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SUMMARY

Laser chemical vapor deposition, or LCVD, is an advanced fabrication process that

offers many unique advantages. The process is a derivative of traditional chemical vapor

deposition (CVD). It works by using a laser to locally heat a substrate in the presence

of a reagent gas mixture. The heat enables a localized surface deposition reaction. By

manipulating the relationship between the laser and the substrate, a variety of different

structures can be grown. The two most basic structures are vertical fibers and horizontal

lines.

One promising application of LCVD is in the fabrication of an integrated dispenser

cathode assembly. This is a cathode device used primarily as the emission source in a

class of vacuum tubes termed microwave power tubes. These tubes are used as amplifiers

in high powered RF circuits such as those found in radar, satellite communications, and

UHF television broadcasting systems. The current fabrication methods for these devices

are tedious and expensive. The performance of the devices, and ultimately, the systems they

support, is limited by the current fabrication process. LCVD offers the ability to decrease

the cost and increase the performance of dispenser cathodes by enabling the fabrication of

smaller, more complex assemblies in one continuous, automated manufacturing process.

This investigation focuses on advancing the capability of the LCVD process towards

building a dispenser cathode device. The study incorporates experiments, analysis, and

computational modeling to better understand the complexities of the LCVD process and

simultaneously increase its capability. Three materials are studied: carbon, boron nitride,

and molybdenum.

Carbon deposition is used to characterize the LCVD process through a series of de-

signed experiments. The data is fit to both phenomenological and theoretical models for
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use in the development of process planning algorithms. The knowledge gained is used in

conjunction with an advanced temperature control system to enable deposition of the first

uniform, multi–layered, carbon wall structures via LCVD. LCVD carbon fibers are ana-

lyzed using X-ray diffraction and found to be crystalline with a hexagonal microstructure

very similar to pyrolytic graphite.

Furthermore, the carbon deposition experiments provide the foundation for advanced

computational modeling simulations. Models are developed using the computational fluid

dynamics (CFD) code, FLUENT, that incorporate heat transfer, fluid flow, and species

transport in a single integrated modeling environment. The models are used to study the

carbon deposition process. Insight is gained into the relationships among the process pa-

rameters and the deposition rates and deposition rate profiles. Phenomena such as thermal

diffusion and the relative importance of mass convection and mass diffusion are explored.

A designed set of model cases is executed and the results used to develop a simple polyno-

mial expression for relating experiment conditions to deposit attributes.

Structural models are created in the finite element code ANSYS. The models are moti-

vated by the finding that many carbon LCVD structures exhibit significant internal crack-

ing. The cause of the cracks is believed to be thermal stress induced during the deposition

process. In order to better understand the implications of the extreme temperature gradients

that exist during LCVD, a thermal simulation of a carbon fiber during growth is created.

The temperature levels and profiles within the deposit are shown to be strongly influenced

by the properties of the deposit material. The results of the thermal analyses are used as

loads in a structural analysis. Results show that the magnitude of thermally–induced stress

within LCVD structures can greatly exceed the strength of the deposited materials. Both

the carbon deposition rate models and carbon fiber thermal–structural models serve to im-

prove the understanding and control of the LCVD process.

The second phase of the current study focuses on the deposition and analysis of the two

materials required in the dispenser cathode assembly: boron nitride (BN) and molybdenum
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(Mo). Experimental development of both materials proceeds along a general development

path whereby LCVD fiber growth is used to learn, analyze, control, and characterize each

new material system. After successful fiber growth, line growth is investigated. Finally,

composite line growth is studied whereby alternating sections of BN and Mo are deposited

per the requirements of the dispenser cathode application.

Boron nitride growth from borazine is found to have a dynamic transition period as

growth begins on the surface. At the surface, the reaction is very unstable and sporadic,

but as significant deposit forms, it becomes more stable. Throughout the process, the BN

deposition temperature remains very sensitive to input laser power. Some of the dynamic

behavior at the substrate surface is attributed to differences in substrate and deposit material

properties, while some is found inherent in the process itself.

Successful BN fiber growth is accomplished by manually controlling the laser power to

maintain a fixed deposition temperature. Formal designed experiments show BN deposi-

tion to be a transport–limited process. A theoretical upper limit of deposition rate is com-

puted from species transport equations using an identical CFD model as was used to study

carbon deposition. The upper limits computed in the model show good agreement with

experimentally measured values. The shape of deposition rate profiles for this transport–

limited process are found to be significantly different from those of a kinetically–limited

process. Factors such as thermal diffusion and reagent flow rate are shown to have a large

effect on deposition rates.

BN line growth is studied using successful conditions from BN fiber growth. The spo-

radic and unstable growth at the substrate surface makes control and repeatability of the

process difficult. The utility of the optimized fiber growth conditions is minimized by the

importance of these surface effects. Some success is found by using a constant laser power

during each layer of growth, but the deposition temperature remains very sensitive to the

power level. BN wall growth is further complicated by the sporadic nature of the growth

process and tends to produce arrays of fibers rather than smooth, layered walls.
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Molybdenum LCVD from MoCl5 is shown to be a sensitive, but stable process. The

growth rate for Mo is much slower than for either carbon or boron nitride. Efforts to

increase growth rate focus on both transport and kinetic parameters. Increases in transport

variables such as flow rate are plagued by the formation of extraneous powder and debris

on the substrate surface around the deposition zone. Efforts to increase temperature are

limited on the low end by the machine instrumentation, and on the high end by substrate

surface damage.

Molybdenum line deposition is explored using the best conditions found from Mo fiber

experiments. Due to the slow growth rate, the lines are very thin, but the growth process

remains stable and sensitive. The lines are shown to be electrically conductive. The same

limiting factors pertinent to increasing Mo fiber growth rates applies to lines.

The deposition of a ceramic–metal laminate is demonstrated by producing a BN-Mo

composite. The composite experiments use conditions derived from the most successful

line conditions for each individual material. BN line growth is shown to be the most dif-

ficult part of the composite fabrication due to its sporadic nature. The very slow rate of

Mo growth limits the practicality of the process. Limitations and potential improvements

to Georgia Tech’s LCVD system for producing composites of this type are identified.

Experimentally, this work represents the most advanced study reported of LCVD fabri-

cation of layered structures. This is an important growth mode of LCVD that has practical

application in producing integrated dispenser cathode assemblies. For the first time, LCVD

of boron nitride is well characterized, while controlled molybdenum deposition is achieved.

The materials are combined into one of the first examples of ceramic–metal composites

produced using LCVD.
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CHAPTER I

INTRODUCTION

1.1 The Laser Chemical Vapor Deposition Process

Laser Chemical Vapor Deposition, or LCVD, is a fabrication process capable of produc-

ing small, complex devices from a variety of materials. As the name implies, LCVD is

a derivative of the traditional Chemical Vapor Deposition (CVD) process. CVD is a ther-

mally driven coating process normally used to produce thin film metallic or ceramic ma-

terials. The process works by heating an object known as a substrate in the presence of

specific reagent gases to the temperature necessary for surface reactions. In CVD, the sub-

strate surface temperature is nearly uniform which results in a thin film coating over the

entire substrate.

LCVD employs a localized CVD reaction to generate patterns or structures by using

the energy of a laser beam to induce a chemical reaction on the substrate surface. By using

a laser with a sufficiently small beam diameter and manipulating the laser or substrate ap-

propriately, one can draw patterns on the substrate surface or grow vertical structures away

from the surface. Figure 1.1 illustrates the different methods of growth LCVD enables.1

LCVD processes are divided into two categories based on how the photons in the laser

beam interact with the gas and substrate during the process. The first category is photolytic

LCVD where the reagent gas molecule–photon interaction causes the molecule to disso-

ciate and the resulting solid particulate is deposited onto a nearby substrate. This process

is essentially a homogenous reaction with some degree of spatial control enabled by the

locality of the reaction in and around the laser beam.2

The second category of LCVD is pyrolytic. Here, a laser is used to locally heat the

substrate to the necessary temperature to cause the surface reaction. Ideally, in pyrolytic
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Figure 1.1: Different growth modes enabled by LCVD

LCVD there are no interactions between the laser beam and the reagent gas molecules

(i.e., the absorbtion of the laser beam radiation by the reagent gas is minimized). The

temperature rise induced by the photon interaction with the substrate surface is designed to

initiate a surface reaction.

As with CVD, LCVD can be used to deposit a wide variety of engineering materials.

Table 1.1 provides a list of these materials taken from the review article by Duty et al.3

The material flexibility of the process makes LCVD an attractive technology for a vari-

Table 1.1: Different types of materials deposited using the LCVD process

Metals Ceramics

Aluminum (Al) Aluminum Oxides (AlxOy)

Boron (B) Boron Nitride (BN)

Copper (Cu) Boron Nitrogen Carbides (BxNyCz)

Iron (Fe) Carbon (C)

Molybdenum (Mo) Silicon Carbide (SiC)

Nickel (Ni) Silicon Nitrides (SixNy)

Silicon (Si) Titanium Carbide (TiC)

Titanium (Ti) Titanium Nitride (TiN)

Tungsten (W) Tungsten Carbide (WC)

2



ety of applications. One limitation that precludes certain materials from being deposited

is the high temperature involved with the deposition reaction. Both the substrate and the

deposited material must be capable of tolerating the reaction temperature without degrada-

tion. The materials used in the LCVD process are therefore particularly well suited to high

temperature applications.

1.2 Applications of LCVD

The first LCVD deposits were reported by Nelson and Richardson in 1972 and consisted

of carbon fibers or rods.4 The direct write nature of the process provides tremendous flex-

ibility and many applications were soon envisioned. Researchers became interested in the

use of LCVD for the fabrication or repair of electronic circuits or photolithography masks.5

However, the flexibility of any vector–driven direct write process comes at a cost of speed.

The need to trace every feature using one dimensional strokes is time consuming which

makes the process impractical for large scale manufacturing operations. LCVD did find

some limited application in repairing damaged electrical circuits;6–8 however, the scales

of electronic circuitry eventually exceeded the minimum resolution achievable with the

process.

The recent interest in LCVD is driven by ongoing research thrusts towards miniaturiza-

tion and mass customization. There are micro and nano-scale research initiatives both in

the United States and worldwide. The impetus for this scaling down varies depending on

the device, but can include among others, increased energy efficiency (enabling battery/-

portable usage), increased speed, increased reliability, decreased manufacturing costs, and

“systems on a chip” ideas. Because LCVD offers the attractive ability to deposit both metal

and ceramic materials in complex three dimensional patterns on scales approaching 10µm,

it is an ideal candidate for the fabrication of some of these miniature devices. Mass cus-

tomization is the ability to use computer–aided manufacturing systems to produce custom

output on a low–cost high–volume basis.
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The primary limitation to the use of LCVD has been related to the difficulty in produc-

ing consistent, geometrically uniform parts. Much proof of concept work has been done

for the deposition of different materials in many different shapes and structures. However,

most of the success reported has relied on operator experience and or educated guesswork

rather than robust process planning and control algorithms. It can be said that LCVD is not

yet understood well enough for widespread commercial applications. However, there are

currently at least four areas of potential application highlighted in the literature: photonic

band gap structures, solar cells, microelectromechanical systems (MEMS), and electron

emission devices.

Photonic band gap structures are devices that are used to filter, amplify, or otherwise

control high frequency electromagnetic waves such as light. The devices consist of arrays

of three dimensional structures whose size, spacing, and feature type are chosen based on

the frequency of radiation the device will manipulate. Wanke9 and Dean10 have both shown

success in using LCVD to deposit photonic band gap structures. Hixson11 et al. have ex-

plored the deposition of solar cell arrays using LCVD. The flexibility of the LCVD process

would enable the placement of small patterns of solar cells on sensors and other small

devices, relieving the need for other on-board energy sources. Different types of MEMS

devices have been made using LCVD as shown by both Maxwell12 and Williams.13 They

both have fabricated micro-scale solenoids, motors, and springs using LCVD, thus illus-

trating the potential use of LCVD in the MEMS world. Finally, several research groups

have focused on building various types of electron emission devices using the LCVD pro-

cess. Bjorklund14 has reported the fabrication of arrays of single crystal tungsten fibers to

be used for field emission applications. Fuhrman15 and Duty2 have both worked towards

the production of a thermionic emission device using LCVD.
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1.2.0.1 Dispenser Cathodes

The present work focuses on developing the LCVD process to fabricate a complex metal-

ceramic device termed an integrated dispenser cathode assembly. Cathode devices are

used as the electron sources in electron guns. Dispenser cathodes find a wide range of

applications in electron gun devices, but are particularly prevalent in the area of microwave

power tubes. Microwave power tubes are a broad class of vacuum tubes used to amplify

radio frequency (RF) signals to extremely high power levels. Such tubes find use in UHF-

TV transmission, shipboard and ground-based radar, weapons guidance systems, electronic

countermeasure systems, satellite communications, tropospheric scatter communications,

and fusion research. Figure 1.2 is a schematic of a microwave power tube that uses a

dispenser cathode.

Magnet

Magnet
Collector

Dispenser 
cathode
assembly

Electron 
beam

Modulating signal (to be amplified)

Modulated 
signal 

(amplified)

Insulating spacers 
(boron nitride)

Control grids 
(molybdenum)

Emission source 
(tungsten)

Figure 1.2: Schematic of microwave power tube with dispenser cathode assembly

The dispenser cathode assembly within the microwave tube is composed of an electron

emission material, ceramic insulators, and refractory metal conductors. Most dispenser

cathodes use a bulk emission material of a porous refractory metal, usually tungsten (ap-

proximately 80% density), impregnated with barium calcium aluminate in one of several
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ratios.16 Sometimes, the impregnated tungsten is also sputter coated with an osmium–

ruthenium alloy or iridium to improve performance. A second configuration sometimes

used is to put a reservoir of barium calcium aluminate behind a plug of the porous emit-

ting material. In either case, the concept is that at the elevated temperatures of operation

(1000–1200◦C), the barium calcium aluminate will react with the tungsten releasing barium

which migrates to the emitting surface helping to reduce the work function of the emitter.

In essence, the emission efficiency of the refractory metal is significantly increased by the

presence of barium.

The cathode assembly contains one or two “control grids” used to modulate the current

output of the device. These grids are placed very close to the cathode surface for enhanced

electrical performance, and due to the elevated temperatures of operation, are required to

be made of a refractory metal, often molybdenum. The grids have a pattern of holes or

voids which are designed to help shape the emerging electron beam.

In order to maintain electrical isolation between the tungsten emission material and

the control grids, insulating spacers are inserted between the surfaces. These electrical

insulators must be thermally conductive to assist in the cooling of the metal control grids.

The material must also be dimensionally stable under extreme temperature cycling so as to

maintain the proper separation between the control grids and the emission material without

distortion. One of the few materials offering high electrical resistance and low thermal

resistance is boron nitride.

An integrated cathode-grid assembly has been conceived as a promising application of

LCVD technology. Figure 1.3 illustrates the specifications of a potential device. In concept,

this structure serves as an ideal example of the type of device LCVD is suited to produce.

It exhibits complex geometry on a small scale and requires the precise deposition of both

ceramic and metal materials. The surface of a dispenser cathode is often concave as shown

in Figure 1.3 (b). This shape is chosen to help in the formation of a compact beam yielding

desirable current profiles, and is characteristic of all Pierce type electron guns. While
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(a) Top View (b) Side View

Figure 1.3: Dispenser cathode assembly to be fabricated using LCVD

some layer–based fabrication processes or techniques might struggle to accommodate this

feature, the flexibility of LCVD enabled by use of vapor phase reagents easily supports the

geometry.

The current method of fabricating a dispenser cathode assembly of the type shown in

Figure 1.3 involves several complex steps. First, the metal control grids are made using

some type of machining process such as EDM. Next, the cathode unit is assembled man-

ually by stacking the insulating spacers on the tungsten and then the control grid on the

spacers. If a second control grid is desired, an additional layer of spacers and grid is added.

After the unit is assembled, it is clamped together, and an external cage assembly is welded

in place to hold the unit intact. Due to the scale of these assembly operations, they are often

done underneath a microscope. Assembly and welding operations on this scale are difficult

and expensive. Moreover, the complexity and performance of potential dispenser cathode

designs is limited by the current fabrication process. More intricate geometries with more

closely spaced components could theoretically offer superior performance. In sum, there is

both an economic and performance incentive to develop a new process capable of making

dispenser cathode assemblies. Others have done some preliminary “proof of concept” work

that inspired the current investigation.2,15
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1.3 Fundamental Concepts

At its core, LCVD is a complex process. A review of its most fundamental aspects can

provide valuable insight into its dynamics. The equations governing deposition processes

include the mass continuity equation, the momentum transport equation, the energy trans-

port equation, and the species transport equation(s). In conjunction with these fundamental

equations, additional concepts apply. Near the substrate surface, the analysis focuses on the

balance between diffusion of reagents to the surface and the overall kinetics of the reaction.

The LCVD process starts with the introduction of a mixture of reagent and carrier gases

into the system. As these gases heat up and begin to interact amongst themselves, both ho-

mogenous and heterogenous chemical reactions begin to occur. Most chemical reactions

proceed through complicated mechanisms whereby tens or hundreds of simultaneous gas

phase reactions involving tens or hundreds of species can occur simultaneously. While the

details of these reaction mechanisms are often unknown, the overall process can be approx-

imated by simple stoichiometric reactions. The reactions proceed toward thermodynamic

equilibrium at some finite rate given by the chemical kinetics.

On the molecular level, the surface deposition reaction involves several important steps.

First, one or more of the species molecules containing the desired elements in the deposit

must diffuse through the boundary layer above the substrate towards the surface. The

species that ultimately diffuses to the substrate surface might be either one of the original

reagent species or a different species that resulted from a homogenous reaction. Next, the

species molecule must adsorb onto the substrate surface. After a finite amount of time,

having remained in the necessary energy state, a portion of the adsorbed molecules will

dissociate into the desired product while yielding byproducts. The byproducts must then

desorb from the surface and diffuse away from the deposition zone yielding a site for an-

other adsorbed molecule. Figure 1.4 illustrates these different steps. Any one of these steps

can be the “rate–limiting” step in the process.

The common framework for CVD analysis, which is also applicable to LCVD, involves
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Figure 1.4: Diffusion and molecular dynamics of LCVD

the consideration of two different rate–limiting regimes. The first regime is transport–

limited wherein the reaction rate is limited by the transport of the primary reagent species

to the surface. The second regime is kinetically–limited which implies that the chemical

kinetics are slower than the transport processes, and the reaction rate is limited by energy

or temperature. These two rate–limiting regimes become very distinct when plotting ex-

perimental data with the natural log of reaction rate plotted against the inverse temperature.

Such a plot is termed an Arrhenius plot, an example of which is shown in Figure 1.5.

The two rate–limiting regimes are distinguished by the slopes of the lines within them.

At high temperatures, the reaction rate is moderately sensitive to temperature as indicated

by the slope on the left side of the plot. This is the transport–limited regime. A variety

of transport mechanisms can be involved in moving the reagent species to the substrate

surface (or the gaseous reaction products away from the surface) depending upon the reac-

tor configuration and the process conditions. The two most prevalent transport modes are

convection and diffusion. Convective transport is that due to the bulk motion of the fluid

while diffusive transport is the molecular transport mode that arises due to concentration

gradients within a fluid. The zero slip boundary condition of a fluid at a surface dictates that

as molecules near the surface, convective transport becomes less important and diffusion
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Figure 1.5: Arrhenius plot showing the rate–limiting regimes

due to concentration gradients becomes the primary driving force. As such, it is important

to understand conceptually the diffusion process.

In the simplified one-dimensional situation depicted in Figure 1.4, with only two species

present in the gas mixture, the diffusion of reagent gases through the boundary layer is

given conceptually in one dimension by Fick’s Law.

~JA =−DAB
dCA

dz
(1.1)

Fick’s Law states that the molar rate of diffusion in thezdirection of a species (A) through a

domain is proportional to the concentration gradientdCA/dz. The degree of proportionality

is given by the diffusivity,DAB. For a binary system involving two species,A andB, in

which speciesA is considered dilute, a first order relation ofDAB to total pressureP and

temperatureT is given by:17

DAB∼ P−1T3/2 (1.2)

The moderate relation to temperature shown in the transport–limited regime of Figure 1.5

is an implication of the relationship between mass diffusivity and temperature.

We can envision a simple case of diffusion through a boundary layer of thicknessδ

whereδ is defined as the distance from the substrate surface to a point in the bulk fluid
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whereCA = 0.99CA,∞ whereCA,∞ is the concentration of speciesA in the bulk fluid. If we

defineCA,0 to be the concentration of speciesA at the substrate surface, the concentration

gradient through this boundary layer is thus approximated:

dCA

dz
≈

CA,∞−CA,0

δ
(1.3)

and Equation 1.1 becomes:

~JA =
−DAB

δ
(CA,∞−CA,0) (1.4)

The quantity−DAB/δ is sometimes referred to as the mass transfer coefficient,kt , thus,

~JA = kt(CA,∞−CA,0) (1.5)

As temperature (or energy) decreases from left to right on the Arrhenius plot, the rate–

limiting mechanism transitions from transport to kinetic.

At low temperatures, the reaction rate will be highly sensitive to temperature as indi-

cated by the steep slope on the right side of the plot in Figure 1.5. This is the kinetically–

limited regime. Within this region, the reaction rate is limited not by a lack of reagent

species, but by the amount of energy in the system. Increasing the energy in the system

directly and exponentially effects the reaction rate. The common equation for expressing a

surface reaction is the expression:

J′′A = krC
n
A,0 (1.6)

which states that the reaction rate,J′′A, is proportional to the concentration of the reactant

species at the surface,CA,0, to some power,n, wheren is the order of the reaction.J′′A can be

thought of as the net rate of creation or destruction of speciesA, and if the stoichiometric

ratio of reagentA to solid deposit is 1:1, theJ′′A is equivalent to the molar rate of deposition.

The rate constant,kr is given by the Arrhenius expression:

kr = k0e
−Q
RT (1.7)

wherek0 represents the pre–exponential factor,Q is the activation energy,R is the universal

gas constant, andT is the absolute reaction temperature.

11



Assuming a first order reaction (n = 1), Equation 1.6 can be rearranged and solved for

CA,0 and the result plugged into Equation 1.5 yielding:

~JA = kt(CA,∞−
J′′A
kr

) (1.8)

During deposition, a balance must exist between the rate of molar flux to the substrate

surface due to transport and the surface molar reaction rate (~JA = J′′A); Equation 1.8 can thus

be rewritten:

~JA =
CA,∞(
1
kt

+ 1
kr

) (1.9)

A useful interpretation of Equation 1.9 is to consider both the transport process and the

kinetic process to each have a resistance expressed by 1/kt and 1/kr , respectively. If the

mass transfer coefficientkt is small compared tokr , the transport resistance term dominates

the reaction rate equation. Whereas ifkt is large compared tokr , the kinetic resistance dom-

inates. Thus, a comparison ofkt to kr for a given process gives insight into identification of

the rate–limiting regime.

The existence of a transport–limited and a kinetically–limited regime has many practi-

cal implications for deposition processes.18 The primary goal of industrial CVD processes

it to produce uniform coatings of material at a reasonable rate. The simplest strategy for

maximizing deposition rate might be to increase temperature as much as possible and move

to the far left of the Arrhenius plot. This strategy would seem to have the additional bene-

fit of making the process somewhat less sensitive to temperature variations throughout the

CVD chamber. However, operating in the transport–limited regime causes the geometry of

the CVD reactor to strongly influence the uniformity of the deposited coatings through its

effect on the transport boundary layer characteristics. The limitations on the geometric ar-

rangement within the reactor prohibit the parallel processing of large batches of substrates.

In order to reduce the sensitivity of coating uniformity to geometry, the reactor pressure

can be reduced significantly to enhance diffusive transport and force the kinetics to become
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rate–limiting. It is normally possible to design a chamber and a controller that yields a uni-

form reaction chamber temperature which allows for uniform deposition rates throughout

the system and high packing factors for substrates.

These two rate–limiting regimes also have a profound impact on the LCVD process.

The energy source in LCVD is a laser. The energy from the laser must be directed and

focused in order to achieve the desired laser spot size and position on the substrate. The

laser spot size dictates the minimum in–plane feature size achievable with the process.

The optics involved present the typical trade–off between laser spot size and Rayleigh

range. The Rayleigh range is important because it represents the axial distance over which

the minimum laser beam diameter remains relatively constant. This Rayleigh range must

be larger in magnitude than the resolution of the substrate positioning system so that the

substrate surface can remain within the Rayleigh range during deposition.

Laser beams typically emerge from their source with some type of non-uniform en-

ergy profile. Gaussian shaped beams are common. These are beams whose energy flux is

represented by Equation 1.10.19

P(r) =
2P0

πR2
0

e
−2r2

R2
0 (1.10)

whereP0 is the nominal laser power, R0 is the 1/e2 radius of the laser beam, andr is

the radial distance from the center of the laser spot. The nonuniform energy flux induces

a nonuniform temperature field on the surface of the substrate. This complex temperature

field is one of the primary differences between LCVD and CVD and has many implications.

Due to the extremely nonisothermal conditions in and around the laser spot, both transport–

limited and kinetically–limited regimes could co–exist at different positions in the same

deposit area. Nonetheless, on an aggregate scale it is likely that certain LCVD processes

will be governed by transport limitations while others are governed by kinetic limitations.

In addition to influencing the overall deposition rate, the rate–limiting regime can strongly

effect the shape of the deposit. For example the cross–sectional profile of a line deposit

could be significantly different depending upon the operating regime. With a thorough
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Figure 1.6: Experimental development path of a typical LCVD material

understanding of the relationship between the processing parameters and the rate–limiting

regime, one might manipulate the process so as to force operation in a particular regime

depending upon the desired deposition rate and deposit characteristics. Such characteristics

are often dictated by the application of interest. The link between the rate–limiting regime

and LCVD deposit shape is a central theme of this research.

1.4 Proposed Research

The research to be done will focus on utilization and understanding of the LCVD process

and Georgia Tech’s LCVD equipment in the fabrication of the integrated dispenser cathode

assembly described in Section 1.2.0.1. Toward that end, a combination of experimental,

analytical, and computational modeling work will be executed. Details of the proposed

work are presented below.

1.4.1 Experimental Development Path

Figure 1.6 illustrates how the experimental development of a typical LCVD material pro-

ceeds. On the left, the large downward arrow indicates the major phases of experimental
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development. Out to the right beside each major phase are some of the tasks associated with

that phase. Naturally, the first phase in the experimental development process is the liter-

ature review. The literature review focuses on previous work in the LCVD of the material

of interest and if prior work does not exist, the CVD literature can be used for reference.

The literature review yields which precursors have successfully been used to deposit the

material and the conditions at which the deposition occurred.

Next, the LCVD system is prepared for deposition of the new material. The prepara-

tion involves the acquisition of new reagent chemicals, and if the reagents are not in the

vapor phase at room temperature, the acquisition or fabrication of the equipment needed

to vaporize the chemical. Depending upon the application, the substrate material must be

chosen and acquired. Substrate preparation involves cutting and polishing to a uniform and

repeatable surface condition. Also, depending upon specific requirements of a material and

its reagents, the LCVD system may have to be modified. Modifications can include adding

of heaters or changing the gas delivery system to accommodate additional equipment.

The substantial portion of the experimental development path begins with the fiber de-

posit experiments. Vertical growth in the form of straight fibers is the least complicated

deposition process because the dynamics of a transient substrate surface are not involved.

The experiments begin with exploratory experiments designed to confirm the feasibility of

the process and find suitable conditions for deposition. Typically, these experiments are

analyzed using optical and scanning electron microscopy (SEM) to identify any unique

features of the deposited structures and confirm the presence of the desired elements.

Once a preliminary understanding of the process develops, more refined experiments

are executed. Refined experiments are those that involve the systematic variation of dif-

ferent parameters within the apparent experimental operating boxes. The goal of refined

experiments is to reduce the occurrence of undesirable deposit features. These experiments

are also used to explore the use of Georgia Tech’s automatic temperature control subsystem

with the particular reagent–material system. The refined experiment deposits are analyzed
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similar to the exploratory experiments, but additional quantitative measurements (e.g. fiber

height, fiber diameter, etc.) are also performed.

Finally, as the deposition of fibers matures, formal designed experiments are used to

identify the optimum growth conditions and study the growth rates of the deposits. The

analysis of the formal experiments typically includes the dissection of some of the deposits

to investigate the internal microstructure. When possible, more advanced analysis tech-

niques such as X-ray diffraction (XRD) and TEM are used to study the crystalline structure

of deposits.

The second fundamental growth mode of LCVD is line or patterned growth. This phase

of experimental development often begins after the conditions for depositing fibers are

well understood. Line deposition proceeds along a very similar path to fibers with some

differences due to the new parameters inherent in line growth. Wall deposition follows the

successful growth of single–layer lines and normally requires some degree of automatic

temperature control to counter the positive feedback nature of multi–layered processes.

1.4.2 Experiments

While not directly necessary for the fabrication of an integrated dispenser cathode assem-

bly, some carbon deposition and analysis will be done. In terms of the experimental devel-

opment path, carbon is a mature material. The knowledge surrounding carbon deposition

provides an excellent framework for gaining deeper insight into the mechanisms of LCVD.

This existing knowledge base combined with experimental capability and more sophisti-

cated monitoring and control systems provide an incentive to use carbon deposition as a

vehicle for learning more about the LCVD process in general. The goal is to transfer the

capabilities and understanding of the carbon LCVD process to the other material systems

as they mature.

Experimental work involving carbon has two goals. First, line deposition and particu-

larly multi–line or wall deposition process will be thoroughly investigated. Only recently
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have control strategies emerged that suggest multilayered LCVD structures might be prac-

tical. The work will focus on building geometrically uniform carbon walls. Second, a series

of carbon fiber experiments will be performed as part of a kinetics study. More refined ki-

netic data are needed for the development of fully integrated deposition rate models. Some

of the carbon line and fiber deposition work will provide an experimental database for use

in formulating process–property relationships for carbon LCVD structures.

Several major experimental steps are necessary in the pursuit of LCVD dispenser cath-

ode fabrication. The first step is to expand upon Duty’s deposition of boron nitride (BN)

from the borazine reagent by designing and executing a comprehensive set of experiments.

As described previously, dispenser cathodes normally employ a porous refractory metal as

the bulk emission material, thus tungsten substrates will be used for the deposition. The

dynamics of depositing a ceramic material, BN, on a metal substrate, W, will be a central

theme of these studies. The requirements of the boron nitride material to be used in the

dispenser cathode are multifaceted.

The shape of the deposits is critical. The shape suggested by Figure 1.3 is a boron

nitride line (or wall) of rectangular cross–section with width on the order of 100µm and a

height on the order of 10µm. Perfectly rectangular cross–sectioned lines are nearly prohib-

ited by the physics of the LCVD process, but it is desirable to find process conditions that

permit approaching this shape. In addition to the cross sectional shape, the cross section

must remain uniform throughout the length of the line. Uniform lines have historically been

difficult to accomplish in LCVD without sophisticated real–time process control. Other

properties of the boron nitride are of significant importance to the dispenser cathode appli-

cation: adhesion of boron nitride to the tungsten substrate, mechanical strength, electrical

resistivity, and thermal conductivity. The investigative process for boron nitride deposi-

tion will follow the experimental road map presented in Section 1.4.1, beginning with fiber

deposition and proceeding to line and/or wall deposition.
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Subsequently, the same experimental process will be used for the deposition of molyb-

denum from molybdenum pentachloride (MoCl5) and hydrogen (H2). Duty also showed

some success depositing molybdenum on different substrates, and his work is the starting

point for the proposed investigation. The dispenser cathode requires that molybdenum be

deposited on boron nitride substrates. The implications of depositing a metal material on

a ceramic substrate will be an important aspect of this process. The required shape of the

molybdenum deposits is very similar to that of the boron nitride deposits: lines with 100

µm wide by 10µm tall cross sections remaining uniform along the line length. Other

properties of importance include the adhesion to the BN substrate, mechanical integrity,

and electrical conductivity.

After successful deposition of the boron nitride and molybdenum separately, experi-

ments will be performed to determine the feasibility of directly depositing a BN−Mo

composite on a tungsten substrate as is specified for the integrated dispenser cathode as-

sembly. Limited work has been done in the LCVD of multi-material laminates, particularly

metal-ceramic laminates. Important questions arise when considering the deposition of a

metal–ceramic composite using this process. One issue that is immediately obvious is how

materials with different coefficients of thermal expansion (CTE), like metals and ceramics,

might react when heated to high temperatures by the laser. Will it be possible to deposit

a ceramic onto a metal substrate (or metal on ceramic) and obtain acceptable adherence?

Will the resulting deposits have structural integrity? These questions are crucial measures

of the ability of LCVD to achieve its stated advantages as a manufacturing process.

In sum, the ultimate goal of the boron nitride and molybdenum experimental work will

be to produce lines of the appropriate size and shape required by the dispenser cathode

application. Toward this end, a series of experiments will be performed, beginning with

fiber deposition, moving on to line and perhaps wall deposition, and finally to the deposition

of a metal–ceramic laminate.
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1.4.3 Modeling

While LCVD process research has been ongoing for years, there are still aspects of this pro-

cess that are not understood and have not been thoroughly studied. The published models

of the LCVD process have historically focused on certain aspects of the process while ig-

noring or greatly minimizing the significance of other aspects. In terms of deposition rates

and profiles, more comprehensive computational models of the LCVD process will be de-

veloped that will incorporate fluid flow, heat transport, mass transport, thermodynamics,

and chemical kinetics.

The comprehensive models, to be developed in the CFD package FLUENT, will pro-

vide valuable information about the critical parameters of the LCVD process. Specifically,

the models will be used to predict the shapes of deposited structures. The surface profile of

LCVD deposits is governed by the reaction limiting mechanism. The reaction rate limiting

mechanism can be either transport or kinetic in nature. Combining convective flow, ther-

mal effects, species diffusion, and chemical kinetics into the same modeling environment

provides a comprehensive means of studying the overall effects of the different process pa-

rameters on deposition rates and deposit shapes. The models will be verified by comparing

experimentally observed temperature profiles with model results and by comparing deposit

measurements to those predicted by the models. The information gained through the mod-

els will supplement that gained through experimentation, thus complementing the research

process.

The extreme temperature gradients known to exist in LCVD due to the laser heating

process bring concerns about the structural integrity of the underlying substrate or deposit

material. In fact, evidence has shown that in some material systems, significant cracks

develop within deposited structures.20 No work has been done to study the thermal and

thermally induced stress and strain fields within an LCVD deposit during growth. A com-

putational model using the finite element method (FEM) will be developed using the AN-

SYS software package to study the temperatures within an LCVD fiber during growth.
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These temperatures will be used as the loading function in a thermal stress analysis to

determine the magnitude and orientation of stresses within the fiber during growth. The

predicted stress state will be compared with the experimentally observed crack patterns

within LCVD deposits.

In sum, the proposed modeling research has two major goals. First, an advanced inte-

grated deposition rate and deposition rate profile modeling environment will be created in

FLUENT and used to study the LCVD process of different material systems. Second, the

ANSYS FEM code will be used to build a structural model of an LCVD fiber to study the

interaction of the temperature and stress fields within the deposit during growth.
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CHAPTER II

LITERATURE REVIEW AND PRIOR WORK

In an effort to gain the understanding necessary to propel LCVD into commercial adoption,

several research groups are actively investigating different aspects of the technology. Sev-

eral comprehensive reviews have been presented in the literature regarding the progression

and status of LCVD research. Mazumder and Kar have provided a text that covers many of

the fundamental aspects of laser–based deposition processes.21 Baum and Comita summa-

rized the deposition of metals using LCVD, with an emphasis on electronic applications.5

Duty et al. provided a more recent review of the status of LCVD research with an emphasis

on process control techniques.3 The goal here is to review those topics most pertinent to

the use of LCVD for fabrication of an integrated dispenser cathode device.

2.1 Materials

Many different materials have been deposited using LCVD.3 Generally, any traditional

CVD reaction can be replicated in an LCVD environment after making some adjustments.

The materials studied by LCVD researchers have evolved as the technology and envisioned

applications of LCVD have changed. Three materials were deposited during the execution

of this work: carbon, boron nitride, and molybdenum.

2.1.1 Carbon

Carbon was the first,4 and is one of the most common, materials deposited with LCVD.

The wide range of conditions under which carbon deposition occurs combined with the

availability of the hydrocarbon reagents as well as their limited toxicity make carbon de-

position an ideal process for research. Carbon can be deposited in many different forms
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under a wide range of conditions.

Some have investigated the use of a laser–based CVD process for on–line coating of

optical fibers.22,23 The fiber is made to pass through an atmosphere of methane, butane,

propane, or some other hydrocarbon wherein a laser irradiates the fiber causing a carbon

deposition reaction. The carbon produced is typically partially disordered with a preference

for depositing with the〈001〉 direction perpendicular to the surface of the substrate.

Others have grown complex carbon shapes by manipulating the laser–substrate relation-

ship.24 Pegna used an Ar+ laser with ethylene reagent over a pressure range of 100–500

Torr to grow angled carbon fibers. Maxwell grew both straight carbon fibers and coiled

carbon springs from ethylene at pressures of 1–11 bar.12 This high pressure LCVD process

enabled carbon linear growth rates of over 12 cm/s.10

A variety of reagent systems have been used to deposit carbon in LCVD. One such sys-

tem uses methane and hydrogen reagent gases to deliver the carbon atoms into the chamber.

The overall reaction for the methane process is given by Equation 2.1.

CH4(g)+xs H2(g)−→ C(s)+2H2(g)+xs H2(g) (2.1)

Extensive carbon LCVD work has also been done in Georgia Tech’s LCVD appara-

tus. Jean used both propylene and methane reagent systems in conjunction with a novel

temperature control system to fabricate carbon fibers and lines.1,25 He studied the kinetics

of carbon LCVD and developed a variety of process–property relationships. A thermody-

namic analysis was done that yielded insight into the cause of the volcano effect for carbon

deposition. Finally, he utilized the feedback temperature control system to produce car-

bon fiber truss structures which helped demonstrate the geometric flexibility of the LCVD

process.

Johnson et al. has also done extensive work in Georgia Tech’s LCVD system on car-

bon line and wall deposition.26 He has used the advanced temperature control system to

produce the most uniform multi–layered carbon walls seen in the literature. Johnson and
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Park have done work supporting the development of process planning parameters for car-

bon deposition.27,28 Studies were done for both carbon fibers and carbon lines that related

the deposit size and shape to the processing conditions. More details of this work are given

in Chapter 4, because some of the work was done in support of the current investigation.

2.1.2 Boron Nitride

Boron nitride is a ceramic material that offers a variety of unique properties.29,30 The

material has high chemical inertness and a high melting point. It is often used for its good

dielectric properties in conjunction with its high thermal conductivity. Compared to other

materials with similar properties such as diamond, boron nitride adheres very well to some

metals. Heated crucibles, microwave guide tubes, and high temperature electrical insulators

are common applications of BN. Its properties make boron nitride the ideal material for the

integrated dispenser cathode control grid insulator application.

Boron nitride can have different microstructures much like carbon. Boron nitride has an

amorphous phase, a hexagonal crystal (h-BN) phase analogous to graphite, a turbostratic

microstructure (t-BN) analogous to turbostratic carbon, and a cubic crystal structure (c-BN)

analogous to diamond. In fact, comparisons between boron nitride and carbon, particularly

c-BN and diamond are common in the literature.

2.1.2.1 CVD of Boron Nitride

CVD is often used to deposit pyrolytic boron nitride coatings. These coatings are usually a

combination of mostly h-BN, with some t-BN and amorphous BN.30 Pyrolytic BN exhibits

few pores, high purity, extreme chemical inertness, high thermal conductivity, extremely

high dielectric strength, reasonable resistance to oxidation, and negligible outgassing. The

CVD of boron nitride is done under a variety of conditions using a variety of reagent gas

systems. Variations on the traditional CVD methods have also been employed in efforts to

encourage the deposition of BN with particular properties or crystal structures.
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The two reagent species commonly used in boron nitride deposition are boron trichlo-

ride (BCl3) plus ammonia (NH3) and borazine (B3N3H6). The BCl3 is perhaps the most

common reagent system, but researchers have had little success using this system in LCVD.15

The reaction of interest in the current work is the borazine decomposition reaction.

Borazine (B3N3H6) is a ring shaped molecule closely resembling benzene. It is a liquid

at room temperature but quickly decomposes. Storing the liquid at or below 0◦C reduces

the rate of the decomposition significantly. Boron nitride deposition from borazine occurs

via the following overall reaction:

B3N3H6(g)+xs N2(g)→ 3BN(s)+3H2(g)+xs N2(g) (2.2)

Researchers have been intrigued by the possibility of depositing BN from borazine

for several reasons.31 First, borazine has the correct 1:1 stoichiometric ratio of boron to

nitrogen for BN deposition and thus offers a single reagent source for the process. Second,

borazine thermally decomposes at relatively low temperatures which gives the potential for

pyrolysis to open the ring structure and form a linear molecule on the substrate surface.32

Third, borazine has a relatively high vapor pressure allowing it to be easily transported

into a CVD furnace. The primary disadvantage of using borazine for BN deposition is its

instability, high cost, and limited availability.

Adams deposited BN films on silicon substrates in a hot wall, low pressure CVD reactor

from borazine.33 No additional carrier or diluent gases were used. Borazine was stored and

used at 0◦C and delivered to the substrate via a needle valve. Pressures were varied from

0.1 to 0.8 Torr and temperatures from 300-650◦C. Deposition rates were seen to increase

from about 3 Å/min to 25 Å/min as temperature increased from 300 to 550◦C. Deposition

rates then quickly declined as reagent depletion due to deposition on furnace walls became

important. Apparent activation energy for the low temperature range was given to be 9.6

kcal/mol and the deposition rate was observed to increase with the square root of borazine

partial pressure. The BN films deposited from borazine between 300 and 450◦C were

shown to be unstable over time as they readily reacted with atmospheric moisture.
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Gomez-Aleixandre deposited BN from a mixture of diborane (B2H6) and ammonia

(NH3).29,34 In the work, a discussion of the reaction mechanisms for BN deposition in dif-

ferent temperature ranges is presented. Borazine is shown to be an intermediate species if

the initial B2H6:NH3 ratio is 1:2 and deposition temperature is> 775◦C. It is not known for

sure that borazine is the molecular precursor for deposition but based on its stoichiometric

ratio and the near stoichiometric ratio of the resulting film, it seems plausible. Gomez-

Aleixandre states that through heating of the borazine molecule a progressive loss of hy-

drogen leads to boron nitride. The activation energy of BN deposition from the borazine

precursor at temperatures between 775 and 850◦C is reported to be 35 kcal/mol. The BN

films deposited in this temperature range are said to be dense and stable.

Rye has used an interesting hot filament activated CVD process with borazine reagent

to deposit a combination of transparent amorphous BN and opague polycrystalline h-BN.35

The process involves heating a tungsten filament in close proximity to the substrate to a high

temperature (1400◦C) and using the radiative heat from the filament to heat a local area on

the substrate surface to between 100 and 400◦C. He varies the substrate temperature by

varying the distance between the substrate and the filament. Amorphous BN grows on the

lower temperature substrate, while h-BN deposition occurs on the high temperature fila-

ment. Rye notes that at the 0.1 Torr of borazine dynamic pressure used, the BN deposition

rate is extremely sensitive to the filament to substrate distance.

Demin has reported depositing BN films in a cold wall reactor from the B3N3H6 plus

N2 system at temperatures from 1300−1750◦C.30 Total pressure was made to vary from

1−10 Torr. Throughout the temperature range studied, a strong relationship between gas

flow rate and deposition rate existed. Also, the deposition rate increased approximately

linearly with increasing partial pressure of borazine. Both of these observations indicated

the reaction was transport–limited. The composition of the BN films was shown to be about

80% h-BN at 1300◦C and increased with increasing temperature and/or increasing borazine

partial pressure.
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Kouvetakis reported on a study of BN deposition from borazine using hot walled, cold

walled, and plasma enhanced reactor configurations.36 He varied the substrate temperature

between 475 and 550◦C. The borazine was kept at -45◦C and the bubbler helium flow was

5 sccm yielding a borazine partial pressure of 0.2 Torr. Total flow rates were about 30 sccm

and the total pressure was BN 2 Torr. Growth rates were about 25 Å/min at 500◦C. The

resulting amorphous films were consistently boron rich with a B:N ratio of about 60:40.

Using the in situ gas sampling mass spectrometer he identifies an empirical relationship

corresponding to the chemical equation below.

B3N3H6(g)−→ B3N2(s)+
1
2

N2(g)+3H2(g) (2.3)

Researchers have also investigated various plasma enhanced CVD (PECVD) processes

as a means of depositing BN films. Plasma enhanced processes are often seen as a way to

achieve CVD quality films without requiring the high temperatures typical of many CVD

processes. Plasmas are also thought to provide an effective means of breaking the borazine

molecule enabling efficient BN deposition.

In a derivative of his traditional CVD work, Kouvetakis used a plasma enhanced process

that yielded stoichiometric, hexagonal polycrystalline BN films with higher growth rates

(50-75 Å/min vs 25 Å/min) than the strictly thermal process.36

Kane presented results of BN film deposition on silicon using a PECVD process.37 His

flow rates were 25 sccm of B3N3H6 and 500 sccm total flow. The pressure was 2 Torr and

the substrate temperature was 400◦C. Growth rates were on the order of 300 Å/min. The

result was a stoichiometric film with an index of refraction of 1.73, a dielectric constant of

4.1, breakdown potential of 7–8 MV/cm and a residual stress of 4.2x108 Pa.

Nguyen also used a PECVD system to deposit BN films on Si wafers from borazine.

His flow rates were 100 sccm for borazine and 200 sccm for N2. The process pressure was

3 Torr and the substrate temperature was 300◦C. The process yielded a stoichiometric film

that grew at 300 nm/min. The index of refraction was 1.746, the density was 1.89 g/cm3,

the dielectric constant was 3.8-5.7, and the breakdown potential was 6 to 7 MV/cm. The
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structure of the film was largely amorphous, however traces of hexagonal and cubic BN

appeared. Film stresses were determined to be between -2x108 and -4x108 Pa.

Kosinova has used remote plasma enhanced CVD (RPECVD) with an additional d.c.

electric bias to deposit BN from borazine.38 The deposition temperatures ranged from 373

- 823 K and the partial pressure of borazine ranged between 3x10−3 and 5x10−5 Torr. The

RF (40.68 MHz) power was held constant at 0.2 W/cm3 and the d.c. bias voltage ranged

from 0 to 220 V. The resulting films were predominantly polycrystalline h-BN.

Smirnova has also used RPECVD in a borazine charged system.39 His temperature val-

ues were 473 and 873 K and his borazine pressures ranged from 4 to 8 Pa. He reported the

formation of a thin (2 nm) layer of amorphous BN between the surface of the Si substrate

and the outer polycrystalline layer. The outer layer was formed of a mostly h-BN film with

about 15% c-BN at rates from 0.4 to 4 nm/min.

Other more elaborate experiments have also been used to deposit BN from borazine

reagent. Kim has presented work based on helicon wave plasma assisted CVD of boron

nitride films from borazine.40,41 His work represents one of the few cases where films of

predominantly c-BN were successfully deposited from borazine. Paisley reported on use of

microwave electron cyclotron resonance plasma CVD to deposit BN on Si from borazine.42

His conditions yielded films consisting of mixed composition of amorphous, hexagonal,

and cubic phases of BN. A Ni sputtered substrate surface showed no difference than bare

Si, while an Al sputtered surface showed enhanced deposition of h-BN. Molian used a

combination of laser ablation and photolytic LCVD to deposit BN films from borazine.32

Shanfield and Wolfson used an ion beam setup to deposit BN from ionized borazine.43

2.1.2.2 LCVD of Boron Nitride

Some researchers have attempted Laser CVD of boron nitride using one of the reagent sys-

tems described above. Notably, Furhman15 investigated BN deposition in Georgia Tech’s
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LCVD system using the boron trichloride plus ammonia reaction:

BCl3(g)+NH3(g)−→ BN(s)+3HCl(g) (2.4)

His experiments resulted in no BN formation but an abundance of white powder deposited

throughout the inside of the LCVD chamber. A thermodynamic analysis showed the white

powder to likely be an ammonium chloride salt (NH4Cl) that forms at temperatures below

600 K when mixing BCl3 and NH3. He concluded that due to this undesirable reaction, de-

position of BN from the boron trichloride and ammonia system was not feasible in Georgia

Tech’s LCVD system.

Duty used boron trichloride and nitrogen in Georgia Tech’s LCVD system.2,44

2BCl3(g)+N2(g)+xs H2(g)−→ 2BN(s)+6HCl(g) (2.5)

He executed experiments under a variety of conditions with several different substrates. He

determined that high leak rates (> 0.10 Torr/min) led to the formation of salts similar to

those observed by Fuhrman. After reducing the leak rate, most of his experiments yielded

no significant deposit. However, a subset of trials with no nitrogen reagent did result in

pure boron fibers rather than BN .

Some research into the LCVD of BN from borazine as in Equation 2.2 has been re-

ported and has shown great potential. Ugarov used an excimer laser to induce deposition

of BNfilms on silicon substrates.31 His setup utilized a substrate heater to provide the ma-

jority of energy input while a KrF excimer laser with 20 ns pulses of 248 nm radiation at

frequencies up to 50 Hz provided the marginal energy input required for deposition. For

a near optimal laser fluence of 15 J/cm2, his results indicated that deposition occurred at

substrate temperatures less than 25◦C and the deposition rate did not depend significantly

upon substrate temperature until the temperature exceeded 100◦C. Deposition rate then in-

creased with increasing temperature up to a maximum value around 230◦C after which it

decreased with increasing temperature. At temperatures above 350◦C he observed spon-

taneous pyrolytic BNdeposition regardless of laser beam activity. He reported a positive

28



linear dependence of deposition rate with borazine vapor pressure (0.1–5 Torr) for a fixed

substrate temperature. The total deposition pressure was not reported. Note that the 20 ns

period over which deposition occurs when using the laser is too short to allow for direct

measurement of the process variables of interest such as temperature. His analysis of the

resulting films show that the deposits were mostly h-BN. He does not provide a study on the

long term stability of the deposited films. Others have concluded that BN films deposited

from borazine at temperatures below 500◦C are not stable.33

Ugarov also addressed some theoretical considerations associated with the LCVD of

BN from borazine.31 He suggests that deposition when using an excimer laser involves two

major steps. Between laser pulses, net borazine adsorption onto the substrate surface occurs

forming the adlayer. This layer consists of primarily two phases, a multi-layer physisorbed

layer and a weakly chemisorbed layer. Gates has studied the atomic composition of the

Si substrate surface during BN deposition from borazine over a range of temperatures.45

During the laser pulse, the strong physisorbed B3N3H6 layer is thermally decomposed

yielding the BN deposit. In order to quantify the adsorption reaction process, Ugarov

includes a kinetics study involving adsorption and desorption rates. This analysis yields

activation energies of 4500 and 10000 K for the physisorbtion and chemisorbtion processes,

respectively. He also presents an analysis of the thermal decomposition rate with the caveat

that a solution is not possible without knowing the temperature–time relationship during

the laser pulse. No consideration is given to the fact that spontaneous homogenous BN

formation was observed at temperatures exceeding 350◦C.

Most recently, Duty reported BN deposition from borazine reagent.2,44 His work re-

veals the first reported deposition of BN films from borazine using a continuous wave CO2

laser. The substrates chosen by Duty included graphite, aluminum oxide (alumina), and

tungsten. His experiments were run at a total pressure of 101 kPa with a N2 vaporizer flow

of 50 sccm (yielding a calculated B3N3H6 flow rate at 0◦C of 6.3 sccm) and diluent N2 flow

of 450 sccm. He focused on growing BN fibers and observed an extremely sharp upward

29



step change in deposition temperature after initial growth would begin.

On graphite, Duty classified his fibers into those grown below 1100◦C and those grown

above 2500◦C. It was difficult to maintain constant temperatures at any value in between

these numbers. The fibers were very short with smooth center areas and raised bumpy

edges. On alumina, fibers deposited at less than 2000◦C appeared to grow in controlled

uniform ways whereas those whose temperature exceeded this value grew extremely fast

(approximately 5 g/m2-s) and almost uncontrollably. The surface of these high growth

rate fibers was very coarse and nonuniform. Tungsten, being a reflective metal, requires

significantly more laser power to achieve deposition temperatures. The fiber deposition

process on W typically involved a dwell period after the laser was engaged before any

deposition began. Upon the initiation of deposition, rapid growth (approximately 6 g/m2-s)

quickly ensued leading to tall fibers with a morphology similar to those grown on alumina.

The goal of the boron nitride deposition in the current work is to build upon Duty’s efforts

in order to achieve geometrically well-defined, structurally sound BN deposits.

2.1.3 Molybdenum

Molybdenum is widely used for its refractory nature and its chemical inertness. The in-

tegrity of molybdenum at temperatures of 1000-1200◦C along with its electrical conduc-

tivity make it an ideal material for use in the dispenser cathode control grid application.

Industrial processes that deposit molybdenum from the vapor phase go back until at least

1950.46

There are two primary reagents used to deposit molybdenum from the vapor phase. The

first, molybdenum hexacarbonyl, Mo(CO)6, is used in the decomposition reaction:

Mo(CO)6(g)−→Mo(s)+6CO(g) (2.6)

One advantage of this system is that Mo(CO)6 is a vapor at room temperature and the de-

composition reaction does not require an additional input gas stream. Experimentally, these

advantages simplify the setup. Additionally, the reaction in Equation 2.6 has been shown to
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occur at temperatures as low as 400◦C at atmospheric pressure. The primary disadvantage

of the Mo(CO)6 system is that the molybdenum deposits are often contaminated with both

carbon and oxygen. This contamination hinders the electrical conductivity of the material.

Higher purity molybdenum deposits can be made using the molybdenum pentachloride

reagent system:

MoCl5(g)+
5
2

H2(g)−→Mo(s)+5HCl(g) (2.7)

The disadvantage to using this system is that molybdenum pentachloride is a solid at room

temperature and must be sublimated in order to deliver its vapor into a CVD or LCVD

system. Additionally, MoCl5 is very sensitive to moisture and other impurities which re-

quires it be handled in an inert environment and housed in a leak tight reagent delivery

system. The carrier gases used to flow the MoCl5 must be clean and dry. Due to the need

for high purity Mo in the dispenser cathode application, the molybdenum pentachloride

reagent system was chosen for this study.

2.1.3.1 CVD of Molybdenum from MoCl5

Because there have been limited reported instances of successful LCVD of Mo from MoCl5,2,44

the CVD literature was reviewed. Childs deposited Mo on metal substrates from the MoCl5

reduction reaction with H2.46 He studied the deposition reaction at 20 and 760 Torr. At

the lower pressure, the partial pressure of MoCl5 was kept at about 0.1 the partial pressure

of H2, and molybdenum deposition occurred at temperatures ranging from 800 to 1000◦C

with no homogenous powder formation. Deposition at the higher pressure, 760 Torr, was

complicated by the excessive formation of powder in the gas phase. Only by keeping the

partial pressure of MoCl5 below about 1.5 Torr could the powder formation problem be mit-

igated and at these conditions growth was rather slow. Deposit conditions were also shown

to influence grain size, coating strength, and bonding strength. Larger grain size material

typically exhibited better mechanical properties. Adhesion of the molybdenum coating to

the substrate was enhanced by interdiffusion between the coating and the substrate.
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Sugano et al. have deposited molybdenum from MoCl5 on silicon wafer substrates.47

A chamber was used to sublimate the MoCl5 at temperatures between 70 and 120◦C. The

vaporizer H2 flow was kept at 50 sccm while the diluent H2 flow ranged between 500 and

2000 sccm. The lines for the hydrogen flow were heated to a temperature 20◦C higher

than the respective sublimation chamber temperature. Substrate temperatures were varied

between 400 and 1200◦C. The order of the reaction with respect to MoCl5 concentration

is shown to be approximately 1. The best Mo deposition occurred at substrate tempera-

tures between 500 and 800◦C. The maximum deposition rate for a MoCl5 concentration of

0.0043 mole percent was observed at 600◦C to be approximately 20 Å/min.

A thermodynamic analysis revealed the mechanism of hydrogen reduction of MoCl5

to be MoCl5 to MoCl4 to MoCl3 to MoCl2 to Mo. In equilibrium, the rate limiting step

appears to be the production of solid MoCl3. The lowest temperature shown to deposit Mo

in these calculations is 720 K.

Yasuda has reported the successful CVD of molybdenum from MoCl5 in a low pressure

reactor.48 He sublimated MoCl5 at 170◦C and varied the reactor temperature between

500 and 800◦C. He concludes that at low pressures, the deposition rate is dictated by the

surface reaction up to a higher temperature (approximately 700◦C) than for the atmospheric

pressure (600◦C) case. During the surface reaction limiting regime, the deposition rate is

proportional to the3
2 power of the partial pressure of H2.

Yoshikawa has reported the deposition of Mo films from MoCl5 in a heated fused

silica tube reactor.49 Conditions included a pressure of 101.3 kPa, substrate temperatures

between 773 and 1223 K, total gas flow rates ranging from 3.8 to 11.5 sccm with partial

pressures of MoCl5 between 0.51 and 1.17 kPa and those of H2 between 8.3 and 62.9

kPa. The carrier gas was argon. Films deposited at temperatures below 900 K contained

some impurities while those deposited above 1223 K consisted of particles from gas phase

reactions. He observed a significant relationship among the partial pressure of MoCl5, H2,

position along the tube reactor, and growth rate. For a total gas flow rate of 7.7 sccm with
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a partial pressure of MoCl5 of 0.83 kPa and H2 of 27 kPa the apparent activation energy of

the reaction was shown to be 68.5 kJ/mol.

Yoshikawa presented some theoretical discussion of the thermodynamics and kinetics

involved in Mo deposition from the MoCl5 and H2 system. Thermodynamic calculations

revealed that at a temperature of 433 K, virtually all of the MoCl5 vapor will be converted

to MoCl4 through the reaction:

MoCl5(g)+H2(g)−→MoCl4(g)+HCl(g) (2.8)

Furthermore, MoCl4 is believed to reduce through an intermediate chemical reaction to

MoCl3(s) and MoCl3(s) is reduced to MoCl2 and MoCl4 at a temperature of 926 K

through the reaction:

MoCl3(s)−→MoCl2(s)+MoCl4(g) (2.9)

In modeling the deposition of molybdenum from MoCl5, Yoshikawa explicitly considers

three chemical reactions. The first is the gas phase reaction

MoCl4(g)+
(4−x)

2
H2(g) = MoClx(g)+(4−x)HCl(g) (2.10)

The other two reactions are surface reactions that yield the Mo deposit.

MoCl4(g)+H2(g) = Mo(s)+4HCl(g) (2.11)

2MoClx(g)+xH2(g) = 2Mo(s)+2xHCl(g) (2.12)

The reaction rate of Equation 2.12 was assumed to be much higher than Equation 2.11 so

the concentration of MoClx at the substrate could be assumed zero.

2.1.3.2 LCVD of Molybdenum

Several researchers have used laser–based CVD processes to deposit molybdenum. Using

the H2 reduction of MoF6, Bjorklund et al. have grown molybdenum rods on tungsten

wire substrates.50 The partial pressure of MoF6 was varied between 14 and 50 mbar while
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that of the H2 ranged from 75 to 850 mbar. The fiber tip temperatures were kept between

705 and 840 K. In a cold wall reactor configuration, the molybdenum structures had severe

volcanos attributed to the etching of both the substrate and the deposit by the MoF6. After

changing to a hot wall configuration, tall molybdenum rods were grown that exhibited a

crystalline morphology with molar ratios of MoF6 : H2 ranging from 1:3 to 1:9. The rods

were over 100µm tall and 50µm in diameter. When using a MoF6/H2 ratio of 1:13 and

1:17, the rods had a more dendrite–like appearance.

Houle and Singmaster give an exhaustive study of the mechanisms of molybdenum

deposition from Mo(CO)6 on Si < 100>.51 Two experimental setups were used: low–

vacuum LV (10−4 Torr) and high–vacuum HV (10−8 Torr). The vapor pressure of Mo(CO)6

under the conditions used was 85 mTorr. The Ar+ laser was focused to 10µm and deliv-

ered incident power from 1.5 to 4 MW/cm2 for exposure times between 200 ms and 120 s.

The LV films were smoother than the HV films. The resulting deposits had a distinct raised

outer ring surrounding an inner dome shape. Growth rates were estimated to be between

2000 and 6000 Å/s.

Duty has investigated molybdenum fiber deposition from the MoCl5 reagent system.2,44

Substrates included graphite, alumina, and tungsten. He sublimated the MoCl5 powder at

150◦C and delivered it to the reaction chamber using H2 carrier gas. Additional diluent H2

gas was added prior to delivery through the gas nozzle. Typical flow rates were 1–2 sccm of

MoCl5, 50–100 sccm H2 carrier, and 400–450 sccm H2 diluent. Chamber pressure ranged

from 50 to 200 kPa and substrate temperatures were kept between 1000 and 1500◦C. The

resulting structures were best described as thin coatings or spots with different morpholo-

gies depending upon the deposition conditions. High temperatures (> 1150◦C) yielded

porous and fibrous deposits while low temperatures resulted in flat, flaky coatings. Low

pressure experiments (50 kPa) produced molybdenum coatings with a nodular appearance.

Others have used the common Mo(CO)6 reagent system to draw molybdenum lines.

Radloff and Below studied the relationship between molybdenum line growth rates and
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incident laser power.52 While there appeared to be good adherence of the deposits to the

underlying substrates, the material had a specific resistivity of more than two orders of

magnitude above that of bulk molybdenum.

Reisse et al. deposited Mo lines on SiO2/c−Si substrates.53 The partial pressure of

Mo(CO)6 ranged between 100 and 260 Pa with a H2 partial pressure of 13 kPa. A laser

power of 2.2–2.7 W over a 30µm spot diameter was used with a scan speed of 0.2 mm/s.

The resulting lines were 125 nm thick and 12µm wide with maximum vertical deposition

rates of about 1.1µm/s. The lines were shown to have a high content (50 at%) of carbon

and oxygen impurities. The resistivity of the lines was between 1.2−3×10−5 Ω-m which

is significantly higher than bulk molybdenum (5.34×10−8 Ω-m) and was attributed to the

presence of impurities.

2.2 Process Modeling

Models of the LCVD process offer the ability to study, on a very detailed level, the physics

and chemistry that control the dynamics of the reactions. Accurate models also allow the

establishment of relationships between process parameters and deposit attributes which

reduces the need for excessive experimentation. These process–property models are the

basis for the development of process planning algorithms that translate three dimensional

geometry and material information, representing a physical object, into the necessary ma-

chine parameters and commands needed to produce the desired object. The complexities

of LCVD have historically dictated modeling approaches that focus only on certain funda-

mental principles: energy transport, thermodynamics, mass transport, or chemical kinetics.

These focused modeling efforts serve as a foundation for developing more complex models

that seek to integrate these different fundamental principles into a single modeling environ-

ment.
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2.2.1 Energy Transport and Temperature Models

The laser heating process used in LCVD must be well understood before other fundamental

aspects can be analyzed. Under certain specific conditions, the temperature field induced

by a laser beam impinging on a surface can be computed analytically. Kokorowski54 and

Lax55 are credited with formulating some of the first analytical models of steady state

temperature profiles induced by a laser beam.

Of specific interest to the direct–write LCVD growth mode is the substrate surface

temperature field induced by a scanning laser beam. Advanced analytical techniques have

been used to study the thermal conditions surrounding a scanning energy beam. Cline

and Anthony presented an energy analysis of a scanning Gaussian beam used for heat

treating, melting, or welding.56 Moody and Hendel developed a model of continuous wave

Gaussian beam heating that incorporated temperature dependent material properties.57 Kar

and Mazumder provided a three–dimensional transient analysis of the laser heating process

incorporating three modes of heat transfer: conduction, convection, and radiation.58

Numerical models have also been used to investigate the thermal effects associated with

laser heating. The advantages of numerical models include the ability to consider nonlinear

effects, and the ability to couple the conditions of the surrounding fluids to the substrate

temperature fields. Several authors have used finite difference formulations to solve the

temperature fields in a laser heating process.59,60 Kodas et al. focused on analyzing a

complex multi–layered substrate which has application in devices requiring multiple layers

(e.g. integrated dispenser cathode assembly). Steen developed a finite element model of

a forced flow laser heating process with an inert gas nozzle oriented coaxially with the

laser beam.61 Yu and Duncan employed a similar model using a fiber on a substrate, but

instead of studying forced convection, they studied natural convection.62 Zhang combined

both a scanning laser beam and natural convection in his model development.63 Bondi

also studied a scanning laser beam with natural convection in a CFD model developed in

FLUENT.64
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The unique angled gas jet configuration of Georgia Tech’s LCVD system has been stud-

ied by Duty et al.2,65–67 He developed both two and three–dimensional thermal models

using the commercial CFD package FLUENT. The two–dimensional models did not incor-

porate the fluid zone above the substrate surface and thus were used to study the “no flow”

nozzle condition in which axisymmetric conditions existed. The two–dimensional models

were used to determine the appropriate domain and boundary conditions to use in the three

dimensional model. Relationships among laser power, substrate material, and temperature

profiles were studied with these two-dimensional models. The three dimensional model

included forced flow through the gas nozzle and its impact on the temperature field within

the fluid domain and the substrate. He used the models to study the relationships among

laser power, gas nozzle flow rate, and substrate material. Ultimately, the model results were

verified using the high–resolution thermal image camera described in Section 3.4.

2.2.2 Thermodynamic Models

Thermodynamic calculations are often used in studying CVD processes to determine the

feasibility of certain deposition processes and to establish a theoretical equilibrium deposi-

tion efficiency. LCVD researchers use thermodynamic calculations for a similar purpose.

These models are inherently oriented towards a particular material system, thus for the

current investigation, three material systems were of interest: methane–carbon deposition,

borazine–boron nitride deposition, and molybdenum pentachloride–molybdenum deposi-

tion.

Jean has published a thermodynamic analysis of carbon deposition.1,25 He computed

the equilibrium molar quantities of different species at temperature values between 1000

and 3000 K. The deposition efficiency for carbon dropped from nearly 100% at tempera-

tures up to and including 2000 K to nearly 0% at a temperature of 2500 K. At temperatures

above 2500 K, the formation of other hydrocarbon gaseous species is shown to be ther-

modynamically favored over the formation of solid carbon. In light of his conclusion that
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carbon deposition from methane is a kinetically–limited process, the formation of the vol-

cano effect seen at high deposition temperatures is thus attributable to thermodynamics

rather than transport effects for this material system.

Kuznetsov has provided a thermodynamic analysis of BN deposition from the borazine

reagent system.68 His investigation involved both the B3N3H6:N2 and B3N3H6:NH3 sys-

tems at total pressures of 1 Torr and 10−2 Torr for a variety of temperatures between 800

and 2300 K and for different initial gas mixtures. Results indicate that wurtzite BN is not

stable at any of the modeled conditions, c-BN is formed at temperatures below 1804 K and

h-BN exists above 1804 K. Increasing pressure of the system shifts the boundaries on the

phase diagrams significantly, largely by increasing the region of stability for h-BN. The N2

system is shown to be more favorable for h-BN deposition than the NH3 system.

Thermodynamic calculations of molybdenum deposition from molybdenum pentachlo-

ride have been executed by Yoshikawa as discussed in Section 2.1.3 above.49

2.2.3 Mass Transport and Chemical Kinetics Modeling

A first order approach to modeling the kinetics of LCVD involves use of the concepts

presented in Section 1.3. For kinetically–limited processes this approach is appropriate

because the concentration at the substrate surface can confidently be assumed to be min-

imally different than the bulk concentration and the temperature across the laser spot can

be computed using thermal models of laser heating. After the kinetic parameters are ex-

tracted from experimental data, the Arrhenius expression allows prediction of reaction rates

and deposit profiles. Some authors have presented simple kinetic models of the LCVD of

different material systems.

Park and Lee developed an analytical kinetic expression for the axial and the diametral

growth rate of silicon rods which agreed well with experiments.69 Jean presented a study of

carbon fiber growth kinetics in which he fit experimental data to the Arrhenius expression

and derived the necessary parameters for predicting LCVD growth rates.1,25 His analysis
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showed reasonable agreement between the theoretical predictions and the observed values.

Johnson and Park did similar kinetic experiments and extended the analysis by developing

carbon fiber, line, and wall shape prediction equations.27 Maxwell12 and Williams13 de-

veloped an analytical expression for the thickness of a growing film as a function of time

at the center of a scanning laser spot by integrating the Arrhenius growth rate equation and

combining it with an analytical expression for the substrate temperature field such as that

given by Lax.55

Han and Jensen present a thorough thermal–kinetic analysis of LCVD of copper lines

on silicon substrates.70 Their model involved the solution of the energy equation for both

the copper deposit and the silicon substrate. A scanning laser beam was simulated and

considerations were made for the changes in the substrate properties per the evolution

of the deposit. The deposition reaction mechanisms were derived experimentally from

surface chemistry and spectroscopy studies. The deposition kinetics are modeled via the

Langmuir–Hinshelwood rate equation. The model was able to predict line shapes that ex-

hibited good agreement with experiments. In particular, the volcano shape that appeared

at high temperatures was attributed to the desorbtion of the reagent species at these higher

temperatures. The Han and Jensen model is one of the most thorough investigations of

the relationship between LCVD kinetics and line shape; however, it is limited by the lack

of explicit consideration of the fluid zones surrounding the deposition region. The energy

losses to the fluid zones and the species interactions between the surface concentration and

the bulk fluid concentration are not considered, disallowing the application of this model

to a transport–limited process.

Nassar et al. have recently published a mathematical model of three–dimensional

kinetically–limited LCVD that is utilized in a process planning capacity to determine the

necessary parameters for producing a prespecified geometry.71 The application of inter-

est was a parabolic microlens made of nickel. The model involved the heat conduction

equations for both the substrate and the deposited material and the Arrhenius expression
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for reaction rate. The laser dwell time required to yield growth of a specified height is

computed for each point in a two–dimensional grid by integrating the fundamental equa-

tions over time. The model was successfully used to specify process parameters for nickel

deposition.

In reality, the interaction among mass transport and chemical kinetics ultimately de-

termines both the surface deposition rate and deposit shapes. In order to capture these

interactions, more complete models that consider the fluid zone above the substrate, the

substrate, and perhaps the evolving deposit must be employed. The extreme temperature

gradients within the LCVD deposition zone complicate the study of the transport and ki-

netic phenomena. Thus, only after the thermal models mentioned in Section 2.2.1 were

developed has significant progress been made in understanding these effects. A few authors

have developed comprehensive models of the thermal, mass and momentum transport, and

chemical kinetic aspects of laser chemical vapor deposition.

Fischer et al. used the finite–difference method to consider both the energy and the

diffusion mass transport governing equations simultaneously.72 His temperature model

only allowed heat transfer via conduction and radiation while his transport model only

allowed transport due to ordinary diffusion.

Bauerle et al. have developed an elegant mathematical formulation of the governing

equations within both the fluid and the solid substrate zones.73 Several important assump-

tions are necessary for these analytical formulations. The models are used to investigate

the importance of temperature and concentration dependent thermal conductivity and dif-

fusivity. Considering diffusivity as a function of temperature greatly impacted the overall

deposition rate while thermal conductivities that varied with temperature had minimal ef-

fect on deposition rate. Concentration dependencies of these properties was also deemed

minimally important. Furthermore, the importance of thermal diffusion in both kinetically-

limited and transport–limited LCVD processes was highlighted through its effect on the

overall deposition rates. In light of the simplifying assumptions employed, the complexity
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of the mathematical formulations developed by Bauerle et al. elucidate the complexity of

the LCVD process.

Arnold et al. have presented an analytical treatment of LCVD fiber growth utilizing

both thermal and mass transport equations.74 The analysis is aimed at understanding fiber

deposit shape responses to changes in different parameters: laser power, laser spot size, ac-

tivation energy, diffusion limitations, and temperature dependence of thermal conductivity.

Discussion is presented regarding the relationship between rate–limiting regime and fiber

size and shape.

Duty expanded upon his FLUENT modeling work by developing a finite difference

model of the mass transport near the LCVD deposition zone.2,66,67This approach utilized

fluid velocity and temperature data from the three–dimensional forced flow CFD model

and solved the species transport equation within a two dimensional domain. One concern

with the approach related to the formulation of the boundary condition on the reacting

surface. A mesh dependence was introduced by modeling the reaction as a homogenous

volumetric reaction as opposed to a surface reaction boundary condition. Nonetheless, the

model provided useful qualitative insight into the effectiveness of Georgia Tech’s LCVD

system’s gas nozzle. Overall, Duty’s implementation of the mass transport model required

a cumbersome interface between two software programs.

Perhaps the most comprehensive model of LCVD to date was recently presented by

Koutlas et al.75 A CFD package was used to solve the continuity and momentum transport

equations, energy transport equation, and species transport equation in a forced flow LCVD

reactor. The simulator was used to study the deposition of titanium carbide upon AISI 1060

carbon steel.

2.3 Shapes and Structures

The dynamic relationship between the laser beam and the substrate enables LCVD to create

sophisticated geometries. As shown in Figure 1.1, there are two fundamental growth modes
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of LCVD, fiber growth and line growth. Researchers manipulate the laser-substrate position

so as to achieve the proper growth mode or combination of growth modes for their desired

geometry or application. A review of the different shapes and structures built using LCVD

highlights the flexibility of the process.

2.3.1 Vertical Growth

The most basic LCVD growth mode is when the substrate remains fixed relative to the

laser beam and growth is initiated in one particular spot. In the literature, depending upon

the thickness of the deposit,h, shapes created using this growth mode are referred to as

“spots” for thin films withh� d whered is deposit diameter or “fibers” or “rods” when

h≥ d. Because of its simplicity, vertical growth is often used when commencing an LCVD

investigation of a different material. For this reason, vertically grown LCVD structures are

common in the literature. The relative ease of vertical growth makes it the foundation for

the other more advanced deposition modes and deposit shapes.

2.3.1.1 Shape and Morphology

Spots are often characterized by their surface morphology. Depending upon the deposited

material, a number of unique features have been identified for LCVD spots. A ubiquitous

feature of many LCVD deposits is a depression in the center of the deposit which usually

correlates to the center of the laser spot.51,76,77 This phenomenon is referred to as the

“volcano effect.” An abundance of different theories exist as to the reason for this observed

effect for different materials and processing conditions. Another notable feature of spot

deposits includes periodic variations in deposit height as one moves radially outward from

the center of the deposit.

The shape of fibers grown in LCVD depends on the crystallinity of the deposit. Single

crystal deposits such as tungsten have a distinctly faceted appearance with a sharp point at

the fiber tip.7 Polycrystalline or amorphous materials usually acquire a cylindrical shape

with a smooth, rounded fiber tip. As with spots, the volcano effect is common in LCVD
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fiber deposits.

Due to its significance in LCVD, the volcano effect deserves special mention. A number

of different theories have been proposed to explain the effect. For a given material system,

and for different processing conditions, the effect could arise for different reasons. The

theories relate to different aspects of the physical and chemical reactions inherent in LCVD:

thermodynamics, mass transport, and surface reaction kinetics.

Thermodynamics dictates which chemical reactions will occur for a given set of con-

ditions. The concept of thermodynamic deposition efficiency refers to the fraction of solid

deposited species to reagent gas species for given conditions. A decrease in thermody-

namic efficiency with an increase beyond a certain temperature is seen in some material

systems. Jean presents a thermodynamic model that predicts for carbon deposition the

volcano effect will emerge when deposition temperatures exceed 2000 K. If temperatures

exceed 2500 K, a negative reaction will occur wherein the solid carbon deposit will react

with excess hydrogen in the system to produce hydrocarbon gases (e.g. C2H2). The fact

that carbon LCVD has been shown to be kinetically limited for the conditions that yield the

volcano effect further supports the thermodynamic explanation of its occurrence.

Other volcano effect theories focus on mass transport limitations. Near the center of

the laser spot, the diffusion pathways available to deliver reagents are effectively one–

dimensional, whereas, on the outer edges of the deposit, the deposit “sees” more pathways.

Along similar lines, depending upon the relative molecular mass of the various gas species

present, thermal diffusion could reduce the concentration of the reagent species in the max-

imum temperature zone at the center of the laser spot. Whatever the cause, a limitation in

the effectiveness of the mass transport processes will increase the likelihood of operating

in a combined transport–limited and kinetically–limited regime thus having significant im-

plications on deposit shape.

For cases when neither thermodynamics nor transport limitations can explain the vol-

cano shape, surface physics and kinetics must be investigated. It has been explained
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that there are several steps involved in establishing a sustained transformation of gaseous

reagent molecules near the substrate surface into solid surface atoms of a desired material.

First the gaseous molecules adsorb onto the surface, next the molecules migrate around on

the surface to a preferred site, some of the molecules acquire the energy state necessary for

dissociation, and the reaction byproduct gas species molecules desorb from the substrate

surface. Each of these steps requires a finite amount of time. Under certain conditions,

some material systems have been shown to prefer desorbtion of the undissociated reagent

molecules over disassociation. This change could emerge due to the change in substrate

properties as a deposit evolves or it could simply be a function of temperature. Either

way, if a system exhibits this desorbtion tendency, a volcano shape could develop during

growth. Han and Jensen showed in their analysis of copper deposition on silicon substrates

that desorbtion was the explanation for the volcano effect.70

Carbon fibers normally exhibit a fairly uniform cylindrical shape with a smooth, rounded

tip. This shape is consistent with the fact that carbon LCVD typically occurs in a kinetically–

limited regime.1,12,78 At high temperatures, carbon fibers acquire a bulging profile with a

distinct volcano–like depression in the center.

Duty provides the only attempt to deposit BN fibers in LCVD. His deposits were large

structures, over 500µm in diameter and height, that exhibited a very rough, cauliflower–

like surface morphology. The growths were white translucent colored and were surrounded

by bright white powder. These BN fibers had severe volcano effects and discoloration in

their center.

Houle reported on the change in the shape of molybdenum spots as they evolved from

flat disks to round spots having a raised ring around the outer edge with a center domed

structure exhibiting a faceted appearance.51 Bjorklund grew high aspect ratio Mo fibers

with an octagonal cross section and a very faceted morphology.50 Duty’s efforts to deposit

Mo fibers resulted in thin coatings of material with a slight bowl shape. No significant

vertical growth was observed.
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2.3.1.2 Complex Fiber-Based Deposits

As evidence of the flexibility of the LCVD process, several authors have reported the fab-

rication of complex structures. By slowly translating the substrate underneath the laser as

the fiber grew vertically, Pegna24 and Jean1 both deposited angled carbon fibers that were

ultimately joined to form truss structures. Parallel banks of aluminum oxide rods were

deposited with different orientations for use as photonic band–gap structures by Wanke et

al.9

The fully three–dimensional nature of the LCVD process has been demonstrated through

the fabrication of coiled structures resembling springs. Johansson et al. have deposited

boron fibers and springs by simultaneously rotating and translating the substrate during de-

position79 Maxwell et al. have achieved similar results with carbon deposition.12 Dean et

al. illustrated the utility of these spring–like devices by fabricating arrays of carbon coils

to be used as THz antennas.10

2.3.2 Horizontal Patterned Growth

The second fundamental growth mode of LCVD is the “direct–write” or patterned mode.

Much like vertical growth, there are different terms for these deposits depending upon the

height to width aspect ratio. For the case of thin deposits withh�w, the deposit is usually

termed a line; whereas, for the case ofh≥ w, the deposit is called a wall.

2.3.2.1 Line Shape and Morphology

The shape of LCVD line cross sections varies for different materials and processing con-

ditions. In the transport–limited regime, the cross sections often have a rectangular shape

with a relatively flat top, whereas lines grown in a kinetically–limited process exhibit a

rounded Gaussian shaped cross section. Boughaba discusses the relation between the rate–

limiting regime and LCVD line shape in his study of nickel lines.80 Westberg also gives

some results of the shape of titanium carbide lines under kinetically controlled conditions.81
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Analogous to the vertical growth mode, horizontal LCVD structures commonly exhibit

the volcano effect. Han and Jensen used both models and experiments to determine the

underlying reason for the volcano shape in copper line deposition was desorbtion of reagent

molecules under certain conditions, namely high surface temperatures.70 Milne et al. report

the occurrence of the volcano effect in silicon line deposits.82

Spatially periodic growth is also witnessed during the deposition of certain materials.

For example, Grossman and Karnezos report that under certain conditions, the deposition

of a tungsten line on a boron nitride coated silicon substrate results in a very periodic

bumpy surface. They reason that this effect is due to the “self–limiting” nature of the metal

deposition on a ceramic substrate. Du et al. identify a similar mechanism as the cause of the

periodic nature of silicon lines deposited on a glass substrate.83 Han and Jensen attribute

the spatially periodic nature of copper line deposits to a nonlinear coupling between heat

conduction and chemical kinetics.70 A very complex spatially periodic superstructure was

shown by Milne et al. in silicon line depositions. The periodicity extended both along the

length of the line as bumps and across the line width as “tracks.”

In order to accommodate some stated applications of the LCVD process, intersecting

lines must be deposited. For certain applications, the line intersections must maintain min-

imal electrical resistance. Depending on the materials involved, maintaining line height

and width uniformity during the deposition of line intersections can be very difficult. The

challenge lies in the step change in substrate properties that accompanies the laser scan

path’s intersection with an existing line deposit. Grossman and Karnezos present a good

discussion of the complexities of depositing intersecting lines in their study of tungsten

deposition on BN coated silicon wafers.7 They were able to create connected lines by dou-

bling the laser power when passing over previously deposited lines. Morishige and Kishida

highlighted the successful deposition of gold lines and their intersection with existing gold

interconnects on polyimide substrates. The contact resistance of these intersections was

measured to be about 0.5Ω.6
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The deposition of 7µm wide carbon lines has been reported by Leyendecker.78 No

LCVD of boron nitride lines has been reported. Reisse’s molybdenum lines were described

as smooth and were 125 nm thick and 12µm wide. No detailed discussion of the profile

was given.

2.3.2.2 Multi-layer Lines or Walls

In order to achieve the higher aspect ratio of a wall (h > w), it is usually necessary to

deposit multiple lines on top of each other. Without a robust process control system to

combat the positive feedback tendency of multi-layer deposition, it is very difficult to pro-

duce uniform structures of this type. Jean has reported on the integration of an advanced

temperature control system in Georgia Tech’s LCVD system that allows production of uni-

form multi–layered walls.1 Johnson et al. have exploited this system to produce carbon

walls with promising uniformity and structural integrity.26 Gillespie has shown the ability

to use LCVD to fabricate multi–layered laminated materials.84 He deposited a wall con-

sisting of alternating sections of two each of carbon and silicon carbide. Each section of

each material consisted of 10 layers.

2.3.3 Properties of LCVD Deposits

Each application of LCVD demands certain properties of the deposited materials and struc-

tures. These properties include obvious attributes such as size and shape as well as physical

properties such as strength and resistivity. These macro–scale properties can be linked to

the internal microstructure of the deposits. Investigations of the relationships among pro-

cessing conditions and deposit properties are critical in the development of new LCVD

materials and applications. A sample of typical microstructure and physical property val-

ues for LCVD materials with a focus on carbon, boron nitride, and molybdenum is provided

below.
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2.3.3.1 Internal Microstructure of LCVD Deposits

Researchers have investigated the elemental composition, phase composition, crystallinity,

and integrity of LCVD deposits. Carbon deposition has been the subject of LCVD inves-

tigations for over 30 years. LCVD carbon has been described as both amorphous12 and

polycrystalline.78

Interestingly, the first reported LCVD of carbon contained micrographs that illustrated

internal periodic cracks throughout the length of a carbon fiber that were oriented parallel

to the curved fiber tip surface.4 Leyendecker also showed evidence of internal cracks in

carbon fiber deposits.85

Only recently has there been a concerted effort to study the cracks observed in carbon

LCVD deposits.20 Kang et al. have observed that the cracks occur parallel to the plate–like

structures seen (presumably the basal planes) within the deposited carbon. These platelets

are oriented parallel to the fiber surface which changes from horizonal in the center of the

fiber to nearly vertical near the fiber edge. Thus, the observed cracks acquire this same

curved shape. Cracks along the direction of the basal planes are enabled by the fact that

the Van der Waals bonds between the basal planes are weak. The cracks were wider at the

center of the fiber than at the edges, and the vertical spacing between the cracks was shown

to decrease with increasing temperature. Kang suggests that the cracks are related to the

thermal stresses that arise during the growth process.

Limited discussion of the microstructure of boron nitride and molybdenum deposits is

available in the literature, because of the relative immaturity of these deposition processes.

Ugarov found that his BN LCVD deposits were largely hexagonal boron nitride, h-BN.31

Duty only provided elemental composition information indicating the presence of boron

nitride.2,44

Houle studied the radial variation in the composition of molybdenum LCVD spots pro-

duced from Mo(CO)6.51 The center of the spots was shown to be mostly pure Mo with

upper limits of carbon and oxygen contamination of 2% and 1%, respectively. This pure
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metal composition extended beyond the diameter of the 10µm laser spot. The outer edge of

the deposit with the annular ring showed a more significant presence of C and O. Analysis

also revealed that the “layers” of deposit nearest the Si surface were nearly stoichiometric

MoCO, but upon further growth the purer metal with the radially varying composition de-

scribed above was found. Reaction mechanisms and surface kinetics were found to explain

the complex stoichiometry of the deposited molybdenum structures.

The underlying microstructure of a deposit gives rise to its macro–scale mechanical and

physical properties. Few attempts have been made to examine these properties of LCVD

deposits, but again, in order to realize its application, this aspect of the LCVD process must

be understood and characterized.

2.3.3.2 Mechanical and Physical Properties

In terms of mechanical properties, Boman has reported the average fracture stress of a

LCVD produced silicon rod to be about 3 GPa which corresponded to a fracture strain

of approximately 2.5%.86 Johansson measured the elastic modulus of amorphous boron

fibers to be between 420 and 450 GPa with a fracture stress of 12–17 GPa corresponding

to fracture strains of 2.7–3.7%. Wallenberger has reported the tensile strength of boron

LCVD fibers to be 5.2–7.6 GPa.87 He has also reported tensile strength of carbon fibers to

be 3.0 GPa.88 No such data is reported for boron nitride or molybdenum deposits.

A mechanical property that is important for many applications of line deposition is

the adherence of the deposit to the substrate. A variety of tests can be used to measure

adherence, but one of the easiest and most effective to to use the tape test. Using the tape

test, Houle et al. reported that copper LCVD lines adhered well to silicon.89 Radloff and

Below reported good adherence of their molybdenum lines to the substrate surface.52

For certain applications, the electrical properties of deposits are also important. Boman

reported tungsten coils to have a resistivity of 0.08Ω-mm2/m which is about 40% higher

than bulk tungsten.86 Boughaba states that his nickel lines had a resistivity ranging from 1.5
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to 10 times that of bulk nickel.80 Interestingly, he reported a trend of decreasing resistivity

with increasing reagent partial pressure which implies a relation between the transport–

limiting regime and the electrical properties of the deposited lines. Houle et al. report

the resistivity of LCVD copper lines to be 3.6±1×10−6Ω cm which is about twice the

resistivity of bulk copper.89 Jubber et al. found the resistivity of gold lines to be about

4.2 µΩ-cm which is comparable to bulk gold.90 The molybdenum lines grown by both

Radloff52 and Reisse53 had resistivity values more than two to three orders of magnitude

larger than that of bulk molybdenum (1.2−3×10−5Ω-m vs 5.34×10−8Ω-m).

Overall, there is a lack of comprehensive knowledge regarding the mechanical and

physical properties of LCVD deposits. However, for the properties that have been mea-

sured, such as electrical resistivity, LCVD deposits tend to differ by a factor of between 2

and 1000 from the bulk material values. The differences are normally attributed to contam-

ination in the deposits rather than to any inherent flaw in the LCVD process. The strengths

reported for silicon and boron fibers are very impressive. The anecdotal evidence in the

literature suggests that with proper experimental procedures and equipment, the LCVD

process can produce very pure materials with properties approaching those of the bulk ma-

terials.

50



CHAPTER III

GEORGIA TECH’S LCVD SYSTEM

Georgia Tech’s LCVD system was designed and assembled by Duty, Jean, Fuhrman, and

Lackey and incorporates several novel features.1,2,15,91–93 It has been in operation for

about six years. During that time, the system has undergone some major changes as the

applications and materials of interest have evolved. Several different materials have been

produced in the system: bulk carbon, carbon nanotubes, silicon carbide, boron, boron ni-

tride, and molybdenum.

3.1 LCVD Chamber and Reagent Delivery Subsystem

The system itself is a unique design consisting of two chambers, a lower chamber for

housing the mechanical stages, and an upper chamber where the deposition reaction occurs.

Figure 3.1 illustrates the system setup.

The chambers are separated by a flexible rubber bellows which prevent the reagent

gases in the upper chamber from entering the lower chamber. A vertical shaft connecting

the substrate holder to the mechanical stages protrudes through the bellows. During opera-

tion, the lower chamber remains filled with an inert gas, typically argon, at a pressure equal

to the upper chamber. The upper chamber has a variety of gas ports to allow for entry and

exit of gases and several optical ports to provide line of sight access to the deposition zone.

The upper chamber also incorporates a gas nozzle that is used to locally deliver reagent

gases to the reaction zone. Figure 3.2 depicts the setup of the upper deposition chamber.

Outside of the chambers lie all the necessary equipment for delivering the reagent gases

into the chamber. Depending upon the desired reaction, reagent gases may be sublimated

from a solid powder in a sublimation chamber, vaporized from a liquid in a vaporizer,
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or delivered as a gas from a tank. Other equipment necessary for delivering gases to the

chambers include mass flow controllers, throttle valves, and solenoid valves.

3.2 Substrate Motion Control Subsystem

Georgia Tech’s LCVD system uses a combination of linear and rotational motion stages

housed in the lower chamber to manipulate the substrate. The original design incorporated

two linear motion stages and one rotational stage. The linear motion stages were Aerotech

ATS03005 stages while the rotational stage consisted of an Aerotech BM75 motor coupled

to a reduction gearbox (12:1) whose output shaft connects directly to the substrate holder

shaft. Table 3.1 gives some of the important specifications of the stages. One linear mo-

tion stage was oriented horizontally (x–axis) to enable line growth while the second was

oriented vertically (y–axis) to enable fiber growth. The rotational stage rotates about the

center of the substrate holder (z–axis). Proper manipulation of these three axes allows ac-

cess to any point in the three dimensional space defined by the limits of the stages. The

rotational z–axis system was chosen over a third linear stage to simplify the fabrication of

Figure 3.1: The two chamber design of Georgia Tech’s LCVD system
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Figure 3.2: Important features of the upper reaction chamber

axisymmetric geometries.

All of the Aerotech stages are controlled through an I/O card mounted in the main

Windows 2000 based control PC. Aerotech provides a driver for the stages that allows

configuration of the stage parameters and defines an array of commands that can be used to

control the stages. Aerotech also provides some VIs that allow the LabVIEW environment

discussed in detail in section 3.5 to interface with the stage control software.

3.2.1 Addition of Fourth Axis

It became apparent during deposition experiments involving simple geometries, particu-

larly intersecting lines, that using the three axis with z rotational stage system was cumber-

some. Thus, a fourth stage was purchased to allow more flexibility in deposit geometries.

The fourth stage was installed horizontally, perpendicular to the existing x–stage and is

referred to as the u–axis.
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Table 3.1: Specifications of motion stages

Linear Stages Rotational Stage

Stage ATS03005-M-5-NC Unknown

Motor BM75-MS-E1000H BM75-MS-E1000H

/ES13675 or /ES13675

BMS60-A-E1000H-

VAC3/ES13459-1

Machine Resolution 0.0001 mm 0.00001 uu

Programming Resolution 0.0001 mm 0.0001 mm

Maximum Speed 240 mm / min 1560 uu / /min

The addition of a fourth stage was a design challenge due to the space constraints im-

posed by the size of the lower chamber. Also, the maximum allowable loads for each

stage required extensive modification to the existing system of counterweights such that

the new configuration would not exceed the maximum allowable load for any individual

stage. Finally, it was desirable that with the addition of the new stage, the existing stage

configuration would be re-centered such that when the substrate was in the center of the

upper chamber (i.e. in the center of the allowable deposition space) all three stages, x, y,

and u, would be in the center of their travel ranges.

The new stage was installed virtually using the SolidWorks solid modeling package.

After it was confirmed that there was sufficient clearance to mount a fourth stage in the

lower chamber, the mounting system was designed. Figure 3.3 illustrates the original 3–

axis stage system while Figure 3.4 shows the additions made to accommodate the new

u–axis linear stage. Three new mounting brackets were designed and fabricated to accom-

modate the u–axis: an offset plate, an x–u coupling bracket, and a base relocation plate.

These parts are shown in Figures 3.5 (a), (b), and (c), respectively.
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Figure 3.3: Original 3–axis stage configuration

Figure 3.4: Modified 4–axis stage configuration
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(a) Offset plate (b) x–u coupling bracket (c) Base relocation plate

Figure 3.5: New hardware required for mounting fourth stage

3.3 Laser Subsystem

The laser used is a Synrad Evolution 100 CO2 laser with a maximum power output of 100

W. The specifications, as given by the manufacturer, are reported in Table 3.2.

The laser beam is delivered to the substrate through a series of mirrors and lenses.

Originally, the optical train for the CO2 laser beam was specified by the supplier of the

optical components with the goal being to focus the beam to a diameter of about 200µm at

the substrate surface. In addition to the mirrors used to steer the beam, a beam collimator

and a focusing lens are used to resize the beam. The beam collimator uses an expansion lens

to diverge the beam and then uses a converging lens to reduce or eliminate the divergence

angle. The distance between the two lenses is adjustable and this distance controls the

Table 3.2: Synrad Evolution 100 laser specifications

Output Power 100 W

Mode Quality TEM00, 90% purity, M2 < 1.2

Ellipticity < 1.2

Rise Time < 150µsec

Beam Diameter 4 µm

Beam Divergence (Full Angle) 3.5 mR

Wavelength 10.59µm

Power Stability, from cold start ±5%

Polarization Linear (Vertical)
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exit diameter and divergence angle of the beam. The focusing lens receives the collimated

beam and converges it to a small diameter. The distance between the focusing lens and

the substrate is controlled by the position of the vertical mechanical stage (y–axis). In

order to accomplish deposition with a beam of minimum diameter, the distance between

the focusing lens and the substrate must be made equal to the theoretical distance from the

lens to the focal plane. Figure 3.6 is a sketch of the final part of the optical train for Georgia

Tech’s LCVD system illustrating the different components.

Beam Expander
and Collimator

Focusing Lens

ZnSe Laser Window

Upper Deposition
Chamber

Laser
Beam

Mirrors

Substrate

Components must be removed
to load/unload substrate

Figure 3.6: Important components of LCVD system optical train

Unfortunately, the existing LCVD system design requires that several of the compo-

nents in the optical train be removed each time a new substrate is loaded or removed from

the chamber. Originally, the assembly containing the focusing lens and laser window also

had to be removed each time a substrate was removed or loaded. The seal between the

laser window and the top of the upper chamber was a simple clamped pressure seal. Due

to persistent leaks around the laser window, a new lens and window holder was designed

and installed. The details of this design change are given elsewhere.64

The constant movement of the laser optics creates an opportunity for the optics to be-

come misaligned or damaged making it difficult to maintain a consistent beam shape. The

size and energy distribution of the laser beam was investigated using a Spiricon Pyrocam
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III laser beam profiler. As seen in Figure 3.7, the beam was shown to have significant

asymmetries. These features are likely related to the observed damage on the ZnSe coated

beam optical components due to dirt and debris contamination.

Figure 3.7: Spiricon beam analyzer image of CO2 laser beam shape

Slight anomalies in the precise distribution of the laser beam are likely mitigated by

the heat transfer in the substrate. However, if the distribution is significantly different than

expected, it could influence the substrate surface temperature distribution, and ultimately,

the shape of a growing deposit. While far from optimal, the CO2 beam shape measured for

the system was still believed to be a sufficient heat source for investigating the LCVD of

new materials.

The CO2 laser is controlled by sending a 0-10 V analog signal to the laser controller.

The laser controller converts the input voltage to a pulse width modulated signal that drives

the laser. The relationship between input voltage (entered by the operator) and the laser

power output was measured by Duty and is given in Equation 3.1 withP representing laser

power andx representing the input control voltage.2 Figure 3.8 illustrates the nonlinearity

of the relationship.

P = 0.0067x3−0.8261x2 +17.575x−0.8492 (3.1)
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Figure 3.8: Laser power at substrate versus control voltage

Georgia Tech’s system also has a Stabilite 2017 continuous wave Ar+ ion laser in-

stalled. This laser has a wavelength of 457.9–514.5 nm and is capable of operating in

several modes. In TEM00 mode, the laser produces the typical Gaussian shaped beam

which can theoretically be focused to a diameter of less than 10µm. The upper chamber

has been modified to allow for dual entry of the argon laser beam. However, only limited

work has been done in determining the necessary processing steps for using the argon laser

during deposition. The Ar+ ion laser was not used as a part of this work.

3.4 Thermal Imaging Subsystem

Perhaps the most important feature of the system is a Mikron M9104 Pyrovision ultra–

high resolution thermal imager that allows detailed observation of the substrate temperature

during deposition. The thermal imaging camera is oriented at an angle of 45◦ relative to

the normally horizontal substrate surface and has a standoff distance from the substrate

of about 150 mm. The viewing port for the imager is a quartz window with minimum

attenuation in the near infrared (800–900 nm) spectrum used by the sensor. The use of the

near infrared spectrum also minimizes the dependence of the measured temperature values

on surface emissivity. Figure 3.9 illustrates the relationship among the thermal imager, the
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Figure 3.9: Thermal imager setup

viewing port, and the substrate.

The thermal imager is equipped with a microscopic lens assembly with two zoom set-

tings, 1.5X and 4.5X, the highest of which yields a maximum spatial resolution of 3.5µm

per pixel when focused on a substrate positioned at the proper height. The sensor has a

spatial resolution of 640 x 480 pixels and a temperature resolution of 1◦C. The accuracy of

the system is specified to be±1% of reading, however, the accuracy is also effected by the

value of emissivity provided to the software by the user. The system provides a new tem-

perature measurement for all pixels at a rate of 30 Hz. The system has a total temperature

range of 850 to 2525◦C which is broken into seven subranges depending upon the zoom

setting. Table 3.3 indicates the temperature range of each subrange.

Table 3.3: Subrange temperature values for thermal imager

Range Zoom Tmin (◦C) Tmax (◦C)

1 1.5 850 1090

2 1.5 1040 1380

3 1.5 1300 1800

4 1.5 1680 2525

1 4.5 955 1255

2 4.5 1190 1600

3 4.5 1495 2170
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The display of the thermal imager is fed into a Windows based PC which provides a

real–time display of the 640 x 480 pixel temperature field. The 8 bit resolution of the sensor

allows 256 possible temperature values (and display colors) within each temperature range.

The software interface allows the creation of multiple “Regions of Interest” or ROIs which

are areas in which the processor will report the minimum, maximum, or mean temperature

value. These ROIs interface to an 8–channel isolated current output module that allows

the temperature data to be used as a feedback signal in automated control applications.

Figure 3.10 presents a typical screenshot from the thermal imaging camera software during

deposition.

Figure 3.10: Typical screenshot of thermal imager software during deposition

3.4.1 Growth Rate Measurement Using the Thermal Images

The deposit growth rate in LCVD is important for many reasons. The growth rate places

practical limits on the size of parts and features that can be produced using the process. The

growth rate also gives insight into the rate–limiting regime of the process which becomes
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important for deposit shape and other properties. In situ growth rate measurement provides

opportunities for enhanced process control and analysis.

The thermal imaging camera on Georgia Tech’s system is oriented at an angle of 45◦

with respect to the substrate surface as shown in Figure 3.9. This configuration enables

the detection of height changes through a vertical shift that appears on the thermal imager

screen. If the spatial resolution of the imager screen is known, a change in deposit height

can be quantified with reasonable accuracy.

A calibration experiment was done to confirm the spatial resolution of the thermal im-

ager. First, a piece of white paper was placed on the substrate holder. Next, pieces of pencil

lead of different diameters were measured and placed on the white paper. The diode laser

used to align the CO2 laser beam was then used to illuminate the pencil lead on the sub-

strate surface. The thermal imaging camera was placed in “visible” mode, and the setup

was viewed. The different reflectivity of the graphite pencil lead compared to the white pa-

per underneath it made the two objects distinct in the imaging window. Figure 3.11 shows

a typical image.

Figure 3.11: Calibration method used to determine spatial resolution of thermal imager

The size of each pixel on the thermal imaging screen could easily be determined from
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Figure 3.11 by dividing the measured diameter of the pencil lead by the observed number

of dark pixels on the screen across the diameter. After using three different size pieces

of pencil lead and multiple images and computations, it was established that the spatial

resolution of the imaging camera was approximately 3.5µm per pixel.

The process of using the thermal imager to measure growth rate first requires the capture

of a series of thermal images; the imaging system software enables the capture of thermal

images at a specified frequency. These images are saved as 8 bit (256 color) bitmap files

and are named according to the value (in ms) of an internal timer. In order to analyze the

temperature data contained within the images, the images must be converted from a color

matrix to a temperature matrix. The MATLAB code written to execute this conversion is

provided in Appendix B.1.

Next, these images must be compared to determine the height change that has occurred

between their capture. In order to make a valid comparison, the thermal imager needs to

have remained fixed relative to the substrate during the capture of the image series. Because

the thermal imager only provides a color or temperature map, an important assumption

must be made relating the temperature field to its position on a growing deposit.

The typical fiber exhibits a rounded profile along its top surface with the tip of the

fiber being the tallest point as illustrated in Figure 3.12. During growth, it is reasonable

to assume the very tip of the fiber remains at the highest temperature. This assumption

is justified by a) the fact that the laser energy flux is maximum at this point and b) the

protrusion of this tip inhibits conduction of heat away from itself. The assumption is further

validated by the analysis presented in Chapter 6. In the event that a fiber or deposit does

not exhibit the rounded profile shown in Figure 3.12, such as when the “volcano effect” has

occurred, this assumption does not hold and the measurement technique can not be used.

It is also assumed that the point of maximum temperature moves strictly vertically during

growth and does not migrate around on the fiber tip.

The assumption that the point of maximum temperature corresponds to the tip of a
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Figure 3.12: Typical profile of LCVD fiber

growing deposit allows the development of an algorithm that can find the position of the

fiber tip via the value of the maximum temperature within a thermal image. This procedure

is executed for each thermal image in a series, and the change in the vertical position of the

maximum temperature is measured in pixels. The pixels are converted to spatial units using

the 3.5µm per pixel value derived above and the result is divided by sin(45◦) to account

for the orientation of the thermal imager. This height change at the point of maximum

temperature is divided by the time elapsed between the thermal images being analyzed.

This time value is computed by finding the difference between the names of the files. The

growth rate is thus given in units of length/time. Figure 3.13 illustrates how this process

works. The MATLAB code used to execute the calculations is presented in Appendix B.2.

When measuring growth rates in LCVD, it is usually desirable to maintain a constant

temperature profile; however, this is not always possible. There is always a transient period

during the initiation of an LCVD deposit when the laser interaction with the substrate

coupled with the evolution of the first molecular layers of a deposit causes instabilities. The

instabilities in this transient period make it very difficult to maintain a constant temperature
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Figure 3.13: Illustration of how fiber growth rate can be computed from a series of thermal
images

profile. Some deposition processes also exhibit such extreme temperature sensitivity to

laser power that sustained temperature control is difficult. However, during the growth of

these materials it is often possible to have periods, sometimes lasting 20–30 s or more,

when a relatively constant temperature profile emerges.

The complexities in maintaining constant temperature sometimes during LCVD growth

invalidate the obvious growth rate computation method of dividing the overall measured

height of the deposit by the overall elapsed time of the experiment. The use of the thermal

imaging measurement technique circumvents this problem by allowing the selection of a

subset of thermal images captured during an experiment over a period of relatively con-

stant temperature. In fact, different growth rate values can be generated within the same

experiment if multiple regions of constant but distinct temperatures existed.
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3.5 Control and Data Acquisition Subsystem

Hardware and software from National Instruments (NI) is used to control the LCVD sys-

tem. All input and output is handled by a NI PCI–MIO–16E–4 board mounted in a Win-

dows 2000 based PC. This DAQ card operates in multiplexed mode and interfaces with

an SCXI chasis that houses four additional I/O cards: an SCXI–1102B analog input card,

an SCXI–1160 digital I/O card, and two SCXI–1124 analog output cards. The external

hardware such as pressure transducers, mass flow controllers, valves, the thermal imager,

and the laser connect to the appropriate I/O card(s). National Instruments’ NIDAQ package

provides the necessary drivers for controlling the I/O hardware. NIDAQ offers the software

developer a variety of programming language options for providing operator interface to

the hardware. Georgia Tech’s LCVD system uses an operator interface that was developed

with National Instruments’ LabVIEW package. Fuhrman did the majority of the original

software development for the LCVD system.15 LabVIEW is a software development en-

vironment built around the graphical programming language G which utilizes the dataflow

programming paradigm.

LabVIEW integrates well with the National Instruments DAQ hardware used in the

current LCVD setup. Each material system(s) use a different LabVIEW interface with the

appropriate mass flow controllers and ranges for the desired reagent flow. Figure 3.14 is

a screenshot of the typical LabView interface used for carbon deposition. The interface is

fairly intuitive with stage control in the upper left, laser control on the middle left, pressure

gages in lower left, reagent flow control on the right, and temperature in the center.

3.5.1 Feedback Temperature Control

Substrate surface temperature is one of the primary variables in determining the LCVD re-

action rate. By monitoring the temperature and adjusting the laser power, one can keep the

temperature constant. The thermal imaging camera on Georgia Tech’s system provides a

unique capability to measure, with high spatial resolution, the substrate surface temperature
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Figure 3.14: Typical screenshot of the LabVIEW operator interface

during deposition. The software interface of the camera allows the definition of Regions

of Interest which can be used to output minimum, maximum, or mean temperature values.

These ROIs are geometric shapes such as lines, rectangles, or circles.

The ROI output value is fed into the LabVIEW control computer as an analog current

signal. The LabVIEW control program uses the input temperature as the feedback in a

PID control loop to modulate the laser power in an effort to maintain constant temperature.

Figure 3.15 is a diagram of the basic feedback temperature control system.

+
-

Thermal
Imager

LabVIEW
PID Controller CO2 Laser

OutputRef Input

(Set point)

Figure 3.15: Block diagram of basic automatic temperature control system
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The transfer function for a PID controller is given by

Gc(s) = Kp +
Ki

s
+Kds (3.2)

whereKp, Ki , andKd are the proportional gain, integral gain, and derivative gain for the

controller, ands is a complex variable in the frequency domain that results from the Laplace

transform. If the controller input is the error signal,e(t), then the output from the PID

controller in the time domain,m(t) is given by

m(t) = Kpe(t)+Ki

∫ t

−∞
e(t)dt+Kd

de(t)
dt

(3.3)

Proper tuning of the PID control loop requires finding values forKp, Ki , andKd that

enable satisfactory behavior of the controller. Finding these values for the LCVD process

has been challenging. The diagram of Figure 3.15 depicts a simplified interpretation of

LCVD process control. The changing optical and thermal properties of the substrate as

LCVD growth occurs as well as the heat of the deposition reaction are just a few examples

of additional factors that complicate real–time temperature control of LCVD. The influence

of these additional factors is shown in Figure 3.16.

+
-
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LabVIEW
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OutputRef Input

(Set point)

Changing 
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Heat of
Chemical

Reaction(s)

Plant

Figure 3.16: Block diagram showing the influence of LCVD process dynamics on the
automatic temperature control system

The current implementation utilizes a combination of a LabVIEW PID controller and an

additional integral–type controller. Normally, the ROI used is either a circle or a rectangle,
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and the mean temperature value within the ROI is fed into the LabVIEW controller. Mean

values are used due to their inherent resistance to noise effects.

One limitation of the current system is the speed of the control loop. While the thermal

imager provides updated temperature data at a rate of 30 Hz, the cycle time for each loop of

the LabVIEW controller for the entire LCVD system (and the temperature control subloop)

is about 333 ms (3 Hz). Thus, only about 10% of the information acquired by the thermal

imager is ultimately used by the control algorithm.

Overall, the temperature control system works well for processes that exhibit only mod-

erate temperature sensitivity to laser input power within the operational domain established

by the limitations of the DAQ hardware, LabVIEW software, CO2 laser, and thermal imag-

ing camera. The deposition of carbon from methane is one such process. Improvements

in the sophistication of the control methods are necessary to enable practical temperature

control of more sensitive processes.
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CHAPTER IV

CARBON EXPERIMENTS

Carbon deposition has been widely explored in Georgia Tech’s LCVD system. There are

several reasons including the expanse of literature regarding the CVD of carbon, the avail-

ability and stability of hydrocarbon reagents, the robust nature of carbon deposition, and

previous experience with the CVD of carbon coatings. Much of this carbon deposition

experience utilized a reagent system consisting of a mixture of methane and hydrogen.

Carbon was used as a prototype material in the development of process planning al-

gorithms for the LCVD process.28 Some of the experiments presented here were done in

support of the process planning work. More refined geometries included both advanced line

pattern experiments and multi-layered carbon walls. Finally, more detailed characterization

of carbon deposits was done through an X-ray diffraction technique.

4.1 Experimental Setup for Carbon Deposition

All carbon deposition done for this investigation utilized the methane–hydrogen reagent

system. The overall chemical reaction was given by Equation 2.1:

CH4(g)+xs H2(g)−→ C(s)+2H2(g)+xs H2(g) (2.1)

The CH4 and H2 were both supplied from commercially available gas cylinders. The

cylinders were connected to the upper deposition chamber through two separate mass flow

controllers. Prior to entering the chamber, the species were mixed and made to flow through

either the upper chamber side port or the reagent gas nozzle. During operation, gas flows

into the chamber and is removed from the chamber at the same rate so as to maintain

constant pressure. Figure 4.1 illustrates this reagent delivery system for carbon deposition.
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Figure 4.1: Setup for methane and hydrogen reagent delivery into chamber

The substrates used in carbon deposition were normally graphite. Graphite is an ideal

substrate material because it can tolerate the high energy flux and high temperatures asso-

ciated with the laser heating process without damage. Graphite is also widely available and

is robust during handling. An additional benefit of using graphite is that if LCVD carbon

deposits exhibit the hexagonal crystal structure of graphite as was shown in Section 4.7, the

bonding between the substrate and the deposit may be enhanced. The similar coefficients

of thermal expansion will also enhance adherence.

The substrates used in carbon deposition were typically one of two types of graphite:

Industrial Sales Associates SK-85 or POCO AXF-5Q. The properties of these materials

are given in Table A.1. All substrates were disks that were cut from a 19.05 mm diameter

rod to a nominal thickness of 2.54 mm. The surface was sanded using 400 – 600 grit SiC

grinding paper and then cleaned using compressed air. The substrates were stored in an air

oven at 60◦C for at least 24 hours prior to use.
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4.2 Process Planning and Kinetic Studies for Carbon Fibers

One of the ultimate goals of LCVD research is to enable a system whereby a digitally

defined part or pattern could be produced in the LCVD system in an automated fashion.

The digital part definition as it exists in the software would be the only input required of

the designer. Computer software would be used to decompose the defined part model into

the appropriate machine settings for production of the deposit geometry. The process of

translating geometric models into machine settings is termedprocess planning.

In support of Park’s work developing the computer software for LCVD process plan-

ning, a number of carbon deposition experiments were executed.28 The purpose of these

experiments was to establish numerical relationships between the LCVD machine param-

eters and the resulting carbon deposit shapes. Ideally, these relationships are expressed as

mathematical equations such as Equation 4.1

Y = β0 +β1X1 +β2X2 +β3X3 + . . . (4.1)

whereY is a particular deposit attribute (e.g. fiber diameter) that is given as a function of

operating parameters,Xi (e.g. laser power, operating pressure, etc.).βi are the regression

coefficients that are determined by fitting experimental data to the equation.

Various techniques can be used in fitting experimental LCVD data to an expression.

One method does not consider any theoretical relationship among the process variables

and the deposit attributes, but simply seeks a statistical relationship. This type of approach

provides a sufficient basis for process planning algorithms, but is strictly limited to pre-

dicting conditions within the range defined by the experimental data. A second method for

approaching the regression process is to use equations with theoretical origins and regress

the experimental data against these equations. These two methods for studying process–

property relationships were compared.

A large set of carbon fiber experiments were performed and the data were used to derive

both statistical and kinetic relationships between process parameters and deposit attributes.
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The purely statistical regressions were termedgeometric regressionsand the kinetic studies

were termedkinetic regressions.

After loading the graphite substrate and filling the chamber with the desired CH4:H2

mixture, the standard procedure for deposition of fibers in Georgia Tech’s LCVD system

is to initiate growth by engaging the laser at a constant high power (usually about 90 W)

until the average temperature read by the thermal imager in the region of interest (ROI)

approaches the desired average temperature for deposition. The time required for the tem-

perature to reach this value differs somewhat with process conditions, but ranges from 20

to 90 s. Upon reaching the desired average temperature, the control mode for laser power

is switched from manual to automatic and feedback control is used for the duration of the

experiment in an effort to maintain a constant average temperature. Table 4.1 summarizes

the conditions for all fiber experiments that were done in this investigation.

Table 4.1: Experimental conditions for carbon fiber deposition

Parameter Value(s)

Substrate AXF-5Q Graphite

Pressure (Torr) 600, 700, 800

CH4 Flow (sccm) 325

H2 Flow (sccm) 125

Avg ROI Temp (◦C) 1600, 1625, 1650, 1675, 1700, 1725

ROI size (pixels) 143 x 220 AutoDetect

TI Zoom R3Z4.5

Time (min) 2, 4, 6, 8

As seen in the table, the independent variables studied were chamber pressure, average

temperature, and deposition time. The values for the variables were chosen based on prior

experience and knowledge gained through the successful deposition of carbon fibers in

Georgia Tech’s LCVD system by others.1

All fibers were measured using a Southern Micro Instruments microscope with Nikon

20x/0.40 (WD 11.0) lens that has a coordinate display. For diameter measurements, the
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top view of a fiber was used and both the maximum and minimum diameter values were

recorded. Fiber heights were measured from the side view. Deposition rates were computed

from the height measurements and the growth time.

4.2.1 Geometric Regression

Geometric models were generated for three fiber attributes: maximum diameter, minimum

diameter, and height. Independent variables were deposition time, average ROI tempera-

ture, and total pressure. While not intentionally varied, substrate thickness was also mea-

sured and considered as a variable in the geometric regression models. The procedure was

to generate different transformations of independent variables consistent with physical rea-

soning and then use the stepwise regression method to identify a useful subset of predictors.

The regression models with the largest R2 value were chosen as “best” since a higher R2

indicates that the variability in the data is better explained by the model. Residual plots

were also used to check for a normal distribution when determining the appropriateness

of a model. Table 4.2 shows the best geometric regression models for each fiber deposit

attribute,28 wheretdep is the deposition time (min),TROI is the average ROI deposition

Table 4.2: Geometric regression models for carbon fiber attributes

Response Var Regression Equation R2

Max dia (µm) −1411+7.83tdep+1.01TROI+1146St 85.4%

Min dia (µm) −401+0.000317T2
ROI−0.213Psys 82.3%

−2.25E4+1.56E2tdep−1.47E7 1
TROI

Height (µm) +5.02E3lnPsys−4×10−6P3
sys 90.7%

temperature (◦C), St is the substrate thickness (in), andPsys is deposition pressure (Torr). It

is unclear how the substrate thickness affects the deposit parameters under a temperature

controlled process. As indicated by the values of R2, all regression models were found to

account for the variability in the data reasonably well.
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4.2.2 Kinetic Regression

The experiments done in this study were not specifically designed to study the kinetics

of the reaction; however, enough data were generated during the process to fit data to a

kinetic expression. Under the conditions normally used in LCVD, it has been shown that

carbon deposition from methane is a kinetically limited reaction.1 The kinetic expression

that gives the deposition rate as a function of concentration and temperature was given in

Equation 1.6, and is rewritten here specifically for this reaction:

J′′C = krC
n
CH4

(4.2)

which states that the reaction rate,J′′C (kmol/m2-s), is proportional to the surface concen-

tration of the reactant species,CCH4 (kmol/m3), to some power,n, wheren is the order of

the reaction. The rate constant,kr was given by:

kr = k0e
−Q
RT (4.3)

wherek0 represented the pre–exponential factor (m/s),Q was the activation energy (kJ/k-

mol), R was the universal gas constant (8.314 kJ/kmol K), andT was the temperature of

deposition (K). The kinetic regression procedure involves fitting experimental data to the

above equations to determine the parametersn, k0, andQ. While different unit systems can

be used for kinetic studies, due to the empirical relationship derived through the regres-

sion process, it is important to use consistent units for predictive purposes as were used for

regression purposes.

As described in Section 3.4.1, during growth, a normal fiber can be assumed to have a

maximum temperature at its tip. For these carbon experiments, fiber height was determined

by measuring from the substrate surface to the fiber tip. Thus, for each fiber, the kinetic

analysis was applied at the center of the fiber where the maximum temperature coincided

with the fiber tip.

The maximum temperature was obtained for each fiber by using a MATLAB program

to convert a thermal image captured during deposition into a temperature map and then
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searching the temperature map for the maximum value. The maximum temperature during

deposition was known to remain relatively constant because active temperature control was

used throughout the growth process. The program written for this purpose is listed in

Appendix B.1. Because valid thermal images were obtained for only eleven of the fibers,

the kinetic regression analysis was limited to these fibers.

The methane concentration value,CCH4 (kmol/m3), for each experiment was computed

using Equation 4.4

CCH4 =
FCH4

Ftot

Ptot

RT
(4.4)

whereFCH4 is the flow rate of methane (sccm),Ftot is the total gas flow rate into the chamber

(sccm),Ptot is the deposition chamber pressure (kPa),R is the universal gas constant (8.314

kPa-m3/kmol-K), andT is temperature (K).

The correct value to use for temperature in Equation 4.4 is not obvious. One choice

would be the temperature of the methane gas at the source, which would normally be close

to room temperature (20–25◦C). However, due to the high temperatures in the deposition

zone, the absolute molar concentration changes significantly as the gas moves from the

source toward the deposition surface. This fact leads to another choice of temperature in

computing concentration, which is to use the value of the maximum temperature in the

laser spot as found using the MATLAB program described above. This approach makes

the reasonable assumption that the gas temperature directly above the substrate is equal to

the maximum substrate temperature. The concern with adjusting the reagent concentration

by the temperature in the deposition zone is that it correlates the two variables of tem-

perature and concentration; however, it was deemed the more appropriate approach to use

in fitting LCVD experimental data to the kinetic expression. Thus, for clarity, we rewrite

Equation 4.4 replacingT with Tmax:

CCH4 =
FCH4

Ftot

Ptot

RTmax
(4.5)
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The measurements of fiber height and growth times were used to compute the deposi-

tion rateJ′′C (kmol/m2-s) for the fibers.

J′′C =
h
t

ρC

Mw,C
(4.6)

whereh is the fiber height (m),t is the total fiber growth time (s),ρC is the density of

the deposited carbon (kg/m3), andMw,C is the molecular weight of carbon (kg/kmol). The

values used forρC andMw,C were assumed to be close to those of bulk carbon, 1760 kg/m3

and 12.0107 kg/kmol, respectively. Values ofh andt along with theTmax andCCH4 for all

fibers used in the kinetic regression are given in Table 4.3.

Table 4.3: Data used in kinetic regression analysis for carbon fibers

Experiment Sample Height,h Time, t Dep Rate,J Conc,CCH4 Temp,Tmax

(m) (s) (kmol/m2-s) (kmol/m3) (K)

L228 3 1.17E-03 360 4.76E-04 3.98E-03 2330

L229 1 1.62E-03 480 4.94E-04 3.98E-03 2330

L229 12 1.60E-03 300 7.83E-04 3.91E-03 2372

L229 13 2.37E-03 480 7.24E-04 3.91E-03 2372

L230 9 1.53E-03 480 4.68E-04 2.96E-03 2351

L231 2 8.11E-04 480 2.48E-04 3.06E-03 2274

L231 11 1.07E-03 360 4.34E-04 2.95E-03 2359

L232 3 1.61E-03 480 4.93E-04 3.49E-03 2322

L232 13 1.06E-03 480 3.23E-04 3.53E-03 2295

L233 1 1.24E-03 240 7.58E-04 3.42E-03 2372

L233 12 1.44E-03 360 5.86E-04 3.42E-03 2372

In order to use multivariate linear regression techniques, the kinetic expressions given

in Equation 4.2 and Equation 4.3 were combined and transformed:

J′′C = k0C
n
CH4

e
−Q

RTmax

lnJ′′C = lnk0 +nlnCCH4−
Q
R

1
Tmax

(4.7)

Equation 4.7 is easily related to the general linear regression expression

Y = β0 +β1X1 +β2X2 (4.8)

77



with

Y = lnJ′′C (4.9)

β0 = lnk0 (4.10)

β1 = n (4.11)

X1 = lnCCH4 (4.12)

β2 =
−Q
R

(4.13)

X2 =
1

Tmax
(4.14)

The results of the multiple regression analysis are shown in Table 4.4, and the regression

equation generated by the analysis was:

lnJ′′C = 18.6724+1.01853lnCCH4−48003.1
1

Tmax
(4.15)

By using Equation 4.10, Equation 4.11, and Equation 4.13 in conjunction with the

coefficients shown in Equation 4.15, the kinetic parameters for carbon fiber LCVD could

be determined. These parameters are summarized in Table 4.5, and the final Arrhenius

expression is given in Equation 4.16:

J′′C = 1.2856×108C1.0185
CH4

e
−3.9911×108

RTmax (4.16)

whereCCH4 is measured in kmol/m3 andTmax is measured in K.R is 8314 J/kmol-K.

The results from the kinetic regression model were encouraging. First, note the value

of n, the order of the reaction, is 1.019. While Jean’s value ofn was significantly differ-

ent from 1 at 3.46,1 others’ carbon CVD kinetic data supports the idea thatn should be

approximately equal to 1.94 Next, the value of Q from the regression is shown to be 399

kJ/mol. Again, while this value differs from Jean’s reported value of 176 kJ/mol, the value

of 399 kJ/mol is more aligned with the reported values ranging from 430 to 450 kJ/mol of

CVD of carbon from methane.94 In sum, the regression fit the data reasonably well with
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Table 4.4: Carbon fiber multiple regression analysis

Dependent variable: lnJ′′C
Parameter Estimate Standard Error T Statistic P-Value

CONSTANT 18.6724 2.6326 7.09279 0.0001

lnCCH4 1.01853 0.294407 3.45959 0.0086

1/Tmax -48003.1 5465.62 -8.78275 0.0000

Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio P-Value

Model 1.15669 2 0.578343 51.06 0.0000

Residual 0.0906187 8 0.0113273

Total (Corr.) 1.24731 10

R-squared = 92.7 percent
R-squared (adjusted for d.f.) = 90.9 percent
Standard Error of Est. = 0.10643
Mean absolute error = 0.0759425
Durbin-Watson statistic = 2.94589 (P=0.0218)
Lag 1 residual autocorrelation = -0.562263

Table 4.5: Kinetic parameters for carbon fiber LCVD

Parameter Symbol Value

Pre–exponential factor (m/s) k0 1.2856×108

Reaction order n 1.0185

Activation Energy (J/kmol) Q 3.9911×108
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an R squared value of 92.7 and an adjusted R squared value of 90.9; therefore, it seems

the kinetic expression given in Equation 4.15 is a suitable model for the LCVD of carbon

from a methane precursor within the space defined by operating conditions used in this

investigation.

4.2.3 Model Comparison

It was useful to determine whether the geometric regression models or the kinetic regres-

sion models were more capable of predicting fiber deposit height. The only fibers for which

valid temperature data were available were the same eleven used in the kinetic analysis;

therefore, these fibers were used in a simple point–wise comparison between the geometric

and kinetic regression models. Figure 4.2 is a bar chart comparing the predicted height

using the two regression equations to the measured fiber height. Overall, both models pre-

dict the height reasonably well. Figure 4.3 depicts the error value at each fiber for the two

regression methods. In general, the geometric regression model under–predicted the fiber

height while the kinetic model error was balanced between over and under–predicting. In

conclusion, when possible, it is desirable to use kinetic regression models; because of their

theoretical origins, they can be used with some confidence outside of the envelope of ex-

perimental data used in their derivation. The results of a geometric regression model must

only be applied within the experimental envelope used in their generation.
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Figure 4.2: Comparison of regression model predictions to measured fiber heights
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Figure 4.3: Fiber height error comparison between the two regression model predictions
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4.3 Carbon Line Experiments

The second fundamental LCVD growth mode is horizontal or patterned growth. The prim-

itive shape representative of this growth mode is the single layer line. An array of carbon

line experiments were executed in an attempt to better understand and characterize the

relation between the process conditions and line geometry.

4.3.1 Exploratory and Refined Experiments

The first task was to establish some basic understanding of the relationships among the

different variables in carbon line deposition. This was accomplished by executing various

experiments in which all but one variable were held constant. Some selected experiments

are discussed below.

Experiment C-181L was used to explore the relationship between laser scan speed and

line morphology. A series single layer of lines was run on SK-85 graphite substrates. The

total chamber pressure was 760 Torr with a CH4:H2 partial pressure ratio of 3:1. Flow was

maintained through the upper chamber side port (no nozzle flow) at 500 sccm using the

same 3:1 partial pressure ratio. Laser power was kept constant at 90.3 W and laser scan

speeds ranged from 0.229 to 127 mm/min. The micrographs in Figure 4.4 illustrate how

the lines changed at these different scan speeds.

The carbon growth rate imposes a lower limit on the line scan speed. If the scan speed

is too slow, the growth will extend from the substrate as an angled fiber. In fact, this is

the technique used to grow truss structures.1 The slowest scan speed of 0.229 mm/min

produced just such a structure. Once the minimum line scan speed was exceeded, scan

speeds up to 2.54 mm/min produced very distinct lines with a well–defined region of bulk

growth in their center. Scan speeds of 6.35 to 25.4 mm/min produced less distinct lines

with a continuously varying node size across their width. These growth nodes are small

and flaky far from the line center and become progressively larger and more spherical near

the line center. The average node size is shown to decrease with increasing scan speed. The

82



1.27 mm/min 2.54 mm/min

6.35 mm/min 12.7 mm/min

25.4 mm/min 63.5 mm/min

Figure 4.4: Morphology of carbon lines at different laser scan speeds
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63.5 mm/min scan speed produced a wide area of very small growth flakes or nodes. The

coverage area of these nodes was not more than 75%, even in the center of the line. These

results indicated that speeds of 2.54 mm/min or less should be used if the goal is to create

a well–defined line of bulk carbon. Such a line is an important first step in the growth of

uniform carbon walls as will be discussed in Section 4.6

Experience has shown that in its current state, the automatic temperature control system

does not always improve the temperature stability of single layer carbon line growth. For

a constant power, the temperature is observed to be relatively stable. The relationship

between laser power and average surface temperature was investigated using the thermal

imaging camera.

In C-189L, a series of 10 lines was run using different power levels on SK-85 graphite

substrates. The total chamber pressure was 760 Torr with a CH4:H2 partial pressure ratio

of 3:1. Flow was maintained through the upper chamber side port (no nozzle flow) at 500

sccm using the same 3:1 partial pressure ratio. The thermal imager Region of Interest (ROI)

was a 150 pixel diameter circle. Laser scan speed was kept at 2.54 mm/min.

The laser control voltage, power, average ROI temperature and its standard deviation

are given in Table 4.6 with a plot of the data shown in Figure 4.5.

The average ROI temperature is shown to be linearly related to the incident laser power.

The temperature is shown to have a standard deviation of between 20 and 30 K for most

of the lines. SEM micrographs of the resulting lines revealed that the carbon growth nodes

were larger for scans using a higher laser power. These results were consistent with those

of Experiment C-181L.

4.3.2 Designed Experiments

Similar to the case of carbon fibers, several designed experiments were run with single

layer carbon lines. These experiments were used to establish the numerical relationships

between line shapes and process conditions. For most of the lines, the height and width
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Table 4.6: Experimental conditions for C-189L laser power vs temperature study

Laser Control Laser Power Average ROI Temp Temp Std. Deviation
(V) (W) (K) (K)

5.0 67.2 1954 18.2

5.5 71.9 1977 21.4

6.0 76.3 1996 16.2

6.5 80.3 2007 23.4

7.0 84.0 2023 28.2

7.5 87.3 2050 24.1

8.0 90.3 2071 22.7

8.5 93.0 2092 23.4

9.0 95.3 2126 22.0

9.5 97.3 2139 29.4
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Figure 4.5: Average laser spot temperature during laser scan for different incident power
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was measured using a CyberScan LV profilometer made by CyberOptics. Three profiles

were taken of each line and the height and width from all three were averaged. The data

were fit to regression equations for use in process planning algorithms.28 The procedure

for finding suitable regression expressions used the same stepwise regression technique as

the geometric regressions for fibers in Section 4.2.1.

The first experiment set, C-DOE-L1, utilized SK–85 graphite substrates. The experi-

ment conditions can be found in Table 4.7. The best equations for predicting line height and

Table 4.7: Conditions for C-DOE-L1 carbon line experiments on SK–85 graphite

Experiment Nos. C-221L–C-225L

Substrate SK–85 graphite

Scan Speed (mm/min)1.27, 2.54, 3.81, 5.08, 6.35

Pressure (Torr) 800

CH4 Flow (sccm) 375

H2 Flow (sccm) 125

Nozzle Status OFF

Laser Control (V) 4, 5, 6, 7, 8

Laser Power (W) 57, 67, 76, 84, 90

ROI (pixels) 200∅ circle

TI Zoom R3Z4.3

width from process parameters are given in Table 4.8,28 whereLp is the laser power (W),

St is the substrate thickness (in), andVs is the laser scan velocity (in/min). As indicated

Table 4.8: Geometric regression models for lines on SK–85

Response Variable Regression Equation R2

Height (µm) −92.7+47.6lnLp +1.441
St

+1.28 1
Vs

74.6%

Width (µm) −519+10.7 1
St

+333lnLp 89.4%

by the values of R2, all regression models were found to account for the variability in the

data reasonably well.

Two additional experiment sets were performed on AXF–5Q graphite substrates. The
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significant difference between the SK–85 graphite and the AXF–5Q graphite was the grain

size, 200µm and 5µm, respectively. The smaller grain size provided a more uniform

surface for line deposition. It was also observed to require more laser power to achieve the

same surface temperature. Conditions for the AXF–5Q line experiments are provided in

Table 4.9.

Table 4.9: Conditions for carbon line experiments on AXF–5Q graphite

C-DOE-L2 C-DOE-L3

Experiments C-234L–C-244L C-245L–C248L

Substrate AXF–5Q graphite AXF–5Q graphite

Scan Speed (mm/min)1.27, 2.54, 3.81, 5.08, 6.351.02, 1.52, 2.03, 2.54

Pressure (Torr) 600, 700, 800 800

CH4 Flow (sccm) 325 325

H2 Flow (sccm) 125 125

Nozzle OFF OFF

Laser Control (V) 4, 5, 6, 7, 8 7, 7.5, 8, 8.5, 9

Laser Power (W) 57, 67, 76, 84, 90 84, 87, 90, 93, 95

ROI (pixels) 200∅ circle 200∅ circle

Zoom R3Z4.4 R3Z4.5

Much like C-DOE-L1, the data from C-DOE-L2 and C-DOE-L3 were used in a re-

gression analysis to derive equations relating the height and width as a function of process

parameters. The resulting equations are given in Table 4.1028 where the only new variable

is the total chamber pressure, Psys.

Table 4.10:Geometric regression models for lines on AXF–5Q

Response Variable Regression Equation R2

Height (µm) 6.3+0.06311
V2

s
+99.5lnL−50720 1

Psys
+58.2lnSt 86.3%

12206−827Vs+375lnL−12.7 1
St
−1648lnPsys

Width (µm) −12598771
Psys

77.3%
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4.4 Kinetic Analysis of Line Deposition

In order to do a kinetic analysis like the one in Section 4.2, a period of constant temperature

growth must be maintained. The dynamic nature of LCVD line growth does not provide

such a period. However, because the carbon fibers and lines were grown under very similar

conditions, it was determined that the fiber kinetic parameters could be used to estimate

line attributes, specifically line height.

The first step in the analysis was to acquire a thermal image taken during line growth.

Just like the fiber kinetic studies, this image was converted to a temperature map. From the

temperature map, temperature profiles across the laser spot could be generated as shown

in Figure 4.6. If we assume that the timescale of conduction is significantly smaller than

that of the laser scanning, the temperature profile can be assumed to be symmetrical with

respect to the laser scan direction. The horizontal axis on a temperature profile like that

shown in Figure 4.6 can be converted to a time axis by dividing the position by the scan

speed. The resulting temperature time curve can then be divided into a series of discrete

time interval as shown in Figure 4.7. For each discrete time interval, the average temper-

ature was computed, and this temperature was used to compute the deposition rate from

Equation 4.16. The deposition rate was multiplied by the size of the time interval∆t to

yield a finite volume or height of deposit. Finally, the deposit quantities from all time

intervals were summed to give a total deposit quantity or deposit height. Much like the

fiber kinetic analysis, the line kinetic analysis is limited in application to the point of max-

imum temperature, which is assumed to occur in the center of a carbon line. Therefore, the

predicted height value is for the center of the line.

The described analysis was executed using Sample 6 from carbon line experiment C-

243L. This experiment was part of the C-DOE-L2 set described in Section 4.3.2. Specific

conditions are given in Table 4.11 along with the measured line height and the predicted

line height using both the geometric and kinetic regression equations. The kinetic model

is shown to be more appropriate for this particular line sample for predicting line heights.
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Figure 4.6: Example temperature profile across laser spot extracted from thermal image
for C-243-L Sample 6
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Figure 4.7: Transformed temperature–position profile into temperature–time profile for
C-243-L Sample 6

89



Table 4.11:Comparison of geometric and kinetic regression models of carbon line height

Pressure Laser Power Scan Speed Measured Height Geometric Kinetic
(Torr) (W) (mm/min) (µm) (µm) (µm)

800 84.0 1.27 6.7 13.3 4.71

This should be considered when developing process planning algorithms for carbon LCVD.

4.5 Advanced Carbon Line Patterns

In order to realize the deposition of the dispenser cathode assembly, the necessary materials

must be deposited in a specific circular pattern. Carbon lines were deposited in a circular

pattern resembling that required by the cathode specification to illustrate the capability of

Georgia Tech’s LCVD system to produce this geometry. The experiment used a pressure

of 760 Torr, 500 sccm of CH4:H2 mixture in a 3:1 ratio, and a constant laser power of 90.3

W. The substrate was SK–85 graphite and the target laser scan speed was 2.54 mm/min.

Figure 4.8 illustrates the result of this experiment.

Figure 4.8: Circular pattern of carbon line deposition illustrating machine capability

Note that the circular lines were more sparse and nonuniform than were the straight

lines of previous experiments. The primary reason for the nonuniform deposition is that
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when depositing circles using the existing LCVD stage control system, the operator can not

directly enter the line scan speed. The scan speed must be entered in units of degrees/min

for the rotational z-axis. The circumference of the desired circle and the desired line scan

speed can be used to calculate the necessary rotational speed in degrees/minute. However,

this calculation requires accurate knowledge of the radius of the circle which depends on

the accurate alignment of the laser beam to the center of the rotational z-stage. While

reasonable efforts were made to keep the beam aligned to the center of the z-stage, this was

not always possible due to the need to remove the laser optics during substrate loading and

unloading. It was particularly difficult to align the beam to the stage prior to installation of

the fourth mechanical stage. The uncertainty in the line scan speed for the circles derives

from the uncertainty in a priori knowledge of the circle diameter.

This circular carbon line pattern contains many instances of intersecting lines. The

deposition of intersection lines is difficult because of the positive feedback tendency of the

process. Only through very robust temperature control can the deposition of intersecting

lines be made possible. This particular structure involved the deposition of single layer

carbon lines and did not utilize the automatic temperature control system. The intersections

show a tendency to be much taller than the adjoining lines which confirms the need for

robust temperature control in these types of patterns.

4.6 Carbon Wall Deposition

An extension of the carbon line deposition growth mode is the deposition of multi-layered

structures known as walls. Walls are grown by scanning the substrate back and forth be-

neath the laser to build a structure via the deposition of layers. Layered processes are com-

mon in rapid prototyping due to their inherent ability to build three dimensional objects

from a series of two dimensional data known as slices. In support of some of the envi-

sioned applications of LCVD, it was pertinent to demonstrate the successful deposition of

multi-layered structures.
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As mentioned above, single–layer carbon lines can be deposited without using feed-

back temperature control. In the fabrication of a multi–layered wall, it becomes important

to know when, during the deposition process, is the ideal time to engage the feedback tem-

perature control system. Experiment C-182L involved the deposition of a series of 4–layer

carbon walls on SK-85 graphite. These walls were run under a constant laser power of

90.3 W with each using a different scan speed ranging from 1.27 to 228.6 mm/min. Other

conditions included a total pressure of 760 Torr, partial pressure CH4:H2 ratio of 3:1, and

a total gas flow of 500 sccm.

The resulting carbon walls closely resembled the single layer lines run at different scan

speeds in Experiment C-181L. The difference was that because these walls were four layers

thick as opposed to one layer, the mass of deposit was significantly higher in all cases.

During the C-182L experiments, the thermal imager was used to record the average

laser spot temperature. These plots revealed several interesting trends as shown in Figure

4.9. For the 2.54 mm/min scan speed, the temperature was shown to increase during the

initial portion of the first layer. This could be the reflection of transient heating of the sub-

strate which has been studied by others.64 After about 0.2 mm, the first layer showed a

jump from about 1625 to about 1725◦C. This could reflect the beginning of the deposition

process. The average temperature increased with each successive layer, likely the result

of increased thermal resistance. The temperature variation increased significantly after the

second layer suggesting the need for feedback control. All layers showed an asymmetrical

temperature profile along the length. The end where deposition initiated showed a con-

sistently lower temperature than the mean. The opposite end shows a consistently higher

temperature than the mean. This temperature asymmetry is reflected in the shape of almost

all multi–layered LCVD structures and is one of the prime motivations for using feedback

temperature control.

For the higher scan speeds of 6.35, 12.7 mm/min, and others (not shown), the temper-

ature profiles showed a linear relationship to position. The initial end is always the lowest
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Figure 4.9: Average ROI temperature vs position for 4–layer carbon walls
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temperature point, and the opposite end is the highest temperature point. The 6.35 mm/min

scan speed showed an increase in mean temperature after the second layer of deposit, but

higher scan speeds revealed no such shift. The increase in mean temperature is related to

the change in substrate material properties and shape resulting from the newly formed de-

posit. In addition to transient heating effects, the longitudinal asymmetry of the walls could

be related to the position of the line on the graphite disk substrate (i.e., distance from the

substrate edge); however, thus far no strong evidence has emerged to support this theory.

The results of C-182L suggest that if the goal is to build a base layer of carbon lines for

the subsequent use of the feedback temperature control system, a single layer line with a

scan speed of 2.54 mm/min is optimal. As shown in Figure 4.9, the first layer under these

conditions yielded a uniform temperature along the wall length and produced significant

bulk growth. The second layer demonstrated an upward shift in mean temperature, but

still produced a very uniform temperature along the line length. The third layer showed

a substantial increase in both mean temperature and temperature variation. The feedback

control system should be engaged after the first layer. At this point, there is a substantial

amount of bulk growth that can serve as the foundation for a wall. The temperature stability

within the second layer will help keep the system stable during the transition from constant

laser power to feedback control. Also, engagement of the feedback control earlier in the

process helps prevent the formation of local disparities that tend to exacerbate temperature

fluctuations within layers.

A series of experiments, identified as C-204L, was performed to better understand the

evolution of carbon walls with the addition of successive layers. The setup was the normal

760 Torr total pressure with a 3:1 ratio of CH4:H2. Flow was 500 sccm of the 3:1 mixture

through the side port. The procedure was to deposit a series of walls with different numbers

of layers ranging from 1 to 16. All walls used the exact same processing conditions on a

per layer basis. The first two layers (where applicable) were deposited using a constant

laser power of 90.3 W and a scan speed of 5.08 mm/min. All additional layers used a
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scan speed of 5.08 mm/min with feedback temperature control. The thermal imager ROI

was a 150 pixel diameter circle with an average ROI temperature setpoint of 1700◦C. The

micrographs in Figure 4.10 show how the carbon wall surface changed with the addition of

successive layers.

The single layer line shows a similar structure to the lines grown under similar con-

ditions in Experiments C-181L and C-189L. The line consists of a bulk region of distinct

growth nodes that appear to have evolved from the original growth sites on the substrate

surface. As layers are added these growth nodes become larger and less pronounced. The

largest changes in surface morphology appeared in the first 4–6 layers. The 10 layer wall

shows the surface has become relatively smooth and the width of the taller part of the wall

appears to be only about 2/3 the width of the wall base. The 16 layer wall has a similar

appearance as the 10 layer one albeit is narrower at the top and shows an ever smoother

surface.

The culmination of the carbon line and wall experiments involved the fabrication of a

20 layer structure utilizing optimal scanning conditions for each layer. The substrate was an

SK–85 graphite disk. The conditions included a total pressure of 760 Torr with the typical

3:1 ratio of CH4:H2. The flow was 500 sccm through the gas nozzle of the same mixture.

The first layer was run using a constant 8 V laser control signal (90.3 W) at a scan speed of

2.54 mm/min. Subsequent layers were run using the feedback temperature control system

at a constant scan speed of 2.54 mm/min. The thermal imager ROI was a 150 pixel diameter

circle and the average temperature within the circle was controlled to 1650◦C. Figure 4.11

shows the thermal imager interface during the later stages of wall growth. Notice the very

distinct elongated shape of the laser spot due to the presence of the wall.

The overall length of the wall was 5.08 mm. An optical microscope image of the

resulting deposit is shown in Figure 4.12.

This wall was mounted and polished for SEM observation of the cross section along its

length. As can be seen in Figure 4.13, the micrographs revealed some interesting details
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Figure 4.10: Evolution of the surface morphology of a carbon wall
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Figure 4.11: Thermal imager screen during wall deposition

Figure 4.12: Optical microscope image of 20 layer carbon wall
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within the multi–layered structure. Figures (a) and (b) show the left and right end of the

wall, respectively, while Figures (c) and (d) highlight the substrate–wall interface at these

same ends. The layers in the wall are apparent due to the dark lines at the layer interfaces.

These dark lines represent a change in some material property in this region which could

be related to a change in microstructure or a change in density. In general, the carbon

layers are consistently between 30 and 40µm thick. Cracks are apparent in some of the

layer interfaces such as shown in Figure (e) and within individual layers as seen in Figure

(f). Figure (f) shows the deposit–substrate interface to look very similar to the interface

between the deposit layers.

The cracks observed in C-262L-1 could have been created or exacerbated by the mount-

ing and polishing process. A second carbon wall, C-262L-2, was grown using identical

conditions as C-262L-1 except that it was 15 layers instead of 20 layers thick. In order

to determine if an as–grown wall exhibited similar structural defects, C-262L-2 was an-

alyzed using a computed X-ray tomography technique. This process works by scanning

circles around a sample so as to create cross–sectional views of the interior density. This

procedure was done at several points along the length of the carbon wall. An example of a

cross–section from the computed tomography investigation is shown in Figure 4.14.

The light and dark areas in the X-ray image represent regions of different densities.

The dark areas along the interface of many of the carbon layers could indicate cracks. The

presence of cracks in this ”as–deposited” sample confirms that these cracks were created

during the deposition process and are not caused by the metallographic preparation.

The internal cracks of the carbon LCVD deposits are consistent with those observed

by others.20 It is believed they are an implication of thermal stresses induced within the

structure during the deposition process.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13: SEM micrographs from 20 layer carbon wall (C-262L-1)
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Figure 4.14: Computed X-ray tomography slice of 15 layer carbon wall

4.7 Crystal Structure of LCVD Carbon Fibers

Historically, the material composition of Georgia Tech’s LCVD deposits has been analyzed

using Energy Dispersive X–ray analysis (EDX or EDS). This technique provides quanti-

tative elemental composition information but provides no insight into the microstructural

arrangement of the material. The microstructure of the material has significant implications

for the bulk material properties.

X-ray diffraction (XRD) analysis is a common technique that is used to study the crys-

tallinity of solid materials. XRD was used to analyze a selection of carbon fibers grown

during the process planning and fiber kinetics experiments discussed above. The fibers were

loaded vertically into a glass tube to a height of approximately 1 cm. The tube containing

the fibers was then inserted into the XRD machine. This procedure differed somewhat from

the traditional powder XRD process whereby the analysis of a powder inherently provides

a randomized crystal orientation. The randomization of the orientation yields an unbiased

spectrum of crystallographic data. The analysis of the LCVD fibers oriented vertically in a

tube inherently exhibits a bias consistent with the natural tendency for a particular crystal
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orientation during growth.

A plot of the results of the XRD analysis for the carbon fibers is shown in Figure 4.15.

The best match to the measured spectrum contained in the powder diffraction database was

PDF#26-1080 which is pyrolytic carbon with a hexagonal structure; this confirmed that the

LCVD carbon fibers were largely crystalline with the structure of graphite.
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Figure 4.15: Comparison of XRD analysis of LCVD carbon fibers with closest match in
database, PDF#26-1080

Some discrepancy between the measured data and the PDF card in the database could

be related to the difference between analyzing a solid fiber sample which likely contains

some preferred crystallographic orientation and a powder sample which, due to its random

nature, contains no preferred orientation. The existence of a preferred orientation could

explain the smaller number of peaks seen in the measured data as well as the discrepancy

in peak intensity.

From the results, thed spacing of the〈002〉 plane can be computed using Bragg’s Law:

d =
λ

2sin(θB)
(4.17)
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whered is the plane spacing in Å,λ is the wavelength of CuKα radiation, 1.541 Å, andθB

is the diffraction angle of the〈002〉 peak, 12.997◦. After executing these calculations for

the carbon fibers, the value ofd is found to be 3.426 Å. This value compares reasonably

well with the d spacing of the〈002〉 plane given by PDF#26-1080 to be 3.348 Å. Some

have reported the d spacing of pyrolytic carbon to range from 3.35 to 3.41 Å, where the

lower values correspond to higher deposition temperatures.95

The widths of the peaks seen in an XRD spectrum are related to the particle or grain size

within the material. XRD allows estimation of the grain size or particle size of a material

sample through Equation 4.18 known as the Scherrer formula.

t =
0.9λ

Bcos(θB)
; (4.18)

whered is the spacing in Å,λ is the wavelength of CuKα radiation 1.541 Å,θB is the

diffraction angle of the〈002〉 peak, 12.997◦, andB is the width of the intensity peak in

radians at the diffraction angle measured at one half the maximum intensity height. For the

carbon fibers, the value oft is found to be 123 Å.

XRD patterns can also provide information regarding the residual stress condition within

a specimen. A uniform stress throughout the specimen will cause the peak position to shift

along the 2θ axis. A nonuniform stress composed of both tensile and compressive com-

ponents will cause the diffraction peaks to increase in breadth. Residual stresses in LCVD

deposits are of particular interest due to the large temperature gradients present during the

deposition process. The shift in the〈002〉 peak position between the LCVD carbon fibers

and the PDF#26-1080 standard could thus be interpreted as a uniform residual stress present

in the samples. Such residual stress would not be surprising given the internal cracks seen

in carbon fibers.20 A specimen known to be residual stress–free was not available to infer

information regarding the uniformity of the residual stress state.

In sum, the XRD analysis of a subset of carbon fibers made by LCVD shows the ma-

terial to be highly crystalline graphite. The grain or particle size was estimated at 123

Å.
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CHAPTER V

DEPOSITION RATE MODELING

The primary goals of modeling the LCVD process are to further the understanding of the re-

lationship between the LCVD machine parameters and the resulting deposit characteristics

and to provide insight into the deposition mechanisms. The foundation of this understand-

ing lies in the transport and chemical reaction phenomena that occur in and around the

deposition zone. Of primary importance in the LCVD process are the physical parameters

of temperature, fluid velocity, and species concentration. Ultimately, all of these param-

eters need to be studied in a single integrated simulation environment to properly capture

the complex interactions among them.

As shown in Section 2.2, a significant amount of effort has been reported in the liter-

ature related to modeling the LCVD process. Of primary relevance to the current work is

that reported by Duty.2,67 FLUENT is a commercially available computational fluid dy-

namics (CFD) code that is well suited to modeling complex thermal and mass transport

phenomena. Duty has developed geometric models of Georgia Tech’s LCVD system in the

software and used them to study the relationship among substrate material, gas nozzle flow,

laser power, and temperature profiles. Duty’s models did not incorporate species trans-

port and chemical reaction calculations within the CFD environment. The work done here

focused on modifying and enhancing Duty’s thermal and flow models using FLUENT’s

capability to model species transport. Overall, the goal was to create a single integrated

simulation environment for studying Georgia Tech’s LCVD process.
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5.1 Model Geometry and Meshing

The overall geometry used for the model was identical to that employed elsewhere2 and

is depicted in Figure 5.1. The three–dimensional domain contains a semi-circular volume

that is divided into two parts. The vertical plane across the diameter of the semi-circle

represents a plane of symmetry and is omitted in Figure 5.1 for clarity. The lower part

of the domain represents the solid substrate material, while the upper part represents the

fluid region adjacent to the substrate surface. Protruding into the fluid region is the gas

nozzle with its axis aligned such that if extended, it would intersect the center of the laser

spot on the substrate surface. The substrate diameter of 75 mm and height of 25 mm is

representative of the dimensions of Georgia Tech’s LCVD system substrate holder. The

fluid volume of 75 mm diameter and 25 mm height is believed sufficiently large to capture

all important phenomena occurring near the deposition zone.

Figure 5.2 is a view of the three dimensional mesh on the symmetry plane in the vicinity

of the laser spot. The figure illustrates the dimensions of the gas nozzle and its position

relative to the substrate surface. An expanded view of the area immediately surrounding

the laser spot highlights the mesh density in the most critical region. The mesh convergence

study presented in Section 5.3.4 was used to determine the appropriate mesh size. Along

the 200µm laser-heated zone across the substrate surface, there were 40 nodes spaced 5

µm apart. The symmetry plane shown in Figure 5.2 is a particularly important aspect of

the model for visualizing the computation results.

5.2 Boundary Conditions

The equations and many of the boundary conditions used in the model are universally ap-

plicable to all LCVD simulations regardless of the material system. The FLUENT package

solves a variety of fundamental conservation equations depending upon the situation of
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Figure 5.1: Overview of 3-D model domain

Figure 5.2: Mesh density on symmetry plane
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interest. In modeling LCVD, four primary equations apply: mass conservation (or conti-

nuity), momentum conservation, energy conservation, and species conservation. Formu-

lations of each of these equations are available in any text on the subjects, and each is

discussed below for completeness.96 Each one of these equations has boundary conditions

that must be defined in the code.

5.2.1 Mass and Momentum Conservation Equations

Equation 5.1 is the general form of the mass conservation or continuity equation used by

the solver in the fluid zone:
∂ρ

∂ t
+∇ · (ρ~v) = Sm (5.1)

whereρ is the fluid density,t is time,~v is the local velocity vector, and Sm is a mass source

(or sink) term arising from phase transformations or other defined sources.

The simulations done in this analysis are steady state, therefore the first term on the

left side of the equation is not considered. The second term on the left accounts for mass

transport due to convective forces. The mass sink term is used to account for mass depleted

from the gas phase of the model due to chemical reactions.

The formulation of the momentum conservation equation for laminar flow is also solved

within the fluid zone of the model:

∂

∂ t
(ρ~v)+∇ · (ρ~v~v) =−∇p+∇ · (τ)+ρ~g+~F (5.2)

wherep is the pressure,τ is the shear stress tensor,~g is gravity, and~F represents additional

body forces.

The left side of Equation 5.2 represents the acceleration terms and the right side rep-

resents the forces acting on the fluid. The acceleration terms include both the temporal

and spatial considerations, while the force terms include those due to pressure, viscosity,

gravity, and other external body forces. For the LCVD simulation, the time dependent term

on the far left is not applicable and the third term on the right representing gravitational

106



forces was neglected due to computational expense and the minimal significance of natural

convection in a forced flow environment.2

Within the fluid domain, flow is specified as a velocity magnitude normal to the gas

nozzle inlet. Both the top and side faces of the fluid zone are defined as pressure outlets

with gauge pressure specified to be zero. In sum, the gases enter the fluid domain through

the nozzle inlet and exit through the top and side pressure outlets.

5.2.2 Energy Conservation Equation

The energy equation is the primary transport equation that couples the substrate zone to the

fluid zone and is therefore solved throughout the entire domain of the model. The solver

uses
∂

∂ t
(ρh)+∇ · (~vρh) = ∇ · (k∇T)+Sh (5.3)

for the solid zone heat transfer calculations, whereρ represents the density of the solid,

h is the specific enthalpy,~v is the velocity vector of the solid if moving,k is the thermal

conductivity,T is temperature, andSh is volumetric heat generation rate. The analysis done

for the LCVD process is steady state with no solid zone motion resulting in the left side of

Equation 5.3 equaling zero. The first term on the right-hand side represents conductivity of

heat through the solid and theSh term represents the volumetric heat generation within the

solid.

The laser energy is simulated in the model as volumetric heat generation in the surface

layer of substrate cells. A volumetric approach was chosen because specification of a heat

flux through the substrate surface disables the computation of convective and radiative heat

transfer from the surface. It was considered important that these values be computed in the

model.

The CO2 laser employed in Georgia Tech’s LCVD system emits a 90% TEM00 beam

which can be modeled as a Gaussian energy flux. Equation 1.10 gave the Gaussian laser
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beam energy profile:

P(r) =
2P0

πR2
0

e
−2r2

R2
0 (1.10)

whereP0 is the nominal laser power,R0 is the 1/e2 radius of the laser beam, andr is the

radial distance from the center of the laser spot. Equation 1.10 can be modified to express a

volumetric heat generation rate by dividing by the depth of the celld in which the energy is

applied as shown in Equation 5.4. The value ofd for the mesh used was X m. This equation

also includes the termρ10.59 to account for substrate reflectivity at the laser wavelength of

10.59µm.

P(r) =
2P0(1−ρ10.59)

πR2
0d

e
−2r2

R2
0 (5.4)

A user defined function (UDF) was used to implement this volumetric energy gener-

ation in the LCVD model. The UDF computed the appropriate amount of energy to be

generated by each cell depending upon the nominal laser power, cell size, and cell position

relative to the center of the laser spot. The UDF limited volumetric energy generation to

those cells in the top layer of the substrate and within the 200µm diameter of the laser spot

as indicated by Figure 5.3.

Figure 5.3: Cells used in generating laser heating function

The UDF also implemented a crude approximation of heat loss from the substrate sur-

face due to radiation. Previous work had shown that boundary conditions for FLUENT’s

internal radiation models were difficult to implement with the given geometry, and even

when implemented, significant computation expense was incurred without adding signifi-

cantly to the results. A suitable approximation was found by using the simple equation for
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radiation heat transfer:2

q′′r = εσ(T4
s −T4

re f) (5.5)

whereq′′r is heat flux,ε is average hemispherical emissivity over the entire spectral range,

σ is the Stefan–Boltzmann constant (5.670×10−8 W/m2-K4), Ts is the radiating surface

temperature, andTre f is the temperature of the remote surface being irradiated.Tre f was

set at 300 K for all models in order to simulate the inner surface of the cold wall reaction

chamber.

The radiative heat flux had to be adjusted to account for the volumetric implementation

by dividing q′′r by the depth of the top layer of cellsd. The result was subtracted from

the laser powerP(r) computed in Equation 5.4 to account for the radiative heat loss. This

calculation provided the volumetric heat generation rate used in the energy equation:

Sh = P(r)− q′′r
d

It was assumed that the laser spot is the only area where temperatures are sufficiently

high for radiative effects to become important. Thus, this calculation was limited to those

surface cells within the region ofr < 10R0. The C code for the UDF incorporating both the

laser power input and the radiation approximation was linked to the solver at runtime. A

listing of the source code can be found in Appendix B.3.

In addition to the volumetric heat generation function, other boundary conditions for

the energy equation in the solid zone consisted of convective heat transfer from the side

and bottom of the substrate. For the side, the temperature of the adjacent fluid (this fluid

was not explicitly modeled) was defined to be 300 K and the convective heat transfer coef-

ficient,h was specified to be 5 W/m2-K. The bottom of the substrate was insulated. These

thermal boundary conditions were taken from Duty’s work.2 Note that the spatial position

of the laser generation function was kept fixed within the substrate representing the LCVD

vertical–growth mode.

A slightly different version of the energy conservation equation was applied in the fluid
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domain:

∂

∂ t
(ρE)+∇ · (~v(ρE + p)) = ∇ ·

(
keff∇T−∑

j
h j~Jj +(τeff ·~v)

)
+Sh (5.6)

whereρ is the density of the fluid,~v is the fluid velocity vector,p is the pressure,keff is the

effective conductivity of the fluid,T is the temperature,h j is the enthalpy of speciesj, ~Jj is

the diffusion flux of speciesj, τeff is the shear stress tensor, andSh includes any additional

volumetric heat sources in the fluid.E is given by:

E = h− p
ρ

+
v2

2
(5.7)

whereh is the enthalpy of the fluid, and all other variables are as defined above. The

second and third term in this expression represent pressure work and kinetic energy and are

excluded from the current computations due to their minimal influence on the results.

Only some of the terms in the general equation, Equation 5.6, are pertinent to the LCVD

model. Specifically, the simulation is steady state, eliminating the first term on the left-

hand side. The second term on the left-hand side accounts for energy entering and leaving

the system via mass flow across the boundaries and is applicable. The first two terms on

the right-hand side of the equation respectively represent conduction through the fluid and

enthalpy transport through the fluid due to diffusion. Both are considered. The viscous

dissipation term, third on the right, is not considered in the current model because its con-

tribution is believed relatively insignificant in the LCVD process. Finally, theSh term is

used to account for the heat of chemical reactions taking place within the fluid domain.

The boundary conditions on the energy equation in the fluid zone involve specification

of the temperature at the nozzle inlet and the backflow temperature along the fluid zone

top and side faces. The value used for both inflow and outflow boundaries was 300 K.

At the fluid–solid interface, the energy equations for each zone are coupled through the

temperature.
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5.2.3 Species Conservation Equation

The distinguishing aspect of the current model is the explicit modeling of the species trans-

port processes in the gas phase surrounding the LCVD reaction zone. The species conser-

vation equations are solved for each individual species defined in the mixture comprising

the fluid zone. The general form of the species conservation equation is

∂

∂ t
(ρYi)+∇ · (ρ~vYi) =−∇ · ~Ji +Ri +Si (5.8)

whereρ is the density of the mixture,Yi is the mass fraction of speciesi, ~v is the local

velocity vector,~Ji is the diffusion flux of speciesi, Ri is the net volumetric rate of species

production due to chemical reactions, andSi is the rate of creation or destruction of dis-

persed phases or other processes.

The simulation of the LCVD process is steady state; therefore, the first term on the left-

hand side representing time dependency is not applicable. The last term on the right-hand

side representing species concentration changes due to particulate–forming homogenous

reactions is also not applicable in the current setup. TheRi term in Equation 5.8 is used

to compute the homogenous creation or consumption of speciesi. No volumetric reactions

were included in the current study, thus, this term did not apply.

The second term on the left represents the convective transport of speciesi due to bulk

fluid flow. This term is important in simulations involving gas flow through the nozzle

and/or natural convection. The first term on the right side of the equation represents the

transport of speciesi due to diffusion. Different types of diffusion can be considered, but

the primary types are concentration (or ordinary or Fickian) diffusion and thermal diffusion.

Concentration diffusion refers to the tendency of a molecule to move from a region

of high concentration to that of lower concentration within a system. In traditional CVD,

species transport to the substrate surface via concentration diffusion is the primary delivery

method. Even in the forced flow LCVD system, the presence of a boundary layer and the

no-slip condition along the substrate cause concentration diffusion to remain the primary
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mechanism for final delivery of the reagent to the surface.

Thermal diffusion or the Soret effect is the transport of molecules due the presence of

a temperature gradient.96 For binary mixtures of dilute gases, the species with a larger

molecular weight tends to move from regions of high temperature to those of lower tem-

perature. For mixtures of similar molecular weight species, the molecule with a larger

diameter tends to diffuse from high temperature to low temperature.

The flux of speciesi due to these two types of diffusion in laminar flows is given by

Fick’s law:

~Ji =−ρDi,m∇Yi −DT,i
∇T
T

(5.9)

where~Ji is the mass flux of speciesi, ρ is the density of the mixture,Di,m is the diffusion

coefficient of speciesi in the mixture,Yi is the local mass fraction of speciesi, DT,i is the

thermal diffusion coefficient of speciesi, andT is the local temperature of the mixture.

Equation 5.9 is only valid when the dilute approximation holds (i.e.Yi � 1 for all i except

the carrier gas).

When the dilute approximation does not hold, a different formulation derived from the

Maxwell–Stefan equations can be used for the diffusive mass flux:

~Ji =−
N−1

∑
j=1

ρDi j ∇Yi −DT,i
∇T
T

(5.10)

whereN is the number of chemical species in the mixture,Di, j is a matrix of generalized

Fick’s law diffusion coefficients, andYi is the mass fraction of speciesi. This full multi-

component diffusion model was preferred in most LCVD simulations because the dilute

approximation does not always hold. The consideration of thermal diffusion is optional in

the FLUENT solution procedure, and depending upon the deposition process under con-

sideration, it may be evaluated. Note that in order to use either Equation 5.9 or 5.10, values

for the both the concentration diffusion coefficients and the thermal diffusion coefficients

must be available.

As was highlighted in Section 1.3, the transport of the reagent species to the substrate
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surface during LCVD must be balanced by the substrate reaction rate. The deposition re-

action was considered as a boundary condition on the species transport equation. FLUENT

incorporates several different models for simulating chemical reactions. The most general

model, and that used in all LCVD simulations, is the laminar finite–rate model.

Ignoring surface site specific considerations, the general equation for an overall surface

reaction can be expressed as:

Ng

∑
i=1

g′i,rGi +
Nb

∑
i=1

b′i,rBi
Kr



Ng

∑
i=1

g′′i,rGi +
Nb

∑
i=1

b′′i,rBi (5.11)

whereGi andBi represent gas phase species and the bulk (solid) species, respectively.Ng

andNb are the total numbers of each of these species types,g′i,r andb′i,r are the stoichio-

metric coefficients for each reactant species,g′′i,r andb′′i,r are the stoichiometric coefficients

for each product species, andKr is the rate constant for the overall reaction. The net molar

rate of creation or destruction of speciesi is given by:

R̂i,gas =
Nrxn

∑
r=1

(g′′i,r −g′i,r)Rr i = 1,2,3, . . . ,Ng (5.12)

R̂i,bulk =
Nrxn

∑
r=1

(b′′i,r −b′i,r)Rr i = 1,2,3, . . . ,Nb (5.13)

The rate of reactionRr is given by:

Rr = kf ,r

Ng

∏
i=1

[Gi ]
g′i,r
wall (5.14)

wherekf ,r is the forward reaction rate and[Gi ]wall represents the molar concentration of the

ith gas species at the wall. The forward reaction ratekf ,r is computed from the common

Arrhenius expression for reaction rate:

kf ,r = k0,re
−Q
RT (5.15)

wherek0,r is the pre-exponential factor,Q is the activation energy,R is the universal gas

constant, andT is temperature.

The formulation of the boundary condition at the wall surface is given by:(
~Ji ·~n

)
wall

− ṁdepYi,wall = Mw,iR̂i,gas i = 1,2,3, . . . ,Ng (5.16)
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where(~Ji ·~n)wall is the diffusive flux of speciesi given in Equation 5.10 computed at the

wall in the direction normal to the wall,Yi,wall is the mass fraction of speciesi at the wall,

Mw,i is the molecular weight of speciesi, andR̂i,gas is as given in Equation 5.12. The net

rate of deposition (or etching) of the surface reaction is given by:

ṁdep=
Nb

∑
i=1

Mw,iR̂i,bulk (5.17)

Finally,Yi,wall is related to the concentration of theith gas species[Gi ]wall through:

[Gi ]wall =
ρwallYi,wall

Mw,i
(5.18)

whereρwall is the density of the fluid at the wall. Equation 5.16 ensures, for each gas

species, a balance between transport to or from the surface and the rate of destruction or

creation on the surface.

All chemical reactions to be allowed in the model are explicitly defined within the

fluid. This definition occurs when setting up the fluid mixture properties. The reactions

are defined by their reactants, products, stoichiometric coefficients, rate exponents, pre-

exponential factors, and activation energies. The reaction is also defined as either a volu-

metric (homogenous) or surface (heterogenous) reaction.

Other boundary conditions for the species conservation equation included specification

of the species mass fractions at the domain inlets and exits. These values changed depend-

ing upon the configuration being simulated.

5.3 Carbon Deposition Simulations

As previously described, carbon deposition is a relatively mature process. Due to its con-

trollability, carbon deposition is a suitable material for kinetic studies such as the one pre-

sented in Section 4.2. The FLUENT deposition rate model was used to investigate the

carbon deposition process.
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5.3.1 Material Properties

Accurate models and simulations require accurate knowledge of all pertinent material prop-

erties. For LCVD, these properties include those of the reagent gases, the substrate mate-

rial, and the deposited material. The extreme temperature gradients that emerge as a result

of laser heating imply that material properties should be modeled as functions of tempera-

ture wherever possible.

5.3.1.1 Methane and Hydrogen Species Properties

The carbon deposition reaction studied here used the methane and hydrogen precursors as

was indicated by Equation 2.1.

CH4(g)+xs H2(g)−→ C(s)+2H2(g)+xs H2(g) (2.1)

The fluid zone in the model was represented by a mixture of all these species. First, the

properties of each species were defined and then the mixture was defined by specifying the

constituent species and the appropriate mixing rules.

The properties required of the fluid species included

• Molecular weight,Mw (kg/kmol)

• Standard state enthalpy,H◦ (J/kmol)

• Standard state entropy,S◦ (J/kmol-K)

• Reference temperature for enthalpy and entropy,Tre f (K)

• Leonard-Jones characteristic length,σ (Å)

• Leonard-Jones energy parameter,(ε/kB) (K)

• Specific heat capacity at constant pressure,Cp (J/kg-K)

• Viscosity,µ (kg/m-s)
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• Thermal conductivity,k(W/m-K)

Some of these properties specified for the reagent gases did not allow or require speci-

fication as a function of temperature. These properties are identified and their values given

in Table 5.1.

Table 5.1: Constant properties of reagent gases used in carbon deposition simulation

Property Methane, CH4 Hydrogen, H2

Molecular weight,Mw (kg/kmol) 16.04 2.02

Standard state enthalpy,H◦ (J/kmol) -7.490×107 0

Standard state entropy,S◦ (J/kmol-K) 1.860×105 1.306×105

Reference temperature,Tre f (K) 298.15 298.15

Leonard–Jones characteristic length,σ (Å) 3.75 2.92

Leonard–Jones energy parameter,(ε/kB) (K) 141 38

The additional properties required for the model were defined as a function of tem-

perature. Heat capacity as a function of temperature over the range of 300 – 3000 K at a

pressure of 1 atm was given for methane by Gurvich97 and was obtained via NIST.98 For

inputting the data into the FLUENT code, a subset of points was chosen and the points

were connected by a piecewise-linear interpolation.

The Cp of hydrogen as a function of temperature was calculated using the Shomate

equation:98

Cp = A+B∗ t +C∗ t2 +D∗ t3 +
E
t2 (5.19)

whereCp is in J/mol-K andt = T/1000 whereT is temperature in K. The coefficients

in Equation 5.19 were provided by Chase99 through NIST98 as shown in Table 5.2. The

hydrogenCp curve was put into FLUENT using a series of data points over the temperature

range 300 – 4000 K that were connected by a piecewise-linear interpolation. Figure 5.4

illustrates howCp varies with temperature for both methane and hydrogen.

Measured viscosity values for methane and hydrogen were only available up to a tem-

perature of 1000 and 2000 K, respectively. The temperatures used in the LCVD of carbon
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Table 5.2: Constants for Shomate equation, Equation

Temp Range [K] 298 – 1000 1000 – 2500 2500 – 6000

A 33.066178 18.563083 43.413560

B -11.363417 12.257357 -4.293079

C 11.432816 -2.859786 1.272428

D -2.772874 0.268238 -0.096876

E -0.158558 1.977990 -20.533862
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Figure 5.4: Heat capacity of carbon reagent gases

often exceed 2000 K in the deposition zone; therefore it was deemed more appropriate to

use kinetic theory to compute the values of viscosity. The equation from kinetic theory

is:100

µ = 2.67×10−6
√

MwT
σ2Ωµ

(5.20)

whereµ is viscosity (kg/m-s),Mw is the molecular weight of the gas (kg/kmol),T is the

temperature of the gas (K),σ is the Leonard-Jones characteristic length (Å), andΩµ is

the collision integral. The collision integral of a perfectly rigid molecule would be exactly

1; this integral accounts for the fact that no perfectly rigid molecules exist. Equations for
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approximating collision integrals are provided by:96

Ωµ =
A

T∗B
+

C
eDT∗ +

E
eFT∗ (5.21)

whereT∗ is given by:

T∗ =
T

(ε/kB)
(5.22)

whereT is the temperature of the gas (K) and(ε/kB) is the Leonard-Jones energy parameter

for the gas (K).A throughF in Equation 5.21 are constants given in Table 5.3. Figure 5.5

illustrates how the gas viscosity varies with temperature according to Equation 5.20.

Table 5.3: Constants for viscosity collision integral formula

A 1.16145 B 0.14874 C 0.52487

D 0.77320 E 2.16178 F 2.43787

Reported thermal conductivity values for methane and hydrogen were also limited in

availability to the maximum temperature of 1000 and 2000 K, respectively. Again, by

using kinetic theory, changes in thermal conductivity at temperatures in excess of these

values could be considered. The equation from kinetic theory for computing gas thermal

conductivity is:100

k =
15
4

R
Mw

µ

(
4
15

CpMw

R
+

1
3

)
(5.23)

wherek is the thermal conductivity of the gas (W/m-K),R is the universal gas constant

(8314 J/kmol-K),Mw is the molecular weight of the gas (kg/kmol), andCp is the specific

heat capacity of the gas (J/kg-K). Figure 5.6 illustrates howk varies with temperature.

5.3.1.2 Methane and Hydrogen Mixture Properties

After defining the properties for the species, the mixture of methane and hydrogen was cre-

ated. The definition of a mixture includes a list of the species in the mixture, a description

of all possible chemical reactions involving the mixture, the appropriate mixing laws for

computing mixture properties, and specification of the diffusivity calculation method to be

used within the mixture.
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Figure 5.6: Thermal conductivity of carbon reagent gases
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The species in the mixture included methane, hydrogen, and solid carbon. The solid

carbon was defined as a gas species, but was explicitly identified in the mixture as a solid

species. This species was important in accounting for the mass of elemental carbon that was

removed from the fluid zone as deposition proceeded. The material properties of this bulk

gas species did not impact the model results beyond the mass conservation implications.

While the FLUENT code has the ability to model a set of homogenous and heteroge-

nous surface reactions simultaneously, the simplified overall surface reaction of Equation

2.1 was the only one modeled. The kinetic parameters for the global reaction have been

reported in the literature.1,25 Similar kinetic experiments were repeated as a part of this

work as summarized in Section 4.2. For convenience, the results of these experiments

are shown again in Table 5.4. These kinetic parameters for the methane decomposition

were entered into the reaction definition and the reaction was defined exclusively as a wall

surface reaction.

Table 5.4: Kinetic parameters for carbon fiber LCVD

Parameter Symbol Value

Pre–exponential factor (m/s) k0 1.2856×108

Reaction order n 1.0185

Activation Energy (J/kmol) Q 3.9911×108

The properties of the gas mixture that are derived from the properties of the individual

species were computed using mixing laws. The specific mixing laws used are reported in

Table 5.5.

Table 5.5: Mixing laws used in CH4–H2 mixture definition

Density,ρ (kg/m3) ideal-gas

Specific heat capacity,Cp (J/kg-K) mixing-law

Thermal conductivity,k (W/m-K) ideal-gas-mixing-law

Viscosity,µ (kg/m-s) ideal-gas-mixing-law

FLUENT incorporates several methods for computing the ordinary diffusion of species
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within a defined mixture. The full multicomponent diffusion model was used to calculate

ordinary diffusion, because the mass fraction of the methane reagent species was too large

for it to be considered dilute. The modified Chapman–Enskog formula, Equation 5.24, was

used to compute the necessary diffusion coefficients between each pair of species.96

Di j = 0.0188

[
T3
(

1
Mw,i

+ 1
Mw, j

)]1/2

Pabsσ
2
i j ΩD

(5.24)

whereT is the temperature of the mixture in (K),Mw,i andMw, j are the molecular weights

of speciesi and j respectively (kg/kmol),Pabs is the absolute pressure (Pa),σi j is the arith-

metic average of the individual species characteristic lengths,σi j = (1/2)× (σi +σ j), and

ΩD is the diffusion collision integral which is a measure of the interaction of the molecules

in the system.ΩD is given by Equation 5.25.96

ΩD =
A

T∗BD
+

C

eDT∗D
+

E

eFT∗D
+

G

eHT∗D
(5.25)

A throughH in Equation 5.25 are constants given in Table 5.6.T∗D in Equation 5.25 is given

Table 5.6: Constants for diffusion collision integral formula

A 1.06036 B 0.15610 C 0.19300 D 0.47635

E 1.03587 F 1.52996 G 1.76474 H 3.89411

by:

T∗D =
T

(ε/kB)i j
(5.26)

and(ε/kB)i j is the Leonard-Jones energy parameter for the mixture (K) given by:

(ε/kB)i j =
√

(ε/kB)i(ε/kB) j (5.27)

The thermal diffusion coefficients were computed empirically by FLUENT for each

species:

DT,i =−2.59×10−7T0.659

 M0.511
w,i Xi

N

∑
i=1

M0.511
w,i Xi

−Yi

 ·


N

∑
i=1

M0.511
w,i Xi

N

∑
i=1

M0.489
w,i Xi

 (5.28)
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whereT is the local temperature (K),Mw,i is the molecular weight of speciesi (kg/kmol),

Xi is the mole fraction of speciesi, Yi is the mass fraction of speciesi, andN is the number

of species present in the mixture.

5.3.1.3 Graphite Substrate Properties

Most of the carbon deposition done in Georgia Tech’s LCVD system has utilized graphite as

the substrate material. A wide variety of graphite materials are available commercially with

a wide variety of material properties. The properties are closely linked to the manufacturing

process used to produce the graphite. As discussed in Section 4.1, the substrates used

were normally either SK-85 or AXF-5Q graphite disks. Temperature dependent material

properties were not available for these graphite materials, but data were available in the

literature for ATJ graphite. Given the similarities in the manufacturing processes, ATJ

graphite should be representative of the graphite used for the LCVD carbon substrates.

Several properties of the substrate material are important in simulating the deposition

process:

• Density,ρ (kg/m3)

• Specific heat capacity at constant pressure,Cp (J/kg-K)

• Thermal conductivity,k (W/m-K)

• Reflectivity,ρ

• Emissivity,ε

The density of graphite is given to be 1760 kg/m3 and is held constant during the simu-

lations. Specific heat capacity,Cp varies similarly with temperature for all types of graphite.

Using the data in the literature,101 a series of data points was input into the FLUENT code

with a piecewise-linear interpolation used between the points. Figure 5.7 illustrates the

temperature dependence of heat capacity.
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Figure 5.7: Dependence of ATJ graphiteCp on temperature

The thermal conductivity of graphite is complex. Conductivity values as well as the

degree of anisotropy in the graphite vary drastically depending on how the material was

produced. The conductivity of ATJ graphite is slightly anisotropic relative to the direction

of applied molding pressure during manufacturing. This anisotropy is ignored in the model,

and the values for thermal conductivity perpendicular to the direction of molding pressure

were used as isotropic values.102 A series of data points was used to define the tempera-

ture dependence of the conductivity. Again, a piecewise-linear interpolation function was

used between the data points. A plot of the relationship between thermal conductivity and

temperature is presented in Figure 5.8.

The reflectivity nor emissivity of graphite were explicitly defined in the material proper-

ties database of the FLUENT code. However, the user defined function described in Section

5.2.2 incorporated reflectivity at the 10.59µm wavelength of the laser. The reflectivity of

the graphite substrate depends upon the surface conditions. Substrates are normally pre-

pared by cutting with a diamond saw followed by sanding with 400 – 600 grit SiC grinding

paper to produce a smooth, uniform finish. The value ofρ10.59 was set at 0.4 which was
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Figure 5.8: Dependence of ATJ graphitek on temperature

determined by Duty through a combination of theoretical and experimental studies.2 The

value ofε was determined by Duty to be approximately 0.9.

5.3.2 Solution Parameters

After defining all material properties and boundary conditions in the code, the solution was

initialized. Values of the pressure, thex, y, andz components of velocity, the CH4 mass

fraction, and the temperature were specified based on the simulated conditions. FLUENT

allows the user to patch values into the solver by defining specific regions of interest. For

the LCVD simulations, two unique regions were defined. First, a cylinder extending from

the entrance of the gas nozzle to the substrate surface was defined and thex andz com-

ponents of the velocity for the given case were patched into this region. Next, a region

of cells very near the substrate surface where the laser spot impinged was patched with

a temperature value of 2000 K for all cases. This setup accelerated convergence in the

solver. Typically, models were run for 1000 iterations, where the residual plots and plots

of solution variables confirmed convergence.
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5.3.3 Flow Regime Calculation

Prior to the execution of extensive studies, it was necessary to ensure the laminar flow

models described in Section 5.2 were appropriate. The flow regime is dictated by the value

of the dimensionless Reynolds number. For internal pipe flow:

Re=
ρVD

µ
(5.29)

whereρ is the density of the fluid (kg/m3), V is the average fluid velocity (m/s),D is the

internal pipe diameter (0.001 m), andµ is the viscosity of the fluid (kg/m-s).

For the current case, the density was computed using the ideal gas law,ρ = P/RT

at a pressure of 101.3 kPa and a temperature of 300 K. Velocity was computed from the

maximum total volumetric flow rateQ (500 sccm) and the cross sectional area of the pipe

A, V = Q/A. The viscosity used was a weighted average of that of methane and hydrogen

in a 3:1 ratio at a pressure of 760 Torr and a temperature of 300 K.

The Reynolds number for such a case is 529, well below the 2100 that is typically

considered the upper limit of the laminar flow regime. This value represents an upper limit

for the Reynolds number over the range of model cases studied because the velocity was at

a maximum under these conditions. The result justifies the use of the laminar flow models

for the transport equations.

5.3.4 Mesh Convergence Study

With any numerical or computational model, it is important to investigate the relationship

between the mesh size and the solution results. The mesh size used in the current study is

best quantified by considering the maximum dimension of the elements across the substrate

surface within the diameter of the laser spot. The initial mesh was the same as that used by

Duty2 which used 20 elements across the 200µm diameter laser giving a mesh size of 10

µm. A second mesh was created by doubling the number of elements in the vicinity of the

laser spot to 40, giving a mesh size of 5µm. A comparison of these two meshes is shown

in Figure 5.9.
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Figure 5.9: Comparison of two mesh sizes used in convergence study

The models were run using the conditions in Table 5.7 for carbon deposition from

methane. The variables of interest were plotted along the substrate surface in the region

near the laser spot as shown in Figure 5.10.

Table 5.7: Conditions used in the mesh convergence study

Pressure Total Flow CH4:H2 Ratio Laser Power
(Torr) (sccm) (W)

760 500 3:1 44

The temperature and CH4 molar concentration profiles showed little difference at the

different mesh sizes; however, the carbon deposition rate profile was significantly higher

for the 5µm mesh than the 10µm mesh.

Calculations were done at the center of the laser spot for all three variables to quantify

the change in the results with the change in mesh size. Table 5.8 summarizes the findings.

Table 5.8: Change in solution values at center of laser spot for different mesh sizes

Mesh Size Temperature CH4 Concentration Deposition Rate
(µm) (K) (kmol/m3) (kg/m2-s)

10 2157 0.00346 0.000982

5 2190 0.00341 0.001392

change 1.53% -1.45% 41.8%
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Figure 5.10: Profiles of the variables of interest across the laser spot diameter for mesh
sizes of 10 and 5µm
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The temperature and methane concentration values exhibit small enough changes to

consider the solution converged with regard to the mesh size. The large discrepancy in the

deposition rate is attributable to the changes in the temperature and concentration values.

Under the simulated conditions, carbon deposition from methane is a kinetically–limited

process whose deposition rate was given by the Arrhenius expression:

J′′C = 1.2856×108 · [CH4]1.0185·e
−48004

T (4.16)

whereJ′′C is the molar deposition rate (kmol/m2-s), [CH4] is the molar concentration of

methane (kmol/m3), andT is the local temperature (K). The mass deposition rate is com-

puted by multiplying Equation 4.16 by the molecular weight of solid carbon (12 kg/kmol).

As shown in Equation 4.16, the deposition rate is exponentially dependent on temper-

ature while almost linearly dependent on concentration. This explains why only a 1.53%

change in local temperature caused a change of 41.8% in the computed deposition rate.

Further calculations revealed that in order to achieve a change in computed deposition rate

that falls below the standard 5% mesh convergence criteria at the given levels, the tempera-

ture value could only change by 5 K between the models, which for a temperature of 2157,

represents a change of less than 0.24%.

Reducing the mesh resolution further was precluded by the size of the model. The 5µm

mesh grid was over 150 MB in size and required in excess of 1.5 GB of RAM to solve. One

thousand iterations using this grid required about 18 hours of processing time. A 2.5µm

mesh was successfully created using the grid generation and adaption software Gambit, but

the computers available were not suited to execute the calculations. Given these limitations,

and recognition of the fact that the deposition rate variable is so sensitive to the temperature

values, it was deemed sufficient to use the 5µm mesh for all calculations. The model results

should be interpreted loosely with regard to the nominal values of deposition rate, but all

other values of interest including temperature, concentration, and velocity are considered

relatively accurate.
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5.3.5 Two Factor, Three Level, Carbon Deposition Study

In order to illustrate the utility of the fully integrated FLUENT model of LCVD, a series of

typical carbon LCVD conditions were simulated. The models studied two factors at three

levels: laser power and reagent nozzle flow rate. The levels are given in Table 5.9 along

with other parameter values.

Table 5.9: Simulated conditions in carbon deposition rate model

Pressure Fill Ratio Total Flow Flow Ratio Laser Power

(Torr( (PCH4:PH2) (sccm) (QCH4:QH2) (W)

760 3:1 0, 250, 500 3:1 39, 44, 49

One of the advantages of using a CFD package to study the LCVD process is that with

sufficient mesh resolution, the code allows for the study of extremely localized phenom-

ena. Ultimately it is these local conditions in the deposition zone that dictate the resulting

deposit shape. Localized phenomena are critical in LCVD due to the coupling of the ex-

treme temperature gradients that emerge from laser heating to the nonlinear relationship of

growth rate with temperature.

The results of the numerical computations provided by FLUENT yield a tremendous

amount of information regarding the details of the LCVD process. This information can

be presented in a variety of ways depending upon the intent of the analysis. Contour plots

provide an effective means of quickly verifying the overall patterns within the solution

domain. Figures 5.12 are example contour plots in the joint fluid symmetry–substrate sym-

metry plane for the case with laser power of 44 W and a flow rate of 250 sccm.

More detailed insight into the dynamics of LCVD is presented through a series ofxy

plots in specific areas of interest. Figure 5.11 illustrates the regions used for generation of

such plots. This detailed analysis can be used to examine the boundary layer and deposition

rate profiles in different directions under different conditions. Finally, the model results

can be aggregated and used as a basis to develop simple polynomial expressions that relate
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Figure 5.11: Illustration of regions used in generating surface profile and boundary layer
plots

process variables to deposit attributes. Such expressions are a useful way to predict deposit

properties for given experimental conditions.

5.3.5.1 Comparison of Different Laser Power Levels

The primary implication of a change in laser power is its obvious impact on deposition

zone temperature. It is important to understand how this change in temperature effects the

concentration of reagent species and the overall deposition rate for the reaction. For the

case of 250 sccm total reagent flow, plots of these variables are shown in Figure 5.13. As

expected, the temperature is shown to increase significantly with increasing laser power.

The molar concentration is shown to decrease with increased laser power, and the deposi-

tion rate profiles are shown to increase in both height and width with increased power. Note

that the deposition rate axis is logarithmic due to the extremely large changes in deposition

rates over the range of laser powers considered here.

In order to understand which rate–limiting regime is applicable in the simulated model,
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Figure 5.12: Examples of solution contours in the fluid symmetry plane for temperature,
velocity magnitude, and CH4 molar concentration
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Figure 5.13: Profiles of the variables of interest across the laser spot diameter in the fluid
symmetry plane for different laser powers with flow of 250 sccm
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it is important to understand the concentration profiles across the laser spot. The change

in molar concentration can be attributed to either a change in density, due to a change in

temperature, or a change in the relative concentration of CH4:H2.

It was possible to quantify the percentage of CH4 concentration change due exclusively

to the density change. The molar density of the fluid mixture at the center of the laser spot

was determined using the ideal gas lawρmin = P/RTmax with Tmax equal to the maximum

substrate surface temperature. For the case with a pressure of 760 Torr and a laser power

of 44 W, the maximum substrate surface temperature was 2248 K which resulted in a min-

imum densityρmin of 0.00542 kmol/m3. The maximum density was computed at a point

far from the laser spot at a reference temperature of 397 K. The resultingρmax value was

0.0307 kmol/m3. The ratio ofρmin/ρmax was therefore equal to 0.177. The ratio of min-

imum to maximum molar concentration of CH4 was computed using the values supplied

by FLUENT with temperature equal to 2248 and 397 K respectively. The values were

Cmin = 0.00295 andCmax= 0.0264 kmol/m3, yielding aCmin/Cmax ratio of 0.112. Thus the

density of the fluid was reduced by a factor of 1/0.177 or 5.65 while the CH4 concentration

was reduced by a factor of 8.93. The value of the CH4 concentration at 397 K due only to

the temperature change was estimated by multiplyingCmax by the density reduction factor

0.177. This results in a temperate adjusted minimum concentrationCmin,temp of 0.00466

kmol/m3. Finally, the fraction of the change in CH4 concentration attributed to the fluid

density change is computed from:

Cmax−Cmin,temp

Cmax−Cmin
= 0.927

Thus, almost 93% of the CH4 concentration change is due to the temperature change of

the fluid while the remainder of the concentration change can be attributed to a change in

relative concentration of CH4:H2 due to diffusion or kinetic effects.

Figure 5.14 is a plot of fluid density, CH4 mass fraction, and CH4 molar concentration

across the laser spot for the case with laser power of 49 W. The fact that the minimum mass

fraction of CH4 remained above 0.80 at the highest laser power indicated that under these
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conditions, this reaction is dominated by kinetic effects.

In addition to investigating the solution variables at the substrate surface across the

laser spot diameter, it is interesting to investigate the solution variables in the fluid above

the substrate. Figure 5.15 plots vertical position or height above the substrate on they axis

andx velocity, y velocity, andz velocity, on thex axis, respectively. Note that the vertical

axis extends 1 mm above the substrate. For reference, the center of the gas nozzle exit was

located at a position ofx = -7.07 mm andz = 7.07 mm, well above and left of the depicted

region.

In Figure 5.15, the velocity profiles are very similar for all power levels. This is ex-

pected given the fact that all three cases have the same flow conditions. One notable dis-

crepancy is with the 49 W case in they andzvelocity components. Very near the substrate,

there appears a sharp increase in they andz components in their respective negative direc-

tions. Thex scale on they velocity plot is an order of magnitude shorter than that of the

x andz component plots, therefore they component discrepancy is relatively insignificant

compared to that of thez component. The increase in thez velocity component in the neg-

ative direction is likely due to the reduction in fluid density accompanying the increased

temperature near the substrate surface for this high power case (assuming a fixed molar

flux).

Other variables of interest in the fluid zone above the substrate include the temperature,

overall velocity magnitude, and molar concentration. Plots of these values are given in Fig-

ure 5.16. As expected, a comparison of the thermal boundary layer profiles reveals higher

temperatures with increased laser power. At all power levels, the thermal boundary layer

thicknessδt is about 0.5 mm. The momentum boundary layer is dominated by the shape of

thex velocity component with some influence from thez component. It’s thickness,δm, is

approximately 0.6 mm. The species boundary layer shows a reduction in CH4 molar con-

centration with increased laser power due to the increased deposition rates with increased

temperature. The species boundary layerδc is approximately 0.5 mm thick.
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Figure 5.14: Profiles of different concentration measures across the laser spot diameter in
the fluid symmetry plane
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5.3.5.2 Comparison of Different Flow rates

Similar to the investigation into the effect of laser power level on deposition variables, a

study of different flow rates (0, 250, and 500 sccm) at a constant laser power of 44 W was

conducted. The plots in Figure 5.17 indicate how the temperature, CH4 molar concentra-

tion, and carbon deposition rate vary across the laser diameter on the substrate surface. The

temperature plot shows there to be a convective cooling effect with increased gas flow rate

through the nozzle. This result was also show by Duty.2 The concentration profiles indi-

cate that at the center of the laser spot, the concentration values are very similar. The slight

discrepancy is likely due to the temperature effect on concentration. As one moves away

from the center of the substrate, the differences in concentration increase somewhat due to

the shorter residence time created by increasing the flow rate. The deposition rate profiles

show that increased flow rate actually causes a decrease in deposition rate. Given the fact

that under these conditions, carbon deposition is very much kinetically–limited, and that

there is a convective cooling effect from the gas nozzle, this result is not surprising. The

exponential relationship between temperature and deposition rate causes a large change in

deposition rate for a seemingly small change in temperature.

The boundary layer plots in the fluid directly above the laser spot are given in Figure

5.18. Note again that the height extends 1 mm above the substrate. For reference, the

center of the gas nozzle exit was located at a position ofx = -7.07 mm andz = 7.07 mm,

well above and left of the depicted region.

The thermal boundary layer thicknessδt is shown to decrease from about 0.5 to 0.3

mm with the increase from 250 to 500 sccm in flow rate. As expected, the profiles of

velocity magnitude are significantly different for the different flow conditions. The species

boundary layer decreases from 0.5 to 0.3 mm with the increased flow rate. The significant

impact of the nozzle flow rate on the boundary layer thickness confirms the utility of it as a

design feature in the LCVD system. However, as discussed above, for kinetically–limited

processes such as carbon deposition from methane, it does not enhance the deposition
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Figure 5.17: Profiles across the laser spot diameter on the substrate surface for different
flow rates with a laser power of 44 W
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process.

5.3.5.3 Deposition Rate Profile Studies

Different applications of LCVD may require different deposit shape profiles, thus, an un-

derstanding of how the profile is affected by the process parameters is desirable. FLUENT

provides calculations of mass deposition rates along surfaces that participate in chemical

reactions. Contour plots as shown in Figure 5.19 of the temperature, concentration, and

deposition rates on the substrate surface illustrate the large gradients in the region near the

laser spot.

A comparison among the deposition rate profiles in different radial directions from the

center of the substrate was done to investigate whether the directional setup of the gas

nozzle caused any asymmetrical effects. The angular directions were defined as shown

in Figure 5.20. The worst case scenario was the case of laser power 49 W and flow rate

of 500 sccm. Figure 5.21 shows that the rate profile in the different angular directions is

practically identical.

Notice that the rate profiles in Figure 5.21 take on a Gaussian shape. In fact, a compar-

ison was made between the Gaussian laser beam energy flux and the surface temperature

profile and another between the computed deposition rate profile and the surface tempera-

ture profile. Figures 5.22 and 5.23 provide these comparisons.

The strong connection between the shape of the temperature curve and the shape of the

deposition rate curve is a result of the kinetically–limited nature of the carbon deposition

reaction. This process is so strongly influenced by kinetics that a comparison between the

deposit profile predicted through the sophisticated CFD model to that of a crude manual

calculation was prudent.

The manual calculation of deposition rate extends from Equation 4.16. The two un-

knowns in the equation are methane concentration[CH4] and temperatureT. In reality it is

difficult to know either of these values with a high degree of accuracy. For comparison, the
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temperatures used were the same as those predicted by the CFD model.

Due to the interaction of the transport and kinetic phenomena, it is very difficult to know

the actual methane concentration[CH4] at the substrate surface during an experiment. The

most appropriate estimate of concentration can be computed by adjusting the known global

concentration (which is dictated by experimental conditions) from its value when delivered

into the LCVD system to its value at operating conditions. It is reasonable to assume

that at the substrate surface, the reagent mixture is at the same temperature as the surface.

In the manual calculation, for each node in the CFD model, the bulk CH4 concentration

was adjusted to the local surface temperature. This approach accounts for the temperature

influence on concentration, but ignores the depletion due to other factors such as diffusion

or the surface reaction itself. For a strongly kinetically–limited process, this temperature–

adjusted concentration approach will account for the majority of the concentration change

as discussed in Section 5.3.5.1.

At each node, the deposition rate was computed using Equation 4.16 with the temper-

ature and concentration values as described above. Figure 5.24 is a comparison of the two

deposition rate profiles for the case of laser power 44 W and flow rate 250 sccm.

Given the sensitivity of the predicted deposition rate profile to the computed temper-

ature values as discussed in the mesh convergence study of Section 5.3.4, for a process

known to be strongly kinetically–limited, a simple kinetic model is perhaps sufficient to

provide a first order estimate of deposition rates.

There is some limitation to the applicability of the FLUENT model results to a typical

carbon deposition experiment. Due to transient thermal effects that have been investigated

by Bondi,64 the current steady state case implies that the laser has been heating the sub-

strate for 5 minutes or more. Therefore, the exact situation being simulated in the model

was that of pre–heating the graphite substrate with the laser for at least five minutes in an

inert gas environment, and then providing an instant change of the gaseous environment

to the reagent mixture of interest. Experimentally, this is not the normal procedure used
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Figure 5.24: Comparison of FLUENT deposition rate with simple kinetic calculation at
each node

for carbon deposition. However, a transient analysis of the current situation was deemed

impractical due to computational expense.

5.3.5.4 Relation Between Deposition Rate Profiles and Deposit Shape

The mass deposition rate profiles such as that shown in Figure 5.24 are directly linked to the

shape of an LCVD deposit. The units of mass deposition rate on a surface,J, are kg/m2-s.

If the density of the deposit materialρ (kg/m3) is assumed constant throughout the growth

process, a growth velocity,jv in m/s can be computed:

jv =
J
ρ

The growth velocity can be thought of as the rate of increase in deposit thickness in the

direction normal to the substrate surface. If the substrate surface is isothermal with equal

concentration everywhere, the growth velocity of the deposited coating will be equal ev-

erywhere and will thus remain normal to the original substrate surface. This is normally
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the situation in traditional CVD.

The temperature, velocity, and concentration gradients of LCVD complicate the growth

rate and deposit shape analysis considerably. During the initial growth period, it is assumed

that most growth occurs in a direction normal to the substrate surface. Hence, the deposition

rate profiles shown in Section 5.3.5.3 represent the deposit shape. At the center of the laser

spot, the growth velocity direction can be considered to remain normal to the underlying

substrate surface, similar to CVD. In fact, the kinetic analysis of Chapter 4 was conducted

at the center of the laser spot for this reason.

After growth begins, the properties and shape of the growth surface change from those

of the underlying substrate material to those of the deposited material. Changed proper-

ties include the reflectivity, absorptivity, density, specific heat, thermal conductivity, and

emissivity.

The change in deposit surface shape will effect the local fluid variables such as temper-

ature, velocity, and concentration through its impact on the overall flow patterns and the

boundary layer profiles. The change in deposit surface shape will also effect the deposit

surface temperature through a change in conductive, convective, and radiative heat transfer

both within the deposited material and at the surface.

The evolving deposit shape is directly related to the underlying deposit surface shape

through the fact that locally, deposition occurs in the direction normal to the underlying

surface. If the deposit growth direction remains normal to the deposition surface, after the

initial growth period represented by the profiles typified in figures such as 5.21 and 5.24,

the deposit growth direction will change considerably. A new growthratewill arise due to

changes in the surface temperature or concentration and a new growthdirectionwill arise

due to the change in the shape of the underlying deposit surface.

Figure 5.25 is a conceptual drawing of how deposit shape might evolve with time.

The bottom plot represents a normalized growth rate profile, Profile 1, computed from

the FLUENT case with a laser power of 44 W and a nozzle flow rate of 250 sccm. The
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Figure 5.25: Conceptual evolution of carbon fiber deposit shape
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horizontal position axis is normalized to 2× the laser beam spot radius. This profile was

computed for a flat substrate surface. We assume that the first phase of growth, Phase A,

acquires the shape of this initial growth rate profile.

On top of Profile 1 is a depiction of the shape the second phase of growth may yield.

This shape was derived by superimposing Profile 1 on top of itself. The procedure was to

draw vectors with their origin located on the Profile 1 curve at different radial positions

along the profile. The magnitude of each vector was determined by the height of Profile

1 at the radial position corresponding to the vector’s origin. The direction of each vector

was outward normal to the Profile 1 curve. The series of vectors was joined at their tips

to create the deposit shape after growth Phase B. Notice that the both the height and the

diameter of the growth increased significantly during Phase B.

As mentioned previously, the deposition surface properties change considerably after a

deposit emerges from the flat substrate surface. Most importantly for a kinetically–limited

process such as carbon LCVD, the temperature profiles on the deposition surface change. In

order to capture these changes in the shape evolution analysis, a new normalized deposition

rate profile shape was computed using experimentally measured temperature data from a

growing carbon fiber and the kinetic expression of Equation 4.16. Profile 2 represents the

shape of this new rate profile.

The shape analysis continues by superimposing deposition rate Profile 2 on the deposit

shape resulting from Phase B growth. Using the same procedure to get the position, magni-

tude, and direction of the vectors, the shape of Phase C growth becomes apparent. During

Phase C, the deposit diameter increased slightly, while the height increased significantly.

The procedure was repeated by again superimposing Profile 2 on the shape following Phase

C to arrive at the shape of Phase D. It becomes obvious during Phase D that the deposit has

reached a steady–state diameter while it continues to increase in height with time.

The shape predicted by the analysis in Figure 5.25 can be compared to the carbon fiber

deposit depicted in the upper left corner of the figure. The shape of the actual deposit is
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representative of that proposed by the conceptual analysis which suggests that the relation

between deposition rate profiles and deposit shape is partially explained by this analysis.

The current CFD deposition rate model does not explicitly account for the dynamics

of the growth process through the creation of new solid material; therefore, the deposition

rate profiles only serve as indicators of the deposit shape during the initial growth periods.

The overall magnitude of the growth rate at the center of the laser point does serve as a

viable reference point for comparing the model to experimental results. Some insight into

the changing thermal conditions within a growing LCVD carbon fiber is gained through

the analysis in Chapter 6.

5.3.5.5 Maximum Growth Rate Response Surface Studies

One of the most practical contributions of a fully integrated model of the LCVD process is

the ability to reduce the complex interactions and relationships among the different process

parameters to a single response surface. The surface can be represented by a multivariate

polynomial expression and provides a useful prediction tool for developing process plan-

ning algorithms.

As described in Section 5.3.5.4, the FLUENT model of carbon LCVD is most applica-

ble at the center of the laser spot. Table 5.10 lists the computed value of temperature, molar

concentration, and deposition rate at this position for each of the nine cases in the current

study.

Two response surfaces were generated using the data in Table 5.10. The first was the

deposition velocity response to the explicitly defined levels of laser power and nozzle flow

rate. Figure 5.26 shows the nine maximum deposition rate data points taken from the nine

model cases along with the response surface generated by fitting the data using a multiple

linear regression technique. The details of the regression output are provided in Table 5.11.

150



Table 5.10: Temperature, concentration, and deposition rates computed at center of laser
spot for nine model cases

Laser Power Flow Rate Temp CH4 Conc C Dep Rate C Dep Vel
(W) (sccm) (K) (kmol/m3) (kg/m2-s) (µm/s)

39 0 2066 2.39E-03 2.61E-04 0.148

39 250 1912 3.98E-03 6.72E-05 0.038

39 500 1859 3.60E-03 2.96E-05 0.017

44 0 2423 3.05E-03 1.02E-02 5.801

44 250 2248 2.95E-03 2.11E-03 1.197

44 500 2190 3.41E-03 1.39E-03 0.791

49 0 2792 1.59E-03 7.16E-02 40.707

49 250 2608 2.17E-03 2.94E-02 16.677

49 500 2546 2.85E-03 2.49E-02 14.140

The final regression equation is given by Equation 5.30.

DepositionVelocity = 571.246−29.2416∗LaserPower+0.177125∗FlowRate

+0.374327∗LaserPower2

−0.0052872∗LaserPower∗FlowRate

+0.0000687467∗FlowRate2 (5.30)

whereDepositionVelocityis in µm/s,LaserPowerin in W, andFlowRateis in sccm.

Equations that reduce the complex interactions among the process variables to simple

expressions are powerful tools for the development of process planning algorithms. They

provide a practical way to determine a priori the proper machine parameters to produce an

LCVD deposit of a certain size and shape.

The second response surface stemming from the data in Table 5.10 is shown in Figure

5.27 and was created by regressing the computed deposition velocity against the computed

temperature and molar concentration values. Because carbon deposition is kinetically–

limited, this surface can be thought of as an approximation to the Arrhenius expression over

a range of temperatures and concentrations. The surface is compared to the experimental
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Figure 5.27: Response surface for deposition velocity as a function of temperature and
molar concentration compared with experimental data points used in kinetic regression
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data used to generate the kinetic parameters (see Section 4.2) for carbon deposition in

Figure 5.27.

5.3.6 Relative Importance of Convection and Diffusion

Carbon deposition from methane is strongly kinetically–limited at the conditions studied.

Using the model, an interesting study was performed to determine if deposition could still

occur under conditions when the convective effects of the gas nozzle flow inhibited reagent

delivery to the substrate surface. The setup simulated a statically filled reaction chamber

with the typical 3:1 partial pressure ratio of methane to hydrogen by setting the CH4 mass

fraction to 0.96 on the pressure outlets along the top and sides of the fluid zone. The nozzle

flow was set to 500 sccm of H2 only. In order for deposition to occur in this scenario, the

CH4 species had to diffuse into and through the H2 convective flow region to the substrate

surface. The relative importance of diffusion to convection could thus be inferred by com-

paring the concentration profiles and deposition rate profiles of this case to the case of 0.96

CH4 mass fraction in both the static fill and the nozzle flow. The laser power was 44 W in

both cases which yielded almost identical temperature profiles.

Figures 5.28 and 5.29 show the differences in CH4 mass fraction contours near the laser

surface between the two cases. The case of flowing the 3:1 mixture shows a change in mass

fraction of about 0.04 as it goes from 0.96 to 0.92. As expected, the concentration of CH4

is significantly reduced in the case of 100% H2 flow. The change in methane mass fraction

in this case is shown to be about 0.5 going from 0.96 to about 0.46. However, sufficient

methane remains in the deposition zone to enable the surface reaction to proceed, albeit at

a slower rate.

Figure 5.30 compares the predicted deposition rate profiles for the two cases. The pure

H2 flow through the nozzle reduces the maximum deposition rate by almost a factor of

3. Therefore, the convective effect of the gas nozzle does impede the diffusion of reagent

species to the surface, but it does not prevent deposition entirely. Another conclusion that
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Figure 5.28: CH4 mass fraction contours in fluid symmetry plane for case of 75% CH4

25% H2 nozzle flow
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Figure 5.29: CH4 mass fraction contours in fluid symmetry plane for case of 100% H2

nozzle flow
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Figure 5.30: Comparison of C deposition rate profiles for case of 100% H2 vs 75%
CH4:25% H2 nozzle flow

can be drawn from the results is that the ambient gas in the chamber has some influence on

the gas composition at the laser spot even when the gas jet is used.

5.3.7 Analysis of the Significance of Thermal Diffusion

It is generally thought that thermal diffusion is an important mass transport mechanism

in LCVD due to the large temperature gradients that exist in and around the laser spot.

FLUENT uses Equation 5.10 to compute the total diffusion of speciesi in the fluid domain

due to both ordinary diffusion and thermal diffusion.

~Ji =−
N−1

∑
j=1

ρDi j ∇Yi −DT,i
∇T
T

(5.10)

The overall impact of thermal diffusion on the CH4 concentration profile along the sub-

strate over the laser spot can be seen by comparing two cases: one with thermal diffusion

calculations enabled and a second with them disabled. The results for this study with a laser

power of 44 W and a flow of 250 sccm are plotted in Figure 5.31. It can be seen that the
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overall effect of thermal diffusion was to reduce the concentration of CH4 in the deposition

zone. Figure 5.32 illustrates how the thermal diffusion factors affects the deposition rate

profiles. A 33% reduction in maximum deposition rate is observed for these cases.

The fact that thermal diffusion influences the strongly kinetically–limited process of

carbon LCVD so significantly illustrates its significance in LCVD. For processes that are

transport–limited, understanding the relationship between ordinary diffusion and thermal

diffusion could be paramount to understanding deposit shapes.

5.4 Summary

A comprehensive computational model has been developed to represent Georgia Tech’s

forced flow LCVD system. The model has been prototyped using the well–known carbon

deposition process from the CH4:H2 reagent system. A number of studies were used to

validate the model and gain insight into the detailed dynamics of the carbon LCVD process.
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Table 5.11:Carbon Fiber Multiple Regression Analysis

Regression coeffs. for Deposition Velocity
constant 571.246

A:Laser Power -29.2416

B:Flow Rate 0.177125

AA 0.374327

AB -0.0052872

BB 0.0000687467

Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio P-Value

A:Laser Power 847.781 1 847.781 38.43 0.0085

B:Flow Rate 167.566 1 167.566 7.60 0.0704

AA 175.151 1 175.151 7.94 0.0669

AB 174.716 1 174.716 7.92 0.0671

BB 36.9227 1 36.9227 1.67 0.2864

Total error 66.187 3 22.0623

Total (corr.) 1468.32 8

R-squared = 95.5 percent
R-squared (adjusted for d.f.) = 88.0 percent
Standard Error of Est. = 4.69706
Mean absolute error = 2.36598
Durbin-Watson statistic = 2.34074 (P=0.0905)
Lag 1 residual autocorrelation = -0.174742
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CHAPTER VI

THERMALLY–INDUCED CONDITIONS DURING

FIBER GROWTH

The existence of large thermal gradients within a material always brings concerns about

thermal stress and strain. During the LCVD process, the presence of large, transient temper-

ature gradients could cause damage to the underlying deposit or substrate, compromising

the mechanical integrity of the materials. In fact, some have shown that carbon structures

grown with LCVD exhibit signs of large, periodic cracks.20 Chapter 4 presented a multi–

layered carbon wall that showed evidence of internal cracks. Little work has been done to

better understand the thermal stress fields that exist within an LCVD structure during de-

position. Ultimately, these stress fields and their implications on material properties must

be better understood if LCVD is to become a viable manufacturing process.

In order to study the implications of these large temperature gradients, a structural

model of a carbon fiber was developed using the finite element code ANSYS. The modeling

was done in two phases. The first phase involved a thermal analysis of an LCVD fiber

during growth. After the thermal model was developed, the temperature field within the

fiber at two different time points (and growth heights) was obtained. The second phase of

model development used the temperature fields as loads in a structural model to examine

the thermal stresses induced by these loads.

6.1 Model Geometry and Meshing

The first step in the fiber thermal and structural modeling process was to formulate an

appropriate geometry for studying an LCVD fiber during growth. The axisymmetric nature

of the physical system was exploited to allow model development in two dimensions. A
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fiber with a radius of 0.2 mm and a height of 1.0 mm was positioned coaxially on a substrate

with a thickness of 2.54 mm and a radius of 9.525 mm. Consistent with observed carbon

fiber profiles, the fiber tip was round with a radius of 0.2 mm as shown in Figure 6.1. These

dimensions represented typical carbon fibers such as Sample 3 of experiment C-228F used

in Section 4.2. The height of 1.0 mm was chosen to represent a fiber that would have

reached a steady state growth condition.

Several factors complicated the creation of the fiber geometry. First, there was the need

to define material properties as a function of position at different locations along the fiber

radius. An explanation of this requirement is given in Section 6.2. The fiber body and the

fiber tip were modeled as 10 separate areas as shown in Figure 6.2.

A second complexity in modeling the fiber geometry related to the laser energy input

boundary condition. As with the deposition rate models described in Chapter 5, the laser

energy was modeled as volumetric heat generation within the top layer of surface elements.

A volumetric heat generation method is preferred over a specified heat flux, because a heat

flux boundary condition prohibits the calculation of convective and radiative heat transfer.

Unfortunately, the volumetric heat generation method couples the laser power generation

to the element size within the model. In order to accurately compute the volumetric heat

generation values in the region effected by the laser, the size of each mesh element must be

known. Thus, a structured mesh was created using a concentric semi–circular arc within

the fiber tip. This area can be seen in the close–up view of the fiber geometry shown in

Figure 6.3.

In order to capture the changes that occur with time (and fiber growth), two model

geometries representing two “snapshots” in time were created. The first geometry was that

illustrated in Figure 6.1 and was termed the “short fiber” case. The underlying geometry

of the second case was identical to the short fiber case, with the addition of extra material

on the fiber tip. This extra material represented new material grown between the two time

points. The second case was referred to as the “tall fiber” case. Figure 6.3 shows the fiber
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Figure 6.1: Geometry used in fiber thermal stress model

Figure 6.2: Separate areas used in fiber body and fiber tip to allow material property defi-
nitions
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Figure 6.3: Illustration of fiber tip mesh showing different materials in both short and tall
fiber cases

tip region for both the short and tall fiber cases.

The amount of material added in the tall fiber case was chosen based on the spacing

between cracks observed by Kang.20 The goal was to ensure that enough material was

added to “capture” the conditions that lead to the observed cracks. The spacing reported by

Kang varied from 100 to 150µm, therefore, 200µm of height was added to the short fiber

to create the tall fiber.

In order to directly compare the model results at the two time points, it was necessary to

maintain node numbering consistency between the short and tall models. This was achieved

by initially creating the tall fiber geometry in all models and then subtracting the additional

material region on the fiber tip to get the short fiber geometry.

Once the underlying geometry was created, the areas were meshed. The thermal model

used PLANE77 elements. PLANE77 is an 8–node thermal element that has one degree of

freedom, temperature, at each node. The 8–node elements have compatible temperature
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shapes and are well suited to modeling curved boundaries. The emphasis on curved bound-

aries was important, because the primary area of interest in the thermal model was the fiber

tip. PLANE77 also supports the axisymmetric geometry used in the model.

The structural model used PLANE82 elements which are the structural counterpart to

the PLANE77 thermal elements. Again, the 8–node elements facilitated model accuracy

near curved boundaries. PLANE82 is an 8–node element that has two displacement degrees

of freedom at each node.

Because of the steep temperature gradients known to exist within an LCVD fiber, a

meshing scheme was devised that provided a fine mesh within the fiber and transitioned to

a coarser mesh as it moved into the substrate. The average element size within the fiber tip

and the fiber body was 7µm which gave an average node spacing of 3.5µm. The element

size and node spacing at the outer edges of the substrate furthest from the fiber were about

200 and 100µm, respectively.

In order to ensure mesh independence of the solution, a mesh convergence study was

performed. Due to an ANSYS software limitation of the maximum number of nodes, the

mesh resolution could not be increased significantly from the initial design. However, sev-

eral different mesh sizes were created that were larger than the 7µm case and the results at

each size were compared. Table 6.1 lists two different cases that were run along with the

results. The results were computed by taking the average of all nodal temperature values in

the top 90µm of the fiber measured vertically. For the given conditions, a change in com-

puted temperature of 2.95% occurred between the mesh sizes which is below the typical 5%

criteria used to indicate satisfactory mesh independence. Due to the large temperature gra-

dients (and presumed stress gradients) within the model and because little computational

expense was incurred in doing so, the highest resolution mesh possible was used.
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Table 6.1: Thermal model mesh convergence cases

Min Element Dim Avg Temp Change from low resolution
(µm) (◦C)

14 888.3

7 914.5 2.95%

6.2 Material Properties

The material properties needed for the LCVD fiber thermal analysis included the densityρ,

specific heat capacityCp, thermal conductivityk, emissivityε, and reflectivityρ10.59 of the

fiber and substrate materials. Of these,Cp andk were defined as a function of temperature.

The substrate material was the same ATJ graphite used in the deposition rate models

in Section 5.3.1.3 of Chapter 5. The material properties for ATJ graphite were provided

there and are not repeated here. As discussed in Section 4.7, the crystal structure of LCVD

carbon fibers closely resembles the hexagonal structure in graphite. Material properties of

pyrolytic graphite made using traditional CVD can be extremely anisotropic relative to the

orientation of the hexagonal microstructure. For example, the thermal conductivity in the

〈001〉 direction is over 100 times that in the〈100〉 or 〈010〉 directions.

The density of pyrolytic graphite is assumed to be 1.76 g/cm3. The specific heat ca-

pacity was specified as a function of temperature by defining a lookup table in the ANSYS

code. The heat capacity of all forms of graphite including ATJ and pyrolytic, is approxi-

mately the same; therefore, the values used were the same as those used in the deposition

rate model. A plot of theCp of graphite was shown in Figure 5.7. The average spectral

emissivity of all forms of graphite was taken to be 0.9.

It has been observed that pyrolytic graphite has a strong tendency to deposit with its

hexagonal planes parallel to the deposition surface (i.e., normal to the (001) plane). The

same has been reported for LCVD carbon fibers.20 Therefore, for an LCVD structure such

as a fiber, the orientation of the (001) plane changes as one moves from the fiber center ra-

dially outward. The two SEM micrographs in 6.4 show the orientation of graphite platelets
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in carbon LCVD fibers.20 It is believed that the graphite basal planes are coincident with

the major dimensions of these platelets. Figure 6.5a is a schematic of this situation.

With this change in crystallographic orientation comes a change in material properties.

In order to accommodate these varying material properties, the carbon fiber was divided

into ten separate regions as was shown in Figure 6.3. Each region was defined as a separate

anisotropic material. An anisotropic material was defined by specifying property values

for thex, y, andz directions. Thex, y, andz directions were defined relative to the global

cartesian coordinate system used in creating the geometry. The assumption was made that

all carbon growth occurred normal to the semi–circular fiber tip. Thus, property values

specified for thex direction at the center of the fiber needed to be the same values specified

for they direction at the edge of the fiber. Likewise, the specifiedy direction properties at

the fiber center needed to be thex direction properties on the edge. A function was written

to transform the anisotropic material properties into the appropriatex andy components as

the fiber radius increased. Equations 6.1 and 6.2 give this transformation:

Sx,i =
√(

S‖sinθi
)2 +(S⊥cosθi)

2 (6.1)

Sy,i =
√(

S‖cosθi
)2 +(S⊥sinθi)

2 (6.2)

whereSx,i and Sy,i represent generic anisotropic material properties of materiali in the

global cartesian coordinate system of the model.S‖ andS⊥ are the graphite material prop-

erties in the directions parallel and perpendicular to the basal planes, respectively.θi is the

angle shown in Figure 6.5b and was computed from:

θi = arccos

(
xc,i

Rf

)
(6.3)

wherexc,i is the radial distance to the center of materiali andRf is the radius of the fiber

tip.

For the thermal model, the conductivity of graphite was transformed using Equations

6.1 and 6.2. For reference, values ofk‖ andk⊥ at different temperatures are given in Table

6.2.102
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Figure 6.4: SEM micrographs of graphite platelet orientation in LCVD carbon fibers20
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Figure 6.5: Orientation of pyrolytic graphite basal planes and resulting material properties
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Table 6.2: Thermal conductivity of pyrolytic graphite

Temperature k‖ k⊥
(K) (W/m-K) (W/m-K)

300 2000 9.5

350 1690 8

400 1460 7

500 1130 5.4

600 930 4.4

700 790 3.8

800 680 3.2

900 600 2.8

1000 530 2.5

1100 480 2.3

1200 440 2.1

1300 400 1.9

1400 370 1.7

1500 340 1.6

1600 320 1.5

1700 300 1.4

1800 280 1.3

1900 260 1.25

2000 250 1.2
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Another complexity with LCVD carbon material properties related to the definition

of the coefficient of thermal expansion (CTE). Much like thermal conductivity, the CTE

of pyrolytic graphite is extremely anisotropic relative to the direction of the (001) plane.

Thus, Equations 6.1 and 6.2 were used to transform the CTE for the different materials in

the carbon fiber. Values ofα‖ andα⊥ are given in Table 6.3 for different temperatures.103

Table 6.3: Coefficient of thermal expansion of pyrolytic graphite

Temperature α‖ α⊥
(K) (×10−6K−1) (×10−6K−1)

293 -0.60 23.1

400 -0.30 23.8

600 0.30 24.9

800 0.80 25.9

1000 1.40 26.8

1200 1.90 27.6

1400 2.30 28.3

1600 2.70 28.9

1800 3.10 29.4

2000 3.40 29.8

2200 3.70 30.0

2400 4.00 30.2

2600 4.20 30.3

2800 4.40 30.3

3000 4.60 30.3

3200 4.70 30.3

3300 4.70 30.4

In addition to defining the CTE as a function of temperature and position, a reference

temperature must be specified at which the thermal strain in the material is zero. Gener-

ally, in a deposition process, the deposited material can be assumed to be stress–free at the

temperature of deposition. This is especially true for high temperature processes, because

the mobility of the atoms is enhanced. Higher atom mobility supports establishment of a
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crystal structure with equilibrium lattice spacing. It has been shown in CVD that this equi-

librium lattice spacing decreases significantly with increasing deposition temperature.95 In

LCVD, the large temperature gradients within the diameter of the laser spot mean that the

strain–free temperature for deposited material is different at different positions within the

deposition zone. Specifically, because of the shape of the temperature profile, the strain–

free temperature is a function of the radial distance from the center of the laser spot.

ANSYS did not allow the specification of multiple strain–free temperatures within a

material. Therefore, the use of the ten different materials within the fiber enabled an ap-

proximation of the physical situation by allowing the specification of a different strain–free

temperature in each material. For each material, the strain–free temperature was computed

by averaging the short fiber thermal model result temperatures along the fiber tip surface

nodes. An implied assumption of this approach was that all of the underlying carbon fiber

material at a given radial distance would have the same strain–free temperature as the fiber

tip. This assumption is very reasonable and is likely related to the existence of the observed

cracks within LCVD deposits.

Other material properties needed for the structural model included Young’s modulus

and Poisson’s ratio. Very little data are available for LCVD carbon regarding these values.

Data is available in the literature for pyrolytic graphite made by CVD. The Young’s modu-

lus is given to be 28 – 31 GPa,104 and values of Poisson’s ratio are reported between 0.09

and 0.3.105 Values used in the current study were 30 GPa for Young’s modulus, and 0.14

for Poisson’s ratio.

6.3 Thermal Model
6.3.1 Boundary Conditions

The governing equation for the thermal model was the general form of the heat conduction

equation given in Chapter 5:

∂

∂ t
(ρh)+∇ · (~vρh) = ∇ · (k∇T)+Sh (5.3)
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wheret is time,ρ is density,h is specific enthalpy,~v is the velocity vector of the solid if

moving,k is thermal conductivity,T is temperature, andSh is volumetric heat generation

rate.

The fiber model was evaluated at two discrete time points. At each point, the system

was assumed to be in steady state, thus, the time dependent term on the left side of Equation

5.3 did not apply. The model geometry was stationary which eliminated the second term

on the left. The remaining terms were the conductivity term, represented by the first term

on the right, and the volumetric heat generation represented bySh.

The laser energy was simulated in the fiber thermal model using a similar technique as

was used in the deposition rate model. A volumetric heat generation was specified in the

first layer of cells within the radius of the laser beam. The equation used to compute the

necessary heat generation value within each element was:

P(r) =
2P0(1−ρ10.59)

πR2
0d

e
−2r2

R2
0 (5.4)

whereP0 is the nominal laser power,ρ10.59 is the reflectivity of the carbon fiber at the laser

wavelength of 10.59µm, R0 is the radius of the laser beam,d is the thickness of the mesh

element, andr is the radial distance from the center of the laser spot.

The method for entering this volumetric heat generation into the ANSYS code was

to define a look-up table that listed pre–computed values of volumetric heat generation

(W/m3) as a function of radial position (m). For each case of interest, this tabular data was

computed using a MATLAB script. The volumetric heat generation function was applied

to the line that defined the top edge of the fiber as indicated by Figure 6.6. Each node along

this line was assigned a value from the laser power lookup table depending on itsx position.

The procedure used by the solver to apply nodal values of volumetric heat generation along

a line required that an adjustment be made to the values computed from Equation 5.4. The

adjustment was to multiply all values by a factor of 2. A post–processing check of the

total energy input to the model under specified conditions confirmed the viability of this

approach. Figure 6.6 illustrates the nature of the heat generation function on the fiber tip.
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Figure 6.6: Heat generation function along fiber tip

The boundary condition used in conjunction with Equation 5.3 for the thermal model

was convective heat transfer from each of the boundary surfaces. With the exception of

one case, radiation was not considered. The model did not involve fluid motion; therefore,

only natural convection along the boundary surfaces was pertinent. With the exception of

the bottom of the substrate, these boundary conditions accurately represent the physical

situation. The convective heat transfer boundary condition is given by Newton’s law of

cooling:17

q′′ = h(Ts−T∞) (6.4)

whereq′′ is the local heat flux,h is the local convection coefficient,Ts is the temperature

of the boundary surface, andT∞ is the free stream temperature of the fluid. The total

heat transfer rate through the surface is obtained by integrating 6.4 over the entire surface.

Assuming isothermal conditions, the equation for total heat transfer rate can be written:

q = h̄As(Ts−T∞) (6.5)
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whereh is an average convection coefficient over the surface, andAs is the area of the

surface.T∞ was specified to be 300 K in the current model.

Values ofh̄ for the boundary surfaces were computed using empirical correlations for

external free convection flow. For the vertical edge of the substrate and the fiber, the specific

equation used for the Nusselt number was:17

NuL = 0.68+
0.670Ra1/4

L

[1+(0.492/Pr)9/16]4/9

whereNuL is the average Nusselt number,RaL is the Rayleigh number, andPr is the Prandtl

number. The average convection coefficient,h̄edgewas related to the Nusselt number by:

NuL =
h̄edgeL

k

whereL was the length of the edge andk was the conductivity of the fluid.

Similarly, for the horizontal top surface of the substrate and the rounded surface of the

fiber tip, a horizontal flat plate empirical correlation was used:17

NuL = 0.54Ra1/4
L

where the average Nusselt number was related to the average convection coefficient:

NuL =
h̄topL

k

For simplicity, calculations of̄hedge and h̄top were made using the properties of air

evaluated at the average temperatureT. These calculations were repeated for a number of

differentTs values and stored in tabular form. The ANSYS solver used the lookup tables

of averageh values when computing the convective heat transfer from the model boundary

surfaces.

The bottom of the substrate normally rests on the substrate holder. In Georgia Tech’s

LCVD system, this substrate holder is a large piece of graphite 75 mm in diameter and

25 mm thick. For simplicity, the substrate holder was not modeled here. It was possi-

ble to simulate heat transfer from the bottom of the substrate by specifying a convection
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boundary condition. The value ofhb was chosen such that a bottom surface temperature of

approximately 500 K was maintained. The value of 500 K was determined experimentally

by placing a thermocouple between the graphite disk substrate and the substrate holder and

heating the substrate with the laser to a steady state temperature. Figure 6.7 indicates which

calculation and corresponding lookup table were used on each boundary.
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Figure 6.7: Convective boundary conditions on surfaces

Due to computational time and complexity, the nonlinear radiation calculations were

only considered in one model case. The radiation boundary condition was implemented

using the radiosity solver in the ANSYS code. The solver was configured to compute

radiation between the boundary surfaces and free space using the equation:

q′′r = εσ(T4
s −T4

re f) (5.5)

whereq′′r is heat flux,ε is average hemispherical emissivity over the entire spectral range,

σ is the Stefan–Boltzmann constant (5.670×10−8 W/m2-K4), Ts is the radiating surface

temperature, andTre f is the temperature of the remote surface being irradiated.Tre f was
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set at 300 K for all models in order to simulate the inner surface of the cold wall reaction

chamber.

6.3.2 Solution Procedure and Results

The ANSYS model was implemented using the software’s internal scripting language,

APDL. A single text file accomplished geometry creation, meshing, material property def-

inition, load application, boundary condition specification, and execution of the calcula-

tions. For the most part, the code was parametric and it enabled the solution of either the

short fiber or the tall fiber case simply by changing an indicator variable near the beginning

of the code. The APDL code for the thermal model is listed in Appendix B.4 for reference.

The thermal model was run using a range of conditions similar to those that experi-

mentally produced a fiber of similar size and shape. For example, Sample 3 of Experiment

L-228 used in the kinetic analysis of Section 4.2 was produced under a power of about 20

W with a presumed laser spot size of about 200µm diameter. An initial model was run

using a laser power of 20 W with a reflectivity of zero and a convective heat transfer coef-

ficient along the bottom of the substrate,hb of 125 W/m2-K. The fiber thermal properties

varied with radial position as described above. Figure 6.8 is a contour plot of the resulting

temperatures.

Overall, the results are reasonable with a maximum temperature at the fiber tip and

a steep negative temperature gradient in both the radial and axial direction moving down

the fiber. The substrate temperature is similar everywhere with a high temperature region

directly under the fiber.

Because this model was designed to simulate the conditions within a growing carbon

fiber, the power level and theh value along the substrate bottom were adjusted until the

maximum temperature at the fiber tip and the temperature along the substrate bottom were

approximately equal to experimentally observed values. The target range forTmax was

2300 – 2400 K and the target substrate bottom temperature,Tmin, was 450 – 525 K. The case
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Figure 6.8: Temperature contours for short fiber case

depicted in Figure 6.8 shows the fiber tip temperature to be too low and the substrate bottom

temperature to be too high. Thus, the laser power was increased, and the convective transfer

coefficient was increased until values were obtained that yielded the desired temperatures.

A laser power of 21 W with zero reflectivity and anhb along the substrate bottom of 135

W/m2-K yielded aTmax andTmin within the acceptable ranges. A laser power of 21 W is

slightly higher than the values used experimentally to achieve a similar temperature at the

fiber tip. It has been observed that carbon LCVD fibers have a shiny metallic appearance

which would seem to indicate high reflectivity. However, the shiny metallic appearance is

observed in the visible spectrum, whereas the CO2 laser operates at a wavelength of 10.59

µm. No reflectivity measurements at this wavelength for pyrolytic LCVD carbon were

available. Overall, the model parameters that yielded experimentally similar temperature

profiles were in good agreement with the levels of experimental parameters at these two

discrete points.

It was possible to experimentally measure temperature profiles on a fiber surface during
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deposition using the thermal imaging camera. The orientation of the thermal imager and

the spherical shape of typical LCVD carbon fibers as described and exploited in Section

3.4.1 for measuring fiber growth rates introduced a complexity when trying to measure a

simple radial temperature profile. Figure 6.9 illustrates the relationship among the thermal

imaging camera’s 2–D plane of view, the fiber tip, and thex spatial coordinate of the actual

radial distance from the fiber center.

Fiber
Deposit

im
ager a

xis
imager
plane of
view

axis of interest

imaging
surface

x

y

Figure 6.9: Relationship between thermal imager and fiber tip dimensions

In order to convert the pixel position in the image to spatial coordinates, a transforma-

tion function was developed. This transformation function accounted for both the 45◦ angle

of the imager and the fiber tip curvature. The function was implemented using a MATLAB

script that is listed in Appendix B.5.

Figure 6.10 is a comparison of the temperature profile computed by ANSYS to a mea-

sured fiber tip temperature profile. Notice that the absolute maximum temperature of both

cases was very similar. As described above, the model parameters were intentionally ad-

justed until this condition was satisfied. The shape of the temperature profiles is quite

different.

The orientation of the anisotropic material properties of the carbon fiber could have

a big impact on the predicted temperature profile shapes. In order to study this impact,

several material property setups were analyzed in addition to the radially varying property
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Figure 6.10: Comparison of predicted fiber tip temperature profile to experimental data

case described previously. Three cases of pyrolytic carbon properties were applied to the

fiber. First, all ten materials within the fiber body were oriented with their [001] direction

in the globalx direction. Next, all ten materials were oriented with their [001] direction

oriented toθ = 45◦. Finally, a case was studied with the carbon basal planes assumed to lie

in parallel to the globalx direction (θ = 90◦). In addition to these variations of pyrolytic

graphite, a case was run using ATJ graphite properties for the carbon fiber as well as the

graphite substrate.

The model settings along with the minimum and maximum temperature from each case

are summarized in Table 6.4. The shapes of the radial and axial temperature profiles were

compared. Figures 6.11 and 6.12 illustrate the different radial and axial temperature profiles

for the cases listed in Table 6.4. Figure 6.11 also includes the experimental data curve for

comparison. All of the temperature profiles were normalized by dividing the temperatures

by the maximum temperature for each respective case.

A study was conducted to determine the sensitivity of the resulting temperature profiles
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Figure 6.11: Radial temperature profiles on fiber tip surface
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Figure 6.12: Axial temperature profiles along fiber center
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Table 6.4: Absolute temperature values for different material properties

Graphite Type [001] Direction Tmin Tmax

θ (K) (K)

pyrolytic 0◦ 526 1540

pyrolytic 45◦ 525 2280

pyrolytic 90◦ 516 15900

pyrolytic variable 526 2330

ATJ isotropic 523 5740

to laser power input,P0, and the heat transfer coefficient on the substrate bottom,hb. It was

expected that changing both of these parameters would effect the absolute temperatures

in the model, because they inherently affect the amount of thermal energy in the system.

Figure 6.13 shows the radial temperature profiles along the fiber tip for three differentP0

levels while holdinghb constant at 135 W/m2-s, while Figure 6.14 shows profiles for three

different levels ofhb with P0 held constant at 21 W.

It was important to determine if changing either of these parameters significantly changed

the shape of the temperature profiles along the fiber tip. Ideally, the change in parameters

would shift the absolute temperature curve up or down, depending on the nature of the

change, but would minimally impact the shape of the temperature profile. Figures 6.13 and

6.14 show that this is indeed the case.

An additional explanation of the observed disagreement between the computed and

the measured fiber tip temperature profiles could be related to radiative heat transfer from

the surfaces of the fiber and substrate. One model was run that considered radiation. The

model parameters were a laser power of 21 W and anhb value of 135 W/m2-s. The absolute

fiber tip radial temperature profiles for the case with and without radiation are compared in

Figures 6.15 and 6.16.

As expected, the inclusion of radiation calculations led to an overall decrease of tem-

peratures through the model domain. For the given conditions, the peak temperature was

shown to decrease by almost 200 K from 2330 to 2142 K. The substrate bottom temperature
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Figure 6.13: Fiber temperature profiles for different laser power levels
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Figure 6.15: Effect of radiation on absolute temperature values on fiber tip surface
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fell by about 50 K from 526 K to 471 K. More importantly, the shape of the temperature

profile did not change significantly as shown by the normalized temperature plots in Fig-

ure 6.16. Thus, neglecting radiation in the model shifts the relationship between incident

laser power and absolute temperature values, but it does not explain the temperature profile

shape differences seen in the comparison of the model results to the experimental data.

Neither the convective nor the radiation boundary conditions significantly impacted the

shapes of the temperature profiles. The profiles appeared to be dominated by the conduc-

tivity and conduction pathways. Two observed anomalies of LCVD carbon fibers could

contribute to the disagreement between the measured and computed temperature profiles.

The motivation for a thermal stress analysis of an LCVD carbon fiber was the finding

that these structures have persistent internal cracking. The cracks tend to be oriented paral-

lel to the fiber tip surface and occur periodically throughout the fiber height. It is believed

these cracks form during the growth process as the thermal stress accumulates to the point

of fracturing the graphite deposit. It is presumed that the samples used to capture the ther-

mal images during fiber growth already contained a significant amount of thermal cracking.

Therefore, the observed temperature profiles could have been distorted by the presence of

cracks. If cracks were present, the nature of distortion in the profile is consistent with phys-

ical reasoning. Their presence would severely limit conduction through the center of the

fiber body forcing the heat flow around the cracks and near the fiber surface. This would

undoubtably increase the observed fiber surface temperatures.

A second area that could affect heat conduction through the carbon fiber and into the

substrate was the interface between the fiber and the substrate. It has been shown that the

fiber diameter at the substrate interface is often much less than the observed bulk fiber di-

ameter. See Section 5.3.5.4 for a discussion of LCVD carbon fiber shapes. The body of the

fiber was modeled as a perfect cylinder which would provide a better conduction path from

the fiber into the substrate than the tapered shape observed experimentally. This “necking

down” at the interface would cause the fiber to be hotter throughout and would reduce the
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temperature gradient on the fiber surface because of the orientation of the graphite [001]

direction in this region. Also, depending on the nature of the bond between the fiber and

the substrate, there could be significant thermal contact resistance at the interface. This

contact resistance would increase the temperature of the fiber for a given laser power, and

could impact the shape of the temperature profiles. No such resistance was considered in

the model.

The tall fiber case was also analyzed using the thermal model. Using the same con-

ditions (power of 21 W, reflectivity of 0, andhb of 135), the peak temperature value was

higher than the short fiber case. This result is expected due to the increased resistance to

thermal conduction that accompanies the increased fiber length. Experimentally, as a fiber

grows, laser power is slowly decreased in order to maintain a constant fiber tip temperature.

The model values of laser power andhb were adjusted until the peak temperature and sub-

strate bottom temperature values were similar to those of the short fiber case. This scenario

simulated growth under constant temperature conditions.

The model parameters that yielded a tall fiber case with similar temperature values

as the short fiber case were laser power of 21.9 W andhb of 134 W/m2-s. Figure 6.17

compares the temperature contours within the short fiber tip for the two cases. Notice the

change in temperature values near the original short fiber tip within the body of the tall fiber.

These changes are further highlighted in the comparison of the radial and axial temperature

profiles of Figures 6.18 and 6.19.

The nodal temperature data from both the short fiber and the tall fiber thermal models

depicted in Figure 6.17 was exported for use later as the loads in the structural model.
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Figure 6.18: Comparison of radial temperature profiles along original short fiber tip sur-
face between short and tall fiber case

1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

1.2

x 10
−3

Temperature (K)

V
er

tic
al

 P
os

iti
on

 (
m

)

short
tall 

Short fiber tip region 

Figure 6.19: Comparison of axial temperature profiles along original short fiber tip surface
between short and tall fiber case

185



6.4 Structural Model

The structural model consisted strictly of the short fiber geometry. The goal was to see

how the change in temperatures between the discrete time points captured by the short and

tall thermal models would impact the stress within the original short fiber structure. The

thermal models used to generate the temperature data were those with the radially varying

orientation of pyrolytic graphite. The CTEs used in the structural model were implemented

using the same radially varying property transformations.

6.4.1 Boundary Conditions

The governing equation for the stress–strain relationship throughout the model domain was:

~ε = ~εth +D−1~σ (6.6)

where~ε is the total strain vector,~εth is the thermal strain vector,D−1 is the compliance

matrix, and~σ is the stress vector. The thermal strain vector,~εth, is defined as:

~εth = ∆T[αx αy αz 0 0 0]T (6.7)

where∆T is the change in temperature from the strain–free reference temperature, and the

α ’s are the CTE’s in thex, y, andz directions.

Zero displacement boundary conditions were imposed to properly constrain the system.

These conditions were applied along all substrate boundaries and the base of the fiber. The

x displacement was also set to zero along the fiber axis of symmetry. Other boundaries of

the fiber were allowed to deform.

The only imposed loads in the stress model were the temperatures computed in the ther-

mal models of Section 6.3 above. Two load steps were used to represent the two different

time points. The first load step was the application of the temperatures from the short fiber

thermal model. The zero strain reference temperatures for the CTE were determined by

averaging the surface node temperature values within each material along the short fiber tip
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surface. The second load step was the application of the subset of temperatures from the

tall fiber model that applied to the original short fiber geometry.

6.4.2 Solution Procedure and Results

Again, APDL code was used to formulate the structural model in the ANSYS environment.

A listing of the code can be found in Appendix B.6. The solver provided access to solution

data from both time points.

Figure 6.20 is a contour plot of they component of the stress,σy, which is the compo-

nent in the direction normal to the observed crack directions as seen in Figure 6.21. The

deformed boundaries of the fibers are an exaggerated depiction of the nodal displacement

within the structure.

The discrete nature of the contours relative to the different materials is a direct result

of the need to specify a single zero strain reference value for the entire material. The

high stresses at the interface of the fiber to the substrate are a reflection of the imposed

zero displacement boundary conditions, and the different CTEs of the fiber material and

substrate materials interacting in this region.

Of particular interest are the stress contours within the body of the fiber. The nature of

the contours is consistent with the observed cracks in LCVD carbon fibers. There is a large

tensile stress along the axis of the fiber with a maximum value occurring near the bottom.

The overall deformation of the fiber structure is consistent with the observed round crack

profiles. This complex shape is a result of the complex material properties and temperature

fields within the structure.

A closer analysis of the region within the fiber body seen to have the largest stress is

shown in Figure 6.22 as contours of the maximum tensile principal stress,σ1, in the center

area of the fiber body. The location of this local maximum stress is about 100µm above

the substrate surface. This value correlates well to the 100 – 150µm spacing between

carbon LCVD fiber cracks observed by Kang.20 Using the maximum normal stress fracture

187



1

-.366E+09
-.201E+09

-.359E+08
.129E+09

.294E+09
.460E+09

.625E+09
.790E+09

.955E+09
.112E+10

PLOT NO.   1
NODAL SOLUTION

STEP=1
SUB =1
TIME=1
SY       (AVG)
RSYS=0
DMX =.992E-05
SMN =-.366E+09
SMX =.112E+10

SHAPE DISTORTION
EXAGGERATED

FOR ILLUSTRATION

Figure 6.20: y component of stress (Pa) in fiber at time point 1

Figure 6.21: Typical cracks seen in LCVD carbon fibers
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criterion, these values can be compared to the fracture strength of graphite.

Very limited data on the strength of LCVD carbon is available in the literature. Wallen-

berger reported a tensile strength of 3.0 GPa for a very small diameter carbon fiber grown

in a high pressure LCVD reaction chamber from methane reagents.88 This value is signifi-

cantly higher than that of typical graphite whose tensile strength is reported to vary between

1.4 and 110 MPa.105 Pyrolytic graphite has been reported to have a flexural strength of 80

– 170 MPa in thec direction and a tensile strength of 110 MPa in theabdirections.104

The values ofσ1 shown in Figure 6.22 greatly exceed even the highest of the reported

strength values for pyrolytic graphite (170 MPa). This confirmed that cracks would likely

have developed in the carbon fiber long before the fiber height reached that of the modeled

geometry. The result is consistent with the periodic cracks shown in many LCVD car-

bon fibers. As the fiber grows, thermal stresses accumulate until they exceed the fracture

strength of the material. Upon reaching this critical point, a crack initiates and propagates
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in the direction perpendicular to the induced thermal stresses. The thermal stresses de-

crease with increasing radial position, and the cracks ultimately terminate before reaching

the surface. The fact that cracks are widest at their center and narrow as they approach the

surface further suggests a decrease in thermal stress with increasing radial position.

A comparison between the two time points provided information as to the change in

thermal stress values with a given change in time and fiber height. The tall fiber thermal

model added 0.2 mm of height to the original 1.0 mm fiber. The spacing between the cracks

within LCVD fibers is reported to be between 100 and 150µm; thus, the addition of 200

µm should provide adequate time for at least one crack to develop. A typical growth rate

for carbon fibers is near 5µm/s. Therefore, the addition of this material represented a time

increment of about 40 s.

The comparison of the stress state at the two time points was done by observing the

the contour levels of the principal stresses near the fiber tip as shown in Figures 6.23 and

6.24. The interface between the 4th and 5th contour level at time 1 was 609 MPa while

the same transition showed a stress of 650 MPa for time 2. Overall, this represents a stress

change of about 40 MPa. In both cases, this transition occurred approximately 80 – 100

µm below the fiber tip. While 40 MPa is well below some of the reported strength values

of graphite, it is within the 1.4 – 110 MPa range highlighted earlier. Without reliable

data on the material properties of LCVD carbon or fracture strength of the same, these

quantitative results should be interpreted loosely. Nonetheless, the combined thermal and

structural models of LCVD carbon fibers have shown that the combination of complex

material properties combined with steep temperature gradients leads to internal stresses

well above the reported strength of graphite materials. These results support experimental

results and further elucidate the need for a deeper investigation into the material properties

of LCVD materials.
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CHAPTER VII

BORON NITRIDE EXPERIMENTS

The deposition of boron nitride (BN) in Georgia Tech’s LCVD system is an important

prerequisite to producing a dispenser cathode assembly. Duty’s prior work in this area

served as a starting point for the current study.2,44 He successfully deposited boron nitride

using a mixture of borazine and nitrogen as a precursor. Substrates used included graphite,

aluminum oxide, and tungsten. Duty’s work proved the feasibility of depositing boron

nitride in the LCVD system, but as shown in Figure 7.1, the shape and morphology of the

deposits was significantly different from that required by the cathode application.

Figure 7.1: Example of Duty’s boron nitride deposit on tungsten substrate2

The ultimate goal of the boron nitride experiments done herein was to produce smooth,

uniform lines of boron nitride on a tungsten substrate. The experimental development path

presented in Section 1.4.1 was used to guide the process.
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7.1 Experimental Setup for BN Deposition

The overall reaction for the deposition of BN from borazine was given in Equation 2.2:

B3N3H6(g)+xs N2(g)→ 3BN(s)+3H2(g)+xs N2(g) (2.2)

The experimental setup involved configuring the LCVD system for reagent delivery and

acquiring and preparing the substrates.

7.1.1 Borazine Setup and Delivery

The borazine reagent requires some special handling considerations. Borazine is best pre-

served by keeping it at or below 0◦C. When not being used, the borazine was stored in a

freezer at approximately -30◦C. At these temperatures, borazine is a liquid. When using a

liquid reagent for CVD or LCVD, a vaporizer can be used to vaporize the liquid prior to

delivering it to the reaction vessel. The reagent supply setup used to deposit boron nitride

from borazine is illustrated in Figure 7.2.

Nitrogen gas was delivered to the borazine vaporizer through a mass flow controller,

MFC 5. The flow exiting the vaporizer consisted of both borazine and nitrogen gas. The

amount of each was estimated using the partial pressure ratio between the gases. The

partial pressure of borazine,Pbor, was given by the vapor pressure which has been reported

by various authors in the literature as shown in Table 7.1. Due to its flexibility, the equation

Table 7.1: Vapor pressure values of borazine reported in literature

Vapor Pressure Temperature
Author (Torr) (K)

Adams33 logP = 7.714−1609/T variable

Paisley42 67.5 293◦C

Kane37 76 273◦C

Gates45 80 273◦C

Boron Technologies106 84.8, 170 273, 290◦C
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Figure 7.2: Piping configuration used to deliver borazine to deposition zone

given by Adams was used here:

logPbor = 7.714− 1609
T

(7.1)

wherePbor is the vapor pressure (Torr) andT is the temperature of the borazine liquid (K).

The partial pressure of the nitrogen carrier (Torr),Pcar, was given by equation 7.2.

Pcar = Ptot−Pbor (7.2)

wherePtot is the total pressure in the vaporizer which was assumed to be equal to the

pressure in the deposition chamber. The flow rate of borazine exiting the vaporizer (sccm)

was given by equation 7.3.

Qbor = Qcar
Pbor

Pcar
(7.3)

whereQcar was the flow rate of nitrogen (sccm) into the vaporizer through MFC 5.

After the vaporizer, additional nitrogen could be added through MFC 6 to the B3N3H6

:N2 mixture flow exiting the vaporizer. This additional flow stream was termed the diluent.
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Ultimately, the reagent stream entered the upper deposition chamber through the gas nozzle

or the side port.

The concentration of borazine delivered through the nozzle was computed from the

reagent flow rate and chamber pressure assuming that all gas species behave as ideal gases.

First, the mole fraction of B3N3H6 reagent was computed using equation 7.4:

Xbor =
Qbor

Qbor +Qcar +Qdil
(7.4)

The molar concentration was then computed from equation 7.5:

Cbor = Xbor
Ptot

RT
(7.5)

whereCbor is the concentration of borazine (mol/m3), Ptot is the total pressure in the de-

position chamber or vaporizer (Torr),R is the universal gas constant (0.062363891 (Torr-

m3/mol-K)), andT is the local temperature of borazine (K).

7.1.2 Substrate Preparation

Tungsten was used as the primary substrate material for the boron nitride experiments be-

cause of its role in the dispenser cathode application. The substrates were typically 0.254

mm thick tungsten sheets. Two sizes were used: 25.4 x 25.4 x 0.254 mm and 25.4 x 12.7

x 0.254 mm. The substrates were prepared by sanding them with 400 grit sandpaper and

the dust was removed with compressed air to provide a clean uniform surface for deposi-

tion. When not in use, the substrates were stored in an oven at 70◦C to minimize moisture

content.

A limited number of more specialized tungsten substrates were also available for use in

BN deposition. These substrates were 6.35 mm diameter by 6.35 mm tall 80% dense porous

tungsten cylinders acquired from one of the primary manufacturers of dispenser cathodes,

Semicon Associates. No surface preparation was done when using these tungsten cylinder

substrates. It is believed that once BN LCVD is developed on solid tungsten sheets, the

transition to porous substrates will be straightforward.
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7.1.3 General Procedure

The general procedure for deposition began by loading the tungsten substrates into the

upper deposition chamber. The chamber was then sealed and evacuated. A leak check was

performed. The upper chamber was filled with nitrogen through the window port to the

desired deposition pressure. The window port nitrogen flow rate was then set to 1500 sccm

and the machine was put in "Keep Constant" mode so as to maintain the desired pressure.

Meanwhile, the borazine vaporizer was removed from the freezer and placed in a cooler

packed with ice. The vaporizer was attached to the appropriate gas lines. The carrier and

diluent flow lines were evacuated and filled with nitrogen. This purge cycle was repeated

three times to remove all air and other residual gases from the lines prior to opening the

vaporizer. When ready to begin deposition, MFC 5 was set to the desired carrier flow rate,

the inlet valve on the vaporizer was opened, the exit valve on the vaporizer was opened,

and MFC 6 was set to the desired diluent flow rate. After waiting for about two minutes for

the flow to stabilize, the laser could be engaged.

In preliminary experiments, the zinc selenide window for the CO2 laser beam was ob-

served to quickly cloud up with a white powder after the laser was engaged. This behavior

was due to some nicks and scratches on the window causing it to absorb CO2 laser en-

ergy and heat up. In order to combat this problem, a steady nitrogen flow was made to pass

through the gas port adjacent to the laser window. Due to the distance between this window

gas port and the gas nozzle exit, it was assumed the window port gas flow did not effect the

local reagent concentration in the deposition zone. The laser window gas flow prevented

the formation of the white powder on the laser window.

7.2 Boron Nitride Fiber Experiments

The methodology used in the development of BN fiber deposition followed a natural pro-

gression from exploratory experiments designed to confirm the feasibility of the process

to refined experiments where parameters were systematically varied and deposit attributes
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were quantified and finally to formal designed experiments wherein optimized BN fiber

deposition was sought. The objective of the fiber experiments was to produce tall fibers of

uniform diameter and smooth surface morphology. Fibers with these attributes would be

used to quantify the process–property relations and measure boron nitride growth rates.

7.2.1 BN Fiber Exploratory Experiments

The first set of experiments, BN-1F-A, involved the deposition of three fibers and illustrated

the reproducibility of Duty’s experiments. Samples 1 and 2 used the standard tungsten

sheet substrate while sample 3 was deposited on one of the porous tungsten cylinders. For

simplicity, these experiments were run at a constant laser power. The chamber pressure

was held constant at 760 Torr. Other specific conditions of the experiments are given in

Table 7.2.

Table 7.2: BN-1F-A experiment conditions

Borazine Carrier Diluent Borazine Total Borazine Laser
No. Temp Flow Flow Flow Flow Conc Power Time

(◦C) (sccm) (sccm) (sccm) (sccm) (mol/m3) (W) (min)

1 0.0 50.0 0.0 4.80 54.80 3.91 67.21 2.00

2 0.0 50.0 0.0 4.80 54.80 3.91 67.21 4.00

3 0.0 50.0 0.0 4.80 54.80 3.91 44.62 2.00

The results of the experiments were large bowl-shaped growths with drastically dif-

ferent characteristics as one moved from the center of the bowl out radially. Figure 7.3

illustrates the nature of all three of these deposits.

All deposits exhibited an asymmetry that appeared related to the gas nozzle. The growth

was tallest on the side furthest from the reagent nozzle and a long white powder trail ex-

tended away from the growth in the same direction as the gas flow. In the center was a deep

depression extending almost to the tungsten substrate with a dark black metallic looking

surface. As one moved up the walls of the depression from the center, the color changed to

a translucent white color. This translucent white material was very similar to that shown by
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Figure 7.3: Optical microscope image of BN-1A Sample 1

Duty to be boron nitride. The translucent white material was partially covered by tall pow-

dery growth, particularly on the side opposite the gas nozzle. The deposit was surrounded

by a large quantity of white powder that does not appear to be well adhered to the substrate

surface. The size and shape of the deposits indicated that the processing conditions used

exceeded the optimum values for deposition.

Experiment BN-1F-B was done to explore suitable conditions for producing fibers of

smaller, more uniform diameter without the severe volcano effect. Both the vaporizer car-

rier N2 flow rate and the laser power were varied during this experiment. Substrates were

tungsten sheets and the chamber pressure was maintained at 760 Torr for all samples. The

specific conditions for the samples in experiment BN-1F-B are given in Table 7.3.

BN-1F-B could be described as a study of the effect of two factors on BN fiber deposit

shape: total flow rate through the gas nozzle and laser power. Note that in these early

exploratory experiments where constant laser power was used rather than constant temper-

ature, there was a coupling between laser power and total flow rate due to convective heat
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Table 7.3: BN-1F-B experiment conditions

Borazine Carrier Diluent Borazine Total Borazine Laser
No. Temp Flow Flow Flow Flow Conc Power Time

(◦C) (sccm) (sccm) (sccm) (sccm) (mol/m3) (W) (min)

1 0.0 50.0 0.0 4.80 54.80 3.91 15.91 2.00

2 0.0 50.0 0.0 4.80 54.80 3.91 7.73 2.00

3 0.0 50.0 0.0 4.80 54.80 3.91 23.68 2.00

4 0.0 50.0 0.0 4.80 54.80 3.91 15.91 1.00

5 0.0 50.0 0.0 4.80 54.80 3.91 11.87 2.00

6 0.0 50.0 0.0 4.80 54.80 3.91 19.84 2.00

7 0.0 25.0 0.0 2.40 27.40 3.91 19.84 2.00

8 0.0 75.0 0.0 7.20 82.20 3.91 19.84 2.00

9 0.0 25.0 0.0 2.40 27.40 3.91 19.84 2.00

10 0.0 25.0 0.0 2.40 27.40 3.91 31.05 2.00

11 0.0 75.0 0.0 7.20 82.20 3.91 31.05 2.00

12 0.0 50.0 0.0 4.80 54.80 3.91 34.59 2.00

13 0.0 25.0 0.0 2.40 27.40 3.91 38.03 2.00

14 0.0 25.0 0.0 2.40 27.40 3.91 11.87 2.00

15 0.0 25.0 0.0 2.40 27.40 3.91 7.73 2.00

16 0.0 10.0 0.0 0.96 10.96 3.91 7.73 2.00
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transfer from the substrate surface.

The total flow rate through the nozzle is thought to be important because of its influ-

ence on the height of the concentration boundary layer above the substrate surface. For

a fixed concentration, higher flow rates should lead to a reduced concentration boundary

layer thickness which increases the concentration gradient through the boundary layer. For

a transport limited process, the increased concentration gradient leads to higher diffusion

rates and higher deposition rates. The laser power directly affects the substrate tempera-

ture which influences the deposition rate and deposition rate profiles. The deposition rate

profiles are ultimately responsible for the shape of an LCVD deposit.

The results of BN-1F-B were analyzed by observation in an optical microscope. The

fibers of BN-1F-B were smaller than those of BN-1F-A. Samples 2, 5, 7, and 16 did not

yield any significant deposit. As for the remainder of the samples, all but one fiber (Sample

15) still exhibited a significant volcano effect with black coloration in the center of the

deposit. Figure 7.4 (a) illustrates a typical example of the deposits in experiment BN-1F-B.

(a) Sample 12 (b) Sample 15

Figure 7.4: Optical microscope images of BN-1F-B experiment results

The overall shape of Sample 12 in Figure 7.4 (a) was much more uniform than BN-1F-

A Sample 1. Sample 15 in Figure 7.4 (b) was the best looking fiber deposit. It consisted

of vertical growth of translucent material with only a small volcano in the center and no
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indication of black coloration. The fiber was generally symmetrical and was surrounded by

a faint coating of white powder. While the samples at the lowest laser power levels, 7.73

and 11.87 W, did not always yield significant deposit, when they did, the deposit shape was

favorable. Thus, BN-1F-B provided good information regarding the proper laser power

levels for BN fiber deposition.

Experiment set BN-2F was a designed response surface experiment centered around the

best sample, Sample 15, in BN-1F-B. The design was a rotatable central composite design

with four factors: pressure, carrier flow rate (or total flow rate because no diluent flow

was used), laser power, and growth time, and it incorporated four center point experiments

making the total number of runs 28. All experiments were done on the standard tungsten

sheet substrates. Table 7.4 shows specific conditions used in these experiments in the order

they were run. The order was not completely randomized due to the complexity of the

operational procedure required to change the system pressure.

Notice the change in borazine temperature during the course of the experiments. This

effect stemmed from the difficulty of keeping the borazine at a fixed temperature and un-

fortunately directly impacted the borazine concentration delivered through the nozzle. The

borazine concentration was also affected by changing the pressure of the chamber (which

changes the pressure in the vaporizer). The laser power used in BN-2F was based on the op-

timum responses observed in BN-1F-B. Again, because the total reagent flow rate changes

with changes in the carrier flow rate, there is a coupling between the carrier flow variable

and the laser power variable.

Both optical and scanning electron microscopy were used to study the fibers grown in

BN-2F. In order to systematically analyze the results using the optical microscope, some

quantitative metrics were created. Two features that are most apparent in the boron nitride

fiber deposits are a depression in the center of the deposit (termed the volcano effect) and

dark black coloration on parts of the deposit surface. A scale of 1 to 7 with 1 representing

no presence and 7 representing significant presence was used to record the degree to which
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Table 7.4: BN-2F experiment conditions

Total Borazine Carrier Borazine Total Borazine Laser
No. Press Temp Flow Flow Flow Conc Power Time

(Torr) (◦C) (sccm) (sccm) (sccm) (mol/m3) (W) (min)

1 625 -19.0 17.5 0.70 18.20 1.52 14.80 1.50

2 625 -18.0 42.5 1.81 44.31 1.61 14.80 1.50

3 625 -18.0 42.5 1.81 44.31 1.61 14.80 2.50

4 625 -16.8 17.5 0.80 18.30 1.71 5.81 2.50

5 625 -16.1 17.5 0.84 18.34 1.78 14.80 2.50

6 625 -16.1 17.5 0.84 18.34 1.78 5.81 1.50

7 625 -14.8 42.5 2.19 44.69 1.90 5.81 2.50

8 625 -14.4 42.5 2.24 44.74 1.94 5.81 1.50

9 275 -12.8 42.5 6.03 48.53 2.11 14.80 1.50

10 275 -12.2 42.5 6.26 48.76 2.17 5.81 2.50

11 275 -11.6 17.5 2.68 20.18 2.24 5.81 1.50

12 275 -11.2 17.5 2.75 20.25 2.28 14.80 2.50

13 275 -10.4 17.5 2.89 20.39 2.38 14.80 1.50

14 275 -9.8 17.5 3.00 20.50 2.45 5.81 2.50

15 275 -7.9 42.5 8.20 50.70 2.69 14.80 2.50

16 275 -7.3 42.5 8.51 51.01 2.77 5.81 1.50

17 100 -5.7 30.0 29.86 59.86 2.99 10.43 2.00

18 450 -2.4 30.0 4.53 34.53 3.50 10.43 2.00

19 450 -1.8 30.0 4.69 34.69 3.60 10.43 1.00

20 450 -0.9 30.0 4.94 34.94 3.75 0.85 2.00

21 450 -0.4 30.0 5.09 35.09 3.84 10.43 2.00

22 450 -0.1 30.0 5.18 35.18 3.89 10.43 2.00

23 450 0.1 5.0 0.87 5.87 3.93 10.43 2.00

24 450 0.2 30.0 5.27 35.27 3.95 10.43 3.00

25 450 0.2 30.0 5.27 35.27 3.95 10.43 2.00

26 450 0.3 30.0 5.30 35.30 3.96 18.97 2.00

27 450 0.4 55.0 9.78 64.78 3.98 10.43 2.00

28 800 0.7 30.0 2.83 32.83 4.04 10.43 2.00
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Table 7.5: BN-2F experiment results

No. Volcano Black Diameter
(1–7) (1–7) (µm)

2 446∗

3 5.8 3.4 908

5 220∗

15 3.4 4.6 750

17 3.4 3.4 1040

21 4.6 1 800

22 4.6 1 985

24 4.6 1 1157

25 5.8 3.4 968

26 5.8 3.4 1039

27 5.8 1 985
∗ deposits had no significant height

each sample exhibited each of these traits.

Table 7.5 shows the values of the response variables for the 11 samples that yielded

some deposit. The sparse nature of the response data in BN-2F did not allow a robust

analysis of the experimental results for either the volcano effect nor the black coloration.

A simple multiple regression analysis was done for these features, and neither analysis

detected a statistically significant relation between the factors and the response at the 90%

confidence level.

The SEM allowed accurate measurement of fiber size, and an analysis of the fiber diam-

eter response was performed. A standardized pareto chart of the factors and the interactions

is shown in Figure 7.5. The vertical line on the chart representsα = 0.10. Thus, there are

three factors that were statistically significant at the 90% level: laser power, carrier flow,

and time. Furthermore, these three factors exhibit a positive effect on the response with an

increase in any one of the factors leading to an increase in fiber diameter. These results are

expected, but the sparse data again prohibited more detailed analysis of the experimental

results.
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Figure 7.5: Main factor and interaction effects on BN fiber diameter

The “binary” results of BN-2F with regard to the presence of a deposit was not ex-

pected. For example, the four center point experiments with conditions: Pressure = 450

Torr, Carrier Flow = 30 sccm, Laser Power = 10.43 W, and Time = 2.0 min, resulted in

three instances of fiber growth of approximately the same size and shape and one instance

of no growth. This type of binary behavior was interpreted as a sign that the BN deposition

process was extremely sensitive to one or more process parameters. Observations made

during the experiments indicated an extreme sensitivity of the temperatures viewed on the

thermal imager to the laser power level. By comparison, the sensitivity was much greater

than that observed for carbon deposition.

An EDX analysis of the BN fibers was used to determine the elemental composition

of the deposits. A low magnification SEM micrograph of Sample 27 is shown in Figure

7.6. The EDX analysis was done by zooming in on the area indicated to a magnification

of 2000x. First an EDX analysis was done on the tungsten sheet substrate at a point that

had no deposited material. Figure 7.7 was the output of the analysis that is dominated by

the tungsten element. Figure 7.8 was the output of the analysis performed on Sample 27 of

the experiment. The EDX plot shows a presence of both boron and nitrogen although the
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Figure 7.6: SEM micrograph of Sample 27 of BN-2F showing area used in EDX analysis

count ratio does not represent the desired stoichiometry of 1:1. The composition appears

to be more closely 1:2 of B:N.

Experiment set BN-3F was designed to further explore the observed sensitivity of reac-

tion temperature to laser power. The substrates used were tungsten sheets and the pressure

was held constant at 760 Torr. No diluent flow was used and the laser window nitrogen flow

was set at the normal 1500 sccm. The only variable used in this set was the laser power and

the power was held constant throughout the growth of each sample at the specified value.

Some minor variation in borazine concentration occurred due to changes in the vaporizer

temperature. Specific conditions for the experiment are given in Table 7.6.

The results of BN-3F fell into three distinct categories. Samples 4 and 8, both run at

4.35 W, defined the first category which was no significant deposition. The second category

consisted of samples that showed a significant volcano effect with some degree of black

coloration in the center as shown in Figure 7.9 (a). The presence of the black coloration
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Figure 7.7: EDX output from analysis done on tungsten substrate

Figure 7.8: EDX output from analysis done on fiber Sample 27
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Table 7.6: BN-3 experiment conditions

Borazine Carrier Diluent Borazine Total Borazine Laser
No. Temp Flow Flow Flow Flow Conc Power Time

(◦C) (sccm) (sccm) (sccm) (sccm) (mol/m3) (W) (min)

1 -4.5 25.0 0.0 1.88 26.88 3.17 7.73 1.50

2 -5.0 25.0 0.0 1.83 26.83 3.09 7.73 1.50

3 -5.5 25.0 0.0 1.78 26.78 3.02 6.05 1.50

4 -6.0 25.0 0.0 1.73 26.73 2.95 4.35 5.00

5 -6.5 25.0 0.0 1.68 26.68 2.88 6.89 1.50

6 -7.0 25.0 0.0 1.63 26.63 2.81 5.20 1.50

7 -7.5 25.0 0.0 1.59 26.59 2.74 5.20 1.50

8 -7.0 25.0 0.0 1.63 26.63 2.81 4.35 8.00

9 -6.5 25.0 0.0 1.68 26.68 2.88 7.73 5.00

appears to indicate excessive temperatures in that portion of the deposit area. Samples 1,

2, 5, and 9 made up this category.

Samples 3, 6, and 7 made up the best results of BN-3F. They exhibited asymmetrical

growth of the translucent white material with a minimal volcano effect as shown in Figure

7.9 (b). The asymmetry of the growth seemed to be related to the directional nature of the

nozzle reagent flow with the side of the fiber nearest the nozzle exhibiting more growth.

(a) Sample 2 (b) Sample 6

Figure 7.9: Sample fibers from BN-3F
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The results of BN-3F show that for the given conditions, laser powers above 5.20 and

less than 6.05 W yield the best fiber deposits. The samples run at 4.35 W yielded no

significant deposits. The samples run at powers of 6.89 W or greater exhibited the black

coloration in the center of the volcano effect. These results further suggest that the size

and shape of the boron nitride fiber deposits was extremely sensitive to the incident laser

power.

In light of this sensitivity, the stability of the CO2 laser became important. The stability

of the laser was influenced by several factors. First, the laser documentation specified the

power stability to be±5% of full scale. Thus, because the laser was a 100 W laser, the

power output could vary by as much as 5 W in either direction for a constant control signal.

This specification appeared to be much more conservative than observed instabilities.

In addition to the laser power variation, potential variation existed in the 0-10 V analog

control signal sent from the LabVIEW control computer to the laser signal generator. This

control signal corresponded to 100 mV/W meaning that a 100 mV increase in control signal

caused a change of 1 W in laser power output. The control signal was generated by a

LabVIEW SCXI 1124 analog output card with a resolution of 12 bits, a relative accuracy

of ±LSB, and an absolute accuracy of 0.05% of full scale. When configured for an output

between 0 and 10 V, the relative accuracy translated to±1.22 mV and the absolute accuracy

translated to 5 mV. In the absence of other effects, variation in the analog output from

LabVIEW could cause a variation in laser power of±0.05 W.

Another potential source of variation in the delivered laser power was noise in the 0-10

V analog control signal from LabVIEW. The signal is delivered from the SCXI 1124 card

to the laser signal generator via a military grade shielded BNC cable. The noise in this line

was observed on an oscilloscope to have peak to peak values exceeding 25 mV. The noise

in this control signal could lead to±0.25 W fluctuations in the output laser power.

The laser power signal generator used the 0-10 V analog input signal provided by Lab-

VIEW to produce a pulse width modulated signal that was delivered to the laser power
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supply. A source of laser power variation could also be noise in the wire that carriers the

PWM signal from the signal generator to the laser power supply. The magnitude of this

noise is unknown, but it is likely it could cause output laser power fluctuations of±0.25 W

or more.

In sum, the potential variation in the laser power delivered to the substrate is significant

relative to the sensitivity of boron nitride fiber growth to laser power delivered. This sen-

sitivity made it difficult to utilize the LCVD system’s feedback temperature control system

during boron nitride deposition.

Experiment set BN-4F was designed to further investigate the successful conditions

used in BN-3F to deposit boron nitride fibers. All conditions in BN-4F were the same as

those in BN-3F except as indicated by Table 7.7. The results of BN-4F further confirmed

Table 7.7: BN-4F experiment conditions

Borazine Carrier Diluent Borazine Total Borazine Laser
No. Temp Flow Flow Flow Flow Conc Power Time

(◦C) (sccm) (sccm) (sccm) (sccm) (mol/m3) (W) (min)

1 -9.0 25.0 0.0 1.46 26.46 2.55 4.86 10.00

2 -10.5 25.0 0.0 1.34 26.34 2.36 5.20 10.00

3 -12.5 25.0 0.0 1.20 26.20 2.14 5.54 10.00

4 -12.5 25.0 0.0 1.20 26.20 2.14 5.88 2.00

5 -12.4 25.0 0.0 1.20 26.20 2.15 5.71 2.50

6 -11.7 25.0 0.0 1.25 26.25 2.23 5.71∗ 10.00
∗Laser power was varied after growth initiated at 5.71 W

the extreme sensitivity of BN fiber deposition to laser power delivered. Samples 1, 2, and

3 did not produce any significant deposit, while samples 4 and 5 produced samples very

similar to samples 3, 6, and 7 of BN-3F. Note that the laser power used in sample 3 was

5.54 W and after 10 minutes this power produced no boron nitride deposit. Sample 5

used laser power of 5.71 W and after 2.5 minutes produced a fiber deposit of significant

height and width. Thus, a change of 0.17 W in laser power made the difference between

producing nothing and producing a significant deposit. This small change in laser power
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only represents 0.17% of the full scale output values and is less than the potential variation

in power due to noise and other uncontrollable effects.

Sample 6 of BN-4F was initiated at the same conditions used in sample 5; however,

after growth began, the laser power was varied intentionally in an effort to maintain the

maximum temperature in the deposition zone around 1000◦C. Manual laser power con-

trol was used because some preliminary trials involving the feedback temperature control

system proved unsuccessful, likely because of the process sensitivity.

The result of Sample 6 was a fiber of significant height made of the translucent white

material that appears to be boron nitride. This fiber is shown in Figure 7.10. It exhibited

a varying diameter which is likely due to the crude effort at temperature control. Of great

importance was the fact that this fiber exhibited no volcano effect. Apparently, the maxi-

mum temperature during growth did not exceed the critical value that leads to the volcano

shape or the black coloration.

(a) Top View (b) Side View

Figure 7.10: BN-4F Sample 6 experiment results

The different process used to grow Sample 6 and the successful results of the exper-

iment indicated that in order to achieve tall, volcano–less fibers, a varying laser power

approach should be used. Regardless of specific material considerations, the emergence

of vertical growth on the substrate surface during LCVD reduces the conduction pathways
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from the point of laser incidence into bulk substrate material. The loss of conduction paths

means that in order to achieve the same temperature on the growth tip as previously existed

on the flat substrate surface, less incident power is needed. In addition to these geometric

considerations, the differences in material properties of metals and ceramics exacerbates

the severity of the initial transition period in boron nitride growth on tungsten.

Both the optical and the thermal properties of ceramics are significantly different from

those of metals. In boron nitride deposition, as the process began, the properties of the

substrate quickly changed from those of tungsten to those of boron nitride. In order to

understand the significance of these substrate changes on the deposition parameters, some

analytical calculations were performed.

In terms of optical properties, ceramics often have low reflectance, moderate absorbance

and moderate to high transmittance. Metals are characterized by high reflectance, high ab-

sorbance, and low transmittance. The high reflectivity of a metal substrate material requires

the delivery of significantly more laser power than a ceramic substrate material to achieve

the same net energy delivery into the substrate. Once the infrared CO2 laser energy pen-

etrates the surface, it is either absorbed by the substrate atoms or transmitted through the

substrate. For pyrolytic LCVD, it is desirable that the energy be absorbed near the sub-

strate surface, because the absorbed energy is converted into heat which drives the surface

reactions.

The amount of laser energy absorbed by the substrate can be computed from the ab-

sorption index which is the imaginary component of the full complex refractive index. The

absorption coefficient can be computed from the absorption index using Equation 7.6:107

β = 4πk/λ (7.6)

whereλ is the wavelength of interest. Using Equation 7.7, the fraction of energy absorbed

(I/I0) as a function of depth,z, into the substrate can be computed:

I/I0 = e−βz (7.7)
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For tungsten, others have reported that the absorption coefficient is about 55.01µm−1

which was used in conjunction with Equation 7.7 to show that 99% of the energy would be

absorbed in the first 0.018µm of the substrate surface.2 This absorbed energy is converted

into heat.

Similar calculations can be done treating the growing boron nitride as the substrate ma-

terial. If we assume that the BN produced in LCVD is similar to pyrolytic BN produced

in traditional CVD, we can use material property data from commercial producers. Fig-

ure 7.11 is a plot of the absorption coefficient for infrared energy for General Electric’s

pyrolytic boron nitride.108

From the plot, the absorbtion coefficient at 10.59µm is between 700 and 900 cm−1.

Taking the average, 800 cm−1, and plugging into Equation 7.7, the fraction of incident

energy remaining can be plotted as a function of depth,z, into the substrate. Figure 7.12

contains such a plot. Notice that only about 50% of the non–reflected energy is absorbed

in the first 10µm of material and it takes about 60µm of growth before all of this energy

is absorbed. These dimensions are significant relative to the size of some BN deposits,

especially lines.

In order to maintain a constant surface temperature, the lower reflectivity of BN relative

to W would require a drop in laser power, while the reduced absorptivity of the BN deposit

material would require an increase in laser power. These changes in optical properties are

coupled to the thermal properties of the substrate and deposit materials.

The absorbed laser energy is converted into heat. The analysis in Chapter 6 showed

the temperature profiles on an LCVD fiber surface to be dominated by the conductivity of

the underlying material. For comparison, a plot of thermal conductivity as a function of

temperature for both tungsten109 and pyrolytic boron nitride108 is presented in Figure 7.13.

As shown in the figure, pyrolytic boron nitride, much like pyrolytic graphite, is ex-

tremely anisotropic in its thermal conductivity. The origin of this anisotropy lies in the
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Figure 7.11: Absorption coefficient of GE’s pyrolytic BN in infrared band108
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Figure 7.13: Comparison of thermal conductivity of tungsten and pyrolytic BN

hexagonal crystal structure of the material. At 500◦C, W has a thermal conductivity 2.5

times that of thea direction of pyrolytic BN and over 54 times that of thec direction!

The effect of thermal conductivity on maximum temperature rise,Tmax, at the beam

center on the substrate surface within the laser spot can be approximated using Lax’s55

expression:

Tmax=
P

2πk

〈
1
r

〉
(7.8)

whereP is the incident laser power,k is thermal conductivity of the substrate, and for a

Gaussian laser beam: 〈
1
r

〉
=

1
w

(π)
1
2

wherew is the diameter of the laser beam. For simplicity, this expression assumes the

beam attenuation is so great that all the heat is generated in an infinitesimally thin substrate

surface layer (i.e. perfect surface absorption).

Due to the linear relationship expressed by Equation 7.8, for a laser beam of fixed size,

the ratio of laser power,P, for tungsten to that for boron nitride is effectively the ratio of
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k for tungsten to that of boron nitride at the temperature of interest. Given its anisotropy,

an average effective conductivity of BN lies somewhere between the values of 2.5 and 54

W/m-K. Thus, in order to achieve the same maximum temperature in the center of the laser

spot, between 2.5 and 54 times more power is required when heating tungsten than when

heating pyrolytic boron nitride. This suggests that a very large reduction in laser power

should be necessary to maintain constant surface temperature as BN growth begins.

In addition to the material property changes associated with deposit growth, the geom-

etry of the growing deposit also significantly affects the relationship between laser power

and temperature. Specifically, the growth of a fiber restricts the heat conduction path back

into the underlying substrate thus requiring a reduction in laser power to maintain constant

temperature.

The reductions in substrate reflectivity, conductivity, and conduction paths all dictate

a need for a significant reduction in laser power to maintain constant temperature as BN

growth initiates, while the reduction in absorbtivity suggests a need for increased power.

The finding of BN-4F that a high laser power was needed to initiate growth followed by

a much reduced power to achieve sustained growth was consistent with these calculations.

The coupling of these drastically different material properties in a dynamic and transient

growth process highlights one of the challenges of depositing a ceramic on a metal sub-

strate.

7.2.2 BN Fiber Refined Experiments

Experiment set BN-5F was designed to grow a series of fibers similar to Sample 6 of BN-

4F. The goal of the experiment was to identify a repeatable process whereby fibers could

be grown under relatively steady conditions. The general procedure was to initiate growth

by applying a relatively high laser power of about 8–10 W until growth began (usually

1–5 min) and then quickly reduce the laser power to a level that maintained a constant
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maximum temperature near 1100◦C (usually 2–4 W). The process sensitivity found in ex-

periments BN-3F and BN-4F prevented the automated control configuration used in carbon

fiber deposition from working. A crude manual temperature control through the LabVIEW

interface was only capable of keeping the temperature within±100◦C of the desired value.

The pressure during BN-5F was held constant at 760 Torr. Specific conditions for the eight

samples of BN-5F are provided in Table 7.8.

Table 7.8: BN-5F experiment conditions

Borazine Carrier Diluent Borazine Total Borazine Max
No. Temp Flow Flow Flow Flow Conc Temp Time

(◦C) (sccm) (sccm) (sccm) (sccm) (mol/m3) (◦C) (min)

1 -9.8 25.0 0.0 1.40 26.40 2.45 1100 9.46

2 -11.9 25.0 0.0 1.24 26.24 2.20 1100 15.08

3 -12.0 25.0 0.0 1.23 26.23 2.19 1100 11.02

4 -10.5 25.0 0.0 1.34 26.34 2.36 1100 13.00

5 -9.8 25.0 0.0 1.40 26.40 2.45 1100 13.74

6 -8.8 25.0 0.0 1.48 26.48 2.57 1100 6.00

7 -7.9 25.0 0.0 1.55 26.55 2.69 1100 8.83

8 -6.3 25.0 0.0 1.70 26.70 2.91 1100 6.08

The results of BN-5F were very encouraging. All eight samples yielded significant

deposit, and most of them were tall, cylindrical shapes with no volcano effect or black dis-

coloration. Sample 5 is shown in Figure 7.14. The diameter and height of all fibers was

measured and recorded as given in Table 7.9. A crude value of average growth velocity

(µm/s) for each sample was computed by dividing the fiber height by the total time of laser

engagement. Note that this time includes the delay time between laser engagement and

growth initiation (1–5 min), and therefore represents an artificially low growth rate. The

mean and standard deviation of these average growth velocities over all eight samples were

1.19 and 0.62µm/s, respectively. Experiment BN-5F showed that a stepwise controlled

boron nitride fiber deposition using high power to initiate growth followed by a quick tran-

sition to reduced power could yield deposits of desirable size and shape.
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Figure 7.14: Sample 5 of BN-5F showing typical size and shape of BN fiber

Table 7.9: BN-5F experiment results

No. Volcano Black Diameter Height Time Avg. Growth Velocity
(1-7) (1-7) (µm) (µm) (s) (µm/s)

1 1 1 530 631 568 1.11

2 1 1 621 717 905 0.79

3 2.2 1 799 885 661 1.34

4 1 1 658 890 780 1.14

5 1 1 483 768 824 0.93

6 1 1 597 935 360 2.60

7 1 1 465 546 530 1.03

8 2.2 2.2 359 207 365 0.57
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Experiment BN-6F was similar in conditions and objective to BN-5F, but it incorporated

two new aspects. First, a change in the experimental procedure was implemented. All

previous BN deposition proceeded by opening the borazine vaporizer and allowing flow

to stabilize for several minutes prior to engaging the laser. This experiment was setup

to explore the effect of pre-heating the tungsten sheet substrate by engaging the laser for

about ten minutes with no flow through the vaporizer. Thus, any transient heating of the

substrate had time to stabilize providing a more constant surface temperature. When ready

to commence deposition, the vaporizer flow was directed through the gas nozzle.

The second aspect of BN-6F that differed from BN-5F was the use of the thermal imag-

ing camera to measure growth rates as described in Section 3.4.1. This required configur-

ing the imager software to capture a continuous series of images throughout the deposition

process. In addition to allowing growth rate measurements from the thermal images, the

images inherently provided more precise temperature measurements throughout the depo-

sition process.

The conditions for the BN-6F runs are shown in Table 7.10. The results of BN-6F were

Table 7.10:BN-6F experiment conditions

Borazine Carrier Diluent Borazine Total Borazine Max
No. Temp Flow Flow Flow Flow Conc Temp Time

(◦C) (sccm) (sccm) (sccm) (sccm) (mol/m3) (◦C) (min)

1 -9.1 25.0 0.0 1.45 26.45 2.53 N/A 18.33

2 -10.8 25.0 0.0 1.32 26.32 2.33 1017 12.00

3 -9.0 25.0 0.0 1.46 26.46 2.55 1112 7.85

4 -4.6 25.0 0.0 1.87 26.87 3.15 1153 5.67

5 -2.3 25.0 0.0 2.12 27.12 3.51 1146 5.28

6 -0.3 25.0 0.0 2.36 27.36 3.86 N/A 4.28

7 -0.1 25.0 0.0 2.39 27.39 3.89 1121 6.00

8 0.1 25.0 0.0 2.41 27.41 3.93 1186 6.58

9 0.3 25.0 0.0 2.44 27.44 3.96 1080 4.95

fibers of desirable size and shape. Only minor evidence of volcano effects or discoloration
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was observed. The fibers did show some asymmetry relative to the direction of the gas

nozzle flow. The laser pre–heating of the substrate reduced the dwell time between ex-

periment parameter setup and actual growth initiation. Measurements of deposit attributes

along with average growth rate are given in Table 7.11.

Figure 7.15 is a side view of Sample 4 that illustrates the typical shape of BN fibers.

The success of BN-6F was indicative that the process conditions used were likely near the

optimum conditions for tall, slender fibers of uniform diameter exhibiting no volcano effect

or black discoloration.

7.2.3 BN Fiber Designed Experiments

Experiment BN-17F was designed as a 2 factor 3 level full factorial experiment with 9 runs

and no replicates. The objective of the experiment was to quantify the relationship among

the process parameters and the deposit shape using conditions similar to those of BN-

6F. The two factors studied were carrier flow rate and maximum deposition temperature

and the levels were as presented in Table 7.12. Under the particular conditions shown in

Table 7.12, changing the carrier flow rate was effectively equal to changing the borazine

concentration. The total flow rate through the gas nozzle was kept essentially constant at

50 sccm by changing the diluent flow rate in conjunction with the carrier flow rate. This

flow rate represented an increase in total flow rate over the previous BN fiber experiments

necessitated by the need to explore reduced carrier flow rate (and borazine concentration)

levels. The system pressure in all experiments was kept constant at 760 Torr.

This experiment was also designed to yield growth rate information; however, because

of the exponential relationship between reaction rate and temperature, temperature must

remain fairly constant during deposition to extract meaningful growth rate data. A new

technique was used to stabilize the laser power during deposition. The analog voltage

signal from the LabVIEW interface was disconnected from the laser control module. Laser

power control was accomplished by using the manual knob on the control module. The
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Table 7.11:BN-6F experiment results

No. Volcano Black Diameter Height Time Avg. Growth Velocity
(1-7) (1-7) (µm) (µm) (s) (µm/s)

1 1 1 794 1266 1100 1.15

2 1 1 575 577 720 0.80

3 1 1 648 879 471 1.87

4 1 1 807 976 340 2.87

5 1 1 769 992 317 3.13

6 1 1 538 434 257 1.69

7 1 1 644 777 360 2.16

8 2.2 1 721 735 395 1.86

9 1 1 499 548 297 1.85

Figure 7.15: SEM micrograph side view of BN-6F Sample 4 fiber
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Table 7.12:BN-17F experiment conditions

Borazine Carrier Diluent Borazine Total Borazine Max
No. Temp Flow Flow Flow Flow Conc Temp Time

(◦C) (sccm) (sccm) (sccm) (sccm) (mol/m3) (◦C) (min)

1 -7.9 15.0 34.2 0.93 50.10 0.85 1012 10.00

2 -6.3 15.0 34.2 1.02 50.19 0.93 1194 8.00

3 -4.6 15.0 34.2 1.12 50.29 1.01 1097 8.00

4 -3.5 30.0 18.3 2.38 50.72 2.12 1006 5.00

5 -2.5 30.0 18.3 2.51 50.86 2.23 1100 3.50

6 -1.5 30.0 18.3 2.66 51.00 2.34 1172 3.75

7 -0.4 5.0 44.7 0.47 50.19 0.42 1207 9.00

8 -0.3 5.0 44.7 0.47 50.20 0.42 1024 13.00

9 -0.2 5.0 44.7 0.48 50.20 0.42 1120 13.37

overall procedure still used a high laser power to initiate growth, followed by a reduction in

laser power until reaching the desired temperature. Preliminary tests showed this method to

significantly reduce the random fluctuations previously observed in deposition temperature

during boron nitride fiber growth. Due to the relative stability of the reaction temperatures

using the new control method, the small adjustments necessary for maintaining a constant

temperature could be made using the manual knob.

All nine runs in experiment BN-17F resulted in fiber deposits. These deposits were

inspected using both a 40x optical microscope and an SEM. An array of attributes was

recorded for each sample as given in Table 7.13.

Unlike the samples of BN-6F, theVolcanocolumn in Table 7.13 indicates that most of

the samples from BN-17F resulted in a moderate volcano effect. It was also observed that

most of the BN-17F samples displayed a distinct asymmetry relative to the direction of gas

nozzle flow. These characteristics must have arisen due to the reduced concentrations and

increased total flow rates used in this experiment.

As far as the asymmetry, it was as if the nozzle flow directly increased the growth rate,

but in doing so, the side nearest the nozzle shielded the side furthest from the nozzle and
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Table 7.13:BN-17F experiment results

No. Volcano Black Diameter Height Time Est. Growth Rate
(1-7) (1-7) (µm) (µm) (s) (µm/s)

1 1 1 718 839 600 1.40

2 3.4 1 1013 898 480 1.87

3 4.6 1 974 1098 480 2.29

4 2.2 1 807 745 300 2.48

5 2.2 1 920 912 210 4.34

6 4.6 1 1081 942 225 4.18

7 3.4 1 627 551 540 1.02

8 2.2 1 655 746 780 0.96

9 3.4 1 555 589 802 0.73

reduced the transport of borazine reagent to this area. The reduction of borazine transport

to the short side of the fiber could be due to the consumption of reagent on the tall side or

the convective flow pattern created by the emergence of the asymmetry. Figures 7.16 and

7.17 illustrate the asymmetry seen in most of the fibers.

The depression in the center of the deposit could also be explained by species transport

phenomena. It is known that under transport–limited conditions, the growth rate in the

center of an LCVD deposit is likely to lag that on the fiber perimeter. The concentration of

reagent species directly over the laser spot varies with temperature per the ideal gas law;

the center point of maximum temperature will also be the point of minimum species con-

centration. The high temperature in this region will assist species transport via diffusion;

however, the diffusion path to the center of the deposit is directionally restricted in contrast

to the diffusion paths for the perimeter of the fiber. Further discussion of the implications

of a transport–limited process on deposit shape is given in Chapter 8.

A multiple regression analysis was done to develop the numerical relationship among

the maximum fiber diameter and the two factors of interest: borazine concentration and

maximum temperature. The regression equation included both the first and second order

main effects as well as the first order interactions. The higher order effects were shown
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Figure 7.16: BN-17F Sample 9 SEM micrograph - top view

Figure 7.17: BN-17F Sample 9 SEM micrograph - side view
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to be statistically insignificant and the model was reduced to first order. The regression

output is given in Table 7.14. The fact that temperature was not shown to be statistically

significant suggested this process might be transport–limited.

Table 7.14:Regression output for BN-17F fiber diameters

Dependent variable: Diameter
Parameter Estimate Standard Error T Statistic P-Value

CONSTANT -290.514 728.003 -0.39906 0.7037

Concentration 163.431 62.1317 2.6304 0.039

Temperature 0.826545 0.64968 1.27223 0.2504

Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio P-Value

Model 162901 2 81450.6 4.03 0.0776

Residual 121137 6 20189.5

Total (Corr.) 284038 8

R-squared = 57.4 percent
R-squared (adjusted for d.f.) = 43.1 percent
Standard Error of Est. = 142.09
Mean absolute error = 97.7838
Durbin-Watson statistic = 1.08615 (P=0.0136)
Lag 1 residual autocorrelation = 0.36375

The new laser power control method worked well and provided long periods of constant

temperature growth which allowed a series of thermal images to be captured for use in

measuring growth rates as described in Section 3.4.1. The results of the growth rate study

are presented in Section 7.2.4. In sum, BN-17F provided useful data regarding the relation

among fiber shape, total reagent flow rate through the nozzle, borazine concentration, and

maximum deposition temperature. The experiment also provided anecdotal evidence that

this reaction is transport limited under the given conditions. Further studies were needed to

confirm this finding.
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While the new method of controlling deposition temperature was very effective at re-

ducing the random fluctuations in deposition temperature seen in all previous experiments,

the observed deposition temperature remained extremely sensitive to the laser power level.

A calculation of the heat of the boron nitride deposition reaction was executed to determine

if it might be contributing to the apparent sensitivity of the reaction temperature to input

laser power. The equation for the reaction was given in Equation 2.2:

B3N3H6(g)+xs N2(g)→ 3BN(s)+3H2(g)+xs N2(g) (2.2)

The overall heat of reaction was calculated from the standard enthalpy of formation

values. At a temperature of 1200 K, which was well within the range of observed deposition

temperatures, the standard enthalpy of formation values for reactant and product species are

given in Table 7.15.110 Note that values for the excess N2 were not used in the calculation

because they would simply cancel out.

Table 7.15:Enthalpy of formation values for constituents in boron nitride deposition reac-
tion.

B3N3H6 -525.9 kJ/mol

BN -250.4 kJ/mol

H2 0 kJ/mol

The heat of the reaction can be readily computed using Equation 7.9:

∆Hrxn = ∑Ai∆H f ,i −∑B j∆H f , j (7.9)

whereAi represents the stoichiometric coefficient of producti, ∆H f ,i represents the enthalpy

of formation of producti, B j is the stoichiometric coefficient of reactantj and∆H f , j is

the enthalpy of formation of reactantj. For the reaction of interest,(3×−250.4)− (1×

−525.9) =−225.3 kJ/mol.

In order to compare the magnitude of this exothermic heat of reaction value directly

to the incident laser power, the heat of reaction must be multiplied by the growth rate of

a typical deposit. Sample 6 of BN-5F was used as a typical fiber. The diameter of this
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fiber was 597µm with a height of 935µm; the growth time was 6 minutes. The calculated

volumetric growth rate was then computed to be 7.27×10−4 mm3/s. Using standard values

for the molecular weight of 24.82 g/mol and density of 1.9 g/cm3 for boron nitride, the

volumetric growth rate was converted to a molar growth rate of 5.565e-08 mol/s. Finally,

multiplying the heat of reaction by the volumetric growth rate yielded a heat generation

rate (power) of−1.25× 10−5 W. This represents less than 0.0002% of the typical 5 W

laser power level used during deposition. In conclusion, it seems unlikely that the heat

of the reaction contributed significantly to the observed reaction sensitivity to laser power

input.

BN-18F was used to further explore the characteristics found in BN-17F fibers. It was a

two factor rotatable central composite response surface experiment. Specifically, it was de-

signed with temperature levels expanded greatly and concentration levels reduced slightly

compared to BN-17F. The expanded temperature levels would provide valuable data points

to supplement a kinetic analysis. The reduced concentration values would hopefully min-

imize the white powder coatings surrounding the deposits seen previously. The system

pressure was again held constant at 760 Torr. Table 7.16 highlights the experiment condi-

tions used.

The results of BN-18F were varied. All but two of the samples, Sample 5 and Sample

9, yielded measurable fiber deposits. Sample 4 shown in Figure 7.18 was undoubtedly

the best deposit of the group. Sample 12 shown in Figure 7.19 was a very small deposit

with different morphology than previously observed. All other deposits exhibited volcano

effects and severe asymmetry in relation to the direction of the gas nozzle. Table 7.17

summarizes the findings.

A statistical analysis was done to relate the volcano response to the two factors of inter-

est. Figure 7.20 is a pareto chart of the first order factor effects. The vertical line indicates

an α = 0.05, and factor effects that have a P-Value of < 0.05 have a bar that extends be-

yond the line. The results show a weak statistical relation between both concentration and
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Table 7.16:BN-18F experiment conditions

Borazine Carrier Diluent Borazine Total Borazine Max
No. Temp Flow Flow Flow Flow Conc Temp Time

(◦C) (sccm) (sccm) (sccm) (sccm) (mol/m3) (◦C) (min)

1 0.0 5.0 44.5 0.48 50.00 0.43 1650 10.00

2 0.0 5.0 44.5 0.48 50.00 0.43 1650 10.00

3 0.0 5.0 44.5 0.48 50.00 0.43 1650 10.00

4 0.0 5.0 44.5 0.48 50.00 0.43 1014 12.00

5 0.0 0.8 49.1 0.08 50.00 0.07 1650 10.00

6 0.0 8.0 41.2 0.77 50.00 0.69 2100 10.00

7 0.0 8.0 41.2 0.77 50.00 0.69 1200 10.00

8 0.0 5.0 44.5 0.48 50.00 0.43 1650 13.00

9 0.0 2.0 47.8 0.19 50.00 0.17 2100 12.00

10 0.0 9.2 39.9 0.88 50.00 0.79 1650 10.00

11 0.0 5.0 44.5 0.48 50.00 0.43 2286 6.00

12 0.0 2.0 47.8 0.19 50.00 0.17 1200 10.00

Table 7.17:BN-18F experiment results

No. Volcano Black Diameter Height Time Est. Growth Rate
(1-7) (1-7) (µm) (µm) (s) (µm/s)

1 N/A N/A 837 780 600 1.30

2 5.8 1 863 729 600 1.21

3 4.6 1 847 646 600 1.08

4 1 1 275 440 720 0.61

6 5.8 1 1017 954 600 1.59

7 3.4 1 841 866 600 1.44

8 2.2 1 595 591 780 0.76

10 2.2 1 856 771 600 1.29

11 7 1 1264 538 360 1.49

12 1 1 132 118 600 0.20
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(a) Top View (b) Side View

Figure 7.18: BN-18F Sample 4 SEM micrographs

(a) Top View (b) Side View

Figure 7.19: BN-18F Sample 12 SEM micrographs
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Figure 7.20: First order main effects on boron nitride volcano effect in BN-18F

temperature; however, these factors are known to be related to this volcano phenomenon.

It may be that over the factor levels chosen for this experiment it is difficult to statistically

resolve the relationship among the factors and the volcano response. Qualitatively, lower

temperatures and higher concentration reduces the volcano effect which can be seen in

BN-18F by observing the data.

A statistical analysis was also done to relate the estimated deposit growth rate to the

temperature and borazine concentration factors. Figure 7.21 is the standardized pareto

chart of the first and second order main effects and the first order interactions on the growth

rate response variable. A very strong statistical relationship exists between the borazine

concentration and the growth rate while no other factors are significant. The existence

of a relationship between concentration and growth rate and little relationship between

growth rate and temperature suggests that this process was in the transport–limited regime.

However, the crude measurements of growth rates provided here could be significantly

impacted by the presence of the volcano effect; therefore, a more rigorous analysis was

required for determining the rate–limiting regime.

The results from all boron nitride fiber experiments were used to choose appropriate

parameter levels for a final 4–factor rotatable central composite designed experiment. The

229



Figure 7.21: First and second order main effects on estimated boron nitride growth rate in
BN-18F

factors studied were pressure, total nozzle flow rate, B3N3H6 concentration, and tempera-

ture. All experiments were done on tungsten sheet substrates and used manual control via

the knob on laser control module. The procedure was to initiate each experiment with a

high power, approximately 80 W, until growth was seen to emerge from the substrate sur-

face on the thermal imager screen. The power was then reduced to the appropriate level to

maintain desired temperature. The sensitivity of BN deposition to laser power remained an

issue and limited the controllability to about±50◦C.

The factor levels used are given in Table 7.18. The carrier and diluent flow rates were

computed for each run such that they yielded the desired factor levels. The borazine vapor-

izer was kept at 0±1◦C throughout the experiment. The target time for each experiment

was 5 minutes, but some runs produced slower or faster growth rates and the time was

adjusted to allow all fibers to reach similar heights.

In general, the results of BN-19F were well–defined fibers over 1 mm tall with different

shapes, morphologies, and color. Figure 7.22 contains thumbnail images of all samples

that produced bulk deposit. Several distinct differences among the samples are obvious in

the figure. First, the color of the fiber material varied from a white, opaque material as in
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Table 7.18:BN-19F experiment conditions

Total Carrier Diluent Borazine Total Borazine Avg Max
No. Press Flow Flow Flow Flow Conc Temp Time

(Torr) (sccm) (sccm) (sccm) (sccm) (mol/m3) (◦C) (min)

1 540 2.52 19.62 0.35 22.5 0.50 1100 5

2 540 4.20 2.70 0.59 7.5 2.50 1100 6.25

3 540 12.61 8.11 1.77 22.5 2.50 1100 5

4 540 12.61 8.11 1.77 22.5 2.50 1100 5

5 540 12.61 8.11 1.77 22.5 2.50 900 5

6 540 21.02 13.52 2.96 37.5 2.50 1100 5

7 540 12.61 8.11 1.77 22.5 2.50 1300 5

8 100 4.81 8.11 9.58 22.5 2.50 1100 2

9 320 4.56 9.24 1.20 15.0 1.50 1000 5

10 320 4.56 9.24 1.20 15.0 1.50 1200 5

11 320 21.27 3.14 5.59 30.0 3.50 1000 4

12 320 9.11 18.49 2.40 30.0 1.50 1200 5

13 320 21.27 3.14 5.59 30.0 3.50 1200 3

14 320 9.11 18.49 2.40 30.0 1.50 1000 5

15 320 10.63 1.57 2.79 15.0 3.50 1000 5

16 320 10.63 1.57 2.79 15.0 3.50 1200 1.5

17 760 24.50 3.14 2.35 30.0 3.50 1000 6

18 760 12.25 1.57 1.18 15.0 3.50 1000 4

19 760 10.50 18.49 1.01 30.0 1.50 1000 5

20 760 12.25 1.57 1.18 15.0 3.50 1200 5

21 760 24.50 3.14 2.35 30.0 3.50 1200 4

22 760 5.25 9.24 0.50 15.0 1.50 1000 5

23 760 5.25 9.24 0.50 15.0 1.50 1200 5

24 760 10.50 18.49 1.01 30.0 1.50 1200 5

25 320 4.56 9.24 1.20 15.0 1.50 1000 7

26 540 2.52 19.62 0.35 22.5 0.50 1100 10

27 540 4.20 2.70 0.59 7.5 2.50 1100 13

28 540 12.61 8.11 1.77 22.5 2.50 1100 3.5

29 980 13.41 8.11 0.98 22.5 2.50 1100 10

30 540 14.83 4.38 3.29 22.5 4.50 1100 4
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Figure 7.22: Optical images of BN-19F fibers
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Sample 4 to a clear, translucent material as in Sample 15. The area surrounding the deposits

was covered with varying degrees of white powder. The overall shape of the deposits varied

from tall slender fibers such as Sample 22 to bulging balloon–shaped structures such as

Samples 12 and 13. It is evident in the figure that some of the fibers had the common

volcano shape. Some of the fibers also show an asymmetry in their overall shape relative

to the direction of gas flow. Most of these attributes were quantified and the responses

were used in regression analyses to study the significant factors and develop quantitative

relationships between the factor levels and the responses. Equation 7.10 represents the full

regression equation for any response,Y, in the four factor study:

Y = β0 +β1A+β2B+β3C+β4D+β5A2 +β6B2 +β7C
2 +β8D2

+β9AB+β10AC+β11AD+β12BC+β13BD+β14CD (7.10)

whereA is pressure,B is total flow, C is B3N3H6 concentration,D is temperature, and

theβ ’s are the regression coefficients. The general procedure was to do a regression fit to

this full model and then reduce the model by eliminating factors that were not statistically

significant near a 95% confidence level. The reduced model results are most pertinent and

are the ones presented below for the different attributes.

The first attribute studied was the powder formation surrounding the fiber deposit. In the

fabrication of the dispenser cathode assembly, it was desirable to minimize the formation

of this powder. A rating between 1 and 5 was assigned to each sample where 1 represented

minimal powder formation and 5 represented heavy powder formation. The regression

output is given in Table 7.19 along with a standardized pareto chart illustrating the relative

significance of different factors.

The analysis revealed that all four factors were significant at a 95% confidence level.

The second order concentration (CC) and pressure (AA) were both negatively correlated

to powder formation while maximum temperature (D) and total flow (B) showed a positive

relationship. Thus, a reduction in powder formation should accompany an increase in
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Table 7.19:BN-19F powder formation multiple regression analysis

Estimated Effects for Powder Formation
average = 3.81944 +/- 0.17664

B:Total Flow = 0.458333 +/- 0.216339

D:Max Temp = 0.708333 +/- 0.216339

AA = -1.00521 +/- 0.20947

CC = -1.38021 +/- 0.20947

Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio P-Value

B:TotalFlow 1.26042 1 1.26042 4.49 0.0457

D:MaxTemp 3.01042 1 3.01042 10.72 0.0035

AA 6.46684 1 6.46684 23.03 0.0001

CC 12.1918 1 12.1918 43.42 0.0000

Total error 6.17795 22 0.280816

Total (corr.) 26.1852 26

R-squared = 76.4067 percent
R-squared (adjusted for d.f.) = 72.117 percent
Standard Error of Est. = 0.529921
Mean absolute error = 0.385545
Durbin-Watson statistic = 1.66708 (P=0.1728)
Lag 1 residual autocorrelation = 0.124866

Standardized Pareto Chart for Powder

Standardized effect

+
-

0 2 4 6 8

B:Total Flow

D:Max Temp

AA

CC
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pressure or concentration or a reduction in temperature or total flow.

The next attribute studied was the volcano effect. Again, a scale of 1–5 was used to

quantify the relative volcano shape where 1 represented no volcano and 5 represented a

significant volcano. The output from the regression analysis given in Table 7.20 revealed

that temperature (D) was the dominant factor with increasing temperature causing a more

severe volcano. Other significant factors included the second order concentration (CC)

which reduced the volcano effect and pressure (A) and and pressure–temperature interac-

tion (AD) which both had a positive relationship with volcano severity.

Another attribute of the deposits that it was desirable to minimize was the asymmetrical

shape such as can be seen in Sample 24 of Figure 7.22. A scale of 1 to 5 was used to relate

the degree of asymmetry to the factor levels. The regression output is given in Table 7.21.

Again, temperature is shown to be the most important factor with a strong positive rela-

tionship to asymmetry. Increasing pressure (A) and the pressure–temperature interaction

(AD) are also shown to be correlated with a more asymmetrical shape. The second order

concentration (CC) had a negative relationship with asymmetry.

Figure 7.22 shows that the BN fibers varied greatly in their shape profile. Two metrics

were used to quantify the shape: maximum fiber diameter and the ratio of maximum diam-

eter to minimum diameter. The results of the regression analyses are given in Tables 7.22

and 7.23.

The maximum diameter was shown to be strongly linked to the deposition temperature.

This was consistent with observations made during the deposition process where increased

temperatures correlated to increased diameters. Other factors shown to be important were

the second order concentration (CC), total flow (B), and pressure–concentration (AC) inter-

action. The second order concentration showed a negative relation to maximum diameter

while other factors exhibited a positive relationship.

The degree to which the maximum diameter differed from the minimum diameter of

some deposits was remarkable. For example, Sample 21 was over 4.6 times wider at its
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Table 7.20:BN-19F volcano effect multiple regression analysis

Estimated Effects for Volcano Effect
average = 2.18333 +/- 0.180102

A:Pressure = 0.541667 +/- 0.284767

D:MaxTemp = 1.70833 +/- 0.284767

AD = 0.5625 +/- 0.348767

CC = -0.6625 +/- 0.270154

Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio P-Value

A:Pressure 1.76042 1 1.76042 3.62 0.0703

D:MaxTemp 17.5104 1 17.5104 35.99 0.0000

AD 1.26563 1 1.26563 2.60 0.1210

CC 2.92604 1 2.92604 6.01 0.0226

Total error 10.7042 22 0.486553

Total (corr.) 34.1667 26

R-squared = 68.6707 percent
R-squared (adjusted for d.f.) = 62.9745 percent
Standard Error of Est. = 0.697534
Mean absolute error = 0.421296
Durbin-Watson statistic = 1.91696 (P=0.3905)
Lag 1 residual autocorrelation = -0.0022658

Standardized Pareto Chart for Volcano

Standardized effect

+
-

0 1 2 3 4 5 6

AD

A:Pressure

CC

D:Max Temp
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Table 7.21:BN-19F asymmetry multiple regression analysis

Estimated Effects for Asymmetry
average = 2.66667 +/- 0.235702

A:Pressure = 1.0 +/- 0.372678

D:MaxTemp = 2.33333 +/- 0.372678

AD = 1.0 +/- 0.456435

CC = -0.833333 +/- 0.353553

Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio P-Value

A:Pressure 6.0 1 6.0 7.20 0.0136

D:MaxTemp 32.6667 1 32.6667 39.20 0.0000

AD 4.0 1 4.0 4.80 0.0393

CC 4.62963 1 4.62963 5.56 0.0277

Total error 18.3333 22 0.833333

Total (corr.) 65.6296 26

R-squared = 72.0655 percent
R-squared (adjusted for d.f.) = 66.9865 percent
Standard Error of Est. = 0.912871
Mean absolute error = 0.549383
Durbin-Watson statistic = 2.29545 (P=0.2035)
Lag 1 residual autocorrelation = -0.17197

Standardized Pareto Chart for Asymmetry

Standardized effect
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Table 7.22:BN-19F maximum diameter multiple regression analysis

Estimated Effects for Maximum Diameter
average = 752.206 +/- 41.0784

B:TotalFlow = 186.312 +/- 64.9506

D:MaxTemp = 536.061 +/- 64.9506

AC = 202.049 +/- 79.5479

CC = -197.181 +/- 61.6175

Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio P-Value

B:TotalFlow 208272.0 1 208272.0 8.23 0.0089

D:MaxTemp 1.72417E6 1 1.72417E6 68.12 0.0000

AC 163296.0 1 163296.0 6.45 0.0187

CC 259203.0 1 259203.0 10.24 0.0041

Total error 556852.0 22 25311.5

Total (corr.) 2.91179E6 26

R-squared = 80.8759 percent
R-squared (adjusted for d.f.) = 77.3988 percent
Standard Error of Est. = 159.096
Mean absolute error = 110.435
Durbin-Watson statistic = 2.52939 (P=0.1134)
Lag 1 residual autocorrelation = -0.302065

Standardized Pareto Chart for Maximum Diameter

Standardized effect
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Table 7.23:BN-19F diameter ratio multiple regression analysis

Estimated Effects for Diameter Ratio
average = 1.97632 +/- 0.218945

B:TotalFlow = 0.688373 +/- 0.346182

C:B3N3H6Conc = 0.569715 +/- 0.346182

D:MaxTemp = 1.06498 +/- 0.346182

AA = 0.442903 +/- 0.328417

AD = -0.580998 +/- 0.423984

BD = 0.839004 +/- 0.423984

Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio P-Value

B:TotalFlow 2.84314 1 2.84314 3.95 0.0606

C:B3N3H6Conc 1.94745 1 1.94745 2.71 0.1154

D:MaxTemp 6.80504 1 6.80504 9.46 0.0060

AA 1.30775 1 1.30775 1.82 0.1925

AD 1.35024 1 1.35024 1.88 0.1858

BD 2.81571 1 2.81571 3.92 0.0618

Total error 14.381 20 0.719051

Total (corr.) 31.4504 26

R-squared = 54.2739 percent
R-squared (adjusted for d.f.) = 40.5561 percent
Standard Error of Est. = 0.847969
Mean absolute error = 0.597194
Durbin-Watson statistic = 1.41786 (P=0.0620)
Lag 1 residual autocorrelation = 0.266703

Standardized Pareto Chart for Diameter Ratio

Standardized effect
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maximum diameter than its minimum diameter. Note that without exception, the minimum

diameter of all samples occurred near the base and the substrate interface. This was be-

lieved to be related to the nodular growth preferred by the material. After a growth node

was initiated, the BN preferred to deposit on itself rather than the tungsten substrate. This

could be due to substrate material properties or something inherent in the process. In the

line experiments to be discussed in Section 7.3, this issue becomes very significant.

At greater than a 95% confidence level, the diameter ratio is related to temperature (D)

with an increase in temperature yielding an increased ratio. A number of other variables

were more loosely correlated with the effect including total flow (B), B3N3H6 concentra-

tion (C), second order pressure (AA), and the total flow–temperature (BD) and pressure–

temperature (AD) interactions. All factors had a positive relation to the diameter ratio

except the AD interaction.

The balloon shape exemplified by fibers with high diameter ratios could be seen to

emerge on the thermal imager as the deposit grew. Interestingly, during the growth process,

the vertical growth rate at the center of the deposit seemed to decelerate from its initial

velocity and the diametral growth rate seemed to remain constant. This behavior could

be related to several things. First, Section 5.3.5.4 discussed how the change in substrate

conductivity and conduction paths leads to an increase in fiber diameter as the growth rises

from the surface. Also, for increased stability, the substrate was not moved coaxially as the

fibers grew which means that the laser spot diameter could have increased slightly over the

height of a fiber.

Another cause for this shape could be an implication of a transport–limited process.

Specifically, changes in B3N3H6 concentration due to temperature, changes in concentra-

tion boundary layer thickness due to flow characteristics, and changes in the mass diffusion

coefficients due to temperature and/or pressure could effect the surface deposition rate.

Thermal diffusion of the reagent species also becomes a question. These phenomena are

studied further in Chapter 8.
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The fact that both kinetic and transport–limited variables appeared significant in the

regression analysis of diameter ratio suggested that the shape might be an implication of

all these factors.

The fiber growth velocity was another response of interest. For many samples, the

growth velocity was measured from a series of thermal images. From those where thermal

images were unavailable, measurements were made by dividing the fiber height by the

growth time (this was the time when fiber growth was actually observed on the thermal

imager, not the entire time the laser was engaged). In order to remain consistent with the

assumption that the maximum fiber temperature occurred at the fiber tip, only samples with

a volcano rating of≤ 2 were included in the analysis. The results of the growth velocity

regression analysis are included in Table 7.24.

Both first (A) and second order (AA) pressure effects were shown to significantly influ-

ence the growth rate with a decrease in pressure causing an increase in growth velocity. The

AA effect on growth rate was positive. B3N3H6 concentration (C) also showed a positive

effect on growth rate. These findings are very consistent with a transport–limited process.

Decreased pressure enhances ordinary diffusion through its effect on the diffusion coeffi-

cient while increasing concentration directly increases the diffusive flux to the surface.

Several of the fibers grown in BN-19F were mounted in epoxy and sectioned to allow

better observation of the internal features of the deposits. Samples 13 and 15 were repre-

sentative of two extremes of the experimental results. Optical images of these deposits are

shown in Figures 7.23 and 7.24. Note that when mounted, both of these fibers developed a

bubble in the epoxy near their base as shown by the large spherical anomaly in the figures.

Sample 13 was a large deposit with a high diameter ratio. The cross section shows it to have

a very large void in its center. The void is particularly obvious because the microscope’s

light source was shining down on the fiber. The deposit appears semi–translucent with a

rough morphology.

Sample 15 was a smaller deposit that was very translucent throughout the fiber body.
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Table 7.24:BN-19F growth velocity multiple regression analysis

Estimated Effects for Growth Velocity
average = 4.5709 +/- 0.911254

A:Pressure = -5.73746 +/- 1.45685

C:B3N3H6Conc = 3.5708 +/- 1.32766

AA = 3.39288 +/- 1.1743

AD = -1.42052 +/- 1.93422

Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio P-Value

A:Pressure 128.326 1 128.326 15.51 0.0015

C:B3N3H6Conc 59.8498 1 59.8498 7.23 0.0176

AA 69.0699 1 69.0699 8.35 0.0119

AD 4.46262 1 4.46262 0.54 0.4748

Total error 115.834 14 8.27386

Total (corr.) 391.533 18

R-squared = 70.4152 percent
R-squared (adjusted for d.f.) = 61.9624 percent
Standard Error of Est. = 2.87643
Mean absolute error = 1.93979
Durbin-Watson statistic = 1.02069 (P=0.0021)
Lag 1 residual autocorrelation = 0.475445

Standardized Pareto Chart for Growth Velocity

Standardized effect
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Figure 7.23: Cross section of Sample 13 from BN-19F

Figure 7.24: Cross section of Sample 15 from BN-19F
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It is shown to have two distinct flaws oriented perpendicular to the growth direction that

extend throughout the fiber diameter. These flaws are likely internal cracks. The degree

of translucency of fibers was related to the number and size of internal cracks or voids.

The base of Sample 15 consisted of several materials with very different appearances. Like

many other BN deposits, there was a region of white powder near the substrate. Inter-

estingly, some of this powder was contained in what looked like a shell of yellow–brown

translucent material that had a glassy appearance. Unfortunately, during polishing, the re-

gion connecting the main fiber body to this glassy shell was removed. The complexity of

materials near the substrate surface could be a result or a cause of the dynamic behavior

seen during the initial BN growth period.

A fiber more representative of the typical result from BN-19F is shown in Figure 7.25.

This material again has a translucent color that is interrupted by periodic cracks across

the fiber diameter. The fiber has a very layered appearance. It is difficult to tell from

this image whether the discoloration at the interface between each of these small “layers”

is a crack or it represents a change in some material property. Growth appears to have

originated from two distinct nodes at the surface. As growth continued, the two nodes

merged into a single structure. In addition to the many small “layers” that appear in the

structure, there are at least four large growth sections. These sections are defined by large,

obvious cracks that extend across the fiber diameter. Internally, it appears that these growth

sections represent a discontinuity in the growth process that could have resulted in growth

re–initiation. However, the external shape of the deposit does not have such well–defined

sections. Overall, the shape and internal features of LCVD boron nitride fibers shown here

are very similar to those of LCVD carbon fibers.

Efforts were made to view the BN fibers in Figures 7.23, 7.24, and 7.25 using an SEM;

however because neither BN nor mounting epoxy are good electrical conductors, the optical

images shown here provided better information. An EDX analysis was done on all three of

these fibers to ensure the material was indeed boron nitride. The EDX output was similar
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Figure 7.25: Cross section of Sample 16 from BN-19F
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for all samples and an example is shown in Figure 7.26. It reveals that boron and nitrogen

are the most dominant elements. The ratio of B:N was approximately 1:3, which is less

than the 1:1 ratio of stoichiometric boron nitride. A commercially produced high purity

boron nitride standard was analyzed for comparison.111 Figure 7.27 is the response from

the hot–pressed BN sample. The standard is shown to have a similar B:N ratio as was

measured for the BN fibers of BN-19F. The trace amounts of Al and O in the response

are most likely related to the polishing process that used aluminum oxide powder. The

discrepancy from the B:N ratio of 1:1 could be related to the inherent ease of detecting

nitrogen elements compared to boron elements due to their larger atomic mass.

7.2.4 Boron Nitride Fiber Growth Kinetics

In an effort to gain insight into the rate–limiting mechanism of boron nitride LCVD us-

ing the borazine reagent system, a kinetics analysis was performed using a combination of

data from several of the BN fiber experiments. The set of fibers used were chosen based

on several criteria. The sensitivity of the boron nitride deposition temperature to the laser

power input prohibited extensive use of the real–time automatic temperature control sub-

system. The use of manual control inevitably led to process temperature variations during

fiber growth. In order to extract useful growth rate data over periods of relatively constant

temperature growth, the growth rates were measured using the thermal imager as described

in Section 3.4.1. For this technique to be viable, only fibers which were accompanied by

a sufficient number of thermal images, and that exhibited no volcano effect were eligible

for consideration in the analysis. A few fibers that did not have sufficient thermal images,

but had extensive reliable experimental data were included by dividing the measured fiber

height over the growth time (not the length of time the laser was engaged). The subset of

boron nitride fibers meeting these criteria is given in Table 7.25 along with the pertinent

experiment conditions.
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Figure 7.26: EDX output from analysis of BN-19F fibers

Figure 7.27: EDX output from reference boron nitride sample

247



Table 7.25:Data used in kinetic regression analysis for BN fibers

Experiment Sample Temp,Tmax Adj Conc,CCH4 Press Dep Vel
(◦C) (mol/m3) (Torr) (µm/s)

BN-6 2-1 1290 0.625 760 4.46

BN-6 3-1 1373 0.632 760 1.73

BN-6 3-2 1386 0.625 760 3.46

BN-6 4-1 1453 0.729 760 3.46

BN-6 4-2 1399 0.764 760 4.93

BN-6 5-1 1419 0.837 760 4.69

BN-6 7-1 1394 0.948 760 3.44

BN-6 8-1 1459 0.904 760 6.51

BN-6 8-2 1370 0.977 760 4.39

BN-6 9-1 1353 1.002 760 7.31

BN-17F 8 1297 0.112 760 0.70

BN-18F 4 1287 0.035 760 0.59

BN-18F 12 1473 0.010 760 0.16

BN-19F 1 1373 0.620 100 17.03

BN-19F 2 1273 0.956 320 14.43

BN-19F 3 1473 0.796 320 17.47

BN-19F 4 1273 0.409 320 8.74

BN-19F 6 1273 0.956 320 8.98

BN-19F 7 1273 0.409 320 5.30

BN-19F 8 1473 0.796 320 6.86

BN-19F 9 1473 0.341 320 5.25

BN-19F 10 1373 0.620 540 4.49

BN-19F 11 1373 0.620 540 3.28

BN-19F 12 1373 0.124 540 0.12

BN-19F 14 1373 0.620 540 5.19

BN-19F 15 1173 0.758 540 2.95

BN-19F 17 1373 1.117 540 5.77

BN-19F 19 1273 0.955 760 7.25

BN-19F 22 1273 0.410 760 4.70

BN-19F 23 1273 0.955 760 5.74

BN-19F 24 1273 0.409 760 4.25
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Simple linear regression analyses were done on the data in Table 7.25 to character-

ize the relationship between growth rate and temperature (Table 7.26), growth rate and

borazine concentration (Table 7.27), and growth rate and pressure (Table 7.28). The re-

gression output from the analyses confirmed what was visibly apparent. There was not a

statistically significant relationship between growth rate and temperature, but there was a

strong relationship between growth rate and borazine concentration and growth rate and

pressure. These findings strongly indicated that the deposition of BN fibers using B3N3H6

under the conditions studied is a transport–limited process. Further support of this finding

is presented in Chapter 8.
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Table 7.26:Regression output for BN fiber growth velocity vs deposition temperature

Dependent variable: Deposition Velocity
Independent variable: Temp
Parameter Estimate Standard Error T Statistic P-Value

Intercept 2.34766 13.5102 0.173769 0.8633

Slope 0.00240314 0.00996335 0.241198 0.8111

Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio P-Value

Model 1.07537 1 1.07537 0.06 0.8111

Residual 536.057 29 18.4847

Total (Corr.) 537.132 30

Correlation Coefficient = 0.0447444
R-squared = 0.200206 percent
R-squared (adjusted for d.f.) = -3.24117 percent
Standard Error of Est. = 4.29939
Mean absolute error = 2.87313
Durbin-Watson statistic = 0.985337 (P=0.0009)
Lag 1 residual autocorrelation = 0.505173

Plot of Fitted Model
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Table 7.27: Regression output for BN fiber growth velocity vs temperature adjusted
B3N3H6 concentration

Dependent variable: Deposition Velocity
Independent variable: Adj Conc
Parameter Estimate Standard Error T Statistic P-Value

Intercept 1.54818 1.64712 0.939932 0.3550

Slope 6.2596 2.3097 2.71014 0.0112

Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio P-Value

Model 108.548 1 108.548 7.34 0.0112

Residual 428.584 29 14.7788

Total (Corr.) 537.132 30

Correlation Coefficient = 0.449541
R-squared = 20.2088 percent
R-squared (adjusted for d.f.) = 17.4573 percent
Standard Error of Est. = 3.84432
Mean absolute error = 2.53756
Durbin-Watson statistic = 0.799843 (P=0.0001)
Lag 1 residual autocorrelation = 0.598888

Plot of Fitted Model
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Table 7.28:Regression output for BN fiber growth velocity vs total pressure

Dependent variable: Deposition Velocity
Independent variable: Pressure
Parameter Estimate Standard Error T Statistic P-Value

Intercept 13.7724 1.81331 7.59519 0.0000

Slope -0.0136927 0.00287923 -4.75566 0.0001

Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio P-Value

Model 235.351 1 235.351 22.62 0.0001

Residual 301.781 29 10.4062

Total (Corr.) 537.132 30

Correlation Coefficient = -0.661938
R-squared = 43.8162 percent
R-squared (adjusted for d.f.) = 41.8789 percent
Standard Error of Est. = 3.22587
Mean absolute error = 2.48889
Durbin-Watson statistic = 1.09798 (P=0.0022)
Lag 1 residual autocorrelation = 0.447733

Plot of Fitted Model
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7.3 Boron Nitride Line Experiments

One of the primary goals of the boron nitride fiber experiments was to find suitable starting

conditions for the investigation of BN line growth. Recall that a line typically refers to

a structure with height� width. LCVD line deposition involves the additional line scan

speed variable and the complexity of a dynamic laser–substrate–deposit interaction. For

BN , the complex interaction between the tungsten substrate material properties and the

properties of the deposit exacerbate the complexity of the process. As with carbon, constant

laser power was believed to be the best approach to the deposition of a single layer BN line.

In fact, the sensitivity of the BN deposition process limited the use of feedback control

and necessitated the use of constant intralayer laser power approach within multi–layered

structures.

7.3.1 Exploratory Experiments

The first BN line experiment, BN-11L, was designed to study the appropriate power levels

for the first and second layers of growth. In this case, conditions known to be favorable

to BN deposition were used: pressure of 760 Torr, carrier N2 flow of 25 sccm, and zero

diluent N2 flow. As with BN fibers, all BN line experiments utilized the reagent gas nozzle.

A scan speed of 2.54 mm/min was chosen based on the successful deposition of carbon

lines. All lines were 2.54 mm in length. Other values used are given in Table 7.29. The

changes in borazine flow and concentration were due strictly to fluctuations in the vaporizer

temperature.

In general, the resulting deposits had severe troughs in their center regions. The troughs

seemed to be an extension of the volcano effect along the length of the line. Sample 1

however, showed no such occurrence. The single layer deposit of Sample 1 was a thin,

faint coating of solid white powdery material, presumed to be boron nitride, in a wide line

shape. The conditions for Sample 1 were used as the first layer conditions for many of the

subsequent BN line experiments.
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Table 7.29:BN-11L experiment conditions

Borazine Total Borazine Scan No. Layer 1 Layer 2+
No. Flow Flow Conc Speed Layers Power Power

(sccm) (sccm) (mol/m3) (mm/min) (W) (W)

1 1.09 26.09 1.96 2.54 1 31.05

2 1.16 26.16 2.07 2.54 2 31.05 31.05

3 1.23 26.23 2.19 2.54 2 15.91 15.91

4 1.64 26.64 2.82 2.54 2 31.05 15.91

5 1.72 26.72 2.93 2.54 2 31.05 7.73

7.3.2 Refined Experiments

After conditions that supported successful deposition of single layer BN lines were found

in Sample 1 of BN-11L, experiments BN-12L and BN-13L were executed to find optimal

conditions for the growth of additional layers. With the exception of Sample 13L-6, the

laser power was kept constant during the growth of each layer. The results of BN-11L, and

experience with BN fiber growth, indicated that the power level for layers 2+ should be

significantly reduced from that of layer 1.

The conditions for BN-12/13L were again a total pressure of 760 Torr, carrier N2 flow

of 25 sccm, and zero diluent N2 flow through the gas nozzle. The variations in borazine

concentration were due strictly to fluctuations in the temperature of the vaporizer. Table

7.30 contains all of the other pertinent conditions.

Samples 12L-1 through 13L-1 represented a study of the second layer power level for

two layered lines. Sample 12L-1 used a layer 2 power of 3.66 W and resulted in a thick

line with a severe volcano effect in its center. Inside the crater of the volcano, additional

fibrous structures grew. Figure 7.28 shows these features.

The line was tapered along its length with wide round growth on the end where scanning

started, and no significant growth on the opposite end. The degree of taper was quantified

through the taper ratio, computed by dividing the minimum width by the maximum width

of a line. While not as exaggerated, similar asymmetry along the line length was observed
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Table 7.30:BN-12/13L experiment conditions

Borazine Total Borazine Scan No. Layer 1 Layer 2+
No. Flow Flow Conc Speed Layers Power Power

(sccm) (sccm) (mol/m3) (mm/min) (W) (W)

12L-1 2.24 27.24 3.69 2.54 2 31.05 3.66

12L-2 2.23 27.23 3.67 2.54 2 31.05 3.32

12L-3 2.19 27.19 3.62 2.54 2 31.05 2.98

12L-4 1.41 26.41 2.47 2.54 2 31.05 2.98

12L-5 1.40 26.40 2.45 2.54 2 31.05 2.98

12L-6 1.39 26.39 2.45 2.54 2 31.05 2.63

13L-1 1.61 26.61 2.78 2.54 2 31.05 2.29

13L-2 1.61 26.61 2.77 2.54 6 31.05 2.29

13L-3 1.59 26.59 2.74 2.54 6 31.05 2.63

13L-4 1.58 26.58 2.73 2.54 6 31.05 2.98

13L-5 1.58 26.58 2.72 2.54 6 31.05 3.32

13L-6 1.59 26.59 2.75 2.54 10 31.05 varies

Figure 7.28: SEM micrograph of 2–layer BN line showing volcano effect
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in carbon lies. However, with respect to the scan direction, the carbon lines exhibited

opposite features: less significant growth at the initiation end and large rounded growth at

the opposite transition end. The cause for the tapered BN line shape is likely related to the

heat transfer through the deposit and the substrate.

The layer 2 power level was decreased incrementally over the next few experiments,

and the severity of the volcano effect decreased accordingly. The tapered shape remained

a constant feature, albeit the degree of tapering declined significantly. Line 12L-5 in Fig-

ure 7.29 is an example of improved line morphology with decreased laser power. As shown

in the figure, lines were characterized by measuring the length, minimum width, and max-

imum width of the bulk growth region. Values for all 7 lines are given in Table 7.31.

Figure 7.29: SEM micrograph of Sample 5 line indicating measurement locations

The presence of a well–defined starting point for bulk deposition along the line is further

evidence of the binary nature of the process. The fraction of the total scan length covered

by bulk line growth was termed the line length ratio. A simple linear regression related the

length ratio to the layer 2 laser power. The regression output is given in Table 7.32.
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Table 7.31:BN-12/13L 2 layer line results

Length Min Max Mean Taper
No. Length Ratio Width Width Width Ratio

(µm) (µm) (µm) (µm)

12L-1 1736 0.68 258 605 432 0.43

12L-2 1523 0.60 171 431 301 0.40

12L-3 1602 0.63 157 413 285 0.38

12L-4 1397 0.55 217 358 287 0.61

12L-5 1706 0.67 131 308 219 0.42

12L-6 80 0.03 100 100 100 1.00

13L-1 341 0.13 119 193 156 0.62

Table 7.32:Regression output for BN line length as a function of laser power

Dependent variable: LengthRatio
Independent variable: Layer 2 Power
Parameter Estimate Standard Error T Statistic P-Value

Intercept -0.981885 0.495471 -1.98172 0.1043

Slope 0.488242 0.164869 2.96139 0.0315

Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio P-Value

Model 0.280465 1 0.280465 8.77 0.0315

Residual 0.159903 5 0.0319806

Total (Corr.) 0.440368 6

Correlation Coefficient = 0.798052
R-squared = 63.6887 percent
R-squared (adjusted for d.f.) = 56.4265 percent
Standard Error of Est. = 0.178831
Mean absolute error = 0.123865
Durbin-Watson statistic = 2.24762 (P=0.1857)
Lag 1 residual autocorrelation = -0.170039
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The coefficient for the layer 2 laser power term in the regression equation was 0.488

which indicated that a 1 W change in laser power would result in an increase in length ratio

of about 0.5. This result highlights the sensitivity of line length to laser power.

Another simple linear regression was done to relate the mean line width to the layer 2

laser power. Results are given in Table 7.33 The regression output showed a strong cor-

relation between these variables. The regression coefficient of 219µm/W again indicated

extreme sensitivity of deposit parameters to laser power. This predicted that a 1 W change

in laser power would change the mean line width by over 200µm.

Table 7.33:Regression output for BN line width as a function of laser power

Dependent variable: AvgWidth
Independent variable: Layer 2 Power
Parameter Estimate Standard Error T Statistic P-Value

Intercept -398.805 144.832 -2.75358 0.0401

Slope 219.373 48.1931 4.55196 0.0061

Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio P-Value

Model 56620.7 1 56620.7 20.72 0.0061

Residual 13663.1 5 2732.61

Total (Corr.) 70283.7 6

Correlation Coefficient = 0.897553
R-squared = 80.5601 percent
R-squared (adjusted for d.f.) = 76.6722 percent
Standard Error of Est. = 52.2744
Mean absolute error = 40.6819
Durbin-Watson statistic = 2.20417 (P=0.2039)
Lag 1 residual autocorrelation = -0.231167

Experiments 13L-2 through 13L-5 consisted of 6 layers of growth rather than two lay-

ers. The purpose of these experiments was to determine how the addition of more layers

would effect the line deposits. The conditions used were identical to those used in the two

layer experiments 12L-2 – 13L-1. The results of the 6 layer experiments were surprising.
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With the exception of 13L-3, the 6 layer lines did not yield as much deposit as did the 2

layer lines. Figures 7.30 and 7.31 compare the 2 layer and 6 layer lines for corresponding

layer 2+ laser power levels.

The explanation for the discrepancy between the 2 layer lines and the 6 layer lines could

be related to several factors. First, the incidental variations in B3N3H6 concentration due to

changes in vaporizer temperature could effect the deposition rates. However, by observing

the data, no correlation can be made between the concentration and deposit shape. The

substrates used underwent identical preparation steps, but surface roughness or contact

resistance between the tungsten sheet and the substrate holder could have been different

between 12L and 13L. The variations in the CO2 laser power level and the sensitivity of

the process to incident laser power could combine to yield these different results. Whatever

the cause, the sensitivity and lack of repeatability of the process was again highlighted.

Experiment 13L-6 was an effort to grow a BN wall; BN walls are discussed in Section

7.4 below.

7.3.3 Designed Experiments

Experiment BN-14L was an experiment designed to study two factors: carrier flow (which

correlated to borazine concentration) and layer 2+ laser power. The setup was a two factor

rotatable central composite design with factor levels given in Table 7.34. The pressure was

held constant at 760 Torr, and the sum of the carrier and diluent flows was fixed at 25 sccm.

The first layer laser power was 31.05 W for all experiments. The scan speed was a constant

2.54 mm/min with a scan length of 2.54 mm. All lines consisted of four layers.

The results of BN-14L varied. All deposits produced a faint white powder coating along

the line length, but only some yielded bulk line growth on top of the powder coating. Those

that gave significant deposits are listed in Table 7.35 along with the measured length and

width values. Figure 7.32 illustrates one of the more successful deposits, Sample 8.

The results were analyzed using multiple linear regression that included second order
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Sample 12L-5, 2 layers Sample 13L-4, 6 layers

Figure 7.30: BN-12/13L lines with layer 2+ laser power of 2.98 W

Sample 12L-2, 2 layers Sample 13L-5, 6 layers

Figure 7.31: BN-12/13L lines with layer 2+ laser power of 3.32 W
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Table 7.34:BN-14L experiment conditions

Borazine Carrier Diluent Borazine Total Borazine Layer 2+
No. Temp Flow Flow Flow Flow Conc Power

(◦C) (sccm) (sccm) (sccm) (sccm) (mol/m3) (W)

1 -11.6 15.0 10.6 0.76 26.36 1.34 2.98

2 -11.1 8.0 17.9 0.42 26.32 0.73 3.48

3 -10.7 22.0 3.2 1.17 26.37 2.05 3.48

4 -10.2 25.0 0.0 1.37 26.37 2.41 2.98

5 -9.8 15.0 10.6 0.84 26.44 1.47 2.98

6 -9.4 8.0 17.9 0.46 26.36 0.80 2.48

7 -9.0 5.0 21.1 0.29 26.39 0.51 2.98

8 -8.5 22.0 3.2 1.32 26.52 2.30 2.48

9 -8.1 15.0 10.6 0.92 26.52 1.60 3.68

10 -7.7 15.0 10.6 0.94 26.54 1.63 2.98

11 -7.2 15.0 10.6 0.97 26.57 1.67 2.27

12 -6.9 15.0 10.6 0.99 26.59 1.70 2.98

Table 7.35:BN-14L 2 factor 3 level experiment results

Length Min Max Mean Taper
No. Length Ratio Width Width Width Ratio

(µm) (µm) (µm) (µm)

1 488 0.19 127 182 154 0.70

3 1666 0.66 86 308 197 0.28

4 1495 0.59 132 241 186 0.55

8 1287 0.51 68 102 85 0.67

9 1676 0.66 39 79 59 0.50

10 1229 0.48 45 124 84 0.36

12 900 0.35 46 63 55 0.72
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Figure 7.32: Sample 8 of BN-14L illustrating a typical BN line

main effects and first order interactions. The first response variable studied was the line

length. The regression results are provided in Table 7.36 along with a pareto chart of

the standardized effects. The analysis revealed that the only term that was statistically

significant at the 95% level was the carrier flow rate.

All insignificant factors were removed from the analysis and a simple linear regression

was executed to generate a regression equation. The resulting equation was:

Length=−644.526+90.4957∗CarrierFlow (7.11)

which indicated that a 1 sccm change in carrier flow rate would result in an increase in line

length of over 90µm.

A similar analysis was done for the line width. The results of the regression analysis

are given in Table 7.37. Again, the results showed that the only statistically significant

variable at the 95% confidence level was the carrier flow rate. The fact that line length and

width were only significantly affected by the carrier flow rate (or borazine concentration)

was consistent with the finding that BN deposition from B3N3H6 under these conditions is

transport–limited.

A simple linear regression of line width versus the carrier flow rate resulted in the

equation:

Width=−76.5333+9.74586∗CarrierFlow (7.12)
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Table 7.36:BN-14L line length multiple regression analysis

Estimated Effects for Line Length
average+block = 572.567 +/- 300.678

A:Carrier Flow = 1266.94 +/- 368.254

B:Laser Power = 687.106 +/- 368.255

AA+block = 147.845 +/- 438.31

AB = 189.1 +/- 520.79

BB+block = 238.097 +/- 438.313

Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio P-Value

A:Carrier Flow 3.21027E6 1 3.21027E6 11.84 0.0184

B:Laser Power 944225.0 1 944225.0 3.48 0.1211

AA+block 30858.4 1 30858.4 0.11 0.7496

AB 35758.8 1 35758.8 0.13 0.7314

BB+block 80032.2 1 80032.2 0.30 0.6103

Total error 1.35611E6 5 271222.0

Total (corr.) 5.63576E6 10

R-squared = 75.9373 percent
R-squared (adjusted for d.f.) = 51.8747 percent
Standard Error of Est. = 520.79
Mean absolute error = 300.926
Durbin-Watson statistic = 1.38901 (P=0.0000)
Lag 1 residual autocorrelation = 0.263981

Standardized Pareto Chart for Length

0 1 2 3 4

Standardized effect

AA+block

AB

BB+block

B:Laser Power

A:Carrier Flow +
-
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Table 7.37:BN-14L line width multiple regression analysis

Estimated Effects for Line Width
average+block = 79.5333 +/- 28.5833

A:Carrier Flow = 136.442 +/- 35.0072

B:Laser Power = 48.8348 +/- 35.0073

AA+block = 18.2418 +/- 41.6669

AB = 55.95 +/- 49.5077

BB+block = -45.4086 +/- 41.6672

Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio P-Value

A:Carrier Flow 37232.8 1 37232.8 15.19 0.0114

B:Laser Power 4769.65 1 4769.65 1.95 0.2218

AA+block 469.782 1 469.782 0.19 0.6798

AB 3130.4 1 3130.4 1.28 0.3097

BB+block 2910.93 1 2910.93 1.19 0.3255

Total error 12255.0 5 2451.01

Total (corr.) 61841.8 10

R-squared = 80.1832 percent
R-squared (adjusted for d.f.) = 60.3665 percent
Standard Error of Est. = 49.5077
Mean absolute error = 18.1321
Durbin-Watson statistic = 1.36948 (P=0.0000)
Lag 1 residual autocorrelation = 0.0871837

Standardized Pareto Chart for Width

Standardized effect

+
-

0 1 2 3 4

AA+block

BB+block

AB

B:Laser Power

A:Carrier Flow
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which states that an increase of 1 sccm in carrier flow will produce almost a 10µm increase

in line width.

Unfortunately, during the mounting and polishing process of some of the samples from

BN-14L several of the samples were destroyed, thus prohibiting the measurement of line

heights. Observations had indicated that most of the samples had similar heights on the

order of 10–20µm.

Experiment BN-15L was another two factor, three level rotatable central composite

designed experiment that studied carrier flow rate and layer 2+ laser power. The system

pressure was kept at 760 Torr. The sum of the carrier and diluent flow rates was kept

constant at 50 sccm, a 25 sccm increase over previous experiments. The increased flow

rates were intended to increase deposition rates for this transport–limited process. Due

to the increase in total flow rate and the associated increase in convective cooling of the

laser spot, laser power levels were increased to maintain similar substrate temperatures as

previous experiments. The first layer laser power was increased to 56.7 W. The scan speed

was 2.54 mm/min, and the lines were 2.54 mm long. All lines consisted of four layers of

growth. Other conditions are given in Table 7.38

The results of BN-15L varied greatly. All samples produced some degree of bulk de-

posit. Sample 1 produced only a small amount of bulk growth, but yielded a coating of the

white powder that consistently preceded bulk deposition. This powder was credited with

changing the the properties of the substrate surface, namely decreasing the reflectivity and

thermal conductivity, thus serving to facilitate nucleation and initiate the bulk reaction.

Samples 2, 3, 4, 6, and 7 produced wall structures with height≥ width. For the most

part, these walls exhibited extreme volcano effects with rough fibrous structures emerging

from the craters of the volcanos similar to the first samples in Experiment BN-12L. It is

believed that deposits showing these features experienced conditions too hot for optimal

growth. For cases when the laser power was excessive, the use of constant laser power

during layers 2 – 4 exacerbated the volcano problem. More wall experiments are presented
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Table 7.38:BN-15L experiment conditions

Borazine Carrier Diluent Borazine Total Borazine Layer 2+
No. Temp Flow Flow Flow Flow Conc Power

(◦C) (sccm) (sccm) (sccm) (sccm) (mol/m3) (W)

1 -5.4 20.0 29.3 1.43 50.73 1.28 3.49

2 -6.1 44.1 3.4 3.03 50.53 2.74 5.20

3 -6.5 30.0 18.3 2.01 50.31 1.83 5.20

4 -6.9 40.0 7.8 2.63 50.43 2.39 3.49

5 -7.0 20.0 28.9 1.30 50.20 1.19 6.89

6 -7.2 40.0 7.8 2.59 50.39 2.35 6.89

7 -7.2 30.0 18.3 1.94 50.24 1.77 7.58

8 -7.0 30.0 18.3 1.96 50.26 1.78 5.20

9 -6.9 15.9 33.3 1.05 50.25 0.95 5.20

10 -6.7 30.0 18.3 2.00 50.30 1.82 2.79

11 -6.4 30.0 17.7 2.02 49.72 1.86 5.20

in Section 7.4 below.

Sample 5 exhibited a large amount of bulk growth at the initial end of the line and

no significant growth at the other end. It also showed signs of a moderate volcano effect.

Samples 8–10 yielded very good BN lines. These were lines of uniform width with a

fairly smooth and consistent morphology. The lines had minimal extraneous white powder

formation in the surrounding area. Dimensions of these lines are given in Table 7.39.

Table 7.39:BN-15L BN line dimensions - Samples 8–10

Length Min Max Mean Taper
No. Length Ratio Width Width Width Ratio

(µm) (µm) (µm) (µm)

8 1472 0.58 51 100 76 0.51

9 2113 0.83 73 212 142 0.35

10 1121 0.44 68 130 99 0.52

A review of the conditions used in Samples 8–10 indicated that the carrier flow rate

was between 15 and 30 sccm and the laser power was between 2.75 and 5.25 W. This

was the range of conditions studied in BN-14L, therefore, a suitable operating box for the
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Table 7.40:Conditions from BN-19F multiple response optimization analysis used in BN-
20L

Factor Level

Pressure (Torr) 232

Carrier Flow (sccm) 12.25

Diluent Flow (sccm) 1.57

Total Flow (sccm) 15.7

B3N3H6 Conc (mol/m3) 3.58

Max Temp (◦C) 1009

deposition of BN lines at 760 Torr had been identified.

After the successful results of the fiber experiment BN-19F, a BN line experiment, BN-

20L, was designed using the optimal fiber growth conditions. As stated previously, the

growth of LCVD fibers is fundamentally different from that of lines which reduces the util-

ity of most fiber attribute studies when designing line experiments. The optimal conditions

were defined through a multiple response optimization analysis that sought to minimize

powder formation, minimize the volcano effect, and minimize deposit asymmetry. The

conditions found by the analysis and used in BN-20L are given in Table 7.40.

The factors studied in BN-20L were limited to those directly pertinent to line deposi-

tion: scan speed, layer 1 laser power, and layer 2+ laser power. Each line was 2.54 mm

long and had 4 layers. The factor levels are listed in Table 7.41 in the order the experiments

were executed.

The results of BN-20L varied greatly. Only 2 of the 16 runs, Samples 9 and 13, showed

any sign of bulk growth, and these samples exhibited excessive growth and powder for-

mation. These lines further represented the binary nature of BN deposition. The sporadic

nature of BN growth on the substrate surface was the dominant factor complicating the

deposition of BN lines. This process sensitivity combined with the limitations on using a

constant laser power control scheme restricted the utility of more expansive BN line stud-

ies.
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Table 7.41:BN-20L line conditions

Scan Layer 1 Layer 2+
No. Speed Power Power

(mm/min) (W) (W)

1 3.81 23.2 4.00

2 5.08 30.0 5.50

3 2.54 30.0 2.50

4 2.54 30.0 5.50

5 1.67 40.0 4.00

6 3.81 40.0 6.52

7 2.54 50.0 2.50

8 3.81 40.0 1.48

9 3.81 56.8 4.00

10 3.81 40.0 4.00

11 5.95 40.0 4.00

12 3.81 40.0 4.00

13 2.54 50.0 5.50

14 5.08 50.0 2.50

15 5.08 50.0 5.50

16 5.08 30.0 2.50
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Sample 13 was used to test the BN line adherence to the tungsten substrate. A piece of

transparent Scotch tape was applied to the line and gentle pressure was applied to ensure

uniform adhesion. The tape was then pulled away from the substrate. The bulk BN line

deposit separated from the substrate during this test. Upon close inspection, it appeared that

the line sat atop a thin powder coating which was consistent with observations made during

deposition experiments. The presence of this powder apparently enhances deposition, but

negatively impacts the adhesion of the deposit to the substrate.

Experiment BN-21L was run to determine if use of a different substrate material would

significantly enhance the BN line deposition process. The goal was to find a substrate

that had similar properties to the deposit; thus hot–pressed boron nitride plates were used.

Details of these substrates can be found in Section 9.1.2.

BN-21L used the same pressure and flow conditions used in BN-20L; however, no prior

data on appropriate laser power or scan speed was available for BN substrates. A laser

power of 15.9 W was found to yield an average maximum temperature of about 1000◦C

and was used in all trials. The scan speed and total number of layers varied with each run.

The scan speed varied between 2.54 and 12.7 mm/min while the number of layers varied

from 4 to 20. The basic procedure was to engage the laser and simultaneously initiate the

horizontal stage motion. The scanning would continue until most of the line length showed

evidence of deposition via the thermal imager.

Very sporadic growth similar to that on tungsten was still observed during BN-21L.

Maintaining temperature control of the process was very difficult due to this behavior. The

most important difference in depositing on BN versus tungsten was the ability to see the

temperature on the thermal imager from the instant the laser was engaged. This allowed at

least some degree of anticipation as to when a growth node might emerge. The temperature

on tungsten did not reach a sufficient level for the imager to detect, therefore, only after

enough growth had occurred to raise the temperature appreciably did the operator have a

chance to respond.
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Even with the ability to see the initial substrate temperature prior to growth, the process

was still very binary and sporadic. For the case of BN deposition on tungsten, some of this

behavior was attributed to material property differences between substrate and deposit as

discussed in detail earlier. BN-21L showed that a significant amount of this behavior was

also inherent in the process itself.

It summary, the deposition of BN lines was complicated by the sporadic nature of the

process. This behavior prevented the control of deposition temperature and forced the

use of a constant laser power approach. Unfortunately, a constant power approach was

much less robust than a temperature control approach. The use of a high power during the

first layers of growth and a much lower power during subsequent layers was a complexity

associated with use of constant laser power. The stability and noise associated with the

CO2 laser was discussed in Section 7.2. In addition to these effects, a constant laser power

approach was subject to variation in substrate surface preparation, laser optic alignment

and cleanliness, gas nozzle alignment, convective cooling, and substrate material property

changes. Active temperature control maintains a constant temperature regardless of all

these effects and minimizes their importance. The negative impact on the robustness of BN

line deposition due to these concerns made repeatability difficult. When successful line

deposition was achieved, the adherence of the BN material to the substrate was not good.

Thus, in terms of the dispenser cathode application, the LCVD of BN lines in general, and

particularly on a tungsten substrate, became a concern.

7.4 Boron Nitride Wall Experiments

While not necessarily required for the dispenser cathode application, the fabrication of

BN walls was investigated in order to characterize the sustainable robustness of BN line

deposition. As with carbon deposition, the first layer of the walls was deposited under

constant laser power. The first layer power was 31.1 W in all cases. In experiments BN-

8W and BN-9W, for subsequent layers, the laser power was manually controlled through
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Figure 7.33: Optical microscope image of a fibrous BN wall

the LabVIEW interface in an effort to maintain the maximum temperature near 1000◦C.

All BN wall experiments were done at a pressure of 760 Torr. Carrier flow was held at

25 sccm with no diluent flow. Scan length was fixed at 2.54 mm. Other conditions were

derived from successful BN fiber and line deposits and are given in Table 7.42.

Table 7.42:BN-8/9W BN wall experiment conditions

Borazine Total Borazine Max Scan No.
No. Flow Flow Conc Temp Speed Layers

(sccm) (sccm) (mol/m3) (◦C) (mm/min)

8W-1 2.40 27.40 3.91 1000 2.54 14

8W-2 2.40 27.40 3.91 1000 2.54 20

9W-1 2.40 27.40 3.91 1000 5.08 10

9W-2 2.40 27.40 3.91 1000 3.81 10

9W-3 2.40 27.40 3.91 1000 6.35 10

9W-4 2.40 27.40 3.91 1000 5.08 10

The experiments produced deposits of significant size. Observation revealed no distinct

relationship between the scan speed and the resulting deposit morphology. The walls had a

very bumpy appearance and were surrounded by large amounts of white powder, similar to

many of the fibers. Figure 7.33 is an optical image of Sample 9-2. The walls appeared to

be more of an array of individual fibers than a structure made of smooth continuous layers.

This result was likely caused by the inadequate manual temperature control scheme that
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was necessitated by the process sensitivity.

In order to combat the problem of inadequate manual temperature control, Experiment

BN-10W was a set of 10 layer walls that used a constant power level throughout the growth

of all layers. The first layer power was again 31.1 W, pressure was 760 Torr, carrier flow

was 25 sccm, and diluent flow was 0. The only variation in borazine concentration was due

to changes in the vaporizer temperature. The scan length of the walls was 2.54 mm. Table

7.43 contains additional conditions.

Table 7.43:BN-10W BN wall experiment conditions

Borazine Borazine Total Borazine Layer 2+ Scan No.
No. Temp Flow Flow Conc Power Speed Layers

(◦C) (sccm) (sccm) (mol/m3) (W) (mm/min)

10W-1 -1.7 2.19 27.19 3.62 3.32 2.54 10

10W-2 -0.9 2.29 27.29 3.75 3.66 2.54 10

10W-3 -9.2 1.45 26.45 2.53 3.66 2.54 10

10W-4 -11.4 1.28 26.28 2.26 3.66 2.54 10

10W-5 -11.6 1.26 26.26 2.23 3.66 2.54 4

Even for the same experimental setup, the results of BN-10W varied greatly. Sample

1 was run at a lower laser power than samples 2 through 4, and samples 2, 3, and 4 were

designed to be identical. For 2 through 4 there was an inadvertent change in B3N3H6

concentration due to the changes in vaporizer temperature. SEM micrographs of these

samples shown in Figure 7.34 revealed that samples 1 and 3 yielded very large deposits

and samples 2 and 4 yielded very little.

These results did not correlate well with any of the changes in experimental conditions.

The binary nature of this deposition process is again highlighted by the lack of repeatability

shown in Samples 2–4. Due to this binary phenomenon and the observed sensitivity of

the process to incident laser power, the deposition of boron nitride walls does not appear

feasible without a more robust temperature control scheme. The deposition of walls is not

required in the current target application, but future applications of LCVD may require
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Sample 1 Sample 2

Sample 3 Sample 4

Figure 7.34: Variation in BN-10W walls under similar experimental conditions
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such structures. In fact, it may be possible to generalize that the deposition of walls of

ceramic material on metal substrates may not be feasible without significant improvements

in LCVD process control technology.

7.5 Summary of Boron Nitride Deposition

The goal of the BN experiments was to identify conditions that enabled the deposition of

BN lines suitable for use in fabricating the dispenser cathode assembly. Several of the BN

lines produced in Experiments BN-14 and 15L met this criteria. The factor levels used in

both experiments were at the lower limits of Georgia Tech’s LCVD machine resolution. For

example, the resolution of the 100 sccm mass flow controllers was about 1 sccm while the

resolution of the laser power was about 0.1 W. Given the sensitivity of the process relative

to the resolution of the machine, more refined experiments were not feasible. In order to

determine recommended settings for the deposition of BN lines that closely conform to

the requirements for the dispenser cathode, an optimization analysis was performed on the

results of BN-14L.

The target results of the optimization analysis were to maximize length and achieve a

line width of 100µm. The analysis revealed that under similar experimental conditions,

a pressure of 760 Torr, a carrier flow rate of 17.0 sccm, a diluent flow rate of 8.0 sccm, a

layer 1 laser power of 31 W, and a layer 2+ laser power of 3.68 W should yield lines of

suitable size and shape.
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CHAPTER VIII

BORON NITRIDE DEPOSITION ANALYSIS

Boron nitride LCVD has not been studied significantly, particularly using the borazine

reagent system; therefore, the advanced LCVD modeling environment developed in the

FLUENT package described in Chapter 5 was used to gain insight into this process. The

experimental results of Chapter 7 indicated the process was transport–limited. An analysis

was devised to study the theoretical maximum deposition rate achievable under transport

limitations.

When a process is transport–limited, by definition, the kinetics of the deposition process

are much faster than the transport mechanisms. The governing equation for a kinetically–

limited BN deposition process is the Arrhenius relationship:

J′′BN = krC
n
B3N3H6,0 (8.1)

whereJ′′BN is the molar reaction rate of boron nitride (kmol/m2-s), CB3N3H6 is the local

concentration of borazine (mol/m3), n is the order of the reaction, and the rate constant,kr

is given by:

kr = k0e
−Q
RT (8.2)

wherek0 is the pre–exponential factor (m/s),Q is the activation energy (kJ/mol),R is the

universal gas constant (8314 J/kmol-K), andT is the local temperature (K). Usually,n, k0,

andQ are determined by fitting experimental data to the above equations when operating

in a known kinetically–limited regime. Because the investigation of Chapter 7 primarily

involved a transport–limited regime, data from the literature was used to find these kinetic

parameters.

Conceptually, the governing equation for a transport–limited process in one dimension
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is a simplified version of Fick’s Law:

~JB3N3H6 = kt(CB3N3H6,∞−CB3N3H6,0) (8.3)

where~JB3N3H6 is the molar flux (mol/m2-s) of borazine,CB3N3H6,∞ andCB3N3H6,0 are the

concentration of borazine in the bulk fluid and at the substrate surface (mol/m3), respec-

tively, andkt is the mass transfer coefficient defined as:

kt =−DB3N3H6,m/δ (8.4)

whereDB3N3H6,m is the binary diffusion coefficient (m2/s) of borazine in the mixture, and

δ is the thickness of the concentration boundary layer (m).

Under certain assumptions described in Chapter 1, the above equations can be rewritten

as

~JB3N3H6 =
CB3N3H6,∞(

1
kt

+ 3
kr

) (8.5)

which elucidates the relationship betweenkr andkt in the different rate–limiting regimes. In

a transport–limited case,kr � kt and the equation reduces to Fick’s Law. In a kinetically–

limited case,kt � kr and the equation reduces to the Arrhenius expression.

For the purposes of analysis, the reaction rate constantkr can be artificially inflated

to force the boron nitride LCVD process into the transport–limited regime. One implicit

assumption of this technique is that the concentration of reagent species near the substrate

surface approaches zero. Stated differently, there is 100% conversion of all B3N3H6 reagent

species that reach the substrate into solid BN . This assumption can be validated by a

thermodynamic analysis of the deposition process. Once reasonable values forn, k0, and

Q have been obtained, and the thermodynamic analysis is complete, a FLUENT model

similar to that described in Chapter 5 for carbon can be configured for boron nitride to

calculate the maximum mass deposition rate obtainable given the transport limitations.
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8.1 Extraction of Kinetic Parameters from Literature

Because boron nitride LCVD from borazine was transport–limited as presented in Chapter

7, the determination of the kinetic parametersn, k0, andQ was not feasible. However, data

from the CVD of boron nitride was available in the literature.29,34 Gomez–Aleixandre stud-

ied the deposition of boron nitride in a CVD reactor from the diborane–ammonia mixture.

Part of the study included an investigation of the reaction pathways from the diborane–

ammonia reagents to the final deposition reaction. The conclusion was that at temperatures

above 775◦C, borazine, B3N3H6, forms via an intermediate homogenous reaction, and that

borazine was a likely precursor specie in the final deposition surface reaction. Gomez-

Aleixandre reports an activation energy of the BN deposition from borazine of 35 kcal/mol

or 147 kJ/mol, but does not report values of the reaction ordern or the pre–exponential

factork0.

A simple kinetic analysis was done using two data points provided by Gomez–Aleixandre

similar to that done in Section 4.2. The two data points were the only ones available at tem-

peratures above 775◦C where the deposition reaction is believed to involve the borazine

species. The conditions for the data points are given in Table 8.1.

The deposition rate in nm/min was converted to kmol/m2-s by using values of 24.82

kg/kmol and 2000 kg/m3 for the molecular weight and density of boron nitride, respec-

tively. CB3N3H6 was computed by using the stoichiometric ratio of 3:2 for B2H6:B3N3H6

through the intermediate homogenous reactions identified by Gomez-Aleixandre. An ap-

proximation ofn= 1 was used as justified by the linear relationship of the deposition rate to

the concentration.29 In order to compute the needed parameters, the transformed equation

Table 8.1: Data points from literature used in boron nitride kinetics study

jvel J′′BN CB2H6 CB3N3H6 n T
(nm/min) (kmol/m2-s) (kmol/m3) (kmol/m3) (K)

Datum 1 30 4.03E-08 1.20E-05 8.00E-06 1 1048

Datum 2 90 1.21E-07 1.12E-05 7.47E-06 1 1123
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for the Arrhenius rate constant,kr

lnkr = lnk0−
Q
R

1
T

(8.6)

was used in conjunction with a simple linear regression equation:

Y = β0 +β1X (8.7)

where

Y = lnkr = ln
J′′BN

Cn
B3N3H6

(8.8)

β0 = lnk0 (8.9)

β1 = −Q
R

(8.10)

X =
1
T

(8.11)

(8.12)

The results of the regression analysis are summarized in Table 8.2.

The value of activation energyQ computed here is very close to the 1.47e08 J/kmol

reported by Gomez–Aleixandre.29 The combination of this activation energy along with

the pre–exponential factork0 and the reaction ordern provided a good starting point for the

computational model developed below.

Table 8.2: Kinetic parameters extracted from literature for CVD of boron nitride from
borazine

Parameter Symbol Value

Pre–exponential factor (m/s) k0 2.00e05

Reaction order n 1.00

Activation energy (J/kmol) Q 1.52e08
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8.2 Thermodynamic Analysis of BN Deposition from Bo-
razine

The equilibrium conversion efficiency of an LCVD reaction is defined as the number of

moles of product divided by the number of moles of reactant put into the system. Specifi-

cally, for the borazine decomposition reaction, reaction efficiency is defined as the number

of moles of solid boron nitride, BN (s) produced divided by number of moles of B3N3H6

(g) put into the system. This ratio can be calculated from thermodynamics.

Others have presented thermodynamic analyses of the CVD of boron nitride from the

borazine reagent.68 The use of Kuznetsov’s results in lieu of performing a new thermody-

namic analysis was deemed inappropriate, because the pressures in his analysis were much

lower than those used in Georgia Tech’s LCVD system (0.01–1 versus 760 Torr).

Thermodynamic theory dictates that chemical reactions tend to occur within a system

in a direction that minimizes the Gibbs free energy. A negative value for the free energy

change of a reaction indicates that the reaction will proceed spontaneously. The equation

for computing a change in Gibbs free energy,∆G, for a reaction system is:

∆G = ∆H−T∆S (8.13)

where∆H is the change in enthalpy (Hproducts−Hreactants), T is temperature, and∆S is the

change in entropy (Sproducts−Sreactants).

The concept of a formation reaction for a species refers to the chemical reaction occur-

ring at standard state that forms the species from its pure elements in their standard states.

The Gibbs free energy of formation,∆Gf for a species can be computed from the enthalpy

of formation,∆H f , the temperatureT, and the change in entropy,∆S, associated with the

formation reaction.

∆Gf = ∆H f −T∆S (8.14)

The∆H f of an element in its standard state is defined to be equal to 0.

A computer program, SOLGASMIX–PV, was available that computes the equilibrium
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molar quantities of a set of species under defined conditions by minimizing the Gibbs free

energy of all species within the system.112,113 First, the system was defined by identify-

ing all species containing the elements of interest that could exist. For each species, the

enthalpy of formation∆H f and the entropySwere specified at all temperatures of interest.

Next, the pressure and the temperature of the system were specified. Finally, the initial

molar quantities of all elements in the system were defined. The code then iterated until

finding the molar quantities of the defined species that minimize the overall Gibbs free

energy of the system.

The species used in the analysis of boron nitride deposition from borazine are listed

in the first column of Table 8.3. Values for∆H f andS were provided in the literature as

a function of temperature.110 Table 8.3 includes examples of these values at three repre-

sentative temperatures: 1100, 1300, and 1500 K. Data from the full analysis is given in

Appendix A.3

Initially, the system was specified to contain 6 moles of H2, 28 moles of N2, and 6

moles of solid boron, B(s). These values correspond to the ratios of elemental quantities

contained in a setup using 25 sccm of N2 carrier gas, and 2 sccm of B3N3H6 reagent;

values that were well within the experimental ranges used in Chapter 7. The pressure used

in the analysis was 1 atm which also corresponded to experimental conditions. The Gibbs

free energy minimization was done at temperatures between 800 and 2500 K in 100 K

increments. The results of the analysis at 1100, 1300, and 1500 K are given in Table 8.4

in terms of molar quantities for each species. Figure 8.1 is a plot of the resulting mole

quantities of each species for all species with quantities� 10−3 moles.

The results of the thermodynamic analysis revealed that under the assumption of local

equilibrium in the LCVD process, all of the B3N3H6 reagent would eventually convert to

BN (s). Thus, the implicit assumption that the concentration of reagent near the substrate

surface in a transport–limited reaction approaches zero was validated for this material sys-

tem.
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Table 8.3: Enthalpy and entropy values of species used in boron nitride thermodynamic
analysis

Species Enthalpy,∆H f , (kJ/mol) Entropy,S, (J/mol K)

1100 K 1300 K 1500 K 1100 K 1300 K 1500 K

H 222.943 224.006 224.986 -141.840 -145.315 -148.292

H2 0.000 0.000 0.000 -169.121 -174.288 -178.843

NH 338.975 338.975 339.005 -220.154 -225.559 -230.324

NH2 162.439 161.916 161.573 -243.303 -250.848 -257.626

NH3 -55.563 -56.040 -56.099 -251.882 -262.043 -271.296

N2H2 206.535 206.836 207.439 -282.902 -293.951 -303.869

N2H4 87.931 89.384 91.381 -337.384 -354.559 -370.029

N 477.253 478.040 478.743 -180.451 -183.926 -186.903

N2 0.000 0.000 0.000 -231.354 -236.989 -241.930

BH 439.224 437.742 436.122 -211.898 -217.621 -222.654

BH2 195.687 194.753 193.803 -235.340 -244.103 -251.894

BH3 93.395 91.519 89.907 -248.001 -258.560 -268.147

B2H6 22.764 23.094 23.965 -362.329 -386.856 -408.962

B3N3H6 -527.532 -525.861 -523.580 -501.879 -540.356 -574.801

B 555.810 554.725 553.411 -180.602 -184.077 -187.053

B2 810.425 807.319 803.819 -246.230 -252.397 -257.727

BN 474.448 473.003 471.358 -254.478 -260.469 -265.681

B-s 0.000 0.000 0.000 -31.409 -35.789 -39.703

BN-s -251.124 -250.375 -249.646 -58.753 -66.578 -73.487
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Table 8.4: Equilibrium mole quantities of species in boron nitride thermodynamic analysis

Species 1100 K 1300 K 1500 K

H 3.47E-07 1.49E-05 2.37E-04

H2 6.00E+00 6.00E+00 6.00E+00

NH 1.08E-14 3.22E-12 2.11E-10

NH2 7.08E-10 1.08E-08 7.97E-08

NH3 7.53E-04 2.94E-04 1.47E-04

N2H2 5.44E-16 1.76E-14 2.26E-13

N2H4 4.64E-17 2.06E-16 6.27E-16

N 1.46E-18 4.51E-15 1.65E-12

N2 2.50E+01 2.50E+01 2.50E+01

BH 1.06E-22 1.15E-17 5.50E-14

BH2 1.10E-14 1.99E-11 4.77E-09

BH3 6.10E-14 1.96E-11 1.31E-09

B2H6 7.68E-28 5.20E-24 3.31E-21

B3N3H6 1.36E-21 6.04E-20 9.72E-19

B 4.24E-25 3.28E-19 6.67E-15

B2 1.15E-42 4.30E-33 4.25E-26

BN 1.82E-23 3.58E-18 2.65E-14

B-s 0.00E+00 0.00E+00 0.00E+00

BN-s 6.00E+00 6.00E+00 6.00E+00
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Figure 8.1: Change in boron nitride equilibrium species quantities with temperature
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8.3 Computational Boron Nitride Deposition Rate Model

The three dimensional model geometry and mesh configuration used to study boron nitride

deposition were identical to those used for carbon described in Section 5.1. Additionally,

the universal boundary conditions described in Section 5.2 for each governing equation

were applicable to the boron nitride case. The properties of the reagent mixture and its

constituent species were specific to the borazine–nitrogen system, as were the results of the

computational analysis.

8.3.1 Material Properties

The boron nitride deposition reaction described by Equation 2.2 used two reactant species,

borazine, B3N3H6, and nitrogen, N2. The reaction yielded three product species: BN(s),

H2, and N2. The definition of a gaseous mixture in the FLUENT software involved two

steps. The first step was to identify and define the properties of individual species. Next,

the fluid mixture was defined from the constituent species and the proper mixing rules for

use in computing mixture properties were chosen. The mixture definition also involved

specification of any chemical reactions that involved the mixture species. Finally, the prop-

erties of the substrate material were defined. The extreme temperatures involved in the

LCVD process demanded that the material properties be defined as functions of tempera-

ture wherever possible.

8.3.1.1 Borazine, Nitrogen, and Hydrogen Species Properties

In general, all of the gaseous species used in the computational model were treated as

ideal gases. The fact that all LCVD simulations were done at or below atmospheric pres-

sure made the ideal gas assumption reasonable. For some of the material properties, it

was not necessary or possible to define the properties as a function of temperature. Table

8.5 contains values for these properties. The properties that were defined as functions of

temperature included:

• Specific heat capacity at constant pressure,Cp (J/kg-K)
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Table 8.5: Constant properties of reagent gases used in boron nitride deposition simulation

Property B3N3H6 N2 H2

Molecular weight,Mw (kg/kmol) 80.50 28.01 2.016

Standard state enthalpy,H◦ (J/kmol) -5.100E08 0 0

Standard state entropy,S◦ (J/kmol-K) 2.887E05 1.916E05 1.307E05

Reference temperature,Tre f (K) 298.15 298.15 298.15

Leonard–Jones characteristic length,σ (Å) 5.339 3.667 2.915

Leonard–Jones energy parameter,(ε/kB) (K) 396.96 99.8 38.0

• Viscosity,µ (kg/m-s)

• Thermal conductivity,k (W/m-K)

The NIST Chemistry Webbook98 provided a plethora of information for temperature

dependent properties of gases. Values ofCp for borazine, nitrogen, and hydrogen were

computed from the Shomate equation given in Equation 5.19. The coefficients in Equation

5.19 were provided by Chase99 through NIST98 as shown in Table 8.6.

The complex relationship betweenCp andT given by the Shomate equation had to be

simplified before inclusion in the model. The procedure was to use the Shomate equation to

plot the temperature dependence ofCp, and then break the resulting curve into three pieces

with a second order polynomial curve fit to each piece. Thus, for each species the data

were described via a piecewise–polynomial. Figure 8.2 illustrates the relationship between

Cp andT for all species.

Both viscosity,µ, and thermal conductivity,k, were computed for each species from ki-

netic theory using Equations 5.20 and 5.23, respectively. Details of these calculations were

presented in Chapter 5. Figure 8.3 plots the viscosity of each species versus temperature

while Figure 8.4 shows the relationship between thermal conductivity and temperature.

8.3.1.2 Reagent Mixture Properties

The mixture defined for use in the boron nitride deposition simulations consisted of B3N3H6,

N2, H2, and BN(s). The BN(s) species was required in the mixture definition to account
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Table 8.6: Shomate equation coefficients used in boron nitride model

Borazine
Temp Range (K) 298 – 1200 1200 – 6000

A -2.177701 243.4071

B 443.4831 20.29144

C -307.0642 -3.87776

D 82.91977 0.257307

E -0.720903 -46.84992

Nitrogen

Temp Range (K) 298 – 6000

A 26.092

B 8.218801

C -1.976141

D 0.159274

E 0.044434

Hydrogen

Temp Range (K) 298 – 1000 1000 – 2500 2500 – 6000

A 33.066178 18.563083 43.413560

B -11.363417 12.257357 -4.293079

C 11.432816 -2.859786 1.272428

D -2.772874 0.268238 -0.096876

E -0.158558 1.977990 -20.533862

for the removal of the elements from their gaseous source species. It played no role in the

computations other than ensuring a mass balance.

The properties of the gas mixture that were derived from the properties of the individual

species were computed using mixing laws. The specific mixing laws used are reported in

Table 8.7.

Two different types of diffusion coefficients were needed in the boron nitride deposition

model. For the ordinary diffusion calculation, the full multicomponent diffusion model was

used as was presented in Equation 5.10. The diffusion coefficient for each specie pair was

calculated using kinetic theory as in Equation 5.24. The second type of diffusion coefficient
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Figure 8.2: Heat capacity of boron nitride reagent gases

was the thermal diffusion coefficient which was computed for each specie using Equation

5.28.

The surface deposition reaction was also specified within the mixture definition module

of FLUENT. Recall the equation that describes the overall boron nitride deposition reaction

from borazine:

B3N3H6(g)+xs N2(g)→ 3BN(s)+3H2(g)+xs N2(g) (2.2)

This equation represents the only reaction included in the FLUENT analysis of the process.

As part of the reaction definition, the code must be supplied with the kinetic parameters:k0,

n, andQ. The values in Table 8.2 were used as a starting point for these kinetic parameters.

Table 8.7: Mixing laws used in boron nitride reagent mixture definition

Density,ρ (kg/m3) ideal-gas

Specific heat capacity,Cp (J/kg-K) mixing-law

Thermal conductivity,k (W/m-K) ideal-gas-mixing-law

Viscosity,µ (kg/m-s) ideal-gas-mixing-law
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Figure 8.3: Viscosity of boron nitride reagent gases
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Figure 8.4: Thermal conductivity of boron nitride reagent gases
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8.3.1.3 Substrate Properties

The substrates used in the boron nitride deposition experiments of Chapter 7 were tungsten

sheets. However, for the purposes of the computational model being developed here to

study the maximum theoretical rates of deposition, it was deemed unnecessary to develop

an entirely new model mesh to represent the tungsten sheet on the graphite substrate holder.

The implications of the tungsten substrate were on the temperature field, and Duty did ex-

tensive studies of the relationship between LCVD substrate materials and temperature fields

in an angled–jet forced flow environment.2,67 The same graphite substrate material used in

the carbon deposition simulations of Chapter 5 was used in the boron nitride model. All

boundary conditions and material properties of the substrate remained identical including

the method of simulating laser heating through a volumetric heat generation function. Laser

power levels were adjusted to levels that yielded temperatures within the range of success-

ful boron nitride deposition. A value of 32 W corresponded to a maximum temperature of

about 1300◦C at a total flow of 27 sccm which is within the experimentally used range.

8.3.2 Boron Nitride Deposition Rate Model

The conditions used in the boron nitride model were chosen to be similar to those used

in the experiments of Chapter 7. Table 8.8 gives an example of experimental conditions

alongside model conditions.

Table 8.8: Comparison of boron nitride experimental and model conditions

Total Carrier Borazine Total Borazine Max
ID Press Flow Flow Flow Conc Temp

(Torr) (sccm) (sccm) (sccm) (mol/m3) (◦C)

BN-6F-5 760 25.0 2.12 27.12 3.51 1146

FLUENT-A 760 25.0 2.00 27.00 3.01 1307

The first investigation, with conditions shown in the table, involved artificially increas-

ing the pre–exponential factork0 in order to force the BN deposition process well into
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a transport–limited regime. Starting withk0 = 2.0e05 m/s from the regression of Gomez–

Aleixandre’s data computed in Section 8.1, three additional values ofk0 were used: 2.0e07,

2.0e09, and 2.0e11 m/s.

The goal of these simulations was to quantify from fundamental principles the maxi-

mum deposition rate of boron nitride achievable in a transport–limited process. The large

amount of numerical information provided by the CFD modeling environment not only en-

abled quantification of growth rates, but also allowed insight into the different phenomena

that govern the detailed shape of the deposition rate profiles and deposit shapes.

In order to compare the cases of the differentk0 values, the variables of interest were

extracted from the solution data and plotted. Two different types of plots were used: surface

profile plots and boundary layer plots. Figure 8.5 illustrates where in the model domain

these plots apply.

Figure 8.5: Illustration of regions used in generating surface profile and boundary layer
plots

The first plot in Figure 8.6 compares the temperature profiles along the substrate sur-

face within the symmetry plane. As expected, there was no significant difference in the
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temperature profiles because the same laser power was used for all simulations. The sec-

ond plot compares the mass fraction of borazine, B3N3H6, while the third plot illustrates

the deposition rate profiles along this surface for the four cases.

The plot of B3N3H6 mass fraction profiles shows that the case ofk0 = 2.0e05 m/s did not

consume all available reagent species even at the center of the laser spot. This indicated

a kinetically–limited process. Thek0 = 2.0e05 m/s deposition rate profile in Figure 8.6

was very similar in size and shape to those of carbon deposition which has been shown

to be kinetically–limited. The three cases of artificially inflatedk0 values indicated the

presence of both a transport–limited and a kinetically–limited region across the surface of

the laser spot. Figure 8.6 shows for each of these three cases a region where the borazine

mass fraction was approximately equal to zero. For these cases, the deposition rate profiles

showed a drastic transition in shape near the point where the mass fraction approached

zero. The depletion of reagents in the center region was evidence that the rate–limiting

mechanism had changed from kinetic to transport.

A second boron nitride deposition rate model was developed to study the effect of an

increased gas nozzle flow rate. The nominal gas nozzle flow was increased to 50 sccm

while the B3N3H6 mole fraction was kept constant at 0.0741. Figure 8.7 contains plots of

the temperature, B3N3H6 mass fraction, and BN deposition rate across the surface of the

laser spot. In general, these curves are very similar to those of Figure 8.6 for the 25 sccm

carrier flow case.

For the case ofk0 = 2.0e07, a comparison of the temperature, mass fraction, and depo-

sition rate profiles is shown in Figure 8.8 for the two different flow cases. The temperature

profile plot indicates that the small change in flow rate had minimal effect on the laser spot

temperatures. For the case of total flow equal to 50 sccm, the mass fraction of B3N3H6 is

shown to be significantly higher across the laser spot diameter, except where the transport–

limited effects dominated. The increased flow rate is also shown to significantly effect the

overall BN deposition rate which validated the use of the localized gas nozzle.
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Figure 8.6: Effect of differentk0 values on temperature, B3N3H6 concentration, and BN
deposition rate profiles along the substrate surface within the fluid symmetry plane
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Figure 8.7: Effect of differentk0 values on temperature, B3N3H6 concentration, and BN
deposition rate profiles along the substrate surface within the fluid symmetry plane

292



−3 −2 −1 0 1 2 3

x 10
−4

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Radial position (m)

T
em

pe
ra

tu
re

 (
K

)

25 sccm
50 sccm

−3 −2 −1 0 1 2 3

x 10
−4

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Radial position (m)

B
3N

3H
6 M

as
s 

F
ra

ct
io

n

25 sccm
50 sccm

−3 −2 −1 0 1 2 3

x 10
−4

0

0.005

0.01

0.015

0.02

0.025

Radial position (m)

B
N

 D
ep

os
iti

on
 R

at
e 

(k
g/

m
2 −

s)

25 sccm
50 sccm

Figure 8.8: Effect of different carrier flow rates on temperature, B3N3H6 concentration,
and BN deposition rate profiles along the substrate surface within the fluid symmetry plane
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More insight into the difference between the 25 and 50 sccm flow cases can be seen by

investigating the boundary layers directly above the laser spot. Each transport equation has

a boundary layer associated with it: thermal boundary layer, momentum boundary layer,

and species (or concentration) boundary layer. Quantification of these boundary layer sizes

and the resulting deposition rates at different gas nozzle flow rates was possible using the

deposition rate model.

Data were taken from the vertical line extending into the fluid zone above the center

of the laser spot. Figure 8.5 illustrates the relation of the boundary layer plot space to

the overall model domain. Figure 8.9 contains plots of the temperature, momentum, and

concentration boundary layers fork0 = 2.0e07 for each of the two flow cases. The plots

are arranged with thez axis position on the vertical axis and the variable of interest on the

horizontal axis.

The temperature profiles for the two cases are very similar throughout the first 0.25 mm

above the substrate surface. Above this point, the 25 sccm case is generally hotter than the

50 sccm case. The 25 sccm case has a thermal boundary layer thickness of approximately

2 mm while the 50 sccm case is closer to 1 mm.

The momentum boundary layer plot revealed two important things about the increased

flow rates. First, doubling the flow rate from 25 sccm to 50 sccm resulted in an increase in

bulk velocity near the surface of less than 25%. Second, the height of the boundary layer in

the 25 sccm case was about 0.75 mm while the height of the 50 sccm boundary layer was

about 1.2 mm.

The species boundary layer is extremely important in LCVD. The plot of species bound-

ary layer profiles reveals that the increased flow rate through the gas nozzle increases both

the bulk concentration near the substrate surface by about 25%, and reduces the boundary

layer thickness in this same region from about 1.4 mm to 0.8 mm. It is this compression of

the species concentration boundary layer that enabled the increase in deposition rate with

increased flow rate as was shown in Figure 8.8.
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Figure 8.9: Effect of different carrier flow rates on thermal, momentum, and species
boundary layer profiles in the fluid zone directly above the center of the laser spot
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8.3.2.1 Deposition Rate Profile Shapes

The deposition rate profile plots in Figures 8.6, 8.7 and 8.8 for the cases ofk0 ≥2.0e07

exhibit an interesting shape. The shapes correlated well with the experimentally observed

volcano effect in BN deposition. These shapes reflect one of the most complex attributes

of the LCVD process. When one area of the deposition surface is operating in a transport–

limited regime, there will be an adjacent region operating in a kinetically–limited regime.

This fact is driven by the temperature gradients across the surface of the substrate.

Within the transport–limited region, the deposition rate is lowest near the center of the

laser spot and increases gradually with increasing radial distance. The explanation for this

difference in rates must lie in the variation of the local diffusive flux of B3N3H6 toward

the substrate surface. Recall the equation governing diffusion of a species within a dilute

mixture from Chapter 5:

~Ji =−ρDi,m∇Yi −DT,i
∇T
T

(5.9)

where~Ji was the mass flux of speciesi, ρ was the density of the mixture,Di,m was the

diffusion coefficient of speciesi in the mixture,Yi was the local mass fraction of speciesi,

DT,i was the thermal diffusion coefficient of speciesi, andT was the local temperature of

the mixture.

The concentration gradient,∇Yi , represents the change in concentration relative to the

different spatial directions. The issue of spatial directions and the dimensionality of the

diffusion paths to the substrate surface during a transport–limited LCVD process could be

one explanation for local variations in B3N3H6 diffusive flux. The diffusion path above a

transport limited LCVD surface reaction is effectively one dimensional. This is most true

in the center of the laser spot. Moving out radially, as the kinetically–limited region is

approached, the dimensionality of the diffusion paths increases accordingly. The “funnel-

ing down” of the diffusion paths toward the center of the deposit can restrict the diffusive

transport to this region. Figure 8.10 depicts this situation.
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Figure 8.10: Spatial dependency of diffusion paths in LCVD

In one dimension (e.g. thex direction), the∇Yi term can be approximated by:

∇Yi ≈
∆Yi

∆x
≈

Y∞,i −Y0,i

δ
(8.15)

whereY∞,i is the bulk mass fraction of speciesi, Y0,i is the surface mass fraction of species

i, andδ is the species or concentration boundary layer thickness.

If we assume that the mass fraction of B3N3H6 approaches zero at the substrate sur-

face, variations in the local concentration gradient must be due to either variations in the

bulk B3N3H6 concentration or variations in the boundary layer thickness. Both of these

possibilities can be investigated using data from the model results.

Boundary layer profiles at different points within the transport–limited region were plot-

ted and are shown in Figure 8.11. The three radial points of 0, 25, and 50µm represented

points near the minimum, mean, and maximum within the transport–limited region of the

deposition rate curves, respectively. The change in maximum B3N3H6 mass fraction and

boundary layer thickness at these three points is illustrated in Figure 8.12.

The decrease in mass fraction with increasing radial position would suggest a decline in

the magnitude of diffusive flux due to the concentration gradient. This behavior is not con-

sistent with observed deposition rate profiles. The decline in the concentration boundary

layer thickness suggests an increase in diffusive flux which is consistent with the observed

deposition rate profiles. Therefore, the relation between the variation in the local concen-

tration gradient,∇Yi , and the radial position is inconclusive.
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Another explanation for variation in the local diffusive flux to the substrate surface is

related to the thermal diffusion term of Equation 5.9. The general importance of thermal

diffusion in LCVD was highlighted in Chapter 5 when analyzing carbon deposition. The

contour plots in Figures 8.13 and 8.14 of the B3N3H6 mass fraction and temperature fields

in the fluid symmetry plane indicate conceptually the general directions of both ordinary

and thermal diffusion. The magnitude and opposing directions of these diffusion mecha-

nisms in the vicinity of the laser spot could cause variations in the local diffusive flux.

In order to quantify the significance of thermal diffusion in boron nitride LCVD, a sim-

ulation was run that disabled the computation of the thermal diffusion term in the species

transport equation. The plots in Figure 8.15 show that when thermal diffusion was not con-

sidered, the concentration of B3N3H6 above the substrate surface increased which caused

the overall deposition rate to increase.

However, the overall shape of the deposition rate profile did not change appreciably

from the case that did consider thermal diffusion. Therefore, these results again confirm the

importance of thermal diffusion in determining overall growth rate, but they do not indicate

that the variation in deposition rate within the transport–limited area of the deposition zone

can be attributed to this phenomenon.

Also intriguing about the rate profiles, is the fact that both the maximum and the aver-

age deposition rate at a given point on the substrate surface decreased with increasingk0

values. The profile did increase in overall width with increasingk0 values. This behavior

is somewhat difficult to interpret, because changingk0 values is difficult to conceive exper-

imentally. However, it is understood that the overall mass deposition rate should increase

with increasingk0 values. By looking at the area under the curves in Figures 8.6 and 8.7,

we see that indeed the overall deposition rate does behave in this manner.
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8.3.3 Relation Between BN Deposit Shape and Deposition Rate Profiles

One limitation of the boron nitride deposition rate model that also applied to the carbon

deposition rate model is that during the growth process, the shape and properties of the sub-

strate itself change. The emergence of this new structure significantly effects the temper-

ature profiles and flow characteristics. Therefore, the rigorous interpretation of the model

results is that they are only valid during the first few instants of deposition; however, it is

believed that much of the insight into the coupling of the thermal, momentum, and mass

transport phenomena is applicable throughout the deposition process.

The deposition rate profiles in the transport–limited BN process were very different

from those of the kinetically–limited carbon cases. An investigation into the shape of the

transport–limited profiles was given in Section 8.3.2.1. An extensive discussion of the

relation between the deposition rate profile and the deposit shape of the kinetically–limited

carbon deposition process was given in Section 5.3.5.4. Some of the same considerations

apply in a transport–limited process, but additional complexities also arise.

The additional complexities of a transport–limited case are related to the coupling be-

tween the underlying substrate surface shape and the deposition rate. As a deposit grows,

and its shape becomes more pronounced from the underlying substrate surface, the bound-

ary layer shapes are affected. Changes in species boundary layer thickness directly impact

the magnitude of diffusive flux of reagent to the surface. Variations in diffusive flux along

the substrate surface cause variations in deposition rates, thus, the surface shape becomes

distorted. The detrimental aspect of this cycle is that regions where the deposition rate

is increased cause protrusions from the surface which reduces the local boundary layer

thickness, further increasing the deposition rate.18

It was mentioned in Chapter 7 that some of the BN deposits, particularly under the 50

sccm flow case, exhibited asymmetries with respect to the direction of the gas flow from the

nozzle. The deposition rate profiles of Figures 8.7 and 8.8 indicate that some asymmetry

can arise without considering the emerging deposit structure. This asymmetry in the rate
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profiles can be attributed to enhanced reagent transport on the nozzle side of the deposition

zone.

Additional asymmetries could arise due to changes in the convective flow patterns

around the growing structure due to the structure itself. As the nozzle side of a deposit

grows faster, it will change the flow streamlines and restrict convective transport to the cen-

ter and opposite side of the deposit. Such a situation could explain the large asymmetries

seen in BN-18F.

The deposit shapes in a transport–limited process are affected by the changes in depo-

sition rate profiles and an increased sensitivity of deposition rates to the underlying surface

shape. Moreover, the volcano shaped deposition rate profiles within this regime seem in-

herent in the process due to the spatial restrictions in the diffusive path to the center of the

deposit zone. Using a gas nozzle to assist transport into the deposition zone helps increase

overall deposition rates, but does not eliminate the volcano effect. In fact, the nozzle could

be responsible for inducing asymmetries in the deposited structures. In summary, operating

in a transport–limited regime poses many challenges for controlling LCVD deposit shapes.

8.3.4 Experimental Comparison

The primary impetus for developing the boron nitride deposition rate model was to iden-

tify the theoretical maximum deposition rate under transport–limited conditions. For each

model case withk0≥2.0e07, the deposition rate profiles contained a regime transition point.

As the name implies, the regime transition point refers to the change from the kinetically–

limited regime to the transport–limited regime. This regime transition point represented a

local maximum deposition rate that corresponded to a particular radial position and surface

temperature. The conceptual Arrhenius plot of lnJ versus 1/T in Figure 8.16 illustrates

the relationship between the different kinetic curves and the upper theoretical limit of mass

transport.

The temperature, deposition rate, data pairs for cases withk0 ≥2.0e07 and flow equal
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Figure 8.16: Arrhenius plot showing relation between kinetic lines and mass transport line

to 25 sccm were transformed and plotted on the Arrhenius plot shown in Figure 8.17.

Experimental data from cases with a total flow of approximately 25 sccm were also plotted

for comparison. The vertical axis represents the mass deposition rate of BN normalized by

the temperature adjusted bulk B3N3H6 concentration. Removing the concentration from

the analysis allows a more direct comparison of the model and experimental results.

Overall, the plot shows good agreement between the predicted transport limit and the

experimental data. The vertical scatter in the experimental data could be attributed to a

variety of factors including variability in deposition temperature due to imperfect control

schemes and error associated with the deposition rate measurement technique. The lack

of horizontal range is due to physical limitations of the experimental setup. The lower

temperature limit was dictated by the lower limit of the thermal imaging camera. The

upper temperature was limited by the formation of undesirable deposit attributes such as

the volcano effect or black coloration. Overall, these results further support the claim that

under the conditions used in Chapter 7, BN deposition from B3N3H6 is a transport–limited

process.
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The slope of the transport–limit line in Figure 8.17 can be used to compute an apparent

activation energy of this transport–limited process. This activation energy is a reflection of

the influence of changing temperature on the diffusion process. A simple linear regression

through the three data points gave a slope that was converted into an activation energy

of 3.74 kcal/mol (15.6 kJ/mol). As expected, this value is significantly less than the 35

kcal/mol value for a kinetically–limited case reported by Gomez–Aleixandre.29

In summary, an advanced model of the LCVD process was used to verify that boron

nitride deposition at the experimental conditions of interest was a transport–limited pro-

cess. Both concentration and thermal diffusion were shown to be important molecular

transport mechanisms in BN LCVD. The transport–limited environment posed significant

challenges to controlling deposit shape, especially regarding avoiding the volcano effect.

The theoretical upper mass transport limit of growth velocity under the conditions studied

was identified to be between 3 and 5µm/s.
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CHAPTER IX

MOLYBDENUM EXPERIMENTS

The deposition of molybdenum in Georgia Tech’s LCVD system is necessary for the fab-

rication of the integrated dispenser cathode device. Much like boron nitride, Duty has

provided some “proof of concept” work that serves as the experimental foundation for

molybdenum deposition.2,44 Others have deposited Mo from Mo(CO)6 as described in

Chapter 2, but Duty’s laser CVD of molybdenum from MoCl5 serves as the only prior

work in this particular area. As seen in Figure 9.1, the size and shape of Duty’s deposits

were significantly different than those required by the dispenser cathode application.

Figure 9.1: Example of Duty’s molybdenum deposit on graphite

The focus of the molybdenum deposition experiments done here was to study the

process-property relationships in an effort to find conditions that enabled the deposition of

uniform molybdenum lines. The generic development path of Section 1.4.1 for the LCVD

of new materials was used here to guide the progression of Mo deposition.
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9.1 Experimental Setup for Mo Deposition

The overall reaction for deposition of the molybdenum from MoCl5 was given by Equation

2.7:

MoCl5(g)+
5
2

H2(g)−→Mo(s)+5HCl(g) (2.7)

The experimental setup involved configuring a delivery system for the MoCl5 reagent and

acquiring and preparing the necessary substrates.

9.1.1 Molybdenum Pentachloride Setup and Delivery

Molybdenum pentachloride is a solid at room temperature. In order to generate the MoCl5

vapor needed for the LCVD process, MoCl5 powder was heated and vaporized in a sub-

limation chamber. The relationship between the temperature of the sublimation chamber

and the vapor pressure of MoCl5, PMoCl5, was approximated by Saeki’s equation:114

logPMoCl5 =
−3504

T
+9.465 (9.1)

wherePMoCl5 was the vapor pressure (Torr), andT was the sublimation chamber tempera-

ture (K).

The sublimation chamber used in the setup was a stainless steel cylindrical vessel that

contained a ceramic boat filled with MoCl5 powder. The chamber itself was about 5.1 cm

in diameter and 15.3 cm long. It was equipped with a thermocouple and a mechanical pres-

sure gage. Prior to loading, all fittings were removed and the vessel was thoroughly cleaned

with stainless steel brushes, paper towels, methanol, and compressed air. All fittings were

similarly cleaned and the two high temperature valves on either side of the chamber were

replaced with new valves. After reassembly, the vessel was checked for leaks by pressuriz-

ing with nitrogen gas and monitoring the pressure over a period of more than 24 hours. No

detectable pressure change was recorded.

Two different batches of MoCl5 powder were used during these experiments. The first

batch was obtained from a sealed bottle of 250 g of 99.6% molybdenum (V) chloride pow-

der packed under argon (Alfa Aesar Stock #11832) that was purchased in 1997. MoCl5
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powder is very sensitive to both oxygen and atmospheric moisture; therefore, it was trans-

ferred into the sublimation chamber in a nitrogen glove box. About 3 grams of powder were

transferred into a ceramic boat that was placed in the sublimation chamber. This first batch

of MoCl5 powder was used for experiments Mo-1F through Mo-5F. The second batch used

powder of the same specification from the same supplier; however, it was purchased new in

August 2004. The new powder was loaded into two new ceramic boats that together held

13.7 grams of powder. These boats were secured inside the sublimation chamber and the

chamber was sealed. This second batch of powder was used for all other Mo experiments.

In order to deliver MoCl5 vapor to the upper reaction chamber of the system, the sub-

limation chamber was placed upstream of the gas nozzle. Figure 9.2 illustrates the config-

uration of the MoCl5 reagent delivery system. MFC 5 was used to control the hydrogen

carrier gas flow into the sublimation chamber while MFC 6 was used to regulate the flow

of the hydrogen diluent gas. Both the carrier gas and diluent gas were delivered from the

same industrial grade high purity hydrogen gas cylinder.

In order to prevent the condensation of MoCl5 vapor downstream of the sublimation

chamber, the reagent lines between the sublimation chamber and the reaction chamber

were heated with heater tapes. These line temperatures were kept at about 150◦C for most

experiments. Heater tape was also used to pre-heat the diluent gas prior to mixing with the

carrier and MoCl5 vapor. Calculations showed that pre-heating 150 mm of tubing prior to

the mixing zone would be sufficient to prevent condensation.

Preliminary experiments resulted in a clogged gas nozzle due to condensed MoCl5

powder inside the nozzle tube. A nozzle heater was constructed by wrapping a 150 mm

long ceramic tube with 24 AWG Nichrome heater wire. The heater wire was wrapped

in high temperature electrical tape and the assembly was slid onto the nozzle tubing and

secured. The power source for the heater was a 120 VAC variable transformer (variac). A

pass-thru port was used in the upper reaction chamber to deliver the electric current to the

heater element during operation. Calibration experiments showed that a variac setting of
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18% (21.6 V) yielded a nozzle tip temperature of over 150◦C.

The partial pressure of the H2 carrier gas can be computed from Equation 9.2:

Pcar = Ptot−PMoCl5 (9.2)

wherePtot is the total pressure in the sublimation chamber which is assumed to be equal to

the pressure in the upper reaction chamber.

The flow rate of MoCl5 vapor from the sublimation chamber was computed using Equa-

tion 9.3:

QMoCl5 = Qcar

(
PMoCl5

Pcar

)
(9.3)

whereQMoCl5 andQcar are the flow rates of MoCl5 and carrier H2, respectively.

The concentration of MoCl5 vapor delivered through the gas nozzle was computed from

the mole fraction of MoCl5 and the ideal gas law. The mole fraction of the reagent flow

can be computed using equation 9.4:

XMoCl5 =
QMoCl5

QMoCl5 +Qcar +Qdil
(9.4)

whereQdil is the flow rate of diluent hydrogen. The concentration was then computed from

equation 9.5

CMoCl5 = XMoCl5
Ptot

RT
(9.5)

whereCMoCl5 is the concentration of molybdenum pentachloride (mol/m3), R is the univer-

sal gas constant (0.062363891 Torr-m3/mol-K), andT is the temperature of MoCl5 (K).

9.1.2 Substrate Preparation

The dispenser cathode application requires the deposition of molybdenum on a boron ni-

tride substrate. Hot pressed boron nitride shapes were acquired from GE Advanced Ce-

ramics (Grade HBC). They came in 25.4 x 25.4 x 19.05 mm blocks which were dry cut

on a diamond wafering saw into 25.4 x 19.05 x 2.54 mm plates. Because it was diffusion

bonded and did not contain a binder, this material had a purity of> 99%. It is widely used
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in electronic applications because of its low dielectric constant, high thermal conductiv-

ity, and minimal moisture pickup. Specific material properties are given in Table A.2 in

Appendix A.

After cutting, the BN substrates were sanded flat with 600 grit SiC grinding paper and

blown off with compressed air. When not in use, the substrates were stored in an oven at

70◦C to minimize moisture pickup.

9.1.3 General Procedure

The general procedure for Mo deposition was similar to other LCVD materials. It normally

took the sublimation chamber, reagent lines, and gas nozzle about 2 hours to reach the op-

erating temperature of between 100 and 150◦C. Meanwhile, the substrates were loaded into

the chamber and the chamber was evacuated. The system was refilled with high purity ar-

gon and subsequently evacuated. Next, the chamber was refilled with H2 gas to the desired

operating pressure. The desired flow rates were set and when ready to begin deposition, the

laser was engaged, and the carrier H2 flow was diverted through the sublimation chamber.

9.2 Molybdenum Fiber Experiments

Mo-1F was an exploratory experiment that was used to search for conditions conducive

to molybdenum deposition. The strategy was to begin experiments with the sublimation

chamber at a relatively low temperature so as to yield a low concentration of MoCl5 through

the nozzle and minimize the chance of condensation. The conditions used in the experiment

are given in Table 9.1.

During the process, the deposition temperature measured using the thermal imager re-

mained fairly stable at a fixed laser power. In contrast to carbon and boron nitride de-

position, as the molybdenum grew on the substrate, the laser power had to be gradually

increased over time to maintain a constant temperature. This behavior was likely related

to changes in the optical and thermal properties of the substrate caused by the evolution
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Table 9.1: Mo-1F experiment conditions

Chamber Sub Carrier Diluent MoCl5 MoCl5 Max Dep
No. Press Temp Flow Flow Flow Conc Temp Time

(Torr) (◦C) (sccm) (sccm) (sccm) (mol/m3) (◦C) (min)

1 760 78.0 50.0 50.0 0.020 7.00E-03 1250 17.0

2 760 78.0 50.0 50.0 0.020 7.00E-03 1650 6.0

3 760 78.0 50.0 50.0 0.020 7.00E-03 1100 10.0

4 760 78.0 100.0 1.0 0.040 1.39E-02 1250 10.0

5 150 78.0 50.0 50.0 0.102 7.00E-03 1250 10.0

6 150 78.0 10.0 90.0 0.020 1.40E-03 1250 41.0

of the deposit. In a way, the interaction between the underlying ceramic (BN) substrate

and the depositing metal (Mo) was directly opposite that discussed in Section 7.2 for the

deposition of a ceramic on a metal.

Ceramics such as the hot–pressed boron nitride substrate usually have low reflectance

and thus either absorb or transmit most impinging electromagnetic radiation. A study by

Khelkhal and Herlemont determined the optical constants of hot–pressed boron nitride for

a 10.59µm CO2 laser beam.115 At a zero degree angle of incidence, the reflectance was

measured to be about 0.10. The coefficient of refraction (complex refractive indexn∗ =

n− ik) was found to be 1.94− i0.20 where the refractive index,n, is 1.94 and the absorption

index,k, is 0.20. The absorbtion index can be used to compute an absorption coefficient

from Equation 7.6:107

β = 4πk/λ (7.6)

whereλ is the wavelength of interest. For the case of CO2 laser radiation on the BN

substrate,β was found to be 0.237µm−1. Using Equation 7.7, the fraction of energy

absorbed (I/I0) as a function of depth,z, into the BN substrate can be plotted.

I/I0 = e−βz (7.7)

Figure 9.3 contains this plot. The plot shows that 90% of the energy is absorbed in the top

10 µm of the substrate surface while virtually 100% is absorbed in the top 20µm.
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pressed BN substrate

Compared to ceramics, the optical properties of metals are characterized by high re-

flectance, high absorbtion, and low transmission. Thus, a large fraction of the energy from

the CO2 infrared laser beam will be reflected at a metal surface requiring increased laser

power to maintain constant temperature. The fraction of energy that is not reflected will

be quickly absorbed by the surface layer of material. Others have reported that the absorp-

tion coefficient of molybdenum is about 69.23µm−1 which was used in conjunction with

Equation 7.7 to show that 99% of the energy would be absorbed in the first 0.014µm of

the substrate surface.2 This absorbed energy is converted into heat.

The thermal properties of the substrate dictate the nature of heat transport away from

the substrate surface. The thermal conductivity of the hot pressed HBC boron nitride used

here was given to be between 23 and 30 W/m-K with some anisotropy relative to the press-

ing direction. Relative to ceramics, metals are characterized by high thermal conductivities.

Reported data shows the conductivity of molybdenum to decrease gradually and approx-

imately linearly from 138 W/m-K at 300 K to 81.3 W/m-K at 2800 K. The high thermal

conductivity will tend to flatten temperature gradients as the energy spreads through the

deposit, thus in order to maintain a similar maximum temperature the laser power must be
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increased over that required when heating a ceramic. As discussed in Section 7.2, Lax has

shown that the maximum temperature in a laser spot for a given laser power is a linear func-

tion of the conductivity of the substrate;55 therefore, the ratio of the thermal conductivity

of BN to Mo gives insight into the magnitude of laser power change needed as the sub-

strate material changes. Using the values above, at steady state, the laser power to maintain

similar maximum temperature would be between 2 and 5 times higher on Mo than on BN.

The need to increase laser power slowly as Mo deposition proceeds is consistent with

changes in the optical and thermal properties of the deposition surface as it transitions from

a ceramic to a metal. The relatively slow growth of the molybdenum served to mitigate the

rate of change in the substrate properties and appeared to enable sufficient process stability

to utilize the automatic temperature control system.

Interestingly, during the process of decreasing the system pressure from 760 Torr to

150 Torr between Samples 4 and 5, the formation of a dark blue–green powdery coating

and many sharp metallic fibers were observed on the substrate surface in the vicinity of

the gas nozzle exit. During the setup of Sample 7, after raising the sublimation chamber

temperature to 100◦C and upon opening the exit valve, the formation of a white fibrous

material was observed on the substrate below the nozzle exit. This material was similar to

that observed in previous experiments.2 The origin of the material was unknown but it was

thought to be related to condensation of the MoCl5 reagent on the substrate. Due to the

formation of this material, the laser was not engaged during Sample 7. Upon completion of

this experiment set, when the LCVD chamber was exposed to air, most of the white fibrous

material on the sample quickly turned to a blue–green liquid.

A significant observation was made regarding the formation of the blue–green coating

between Samples 4 and 5 and the white fibrous material of Sample 7. The elapsed time

between the end of Sample 4 and the initiation of Sample 5 was about 15 minutes and that

between the end of Sample 6 and the beginning of Sample 7 was in excess of 90 minutes.

This was a very long time in comparison to the more typical 3 minutes between the other
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samples. It has been shown that there is a significant residual heat effect associated with

LCVD.64 Residual heating in areas of the substrate far from the laser spot can account for

a temperature rise in excess of 100◦C. When the time between experiments was minimal,

this residual heat could help prevent the condensation of the MoCl5 vapor onto the sub-

strate; however, when the time between experiments exceeded 5 or 10 minutes, the residual

heat had time to dissipate, and the substrate could cool to a temperature that allowed con-

densation. In order to minimize the effect of different dwell times between experiments

and discourage condensation of reagent on the substrate, a new procedure was adopted for

Mo deposition. After Mo-1F, it was determined that all future experiments would utilize a

period of laser preheating prior to diverting the MoCl5 vapor flow through the nozzle.

Analysis of the resulting deposits was done through optical microscope observations.

The color of most deposits was unfortunately obscured by the presence of the blue–green

coating. All samples exhibited some deposited material with a very bumpy metallic surface.

A severe hole in sample 2 suggested that a maximum deposition zone temperature in excess

of 1650◦C caused damage to the underlying BN substrate. The other samples showed a

general trend of increasing deposit quantity with increasing temperature, increasing deposit

quantity with decreasing pressure, and no readily apparent relationship between deposit

quantity and concentration. Note however, that the range of concentrations used in Mo-1F

was very limited.

Mo-2F was an exploratory experiment intended to further investigate the process pa-

rameters of MoCl5 concentration and maximum deposition temperature. The experiment

consisted of six runs whose conditions are given in Table 9.2.

All six samples of this experiment showed signs of deposit. The first three showed small

quantities of deposit with Sample 3 having a large hole in the center as shown in Figure

9.4. Samples 4 and 5 were more substantial, also with holes in their center, although not as

severe as that in Sample 3. The term “holes” was used to refer to substrate surface damage

that extended into the bulk substrate material. This effect was fundamentally different from
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Table 9.2: Mo-2F experiment conditions

Chamber Sub Carrier Diluent MoCl5 MoCl5 Max Dep
No. Press Temp Flow Flow Flow Conc Temp Time

(Torr) (◦C) (sccm) (sccm) (sccm) (mol/m3) (◦C) (min)

1 760 90.0 50.0 50.0 0.043 1.45E-02 1170 15.0

2 760 90.0 75.0 25.0 0.065 2.17E-02 1200 8.0

3 760 90.0 25.0 75.0 0.022 7.23E-03 1600 5.5

4 760 112.0 50.0 50.0 0.154 4.86E-02 1408 6.3

5 760 112.0 100.0 1.0 0.307 9.60E-02 1409 10.0

6 760 130.0 100.0 1.0 0.787 2.34E-01 1250 15.0

the volcano effect which has been described previously and refers to the shape a deposit

acquires as it grows. The formation of the holes was related to the maximum deposition

temperature where increased severity occurred with increased temperature. Temperatures

above 1200◦C created holes. The cause of the holes in the BN substrate material was

not fully clear. The hot–pressed BN was rated for use at temperatures up to 850◦C in an

oxidizing environment and 2000+◦C in an inert environment.

Concentration and deposition time were increased incrementally for Samples 4, 5, and

6 resulting in increasingly larger quantities of deposit. Sample 6 yielded a large number of

vertical fibers with fiber heights being proportional to the distance from the center of the

deposit as shown in Figure 9.5. The reason for the rectangular footprint of Sample 6 as

opposed to the more typical round footprint of other deposits is not fully understood. The

new deposition procedure that utilized a period of laser preheating prior to reagent flow

significantly reduced the formation of the blue–green powder.

Experiments 1 and 2 both resulted in deposits with similar features. With the exception

of Sample 6, the deposits could be described as thin coatings with a small amount of bulk

growth around the perimeter of the coating. The appearance of the thin coating varied from

silver–metallic to a brown or bronze–metallic color depending upon processing conditions

and distance from the center of the laser spot. The bulk growth around the perimeter was

made up of many small fibers with a very bumpy surface appearance. Figure 9.6 illustrates
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Figure 9.4: Sample 3 of Mo-2F showing severe hole in deposit center

Figure 9.5: Sample 6 of Mo-2F showing array of small bumpy fibers
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Figure 9.6: Sample 5 of Mo-2F showing typical features of Mo fiber deposits

these features. Note that the color of the deposits shown in the images is distorted because

of the formation of blue–green powder on the substrate during later experiments.

The three experiment sets that followed were Mo-3F, Mo-4F, and Mo-5F. These ex-

periments were designed to systematically refine and explore the variables of pressure,

total flow rate, MoCl5 concentration, and maximum deposition temperature. In hindsight,

something appeared to happen during Mo-3F that changed the deposit attributes signifi-

cantly from those observed in Mo-1F. Given the fact that the MoCl5 concentration was

increased sequentially for each of these experiment sets, the drastic reduction of substrate

powder coating in Mo-3F–5F was suspicious.

The change in Mo-3F occurred during and after the four low pressure experiments

that were run at 7.6 Torr. The MoCl5 reagent delivery setup was configured such that

the sublimation chamber was at approximately the same pressure as the reaction chamber.

Operation of Georgia Tech’s LCVD system at pressures this low raised concerns about air

leaks into the system. If air leaked into the MoCl5 sublimation chamber, the MoCl5 powder

could react with oxygen to form pentavalent and hexavalent oxy and hydroxy chlorides.

In separate instances, it was observed to react quickly with moisture in the air to form a
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colored liquid. The conversion of MoCl5 powder to these undesirable compounds would

significantly impact the vaporization rate, quality, and quantity of MoCl5 vapor exiting the

sublimation chamber.

After the completion of Mo-5F, calculations revealed that 2.7 of the 3 g of MoCl5 that

was originally loaded into the sublimation chamber should have been consumed. The sub-

limation chamber was opened and it was found that about 1.3 g of powder still remained.

The blue–green color of some of the remaining powder suggested that the chamber had

been contaminated with water vapor. The presence of water vapor also implied the pres-

ence of air and the conversion of the MoCl5 to undesirable compounds. It was assumed that

this contamination of the chamber occurred during the low pressure experiments. Unfor-

tunately, the discrepancy in MoCl5 consumption meant that the computed concentrations

for experiments Mo-3F through Mo-5F were artificially high. The ambiguity of the exper-

imental conditions during Mo-3F–5F precluded the use of their data in combination with

other molybdenum deposition experiments. For completeness, Appendix C contains the

nominal conditions used in these experiments along with some observations of the results.

After Mo-5F, a new batch of 13.7 g of MoCl5 powder was loaded into the sublimation

chamber. Mo-7F was designed as a 3 factor, 2 level full factorial experiment with 2 center

points. The goal of the experiment was to identify the factor levels that reduced powder

formation, eliminated substrate damage, and increased deposition rates. The factors studied

included total flow rate, MoCl5 concentration, and maximum deposition temperature. The

levels chosen for Mo-7F were based on the most successful samples of Mo-2F. Table 9.3

contains the pertinent experimental conditions.

Several attributes of the resulting deposits were evaluated. Two of the undesirable fea-

tures of previous Mo experiments, dark powder coatings on the substrate and substrate

surface damage, were observed in some samples. The quantity of substrate powder coating

was characterized by assigning each sample a rating between 1 and 7 with 1 representing no

powder and 7 representing extremely heavy powder coating. A regression analysis did not
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Table 9.3: Mo-7F experiment conditions

Chamber Sub Carrier Diluent MoCl5 MoCl5 Max Dep
No. Press Temp Flow Flow Flow Conc Temp Time

(Torr) (◦C) (sccm) (sccm) (sccm) (mol/m3) (◦C) (min)

1 760 130.0 65.7 58.8 0.517 1.25E-01 1100 10.0

2 760 130.0 147.1 26.7 1.158 2.00E-01 1200 10.0

3 760 130.0 63.0 11.5 0.496 2.00E-01 1000 10.0

4 760 130.0 63.0 11.5 0.496 2.00E-01 1200 10.0

5 760 130.0 15.8 59.1 0.124 5.00E-02 1200 10.0

6 760 130.0 36.8 137.9 0.289 5.00E-02 1200 10.0

7 760 130.0 36.8 137.9 0.289 5.00E-02 1000 10.0

8 760 130.0 15.8 59.1 0.124 5.00E-02 1000 10.0

9 760 130.0 147.1 26.7 1.158 2.00E-01 1000 10.0

10 760 130.0 65.7 58.8 0.517 1.25E-01 1100 10.0

detect any statistically significant relationship among the factors studied and the substrate

powder coating response.

During experiments, a propensity for the powder to form during later runs was ob-

served. Thus, a linear regression analysis was done relating the run order to the powder

response. Consistent with observation, this analysis detected a strong relationship between

run order and powder formation. This relationship was likely related to the ambient MoCl5

concentration within the deposition chamber. The procedure for Mo deposition delivered

the MoCl5 vapor exclusively through the gas nozzle. During preheating the Mo-7F sub-

strate, MoCl5 flow was not enabled. Thus, when Sample 1 of Mo-7F was begun, the ambi-

ent concentration within the deposition chamber was nominally zero. After several samples

had been run, the ambient concentration at the initiation of a deposit was no longer zero,

but was a function of previous flow conditions and dwell times.

Note that the total nozzle flow rate for these experiments ranged between 75 and 175

sccm. No window port or side port flow was used. The volume of the upper deposition

chamber was estimated to be about 3000 cm3; therefore, the residence time for the MoCl5
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reagent was between 15 and 40 minutes. During a 10 minute experiment, the ambient con-

centration gradually increased. After a sample was complete and reagent flow was halted,

the combined setup and preheat time for the next sample was usually about 7 minutes which

was insufficient time for the chamber to again approach an ambient concentration of zero.

A simple best case approximation would be that when beginning a new sample, the ambient

MoCl5 concentration was approximately 50% of the previous sample’s concentration. A

worst case approximation would be that the ambient MoCl5 concentration was over 80%

of the previous sample setpoint.

Ideally, the ambient MoCl5 concentration would have minimal impact on the local

concentration in the deposition zone due to the use of the localized reagent gas nozzle.

However, the analysis of Section 5.3.6 revealed that with a gas nozzle flow of 100% diluent

flow in a chamber with a moderate global concentration of reagent, deposition could still

occur. Reagent species diffused through the “pure stream” and to the deposition surface.

Thus, the ambient reagent concentration definitely impacts the deposition process and could

contribute to the formation of the powder on the substrate surface.

It had been observed in earlier exploratory experiments that substrate surface damage

appeared to occur at higher deposition temperatures. The degree of substrate surface dam-

age in Mo-7F samples was quantified by assigning values between 1 and 5 to each sample

where 1 represented zero damage and 5 represented very significant damage. A multiple

regression analysis showed there to be a strong statistical relationship among maximum

deposition temperature and substrate damage. The analysis essentially showed that deposi-

tion temperature should be limited to a maximum near 1000◦C. On the high zoom setting,

the thermal imaging camera used to observe deposition temperature has a lower tempera-

ture limit of 955◦C. Deposition below this limit could be possible by further reducing laser

power, but only limited data could be acquired during the process. Thus, in order to avoid

substrate surface damage and still monitor deposition temperature using the thermal imag-

ing system, a target maximum deposition temperature of 1000◦C for all subsequent Mo
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fiber experiments was chosen.

The final molybdenum fiber experiment was designated Mo-13F. This was a 3 factor,

rotatable central composite design that studied pressure, total gas flow rate, and MoCl5

concentration. Per the results of Mo-7F, the temperature was manually controlled to a

maximum value of 1000◦C for all experiments. The run order was pseudo–random with

the caveat that all runs with the same pressure were run in succession. This was a practical

necessity due to the procedure required to change operating pressure that saved time and

enhanced system stability. The conditions for each sample are given in Table 9.4 in the run

order used.

The resulting deposits still showed little tendency to grow the large vertical structures

typical of carbon or boron nitride. They were best described as thin coatings with some

samples showing areas of bulk growth characterized by many small, nodular, fibers emerg-

ing from the substrate surface. A variety of metrics were used to quantify the results of

Mo-13F.

One goal of Mo-13F was to find conditions that yielded minimum extraneous powder

formation on the substrate surface near the laser zone. The powder coating was again quan-

tified using the same 1–7 scale as in Mo-7F. A multiple regression analysis was performed

and factors that were found not to be statistically significant at at least a 90% level were

excluded. The ensuing analysis is summarized in Table 9.5. The analysis showed the sec-

ond order effect of pressure (AA) to be the most significant factor. An interpretation of this

result is that the effect of a change in pressure depends on the level of pressure. Other fac-

tors shown to be statistically significant at a 95% level were the pressure–total flow (AB)

interaction and the total flow (B). The interaction between pressure and total flow is related

to the exit velocity from the gas nozzle. For a fixed total flow, the nozzle exit velocity is

higher at low pressures than at high pressures. The significance of this interaction sug-

gested a positive relation between the nozzle exit velocity and the formation of powder on

the substrate. The significance of the molar concentration of MoCl5 was shown to be just
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Table 9.4: Mo-13F experiment conditions

Chamber Sub Carrier Diluent MoCl5 Total MoCl5 Dep
No. Press Temp Flow Flow Flow Flow Conc Time

(Torr) (◦C) (sccm) (sccm) (sccm) (sccm) (mol/m3) (min)

1 760 130.0 4.2 20.8 0.033 25.0 4.00E-02 10.0

2 760 130.0 10.9 54.0 0.086 65.0 4.00E-02 10.0

3 760 130.0 5.5 59.5 0.043 65.0 2.00E-02 10.0

4 760 130.0 2.1 22.9 0.017 25.0 2.00E-02 10.0

5 304 130.0 4.2 20.8 0.083 25.0 4.00E-02 10.0

6 304 130.0 2.1 22.9 0.041 25.0 2.00E-02 10.0

7 304 130.0 5.4 59.5 0.108 65.0 2.00E-02 10.0

8 304 130.0 10.8 54.0 0.215 65.0 4.00E-02 10.0

9 915 130.0 5.7 39.3 0.037 45.0 3.00E-02 10.0

10 532 130.0 9.9 68.6 0.111 78.6 3.00E-02 10.0

11 532 130.0 5.7 39.3 0.064 45.0 3.00E-02 10.0

12 532 130.0 5.7 39.3 0.064 45.0 3.00E-02 10.0

13 532 130.0 2.5 42.5 0.028 45.0 1.32E-02 10.0

14 532 130.0 1.4 9.9 0.016 11.4 3.00E-02 10.0

15 532 130.0 8.8 36.1 0.100 45.0 4.68E-02 10.0

16 149 130.0 5.5 39.3 0.228 45.0 3.00E-02 10.0
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Table 9.5: Mo-13F powder formation multiple regression analysis

Estimated Effects for Powder Formation
average = 1.36577 +/- 0.157408

B:Total Flow = 0.562486 +/- 0.244371

C:MoCl5 Conc = 0.515886 +/- 0.244371

AA = 1.19321 +/- 0.257046

AB = 0.75 +/- 0.319286

Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio P-Value

B:Total Flow 1.08023 1 1.08023 5.30 0.0419

C:MoCl5 Conc 0.908652 1 0.908652 4.46 0.0585

AA 4.39336 1 4.39336 21.55 0.0007

AB 1.125 1 1.125 5.52 0.0386

Total error 2.24276 11 0.203887

Total (corr.) 9.75 15

R-squared = 76.9973 percent
R-squared (adjusted for d.f.) = 68.6327 percent
Standard Error of Est. = 0.451539
Mean absolute error = 0.284526
Durbin-Watson statistic = 1.8579 (P=0.3171)
Lag 1 residual autocorrelation = -0.109256

Standardized Pareto Chart for Powder Formation

Standardized effect

+
-

0 1 2 3 4 5

C:MoCl5 Conc

B:Total Flow

AB
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under the 95% confidence level.

A second attribute that was quantified was the maximum vertical height of the deposits.

It was difficult to accurately measure the heights because they were not significantly larger

than the surface roughness of the substrate. However, by viewing the deposits on a 30◦

angle at a magnification of 160X through an optical microscope, height differences could

be seen. A scale of 1–5 was used to specify the relative height of each sample. A value of

1 was given to deposits that showed no deposit or were virtually flat while a value of 5 was

given to the two tallest samples, Samples 8 and 16. Figures 9.7 and 9.8 illustrate these two

prominent deposits. Table 9.6 contains the results of the regression analysis for the height

response.

All three factors studied were shown to be significant at a 95% confidence level. De-

creased pressures led to increased deposit height, while increased total flow and MoCl5

concentration were shown to have the same effect. Pressure was shown to be most impor-

tant, followed by concentration, and MoCl5 . The fact that these variables were strongly

correlated with growth rate suggested perhaps this was a transport–limited process; how-

ever, the temperature was not varied for reasons previously discussed and without data

at different temperature levels no final conclusion could be made about the rate–limiting

regime.

Some of the molybdenum deposits that had sufficient height also showed a tendency for

growth in the center of the deposit area to be shorter than that on the perimeter. This was

consistent with the ubiquitous LCVD volcano effect. The degree to which each sample

exhibited this shape was captured by rating each with a value between 1 and 5 where 1

was no volcano shape and 5 was significant volcano shape. Note that this effect refered

only to the shape of the deposited material and did not incorporate any prevailing substrate

surface damage. Samples 8 and 16 shown in Figures 9.7 and 9.8, respectively illustrate

an example of a volcano rating of 5 and 1. Using the normal regression procedure, a full

regression model was developed and those factors not statistically significant at a 95% level
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Figure 9.7: Sample 8 showing tall ring of fibers with volcano effect in center

Figure 9.8: Sample 16 showing tall fibers in center of spot with no volcano effect
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Table 9.6: Mo-13F maximum height regression analysis

Estimated Effects for Maximum Height
average = 1.52636 +/- 0.2194

A:Pressure = -1.47111 +/- 0.340611

B:Total Flow = 1.39456 +/- 0.340611

C:MoCl5 Conc = 0.978527 +/- 0.340611

AA = 1.32947 +/- 0.358279

Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio P-Value

A:Pressure 7.38894 1 7.38894 18.65 0.0012

B:Total Flow 6.64 1 6.64 16.76 0.0018

C:MoCl5 Conc 3.26916 1 3.26916 8.25 0.0152

AA 5.45414 1 5.45414 13.77 0.0034

Total error 4.35714 11 0.396103

Total (corr.) 27.1094 15

R-squared = 83.9276 percent
R-squared (adjusted for d.f.) = 78.083 percent
Standard Error of Est. = 0.629368
Mean absolute error = 0.468572
Durbin-Watson statistic = 2.65656 (P=0.0725)
Lag 1 residual autocorrelation = -0.349302

Standardized Pareto Chart for Maximum Height

Standardized effect
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were eliminated. Table 9.7 contains the results of the reduced model.

MoCl5 concentration was shown to be the most significant factor for the volcano re-

sponse. This result suggests the origin of the volcano in Mo deposition could be related to

mass–transport, and the process could perhaps be in the transport–limited regime. Further

studies are needed to confirm this finding.

The contour plots shown in Figure 9.9 for the powder formation, maximum height, and

volcano response were useful in visually interpreting the results of the regression analyses.

Overall, the results of Mo-13F spanned a wide range of deposit attributes. The results of

the different regression analyses were used in a multiple response optimization. Each re-

sponse was weighted equally in formulating a desirability function, and the optimization

constraints were to minimize powder formation, maximize the deposit height, and mini-

mize the volcano effect.

The results of the optimization analysis are shown in the contour plots of Figure 9.10.

The factor levels that yielded the maximum desirability function are given in Table 9.8.

The internal features of molybdenum deposits were also of interest. Unfortunately,

the samples from Mo-13F with the largest bulk growth, Samples 8 and 16, were damaged

during the mounting and polishing process. While the deposits from Mo-4F could not be

used for process parameter studies, they remained an important asset for conducting an

internal analysis of LCVD molybdenum growth. Sample 7 from Mo-4F was mounted and

polished.

Figure 9.11 shows two SEM micrographs. The left side is the cross–section of the

entire deposit area. The molybdenum formed a series of large bumps or nodes that did not

always tend to coalesce. Overall, the growth nodes were about 20µm in height. The right

side of the figure shows a closer view of one of the growth nodes. This region appears

to have formed from three independent growth initiation points. The growth from these

three points eventually merged together, but even as the deposit grew, the different sections

remained distinguishable at the growth surface. In fact, cracks can be seen between some
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Table 9.7: Mo-13F volcano effect regression analysis

Estimated Effects for Volcano
average = 1.26593 +/- 0.231405

B:Total Flow = 0.732232 +/- 0.359248

C:MoCl5 Conc = 1.76401 +/- 0.359248

BC = 1.25 +/- 0.46938

CC = 0.98779 +/- 0.377884

Analysis of Variance
Source Sum of Squares Df Mean Square F-Ratio P-Value

B:TotalF low 1.83058 1 1.83058 4.15 0.0663

C:MoCl5 Conc 10.6241 1 10.6241 24.11 0.0005

BC 3.125 1 3.125 7.09 0.0221

CC 3.01087 1 3.01087 6.83 0.0241

Total error 4.847 11 0.440636

Total (corr.) 23.4375 15

R-squared = 79.3195 percent
R-squared (adjusted for d.f.) = 71.7993 percent
Standard Error of Est. = 0.663804
Mean absolute error = 0.445289
Durbin-Watson statistic = 2.06688 (P=0.4371)
Lag 1 residual autocorrelation = -0.0793257

Standardized Pareto Chart for Volcano

Standardized effect
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Figure 9.9: Contours of different response variables in parameter space defined by Mo-13F
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Figure 9.10: Contours of desirability function in space defined by Mo-13F factor levels

Table 9.8: Optimum factor levels for Mo fiber deposition as determined by Mo-13F

Factor Level

Pressure (Torr) 209

Total Flow Rate (sccm) 78.6

MoCl5 Conc (mol/m3) 0.013
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Figure 9.11: SEM micrographs of cross–section of Mo deposit

of the growth layers emerging from the different nodes. The molybdenum growth had a

layered appearance. These layers are denoted by periodic striations that tend to appear

parallel the growth surface.

An EDX analysis was done on the deposited material to ensure it was molybdenum.

The results of the analysis are shown in Figure 9.12. The response was dominated by the

presence of Mo, with no other elements present in significant amounts.
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Figure 9.12: EDX results of Mo deposit
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9.3 Molybdenum Line Experiments

Concurrent with the execution of molybdenum fiber experiments, molybdenum line de-

position was also explored. Mo lines are required for the dispenser cathode application.

Conditions from Mo fiber experiments were used to help identify suitable starting condi-

tions for Mo lines. The slow deposition rates observed in the fiber experiments suggested

that the deposition of Mo lines of any appreciable height would take much longer than for

materials previously studied.

The same hot pressed boron nitride substrates were used for the Mo line experiments.

The operational procedure for lines emulated that of the fiber experiments. Preheating

involved scanning the laser over the length of the line 6 times prior to diverting the MoCl5

flow through the gas nozzle. The maximum deposition temperature was kept just under

1000◦C during the preheating process. After the final preheat scan, the MoCl5 vapor was

diverted through the nozzle and the surface temperature was manually increased to the

desired setpoint by increasing the laser power. Upon reaching this temperature, the scan of

the first layer was begun. Subsequent layers were created by scanning the laser back and

forth over the same area.

The first molybdenum line experiment was based on Sample 2 of the fiber experiment

Mo-7F which had produced good bulk growth, no substrate damage, and minimal powder

formation on the substrate surface. The sublimation chamber temperature was kept fixed at

130◦C during the experiment. The line length was 2.54 mm and 30 layers were run. Other

conditions are summarized in Table 9.9.

Table 9.9: Mo-8L experiment conditions

Chamber Carrier Diluent MoCl5 Total MoCl5 Max Scan
No. Press Flow Flow Flow Flow Conc Temp Speed

(Torr) (sccm) (sccm) (sccm) (sccm) (mol/m3) (◦C) (mm/min)

2 760 147.1 26.7 1.158 175.0 2.00E-01 1200 2.54
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Figure 9.13: Mo line deposit from Mo-8L

Figure 9.13 is an optical microscope image of the line resulting from BN-8L. The de-

posit showed several distinct regions. In the center, was a shiny silver area that appeared

metallic. This shiny area was recessed below the substrate surface indicating damage to the

substrate occurred either during or prior to the deposition of the metallic material. The line

was immediately surrounded by a region of dark gray metallic material that appeared to

have deposited on the substrate surface without causing damage. A reddish brown liquid–

looking substance surrounded the dark gray area. The reddish brown material did not

emerge until after the substrate was removed from the deposition chamber. While still

in the chamber in the absence of air, the area where the reddish–brown material emerged

was covered in a heavy coating of the dark blue–green powder typical of other Mo experi-

ments. Finally, surrounding the reddish brown substance was a very large area of the dark

blue–green powder which covered the majority of the substrate.

Electrical conductivity is inherently required in the Mo to be used in the dispenser

cathode application. A crude test was devised to determine whether the metallic material

in the center of the line was electrically conductive. The continuity check function of a

digital multimeter was used to confirm the conductivity, and using the same instrument, the
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Table 9.10:Mo-9L experiment conditions

Chamber Carrier Diluent MoCl5 Total MoCl5 Max Scan
No. Press Flow Flow Flow Flow Conc Temp Speed

(Torr) (sccm) (sccm) (sccm) (sccm) (mol/m3) (◦C) (mm/min)

1 760 65.7 58.8 0.517 125.0 1.25E-01 1000 2.54

2 760 91.9 82.3 0.724 175.0 1.25E-01 1000 2.54

3 760 39.4 35.3 0.310 75.0 1.25E-01 1000 2.54

4 760 13.1 11.8 0.103 25.0 1.25E-01 1000 2.54

5 760 39.4 35.3 0.310 75.0 1.25E-01 1100 2.54

resistance of the line was measured to be 10–30Ω. The substrate and the powdery coat-

ings on its surface showed no evidence of electrical conductivity. This crude test strongly

suggested the metallic material along the line was molybdenum, and although the coating

appeared to be quite thin, it confirmed the continuity of the coating.

Experiment Mo-8L served to confirm the feasibility of depositing an electrically con-

ductive Mo line on boron nitride. However, several attributes of the deposit were un-

desirable. First, the damage to the substrate surface was indicative that the deposition

temperature was too high. Earlier fiber experiments showed that as long as the maximum

deposition temperature did not exceed about 1000◦C, no substrate damage would occur. In

future experiments, the temperature would be kept closer to this limit. The large amount

of dark powder surrounding the metal line was also undesirable. Subsequent experiments

would focus on reducing the occurrence of this coating.

Experiment Mo-9L was designed to study the relationship between these line attributes

and total gas flow rate. The sublimation chamber temperature was kept constant at 130◦C

and the reagent lines and gas nozzle were kept at the usual 150◦C. All lines were 2.54 mm

in length and 20 layers thick.

All samples of Mo-9L produced lines that showed evidence of metallic deposits. A

strong relation between the surrounding powder coating and the gas flow rate was observed

with increasing flow rate causing increased powder formation. From a powder formation
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standpoint, Sample 4 was ideal in that it showed no evidence of the phenomenon.

While Sample 4 showed a minimum amount of powder formation, it also showed a

minimal amount of metal deposition. Sample 3 showed the largest quantity of deposit as

evidenced by observation under an optical microscope. The line was a bright, shiny–silver

metallic color that was made up of a large number of very small fibers. The same crude

electrical conductivity check used for Mo-8L was used to verify the conductivity of all

samples in Mo-9L.

The conditions of Sample 5 were identical to those of Sample 3, except the maximum

deposition temperature was increased by 100◦C. A minimum temperature of 1100◦C was

required to effectively use the automatic temperature control system. This increase in tem-

perature resulted in significant substrate surface damage along the entire length of the line.

The run produced a large quantity of shiny metallic material that was measured to be con-

ductive, but the substrate surface damage was disallowable given the requirements of the

dispenser cathode assembly. This result provided further evidence that the upper temper-

ature limit allowable in the study of Mo deposition on boron nitride was 1000◦C. Tem-

peratures below 955◦C were not observable in the high zoom range of the thermal imager,

thus it was preferred to keep the temperature above this limit. Given that under manual

temperature control, the standard deviation of the temperature was estimated to be±25◦,

the narrow range between 955 and 1000◦C for maximum temperature did not allow further

study of this variable. All subsequent Mo line experiments used a temperature setpoint of

1000◦C.

Experiment set Mo-10L was setup to study the relationship among total gas flow rate

and MoCl5 concentration over the ranges shown in Table 9.11. The goal here was to min-

imize extraneous powder formation while increasing the quantity of bulk deposit. Again,

the sublimation chamber temperature was kept constant at 130◦C and the reagent supply

lines were appropriately heated. All lines were 2.54 mm long and consisted of 20 layers.

Overall, the results of Mo-10L represented an improvement where all deposits showed
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Table 9.11:Mo-10L experiment conditions

Chamber Carrier Diluent MoCl5 Total MoCl5 Max Scan
No. Press Flow Flow Flow Flow Conc Temp Speed

(Torr) (sccm) (sccm) (sccm) (sccm) (mol/m3) (◦C) (mm/min)

1 760 42.0 7.6 0.331 50.0 2.00E-01 1000 2.54

2 760 10.5 39.4 0.083 50.0 5.00E-02 1000 2.54

3 760 26.3 23.5 0.207 50.0 1.25E-01 1000 2.54

4 760 15.8 59.1 0.124 75.0 5.00E-02 1000 2.54

5 760 63.0 11.5 0.496 75.0 2.00E-01 1000 2.54

signs of metallic deposit with no accompanying substrate damage. Figure 9.14 contains

figures of all five lines and their position on the substrate. As seen in the figures, Samples

1, 3, and especially 5 still resulted in significant powder formation.

The deposits of Mo-10L were affixed to SEM mounts using silver paste and carbon

tape. The silver was painted right to the edge of each of the Mo lines. The conductivity

of the deposits became apparent in the SEM when a low magnification view showed a

drastic difference in the charging tendency of the deposit area versus the uncoated substrate.

Figure 9.15 illustrates the surface morphology of the molybdenum line and compares it to

the substrate surface.

The surface of the molybdenum deposit appears to be made of many large platelets with

major dimensions of 10 and 20µm. The platelets tend to be oriented vertically (standing on

edge) perpendicular to the underlying substrate surface. The substrate micrograph shows

the boron nitride to be composed of many small particles loosely bound together. The

porosity of the BN corresponds to the value of 13% reported by the manufacturer.111

In summary, several important findings were made regarding the deposition of Mo

lines on the hot pressed boron nitride substrates. Overall, the process was sensitive but

stable. The sensitivity referred to the fact that a change in laser power of 0.1 W yielded a

temperature change on the order of 50 – 100◦C. The stability was related to the fact that

under constant laser power, the temperature would only change gradually. Unfortunately,
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Layout Sample 1

Sample 2 Sample 3

Sample 4 Sample 5

Figure 9.14: Optical images of lines from Mo-10L
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Figure 9.15: SEM images from Mo-10L showing the center of Sample 3 compared to the
substrate surface
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the maximum temperature value of 1000◦C did not allow use of the automatic temperature

control system. The slow deposition rate of Mo precluded the fabrication of 10µm tall

structures in a reasonable amount of time. Efforts to increase deposition rates usually

caused the formation of excessive powder in the vicinity of the laser spot. Although the

deposits were very thin, they did pass crude conductivity tests indicating that the material

might be suitable in the dispenser cathode application.
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CHAPTER X

DEPOSITION OF BN-MO COMPOSITES

Ultimately, the dispenser cathode application requires the deposition of alternating sections

of boron nitride and molybdenum on a tungsten substrate. Figure 10.1 illustrates the con-

ceived cross section of such a deposit. Experiments were done to study the feasibility of

using LCVD to build this type of composite.

LCVD fabrication of the structure in Figure 10.1 involves three fundamentally different

deposition processes:

1. BN deposition on W

2. Mo deposition on BN

3. BN deposition on Mo

Processes 1 and 2 were thoroughly investigated as described in Chapters 7 and 9. Process

3 was not investigated independently, but the general dynamics of ceramic deposition on

metal as in the BN on W process provided reasonable guidance as to the nature of this pro-

cess. The experimental procedure began with processes 1 and 2 in creating a two–material

Tungsten

Boron Nitride

Molybdenum

Boron Nitride

Molybdenum

100 µm

10 µm

Figure 10.1: Required cross section of composite needed for dispenser cathode
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BN-Mo composite. The final experiment involved all three processes in the deposition of a

four–material BN-Mo-BN-Mo composite on a tungsten substrate.

10.1 Experiments

Conditions used in the experiments were derived from the most successful conditions found

in the previous boron nitride and molybdenum experiments. The substrates used for all BN-

Mo experiments were the same tungsten sheets used in the deposition of BN presented in

Chapter 7. The tungsten was sanded with 400 grit sandpaper to decrease the reflectivity

and provide a rough surface for the BN to adhere. The position repeatability of the z-axis

rotation stage was inconsistent, therefore, the substrates were loaded into the chamber in

such a configuration that the stages would not need to be rotated during the deposition

process. All line scans were 2.54 mm in length and used a scan speed of 2.54 mm/min.

10.1.1 Two–layer experiments

Preliminary BN line deposition experiments used conditions from the multiple response

optimization analysis of the results of BN-14L. Pressure was kept at 760 Torr, carrier flow

at 17.0 sccm, diluent flow at 8.0 sccm, and the borazine temperature at 0◦C. The first scan

used a laser power of 31 W while additional layers used a power of 3.68 W.

After 10 line scans, these first experiments did not yield any appreciable deposit. This

inability to reproduce similar results under the same experimental conditions was attributed

to the sensitivity of BN deposition and the lack of robustness associated with a constant

laser power approach.

The flow conditions were changed to a carrier and diluent N2 flow of 25 sccm each

in an effort to foster more growth. Two approaches were used to control the laser power.

Some experiments used a manual approach whereby the BN deposition temperature was

controlled using the knob on the laser control unit. Other experiments used a constant laser

power approach in which the appropriate power levels were determined in situ by observing
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the thermal behavior in the deposition zone. Both approaches fostered growth, and it was

not readily apparent that one was significantly better than the other.

These preliminary BN line experiments reaffirmed the sporadic nature of BN deposi-

tion. Generally, the trials resulted in lines marked by large bumps of growth at random

intervals along the length. The bumps developed so quickly that it was difficult to antici-

pate or prevent their growth. The bumps were surrounded by large areas of white powder,

particularly on the downstream side of the lines.

After several lines of BN deposition were complete, the B3N3H6:N2 mixture in the

chamber was evacuated and the chamber was refilled with H2. The MoCl5 sublimation

chamber and reagent lines were heated to the normal operating temperature of 130 and

150◦C, respectively. The heating process took approximately two hours which provided

sufficient time for any residual N2 gas to be purged from the chamber.

The experimental conditions for Mo were a pressure of 760 Torr, carrier and diluent

flow of 25 sccm each, and the sublimation chamber temperature was kept at 130◦C. When

ready to begin deposition, the MoCl5 flow was diverted from the bypass port through the

gas nozzle. The laser power was slowly increased using the LabVIEW interface until the

target temperature of 1000◦C was reached at which point the line scan was initiated. The

inherent stability of Mo deposition was advantageous as the laser beam encountered the

rough BN line underneath. As with previous experiments, it was difficult to determine

whether significant Mo growth was occurring due to the slow nature of the process. Most

of the initial experiments consisted of 10 layers of Mo.

One of the most noticeable traits of these first composite deposits was that the substrate

surface was covered with a large quantity of powder surrounding the lines. Figure 10.2

shows BN-Mo-2L Sample 2 covered with this powder. In Sample 3, the Mo deposition

process created a deep trench through much of the BN powder coating. Also, the Mo

line did not fall directly above the BN line. This result was attributed to a shift in sub-

strate position that occurred with the change in chamber pressure when switching from the
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Figure 10.2: Optical image of results from BN-Mo-2L composite experiment

B3N3H6:N2 mixture to the MoCl5:H2 mixture.

BN-Mo-3L was designed to further explore the possibility of depositing the Mo on the

underlying BN without causing damage. In order to remove the dynamic scanning effects

from the process, two fiber deposits were included in this experiment. When depositing

fibers, it was also possible to realign the laser after changing the system pressure because

of their significant height. In addition to the two fibers, four lines were grown.

For the BN deposition, the flow conditions of BN-Mo-3L were carrier and diluent N2

flows of 25 sccm each. System pressure was kept constant at 760 Torr, and the B3N3H6

vaporizer was kept at 0◦C. For the BN fibers, the normal laser control procedure using the

manual knob on the control module was used to maintain a maximum temperature near

1000◦C.

Due to the rapid deposit growth and powder formation during BN-Mo-3L BN line 3,

the flow conditions for lines 4–6 were changed to reflect the conditions of the best results

from BN-14L: 17 sccm carrier flow and 8 sccm diluent flow. Pressure was kept at 760

Torr and the vaporizer temperature at 0◦C. The BN lines were again 2.54 mm long and

used a scan speed of 2.54 mm/min. The laser power was controlled through the LabVIEW

interface. The control procedure was to engage the laser using 30 W and simultaneously

begin scanning the substrate. The laser power was kept at this level until the temperature
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viewed on the thermal imager indicated that sustained growth had begun at which point

the power was reduced and adjusted periodically using LabVIEW in an effort to maintain

sustained growth. This more active temperature control approach was subsequently deemed

no more effective than using a constant laser power approach.

The Mo deposition on both the fibers and lines of BN-Mo-3L was all done using iden-

tical flow conditions: 25 sccm carrier and diluent H2 flow. Total pressure was kept at 760

Torr and the sublimation chamber temperature was kept at 130◦C. The maximum tem-

perature was kept near 1000◦C by manual laser power adjustment through the LabVIEW

interface. All Mo sections consisted of 10 growth layers.

When depositing on the BN fibers, the Mo deposition process was observed to be sta-

ble, but very sensitive. A change in laser power of 0.1 W would change the maximum

deposition temperature by over 100◦C. This represented more sensitivity than previous Mo

experiments executed on the large BN plate substrates, and was attributed to the limited

conduction paths through the underlying BN fiber to the tungsten substrate. Fibers 1 and 2

consisted of 12 and 10 minutes of Mo growth, respectively.

The resulting composite fibers showed significant bulk growth of both BN and Mo with

minimal damage to the bulk BN at the interface. The surface of both materials was similar

to that seen in previous fiber experiments with the BN having a cauliflower appearance

and the Mo growth consisting of a multitude of small, nodular fibers growing from the

underlying surface. Figure 10.3 is an optical microscope image of Sample 2.

In terms of the lines, it appeared that both materials deposited, but both produced sig-

nificant amounts of powder and debris on the substrate surface. Misalignment between the

BN and Mo layers due to stage shift was again apparent. As usual, the BN deposit was

marked by large bumps of tall growth while the Mo deposit remained a very thin coating.

The powdery coating produced by the Mo growth formed a brittle material that appeared

to crack and peel away from the white powder underneath, upon exposure to atmospheric

air.
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Figure 10.3: Optical image of BN-Mo composite fiber

The next series of BN-Mo experiments, BN-Mo-4L, were run with an increased empha-

sis on avoiding the large bumps in the BN line deposits. The goal for the BN lines was to

proceed until one sustained layer of deposit was accomplished as judged through the ther-

mal imager. The borazine flow rate was further reduced in an effort to reduce growth rates

by changing the carrier and diluent flows to 12 sccm each. Pressure was kept at 760 Torr

and the vaporizer was kept at 0◦C. Laser power was kept constant until sustained growth

began at which point the control method was changed to either a constant but significantly

reduced power as in BN-14L and 15L or manual control through the LabVIEW interface

with a target temperature of 1000◦C. Laser power conditions specific to each run except

number 1 are given in Table 10.1. Run 1 was a trial used to find approximate conditions

that enabled acceptable growth.

Even with the changes in experimental conditions and procedure, the BN lines still

tended to develop a large bumpy shape and growth was accompanied by significant powder

formation. The results of run 6 produced a noticeably smoother line of uniform height and
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Table 10.1:Various experimental parameters used in BN-Mo-4L

BN Layer 1 BN Layer 2 BN Layer 3 BN Layer 4 No. of
No. Power Power Power Power Mo Layers

(W) (W) (W) (W)

2 31.1 31, var - - 10

3 15.9 15.9 15.9 15.9 10

4 23.7 23.7 var var -

5 38.0 var var, - - 10

6 31.1 5.4 - - 16

7 31.1 5.2 5.2 5.2 1

well–defined width. This line was similar to the samples from the best results of BN-14L

and 15L in that it did not extend the full length of the laser scan path.

In an effort to minimize the problems with stages shifting during pressure changes, a

new procedure was employed. The chamber was not evacuated between the BN and Mo

materials, but the reagent gas tank was simply switched from nitrogen to hydrogen under

the same flow conditions. The sublimation chamber and reagent lines were heated while

the flowing hydrogen displaced the remaining nitrogen in the system. It was apparent that

even after using this new procedure to transition material systems, the laser spot had shifted

slightly from its original spot on the substrate surface. The spot was realigned to the extent

possible by visual observation through a top port in the upper chamber.

The conditions for the Mo line deposition were derived from the conditions of Sample

4 of Mo-10L because it exhibited a well–defined Mo line region with minimal blue–green

powder on the substrate surface. Conditions included a pressure of 760 Torr, a sublimation

chamber temperature of 130◦C, a carrier H2 flow of 15.8 sccm and a diluent H2 flow of 59.1

sccm. Laser power was controlled manually through the LabVIEW interface to maintain a

constant maximum temperature of 1000◦C. The scan speed was the normal 2.54 mm/min

and the number of layers varied depending on the perceived quality of the underlying BN

line. Table 10.1 indicates the number of Mo layers associated with each sample.

Most of the samples still yielded large bumpy BN lines that were covered with a thin

348



Figure 10.4: Top view of BN-Mo-4L Sample 7 showing bumpy surface

coating of Mo. Figure 10.4 highlights the shape and features of Sample 7.

The best result was that of Sample 6 as shown in Figure 10.5. The underlying BN line

was fairly smooth and uniform and the Mo coating on the surface was apparent. The BN

line was partially covered by the blue–gray brittle coating that accompanied Mo deposi-

tion. It was apparent here that the Mo layers were unfortunately offset significantly from

the underlying BN material. This result suggested that even using a constant pressure ma-

terial transition procedure did not alleviate the problem of stage drift. The excess powder

surrounding the deposit was removed by cutting along the edges of the lines and scraping

the powder away using a knife. A cross–sectional cut was made through the structure near

the starting end of the line. Figure 10.6 is an optical microscope image taken on a 45◦ angle

of the resulting cross section.

The cross–section of Sample 6 was inspected by mounting it in epoxy and cutting across

the line. The orientation of this cross section is shown in Figure 10.5. Figure 10.7 contains

an SEM micrograph of the cross section. The tendency of the BN to charge in the micro-

scope made it difficult to get an ideal image. The figure also contains outputs for four EDX

analyses of different regions within the cross section. The BN is the bright region as con-

firmed by the EDX analysis. The loosely packed powder region between the solid BN and

the tungsten substrate was observed through an optical microscope to be polishing residue.

349



Figure 10.5: Top view of Sample 6 showing offset of different material layers

Figure 10.6: Cross section of Sample 6 showing offset of different material layers
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Figure 10.7: SEM micrograph of cross section of Sample 6 of BN-Mo-4L with multiple
EDX analyses

351



This residue inhibits the ability to see the BN –W interface. The coating on the BN surface

was shown by the analyses to contain significant molybdenum. Most of the other elements

shown in the EDX responses could be related to the polishing process that used both SiC

grinding paper and Al2O3 powder. The presence of chlorine was unsurprising given the

use of the MoCl5 reagent in the deposition process. In addition to the Al2O3 powder, the

elemental O2 could be due to air leaks into the chamber.

The total BN layer thickness within the composite was estimated to be∼ 20 µm, while

the total thickness of all 16 Mo layers was∼ 1–2 µm. These dimensions highlight the

drastic difference in growth rates of the two materials. Some pores were observed in the

BN region, but overall, the composite appeared to have good integrity. The results of this

composite line illustrate that with sufficient process control, the fabrication of a ceramic–

metal laminate is feasible using LCVD.

Experiment BN-Mo-5L was designed to improve upon the results of BN-Mo-4L by

reducing the amount of excessive powder formation. The BN deposition conditions used

were similar to those used in BN-20L which were computed from the multiple response

optimization of BN-19F. These conditions included a pressure of 269 Torr, vaporizer tem-

perature of 0◦C, carrier N2 flow rate of 4.33 sccm and diluent N2 flow of 9.24 sccm which

yielded a total flow of 15 sccm and a B3N3H6 concentration of 1.5 mol/m3. For all lines,

the laser power was controlled manually using the external control module with a target

temperature of 1000◦C. The procedure was to use a high power (∼ 80 W) until growth

began, and then reduce the power until one complete layer of sustained BN growth was

achieved. All lines were 2.54 mm long and the scan speed was kept at 2.54 mm/min.

Based on observations during the experiments, the BN lines appeared similar to those

of previous experiments with sporadic growth that was difficult to control. Several ex-

periments had large growth balls on the initial end of the lines while others showed very

minimal deposit.

The Mo layers were deposited using conditions from Sample 3 of Mo-10L which had
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shown good Mo growth with very little excess powder. The conditions included a pressure

of 320 Torr, sublimation chamber temperature of 130◦C, carrier H2 flow of 26.3 sccm and

diluent flow of 23.5 sccm. It was unclear a priori whether the slight change in pressure

from the 269 Torr of BN deposition would cause a significant shift in substrate position.

Laser power was controlled using the typical Mo procedure with manual control through

the LabVIEW interface to maintain a target temperature of 1000◦C. The Mo deposition

process was again best described as being stable but sensitive.

The results of BN-Mo-5L-A were varied, but overall they were not significantly differ-

ent from those of BN-Mo-4L. Significant powder formation still occurred, and the deposits

were generally nonuniform. None of the deposits were as promising as Sample 6 of BN-

Mo-4L.

10.1.2 Four–layer experiments

In accordance with the composite needed for the dispenser cathode assembly, a four mate-

rial BN-Mo-BN-Mo trial was run. This experiment was denoted BN-Mo-6L. The substrate

used was a tungsten sheet prepared as usual. In lieu of the problems with the mechani-

cal stages shifting when chamber pressure changed, these experiments were run under a

constant pressure of 760 Torr. Prior to beginning any deposition, the B3N3H6 reagent was

placed in its ice bath and allowed to stabilize to 0◦C and the MoCl5 sublimation chamber

was preheated to operating temperature of 130◦C. The lines were 2.54 mm long and a speed

of 2.54 mm/min was used for all scans.

Flow conditions during the first layer of BN deposition were 12.25 sccm of N2 carrier

and 1.57 sccm of N2 diluent. The laser power was controlled manually using the knob on

the external control module to a target maximum temperature of 1000◦C. The first layer of

BN resulted in the normal nodular deposit with excessive powder formation.

The transition to Mo deposition was accomplished by changing the source of reagent

gas from the N2 tank to the H2 tank. Flow through the side port of pure H2 at 1000 sccm
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was allowed for 5 minutes, and the MoCl5 sublimation chamber was opened and the carrier

flow was set to 26.3 sccm while the diluent flow was set to 23.5 sccm. After five additional

minutes for the flow to stabilize, the laser was engaged using manual control with a target

temperature of 1000◦C. Ten layers of Mo were deposited.

The transition from Mo back to BN deposition used the same procedure as the change

from BN to Mo. The H2 tank was closed and the N2 tank opened. After 5 minutes of 1000

sccm flow, the carrier and diluent flow were set to the same levels used in the first BN layer.

Note that the final length of reagent lines and the gas nozzle remained at 150◦C during this

BN deposition. There was some concern that the hot lines could cause decomposition of the

borazine or enable deposition within the lines and cause clogging, but such behavior was

not immediately obvious. For the second BN layer, the laser power was again controlled

using the manual knob.

This layer of BN deposit was even more unstable than the first layer. The pertubations

in the first BN line amplified the tendency for the second BN line to grow faster at the high

spots and slower in between. Not unlike other BN experiments, the deposition temperature

was also observed to be very sensitive to the input laser power. This was expected because

of the limited conduction paths through the underlying deposit to the substrate.

One more level of Mo was added by switching back to the H2 gas source and allow-

ing the normal 5 minutes for flow to stabilize and residual gases to be purged. The flow

conditions and laser power control were all identical to the first Mo level experiments.

The deposit of BN-Mo-6L was a large bumpy line/wall structure that was surrounded by

a plethora of white (from BN) and blue (from Mo) powder. It was difficult to determine the

success of the layered deposition due to the rough morphology and the excessive quantity

of debris surrounding the area. Figure 10.8 is an optical micrograph of the deposit showing

these features. The majority of the powder was scraped away from the deposit, and the

sample was mounted in epoxy and polished into the cross section. Figure 10.9 is an optical

micrograph of this cross section.
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Figure 10.8: Optical image showing rough surface of 4–layer composite

Figure 10.9: Optical image showing cross section of the 4–layer composite
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The cross section looks very similar to the fiber shown in Figure 10.3. A significant

layer of molybdenum can be seen on the deposit surface; however, no evidence of the inner

Mo layer can be seen. This is perplexing given the fact that during the experiment, Mo

deposition appeared to occur during the growth of this inner layer. Boron nitride growth

remained very sporadic and difficult to control as evidenced by the fact that the deposit

cross section resembles a BN fiber more than a line. The important finding from this

experiment was that without better controlling the boron nitride line growth process, it will

be even more difficult to deposit 4–layer deposits than 2–layer composites. In light of BN

line deposition sensitivity, the limitations of Georgia Tech’s LCVD system did not support

a more refined further study of this process.

10.2 Summary and Discussion

The BN-Mo composite experiments were generally plagued by the same issues that were

faced in the isolated material studies of Chapter 7 and 9. One issue that was studied was

the tendency to form excessive powder on the surrounding substrate during the deposition

of both BN and Mo. The powder could be removed easily using a scraper and was deemed

a nuisance, but did not entirely prohibit the deposition of a composite structure.

For BN lines, the biggest challenge was the tendency towards erratic and unpredictable

growth nodes. These nodes encouraged fast growth in their local regions and challenged

the ability to achieve smooth, uniform lines. The Mo deposition process was very similar to

previous experiments in that it was very slow, but generally stable and sensitive. Deposition

on the underlying BN material was not significantly different from depositing on large BN

plates. The high temperature of LCVD did not appear to affect the BN material. The

deposition of overlapping lines was complicated by the tendency for the substrate to shift

slightly when the system pressure was changed.

In summary, the deposition of a BN-Mo composite using LCVD was possible. The

practicality of the process was limited by the LCVD machine configuration and hardware
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limits. The controllability of BN line deposition complicated creation of the desired ge-

ometry. Overall, the investigation into deposition of BN-Mo composites has many broad

implications for the creation of other ceramic–metal structures using LCVD.
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CHAPTER XI

CONCLUSIONS AND RECOMMENDATIONS

Many conclusions drawn from this research were presented in the preceding chapters. Of

those conclusions, some are of significant practical importance and represent major contri-

butions in the field of LCVD. This work also provides a foundation for future studies of

LCVD and its application. These conclusions and recommendations are given below.

11.1 Conclusions

The capability of the LCVD process has been further demonstrated through this work. Car-

bon deposition was used as a vehicle to develop a better understanding of the external shape

of LCVD deposits through the execution of a large number of processing experiments, de-

position of advanced structures, and development of an advanced computational model of

the deposition process. Cross sections of carbon deposits were studied to permit determin-

ing their microstructure and to examine their structural integrity. A computational model

of thermal stress within an LCVD fiber was developed to better understand the cause of

internal cracks.

In terms of the external shape of LCVD deposits, several important findings came from

the carbon deposition experiments. The best predictive models for carbon deposit shapes

are based on theoretical deposition rate expressions. Fabrication of smooth, uniform, high

aspect ratio, multi–layered wall structures is possible with a good understanding of the line

deposition process and advanced real–time temperature control.

The computational deposition rate model that incorporated species transport allows the

study of the complex local phenomena that govern the LCVD reaction. Also, the model

allows prediction of overall deposition rates and deposition rate profiles under different
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simulated conditions. The model can be used in lieu of experiments to study the relation

among different process parameters and deposition rate, and the results of such analyzes

can be fit using linear regression techniques to simple polynomial expressions that serve as

a useful tool for predicting deposit shape.

There are a few limitations to using the computational model approach to studying

LCVD. High quality experimental kinetic data must be supplied to the CFD code for ac-

curate computation of deposition rates. In general, LCVD kinetic data are limited to a

few material systems; therefore, experimental studies usually must occur before, or paral-

lel to, modeling studies. Also, for a kinetically–limited process such as carbon deposition

from methane, the predicted deposition rate profiles are extremely sensitive to numerical

uncertainty due to the exponential relation between temperature and deposition rate.

Several important findings came from studying carbon deposition from methane using

the computational model. As was shown by others,2 because the process is kinetically–

limited, the reagent gas nozzle has little effect on the carbon deposition rate. Even when

different from the mixture exiting the gas nozzle, the mixture in the deposition chamber

has a significant impact on deposition rate. Thermal diffusion also significantly impacts

the deposition rate even for this kinetically–limited process.

Internal features of carbon deposits were also investigated. The crystal structure of the

carbon was shown to be similar to that of hexagonal pyrolytic graphite. Cracks found in

previously grown LCVD carbon fibers were related to thermal stress through development

of a structural model. Creating the structural model highlighted the complexity of the mate-

rial properties of an LCVD carbon deposit. There is directional orientation (anisotropy) in

the material properties in addition to a spatial variation (inhomogeneity) due to the different

deposition temperatures that exist within the region of the laser spot.

The results of the thermal model were very sensitive to the deposit properties because of

the large amount of incident laser energy within the relatively small volume of the deposited

fiber. The temperature results from the model did not agree well with experimental data
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captured using the thermal imaging camera. This was attributed to the restricted conduction

paths within the deposit due to likely cracks and contact resistance at the deposit–substrate

interface. The thermal stresses computed from the structural model were extremely high

and oriented consistent with observed crack sizes and shapes.

One of the unique features of the LCVD process is the ability to deposit directly from

the gas phase useful engineering materials in small, complex geometries targeted for spe-

cific applications. The LCVD of boron nitride and molybdenum materials toward the fab-

rication of an integrated dispenser cathode assembly was the focus of much of this investi-

gation. Specifically, the deposition of BN from borazine (B3N3H6) on tungsten substrates

was studied along with the deposition of Mo from molybdenum pentachloride (MoCl5) on

BN substrates. Finally, the fabrication of BN-Mo composites was addressed.

The BN LCVD process is very sensitive to input laser power. This sensitivity is most

notable during growth initiation on the substrate surface. Deposits grow very rapidly after a

growth node forms on the substrate surface, and laser power must be dropped significantly

to maintain growth at a constant temperature. After passing through the transition period at

the substrate surface, BN fiber growth is stable, but sensitive. The sensitivity is so high that

in Georgia Tech’s LCVD system, the most effective means of controlling reaction temper-

ature is to make very slight adjustments using the control knob on the laser power module

during growth. Experimental evidence suggests the process is transport–limited which

makes it particularly sensitive to transport variables such as pressure, reagent concentra-

tion, and flow rates. BN fibers display a range of shapes depending on process conditions,

and tend to develop internal cracks or voids similar to those of carbon fibers. BN deposits

are often accompanied by excessive white powder formation on the substrate surface.

The computational deposition rate model was used to further explore the rate–limiting

regime of BN fiber growth. The upper theoretical limit of deposition rate was computed

and shown to agree very well with experimental data, thus confirming that this process

is transport–limited. The shape of the deposition rate profiles for the transport–limited
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process are very different from those of a kinetically–limited process and show that trans-

port limitations will lead to the volcano effect. Consistent with original design intent, the

reagent flow rate through the gas nozzle greatly impacts the deposition rate. Thermal dif-

fusion, or the Soret effect, also has a significant impact on the deposition rate.

The findings of BN fiber growth do not lend much insight into BN line growth because

of the importance of the surface effects. These surface effects are linked to both the differ-

ences in substrate and deposit material properties and the sporadic nature of the deposition

process itself. Successful BN line growth can be accomplished using a constant intralayer

laser power approach with an interlayer change in power level. The repeatability of this

process is severely limited by the lack of robustness associated with a constant laser power

approach. Adherence of BN lines to a tungsten substrate is marginal.

Mo deposition under the studied conditions is best characterized as a slow, sensitive,

but stable process. Efforts to increase the deposition rate by increasing mass transport are

plagued by the tendency for excessive powder to form on the substrate surface surrounding

the deposit area. The ability to increase deposition rates by increasing temperature are

limited by the tendency to damage the underlying BN material. The lower temperature limit

is dictated by the range of the thermal imager and unfortunately is too close to the optimum

temperature to allow use of the automatic temperature control system. The stability of Mo

deposition, particularly near the substrate surface, lends tremendous insight into the Mo

line growth process. In fact, identical conditions can be used for both processes, and line

specific variables such as scan speed do not significantly change the results. In sum, Mo

deposition from MoCl5 on BN substrates is restricted to a small operating box that supports

only slow growth rates.

BN-Mo composite growth is complicated by the sporadic nature of BN line growth and

the slow rate of Mo line growth. During deposition, both materials also tend to deposit

excess powder on the substrate surface that must later be removed. One synergy that exists

in building the composite is that the stability of Mo deposition, likely due to its slow rate,
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minimizes the importance of the bumpy nature of the BN lines. There are also a few

problems with fabricating this structure in Georgia Tech’s LCVD system. The mechanical

stages tend to shift when the system pressure changes which makes it difficult to ensure

alignment of the BN level with the Mo level. The system is not optimally configured for

simultaneous use of a reagent that must be kept cool and delivered through unheated reagent

lines (borazine) and a reagent that must be heated and delivered through heated reagent

lines (molybdenum pentachloride). The deposition of a ceramic–metal composite using

LCVD is certainly possible; however, for the material systems studied, it is not currently

very practical.

Four layer BN-Mo-BN-Mo composite growth incorporates the challenges of growing

the two–layer composite as well as one significant new challenge. Deposition of the second

level of BN on the first Mo level is even more sensitive than BN deposition on a flat sub-

strate surface. The inherent tendency for growth to occur at isolated nodes is exacerbated

by the generally rough nature of the underlying BN deposit. The two biggest obstacles

to using LCVD to fabricate an integrated dispenser cathode assembly were the difficulty

in depositing smooth and consistent BN lines and the extremely slow deposition rate of

Mo. Changes in the process, equipment, or experimental procedure will need to be made

to enhance fabrication of this structure.

11.2 Significance and Contributions

The findings and conclusions presented in Section 11.1 above represent important contribu-

tions to the study of Laser Chemical Vapor Deposition, especially in regard to the integrated

dispenser cathode application. The major contributions are presented below in bold along

with an itemized description of the more specific accomplishments associated with each.

• Characterized process–property relationships for carbon LCVD

– Established predictive models for deposit shape from experimental parameters
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– Using advanced temperature control, deposited first smooth, uniform multi-

layered, high aspect ratio LCVD walls

– Identified microstructure of carbon deposits to be graphitic

• Developed first fully integrated forced flow CFD deposition rate model that in-

corporates species transport

– Provided detailed analysis of local phenomena in the deposition zone (e.g.

showed importance of thermal diffusion)

– Showed differences between kinetically–limited and transport–limited LCVD

deposition rate profiles

– Developed simple polynomial expressions from model results to express process–

property relations for carbon deposition

– Quantified upper theoretical deposition rate limit for BN deposition process

• Developed first FEM thermal–structural model of an in situ LCVD deposit

– Provided a methodology for incorporating complex LCVD deposit material

properties in a modeling environment

– Quantified the thermal stresses that develop within an LCVD fiber during growth

– Related the thermal stresses to failure criteria

• First comprehensive processing studies of BN LCVD from borazine using con-

tinuous laser heating

– Achieved well–defined BN fiber and line shapes

– Quantified the process–structure relations between deposit shape and experi-

mental parameters

– Addressed the implications of depositing a ceramic on a metal substrate
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– Identified the process to be transport–limited and discussed the implications of

this on deposition rates and deposit shape

– First investigation of internal features of LCVD boron nitride

– First LCVD of BN lines

• Most advanced study of Mo LCVD from MoCl5 reported

– Identified an appropriate operating box for fabrication of Mo fibers and lines

– Addressed the implications of depositing a metal on a ceramic substrate

• First fabrication of a ceramic–metal composite using LCVD to grow both mate-

rials

– Demonstrated importance of process control in depositing composite laminates

– Showed feasibility of producing BN-Mo structure needed for integrated dis-

penser cathode assembly

– Identified needed changes to the LCVD machine for practical realization of the

fabrication of an integrated dispenser cathode assembly

11.3 Recommendations and Future Work

While this body of work has advanced the current status of LCVD research, the complexity

of the process dictates the need for continued work. Recommendations for future stud-

ies can be broken into three sections. The first section discusses future evolutions of the

modeling and analysis of the general LCVD process. The second section is focused on

the deposition of the materials of interest and ceramic–metal structures in general, and the

third section involves deposit geometry and process control considerations.

11.3.1 Modeling and Analysis

One limitation of the computational deposition rate model developed herein was the sim-

plified approach used to simulate chemical reactions. Future models could incorporate
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additional species and consider homogenous chemical reactions that could enhance the ac-

curacy and reliability of the model results. The FLUENT code has the ability to use species

databases such as that provided via CHEMKIN in its calculations which would ease the im-

plementation of these additional reactions.

CHEMKIN is software that is widely used for the study of complex chemical kinetics

in reacting systems. One package in the CHEMKIN suite, TWAFER, is designed specif-

ically for studying CVD reactions. While TWAFER is geared towards the semiconductor

manufacturing industry, it offers many features that could be useful in studying the LCVD

process. CHEMKIN would allow a more detailed study of the gas phase reactions taking

place in the LCVD chamber and in particular would allow a detailed look at the types and

concentrations of gas species near the substrate surface. The thorough database of mate-

rials and chemical reactions CHEMKIN utilizes in its calculations offers a detailed study

of the reaction mechanisms not possible with FLUENT. As such, CHEMKIN would pro-

vide for thorough modeling of the chemical kinetics of LCVD and would contribute to the

geometric modeling efforts.

Another limitation of the deposition rate model was the fact that it used a steady state

approach that did not include the dynamic substrate effects associated with the LCVD

growth process. Future models could include a changing substrate geometry that repre-

sents the evolution of deposit shape and could therefore consider changes in the substrate

properties and the interaction among the deposit shape and process variables. For instance,

fiber growth significantly changes the conduction of heat away from the laser–heated zone

and changes the flow profiles in the deposit area. These changes undoubtedly have an

impact on the resulting LCVD deposit shape.

If the transient analysis described above could be implemented using a solver that offers

structural analysis in addition to the thermal–flow analysis, a transient structural analysis

could provide further insight into the thermal stresses that evolve within a depositing struc-

ture. Such a comprehensive model would demand tremendous computing resources, but
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would yield invaluable insight into manipulating the LCVD process toward achieving suc-

cess in certain applications. Moreover, it could help understand how to change the process

conditions and avoid the thermal cracks that are prevalent.

11.3.2 Materials

The deposition of boron nitride fibers and lines has been well–demonstrated. Future studies

should focus on better characterizing the internal microstructure of the deposits and devel-

oping an understanding of how the microstructure changes with process conditions. Further

investigations are also needed to seek ways to minimize the sporadic nodular growth of BN

on the substrate surface. Perhaps a comprehensive study of substrates and growth initiation

would yield valuable insight. If smooth uniform, BN lines are to be deposited, the growth

initiation process must be understood and controlled. Control of the BN deposition process

would be enhanced by use of a laser that had better resolution or perhaps fitting the current

laser with a beam splitter to reduce the sensitivity of the process. Note however, that depo-

sition on a highly reflective substrate such as tungsten requires very high laser power levels

until the surface develops a coating that changes the surface properties.

Mo experiments should focus on finding conditions that enable faster growth rates. In

order to identify the rate–limiting variables, the rate–limiting regime must be identified.

Using a temperature measurement device that has a lower limit of 500◦C would enable ex-

ecution of kinetic studies and allow the use of a feedback temperature control system. Use

of a substrate heater could help reduce the formation of the excess powder that plagued Mo

deposition. Georgia Tech’s LCVD system formerly included such a system, but leaks into

the deposition chamber through the associated feedthru ports required that it be disabled.

Modifications to the system that allow use of this device might be beneficial.

11.3.3 Deposit Geometry and Process Control

The deposition of the carbon walls presented herein illustrated the importance of a real–

time LCVD control system and served to validate its role in producing well defined deposit
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shapes and structures. Use of such a system is the only method of controlling the inherent

positive feedback tendency of the layered deposition process.

Another issue that has not been sufficiently addressed and will affect the ability to

produce the specified dispenser cathode geometry is that of depositing intersecting lines.

Similar to layered deposition, without sufficient process control, the deposition of inter-

secting geometry poses the threat of causing excessive deposit growth at the intersection.

The amplification of deposit volume and height at intersections has been observed in the

past with carbon deposition.

Some weaknesses of Georgia Tech’s LCVD system have been identified regarding the

deposition of laminated structures. The pressure change required when changing reagent

gases causes a shift in the substrate position and causes misalignment between the bottom

and top materials. The configuration of the mechanical stages in the system should be

modified to prevent such behavior.
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APPENDIX A

MATERIAL PROPERTIES

A.1 Graphite Substrate Properties

Table A.1: Available properties of different graphite substrate materials

Industrial Sales

Supplier Associates Inc. POCO

Grade SK-85 AXF-5Q

Manufacturing Mode extruded isostatically pressed

Bulk Density (g/cm3) 1.76 1.78

Grain Size (mm) 0.2 0.005

Pore Size (µm) 0.8

Total Porosity (% Volume) 20

Specific Resistance (×10−6Ω−cm) 10.2 14.7

Flexure Strength (N/mm2) 28.98 90

Compressive Strength (N/mm2) 55.1 145

Tensile Strength (N/mm2) 60

Modulus of Elasticity (N/mm2) 11000

Tensile Strain (to Failure%) 0.95

Shore Hardness 50 74

Ash 0.10%

CTE (×10−6/◦C) (with grain) 7.9

Thermal Conductivity (W/m-K) 95

Oxidation Threshold (◦C) 450
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A.2 Boron Nitride Substrate Properties

Table A.2: Properties of General Electric hot–pressed boron nitride shapes

Grade HBC

B+N (%) >99

Binder None

Max Rec Operating Temp (◦C)

- Oxidizing Atm 850

- Inert/Vacuum Atm 2000–3000

Density (g/cm3)

- Minimum 1.9

- Typical 1.95

Porosity (%) 13

Hardness, Knoops (KHN, 100g) 16

Specific Heat (J/kg-K)

- @ 25◦C 808

- @ 700◦C 1846

Pressing Direction ‖ ⊥
Thermal Conductivity (W/m-K)

- @ 25◦C 28 23

- @ 500◦C 30 24

CTE (ppm/deg C)

- 25 to 1500◦C 0.4 0.8

Flexural Strength (Mpa)

- @ 25◦C 20.6 17.2

- @ 1500◦C 48.2 27.5

Modulus of Elasticity (Gpa) 48.2 20.6

Compressive Strength (Mpa) 41.3 51.7

Electrical Properties

Dielectric Strength (V/mm x 103) 54

Dielectric Constant 4.1–4.3

Volume Resistivity (Ohm-cm)

- @ 25◦C > 1015

- @ 700◦C 1010
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A.3 Boron Nitride Thermodynamic Analysis
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APPENDIX B

COMPUTER SOURCE CODE LISTINGS

B.1 MATLAB Code for Converting a Thermal Image to a
Temperature Map

1 % t e m p _ p r o f i l e .m

% Used t o compute t e m p e r a t u r e p r o f i l e s o f 24 b i t* . bmp f i l e s

% c o n t a i n i n g t h e r m a l images

% a u t h o r : Ryan W. Johnson

5

c l e a r a l l ;
c l o s e a l l ;

% read i n temp s c a l e i n f o

10 s c a l e = dlmread ( ’ r 1z4_5_da ta . t x t ’ , ’ \ t ’ ) ;−−−−−−→% read i n s c a l e f i l e

Tmin = s c a l e (l eng th ( s c a l e ) , 1 ) ;−→−−−−−−−→−−−−−−−→−−−−−−−→% e x t r a c t Tmin↓
→ from end of f i l e

Tmax = s c a l e (l eng th ( s c a l e ) , 2 ) ;−→−−−−−−−→−−−−−−−→−−−−−−−→% e x t r a c t Tmax↓
→ from end of f i l e

s c a l e = s c a l e ( 1 :l eng th ( s c a l e )−1 , : ) ;−−−−→−−−−−−−→−−−−−−−→% r e d e f i n e ↓
→ s c a l e w/ o Tmin and Tmax

15 % impor t image f i l e f o r temp c a l c u l a t i o n

[ Image in t , map ] = imread ( ’ 8 b i t . bmp ’ ) ;
Imagenorm = ind2 rgb ( Image in t , map ) ;−−−−−→−−−−−−−→−−−−−−−→% c o n v e r t s ↓

→ i ndexed 8 b i t bmp t o t r u e c o l o r 24 b i t

−−−−−−−→−−−−−−−→−−−−−−−→−−−−−−−→−−−−−−−→−−−−−−−→−−−−−−−→−−−−−−−→↓
→ −−−−−−−→−−−−−−−→−−−−−−−→−−−−−−−→−−−−−−−→−−−−−−−→% wi th NORMALIZED ↓
→ v a l u e s between 0 and 1 f o r each

−−−−−−−→−−−−−−−→−−−−−−−→−−−−−−−→−−−−−−−→−−−−−−−→−−−−−−−→−−−−−−−→↓
→ −−−−−−−→−−−−−−−→−−−−−−−→−−−−−−−→−−−−−−−→−−−−−−−→% c o l o r channe l

20

Image = Imagenorm* 255;
[ rows columns dep th ] =s i z e( Image ) ;

f o r i = 1 : rows
25 f o r j = 1 : columns

Redres = abs( Image ( i , j , 1 )−s c a l e ( : , 1 ) ) ;
% Normredres = Redres / max ( Redres ) ;

Greenres =abs( Image ( i , j , 2 )−s c a l e ( : , 2 ) ) ;
% Normgreenres = Greenres / max ( Green res ) ;

30 B l u e r e s = abs( Image ( i , j , 3 )−s c a l e ( : , 3 ) ) ;
% Normblueres = B l u e r e s / max ( B l u e r e s ) ;

% Score = 1 / 3* ( Normredres + Normgreenres + Normblueres ) ;
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Score = ( Redres . ^ 2 + Greenres . ^ 2 + B l u e r e s . ^ 2 ) ;
34 [ Low_score P l a c e ] =min ( Score ) ;
35 temp ( i , j ) = ( l eng th ( Score )−P l a c e ) /l eng th ( Score )* (Tmax−Tmin ) +↓

→ Tmin ;
i f temp ( i , j ) > 2150

temp ( i , j ) = Tmin ;
end

end
40 end

%dlmwr i t e ( ’ L 2 4 2 _ 2 c r o p _ p r o f i l e . t x t ’ , temp , ’ ’ ) ;

% g e t l o c a t i o n and v a l u e o f maximum t e m p e r a t u r e

45 % [ rowvec rowpos ] = max ( temp ) ;

% [ maxT c o l p o s ] = max ( rowvec ) ;

% c o n v e r t p i x e l number t o mic rons

50 [ p i x e l h p ixe lw ] = s i z e( temp ) ;
rowpos = 400; % only s e t rowpos when Tmax i s no t un ique

c o l p o s = 300; % only s e t c o l p o s when Tmax i s no t un ique

r = 3 . 5* ( ( 1 : p ixe lw )−c o l p o s ) ;

55

%%%%%%%%%%%%%%%%

% p l o t p r o f i l e %

%%%%%%%%%%%%%%%%

60 % temp p r o f i l e

%s u b p l o t ( 2 , 1 , 1 )

f i g u r e ( 1 )
p l o t ( r , temp ( rowpos , : ) ) ;
t i t l e ( ’Temp P r o f i l e f o r L ine L231−11 ’ )

65 x l a b e l ( ’ P o s i t i o n (10^−6 m) ’ )
y l a b e l ( ’Temp ( deg C) ’ )
a x i s ([−200 200 Tmin−100 Tmax+100] ) ;

f i g u r e ( 2 )
70 mesh( temp ) ;

co lo rbar ;
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B.2 Computation of Fiber Growth Rate from Series of Im-
ages

1 % t e m p _ p r o f i l e _ p l u s _ r a t e .m

% Used t o c o n v e r t t h e r m a l images (640 x480 8 b i t bmps ) t o t e m p e r a t u r e s

% and t o compute t h e growth r a t e o f t h e f i b e r between images

% a u t h o r : Ryan W. Johnson

5 % d a t e : 08 March 2004

c l e a r a l l ;
c l o s e a l l ;

10 % read i n temp s c a l e i n f o

Tmin = 955 ;
Tmax = 1255;

% read i n l i s t o f f i l e s i n d i r e c t o r y

15 numimages = 8 ;−→−−−−−−−→% t o t a l number o f images t o be used i n c a l c u l a t i o n

numtoaverage = 10 ;−−−−−→% number o f t e m p e r a t u r e s on row of max temp t o ave rage

f i l e n a m e l e n g t h = 14 ;
f i d = fopen ( ’ f i l e l i s t i n g . t x t ’ , ’ r ’ ) ;
i n f i l e n a m e s = f s c a n f ( f i d , ’%s ’ , numimages ) ;

20

f o r image=1: numimages

% impor t image f i l e f o r temp c a l c u l a t i o n

[ Image in t , map ] = imread ( i n f i l e n a m e s ( ( (image−1)* f i l e n a m e l e n g t h +1)↓
→ : image* f i l e n a m e l e n g t h ) ) ;

25 Image = doub le ( Ima ge in t ) ;

% c o n v e r t t h e 8 b i t v a l u e i n each p i x e l t o a temp th rough l i n e a r i n t e r p o l a t i o n

temp = ( Image / 2 5 5 )* (Tmax−Tmin ) +Tmin ;

30 % make an p i x e l b o r d e r around t h e image wi th temp = Tmin

[ p i x e l h p ixe lw ] = s i z e( temp ) ;
b o r d e r w i d t h = 10 ;
temp ( 1 : bo rde rw id th , : ) = Tmin ;
temp ( pixe lw−b o r d e r w i d t h : p ixe lw , : ) = Tmin ;

35 temp ( : , 1 : bo rde rw id th , : ) = Tmin ;
temp ( : , p i xe l h−b o r d e r w i d t h : p i x e l h ) = Tmin ;

% w r i t e ou t a f i l e w i th t h e t e m p e r a t u r e d a t a

o u t f i l e n a m e = s p r i n t f ( ’%s%s ’ , i n f i l e n a m e s ( ( (image−1)* ↓
→ f i l e n a m e l e n g t h +1) :image* f i l e n a m e l e n g t h−4) , ’ . t x t ’ ) ;

40 %dlmwr i t e ( o u t f i l e n a m e , temp , ’ \ t ’ ) ;

% seed t h e maxrow m a t r i x w i th t ime v a l u e s from t h e f i l e names %

maxrow (image , 1 ) = str2num ( i n f i l e n a m e s ( ( (image−1)* f i l e n a m e l e n g t h↓
→ +1) : image* f i l e n a m e l e n g t h−4) ) ;

45 % f i n d t h e row i n t h e image where t h e most number o f maximum t e m p e r a t u r e s occu r

edges = [0 max(max( temp ) ) ] ; −−−−−−−→% t a k e v a l u e s o f on ly maxtemp
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% edges = [ max ( max ( temp ) )−20 max ( max ( temp ) ) ] ;−−−−−−−−−−→% t a k e v a l u e s o f a n y t h i n g↓
→ between maxtemp−20 and maxtemp

48 c o l b i n s = h i s t c ( temp , edges ) ;
[ maxcol (image , 2 ) maxcol (image , 1 ) ] = max( c o l b i n s ( 2 , : ) ) ;

50 rowb ins = h i s t c ( temp ’ , edges ) ;
[ maxrow (image , 3 ) maxrow (image , 2 ) ] = max( rowb ins ( 2 , : ) ) ;

% add t h e h i g h e s t t e m p e r a t u r e v a l u e t o t h e maxrow m a t r i x

maxrow (image , 4 ) = max(max( temp ) ) ;
55

% add t h e ave rage of t h e top numtoaverage v a l u e s t o t h e maxrow m a t r i x

s o r t t e m p s i n r o w = s o r t ( temp ( maxrow (image , 2 ) , : ) ) ;
s h o r t t e m p s = s o r t t e m p s i n r o w (l eng th ( s o r t t e m p s i n r o w )−numtoaverage :↓

→ l eng th ( s o r t t e m p s i n r o w ) ) ;
maxrow (image , 5 ) = mean( s h o r t t e m p s ) ;

60

%%%%%%%%%%%%%%%%%

% p l o t p r o f i l e s %

%%%%%%%%%%%%%%%%%

65 % c o n v e r t p i x e l number t o mic rons

rowpos = maxrow (image , 2 ) ; % only s e t rowpos when Tmax i s no t un ique

c o l p o s = maxcol (image , 1 ) ; % only s e t c o l p o s when Tmax i s no t un ique

r = 3 . 5* ( ( 1 : p ixe lw )−c o l p o s ) ;

70 % temp p r o f i l e

%s u b p l o t ( 2 , 1 , 1 )

f i g u r e ( image)
p l o t ( r , temp ( rowpos , : ) ) ;
t i t l e ( o u t f i l e n a m e )

75 x l a b e l ( ’ P o s i t i o n ( \mum) ’ )
y l a b e l ( ’Temp ( \ c i r c C ) ’ )
a x i s ([−300 300 Tmin−100 Tmax+100] ) ;

end
80

f c l o s e( f i d ) ;

maxrow ;
maxrowtrans = [ maxrow ( : , 1 )−maxrow ( 1 , 1 ) ( 3 . 5 /cos( p i / 4 ) ) * ( maxrow ( : , 2 )↓

→ −min ( maxrow ( : , 2 ) ) ) maxrow ( : , 3 ) ] ;
85 maxrowf l ip = [ maxrowtrans ( : , 1 )−(maxrowtrans ( : , 2 )−maxrowtrans ( 1 , 2 ) )↓

→ maxrowtrans ( : , 3 ) ] ;

%%%%%%%%

% p l o t %

%%%%%%%%

90

% p l o t h e i g h t vs . t ime

f i g u r e ( image+1)
p l o t ( maxrowf l ip ( : , 1 ) / 1000 , maxrowf l ip ( : , 2 ) , ’ x− ’ ) ;
t i t l e ( ’ F i b e r He igh t pe r Thermal Image ’ )

95 x l a b e l ( ’ Time ( s ) ’ )
y l a b e l ( ’ F i b e r He igh t ( \mum) ’ )
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98 % p l o t temp vs . t ime

f i g u r e ( image+2)
100 p l o t ( maxrowf l ip ( : , 1 ) / 1000 , maxrow ( : , 4 ) ) ;

t i t l e ( ’Maximum Temp per Thermal Image ’ )
x l a b e l ( ’ Time ( s ) ’ )
y l a b e l ( ’Temp ( \ c i r c C ) ’ )
a x i s ( [ min ( maxrowf l ip ( : , 1 ) / 1 0 0 0 ) max( maxrowf l ip ( : , 1 ) / 1 0 0 0 ) Tmin−100 ↓

→ Tmax+100] )
105 hold

%f i g u r e ( image +3)

p l o t ( maxrowf l ip ( : , 1 ) / 1000 , maxrow ( : , 5 ) ) ;
a v e t i t l e = s p r i n t f ( ’%s%i%s ’ , ’ Average of Top ’ , numtoaverage , ’ Temps ↓

→ i n Row per Thermal Image ’ ) ;
t i t l e ( a v e t i t l e )

110 x l a b e l ( ’ Time ( s ) ’ )
y l a b e l ( ’Temp ( \ c i r c C ) ’ )
a x i s ( [ min ( maxrowf l ip ( : , 1 ) / 1 0 0 0 ) max( maxrowf l ip ( : , 1 ) / 1 0 0 0 ) Tmin−100 ↓

→ Tmax+100] )

115 d e l t a h e i g h t = maxrowf l ip (image , 2 )−maxrowf l ip ( 1 , 2 )
d e l t a t i m e = maxrowf l ip (image , 1 ) /1000 − maxrowf l ip ( 1 , 1 ) /1000
avgtemp = mean( maxrow ( : , 5 ) )
s td temp = s td ( maxrow ( : , 5 ) )
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B.3 C Source Code for FLUENT Laser Power Input UDF

1 / * ************************************** * / *
/ * udf f o r l a s e r s p o t enery d i s t r i b u t i o n /*
/*************************************** * / *

5 # inc lude " udf . h "
# d e f i n e PI 3.141592654
# d e f i n e RO 0.0001
# d e f i n e P_LASER 44
# d e f i n e REFLECT 0 .4

10 # d e f i n e REFTEMP 300
# d e f i n e SURF_DEPTH 0.0000009112709832134292565947242206235
# d e f i n e SIGMA 0.0000000567
# d e f i n e EMIS 0 .90

15 DEFINE_SOURCE( l a s e r s p o t _ p r o f i l e , c e l l , t h read , dS , eqn )
{
−−−−−−−→ r e a l c [ND_ND] , x , y , z , r , source , r a d i a t i o n , temp , l a s e r ;

−−−−→ C_CENTROID( c , c e l l , t h r e a d ) ;
20 −−−−−−−→x = c [ 0 ] ;

−−−−−−−→y = c [ 1 ] ;
−−−−−−−→z = c [ 2 ] ;
−−−−−−−→ r = s q r t ( x* x + y* y ) ;

25 −−−−−−−→ i f ( r > 10*RO | | z < (−1*SURF_DEPTH) )
−−−−−−−→{
−−−−−−−→−−−−−−−→s o u r c e = 0 ;
−−−−−−−→}
−−−−−−−→ e l s e

30 −−−−−−−→{
−−−−−−−→−−−−−−−→ l a s e r = (2* P_LASER* (1−REFLECT) ) / ( SURF_DEPTH* ( PI*RO* ↓

→ RO) )* exp ((−2* r * r ) / (RO*RO) ) ;
−−−−−−−→−−−−−−−→temp = C_T ( c e l l , t h r e a d ) ;
−−−−−−−→−−−−−−−→ r a d i a t i o n = EMIS*SIGMA* ( temp* temp* temp* temp − ↓

→ REFTEMP*REFTEMP*REFTEMP*REFTEMP) / SURF_DEPTH ;
−−−−−−−→−−−−−−−→ / * d i v i d e by SURF_DEPTH t o g e t W/m^3* /

35 −−−−−−−→−−−−−−−→s o u r c e = l a s e r− r a d i a t i o n ;
−−−−−−−→}

−−−−−−−→dS [ eqn ] = 0 ;

40 −−−−−−−→ re turn s o u r c e ;
}
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B.4 ANSYS APDL Listing for Thermal Model

FINISH
/CLEAR
/ PREP7

! DEFINE GENERAL VARIABLES

SHORT = 1 ! 0=TALL,1=SHORT

! DEFINE ELEMENT
ET , 1 , PLANE77
KEYOPT, 1 , 3 , 1 ! AXISYMMETRIC

! SET MESH DIMENSION PARAMETERS
FIBRAD = 0.0002
FIBHGHT = 0.0008
SUBTHCK = 0.00254
SUBRAD = 0.009525
MINMESH = 0.00001
ANGDIV = FIBRAD /MINMESH
SCALE1 = 5
SCALE2 = 10

! NEW MATERIAL PARAMETERS
NEWHGHT = 0.0002 ! ADD THIS MUCH MATERIAL

! DEFINE GEOMETRY
NUMDIV = 10
BLC4 , 0 , 0 , FIBRAD ,SUBTHCK
BLC4 , FIBRAD , 0 ,SUBRAD−FIBRAD ,SUBTHCK

NUMSTR,AREA,50

*DO, DIVNO, 0 ,NUMDIV−1,1
BLC4 , DIVNO* FIBRAD /NUMDIV,SUBTHCK, FIBRAD /NUMDIV, FIBHGHT+FIBRAD+2*NEWHGHT

*ENDDO

K, 9 9 , 0 ,SUBTHCK+FIBHGHT, 0
CIRCLE , 9 9 , FIBRAD , , , 9 0
CIRCLE , 9 9 , FIBRAD−2*MINMESH, , , 9 0
L ,49 ,51
L ,51 ,99

ASEL , S ,AREA, ,50 ,50+NUMDIV−2,1 ! SELECT FIRST 9 MATERIAL STRIPS
ASBL, ALL,50 ! BREAK MATERIAL STRIPS OVER INNER ↓
→ RADIUS R1
ASEL , S ,AREA, ,50+NUMDIV−1 ! SELECT LAST MATERIAL STRIP
ASBL, ALL,51 ! BREAK LAST STRIP OVER INNER RADIUS R1
ASEL , S ,LOC,Y,SUBTHCK+FIBHGHT+FIBRAD ,SUBTHCK+FIBHGHT+2* FIBRAD
ASBL, ALL,49 ! BREAK ALL UPPER STRIPS OVER OUTER↓
→ RADIUS R2
ASEL , S ,LOC,Y,SUBTHCK+.99* (FIBHGHT / 2 ) ,SUBTHCK+1 .01* (FIBHGHT+FIBRAD) / 2
ASBL, ALL,52
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ALLSEL
BTOL, 0 . 1 0 E−05
AADD,51 ,52 ,89
BTOL, 0 . 1 0 E−04

NUMCMP, ALL

! ADDITIONAL AREA REQUIRED BY NEW MATERIAL
K, 1 0 0 0 , 0 ,SUBTHCK+FIBHGHT+NEWHGHT, 0
NUMSTR, LINE ,999
CIRCLE ,1000 ,FIBRAD , , , 9 0
ASEL , S ,LOC,Y,SUBTHCK+FIBHGHT+FIBRAD ,SUBTHCK+FIBHGHT+2* FIBRAD
NUMSTR,AREA,500
ASBL, ALL,999 ! SUBTRACTS LINES FROM AREAS
AADD,519 ,502 ! ADDS TWO AREAS TO CREATE SINGLE AREA
ASEL , S ,LOC,Y,SUBTHCK+FIBHGHT+FIBRAD+NEWHGHT,SUBTHCK+FIBHGHT+FIBRAD+2* ↓
→ NEWHGHT
!ASEL ,A,LOC,X, FIBRAD−2*MINMESH, FIBRAD
! NEXT LINE IS THE PROBLEM
!ASEL , R ,LOC,Y,SUBTHCK+FIBHGHT+FIBRAD−0.5*NEWHGHT,SUBTHCK+FIBHGHT+2* ↓
→ FIBRAD
ADELE, ALL, , , 1

ALLSEL
BTOL, 0 . 1 0 E−06
AGLUE, ALL
BTOL, 0 . 1 0 E−04
NUMCMP, ALL

! DELETE EXTRA GROWTH

* IF ,SHORT, EQ, 1 ,THEN
ASEL , S ,AREA, , 9
ASEL ,A,AREA, , 3 0 , 3 7
ADELE, ALL, , , 1

* ENDIF

! DEFINE MATERIAL PROPERTIES

! MATERIAL PROPERTIES FOR PYROLYTIC GRAPHITE

*DO,MATNUM, 1 ,NUMDIV
THETA = ACOS( ( FIBRAD−MATNUM * (FIBRAD /NUMDIV) +(FIBRAD /NUMDIV) / 2 ) / FIBRAD)
MAID = MATNUM

KXX1=0.2E+04
KXX2=0.169E+04
KXX3=0.1460E+04
KXX4=0.113E+04
KXX5=0.930E+03
KXX6=0.79E+03
KXX7=0.68E+03
KXX8=0.6E+03
KXX9=0.53E+03
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KXX10=0.48E+03
KXX11=0.44E+03
KXX12=0.4E+03
KXX13=0.37E+03
KXX14=0.34E+03
KXX15=0.32E+03
KXX16=0.3E+03
KXX17=0.28E+03
KXX18=0.26E+03
KXX19=0.25E+03

KYY1=0.95E+01
KYY2=0.8E+01
KYY3=0.7E+01
KYY4=0.54E+01
KYY5=0.44E+01
KYY6=0.38E+01
KYY7=0.32E+01
KYY8=0.28E+01
KYY9=0.25E+01
KYY10=0.23E+01
KYY11=0.21E+01
KYY12=0.19E+01
KYY13=0.17E+01
KYY14=0.16E+01
KYY15=0.15E+01
KYY16=0.14E+01
KYY17=0.13E+01
KYY18=0.125E+01
KYY19=0.12E+01

KXX1PRIM=SQRT ( (KYY1*COS(THETA) )** 2+(KXX1* SIN (THETA) ) ** 2)
KXX2PRIM=SQRT ( (KYY2*COS(THETA) )** 2+(KXX2* SIN (THETA) ) ** 2)
KXX3PRIM=SQRT ( (KYY3*COS(THETA) )** 2+(KXX3* SIN (THETA) ) ** 2)
KXX4PRIM=SQRT ( (KYY4*COS(THETA) )** 2+(KXX4* SIN (THETA) ) ** 2)
KXX5PRIM=SQRT ( (KYY5*COS(THETA) )** 2+(KXX5* SIN (THETA) ) ** 2)
KXX6PRIM=SQRT ( (KYY6*COS(THETA) )** 2+(KXX6* SIN (THETA) ) ** 2)
KXX7PRIM=SQRT ( (KYY7*COS(THETA) )** 2+(KXX7* SIN (THETA) ) ** 2)
KXX8PRIM=SQRT ( (KYY8*COS(THETA) )** 2+(KXX8* SIN (THETA) ) ** 2)
KXX9PRIM=SQRT ( (KYY9*COS(THETA) )** 2+(KXX9* SIN (THETA) ) ** 2)
KXX10PRIM=SQRT ( ( KYY10*COS(THETA) )** 2+(KXX10* SIN (THETA) ) ** 2)
KXX11PRIM=SQRT ( ( KYY11*COS(THETA) )** 2+(KXX11* SIN (THETA) ) ** 2)
KXX12PRIM=SQRT ( ( KYY12*COS(THETA) )** 2+(KXX12* SIN (THETA) ) ** 2)
KXX13PRIM=SQRT ( ( KYY13*COS(THETA) )** 2+(KXX13* SIN (THETA) ) ** 2)
KXX14PRIM=SQRT ( ( KYY14*COS(THETA) )** 2+(KXX14* SIN (THETA) ) ** 2)
KXX15PRIM=SQRT ( ( KYY15*COS(THETA) )** 2+(KXX15* SIN (THETA) ) ** 2)
KXX16PRIM=SQRT ( ( KYY16*COS(THETA) )** 2+(KXX16* SIN (THETA) ) ** 2)
KXX17PRIM=SQRT ( ( KYY17*COS(THETA) )** 2+(KXX17* SIN (THETA) ) ** 2)
KXX18PRIM=SQRT ( ( KYY18*COS(THETA) )** 2+(KXX18* SIN (THETA) ) ** 2)
KXX19PRIM=SQRT ( ( KYY19*COS(THETA) )** 2+(KXX19* SIN (THETA) ) ** 2)

KYY1PRIM=SQRT ( (KYY1* SIN (THETA) ) ** 2+(KXX1*COS(THETA) )** 2)
KYY2PRIM=SQRT ( (KYY2* SIN (THETA) ) ** 2+(KXX2*COS(THETA) )** 2)
KYY3PRIM=SQRT ( (KYY3* SIN (THETA) ) ** 2+(KXX3*COS(THETA) )** 2)
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KYY4PRIM=SQRT ( (KYY4* SIN (THETA) ) ** 2+(KXX4*COS(THETA) )** 2)
KYY5PRIM=SQRT ( (KYY5* SIN (THETA) ) ** 2+(KXX5*COS(THETA) )** 2)
KYY6PRIM=SQRT ( (KYY6* SIN (THETA) ) ** 2+(KXX6*COS(THETA) )** 2)
KYY7PRIM=SQRT ( (KYY7* SIN (THETA) ) ** 2+(KXX7*COS(THETA) )** 2)
KYY8PRIM=SQRT ( (KYY8* SIN (THETA) ) ** 2+(KXX8*COS(THETA) )** 2)
KYY9PRIM=SQRT ( (KYY9* SIN (THETA) ) ** 2+(KXX9*COS(THETA) )** 2)
KYY10PRIM=SQRT ( ( KYY10* SIN (THETA) ) ** 2+(KXX10*COS(THETA) )** 2)
KYY11PRIM=SQRT ( ( KYY11* SIN (THETA) ) ** 2+(KXX11*COS(THETA) )** 2)
KYY12PRIM=SQRT ( ( KYY12* SIN (THETA) ) ** 2+(KXX12*COS(THETA) )** 2)
KYY13PRIM=SQRT ( ( KYY13* SIN (THETA) ) ** 2+(KXX13*COS(THETA) )** 2)
KYY14PRIM=SQRT ( ( KYY14* SIN (THETA) ) ** 2+(KXX14*COS(THETA) )** 2)
KYY15PRIM=SQRT ( ( KYY15* SIN (THETA) ) ** 2+(KXX15*COS(THETA) )** 2)
KYY16PRIM=SQRT ( ( KYY16* SIN (THETA) ) ** 2+(KXX16*COS(THETA) )** 2)
KYY17PRIM=SQRT ( ( KYY17* SIN (THETA) ) ** 2+(KXX17*COS(THETA) )** 2)
KYY18PRIM=SQRT ( ( KYY18* SIN (THETA) ) ** 2+(KXX18*COS(THETA) )** 2)
KYY19PRIM=SQRT ( ( KYY19* SIN (THETA) ) ** 2+(KXX19*COS(THETA) )** 2)

MPTEMP
MPTEMP, 1 , 0 .0000000E+00 ,
MPDATA, DENS, MAID, 1 , 0 .1760000E+04 ,
MPTEMP
MPTEMP, 1 , 0 .3E+03 , 0 .35E+03 , 0 .4E+03 , 0 .5E+03 , 0 .6E+03
MPTEMP, 6 , 0 .7E+03 , 0 .8E+03 , 0 .9E+03 , 0 .1E+04 , 0 .11E+04
MPTEMP, 11 , 0 .12E+04 , 0 .13E+04 , 0 .14E+04 , 0 .15E+04 , 0 .16E+04
MPTEMP, 16 , 0 .17E+04 , 0 .18E+04 , 0 .19E+04 , 0 .20E+04
MPDATA,KXX , MAID, 1 , KXX1PRIM, KXX2PRIM, KXX3PRIM, KXX4PRIM, ↓
→ KXX5PRIM
MPDATA,KXX , MAID, 6 , KXX6PRIM, KXX7PRIM, KXX8PRIM, KXX9PRIM, ↓
→ KXX10PRIM
MPDATA,KXX , MAID, 11 , KXX11PRIM, KXX12PRIM, KXX13PRIM, KXX14PRIM, ↓
→ KXX15PRIM
MPDATA,KXX , MAID, 16 , KXX16PRIM, KXX17PRIM, KXX18PRIM, KXX19PRIM

MPDATA,KXX , MAID, 1 , KXX1PRIM, KXX2PRIM, KXX3PRIM, KXX4PRIM, ↓
→ KXX5PRIM
MPDATA,KXX , MAID, 6 , KXX6PRIM, KXX7PRIM, KXX8PRIM, KXX9PRIM, ↓
→ KXX10PRIM
MPDATA,KXX , MAID, 11 , KXX11PRIM, KXX12PRIM, KXX13PRIM, KXX14PRIM, ↓
→ KXX15PRIM
MPDATA,KXX , MAID, 16 , KXX16PRIM, KXX17PRIM, KXX18PRIM, KXX19PRIM
MPTEMP
MPTEMP, 1 , 0 .3E+03 , 0 .35E+03 , 0 .4E+03 , 0 .5E+03 , 0 .6E+03
MPTEMP, 6 , 0 .7E+03 , 0 .8E+03 , 0 .9E+03 , 0 .1E+04 , 0 .11E+04
MPTEMP, 11 , 0 .12E+04 , 0 .13E+04 , 0 .14E+04 , 0 .15E+04 , 0 .16E+04
MPTEMP, 16 , 0 .17E+04 , 0 .18E+04 , 0 .19E+04 , 0 .20E+04
MPDATA,KYY , MAID, 1 , KYY1PRIM, KYY2PRIM, KYY3PRIM, KYY4PRIM, ↓
→ KYY5PRIM
MPDATA,KYY , MAID, 6 , KYY6PRIM, KYY7PRIM, KYY8PRIM, KYY9PRIM, ↓
→ KYY10PRIM
MPDATA,KYY , MAID, 11 , KYY11PRIM, KYY12PRIM, KYY13PRIM, KYY14PRIM, ↓
→ KYY15PRIM
MPDATA,KYY , MAID, 16 , KYY16PRIM, KYY17PRIM, KYY18PRIM, KYY19PRIM

382



MPTEMP
MPTEMP, 1 , 0 .3E+03 , 0 .35E+03 , 0 .4E+03 , 0 .5E+03 , 0 .6E+03
MPTEMP, 6 , 0 .7E+03 , 0 .8E+03 , 0 .9E+03 , 0 .1E+04 , 0 .11E+04
MPTEMP, 11 , 0 .12E+04 , 0 .13E+04 , 0 .14E+04 , 0 .15E+04 , 0 .16E+04
MPTEMP, 16 , 0 .17E+04 , 0 .18E+04 , 0 .19E+04 , 0 .20E+04
MPDATA, KZZ , MAID, 1 , KXX1PRIM, KXX2PRIM, KXX3PRIM, KXX4PRIM, ↓
→ KXX5PRIM
MPDATA, KZZ , MAID, 6 , KXX6PRIM, KXX7PRIM, KXX8PRIM, KXX9PRIM, ↓
→ KXX10PRIM
MPDATA, KZZ , MAID, 11 , KXX11PRIM, KXX12PRIM, KXX13PRIM, KXX14PRIM,↓
→ KXX15PRIM
MPDATA, KZZ , MAID, 16 , KXX16PRIM, KXX17PRIM, KXX18PRIM, KXX19PRIM
MPTEMP
MPTEMP, 1 , 0 .1E+03 , 0 .2E+03 , 0 .4E+03 , 0 .6E+03 , 0 .8E+03
MPTEMP, 6 , 0 .1E+04 , 0 .12E+04 , 0 .15E+04 , 0 .2E+04 ,
MPDATA, C , MAID, 1 , 0 .1360000E+03 , 0.4110000E+03 , 0.9920000E↓
→ +03 , 0 .1406000E+04 , 0.1650000E+04
MPDATA, C , MAID, 6 , 0 .1793000E+04 , 0.1890000E+04 , 0.1974000E↓
→ +04 , 0 .2043000E+04 ,

*ENDDO

! MATERIAL PROPERTIES FOR ATJ CARBON
MAID = 11
MPTEMP, 1 , 0 .0000000E+00 ,
MPDATA,EX , MAID, 1 , 0 .1000000E+11 ,
MPTEMP
MPTEMP, 1 , 0 .0000000E+00 ,
MPDATA,NUXY, MAID, 1 , 0 .1400000E−01,
MPTEMP
MPTEMP, 1 , 0 .373E+03 , 0 .773E+03 , 0 .1773E+04 , 0 .1973E+04 , 0 .2223E+04
MPTEMP, 6 , 0 .2523E+04 , 0 .2773E+04 ,
MPDATA, ALPX, MAID, 1 , 0 .0000000E+00 , 0.1200000E−02, 0 .5000000E↓
→ −02, 0 .5800000E−02, 0 .7000000E−02
MPDATA, ALPX, MAID, 6 , 0 .8600000E−02, 0 .1020000E−01,
MPTEMP
MPTEMP, 1 , 0 .0000000E+00 ,
MPDATA, DENS, MAID, 1 , 0 .2210000E+04 ,
MPTEMP
MPTEMP, 1 , 0 .1000000E+03 , 0.2000000E+03 , 0.3000000E+03 , 0.4000000E↓
→ +03 , 0 .9000000E+03
MPTEMP, 6 , 0 .1000000E+04 , 0.1300000E+04 , 0.1500000E+04 , 0.2000000E↓
→ +04 ,
MPDATA,KXX , MAID, 1 , 0 .1140000E+03 , 0.9500000E+02 , 0.8750000E↓
→ +02 , 0 .8200000E+02 , 0.6000000E+02
MPDATA,KXX , MAID, 6 , 0 .5700000E+02 , 0.5000000E+02 , 0.4800000E↓
→ +02 , 0 .4600000E+02 ,
MPTEMP
MPTEMP, 1 , 0 .1E+03 , 0 .2E+03 , 0 .4E+03 , 0 .6E+03 , 0 .8E+03
MPTEMP, 6 , 0 .1E+04 , 0 .12E+04 , 0 .15E+04 , 0 .2E+04 ,
MPDATA, C , MAID, 1 , 0 .1360000E+03 , 0.4110000E+03 , 0.9920000E↓
→ +03 , 0 .1406000E+04 , 0.1650000E+04
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MPDATA, C , MAID, 6 , 0 .1793000E+04 , 0.1890000E+04 , 0.1974000E↓
→ +04 , 0 .2043000E+04 ,
MPTEMP
MPTEMP, 1 , 0 .0000000E+00 ,
MPDATA,PRXY, MAID, 1 , 0 .1400000E−01,

! ***************** SET MATERIAL PROPERTIES*********************
/PNUM,AREA, 1
/PNUM, LINE , 1
ASEL , S ,AREA, , 8
ASEL ,A,AREA, , 3
ASEL ,A,AREA, , 2

* IF ,SHORT, EQ, 0 ,THEN
ASEL ,A,AREA, , 9

* ENDIF
AATT,10
ASEL , S ,AREA, , 1 0
ASEL ,A,AREA, , 2 4
ASEL ,A,AREA, , 1 6

* IF ,SHORT, EQ, 0 ,THEN
ASEL ,A,AREA, , 3 0

* ENDIF
AATT, 9
ASEL , S ,AREA, , 1 1
ASEL ,A,AREA, , 2 5
ASEL ,A,AREA, , 1 7

* IF ,SHORT, EQ, 0 ,THEN
ASEL ,A,AREA, , 3 1

* ENDIF
AATT, 8
ASEL , S ,AREA, , 1 2
ASEL ,A,AREA, , 2 6
ASEL ,A,AREA, , 1 8

* IF ,SHORT, EQ, 0 ,THEN
ASEL ,A,AREA, , 3 2

* ENDIF
AATT, 7
ASEL , S ,AREA, , 1 3
ASEL ,A,AREA, , 2 7
ASEL ,A,AREA, , 1 9

* IF ,SHORT, EQ, 0 ,THEN
ASEL ,A,AREA, , 3 3

* ENDIF
AATT, 6
ASEL , S ,AREA, , 1 4
ASEL ,A,AREA, , 2 8
ASEL ,A,AREA, , 2 0

* IF ,SHORT, EQ, 0 ,THEN
ASEL ,A,AREA, , 3 4

* ENDIF
AATT, 5
ASEL , S ,AREA, , 1 5
ASEL ,A,AREA, , 2 9
ASEL ,A,AREA, , 2 1
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* IF ,SHORT, EQ, 0 ,THEN
ASEL ,A,AREA, , 3 5

* ENDIF
AATT, 4
ASEL , S ,AREA, , 2 3
ASEL ,A,AREA, , 7
ASEL ,A,AREA, , 2 2

* IF ,SHORT, EQ, 0 ,THEN
ASEL ,A,AREA, , 3 6

* ENDIF
AATT, 3
ASEL , S ,AREA, , 5
ASEL ,A,AREA, , 1

* IF ,SHORT, EQ, 0 ,THEN
ASEL ,A,AREA, , 3 7

* ENDIF
AATT, 2
ASEL , S ,AREA, , 6
AATT, 1

ASEL , S ,AREA, , 4 ! SET SUBSTRATE TO ATJ GRAPHITE
ASEL ,A,AREA, , 3 8
AATT,11
! ******************** END SET MATERIAL PROPERTIES**********************

! MESH LASER IMPINGING SURFACE AREAS
NUMSTR,NODE,1001
LSEL , S , LINE , , 2 0
LSEL ,A, LINE , , 8
LSEL ,A, LINE , , 6 8 , 7 3 , 5
LSEL ,A, LINE , , 7 7 , 7 9 , 2
LSEL ,A, LINE , , 8 1 , 8 3 , 2
LSEL ,A, LINE , ,28 ,84 ,84−28
LSEL ,A, LINE , ,46 ,82 ,82−46
LSEL ,A, LINE , , 7 6 , 8 0 , 2
LSEL ,A, LINE , ,67 ,72 ,72−67
LSEL ,A, LINE , , 1 2
LESIZE , ALL,MINMESH, , , , , , , 1
LPLOT
ASEL , S ,AREA, , 2
ASEL ,A,AREA, , 1 6 , 2 2
APLOT
MSHAPE, 0 , 2D
MSHKEY, 2
AMESH, ALL

! MESH OTHER AREA OF FIBER TIP
LSEL , S , LINE , , 3 0
LSEL ,A, LINE , , 1 4
LSEL ,A, LINE , , 5 3
LSEL ,A, LINE , , 5 5
LSEL ,A, LINE , , 5 8 , 6 0 , 2
LSEL ,A, LINE , , 6 3 , 6 5 , 2
LSEL ,A, LINE , , 4 7
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LESIZE , ALL,MINMESH, , , , , , , 1
LPLOT
ASEL , S ,AREA, , 3
ASEL ,A,AREA, , 2 4 , 2 9
ASEL ,A,AREA, , 7
APLOT
MSHAPE, 0 , 2D
MSHKEY, 2
AMESH, ALL

LSEL , S , LINE , , 9 , 1 1
LSEL ,A, LINE , , 6 , 7
LESIZE , ALL,MINMESH, , , , , , , 1
LPLOT
ASEL , S ,AREA, , 1
APLOT
MSHAPE, 0 , 2D
MSHKEY, 2
AMESH, ALL

!STARTING HERE MUST FIX LINE NUMBERS

! MESH FIBER BODY
LSEL , S ,LOC,Y,SUBTHCK+0.999* (FIBHGHT / 2 ) ,SUBTHCK+1.001* (FIBHGHT / 2 )
LSEL ,A, LINE , , 4 8
LSEL ,A, LINE , , 5 0
LSEL ,A, LINE , , 5 4
LSEL ,A, LINE , , 5 6
LSEL ,A, LINE , , 5 9
LSEL ,A, LINE , , 6 1
LSEL ,A, LINE , , 6 4
LSEL ,A, LINE , , 8 5
LSEL ,A, LINE , , 4 2
LSEL ,A, LINE , , 4 4
LESIZE , ALL,MINMESH, , , , , , , 1
ASEL , S ,LOC,Y,SUBTHCK+0.999* (FIBHGHT / 2 ) ,SUBTHCK+1.001* (FIBHGHT / 2 )
MSHAPE, 0 , 2D
MSHKEY, 2
AMESH, ALL

! MESH SUBSTRATE UNDER FIBER
! MESH BOTTOM LINE
!LSEL , S , LINE , , 1
! LESIZE , ALL, , , 2 9 , , 1 , , , 1
!NUMSTR, LINE ,300
!LDIV , 1 , , , 1 0
!LSEL , S , LINE , , 1
!LSEL ,A, LINE , ,300 ,305
! LESIZE , ALL, , , 3 , , 1 , , , 1
!LSEL , S , LINE , , 3 0 6
! LESIZE , ALL, , , 4 , , 1 , , , 1
!LSEL , S , LINE , ,307 ,308
! LESIZE , ALL,MINMESH, , , , 1 , , , 1
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! MESH SIDE LINES
LSEL , S , LINE , , 3
LESIZE , ALL , ( MINMESH+MINMESH* SCALE1) / 2 , , , SCALE1 , , , , 1
LSEL , S , LINE , , 2
LESIZE , ALL , ( MINMESH+MINMESH* SCALE1) / 2 , , , 1 / SCALE1 , , , , 1
MSHAPE, 0 , 2D
MSHKEY, 2
ASEL , S ,AREA, , 3 8
AMESH, ALL

! MESH OTHER SUBSTRATE
LSEL , S , LINE , , 3 9
LESIZE , ALL , ( MINMESH+MINMESH* SCALE2) / 2 , , , SCALE2 , , , , 1
LSEL , S , LINE , , 4 0
LESIZE , ALL , ( MINMESH+MINMESH* SCALE2) / 2 , , , SCALE2 , , , , 1
LSEL , S , LINE , , 4
LESIZE , ALL , ( MINMESH+MINMESH* SCALE1) / 2 , , , 1 / SCALE1 , , , , 1
MSHAPE, 0 , 2D
MSHKEY, 0
ASEL , S ,AREA, , 4
AMESH, ALL

* IF ,SHORT, EQ, 0 ,THEN
NUMSTR,NODE,100001
LSEL , S , LINE , , 5 1
LSEL ,A, LINE , , 4 1
LSEL ,A, LINE , , 8 6 , 9 3
LSEL ,A, LINE , , 8 3 , 8 4
LSEL ,A, LINE , , 7 7 , 8 1 , 2
LSEL ,A, LINE , , 7 3
LSEL ,A, LINE , , 6 8
LSEL ,A, LINE , , 8
LESIZE , ALL,MINMESH, , , , , , , 1
LPLOT
ASEL , S ,AREA, , 9
ASEL ,A,AREA, , 3 0 , 3 6
APLOT
MSHAPE, 0 , 2D
MSHKEY, 2
AMESH, ALL

LSEL , S , LINE , , 9 4
LSEL ,A, LINE , , 7 4 , 7 5
LSEL ,A, LINE , ,11 ,38 ,28−11
LESIZE , ALL,MINMESH, , , , , , , 1
LPLOT
ASEL , S ,AREA, , 3 7
APLOT
MSHAPE, 0 , 2D
MSHKEY, 2
AMESH, ALL

* ENDIF

! INPUT HEAT GENERATION ON FIBER TIP
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*DIM,HEDGE, TABLE, 2 5 , 1 , 1 ,TEMP

*TREAD,HEDGE,HEDGE, TXT, ,

*DIM, HTOP, TABLE, 2 5 , 1 , 1 ,TEMP

*TREAD, HTOP, HTOP, TXT, ,

* IF ,SHORT, EQ, 0 ,THEN

! DEFINE LASER POWER INPUT TABLE

*DIM, LASERT, TABLE, 1 9 2 , 1 , 1 ,X

*TREAD, LASERT, P219T10VAR , TXT, ,

! APPLY LASER POWER TABLE BC
LSEL , S , LINE , , 4 1
LSEL ,A, LINE , , 8 6 , 9 1
LSEL ,A, LINE , , 9 3
LPLOT
BFL , ALL,HGEN,%LASERT%
SFL , ALL,CONV,%HTOP%

! APPLY TOP SUBSTRATE SURFACE CONVECTION
LSEL , S , LINE , , 4 0
SFL , ALL,CONV,%HTOP%

LSEL , S , LINE , , 9 4
LSEL ,A, LINE , , 7 4
LSEL ,A, LINE , , 4 5
LSEL ,A, LINE , , 4
SFL , ALL,CONV,%HEDGE% , , ,

LSEL , S , LINE , , 1 ! APPLY CONVECTION ON BOTTOM EDGE
LSEL ,A, LINE , , 3 9
SFL , ALL,CONV,134
ALLSEL
LPLOT

* ELSEIF ,SHORT, EQ, 1 ,THEN

! DEFINE LASER POWER INPUT TABLE

*DIM, LASER, TABLE, 1 9 7 , 1 , 1 ,X

*TREAD, LASER, P21T5VAR , TXT, ,

! APPLY LASER POWER TABLE BC
LSEL , S , LINE , , 8
LSEL ,A, LINE , ,68 ,73 ,73−68
LSEL ,A, LINE , , 7 7 , 8 3 , 2
LSEL ,A, LINE , , 8 4
LPLOT
BFL , ALL,HGEN,%LASER%
SFL , ALL,CONV,%HTOP% ! APPLY FIBER TIP CONVECTION

! APPLY TOP SUBSTRATE SURFACE CONVECTION
LSEL , S , LINE , , 4 0

388



SFL , ALL,CONV,%HTOP%

! APPLY EDGE CONVECTION
LSEL , S , LINE , , 1 1
LSEL ,A, LINE , , 7
LSEL ,A, LINE , , 4 5
LSEL ,A, LINE , , 4
SFL , ALL,CONV,%HEDGE% , , ,

LSEL , S , LINE , , 1 ! APPLY CONVECTION ON BOTTOM EDGE
LSEL ,A, LINE , , 3 9
SFL , ALL,CONV,135 ! 125 GIVES SUBSTRATE TEMP ~506 K
ALLSEL
LPLOT

* ENDIF

ALLSEL , ALL

/SOLU
ANTYPE, 0
TIME, 1
AUTOTS,−1
NSUBST, , , ,1
KBC, 0
TSRES , ERASE
/ STATUS,SOLU
SOLVE
FINISH
/ POST1
SET , LAST
/EFACE, 1
PLNSOL,TEMP, ,0 ,

FINISH
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B.5 MATLAB Code for Converting Fiber Tip Temperature
Image to Function of Radial Position

1 % image_ to_ f i b_ temp

% Used t o c o n v e r t t h e r m a l images (640 x480 8 b i t bmps ) t o t e m p e r a t u r e s

% on t h e s u r f a c e of a f i b e r and p l o t vs " f l a t " h o r i z o n t a l d i r e c t i o n

% a u t h o r : Ryan W. Johnson

5 % d a t e : 14 October 2004

c l e a r a l l ;
c l o s e a l l ;

10 % s p e c i f y r a d i u s o f f i b e r be ing c o n s i d e r e d

R_f = 200;

% read i n temp s c a l e i n f o

Tmin = 1495;
15 Tmax = 2170;

% impor t image f i l e f o r temp c a l c u l a t i o n

[ Image in t , map ] = imread ( ’ L228_3 .BMP’ ) ;
Image = doub le ( Ima ge in t ) ;

20

% c o n v e r t t h e 8 b i t v a l u e i n each p i x e l t o a temp th rough l i n e a r i n t e r p o l a t i o n

temp = ( Image / 2 5 5 )* (Tmax−Tmin ) +Tmin ;
temp = temp +273 .15 ;

25 % s e t t h e row and column t o use f o r Tmax

%maxrow = 245;

maxcol = 255 ;
% g e n e r a t e column of temps

tempco l = temp ( : , maxcol ) ;
30

% f i n d max temp i n column of temps

[ maxtemp maxrow ] =max( tempco l ) ;

% g e n e r a t e new p o s i t i o n column wi th o f f s e t t o Tmax x = 0

35 [ numrows numcols ] = s i z e( temp ) ;
rowpos = 1 : numrows ;
s h i f t r o w p o s = rowpos− rowpos ( maxrow ) ;
redrowpos = s h i f t r o w p o s ( maxrow : maxrow +80) ;
r ed tempco l = tempco l ( maxrow : maxrow +80) ;

40

% f l a t t e n t h e 45 deg ang led p l a n e t o 0 deg p l a n e

x_45 = 3 .5* redrowpos* cos( p i / 4 ) ;
% only v a l i d f o r 0 <= x <= R_f

x_45 = x_45 ( 1 : 8 1 ) ;
45

% a d j u s t x45 v a l s t o accoun t f o r c u r v a t u r e o f f i b e r t i p

x_perp = (−( R_f − 2* x_45 ) + sq r t (2* R_f^2−(R_f − 2* x_45 ) . ^ 2 ) ) / 2 ;

% w r i t e ou t p o s i t i o n , temp f i l e f o r o t h e r use
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50 Tout = [ x_perp ’ r ed tempco l ] ;
51 dlmwri te ( ’ L228−3−temp−p r o f i l e . t x t ’ , Tout , ’ \ t ’ ) ;

%↓
→ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%↓
→

55 % read i n f i b e r t i p temp from ANSYS model

f i b e r t e m p a l l = dlmread ( ’P18−R0−pyro− t h e t a . t x t ’ , ’ \ t ’ , 1 , 0 ) ;
f i b e r t e m p s o r t = s o r t r o w s ( f i b e r t e m p a l l , 3 ) ;
f i b e r t e m p x = f i b e r t e m p s o r t ( : , 3 ) ;
f i b e r t e m p = f i b e r t e m p s o r t ( : , 6 ) ;

60 %↓
→ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%↓
→

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% u n i v e r s a l gas c o n s t a n t

65 R = 8 . 3 1 4 ;−−−−−→% ( Pa*m^3) / ( mol*K)

% carbon m o l e c u l a r we igh t

MW = 12;−−−−−−−→% kg / kmol

70 % l a s e r beam p a r a m e t e r s

R_0 = 0 . 0 0 0 1 ;−−→%m

% c o n d i t i o n s

p r e s s = 101325;
75 v o l f r a c = 0 . 7 5 ;

f low = 250;
power = 44 ;
Ps_CH4 = v o l f r a c* p r e s s ;−→% methane p a r t i a l p r e s s u r e i n Pa

80 % k i n e t i c p a r a m e t e r s

k0 = 1.2856 e08 ;−−−−−−−→% m/ s

n = 1 . 0 1 8 5 ;
Q = 3.9911 e08 ;−→% J / kmol

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

85

% compute a d e p r a t e f o r t h e t h e r m a l image t i p temp p r o f i l e u s i n g temp−a d j conc ↓
→ e s t i m a t e

Cs_CH4_tip = ( Ps_CH4 . / ( R* red tempco l ) ) / 1 0 0 0 ;−−−−→% conc i n kmol /m^3

J_image = MW* k0* ( Cs_CH4_tip . ^ n ) .* exp(−(Q/ 1 0 0 0 ) . / ( R* red tempco l ) ) ;
Jve l_ image = 1000000* J_image / 1 7 6 0 ;% c o n v e r t d e p r a t e t o um/ s

90 J o u t = [ x_perp ’ / R_f Jve l_ image /max( Jve l_ image ) ] ;
dlmwri te ( ’ L228−3−dep−p r o f i l e . t x t ’ , Jou t , ’ \ t ’ ) ;

% compute a d e p r a t e f o r t h e ANSYS f i b e r t i p temp p r o f i l e u s i n g temp−a d j ↓
→ c o n c e n t r a t i o n e s t i m a t e

Cs_CH4_tip = ( Ps_CH4 . / ( R* f i b e r t e m p ) ) / 1 0 0 0 ;−−−−−→% conc i n kmol /m^3

95 J_model = MW* k0* ( Cs_CH4_tip . ^ n ) .* exp(−(Q/ 1 0 0 0 ) . / ( R* f i b e r t e m p ) ) ;
Jve l_mode l = 1000000* J_model / 1 7 6 0 ;% c o n v e r t d e p r a t e t o um/ s
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99 %%%%%%%%%%%%%%%%%

100 % p l o t p r o f i l e s %

%%%%%%%%%%%%%%%%%

f ignum = 1 ;
f i g u r e ( f ignum ) ;
f ignum = fignum + 1 ;

105 [ h1 ] = p l o t ( x_perp /1000000 , red tempco l , ’ r+− ’ ) ;
s e t ( h1 , ’ L inew id th ’ , 1 , ’ Ma rke rs i ze ’ , 3 ) ;
x l a b e l ( ’ R a d i a l P o s i t i o n (m) ’ , ’ F o n t s i z e ’ , 14 ) ;
y l a b e l ( ’ Tempera tu re (K) ’ , ’ F o n t s i z e ’ , 14 ) ;
hold on ;

110 [ h2 ] = p l o t ( f i be r t empx , f i be r t emp , ’ bo : ’ ) ;
s e t ( h2 , ’ L inew id th ’ , 1 , ’ Ma rke rs i ze ’ , 3 ) ;
l egend( ’ Measured ’ , ’ Computed ’ )
s e t ( gca , ’ F o n t s i z e ’ , 14 ) ;

%a x i s ( [ 0 200 1900 2100 ] )

115

f i g u r e ( f ignum ) ;
f ignum = fignum + 1 ;
[ h1 ] = p l o t ( x_perp /1000000 , red tempco l /max( r ed tempco l ) , ’ r+− ’ ) ;
s e t ( h1 , ’ L inew id th ’ , 1 , ’ Ma rke rs i ze ’ , 3 ) ;

120 x l a b e l ( ’ R a d i a l P o s i t i o n (m) ’ , ’ F o n t s i z e ’ , 14 ) ;
y l a b e l ( ’T / T_{max} ’ , ’ F o n t s i z e ’ , 14 ) ;
hold on ;
[ h2 ] = p l o t ( f i be r t empx , f i b e r t e m p /max( f i b e r t e m p ) , ’ bo : ’ ) ;
s e t ( h2 , ’ L inew id th ’ , 1 , ’ Ma rke rs i ze ’ , 3 ) ;

125 l egend( ’ Measured ’ , ’ Computed ’ )
s e t ( gca , ’ F o n t s i z e ’ , 14 ) ;

%a x i s ( [ 0 200 1900 2100 ] )

f i g u r e ( f ignum )
130 f ignum = fignum + 1 ;

[ h1 ] = p l o t ( x_perp /1000000 , Jve l_ image , ’ r+− ’ ) ;
s e t ( h1 , ’ L inew id th ’ , 1 , ’ Ma rke rs i ze ’ , 3 ) ;
x l a b e l ( ’ R a d i a l P o s i t i o n (m) ’ , ’ F o n t s i z e ’ , 14 ) ;
y l a b e l ( ’ D e p o s i t i o n Ve loc i t y , J_v ( \mum/ s ) ’ , ’ F o n t s i z e ’ , 14 ) ;

135 hold on ;
[ h2 ] = p l o t ( f i be r t empx , Jve l_model , ’ bo : ’ ) ;
s e t ( h2 , ’ L inew id th ’ , 1 , ’ Ma rke rs i ze ’ , 3 ) ;
l egend( ’ Measured ’ , ’ Computed ’ )
s e t ( gca , ’ F o n t s i z e ’ , 14 ) ;

140 %a x i s ( [ 0 200 1900 2100 ] )

f i g u r e ( f ignum )
f ignum = fignum + 1 ;
[ h1 ] = p l o t ( x_perp /1000000 , Jve l_ image /max( Jve l_ image ) , ’ r+− ’ ) ;

145 s e t ( h1 , ’ L inew id th ’ , 1 , ’ Ma rke rs i ze ’ , 3 ) ;
x l a b e l ( ’ R a d i a l P o s i t i o n (m) ’ , ’ F o n t s i z e ’ , 14 ) ;
y l a b e l ( ’ J_v / J_ {v , max} ’ , ’ F o n t s i z e ’ , 14 ) ;
hold on ;
[ h2 ] = p l o t ( f i be r t empx , Jve l_mode l /max( Jve l_mode l ) , ’ bo : ’ ) ;

150 s e t ( h2 , ’ L inew id th ’ , 1 , ’ Ma rke rs i ze ’ , 3 ) ;
l egend( ’ Measured ’ , ’ Computed ’ )
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s e t ( gca , ’ F o n t s i z e ’ , 14 ) ;
153 %a x i s ( [ 0 200 1900 2100 ] )

155 f i g u r e ( f ignum )
f ignum = fignum + 1 ;
[ h1 ] = p l o t ( x_45 , x_perp , ’ r+− ’ ) ;
s e t ( h1 , ’ L inew id th ’ , 1 , ’ Ma rke rs i ze ’ , 3 ) ;

%a x i s ( [ 0 200 1900 2100 ] )
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B.6 ANSYS APDL Listing for Structural Model

FINISH
/CLEAR
/ PREP7

! DEFINE GENERAL VARIABLES

SHORT = 1 ! 0=TALL,1=SHORT

! DEFINE ELEMENT
ET , 1 , PLANE82
KEYOPT, 1 , 3 , 1 ! AXISYMMETRIC

! SET MESH DIMENSION PARAMETERS
FIBRAD = 0.0002
FIBHGHT = 0.0008
SUBTHCK = 0.00254
SUBRAD = 0.009525
MINMESH = 0.00001
ANGDIV = FIBRAD /MINMESH
SCALE1 = 5
SCALE2 = 10

! NEW MATERIAL PARAMETERS
NEWHGHT = 0.0002 ! ADD THIS MUCH MATERIAL

! DEFINE GEOMETRY
NUMDIV = 10
BLC4 , 0 , 0 , FIBRAD ,SUBTHCK
BLC4 , FIBRAD , 0 ,SUBRAD−FIBRAD ,SUBTHCK

NUMSTR,AREA,50

*DO, DIVNO, 0 ,NUMDIV−1,1
BLC4 , DIVNO* FIBRAD /NUMDIV,SUBTHCK, FIBRAD /NUMDIV, FIBHGHT+FIBRAD+2*NEWHGHT

*ENDDO

K, 9 9 , 0 ,SUBTHCK+FIBHGHT, 0
CIRCLE , 9 9 , FIBRAD , , , 9 0
CIRCLE , 9 9 , FIBRAD−2*MINMESH, , , 9 0
L ,49 ,51
L ,51 ,99

ASEL , S ,AREA, ,50 ,50+NUMDIV−2,1 ! SELECT FIRST 9 MATERIAL STRIPS
ASBL, ALL,50 ! BREAK MATERIAL STRIPS OVER INNER ↓
→ RADIUS R1
ASEL , S ,AREA, ,50+NUMDIV−1 ! SELECT LAST MATERIAL STRIP
ASBL, ALL,51 ! BREAK LAST STRIP OVER INNER RADIUS R1
ASEL , S ,LOC,Y,SUBTHCK+FIBHGHT+FIBRAD ,SUBTHCK+FIBHGHT+2* FIBRAD
ASBL, ALL,49 ! BREAK ALL UPPER STRIPS OVER OUTER↓
→ RADIUS R2
ASEL , S ,LOC,Y,SUBTHCK+.99* (FIBHGHT / 2 ) ,SUBTHCK+1 .01* (FIBHGHT+FIBRAD) / 2
ASBL, ALL,52
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ALLSEL
BTOL, 0 . 1 0 E−05
AADD,51 ,52 ,89
BTOL, 0 . 1 0 E−04

NUMCMP, ALL

! ADDITIONAL AREA REQUIRED BY NEW MATERIAL
K, 1 0 0 0 , 0 ,SUBTHCK+FIBHGHT+NEWHGHT, 0
NUMSTR, LINE ,999
CIRCLE ,1000 ,FIBRAD , , , 9 0
ASEL , S ,LOC,Y,SUBTHCK+FIBHGHT+FIBRAD ,SUBTHCK+FIBHGHT+2* FIBRAD
NUMSTR,AREA,500
ASBL, ALL,999 ! SUBTRACTS LINES FROM AREAS
AADD,519 ,502 ! ADDS TWO AREAS TO CREATE SINGLE AREA
ASEL , S ,LOC,Y,SUBTHCK+FIBHGHT+FIBRAD+NEWHGHT,SUBTHCK+FIBHGHT+FIBRAD+2* ↓
→ NEWHGHT
!ASEL ,A,LOC,X, FIBRAD−2*MINMESH, FIBRAD
! NEXT LINE IS THE PROBLEM
!ASEL , R ,LOC,Y,SUBTHCK+FIBHGHT+FIBRAD−0.5*NEWHGHT,SUBTHCK+FIBHGHT+2* ↓
→ FIBRAD
ADELE, ALL, , , 1

ALLSEL
BTOL, 0 . 1 0 E−06
AGLUE, ALL
BTOL, 0 . 1 0 E−04
NUMCMP, ALL

! DELETE EXTRA GROWTH

* IF ,SHORT, EQ, 1 ,THEN
ASEL , S ,AREA, , 9
ASEL ,A,AREA, , 3 0 , 3 7
ADELE, ALL, , , 1

* ENDIF

! DEFINE MATERIAL PROPERTIES

! MATERIAL PROPERTIES FOR PYROLYTIC GRAPHITE

*DO,MATNUM, 1 ,NUMDIV
THETA = ACOS( ( FIBRAD−MATNUM * (FIBRAD /NUMDIV) +(FIBRAD /NUMDIV) / 2 ) / FIBRAD)
MAID = MATNUM

ALPX1=−0.6E−06
ALPX2=−0.3E−06
ALPX3=0.3E−06
ALPX4=0.8E−06
ALPX5=1.4E−06
ALPX6=1.9E−06
ALPX7=2.3E−06
ALPX8=2.7E−06
ALPX9=3.1E−06
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ALPX10=3.4E−06
ALPX11=3.7E−06
ALPX12=4.0E−06
ALPX13=4.2E−06
ALPX14=4.4E−06
ALPX15=4.6E−06
ALPX16=4.7E−06
ALPX17=4.7E−06

ALPY1=23.1E−06
ALPY2=23.8E−06
ALPY3=24.9E−06
ALPY4=25.9E−06
ALPY5=26.8E−06
ALPY6=27.6E−06
ALPY7=28.3E−06
ALPY8=28.9E−06
ALPY9=29.4E−06
ALPY10=29.8E−06
ALPY11=30.0E−06
ALPY12=30.2E−06
ALPY13=30.3E−06
ALPY14=30.3E−06
ALPY15=30.3E−06
ALPY16=30.3E−06
ALPY17=30.4E−06

KXX1=0.2E+04
KXX2=0.169E+04
KXX3=0.1460E+04
KXX4=0.113E+04
KXX5=0.930E+03
KXX6=0.79E+03
KXX7=0.68E+03
KXX8=0.6E+03
KXX9=0.53E+03
KXX10=0.48E+03
KXX11=0.44E+03
KXX12=0.4E+03
KXX13=0.37E+03
KXX14=0.34E+03
KXX15=0.32E+03
KXX16=0.3E+03
KXX17=0.28E+03
KXX18=0.26E+03
KXX19=0.25E+03

KYY1=0.95E+01
KYY2=0.8E+01
KYY3=0.7E+01
KYY4=0.54E+01
KYY5=0.44E+01
KYY6=0.38E+01
KYY7=0.32E+01
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KYY8=0.28E+01
KYY9=0.25E+01
KYY10=0.23E+01
KYY11=0.21E+01
KYY12=0.19E+01
KYY13=0.17E+01
KYY14=0.16E+01
KYY15=0.15E+01
KYY16=0.14E+01
KYY17=0.13E+01
KYY18=0.125E+01
KYY19=0.12E+01

ALPX1PRIM=SQRT ( ( ALPY1*COS(THETA) )** 2+(ALPX1* SIN (THETA) ) ** 2)
ALPX2PRIM=SQRT ( ( ALPY2*COS(THETA) )** 2+(ALPX2* SIN (THETA) ) ** 2)
ALPX3PRIM=SQRT ( ( ALPY3*COS(THETA) )** 2+(ALPX3* SIN (THETA) ) ** 2)
ALPX4PRIM=SQRT ( ( ALPY4*COS(THETA) )** 2+(ALPX4* SIN (THETA) ) ** 2)
ALPX5PRIM=SQRT ( ( ALPY5*COS(THETA) )** 2+(ALPX5* SIN (THETA) ) ** 2)
ALPX6PRIM=SQRT ( ( ALPY6*COS(THETA) )** 2+(ALPX6* SIN (THETA) ) ** 2)
ALPX7PRIM=SQRT ( ( ALPY7*COS(THETA) )** 2+(ALPX7* SIN (THETA) ) ** 2)
ALPX8PRIM=SQRT ( ( ALPY8*COS(THETA) )** 2+(ALPX8* SIN (THETA) ) ** 2)
ALPX9PRIM=SQRT ( ( ALPY9*COS(THETA) )** 2+(ALPX9* SIN (THETA) ) ** 2)
ALPX10PRIM=SQRT ( ( ALPY10*COS(THETA) )** 2+(ALPX10* SIN (THETA) ) ** 2)
ALPX11PRIM=SQRT ( ( ALPY11*COS(THETA) )** 2+(ALPX11* SIN (THETA) ) ** 2)
ALPX12PRIM=SQRT ( ( ALPY12*COS(THETA) )** 2+(ALPX12* SIN (THETA) ) ** 2)
ALPX13PRIM=SQRT ( ( ALPY13*COS(THETA) )** 2+(ALPX13* SIN (THETA) ) ** 2)
ALPX14PRIM=SQRT ( ( ALPY14*COS(THETA) )** 2+(ALPX14* SIN (THETA) ) ** 2)
ALPX15PRIM=SQRT ( ( ALPY15*COS(THETA) )** 2+(ALPX15* SIN (THETA) ) ** 2)
ALPX16PRIM=SQRT ( ( ALPY16*COS(THETA) )** 2+(ALPX16* SIN (THETA) ) ** 2)
ALPX17PRIM=SQRT ( ( ALPY17*COS(THETA) )** 2+(ALPX17* SIN (THETA) ) ** 2)

ALPY1PRIM=SQRT ( ( ALPY1* SIN (THETA) ) ** 2+(ALPX1*COS(THETA) )** 2)
ALPY2PRIM=SQRT ( ( ALPY2* SIN (THETA) ) ** 2+(ALPX2*COS(THETA) )** 2)
ALPY3PRIM=SQRT ( ( ALPY3* SIN (THETA) ) ** 2+(ALPX3*COS(THETA) )** 2)
ALPY4PRIM=SQRT ( ( ALPY4* SIN (THETA) ) ** 2+(ALPX4*COS(THETA) )** 2)
ALPY5PRIM=SQRT ( ( ALPY5* SIN (THETA) ) ** 2+(ALPX5*COS(THETA) )** 2)
ALPY6PRIM=SQRT ( ( ALPY6* SIN (THETA) ) ** 2+(ALPX6*COS(THETA) )** 2)
ALPY7PRIM=SQRT ( ( ALPY7* SIN (THETA) ) ** 2+(ALPX7*COS(THETA) )** 2)
ALPY8PRIM=SQRT ( ( ALPY8* SIN (THETA) ) ** 2+(ALPX8*COS(THETA) )** 2)
ALPY9PRIM=SQRT ( ( ALPY9* SIN (THETA) ) ** 2+(ALPX9*COS(THETA) )** 2)
ALPY10PRIM=SQRT ( ( ALPY10* SIN (THETA) ) ** 2+(ALPX10*COS(THETA) )** 2)
ALPY11PRIM=SQRT ( ( ALPY11* SIN (THETA) ) ** 2+(ALPX11*COS(THETA) )** 2)
ALPY12PRIM=SQRT ( ( ALPY12* SIN (THETA) ) ** 2+(ALPX12*COS(THETA) )** 2)
ALPY13PRIM=SQRT ( ( ALPY13* SIN (THETA) ) ** 2+(ALPX13*COS(THETA) )** 2)
ALPY14PRIM=SQRT ( ( ALPY14* SIN (THETA) ) ** 2+(ALPX14*COS(THETA) )** 2)
ALPY15PRIM=SQRT ( ( ALPY15* SIN (THETA) ) ** 2+(ALPX15*COS(THETA) )** 2)
ALPY16PRIM=SQRT ( ( ALPY16* SIN (THETA) ) ** 2+(ALPX16*COS(THETA) )** 2)
ALPY17PRIM=SQRT ( ( ALPY17* SIN (THETA) ) ** 2+(ALPX17*COS(THETA) )** 2)

KXX1PRIM=SQRT ( (KYY1*COS(THETA) )** 2+(KXX1* SIN (THETA) ) ** 2)
KXX2PRIM=SQRT ( (KYY2*COS(THETA) )** 2+(KXX2* SIN (THETA) ) ** 2)
KXX3PRIM=SQRT ( (KYY3*COS(THETA) )** 2+(KXX3* SIN (THETA) ) ** 2)
KXX4PRIM=SQRT ( (KYY4*COS(THETA) )** 2+(KXX4* SIN (THETA) ) ** 2)
KXX5PRIM=SQRT ( (KYY5*COS(THETA) )** 2+(KXX5* SIN (THETA) ) ** 2)
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KXX6PRIM=SQRT ( (KYY6*COS(THETA) )** 2+(KXX6* SIN (THETA) ) ** 2)
KXX7PRIM=SQRT ( (KYY7*COS(THETA) )** 2+(KXX7* SIN (THETA) ) ** 2)
KXX8PRIM=SQRT ( (KYY8*COS(THETA) )** 2+(KXX8* SIN (THETA) ) ** 2)
KXX9PRIM=SQRT ( (KYY9*COS(THETA) )** 2+(KXX9* SIN (THETA) ) ** 2)
KXX10PRIM=SQRT ( ( KYY10*COS(THETA) )** 2+(KXX10* SIN (THETA) ) ** 2)
KXX11PRIM=SQRT ( ( KYY11*COS(THETA) )** 2+(KXX11* SIN (THETA) ) ** 2)
KXX12PRIM=SQRT ( ( KYY12*COS(THETA) )** 2+(KXX12* SIN (THETA) ) ** 2)
KXX13PRIM=SQRT ( ( KYY13*COS(THETA) )** 2+(KXX13* SIN (THETA) ) ** 2)
KXX14PRIM=SQRT ( ( KYY14*COS(THETA) )** 2+(KXX14* SIN (THETA) ) ** 2)
KXX15PRIM=SQRT ( ( KYY15*COS(THETA) )** 2+(KXX15* SIN (THETA) ) ** 2)
KXX16PRIM=SQRT ( ( KYY16*COS(THETA) )** 2+(KXX16* SIN (THETA) ) ** 2)
KXX17PRIM=SQRT ( ( KYY17*COS(THETA) )** 2+(KXX17* SIN (THETA) ) ** 2)
KXX18PRIM=SQRT ( ( KYY18*COS(THETA) )** 2+(KXX18* SIN (THETA) ) ** 2)
KXX19PRIM=SQRT ( ( KYY19*COS(THETA) )** 2+(KXX19* SIN (THETA) ) ** 2)

KYY1PRIM=SQRT ( (KYY1* SIN (THETA) ) ** 2+(KXX1*COS(THETA) )** 2)
KYY2PRIM=SQRT ( (KYY2* SIN (THETA) ) ** 2+(KXX2*COS(THETA) )** 2)
KYY3PRIM=SQRT ( (KYY3* SIN (THETA) ) ** 2+(KXX3*COS(THETA) )** 2)
KYY4PRIM=SQRT ( (KYY4* SIN (THETA) ) ** 2+(KXX4*COS(THETA) )** 2)
KYY5PRIM=SQRT ( (KYY5* SIN (THETA) ) ** 2+(KXX5*COS(THETA) )** 2)
KYY6PRIM=SQRT ( (KYY6* SIN (THETA) ) ** 2+(KXX6*COS(THETA) )** 2)
KYY7PRIM=SQRT ( (KYY7* SIN (THETA) ) ** 2+(KXX7*COS(THETA) )** 2)
KYY8PRIM=SQRT ( (KYY8* SIN (THETA) ) ** 2+(KXX8*COS(THETA) )** 2)
KYY9PRIM=SQRT ( (KYY9* SIN (THETA) ) ** 2+(KXX9*COS(THETA) )** 2)
KYY10PRIM=SQRT ( ( KYY10* SIN (THETA) ) ** 2+(KXX10*COS(THETA) )** 2)
KYY11PRIM=SQRT ( ( KYY11* SIN (THETA) ) ** 2+(KXX11*COS(THETA) )** 2)
KYY12PRIM=SQRT ( ( KYY12* SIN (THETA) ) ** 2+(KXX12*COS(THETA) )** 2)
KYY13PRIM=SQRT ( ( KYY13* SIN (THETA) ) ** 2+(KXX13*COS(THETA) )** 2)
KYY14PRIM=SQRT ( ( KYY14* SIN (THETA) ) ** 2+(KXX14*COS(THETA) )** 2)
KYY15PRIM=SQRT ( ( KYY15* SIN (THETA) ) ** 2+(KXX15*COS(THETA) )** 2)
KYY16PRIM=SQRT ( ( KYY16* SIN (THETA) ) ** 2+(KXX16*COS(THETA) )** 2)
KYY17PRIM=SQRT ( ( KYY17* SIN (THETA) ) ** 2+(KXX17*COS(THETA) )** 2)
KYY18PRIM=SQRT ( ( KYY18* SIN (THETA) ) ** 2+(KXX18*COS(THETA) )** 2)
KYY19PRIM=SQRT ( ( KYY19* SIN (THETA) ) ** 2+(KXX19*COS(THETA) )** 2)

MPTEMP
MPTEMP, 1 , 0 .0000000E+00 ,
MPDATA,EX , MAID, 1 , 0 .3000000E+11 ,
MPTEMP
MPTEMP, 1 , 0 .0000000E+00 ,
MPDATA,NUXY, MAID, 1 , 0 .1400000E−01,
MPTEMP
MPTEMP, 1 , 293 , 400 , 600 , 800 , 1000
MPTEMP, 6 , 1200 , 1400 , 1600 , 1800 , 2000
MPTEMP, 11 , 2200 , 2400 , 2600 , 2800 , 3000
MPTEMP, 16 , 3200 , 3300
MPDATA, ALPX, MAID, 1 , ALPX1PRIM , ALPX2PRIM , ALPX3PRIM , ALPX4PRIM ,↓
→ ALPX5PRIM
MPDATA,ALPX , MAID, 6 , ALPX6PRIM , ALPX7PRIM , ALPX8PRIM , ALPX9PRIM ,↓
→ ALPX10PRIM
MPDATA,ALPX , MAID, 11 , ALPX11PRIM , ALPX12PRIM , ALPX13PRIM ,↓
→ ALPX14PRIM , ALPX15PRIM
MPDATA,ALPX , MAID, 16 , ALPX16PRIM , ALPX17PRIM
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MPTEMP
MPTEMP, 1 , 293 , 400 , 600 , 800 , 1000
MPTEMP, 6 , 1200 , 1400 , 1600 , 1800 , 2000
MPTEMP, 11 , 2200 , 2400 , 2600 , 2800 , 3000
MPTEMP, 16 , 3200 , 3300
MPDATA, ALPY, MAID, 1 , ALPY1PRIM , ALPY2PRIM , ALPY3PRIM , ALPY4PRIM ,↓
→ ALPY5PRIM
MPDATA,ALPY , MAID, 6 , ALPY6PRIM , ALPY7PRIM , ALPY8PRIM , ALPY9PRIM ,↓
→ ALPY10PRIM
MPDATA,ALPY , MAID, 11 , ALPY11PRIM , ALPY12PRIM , ALPY13PRIM ,↓
→ ALPY14PRIM , ALPY15PRIM
MPDATA,ALPY , MAID, 16 , ALPY16PRIM , ALPY17PRIM
MPTEMP
MPTEMP, 1 , 293 , 400 , 600 , 800 , 1000
MPTEMP, 6 , 1200 , 1400 , 1600 , 1800 , 2000
MPTEMP, 11 , 2200 , 2400 , 2600 , 2800 , 3000
MPTEMP, 16 , 3200 , 3300
MPDATA, ALPZ , MAID, 1 , ALPX1PRIM , ALPX2PRIM , ALPX3PRIM , ALPX4PRIM ,↓
→ ALPX5PRIM
MPDATA, ALPZ , MAID, 6 , ALPX6PRIM , ALPX7PRIM , ALPX8PRIM , ALPX9PRIM ,↓
→ ALPX10PRIM
MPDATA, ALPZ , MAID, 11 , ALPX11PRIM , ALPX12PRIM , ALPX13PRIM ,↓
→ ALPX14PRIM , ALPX15PRIM
MPDATA, ALPZ , MAID, 16 , ALPX16PRIM , ALPX17PRIM
MPTEMP
MPTEMP, 1 , 0 .0000000E+00 ,
MPDATA, DENS, MAID, 1 , 0 .1760000E+04 ,
MPTEMP
MPTEMP, 1 , 0 .3E+03 , 0 .35E+03 , 0 .4E+03 , 0 .5E+03 , 0 .6E+03
MPTEMP, 6 , 0 .7E+03 , 0 .8E+03 , 0 .9E+03 , 0 .1E+04 , 0 .11E+04
MPTEMP, 11 , 0 .12E+04 , 0 .13E+04 , 0 .14E+04 , 0 .15E+04 , 0 .16E+04
MPTEMP, 16 , 0 .17E+04 , 0 .18E+04 , 0 .19E+04 , 0 .20E+04
MPDATA,KXX , MAID, 1 , KXX1PRIM, KXX2PRIM, KXX3PRIM, KXX4PRIM, ↓
→ KXX5PRIM
MPDATA,KXX , MAID, 6 , KXX6PRIM, KXX7PRIM, KXX8PRIM, KXX9PRIM, ↓
→ KXX10PRIM
MPDATA,KXX , MAID, 11 , KXX11PRIM, KXX12PRIM, KXX13PRIM, KXX14PRIM, ↓
→ KXX15PRIM
MPDATA,KXX , MAID, 16 , KXX16PRIM, KXX17PRIM, KXX18PRIM, KXX19PRIM
MPTEMP
MPTEMP, 1 , 0 .3E+03 , 0 .35E+03 , 0 .4E+03 , 0 .5E+03 , 0 .6E+03
MPTEMP, 6 , 0 .7E+03 , 0 .8E+03 , 0 .9E+03 , 0 .1E+04 , 0 .11E+04
MPTEMP, 11 , 0 .12E+04 , 0 .13E+04 , 0 .14E+04 , 0 .15E+04 , 0 .16E+04
MPTEMP, 16 , 0 .17E+04 , 0 .18E+04 , 0 .19E+04 , 0 .20E+04
MPDATA,KYY , MAID, 1 , KYY1PRIM, KYY2PRIM, KYY3PRIM, KYY4PRIM, ↓
→ KYY5PRIM
MPDATA,KYY , MAID, 6 , KYY6PRIM, KYY7PRIM, KYY8PRIM, KYY9PRIM, ↓
→ KYY10PRIM
MPDATA,KYY , MAID, 11 , KYY11PRIM, KYY12PRIM, KYY13PRIM, KYY14PRIM, ↓
→ KYY15PRIM
MPDATA,KYY , MAID, 16 , KYY16PRIM, KYY17PRIM, KYY18PRIM, KYY19PRIM
MPTEMP
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MPTEMP, 1 , 0 .3E+03 , 0 .35E+03 , 0 .4E+03 , 0 .5E+03 , 0 .6E+03
MPTEMP, 6 , 0 .7E+03 , 0 .8E+03 , 0 .9E+03 , 0 .1E+04 , 0 .11E+04
MPTEMP, 11 , 0 .12E+04 , 0 .13E+04 , 0 .14E+04 , 0 .15E+04 , 0 .16E+04
MPTEMP, 16 , 0 .17E+04 , 0 .18E+04 , 0 .19E+04 , 0 .20E+04
MPDATA, KZZ , MAID, 1 , KXX1PRIM, KXX2PRIM, KXX3PRIM, KXX4PRIM, ↓
→ KXX5PRIM
MPDATA, KZZ , MAID, 6 , KXX6PRIM, KXX7PRIM, KXX8PRIM, KXX9PRIM, ↓
→ KXX10PRIM
MPDATA, KZZ , MAID, 11 , KXX11PRIM, KXX12PRIM, KXX13PRIM, KXX14PRIM,↓
→ KXX15PRIM
MPDATA, KZZ , MAID, 16 , KXX16PRIM, KXX17PRIM, KXX18PRIM, KXX19PRIM
MPTEMP
MPTEMP, 1 , 0 .1E+03 , 0 .2E+03 , 0 .4E+03 , 0 .6E+03 , 0 .8E+03
MPTEMP, 6 , 0 .1E+04 , 0 .12E+04 , 0 .15E+04 , 0 .2E+04 ,
MPDATA, C , MAID, 1 , 0 .1360000E+03 , 0.4110000E+03 , 0.9920000E↓
→ +03 , 0 .1406000E+04 , 0.1650000E+04
MPDATA, C , MAID, 6 , 0 .1793000E+04 , 0.1890000E+04 , 0.1974000E↓
→ +04 , 0 .2043000E+04 ,
MPTEMP
MPTEMP, 1 , 0 .0000000E+00 ,
MPDATA,PRXY, MAID, 1 , 0 .1400000E−01,

*ENDDO

! SET REFERENCE TEMPS FOR THERMAL EXPANSION
MP, REFT,10 ,2290
MP, REFT,9 ,2077
MP, REFT,8 ,1887
MP, REFT,7 ,1733
MP, REFT,6 ,1620
MP, REFT,5 ,1540
MP, REFT,4 ,1480
MP, REFT,3 ,1435
MP, REFT,2 ,1395
MP, REFT,1 ,1355

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! USE OF MPAMOD COMMAND??? !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

MPAMOD,10 ,293
MPAMOD,9 ,293
MPAMOD,8 ,293
MPAMOD,7 ,293
MPAMOD,6 ,293
MPAMOD,5 ,293
MPAMOD,4 ,293
MPAMOD,3 ,293
MPAMOD,2 ,293
MPAMOD,1 ,293

! MATERIAL PROPERTIES FOR ATJ CARBON
MAID = 11
MPTEMP, 1 , 0 .0000000E+00 ,
MPDATA,EX , MAID, 1 , 0 .1000000E+11 ,
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MPTEMP
MPTEMP, 1 , 0 .0000000E+00 ,
MPDATA,NUXY, MAID, 1 , 0 .1400000E−01,
MPTEMP
MPTEMP, 1 , 0 .373E+03
MPDATA, ALPX, MAID, 1 , 0 .0000000E+00
MPTEMP
MPTEMP, 1 , 0 .0000000E+00 ,
MPDATA, DENS, MAID, 1 , 0 .2210000E+04 ,
MPTEMP
MPTEMP, 1 , 0 .1000000E+03 , 0.2000000E+03 , 0.3000000E+03 , 0.4000000E↓
→ +03 , 0 .9000000E+03
MPTEMP, 6 , 0 .1000000E+04 , 0.1300000E+04 , 0.1500000E+04 , 0.2000000E↓
→ +04 ,
MPDATA,KXX , MAID, 1 , 0 .1140000E+03 , 0.9500000E+02 , 0.8750000E↓
→ +02 , 0 .8200000E+02 , 0.6000000E+02
MPDATA,KXX , MAID, 6 , 0 .5700000E+02 , 0.5000000E+02 , 0.4800000E↓
→ +02 , 0 .4600000E+02 ,
MPTEMP
MPTEMP, 1 , 0 .1E+03 , 0 .2E+03 , 0 .4E+03 , 0 .6E+03 , 0 .8E+03
MPTEMP, 6 , 0 .1E+04 , 0 .12E+04 , 0 .15E+04 , 0 .2E+04 ,
MPDATA, C , MAID, 1 , 0 .1360000E+03 , 0.4110000E+03 , 0.9920000E↓
→ +03 , 0 .1406000E+04 , 0.1650000E+04
MPDATA, C , MAID, 6 , 0 .1793000E+04 , 0.1890000E+04 , 0.1974000E↓
→ +04 , 0 .2043000E+04 ,
MPTEMP
MPTEMP, 1 , 0 .0000000E+00 ,
MPDATA,PRXY, MAID, 1 , 0 .1400000E−01
MP, REFT,11 ,525

MPAMOD,11 ,293

/PNUM,AREA, 1
/PNUM, LINE , 1
ASEL , S ,AREA, , 8
ASEL ,A,AREA, , 3
ASEL ,A,AREA, , 2

* IF ,SHORT, EQ, 0 ,THEN
ASEL ,A,AREA, , 9

* ENDIF
AATT,10
ASEL , S ,AREA, , 1 0
ASEL ,A,AREA, , 2 4
ASEL ,A,AREA, , 1 6

* IF ,SHORT, EQ, 0 ,THEN
ASEL ,A,AREA, , 3 0

* ENDIF
AATT, 9
ASEL , S ,AREA, , 1 1
ASEL ,A,AREA, , 2 5
ASEL ,A,AREA, , 1 7

* IF ,SHORT, EQ, 0 ,THEN
ASEL ,A,AREA, , 3 1
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* ENDIF
AATT, 8
ASEL , S ,AREA, , 1 2
ASEL ,A,AREA, , 2 6
ASEL ,A,AREA, , 1 8

* IF ,SHORT, EQ, 0 ,THEN
ASEL ,A,AREA, , 3 2

* ENDIF
AATT, 7
ASEL , S ,AREA, , 1 3
ASEL ,A,AREA, , 2 7
ASEL ,A,AREA, , 1 9

* IF ,SHORT, EQ, 0 ,THEN
ASEL ,A,AREA, , 3 3

* ENDIF
AATT, 6
ASEL , S ,AREA, , 1 4
ASEL ,A,AREA, , 2 8
ASEL ,A,AREA, , 2 0

* IF ,SHORT, EQ, 0 ,THEN
ASEL ,A,AREA, , 3 4

* ENDIF
AATT, 5
ASEL , S ,AREA, , 1 5
ASEL ,A,AREA, , 2 9
ASEL ,A,AREA, , 2 1

* IF ,SHORT, EQ, 0 ,THEN
ASEL ,A,AREA, , 3 5

* ENDIF
AATT, 4
ASEL , S ,AREA, , 2 3
ASEL ,A,AREA, , 7
ASEL ,A,AREA, , 2 2

* IF ,SHORT, EQ, 0 ,THEN
ASEL ,A,AREA, , 3 6

* ENDIF
AATT, 3
ASEL , S ,AREA, , 5
ASEL ,A,AREA, , 1

* IF ,SHORT, EQ, 0 ,THEN
ASEL ,A,AREA, , 3 7

* ENDIF
AATT, 2
ASEL , S ,AREA, , 6
AATT, 1

ASEL , S ,AREA, , 4 ! SET SUBSTRATE TO ATJ GRAPHITE
ASEL ,A,AREA, , 3 8
AATT,11

! MESH LASER IMPINGING SURFACE AREAS
NUMSTR,NODE,1001
LSEL , S , LINE , , 2 0
LSEL ,A, LINE , , 8
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LSEL ,A, LINE , , 6 8 , 7 3 , 5
LSEL ,A, LINE , , 7 7 , 7 9 , 2
LSEL ,A, LINE , , 8 1 , 8 3 , 2
LSEL ,A, LINE , ,28 ,84 ,84−28
LSEL ,A, LINE , ,46 ,82 ,82−46
LSEL ,A, LINE , , 7 6 , 8 0 , 2
LSEL ,A, LINE , ,67 ,72 ,72−67
LSEL ,A, LINE , , 1 2
LESIZE , ALL,MINMESH, , , , , , , 1
LPLOT
ASEL , S ,AREA, , 2
ASEL ,A,AREA, , 1 6 , 2 2
APLOT
MSHAPE, 0 , 2D
MSHKEY, 2
AMESH, ALL

! MESH OTHER AREA OF FIBER TIP
LSEL , S , LINE , , 3 0
LSEL ,A, LINE , , 1 4
LSEL ,A, LINE , , 5 3
LSEL ,A, LINE , , 5 5
LSEL ,A, LINE , , 5 8 , 6 0 , 2
LSEL ,A, LINE , , 6 3 , 6 5 , 2
LSEL ,A, LINE , , 4 7
LESIZE , ALL,MINMESH, , , , , , , 1
LPLOT
ASEL , S ,AREA, , 3
ASEL ,A,AREA, , 2 4 , 2 9
ASEL ,A,AREA, , 7
APLOT
MSHAPE, 0 , 2D
MSHKEY, 2
AMESH, ALL

LSEL , S , LINE , , 9 , 1 1
LSEL ,A, LINE , , 6 , 7
LESIZE , ALL,MINMESH, , , , , , , 1
LPLOT
ASEL , S ,AREA, , 1
APLOT
MSHAPE, 0 , 2D
MSHKEY, 2
AMESH, ALL

!STARTING HERE MUST FIX LINE NUMBERS

! MESH FIBER BODY
LSEL , S ,LOC,Y,SUBTHCK+0.999* (FIBHGHT / 2 ) ,SUBTHCK+1.001* (FIBHGHT / 2 )
LSEL ,A, LINE , , 4 8
LSEL ,A, LINE , , 5 0
LSEL ,A, LINE , , 5 4
LSEL ,A, LINE , , 5 6
LSEL ,A, LINE , , 5 9
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LSEL ,A, LINE , , 6 1
LSEL ,A, LINE , , 6 4
LSEL ,A, LINE , , 8 5
LSEL ,A, LINE , , 4 2
LSEL ,A, LINE , , 4 4
LESIZE , ALL,MINMESH, , , , , , , 1
ASEL , S ,LOC,Y,SUBTHCK+0.999* (FIBHGHT / 2 ) ,SUBTHCK+1.001* (FIBHGHT / 2 )
MSHAPE, 0 , 2D
MSHKEY, 2
AMESH, ALL

! MESH SUBSTRATE UNDER FIBER
! MESH BOTTOM LINE
!LSEL , S , LINE , , 1
! LESIZE , ALL, , , 2 9 , , 1 , , , 1
!NUMSTR, LINE ,300
!LDIV , 1 , , , 1 0
!LSEL , S , LINE , , 1
!LSEL ,A, LINE , ,300 ,305
! LESIZE , ALL, , , 3 , , 1 , , , 1
!LSEL , S , LINE , , 3 0 6
! LESIZE , ALL, , , 4 , , 1 , , , 1
!LSEL , S , LINE , ,307 ,308
! LESIZE , ALL,MINMESH, , , , 1 , , , 1

! MESH SIDE LINES
LSEL , S , LINE , , 3
LESIZE , ALL , ( MINMESH+MINMESH* SCALE1) / 2 , , , SCALE1 , , , , 1
LSEL , S , LINE , , 2
LESIZE , ALL , ( MINMESH+MINMESH* SCALE1) / 2 , , , 1 / SCALE1 , , , , 1
MSHAPE, 0 , 2D
MSHKEY, 2
ASEL , S ,AREA, , 3 8
AMESH, ALL

! MESH OTHER SUBSTRATE
LSEL , S , LINE , , 3 9
LESIZE , ALL , ( MINMESH+MINMESH* SCALE2) / 2 , , , SCALE2 , , , , 1
LSEL , S , LINE , , 4 0
LESIZE , ALL , ( MINMESH+MINMESH* SCALE2) / 2 , , , SCALE2 , , , , 1
LSEL , S , LINE , , 4
LESIZE , ALL , ( MINMESH+MINMESH* SCALE1) / 2 , , , 1 / SCALE1 , , , , 1
MSHAPE, 0 , 2D
MSHKEY, 0
ASEL , S ,AREA, , 4
AMESH, ALL

* IF ,SHORT, EQ, 0 ,THEN
NUMSTR,NODE,100001
LSEL , S , LINE , , 5 1
LSEL ,A, LINE , , 4 1
LSEL ,A, LINE , , 8 6 , 9 3
LSEL ,A, LINE , , 8 3 , 8 4
LSEL ,A, LINE , , 7 7 , 8 1 , 2
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LSEL ,A, LINE , , 7 3
LSEL ,A, LINE , , 6 8
LSEL ,A, LINE , , 8
LESIZE , ALL,MINMESH, , , , , , , 1
LPLOT
ASEL , S ,AREA, , 9
ASEL ,A,AREA, , 3 0 , 3 6
APLOT
MSHAPE, 0 , 2D
MSHKEY, 2
AMESH, ALL

LSEL , S , LINE , , 9 4
LSEL ,A, LINE , , 7 4 , 7 5
LSEL ,A, LINE , ,11 ,38 ,28−11
LESIZE , ALL,MINMESH, , , , , , , 1
LPLOT
ASEL , S ,AREA, , 3 7
APLOT
MSHAPE, 0 , 2D
MSHKEY, 2
AMESH, ALL

* ENDIF

! SETUP TEMPERATURE LOADS AND SOLVE
ALLSEL , ALL

/SOLU
ANTYPE, 0
KBC, 0 ! LOADS ARE RAMPED BETWEEN LOAD STEPS

LSEL , S , LINE , , 1
LSEL ,A, LINE , , 3
LSEL ,A, LINE , , 4
LSEL ,A, LINE , , 3 9
LSEL ,A, LINE , , 4 0
LSEL ,A, LINE , , 4 8
LSEL ,A, LINE , , 5 0
LSEL ,A, LINE , , 5 4
LSEL ,A, LINE , , 5 6
LSEL ,A, LINE , , 5 9
LSEL ,A, LINE , , 6 1
LSEL ,A, LINE , , 6 4
LSEL ,A, LINE , , 8 5
LSEL ,A, LINE , , 4 2
LSEL ,A, LINE , , 4 4

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! FIX BODY OF FIBER !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! LSEL ,A, LINE , , 4 9
!LSEL ,A, LINE , , 1 3
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! LSEL ,A, LINE , , 1 5
!LSEL ,A, LINE , , 1 6
!LSEL ,A, LINE , , 1 7
!LSEL ,A, LINE , , 1 8
!LSEL ,A, LINE , , 1 9
!LSEL ,A, LINE , , 2 9
!LSEL ,A, LINE , , 4 3
!LSEL ,A, LINE , , 5
!LSEL ,A, LINE , , 4 5
!LSEL ,A, LINE , , 1 4
!LSEL ,A, LINE , , 5 3
!LSEL ,A, LINE , , 5 5
!LSEL ,A, LINE , , 5 8
!LSEL ,A, LINE , , 6 0
!LSEL ,A, LINE , , 6 3
!LSEL ,A, LINE , , 6 5
!LSEL ,A, LINE , , 4 7
!LSEL ,A, LINE , , 6
!LSEL ,A, LINE , , 1 0

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! TOP OF FIBER BCS !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! LSEL ,A, LINE , , 3 0 , 3 7
!LSEL ,A, LINE , , 9
!LSEL ,A, LINE , , 1 2
!LSEL ,A, LINE , , 6 7
!LSEL ,A, LINE , , 7 2
!LSEL ,A, LINE , , 7 6
!LSEL ,A, LINE , , 7 8
!LSEL ,A, LINE , , 8 0
!LSEL ,A, LINE , , 8 2
!LSEL ,A, LINE , , 4 6

DL, ALL, , ALL, 0

! INPUT TEMPS FROM SHORT FIBER
LDREAD,TEMP, 1 , 1 , , , ’ f i b e r 3 t−s h o r t ’ , ’ r t h ’ , ’ ’

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! SET INITIAL DISPLACEMENT TO ZERO !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
!D, ALL, ALL, 0

OUTRES, ALL, LAST
ALLSEL
SOLVE

! INPUT TEMPS FROM TALL FIBER
LDREAD,TEMP, 1 , 1 , , , ’ f i b e r 3 t− t a l l ’ , ’ r t h ’ , ’ ’

! SET DISPLACEMENT BCS
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! RESTRICT MOVEMENT OF ALL EDGES INCLUDING FIBER

!DDELE, ALL, ALL, 0

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! REMOVE ALL OTHER NODE DOFS !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

OUTRES, ALL, LAST
ALLSEL
SOLVE

/ STATUS,SOLU ! PROVIDES A SOLUTION STATUS SUMMARY
FINISH
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APPENDIX C

ANOMALOUS MOLYBDENUM FIBER

EXPERIMENTS

Molybdenum fiber experiment sets Mo-3F, Mo-4F, and Mo-5F were observed in hindsight

to differ significantly from other molybdenum experiments. The change in results was

linked to the low pressure experiments of Mo-3F, Samples 1 – 4. The MoCl5 sublimation

chamber appeared to become contaminated at the low pressures, and the conditions of the

MoCl5 powder in the chamber could no longer be validated. For this reason, the data from

these experiments was not used in conjunction with the remaining molybdenum LCVD

data. Nonetheless, for documentation purposes, the experimental conditions are given in

Table C.1.

It was noteworthy that these experiments produced some very intriguing deposits. Specif-

ically, the quantity of the dark blue–green powder that was ubiquitous in other Mo depo-

sition experiments was significantly reduced. The shape and color of some of the deposits

was also very interesting.

An experiment was designed around the best results of Mo-5F to be run after loading the

new batch of MoCl5 powder. After configuring the system for this experiment, preheating

the substrate, and beginning MoCl5 flow, a thick, dark, blue–green powder quickly covered

the substrate surface. This result was inconsistent with the results of Mo-5F, and was more

like the results of Experiments Mo-1F and Mo-2F.

408



Table C.1: Mo-3F, 4F, and 5F experiment conditions

Chamber Sub Carrier Diluent MoCl5 MoCl5 Max Dep
No. Press Temp Flow Flow Flow Conc Temp Time

(Torr) (◦C) (sccm) (sccm) (sccm) (mol/m3) (◦C) (min)

1 7.6 85.0 5.0 95.0 0.337 1.14E-03 1200 12.0

2 7.6 85.0 80.0 20.0 5.395 1.74E-02 1200 12.0

3 7.6 85.0 5.0 95.0 0.337 1.14E-03 1000 12.0

4 7.6 85.0 80.0 20.0 5.395 1.74E-02 1000 12.0

5 760 125.0 100.0 0.0 0.611 1.86E-01 1200 12.0

6 760 125.0 6.3 93.7 0.039 1.18E-02 1000 12.0

7 760 125.0 6.3 93.7 0.039 1.18E-02 1200 12.0

8 760 125.0 100.0 0.0 0.611 1.86E-01 1000 12.0

1 760 150.0 100.0 400.0 2.052 1.18E-01 1000 10.0

2 760 150.0 50.0 450.0 1.026 5.90E-02 1000 10.0

3 760 150.0 50.0 450.0 1.026 5.90E-02 1000 10.0

4 760 150.0 100.0 400.0 2.052 1.18E-01 1000 10.0

5 760 150.0 100.0 400.0 2.052 1.18E-01 1200 10.0

6 760 150.0 50.0 450.0 1.026 5.90E-02 1200 10.0

7 760 150.0 100.0 0.0 2.052 5.79E-01 1200 10.0

1 760 150.0 10.0 100.0 0.205 5.36E-02 1000 10.0

2 760 150.0 110.0 0.0 2.258 5.79E-01 1200 10.0

3 760 150.0 110.0 0.0 2.258 5.79E-01 1400 10.0

4 760 150.0 10.0 100.0 0.205 5.36E-02 1400 10.0

5 760 150.0 60.0 50.0 1.231 3.19E-01 1000 10.0

6 760 150.0 60.0 50.0 1.231 3.19E-01 1400 0.0

7 760 150.0 60.0 50.0 1.231 3.19E-01 1200 10.0

8 760 150.0 110.0 0.0 2.258 5.79E-01 1000 10.0

9 760 150.0 10.0 100.0 0.205 5.36E-02 1200 10.0
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