l < \ ^-|L 2y| < ± ( \ A k) 2| L
2) 

k=l K K k=l 1 ~ 1 k=l K 

Observation (v) follows at once since 

n k n k 
I I N (I - H ) " \ y - I ( II exp(A L))A y| < 
k=l p=l p K k=l p=l p K 

I \ ij ( I V 2 | L 2 y l > 1 J ( I \) 3|L 2y|-
k=l p=l * k=l 

3 
To establish (vi), note that |exp(3L)y - y| = | / Lexp(sL)yds| 

3|Ly|. From (vi), one has (vii) quickly since 

n n n k 
|exp( I A,L)( I A )y - £ ( It exp(X L))\y| = 

k=l K k=l K k=l p=l P K 

n n k k 
| I Kexp{ I \L)y - £ A ( II exp(X L)) y| < 
k=l K k=l K k=l K p=l p 

n k n 
I A |( II exp(A L))[exp( J XL) - I]y| < 

k=l K p=l p p=k+l p 

I \ ( I X )|Ly| < ( j \) 2|Ly|. 
k=l K p=k+l p k=l K 

n 
To establish (viii), recall that 3 > a and £ A, = 3 - ct. One 

k=l k 

has that 



(I - 3L)_1y - [ N (I - XL) - 1](I - aL) _ 1y| < 
k=l K 

|(I - 3L)_1y - (I - (3 - a)L) _ 1(I - aL)'ly\ * 

|(I - oi)" 1 (I - (3 - a)L)"V - (I - aL)" 1 N (I - \ L ) ' l y \ < 
k=l K 

|(I - 3L)_1(I - (3 - a)L) _ 1(I - aL) _ 1(3 - a)aL2y| + 

|(I - (3 - a)L)"2y - exp((3 - a)L)y| + 

n 1 |exp((3 - a)Ly - I (I -X L)" y| < 

k=l K 

(3 - a)a|L2y| + (3 - a) 2|L 2y|. 

Proof of Theorem 2 . Let {a,bi be an interval in S, and let 

c > 0 be such that n = c *(g(b) - g(a)) is an integer. Consider the 

i n t e r v a l s ( [ g ( a ) + (k - l)c, g ( a ) + kc]}" , . L e t k ,.. . ,k be the 

integers for each of which there is a z. in S so that g(a) + (k^ - l)c 
g(z-) £ g(a) + k.c. Let d > 0 and pick {y . : 1 £ p £ m; i = 1,2} 

I I p, l 
as follows: For each i = 2,...,m, let D i = Inf{g(y) - g(x) : y in S, 

x in S, g(a) + (k._x - l)c 1 g(x) 1 g(a) + k.^c, g(a) + (k. - l)c 1 

g(y) < g(a) + k.c}. Let y . , ? and y . . be in S such that 

g(a) + (k ._ j - l ) c < gCYj.! 2 ) 1 8(a) + k ^ c , g(a) + 0 ^ - l ) c <_ 

lg(Y i f l) - G T V L J 2 ) - D.| < d. Let Y l ) 1 = a and = b. 

Define { u ^ " 1 by = ̂  and u ^ ^ = ̂  for 
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k = l,2,...,m. Let {w,} be a subdivision of {a,b} which is a re-
k k=0 

finement of u, and let f be an increasing function from 0,1,2,...,2m-l 

to the non-negative integers such that wf^-j = *\ ^ o r ^ = 0,1,2, .. . ,2m-l 

If each of x and z is in X, then 

2m-1 -1 
n (l-(g(u k)-g(u k_ 1))(L+z)) x 

2m-1 f(k) 
n ( n 

k=l p=f(k-l)+l 
-1. 

n ( n (i-(g(w p)- g(w p_ 1))(L +z)) A)x| 

2m-1 -1 
n CI-(g(uk)-g(uk_1))L) x 

2m-l 
I (gCu^-gCUj^)) n (I-(g(u )-g(u ))L) _ 1z -

k=l p=l P P" 

2m-1 f(k) 
H ( n (I-(g(w 1-g(w 1))L)" i)x -

k=l p=f(k-l)+l p p 

2m-1 
I 

k=l 

W P -1 
I ( n (I-(g(w.)-g(w. J)L) A)(g(w )-g(w ))z 

p=f(k-l)+l j=l J J p P" 1 -I 

2m-1 -1 
n (I-(g(uk)-g(uk_1))L) x -

(PI) 

-1. 2m-1 f(k) 
n ( n ( i - ( g(w n ) - g(w ))L) A)x| + 

k=l p=f(k-l)+l p p 

(P2) 

2m-1 
I ( g C u ^ - g C u ^ ) ) n (I-(g(u )-g(u ))L)_:Lz - (P3) 

k=l p=l 
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2m-l [p=f (k) 
I I 

k=l|p=f(k-l) 
( H ( I - ( g ( w . ) - g ( w ) ) L ) " 1 ) C g ( w ) - g ( w ))z 

+ l j = l J J _ 
(P4) 

Bounding Section I. One uses observations (iii), (iv), and 

(viii) to bound the quantity whose norm appears on lines (PI), (P2) 

thus: 

2m-l -1 
k^(I-(g(u k)-g(u k_ 1))L) x -

2m-l f(k) 
n ( n ( I - ( g ( w J - g U 1))L)" 1)x| = 

k=l p=f(k-l)+l p y fcV p-1-

2m-l k-1 
I ( n 

k=l p=l 

- 1 k - 1 . 

I n ( ^ ( I - ( g ( u p ) - g ( u j))^" 1) [(I-(g(uk)-g(uk^1))L) -1 

i f(2m-l) , 
(I - ( g(w ) - g ( w ))L)"i] n ( I - ( g ( w ) - g ( w ))L)"x| < 

p O O 

n 

p=f(k-l)+l p p _ 1 Jp=f(k)+1 p P' 

2m-1 
I 

k=l 
I |(I-(g(uk)-g(uk_1))L)"1x - n (I-(g(w )-g(w ))L) *x|. 

p=f(k-l)+l P P 

£(k) -1 

If k i s o d d , t h e n g ( u ^ ) - g C 1 ^ ̂ ) < c c a n d o b s e r v a t i o n s ( i i i ) a n d ( i v ) 

g i v e t h a t 

-1 f(k) -1 d-(g(u v)-g(u k_ 1))L) xx - n d-(g(w p)-g(w p_ 1))L) Ax| < 
p=f(k-l)+l 

-1 (I-(g(uk)-g(uk_;1))L) x - exp((g(uk)-g(uk_1))L)x| 

f(k) 
exp((g(uk)-g(uk_1))L)x - II -1 

p=f (k-l)+l 
(I-(g(w p)-g(w p^))L) Ax| < 
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( g ( u k ) - » ( u k . J ) ) A | ^ * l 1 c ( g ( u k ) - g l u k ) - g ( u k _ 1 ) ) | l . 2 x . 

If k is even, then observation (viii) applies with 3 - gC11^) " ^("k j_) 

and Dr,_i < a < 3 < D(k>> + d. Hence, 

ICI-CgCV-StVl̂ 10"1* " i _ C I - C g(w p ) - g(w p_ 1))L)" 1x| < 

f(k) 

p=f(k-l)+l 

d(D r i^+d) | L 2x| + d 2| L2x| 

It follows that 

2m-1 f(2m-l) 
| n (I-(g(u k)-g(u k_ 1))L)"x - IT (I-(g(wk)-g(wk_1))L)"1x| < 
k=l k=l 

2m-l 

I [cCgd̂ D-gd̂ )̂)!̂ )] + [md(g(b)-g(a)+d) +rad2]|L2x| 

Bounding Section II. To bound the quantity whose norm appears 

on lines (P3) and (P4), note that 

I c g c V ^ V i ^ n ^ - c g ( V - g ( u n - i ) ) L ) " l z -
p=l v v 

-1-£ik) p 
[ H (I-(g(w.)-g(w ,))L) A](g(w -g(w ))z| < 

+1 j=l J J P V p=f(k-l) 

ICgCV^Vl̂  11 Ci-(g(u )-g(u pDD̂z - (P5) 

P=l 
Cg(u k ) -g(u k^ 1))(I - (g(u k ) -g(u k_ 1))L)" i n (I-(g(w ) - g ( w ) ) L ) z| + 

p=l ^ p 

(P6) 
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ICgCu^-gO^ 1))(I-(g(uk)-g(uk ))L)~ II (I-(g(w )-g(w ))L) z -
p=l 

(P7) 

f l k ) P _! . 
Z (g(wj-g(w )) n (l-(g(w.)-g(w ,))L) z| . (P8) 

p=f(k-l)+l P P"1 j = l 3 J " 1 

The techniques of bounding section I apply to the quantity whose 

norm is on lines (P5) and (P6) above. Hence, 

I ( g C ^ - g C V l ^ n

i ( I - C g ( u p ) - g ( u p_ 1))L) l z -

-1 -1 , C g ( u k ) - g ( u k_ 1))(I - ( g ( u k ) - g ( u k^)L) n (I-(g(w )-g(w X))L l z \ < 

p=l p p 

(g(u k ) -g(u k_ 1))[c (g(b ) -g(a))|L 2z| + md(g(b)-g(a) +d)|L 2z| + md2|L2z|]. 

To bound the quantity whose norm appears on lines (P7) and (P8) in the 

event that g(u^) - g(u^ ^) <_ c, one might note that if {X }°* is a 

non-negative number sequence with £ X = 3 = gO-^) ~ ]_) * 
p=l P 

f(k-l) y = n (I - (g(w ) - g(w ))L) z , 
p=I p P 

then 

and if 

|3(I-3L)_1y - I xn n (i-X L ) " 1 / ! < 
p=l p j=l 3 

ipCI-BLrV - 3exp(3L)y| + |3exp(3L)y - \ X 8 exp(X.L)y| + 
p=l Pj=l 3 

| ? X n exp(X L)y - \ X 5 (I-XL) _ 1y| < 
p=l pj=l 3 p=l P j=l J 
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igVyl . (i2|.,2y| . I X (I(J2|L2y|) < 

p=l 
| e2|L22| . I f33|L3z| < c(|e|L2z| . I 62|L2z|) , 

using observations (iii), (vii), then (iv), and the fact that |L^y| £ 

|L1z| for each positive integer i. 

If, instead, one has g(̂ j(.) - ^) > c» then one notes that 

with \ X = 3 = g(UjP - gĈ .p s o that 3 - X * < d for some p* in 
p=l p P 

[1 ,q], one has 

lea-eL)'1/ - I x n n a-x.LrVl < 
p=l p j=l 3 

i K ~ l P i 9 P i , 
|(3-X )(I-3L) y - I A n (I-X L) V - J An (I-X L) - 1y| + 

p p=l p j=l J p=p*+l p j=l J 

p* 
|A (I-3L)_1y - A II (I-X L r V l 1 P P p=l P 
2d|y| + |Xp,(I-3L)_1y - Xp*(I-Ap.L)_1 (I-(3-XpJL)"1/! + 

|Ap.(I-Xp.L)"1(I-(3-XpJL)"1y - X^a-X^D'Vl * 
P*"1 -1 i X ,y - X . n (I-X L) y < 

P P p=l P ~ 

2d|y| • XP.(3-Xpj|L2y| + | Xp, (I-(3--Xp J L) 'ly - Xp.y| + 

p*-l p*-l p*-l , 

P P p=l P P p=l P p=l P 



p*-l p*-l 
2d|y| + 3d|L 2y| + (3-A )A |l,y| - ( £ A )A |Ly| + A ( £ A )2|L 

p p p=l p p p p=l p 

2d|z| + 3d|L 2z| + 3d|Lz| + 3d|Lz| + 3d 2|L 2z|. 

There are at most m points in u such that gC 1^) ~ St11^ ]_) > c-

follows that 

2m-1 k 
I ( g C i O - g C a ^ ) JI (I-(B(u)-g(u pjL)*1: -

k=l p=l 1 P 

f(2m-l) k 
I ( g ( w k ) - g ( V l ^ 11 CI-(g(w )-g(w my1z\ < k=l p=l F p 

2m-1 « 
kn(g(V'g(uk-l ) ) |L

 z l( cCg(b)-g(a)) + md(g(b)-g(a)+d) + md Z)} + 

2m-l 9 9 
I (c(f ( g C ^ - g C ^ ) ) + i- (g(u k)-g(u k_ 1)^|L-z|} + 

k-1 

md[2|z| + (g(b)-g(a))(2|Lz| + |L2z| + d|L2z|)] . 

Finally, one has that 

2m-1 x f(2m-l) 
kn i(I-(g(u k)-g(u k - 1))(L+z))" x - II (I-(g(w k)-g(w k_ 1))(L+z)) 

(c(g(b)-g(a)) + md(g(b)-g(a)+d) + rad2)|L2x| + 

(g(b)-g(a))(c(gCb)-g(a)) + md(g(b) -g(a)+d) + md 2)|L 2z| + 

c(|(g(b)-g(a)) + j(g(b)-g(a))2)|L2z| + 

md[2|z| + (gO>)-g(a))(2|Lz| + |L 2z| + d|L2z|)] 
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Since d is selected after c and c determines m, one has that 
b 1 II (I - d g ( l + 2) ) x exists. a 

Moreover, it should be noted that, for fixed x and z, the sub­

division u is a function of the large discontinuities of g, g(b) - g(a), 

2 2 

|z|, |Lz|, | L z | , and | L x|. Especially, Remark 2.1 is established at 

this point. 

Properties (ii) and (iii) follow at once. 

In light of Remark 2.1, the fact that 
2m-1 , 

k n i(I-(g(u k)-g(u k_ 1))(L+z))" ix = 

2m-1 2m-1 , 2m-1 1 

I { n d-(g(u )-g(u ))(L +z))" Jx - n (I-(g(u )-g(u ))(L+z))"Ax = 
k=l p=k p p p=k+l p p 

2m-l 2m-l 
I ( g O O - g O i ^ H L + z ) H (I-(g(u )-g(u ))(L +z))'x 

k=l p=k p p 

gives the integral equation of (iv) of Theorem 2. 

This concludes the proof. 

One might note at this point that the proof of Theorem 2 above 

applies equally well if L is dissipative and if each of x and z is in 
2 

D(L ). Hence, the proofs of Theorems 3 and 5 below are somewhat repe­

titious. They do, however, give an important alternative characteri­

zation of s n t ( I - dg(L + z)) *x. In addition, they make it possible for 

one already familiar with Herod [4] to move rapidly to the central re­

sults here without having to go through the laborious proof above, at 

the sacrifice of requiring S to have the least upper bound property. 
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The computational results of Chapter II, combined with Theorem 2, 

now lead to the development of M(s,t)x = 11*11 - dgA)"1x in the present 

case that A is linear, dissipative, and densely defined. 

Theorem 5. Let A and g be as before. If each of s and t is in S 

with s >_ t, then 

(i) M(s,t)x = snt(I - dgA) 1x exists for each x in X_, 

(ii) M(s,t) is a continuous linear function from to X. and 

|M(s,t)| < 1, 

(iii) If r is in S and s > r > t, then M(s,r)M(r,t) = M(s,t), 

(iv) If x q is in D(A), then M(s,t)AxQ = AM(s,t)xQ, 

t 
(v) If x q is in D(A), then M(s,t)xQ = x q + (L) / dgAM(«,t)xQ, 

_ t 
(vi) If x is in X, then (L) / dgM(«,t)x is in D(A), and 

s 
t 

M(s,t)x = x + A((L) / dgM(-,t)x), and 
s 

2 

(vii) If x q is in D(A ), then M(',t)xQ is the only function F(') 

for which AF(') is of bounded variation on each finite 

interval of S and which is a solution of the integral 

s 
equation F(s) = x q + (L)/ dgAF(-). 

s 

Proof. If x is in X_, n > 0, and each of s and t is in S with 

s _> t, then Mn(s,t)x = ^ ( I - dgAJ n)" 1x exists by Theorem 2. One shows 

that lim M (s,t)x exists as follows: n 
n-M-oo 



If {r, } P is a subdivision of {s,t} and x is in D(A), then, 
k k=0 ° 

letting dg k = g(r R) - g(r k_ 1) for k = l,2,...,p, one has 

i P -1 i M„(s,t)x„ - M m(s,t)xJ < |MTi(s,t)x^ - n (I-d g l rAJJ AxJ + 
k=l 

P 1 P -1 
n (I-dg A J ) Xx - n (1-dg.A) x | + k=l k n o k = 1 K o 

I n (i-dg A)" Ax - n (i-dg A J j - A

x I + 
k=l k ° k=l 

. p -1 
n (I-dg, AJ ) x - M (s,t)x . 

1 , T
 &k nr o m o ' k=l 

— ,c Now if e > 0, there is a subdivision {ct, } such that if {a, } 
k k=0 k k=0 

is a refinement of a, then 

k=l 

and there is a subdivision { k } ^ so that if (3, }^ is a refinement 
K k=0 k k=0 

of 3 then 

Taking a common refinement of a and 3 for r above, one has that 

P -1 £ -1 , e 
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Application of inequality (iii) of Lemma 1 gives that 

t 
|Mn(s,t)xQ - M m(s,t)x Q| < e + ( / dg)(|(Jn-I)Axo| + |(Jm-I)Axo|) 

The last estimate works for each e > 0; hence, 

t 
|Mn(s,t)xQ - M (s,t)xo| < ( / dg)(|(Jn-I)Axo| + |(J n fI)Ax o|) . 

s 

Lemma 0.2 gives at once that lim M (s,t)x exists for each x in D(A) 
n + + o o n o o 

and that the limit is uniform on bounded subsets of S . If y is an ele­

ment of and x q is in D(A), then 

|Mn(s,t)y - Mm(s,t)y| < |Mn(s,t)y - M n(s,t)xJ + 

|M I (s,t)x - M (s,t)x + M (s,t)x - M (s,t)y| < n v ' J o m v ' J o m o m v ' J J 1 — 

2 x -y + | M (s,t)x - M (s,t)x o 3 ' n o m v ' J o 

Now if e > 0, one finds x q in D(A) such that | x q - y| < e/3. Above, 

it was shown that there is an N so that n > N and m > N force 

| M (s,t)x - M (s,t)x I < e/3: moreover, the selection of N can be ' n v , ' o m o 1 ' 
taken uniformly on bounded subsets of S . Hence, lim M (s,t)y exists; 

again the limit is uniform on bounded subsets of S . 

Conditions (ii) and (iii) are inherited directly from the. 

corresponding conditions on the M ^ . Also, if x is in X and xq is in 

D (A), then 

P -1 |M(s,t)x - n (I-dgkA)"Ax| < |M(s,t)(x-xo) | + |M(s,t)x - M (s,t)x | + 
k=l 
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k=l k=l k=l 

| n (I-dg A)"A(x-x )| < |x-x | + |M(s,t)x - Mn(s,t)x | • 
k=l 

P i t 
|M (s,t)x - n (1-dg.AJ ) x | + ( / dg)|(J -I)Ax | + |x-x ' n o , , 6 k n o 1 ^ J 6 - M V n y o 1 ' o k=l s 

If, now, £ > 0 is given, one may take X q in D(A) so that |x - X q | < e/6, 

n large enough so that |M(s,t)xQ - M n(s,t)x Q| + ( / dg)|(J^-I)Axo| < 

e/3, and a subdivision a of {s,t} so that if {r,} p is a refinement 
k k=0 

of a, then 

|Mn(s,t)xo - n (i - ihun)-\\ <§ . 
k=l 

The above inequality then gives that for such a subdivision {r,}P 
k k=0 

one has 

|M(s,t)x - n (I - dg vA) - 1x| < £ 
k=l K 

Hence, the representation in (i) holds. (A review of the proof of 

Theorem 2 at this point yields a uniform condition which is the subject 

of Corollary 3.2.) 

Condition (iv) on M follows immediately since A is closed and 

A n(I- dg A)" Ax n = n (I - dg.A)"AAx 
k=l k=1 

If X q is in D(A), then 
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|(L)s/tdgM(.,t)Axo - X q - M(s,t)xo| < 

|(L) s/ tdgM(-,t )AX O - (L) s/ tdgM n(.,t)A.TNXO| + 

|M(s,t)xo - M n(s,t)x o| < |(L)s/tdgCMn(-,t) - M ( - , t ) ) A X Q | + 

|(L) s/ tdgM n(s,t)(J n-I)Ax o| + |M(s,t)xo - M n(s,t)x o| < 

( /*dg) sup { | M N ( Z , t ) A X O - M(z,t)Ax |} + 
s < z < t 

( s ^ D G ) L ( J n ~ I ) A X O L + C s/ tdg) | CJn-I)AxQ| . 

From a preceding estimate, one has that 

sup ( | M N ( Z,t ) A X O - M ( Z , t ) A X J } < 
s<Z<t 

sup {inf { 2 ^ - A X | + C / tdg) | (J -I)A£|}} < 
s<Z<t £eD(A) 

inf (2^-Ax | + ( J ^ g D l C J -I)AC|> • 
£eD(A) o s 

2 
If, now, e > 0 is given, then one may take £ in D(A ) so that 

t o (s/ dg ) 2 L£-Ax o| < e/3 since D(A ) is dense in X_. One may next take n 

so large that both ( s / t d g ) 2 | (Jn-I)A£ I < e/3 and 2 ( s / t d g ) | (Jn-I) A X Q | < 

e/3. The above inequality then gives that 

|(L) s/ tdgM(-,t )AX O - X q - M(s,t)xo| < e . 

Since this holds for each e > 0, the fact that A commutes with M on 

D(A) gives that the integral equation of (v) is satisfied. The assertion 

of (vi) follows at once since A is closed and D(A) is dense. 



Finally, suppose that x is in D(A ). Let {s,) n be a de-
° k k=0 

creasing sequence in S. Since AMfs^ i » s
n ) x

0
 = + 

s 
n 2 

(L) / dgM(*,s )A x , one has that 
sk-l n o 

I |AM(s k_ 1,t)x o - AM(s k,t)x o| = 
k=l 

n s n Sn 
| | 0 0 / dgM(.,s n)A 2x o - (L)/ dgM(-,s n)A 2x o| = 

k = 1 Sk-1 Sk 

n sk n sk Sn 
I I CD/ dgM(-,Sn)A2x | < I (L)/ dg|A2x | = (/ dg)|A 2x o| 

k-1 « k _ 1 k-1 sk_j 

Hence, the variation of AM(*,t)xo on {s,t} is bounded by ( / dg)|A XQ| 

If f is a function from S to D(A) such that Af(») is of bounded varia­

tion and such that the integral equation of (vii) is satisfied, then 

any subdivision {r, } p of {s,t} which gives that 
K k=0 

rk 
|dgk Af(r k_ 2) - (L)/ dgAf(-)| + 

k = 1 r k-l 

rk 
|dgk AM(r k l,t)x o - (L)/ dgAMC-,t)xo| < e 

k-1 V l 

also gives that 

|f(s) - M(s,t)xo| < |f(x) - M(s,t)xQ| + 

{|d - d g k A ) ( f ( V l ) - M(r k_ 1,t)x o| - |f(r k - 1) - M(r t)xQ| } 
k=l 
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I (-|f(rk) - M(r k,t)x o| + - dg kA)(f(r k_ 1) - ,t)xQ) | ) < 
k=l 

I |(I - dg kA)(f(r k_ 1) - M(r k - 1,t)x ) - (f(rk) - M(rk,t)x )| < 
k=l 

I {|f(rk) - f(r k - 1) - dgkAf(r )| * 
k=l 

|M(r ,t)x - M(r k_ rt)x o - d ^ A M O r ^ O x | } < 

( | ( L ) / dgAf(-) - dg kAf(r k p | • 
k=1 rk-l 

rk | C D / dgAM(«,t)xo - d g k A M C r k l , t ) x o | } < e 

Vl 
Hence, f(x) = M(s,t)xQ. 

Remark. The existence of such a subdivision { r i } p is a 
k=0 

standard result in the theory of Stieltjes integration. The two 

lemmas following indicate how one establishes this result. 

Lemma. If g and H are non-inereasing functions from S to R, if 

{s,t} is an interval in S with s > _ t , and if e > 0 , then there is a sub­

division u of {s,t} so that if (r } n is a refinement of u. then 

r 
n p 

I {(L)/ dgH(-) - (g(r ) - g(r 2))H(r )} < e , 
p=l r , P P P p-1 

the existence of the integrals being conclusion, not hypothesis. 
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Proof. First: note that if each of a, 3, and y is in S with 

a > 3 > Y, then (g(3) - g ( a ) ) H ( a ) + (g(y) - g(3))H(3) > (g(3) - g ( a ) ) H ( a ) 

+ (g(Y) - g(3))H(a) = (g(y) - g(a))H(a). Repeated application of this 

observation gives that if {a,b} is an interval in S with a ̂  b, if 

{u } n is a subdivision of {a,b}, and if {r } m is a refinement of u, 
P p=0 P p=0 

then 

m n 
I ( « C r p ) - 8(r p. 1))HCr p. 1) > I C g ( u p ) - g C ^ ) ^ ^ ) • 

m 

Since I (g(r ) - g(r J)H(r ) < (g(b) - g(a))H(b), one can put 
p=0 p p p 

n 
Q = sup{ £ (g(u ) - g(u ,))H(u ,) : u is a subdivision of {a,b}}. It 

p=l P P" 1 P" 1 

follows at once that (L) / dgH(') exists because one has that if u above 
a 

n 
I 

P = i 

i s a s u b d i v i s i o n o f { a , b } s u c h t h a t Q - J ( g ( u ) - g ( u , ) ) H ( u ) < e 

n p p - J - p-i 
m 

and if again r refines u, then Q - J (g(r ) - g(r 1))H(r .) < e. 
p=l P P" 1 P" 1 

The inequality of the lemma now follows if one sets a = s and b = t. 

Lemma. If g is a non-inereasing function from S to R, if H is 

a function which is of bounded variation on each finite interval of S, 

if {s.t} is an interval in S, then there is a subdivision {s } of 
P p=0 

n k {s,t} so if {t } is a refinement of is } , then 

P p=0 P p=0 

*P 

I ICL) / d gH(0 - (g(t ) - g(t ))H(t )| < e , 
p=l t , p P P" 1 

p-1 
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the existence of the integrals being conclusion, not hypothesis. 

Proof. Let (a,b) be an interval in S with a ̂ > b. For each t in 
S, let V(t) = t/b|dll| if t > b, and V(t) = 0 if b > t. Then V is non-
increasing. If {t } n is a subdivision of {a,b} and {w } m is a re-

p p=0 P p=0 
finement of {t } n , then there is an increasing function f such that 

p p=0 
t = w_. . for each p = 0,1,...,n. Now, p f(p) ^ 

I n , C K C W J - G C ^ . ^ D H C W ) > - I (g(t)-g(t ) ) H ( T ) | < 
P=l J=f(p-1)+1 J P=l ^ 

1{|X! „ J ^ V ^M""^ - ( G C W ^ - G C W J . ^ M - ) } | } < p=l j=f(p-l) + l J J J J J j 

5 f^P } 

I i I (g(w.)-g(w. j|H(w ) - H(w )|] < 
p«=l j=f(p-l) + l J -1 -1 t l P " 1 J 

n £{P } 

I { I (g(w )-g(w ))(V(w ) - V(w ))} = 
p=l j=f(p-l) + l 3 3 1 J n p 1 J 

p=l j=f(p-l) 

n fft I { I (g(w.)-g(w ))V(w )} - I (g(t )-g(t 2))V(t ) 
+ 1 J •> •> p=l P P P 

By the preceding lemma, the above inequality gives that (L) a/ dgH( #) 

exists for each {a,b} in S. If e > 0, then one may take a subdivision 

(s and {w } m is a refinement of {t } n as above, then 
p p=0 p p=0 P p=0 

n ffp) n 
I i I (g(w.)-g(w ))V(w )} - I (g(t )-g(t J)V(t ,) < f • 

p=l j=f(p-l) + l j J 1 3 1 p=l P P - 1 P' 1 2 



t 
. p 

By virtue of the existence of each of (L)/ dgH(*)> one may take the 
t i p-1 

in 
subdivision (w } so that 

P p=0 

| (L)/ P dgH(-) - ffP ) (g(w ) - g(w ))H(w )| < j -
t ! j=f(p-l)+l 

for p = l,2,...,n. It follows at once that 

n tp 
I |(L)/ dgH(-) - (g(t ) - g(t ))H(t J| < e 

p = 1 t P P--1 P- 1 

p-1 

Corollary 3.1. If x is in X̂ , and if each of s and t is in S wit 

s >̂  t, then 

M(s,t)x = lim M (s,t)x = lim nt(I - dgAJ ) _ 1x , 
n-x» n n-*» s n 

uniformly on bounded subsets of S. 

Remark 2.1, coupled with the proof that the representation (i) 

of Theorem 3 holds, gives a version of Remark 2.1 in the present 

setting. 

Corollary 3.2. If x is in X, and if each of s and t is in S 

with s >_ t, then the limit 

M(s,t)x = nl(I - dgA)~Ax 

is uniform in the following sense: 

If e > 0, then there exists a subdivision {r } n of {s,t} such 
P p=0 
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T H A T I F ( V ] IN I S «I R E F I N E M E N T O F I R } T H E N 

I K 1 (I - dgA)"Ax - N (I - (g(v ) - g(v J W ' x l < e 
vk p=k+l p p 

and 

I N k(I - dgA) _ 1x - N (I - (g(v ) - g(v 1))A)" 1x| < e 

for k = 0,1,...,m. 

A related integral equation is also satisfied. 

Corollary 3.3. If x q is in D(A), and if each of s and t is in S 

with s > t, then 

Indication of Proof. Let {r } be a subdivision of {s,t} and 
p p = Q 

let x be in D(A). Since 

Corollary 3.2 gives that M(s,t)xQ - x q = (R) g/ dgM(s,«)Axo- Since A 

is closed, M(s,t)x - x = A((R)s/tdgM(s,•)*) for each x in Y . 

The example following indicates the need for a uniqueness condi­

tion as cumbersome as (vii) of Theorem 3. 

Example. Let X_ = {all continuous f : R •+ R such that lim f(x) 

M(s,t)xo = x q + (R)s/tdgAM(s,-)xo . 

o 

N (I - dgA)"Ax - x = I D G N (I - dg.A)"AAx 
k=l ° ° j=l 3 k=l K 

X - > - - o o 
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and lim f(x) both exist . If f is in X]f let |f| ---- sup{|f(x)| : x t \\] 

If (M(s.t)f) (x) = f(x + s - t), and if 

0 if x < 0 

iKx) = <jx cos(^) if 0 < x < 2 \ , 

[ o if x > 2 

then there is a y in T such that Ay = d/(dx)y = ty. Now AM(*,0)y = 

M(",0)ip and is of bounded variation on no interval of R. 

In terms of the evolution system M, the uniqueness condition of 

Theorem 3 is not vague, for M is a collection of continuous operators 
2 — and D(A ) is dense in X_. 

The Affine Case. With A as in Theorem 3 and z in X, let A + z 

be the affine transformation defined by (A • z)x = Ax + z for each x in 

D(A). A few computational results facilitate the development of the 

affine version of Theorem 3 . 

Lemma 4. Let A be as before; let 3 > 0, n > 0, and { X , } m be a 
k k=l 

sequence of non-negative numbers; let each of u and w be in D(A); and 

let x, y, and z be in X_. Then 

(i) (I - 3(A + z))"Ay = (I - 3A)~1Cy + 3z), 

(ii) (I - 3(A + z)) _ 1y - (I - 3A) _ 1y = 3(1 - 3A)~ 1z, 

m 1 m 
( i i i ) n (I - \ (A + z)) y = n (I - A. A) y 

k=l k k=l k 

I { n (i - x A ) x x z}, 
j=l k=l K 3 



41 

m in . 
(iv) | II (J - A, (AJ + u))~ w - II (1 - A, (A + u))~ w| < 

k=l k 1 1 k = l K 

m m 
( I " DAw| + ( I A, ) | (J - I)Au| , 
k=l k n k=l k n 

, m -1 m -1 , (v) | n (I - A. (A + z)) x - n (I - A (A + y)) x| < 
k=l k k=l K 

( I y | z - y\ . 
k=l K 

Proof. Assertions (i) and (iii) are recollections of Observations 

(i) and (ii) established before the proof of Theorem 2 . Assertion (ii) 

is an immediate consequence of (i). 

By (iii) one has that 

m m 
| II (I - A, (AJ + u)) w - n (I - A, (A+u)) w| < 
k=l k n k=l k 

m m 1 I n (I - A,AJ ) w - H (I - A A) w| + 
k=l k n k«l K 

m k in k , 

m m k 
( I - DAw| + I A { I A | (J - I)Au|} < 
k=l k n k=l p=l P 

m m 0 

( I Xk)|(J " DAw| + ( I A ) l \ U - I)Au|. 
k=l k=l n 

Assertion (v) follows at once from (iii) . 

Estimates obtained in the development of 11(1 - dgA) 1 combined 
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with the above computations now give an affine version of Theorem 3 . 

Theorem 5 . Let A and g be as before and let z be in _X. If each 

of s and t is in S with s >̂  t, then 

(i) W(z;s,t)x = 5^(1 - dg(A + z ) ) " ^ exists for each x in X, 

(ii) W(z;s,t) is a continuous affine function from X̂  to X̂  such 

that if each of x and y is in X, then |lV(z;s,t)x -

W(z;s,t)y| < |x - y| , 

(iii) If each of x and y is in X_, then |W(z;s,t)x - W(y;s,t)x| _< 

(Jtdg)\z - y|, 

(iv) If r is in S and s _> r _> t, then W(z;s,r)W(z;r,t) = W(z;s,t), 

(v) If each of x and z is in X_, then W(z;s,t)x = M(s,t)x + 

(vi) If X q is in D(A) and z is in X^ then W(z;s,t)xo = 

X q + (L)s/tdg(A + z)W(z;-,t)xo, 

(vii) If each of x and z is in X_, then (L) / tdgW(z; • ,t) x is in 

D(A) and W(z;s,t)x = x + A((L) /tdgW(z;• ,t)x) + /^gz, and 

2 

(viii) If x is in D(A ) and z is in D(A), then W(z;»,t)x is the 

only function F(«) for which AF(») is of bounded variation 

on each finite interval of S and which solves the integral 

equation 

F(-) = x + (L)s/tdg(A + z)F(-) . 
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Indication of Proof. If {r, } m is a subdivision of {s,t}, if 

each of X q and z is in D(A)," and if n is a positive integer, then 

m - 1 m - 1 i n (I - dg k(AJ n + z)) 1 X Q - H (I - dg k(A + z)) 1x Q| 
k=l k=l 

m i n 

n (I - dg AJ ) - 1x - n (I - dg A ) _ 1 x n + k=l X n o k = 1 k o 

m 3 ! 3 _•, 
I { 11 (I - dg, AJ ) dg . z - n (I - dg A) _ idg z}| < 

j = l k=l K n 3 k=l K 3 

C J ^ d g ) | ( J - I)Ax | + C J ^ d g ) 2 ! ( J - I)Az| . 

Hence, 

1 ^ ( 1 - dg(AJn + z)) - 1x o - ̂ ( I - dg(AJp + z))" 1x o| < 

{ J t d g ) < i \ ( J Y i - I)AxQ| + |(Jp - I)AxQ|) + 

( s / t d « ) 2 ( l ( J n " J ) A z l + l ( J

p - DAz| ; 

so lim 1 1 ^ ( 1 - dg(AJ + z)) *x exists for each of x and z in D(A) . 
n-*x> 5

 t
 0 

By (iv) of Lemma 4, lim II (I - dg(AJ + z)) x exists for x in X and 
n - K » 

z in D(A); and, by (v) of Lemma 4, the limit exists for z in X and x 

in Y . Let W(z;s,t)x = lim 1 ^ ( 1 - dg(AJ + z)) - 1x. If each of x and 
n-x» n ° 

Z q is in D(A), and if 

Wn(z;s,t)x = ^ ( 1 - dg(AJn + z)) _ 1x , 

then 



m 
|W(z;s,t)x - H ( I - dg(A + z)) x| < |W(z;s,t)x - W (z;s,t)x| + 

k=l n 

|Wn(z;s,t)x - Wn(zo;s,t)x| + | W n(z Q;s ,t)x - W n(z Q;s ,t)xj + 

m 1 |W (z ;s,t)x - n ( I - dg, (AJ + z ))~ x I + 1 n v o 7 o k - 1
v 6 k v n o J J o1 

m m 

n (I - dg ( A J + z ) ) " \ - n (I - dg ( A + z )) xJ + 
k=l k=l 0 0 

m 1 m 1 n (i - d g (A + zJ) x - n (i - d g ( a + zJ) x| + 
k=i k=i k 0 

I n (i - d g k ( A + z j ) x - n (i - dg, ( a + z)) x| < 
k=l K ° k=l K 

|W(z;s,t)x - Wn(z;s,t)x| + ( s / t d g ) | z - zj + |x - x j + 

m 
|W (z ;s,t)x - n ( I - dg, (AJ + z )) x | + 1 n v o* ' J o , , v 6 k v n cr' o 1 

k=l 

( C s / t : d g ) | ( J n - I ) A x J + ( ^ d g ) 2 ! ^ - I ) A z J ) . 

- x I + (Jtdg)\z - z J . • X o l 

Hence, the representation of W in (i) holds. 

Properties (ii) and (iii) follow immediately from the corres 

ponding properties of the approximating products. Property (iv) is 

inherited from the W . 
n 

m -1 Now, the fact that IT ( I - dg, (A + z)) x = 
k=l K 
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m - 1 ?
 3 -1 n (I - dg,A) x + I dg ( n (I - dg A) z) 

k=l K j=l J k=l K 

together with Corollary 3.2 gives that 

W(z;s,t)x = M(s,t)x + (R)s/tdgM(s,-)z , 

which is equation (v). 

Now if each of x and z is in DfA), then AW(z :s,t)x = o o y j >
 K o o 

r i 0 0 W(Az ;s,t)Ax . As in Theorem 3, one can use IW } to show that ^ o J o n -i n=l 

W(z Q;s,t)x o = x q + (L)s/tdg(A + z)W(zo;•,t)xQ . 

Moreover, if z is in T , then AW(z;s,t)xQ = AM(s,t)xQ + M(s,t)z - z and 

is integrable. The fact that |w(z;s,t)x - W(z o;s,t)x Q| _< (s/tdg)|z - z | 

then gives that (vi) holds. The integral equation (vii) follows at once 

since A is closed. 
2 

Finally, if z is in D(A) and x is in D(A ), then AW(z; ,t)x is 

of bounded variation on each finite interval of S. If F is also, and 

if satisfies 

F(s) = x + (L)s/tdg(A + z)F(-) for each s _> t , 

then 

F(t) - W(z;t,t)x = 0 and 

F(s) - W(z;s,t)x = 0 + (L)s/tdgA(F(«) - W(z;-,t)x) . 

Theorem 3 gives that F(s) = W(z;s,t)x, and the proof is complete. 
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CHAPTER IV 

AN APPLICATION TO CLOSED OPERATOR EQUATIONS 

In special circumstances, the results of the preceding section 

may be used to solve the operator equation 

(*) Ay = z 

for y. 

In addition, now let S be an unbounded set of the non-negative 

numbers with 0 in S, and l e t g now be such that lim g(t) = -00. Theorems 
t-H-oo 

3 and 5 are now applied in Theorems 7 and 8 to give an iterative proce­

dure to approximate solutions to (*). 

Lemma 6. Let B be a linear function from D(B) in X to X and 

let A > 0 be such that (I - AB)" 1 exists, has domain all of I, and is 

continuous. If {x }" is a sequence in D(B) such that w-lim x = y 
n n=l n-*» n 

and w-lim Bx = P, then y is in D(B) and By = P. 
n-*x> n 

Proof. First note that continuous linear functions preserve weak 

limits. Especially, if w-lim x = y, if \p is in X_ , and if H is a con-
n-Ko 

tinuous linear function from X_ to X, then $ defined by <£(•) = \KH(»)) is 
_* 

in X ; so lim <K x
n) = <K V) • Hence, lim i|>(Hx ) = ^(Hy) for each in X_ , 

i.e., w-lim Hx = Hy. 
n-*» n 

Now let z = x - ABx for each n. Then w-lim z = y - AP. 

Since (I - AB) is continuous, one has that 
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(I - XB) (y - XP) = w-lim (I - XB) (x - XBx ) 

= w-lim x = y . 
ir~> n 

Hence, y is in D(B); and (I - XB)"1(y - XP) = y gives that y - XP = 

(I - XB)y from which By = P follows. 

Definition. An evolution system M is strongly (resp., weakly) 

asymptotically convergent if, and only if, 

lim M(t,0)x (resp., w-lim M(t,0)x) 
t-N-<» t -H- 0 0 

exists for each x in X . 

Theorem 7. Let A, g, and M be as in Theorem 3 so that M(s,t)x -

sIIt(I - dgA) *x for each x in X_ and for each of s and t in S with s >_ t. 

If M is strongly (resp., weakly) asymptotically convergent, and if 

Qx = lim M(t,0)x (resp., w-lim M(t,0)x) for each x in X_, then 
t->-+oo t -H-°° 

(i) Q is a continuous projection of X_ onto the null space of A, 

(ii) |Q| < 1, and 

(iii) The null space of Q is the closure of the range of A. 

Proof. Case I M is strongly asymptotically convergent. 

Let X q be in D(A) and suppose that QAX q = y / 0. Then there is 

an element T in S such that |y - M ( S , O ) A X q | < y|y| for each s > T. 

Now 
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o 
Qx - x | = |lim(L)/ dgM(«,0)Ax | 

s-*» s 

o T 
= |(L)/ dgM(-,0)Ax + lim(L)/ dgM(-,0)Ax | 

T s-*» s 

T o 
> |lim(L)/ dg(y • M(-,0)Ax - y) | - |(L)/ dgM(',0)Axo, 

s-*°° s T 
T T 

>_ |lim(L)/ dgy| - |lim(L)/ dg(M(-,0)Axo - y) | 
s-*°° s s-*°° s 

o 
- I(L)/ dgM(-,0)Ax | 

T ° 

> lim{(g(T) - g(s))|y| - (g(T) - g(s))~|y|} 

o 
- |(L)/ dgM(-,0)Ax |. 

T 

The last quantity tends to +°°; hence, QAx = 0. Also, lim M ( S , 0 )X Q = 

Qx and lim AM(s,0)x = lim M(s,0)Ax = QAx = 0. Since A is closed, 

QX q is in D(A) and AQX Q = 0. Again, since A is closed and D(A) is 

dense in Qx is in D(A) for each x in X and AQx = 0. Hence, one has 

that Q is a mapping into the null space of A. If z is in D(A) and 

Az = 0, then (I - AA) _ 1z = z for each A > 0. It follows that M(s,0)z = z 

for each s >_ 0. Thus Qz = z, and one has that Q is a mapping onto the 

null space of A. 

That |Q| <_ 1 follows at once from the fact that |M(t,0) | <_ 1 for 

each t > 0. To see that Q 2 = Q, note that if A > 0 and x is in X, then 

Q(I - AA)"1x = Q(I + AA(I - AA) _ 1)x = Qx. By induction, if {A } n is 
K k=l 

n -1 
a sequence of non-negative numbers, then Q IT (I - A, A) x = Qx. Since 

k=l k 
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Q is continuous, one has that QM(s,0)x = Qx for each s >̂  0 and then 
2 

than Q = Q. 

Already, one has that if z is in the range of A, then Qz = 0. 

Since Q is continuous, Qx = 0 for each x in the closure of the range 
o 

of A. Since M(t,0)x - x = A((L)/ dgM(«,0)x), Qx = 0 only in case x 
t 

is in the closure of the range of A. 
The proof in case M is weakly asymptotically convergent uses 

Lemma 6 and follows much the same lines. Again, one lets x be in D(A) 

and supposes that QAXq = y ̂  0. If ij; is in X and ip(y) t 0, then there is an element T in S such that |i|;(y) - ip(M(s,0)AxQ) | < j| ipCy) I f o r S>T-
o 

The fact that lKQx - x ) = lim (L)/ dg^(M(*,0)Ax ) leads to a contra-
0 0 s-*» s 0 

diction; hence, QAx = 0 . As before, the fact that w-lim M(s,0)x = 
0 s-x» 0 

Qx and w-lim AM(s,0)x = w-lim M(s,0)Ax = QAx ~ 0 coupled with 
0 S-KX3 ° s->oo 0 0 

Lemma 6 gives that AQXq = 0. That Qx is in D(A) and AQx = 0 for each 

x in X is immediate since D(A) is dense in XT. If, now, Az = 0, then 

again one has (I - XA) 1z = z for each X > 0 so Qz = z. Hence, (i) is 

established. 

The proof of (ii) follows exactly the same lines as in the 

strongly convergent case. 
o 

The identity M(t,0)x - x = A((L)/ dgM(»,0)x) gives at once that 
t 

Qx = 0 only in case x is in the weak closure of the range of A. Since 

the range of A is a linear subspace of X_, its weak closure is precisely 

its strong closure; thus, (iii) is established. 

Theorem 8. Let A, g, and M be as in Theorem 3 and suppose that 

M(»,0) is strongly (resp., weakly) asymptotically convergent. If each 

of s and t is in S with s > t, if each of x and z is in X, and if 
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W(z;s,t)x = II (I - dg(A + z)) x as in Theorem 5, then these are s 
equivalent: 

(i) z is in the range of A, 

Cxi) For each x in X, lim W(z;t,0)x (resp., w-lim W(z;t,0)x) 
t-M-c© t-*+°° 

exists and is a solution y of the equation Ay = -z, 

(iii) There is an x in X and an increasing, unbounded sequence 
oo 

It, } in S such that w-lim W(z;t,,0)x exists. 
k k=l k-*+«> k 

Proof. The proof is given first in the case that M is strongly 

asymptotically convergent. 

If Au = z, then 

o 
W(z;t,0)x = M(t,0)x • (R)/ dgM(t,-)Au 

t 

= M(t,0)x = M(t,0)u - u. 

Hence, lim W(z;t,0)x = Qx + Qu - u and AQx + AQu - Au = -z. Since A 
t-M-oo 

is linear, (i) implies (ii). 

That (ii) implies (iii) is clear. 

Finally, suppose that (iii) holds so that w-lim W(z;t, ,0)x = u. 
k-*+°° 

If x q is in D(A), then 

u + Q(x - x) = w-lim W(z;t, ,0)x + lim M(t, ,0)(x - x) 
O i . K i K O 

k-x» k-x* 

= w-lim W(z;t ,0)xQ 

k-KX3 

and 
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w-lim AW(z;t,,0)x «= w-lim AW(z;t, ,0)x - AM(t ,0)x 
k-*» ° k-**> K o k o 

o 
= w-lim A(R)/ dgM(tv,*)z 

k-H» tk k 

w-lim M(t, ,0)z - z 
k-*» k 

= Qz - z. 

By Lemma 6 , one has Au = Qz - z. 

Now 

o 
W(z;tk,0)x = M(tk,0)x + (R)/ dgM(tk,-)z 

t k 
o 

= M(tk,0)x + (R)/ dgM(tk,-)(z - Qz) 
tk 

o 
+ (R)/ dgM(t ,-)Q* 

\ 
0 o 

= M(tk,0)x + (R)/ dgM(tk,-)C-Au) + (R)/ dgM(tk,-)Qz 

0 
= M(tk,0)x + u - M(tk,0)u + (R)/ dgQz. 

Since w-lim W(z;t, ,0)x, w-lim M(t, ,0)x, and w-lim M(t,,0)u all exist, 
k-^o

 K k-H» k-x» K 

o 
it follows that w-lim (R) / dgQz exists. Since lim g(s) = +°°, Qz = 0; 

k-*» t. s-*» k 

so Au = -z and (iii) implies (i). 

In case M is weakly asymptotically convergent, again suppose 

Au = z at first. Again, the variation of parameters formula gives that 
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w-lim W(z;t,0)x = Qx + Qu - u . 

Again, note that A(Qx + Qu - u) = -z. 

To show that (iii) implies (i), again suppose that 

w-lim W(z;tv,0)x = u. One has again that if x is in D(A), then 

u + Q(x - x) = w-lim W(z;t. , 0 ) X 
0 k-K» K 0 

and 

w-lim AW(z;t,,0)x = Qz - z. 

o 

Since W(z;tk,0)x = M(tk,0)x + u - M(tk,0)u + (R)/ dgQz, one has Qz = 0; 

so Au B -z and (iii) implies (i). 

Remark. The original requirement that A be dissipative can be 

weakened somewhat. In particular, suppose that A is a linear function 

from D(A) in ) T to ¥ such that D(A) is dense in 3T and that there is a 

number C such that if { A , } r a is a sequence of positive numbers, then 
K k=l 

m 
| II (I - A, A) I < C. It follows that |exp(tA)| < C for each t > 0. 
k=l K 

The norm, | X L = sup|exp(tA)x|, is equivalent to the norm |«| on X, 
t>o 

and |exp(tA)x|2 £ I xl2' H e n c e » A is dissipative with respect to L * ^ * 

The previous hypothesis that |(I - X A ) - 1 | £ 1 for each X > 0 can thus 

be weakened. 

Another extension of the integral equation theory of Chapter III 

can be had. If 3 and X are numbers, one has the identity 
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(I - X(A + 3 I ) ) ' 1 = (1 - - X(l - X3)~ 1A)~ 1 

provided that X3 t 1. If g is a non-increasing function from S to R 

and if 3 is negative, then lj;, defined by 

< K t ) - / dg(l - 3dg ) _ i , 
t 

is non-increasing. If A is dissipative with respect to some norm 

equivalent to |*|, then A + 31 is dissipative and Theorem 3 already 

guarantees the existence of H^I - dg(A + 3 I ) ) " 1 for s >_ t in S. The 

identity, 

^(i - dg(A + 3 D ) " 1 = yi^i - 3dg)'1)(snt(i - dM)'1) , 
furnishes better normed estimates in Theorems 3 and 5 . The theory of 

Chapter IV is largely had already as a part of the Hille-Yosida Theorem. 

Some passage of the theory of Chapters III and IV to the operator 

A ••• 3l, 3 > 0, can also be had. One requires of the function g that 

there exist a number P such that if s is in S, then there exist u and v 

in S such that v < s < u and g(v) - g(u) £ P. If 3P < 1, one has 
o _1 

t|>(t) = / dg(l - 3dg) is non-in ere as ing, 
t 

^ ( I - dg(A + 31)) ̂  = ( ^ ( 1 - BdgD'̂ĈCi - dM)'1), 
and the attendant integral equation theory holds. If, as in Chapter 

IV, lim n°(dg(A + 31)) 1x exists Cor if the weak limit exists) 
f » - + o o t 

for each x in X and is Qx, then the uniform boundedness theorem gives 
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that Q is continuous. Statements (i) and (iii) of Theorem 7 and the 

iteration description of Theorem 8 follow with A replaced by A + 31. 

Even if one has only that {|tH°(I - dg(A + 31))" 1| : t > 0} is bounded, 

then the iteration theory of Chapter IV can be developed for the 

operators A + y I > ° £ Y < 3 . 
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