
BERTH AND QUAY CRANE SCHEDULING:
PROBLEMS, MODELS AND SOLUTION METHODS

A Thesis
Presented to

The Academic Faculty

by

Aykagan Ak

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology
December 2008

BERTH AND QUAY CRANE SCHEDULING:
PROBLEMS, MODELS AND SOLUTION METHODS

Approved by:

Professor Alan L. Erera, Advisor
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Chelsea C. White III
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Ozlem Ergun
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Prasad Tetali
School of Mathematics
Georgia Institute of Technology

Professor Martin Savelsbergh
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Date Approved: 4 November 2008

To my lovely wife,

Ilgin,

who made this possible.

iii

ACKNOWLEDGEMENTS

I would like to express my sincerest thanks to my advisor, Dr. Alan L. Erera. He has

not only provided me his professional expertise, valuable guidance and the financial

support I needed to complete my Ph.D. studies but also been a real friend and a

true mentor. I feel extremely fortunate to work with him. He has always provided

me the freedom to choose my research subjects and encouraged me to be involved

in various types of research activities. During our academic discussions, I was very

impressed by his enthusiasm and his ability in thinking extreme while keeping the

real life applicability of the research high. I learned a lot from him, and I am very

grateful to have him as my advisor.

I would like to thank Dr. Ozlem Ergun, Dr. Martin Savelsbergh, Dr. Chelsea C.

White III, and Dr. Prasad Tetali for their time and effort in serving on my Ph.D.

committee. I have had the chance to take wonderful classes from each one of them

which helped me a lot in constructing the foundation of this dissertation.

I would also like to express my thanks to Dr. Glenn J. Rix, the director of the

NEESR Grand Challenge project which initiated the research presented in this thesis.

I could not have achieved this without the continuous support and love of my

family. Mom and dad, thank you for everything you did. Gokhan and Asli, you are

the best brother and sister in the world.

Finally, and most importantly, my wife, Ilgin... There are no words that can help

me to express my gratitude to you. You were always with me on rainy days and at

sleepless nights. You smiled when I smiled, and you provided the shoulder when I

cried. You kept me going, and you made this real. You are my pulse, my blood, my

love...

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . xi

SUMMARY . xiii

I INTRODUCTION . 1

1.1 Containerization and Trends in Maritime Logistics 1

1.2 An Overview of Container Terminal Operations 5

1.3 Motivation . 8

1.4 Contributions of the Thesis . 9

II THE BERTH ALLOCATION PROBLEM 15

2.1 Introduction . 15

2.1.1 Models with Discrete Berths 16

2.1.2 Models with Continuous Berths 16

2.1.3 Comparison of Models . 18

2.2 Problem Formulation . 19

2.2.1 Position Assignment Formulation 22

2.2.2 Relative Position Formulation 23

2.2.3 Hardness of the Problem . 26

2.3 Lower Bound Analysis . 26

2.4 A Meta Heuristic: The Nested Tabu Search Algorithm 30

2.4.1 Encoding and Decoding a Solution 32

2.4.2 Initial Solution . 33

2.4.3 Fundamentals of the Nested Search 34

2.4.4 Steps of the Nested Tabu Search Algorithm 39

2.4.5 Multi-start Version . 41

v

2.5 Computational Experiments . 41

III THE MULTIPLE BERTH ALLOCATION PROBLEM 48

3.1 Introduction . 48

3.2 Problem Formulation . 49

3.2.1 Position Assignment Formulation 50

3.2.2 Relative Position Formulation 51

3.3 Lower Bound Analysis . 52

3.4 Solution Method . 56

3.4.1 Encoding and Decoding a Solution 56

3.4.2 Initial Solution . 56

3.4.3 Fundamentals of the Nested Tabu Search 57

3.5 Computational Experiments . 58

IV THE QUAY CRANE SCHEDULING PROBLEM 64

4.1 Introduction . 64

4.2 Problem Types and Models . 70

4.2.1 Crane Blocking and Crane Shifting 70

4.2.2 Dedicated Quay Crane Scheduling 72

4.2.3 Roaming Quay Crane Scheduling 78

4.2.4 Analysis of Crane Scheduling Problems 81

4.3 A Tabu Search Algorithm . 83

4.3.1 Initial Solution . 83

4.3.2 Fundamentals of the Tabu Search 84

4.3.3 Steps of the Tabu Search Algorithm 87

4.4 The Crane Assignment Problem . 88

4.5 Computational Experiments . 92

V THE SIMULTANEOUS BERTH AND QUAY CRANE SCHEDULING PROB-
LEM . 96

5.1 Introduction . 96

vi

5.2 Problem Formulation . 99

5.3 Lower Bound Analysis . 104

5.3.1 Lower Bound 1 . 104

5.3.2 Lower Bound 2 . 104

5.4 Solution Method: A Two Phase Tabu Search Heuristic 107

5.4.1 Encoding and Decoding a Solution 108

5.4.2 Initial Solution . 110

5.4.3 Single Phase Search . 110

5.4.4 Two Phase Search . 114

5.4.5 Additional Remarks . 116

5.5 Computational Experiments . 117

VI THE VOYAGE AND BERTH SCHEDULING PROBLEM 122

6.1 Introduction . 122

6.2 Problem Formulation . 125

6.2.1 Cost Structure . 126

6.2.2 Modeling with Network Flow 130

6.2.3 Analysis of the Network Flow Formulation 135

6.3 Hardness of the Problem . 139

6.4 Further Discussion . 143

6.4.1 Terminal Time Windows . 144

6.4.2 Service Line Durations . 144

6.4.3 Transshipments . 145

6.4.4 Schedule Reliability . 146

6.4.5 Fleet Restrictions . 149

6.5 Computational Experiments . 149

6.5.1 Instance Generation . 150

6.5.2 Results . 151

VII CONCLUSIONS AND FUTURE WORK 161

vii

REFERENCES . 164

VITA . 170

viii

LIST OF TABLES

1 Statistics for test BAP instances used 42

2 Tabu search parameters used for BAP computational experiments . . 43

3 Test results for small BAP instances 44

4 Test results for large BAP instances 46

5 Average computational times (in sec.) for test BAP instances 47

6 Statistics for the small MBAP instances 59

7 Statistics for the large MBAP instances 60

8 The MBAP tabu search parameters used in the computational exper-
iments . 60

9 Test results for small MBAP instances 61

10 Test results for large MBAP instances 62

11 Average computational times for test MBAP instances 63

12 Computational analysis of crane scheduling strategies 82

13 The tabu search parameters used in the computational experiments . 92

14 Summary of results for small QCSP instances 93

15 Summary of results for large QCSP instances 95

16 Summary of computation times observed in seconds 95

17 A sample BQCSP instance . 101

18 A feasible solution to the sample BQCSP instance 101

19 Single Phase Search and Two Phase Search parameters used in the
computational experiments . 117

20 Test results for small BQCSP instances 118

21 Test results for large BQCSP instances 119

22 Average computation times observed (in sec.) for test BQCSP instances120

23 Comparison of sequential and simultaneous berth and quay crane plan-
ning . 121

24 Summary of results for test VBSP instances 153

25 Effect of time windows on the optimal solution 155

ix

26 Effect of service line duration limits on the optimal solution 156

27 Effect of transshipments on the optimal solution 157

28 Effect of voyage speed buffers on the optimal solution 158

29 Effect of berth buffers with ε = 1 on the optimal solution 159

30 Effect of berth buffers with ε = 2 on the optimal solution 159

x

LIST OF FIGURES

1 Six generations of containerships. 2

2 Emma Maersk. Source: http://img.dailymail.co.uk/ 3

3 Container traffic at major US ports. Source: American Association of
Port Authorities (AAPA). 4

4 Schematic representation of a container terminal system. Source: Steenken
et al. 2004. 5

5 A container terminal at the Port of Antwerp. Photograph by Thomas
Vanhaute. 7

6 Discrete berth models can be employed for some continuous berths. . 19

7 Representation of a berth schedule on a time-space diagram 23

8 Construction of lower bounding scheduling problem P for a given dy-
namic BAP instance . 28

9 Multiple priority lists may correspond to a single berth schedule . . . 32

10 Encoding and decoding a berth schedule 33

11 Illustration of moving from one solution to another by modifying L
and B . 35

12 The importance of using the primal list in the inner search, TS2 . . . 37

13 Schematic Representation of the Nested Tabu Search Approach . . . 39

14 Illustration of the graph constructed to solve the CAP 89

15 Representation of a BQCSP solution on the time-space diagram . . . 100

16 Construction of lower bounding scheduling problem P2 for a given dy-
namic BQCSP instance . 105

17 An illustration of improving a given solution by changing berth sched-
ule and quay crane schedule . 108

18 Schematic representation of the single phase search approach for the
BQCSP . 111

19 Schematic representation of the two phase search approach for the
BQCSP . 115

20 Illustration of a typical vessel crew cost function used in VBSP 126

21 Illustration of a typical fuel consumption function used in the VBSP . 128

xi

22 Illustration of typical terminal cost functions used in the VBSP . . . 129

23 Representation of the graph used to model the VBSP 131

24 Illustration of the voyage cost function used in the model constructed
for the VBSP . 132

25 An example of a possible fractional optimal solution for the model . . 137

26 Existence of an optimal valid route flow on the graph 138

27 Change in voyage cost function with berth schedule buffer 148

xii

SUMMARY

In this thesis, we focus on planning problems related to berth and quay cranes

which are the most important resources in container terminals at seaports. Many

researchers have concentrated on berth and quay crane planning; however, recent

trends and changes in maritime logistics, like the introduction of mega-ships and

increasing popularity of flexible continuous berth structures, have created gaps in the

current literature. In this thesis, we contribute by filling many of these gaps and

provide a comprehensive analysis of berth and quay crane planning problems.

The thesis can be divided into two parts. The first part consists of four chapters

in which problems most applicable to multi-user terminals are studied. In Chapter

2, we focus on the berth allocation problem (BAP) which is the problem of assigning

ships to berthing positions within a seaport to optimize some performance metric.

The variant we study considers dynamic arrival of vessels and a single berth having

a long continuous structure that can serve multiple vessels simultaneously. We pro-

vide a polynomially computable lower bound and develop a meta-heuristic algorithm

based on tabu search which uses a novel nested neighborhood structure to solve large

problem instances. In the next chapter, we introduce the multiple berth allocation

problem (MBAP) which is defined for a container terminal with multiple disjoint

berths that can each handle multiple vessels simultaneously. Arriving vessels can be

assigned to any position at any berth, but the processing time required by vessels

can change depending on the berth assignment due to the distance from yard storage

area and equipment used at the berth. We modify the solution procedure introduced

for the BAP in order to handle the MBAP. Chapter 4 is dedicated to the quay crane

xiii

scheduling problem (QCSP) which is the problem of assigning quay cranes to vessels

moored at the berth in order to optimize container unloading and loading. The QCSP

variant we introduce usees a berth schedule, which defines positions of vessels at the

berth and berth usage priority, as input. Therefore, unlike most earlier studies, we

assume a longer planning horizon and consider multiple vessels including those not

present at the port at the time of decision making. We analyze several crane split

strategies and provide a high speed tabu search algorithm. We conclude the first

part of the thesis by introducing the simultaneous berth and quay crane schedul-

ing problem (BQCSP) in Chapter 5. In practice, berth scheduling and quay crane

scheduling problems are approached sequentially by terminal operators. They first

determine a berth schedule using estimates of total berth time for each vessel, and

then try to split cranes among the vessels planned to dock simultaneously. Terminal

operators can develop a better operational plan if actual crane requirements are con-

sidered while determining berth schedules. We propose a meta-heuristic algorithm

which combines the features of the algorithms designed to solve the BAP and the

QCSP. Two polynomially computable lower bounds are also introduced and used in

the evaluation of the proposed algorithm.

The second part of the thesis, Chapter 6, focuses on berth scheduling at dedicated

terminals and its impact on vessel voyage planning. At a dedicated terminal, vessels

of only one carrier are serviced, and the carrier has direct control of the schedules of

all vessels visiting. For such terminals, scheduling one vessel earlier or later impacts

the times that other vessels may be scheduled, and thus there are interactions between

the schedules of different routes that visit common dedicated terminals. We introduce

therefore the voyage and berth scheduling problem (VBSP) which is the problem of

scheduling vessel voyages and determining optimal voyage speeds between port calls

for multiple intersecting voyages operated by a single ocean carrier or alliance. The

goal is to develop feasible visit schedules for all voyage routes at all visited ports to

xiv

minimize total operating cost, which is a function of sailing speeds and delays experi-

enced between port calls. A mathematical model based on multi-commodity network

flow is developed and solved on a series of realistic test problems. We also show how

transshipments, terminal time windows, and service levels can be incorporated in the

model as well as how improvements to schedule reliability can be achieved by properly

modifying the instance data.

xv

CHAPTER I

INTRODUCTION

1.1 Containerization and Trends in Maritime Logistics

In the late 1950s, the first ocean container ships were introduced, and containerized

transportstion changed the way of transporting general cargo drastically. Before con-

tainerization, most general cargo was handled by building pallets and loading them

into the holds of vessels using cranes on the ship and on the wharf. This labor-

intensive process was very slow, and goods transported were vulnerable to damage.

With containers, easy and fast handling of freight became possible. Containers en-

abled international door-to-door transportation, with the goods packed at the shipper

and not unloaded until arrival at the consignee.

Containers are metal boxes with standardized dimensions. There are five common

standard lengths, 20-ft, 40-ft, 45-ft, 48-ft, and 53-ft. Containers of lengths 48-ft and

53-ft are not used for international ocean transportation, and instead are mainly

used in domestic rail-truck intermodal services. Container capacity and throughput

measurements are often expressed in twenty-foot equivalent units (TEU). A TEU is

a measure of containerized cargo capacity equal to one standard 20-ft (length) × 8-ft

(width) × 8-ft 6-in (height) container. Note that the TEU is an approximate measure.

For instance, the 9-ft 6-in high cube and the 4-ft 3-in half height 20-ft containers are

also denoted one TEU. Similarly, one 45-ft container is also commonly designated as

two TEU. The most common container type in international ocean carriage is the

general purpose dry 40-ft (2 TEU) container. Specialized containers are also used for

various types of commodities. In addition to general purpose dry containers, there are

also temperature controlled (reefer) containers for frozen items, open top bulktainers

1

for bulk minerals, ventilated containers for organic products requiring ventilation,

tank containers for bulk liquids, gas containers, and many others.

Figure 1: Six generations of containerships.

The last decade of the 20th century witnessed significant growth in worldwide

container transportation. This steady increase in international intermodal container

traffic has led to changes in the business practices of ocean carriers and container

terminal operators. Carriers are faced with higher and higher shipping demands, and

have responded with the introduction of new routes and more frequent service on

existing ones. Because of that, they invest heavily on sophisticated decision support

systems and new equipment. In order to satisfy high shipping demands, larger con-

tainer vessels have been built; today, construction of vessels with capacities as large as

15,000 TEUs, called mega-ships, is planned. An overview including statistics detailing

increasing container vessel sizes and traffic growth is provided in [8]. In [7] and [73],

the impact of larger vessels on ports is discussed. Some authors caution that vessel

2

sizes may soon begin to plateau; [47] and [69] provide cautious arguments supporting

this notion. The former suggests that the benefits of larger vessels will likely peak due

to physical restrictions in ports, while the latter argues that economies of scale likely

diminish beyond capacities of 3000 TEUs and disappear over 8000 TEUs. Figure 1

adopted from [62] illustrates the evolution of container vessels, and provides specifics

for each vessel generation. The largest mega-ships currently in use, Emma Maersk

and her three sister ships, each have a length of 397m and a capacity of 11,000 TEUs

[46]; see Figure 2 for an illustration.

Figure 2: Emma Maersk. Source: http://img.dailymail.co.uk/

The introduction of larger vessels into fleets has certainly reduced per container

transportation costs for both carriers and shippers. However, such vessels also increase

the stress on container terminals since they both require faster handling to achieve

vessel dwell times similar to those of smaller vessels, and also new equipment like

larger quay cranes and deeper and longer berths. Consequently, terminals are faced

3

with more and more containers to be handled in shorter times. Figure 3 depicts the

increase in the number of TEUs handled each year at the top 5 US ports since 1996.

To accommodate these increases in container traffic, container terminal operators and

port authorities must both invest in new infrastructure and equipment, and also find

ways to use existing resources more efficiently. In addition, due to the competition

between container terminals, especially between those in close geographic proximity,

terminal operators also need to reduce costs and increase reliability to provide effective

service to ocean carriers. Terminal operators strive to achieve rapid container vessel

unloading and loading, which corresponds to a reduction of the time in port for the

vessels. A comprehensive discussion on the relationship between container terminal

operators and ocean carriers is provided in [66].

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

1990 1992 1994 1996 1998 2000 2002 2004 2006

Year

M
ill

io
n

 T
E

U
s

Los Angeles

Long Beach

NY & NJ

Savannah

Oakland

Figure 3: Container traffic at major US ports. Source: American Association of
Port Authorities (AAPA).

4

1.2 An Overview of Container Terminal Operations

In general terms, container terminals can be viewed as open systems of material flow

with two external interfaces. These interfaces are the quayside with loading and

unloading of vessels, and the landside where containers are loaded and unloaded on

and off trucks and trains. A container yard connects the quayside and landside, and

provides space for container storage. Containers are stored either in stacks on the

yard deck, or on truck chassis. Under a chassis storage system, each container is

individually accessible providing fast transfer to landside movements. Alternatively,

under a stacking system, containers are often stored in stacks several containers high,

which means that not every container is directly accessible when needed. Yard cranes

are utilized to access containers and reposition them within the stack. Because of

increased demand and limited storage space in most modern seaports, nowadays

stacking on the ground is the most commonly used storage approach.

Figure 4: Schematic representation of a container terminal system. Source:
Steenken et al. 2004.

When a vessel arrives in a seaport, it first has to moor for container loading and

unloading. For this purpose, a number of berths are available at container terminals.

Berths have very large construction costs, and therefore the number and length of

berths at a container terminal is one of the most important strategic decisions that

5

must be made at the strategic level. Berthing decisions initiate the work within a

terminal by pushing and pulling containers into and from the yard storage areas.

Clearly, the utilization of berths directly affects the overall utilization of the termi-

nal, and therefore the operational level decision of allocating berth space to vessels

is crucial. Most container berths in the large ports of the United States and Japan

are leased by ship operators. Under such arrangements, ocean carriers are directly

responsible for the containers. Such berthing systems are called dedicated berth sys-

tems, and terminals operating with dedicated berths are called dedicated terminals.

An alternative system, known as public berths, is used by many major hub ports like

Hong Kong, Singapore, Rotterdam, and Hamburg. Public berth systems are used in

multi-user terminals that process the vessels of different carriers, and generally have

longer berths and higher berth utilization rates than dedicated terminals.

When a vessel is moored at a berth, the unloading and loading of containers begins.

Quay cranes are the standard equipment designed for this task. A quay crane is a

special type of gantry crane having a large steel framework, which is positioned along

the wharf (or quay) alongside a berthed vessel. Quay cranes are generally classified by

their lifting capacity, and the size of the container ships they can load and unload. A

Panamax crane can fully load and unload containers from a container vessel capable

of passing through the Panama Canal (vessels 12-13 container rows wide). A Post-

Panamax crane can fully load and unload containers from larger container vessels up

to about 18 container rows wide. The largest modern container cranes are classified

as Super-Post Panamax, and are used for vessels up to 22 container rows wide). A

modern container crane capable of lifting two 20-ft containers at one time generally

has a lifting capacity of at least 40 tonnes. Some new cranes have now been built with

120 tonne load capacity enabling them to lift up to four twenty foot or two forty foot

long containers. The speed of quay cranes during unloading and loading movements

is also important. Modern quay cranes have hoisting speeds of 60-80 m/min when

6

carrying a load. Trolley speeds can exceed 140 m/min. Given these parameters, it

takes about 90 seconds to load or unload a single 40-ft container with an experienced

crane operator. Post-Panamax cranes weigh approximately 800-900 tonnes while the

newer generation Super-PostPanamax cranes can weigh 1600-2000 tonnes. To enable

large, heavy quay cranes to move along the wharf, they are mounted on rails parallel

to the water. Quay cranes are the second most expensive infrastructure investment

at a container terminal after berths. Since most berths have a limited set of such

expensive cranes, one of the key operational bottlenecks at container terminals is the

quay crane availability. By improving quay crane efficiency, ports can reduce vessel

turnaround time, and improve overall terminal productivity and throughput.

Figure 5: A container terminal at the Port of Antwerp. Photograph by Thomas
Vanhaute.

The number of optimization problems defined for container terminal operations is

enormous as well as the amount of research conducted. A comprehensive literature

review is provided by [71], [67] and [66] on problems observed at container terminals.

7

1.3 Motivation

The research presented in this dissertation was motivated by the NEESR Grand

Challenge project conducted on the seismic risk management for port systems which

is sponsored by National Science Foundation, Network for Earthquake Engineering

Simulation, and National Earthquake Hazards Reduction Program [1]. Since many

U.S. seaports are located in areas with significant seismic hazard, and since these sea-

ports are critical gateways for national and international trade, the damage caused

by earthquakes and associated business interruption losses can have devastating con-

sequences for the port and broader, adverse effects on local, regional, national, and

international stakeholders. The NEESR Grand Challenge project integrates geotech-

nical and structural earthquake engineering research with expertise in port system

operations and risk and decision analysis of containerized port systems. Individual

tasks in the project include:

• predicting the seismic response and resulting damage states of key port compo-

nents such as container berths and cranes via large-scale experimentation and

numerical simulation,

• estimating the effects of damage to these components on cargo-handling capac-

ity and the resulting impact on port revenues, and

• mitigating possible losses via both geotechnical and structural engineering de-

sign and retrofit options.

The algorithms and solution methods provided for port planning problems in this

thesis are used in construction of the high speed optimization engines which are

utilized by the simulation tool designed for the project.

8

1.4 Contributions of the Thesis

As mentioned before, berths and quay cranes are the most crucial resources at a

container terminal. They are not only the most expensive equipment, but they also

initiate container flow within the terminal. Efficient and effective utilization of berths

and quay cranes is essential for overall port throughput. Many researchers have fo-

cused on planning problems related to berths and quay cranes. However, recent trends

and changes in maritime logistics, have created gaps in the current literature. In this

thesis, we contribute by filling many of these gaps. This study provides a compre-

hensive analysis of berth and quay crane planning problems. Some of these problems

are newly defined in the research literature, even though they exist in practice. The

multiple berth allocation problem, the simultaneous berth and quay crane scheduling

problem, and the voyage and berth scheduling problem presented in the later chap-

ters of the thesis are in this group. The well known berth allocation problem and

the quay crane scheduling problem are also studied. A new polynomially computable

lower bound and an effective meta-heuristic solution method for the continuous berth

version is provided for the former. An analysis of crane splitting methods is per-

formed, and a very fast solution method is described for the latter. Furthermore, the

significant benefit that can be obtained by simultaneously scheduling berth and quay

cranes is demonstrated by this thesis.

We first focus on an NP -hard berth allocation problem (BAP) which is the prob-

lem of assigning ships to berthing positions within a seaport to optimize some per-

formance metric. We consider the dynamic variant of the BAP, where we model the

dynamic arrival of vessels during the planning horizon. We use a model that treats

the berth as a continuous facility where a vessel can moor anywhere along the berth

simultaneously with other vessels. We provide mixed integer programming (MIP) for-

mulations, and then develop a meta-heuristic algorithm based on tabu search which

employs a novel nested neighborhood structure to solve large problem instances. We

9

also introduce a lower bound which can be computed quickly in polynomial time,

and is provably tighter than the bound generated by solving the LP relaxation of

the associated MIP. Computational experiments show that the algorithm is able to

provide high quality solutions in relatively short computation times. Instances with

10 to 14 vessels were solved optimally by the nested tabu search algorithm under 4

seconds, whereas, for some of these instances, it took days to solve with the MIP.

More realistic instances with 20 to 30 vessels were also solved within 100 seconds.

For those instances, we were able to reduce the optimality gap of a reasonable initial

solution by 70% on average.

In chapter 3, we introduce an extension of the BAP, where multiple physically-

disjoint berths may be used to moor arriving vessels. We call this problem the multiple

berth allocation problem (MBAP). In this problem, we consider a container termi-

nal with multiple berths, where each berth is a continuous facility that can handle

multiple vessels of different lengths simultaneously. Arriving vessels can be assigned

to any berth within the terminal, but the processing time required for vessels can

change depending on berth assignments. Hence, the MBAP is defined as the problem

of assigning vessels to berths, and determining the berthing position and time within

the berth that vessels are assigned, to optimize a performance metric. We show how

or BAP models can be generalized to the MBAP case. We also show that the nested

tabu search algorithm designed for the BAP can be an effective tool to solve the

MBAP, given appropriate modifications. A lower bound analysis is again conducted,

and the results are again used in the development of polynomially-computable bounds

provably stronger than that of the LP relaxation. Computational experiments show

that the modified nested tabu search algorithm can solve small instances with 10-14

vessels optimally under 10 seconds. Larger instances with up to 50 vessels, for which

MIP cannot even find an integer solution, are solved within 20 minutes. For those

instances, we are able to reduce the optimality gap of a reasonable initial solution by

10

68% on average.

Chapter 4 focuses on the quay crane scheduling problem (QCSP). Quay cranes are

standard equipment used to load containers onto or discharge containers from vessels

at the quayside of terminals. Most earlier studies concerning quay crane scheduling

focus on detailed models applicable to either one vessel or a set of vessels docked at

the time of decision making. In this chapter, we consider the QCSP for a given berth

schedule. A berth schedule defines where and when each vessel is planned to dock

at the berth over some planning horizon. Hence, in the problem variant we study,

not only are the vessels that are present at the berth at the time of decision making

considered but also vessels planned to arrive later. We first define the concepts of

crane blocking and crane shifting. Because quay cranes at a berth operate on a single

railway, they cannot cross over each other. This restricts the range that a crane

can operate on the berth, which is clearly limited by the locations of its neighbor

cranes. Crane blocking occurs when the only available work for a crane is located

outside of this crane’s operating range for a given time period; hence no work can be

assigned to that crane at this time period. Sometimes, crane blocking can be solved

by shifting multiple cranes along the quay, but shifting cranes efficiently is often

difficult in practice. We also introduce two crane scheduling methods; dedicated

crane scheduling and roaming crane scheduling. In dedicated crane scheduling, a set

of cranes is dedicated to each vessel, and those cranes cannot be used to process other

vessels until the vessel that they are assigned departs. On the other hand, in roaming

crane scheduling, a crane can be reallocated to other vessels if it is no longer needed

by the vessel that it is initially assigned or if a better plan can be obtained by doing so.

Hence, cranes can roam on the berth between vessels during operation. We develop

exact optimization models for each crane scheduling method under both blocking and

shifting assumptions, and analyze the methods computationally using a set of small

instances. We show that roaming crane scheduling with crane shifting can provide

11

significantly better operational plans by increasing crane utilization, and design a tabu

search algorithm to solve realistic instances under this scenario. We also introduce

the crane assignment problem (CAP), which is the problem of determining individual

assignment of cranes to vessel positions in order to minimize the distance traveled

by cranes on the berth. We show that the CAP can be solved in polynomial time

since it can be modeled as a minimum cost network flow problem. Computational

experiments indicate that the tabu search algorithm designed is able to find optimal

solutions almost instantaneously for small problems with 10 to 14 vessels and 6 cranes.

For larger problem instances with 20 to 30 vessels and 10 cranes, the optimality gap

was improved by approximately 68% within 5 to 15 seconds respectively.

In chapter 5, we focus on the simultaneous scheduling of berth and quay cranes.

In practice, berth scheduling and crane scheduling problems are generally considered

sequentially by port operators. They first determine a berth schedule using estimates

of total berth time for each vessel, which is based on the vessel size and workload.

Then, they allocate quay cranes to the vessels that are planned to dock simultane-

ously at the berth. In this chapter, we consider the problem of scheduling these two

resources simultaneously, and denote the problem as the simultaneous berth and quay

crane scheduling problem (BQCSP). We first propose a mixed integer program for the

BQCSP. As expected, this MIP can only solve small instances optimally. Therefore,

we propose a meta-heuristic approach, which combines the features of the algorithms

described in Chapter 2 and Chapter 4. Two polynomially-computable lower bounds

are introduced. The first one is generated by relaxing a constraint on berth posi-

tioning, while the second one is based on relaxing a constraint on the number of

available cranes. These bounds are then used in the evaluation of the proposed al-

gorithm. Computational experiments are designed and performed to evaluate the

hybrid meta-heuristic designed for the BQCSP. The MIP can only be used to solve

very small instances with 5 or 6 vessels. We generated 100 of such instances, and

12

found optimal solutions in an average run time of 15 minutes. Our algorithm found

and optimal solution for each of these instances within 2 seconds. The algorithm was

then tested on moderate size instances with 10 to 14 vessels and 6 cranes. We were

able to reduce the optimality gap of a reasonable initial solution by 66% within 1

minute. The algorithm provided even better improvement for larger instances with

20 to 30 vessels and 10 cranes. We were able to obtain an average of 77% reduction in

the optimality gap of the initial solution in 3 to 30 minutes. We conclude the chapter

by comparing sequential berth and crane allocation with the simultaneous approach.

Computational study shows that simultaneous berth and quay crane scheduling may

yield savings as large as 35%.

Finally, Chapter 6 of the thesis considers resource allocation at container termi-

nals from a different point of view. In the first four chapters, we concentrate on

berth and quay crane scheduling problems in which the decision maker is the ter-

minal operator. These models are most appropriate for multi-user terminals where

the terminal operator and carriers are different parties, and parameters like vessel

arrival time, target departure time, and tardiness penalties are given. For multi-user

terminals, carriers generally have very limited influence on berthing positions and

crane allocations, and have no influence on resource planning for vessels that are

operated by other carriers. In dedicated terminals operated by a carrier, however,

the carrier alternatively has direct control of the schedules of all vessels visiting the

same terminal, since they all belong to the same party. In this chapter we introduce

the problem of scheduling vessel voyages considering berth resource limitations. The

decision maker is a liner carrier having a set of vessels operating on a predetermined

set of routes. This problem is defined for large liner carriers, or alliances, which have

many vessels operating on different routes that visit some busy hub ports operating

with multi-user terminals, but intersect often at dedicated terminals controlled by

the carrier. Such carriers want to operate their vessels on predetermined routes while

13

respecting capacity limitations at dedicated terminals and avoiding congested time

periods at multi-user terminals. Their objective is to determine vessel arrival times

at each port visited within each vessel route, which is equivalent to setting voyage

speeds, in order to minimize fuel cost and the cost of delays. We name the resulting

problem the voyage and berth scheduling problem (VBSP). A model based on the

multi-commodity network flow is presented. We prove that when only the dedicated

terminal capacities are relaxed, the model can be decomposed for each route and

an optimal integer flow can be found by an improved version of the LP relaxation

with the help of additional valid inequalities. We show how this result can be used

to reduce the problem size, and present a compact valid and efficient formulation

using this idea. We conclude this chapter by showing how transshipments, which are

very important for ocean carrier networks, can be formulated as well as terminal time

windows and limits on service line durations. We also discuss how reliability of sched-

ules can be improved by properly modifying the model and the data. Computational

experiments are performed and results are presented.

14

CHAPTER II

THE BERTH ALLOCATION PROBLEM

2.1 Introduction

The berth allocation problem (BAP) is the problem of assigning arriving vessels to

berthing positions within a terminal to optimize some performance metric. Managing

berth allocation to arriving vessels is especially critical in multi-user terminals, since

poor choices can cause unnecessary delays in ship processing and resultant carrier

dissatisfaction. Furthermore, note that the ship berthing process triggers the work

of other port resources, such as the large, expensive quay cranes used to unload and

load containers from and onto vessels, as well as yard cranes and jockey truck crews.

Poor berth utilization may lead to under-utilization of these resources, as well, and

to an overall reduction in port throughput.

Static and dynamic variants of the BAP have been studied. The static variant

considers vessels available for berthing at the port at the decision time. On the

other hand, the dynamic variant allows arrival of vessels at different times during

the planning horizon. Both static and dynamic BAPs have been addressed using

two main classes of models. Models in the first class partition the berthing area

into discrete berths, where each berth is occupied by at most one vessel at a time.

Alternatively, models in the second class treat the berth as a linear facility where

multiple vessels can moor simultaneously. Often, a linear berth is divided into small

non-overlapping sections of constant length, and a number of adjacent sections are

simultaneously assigned to each berthed vessel. Compared to models with discrete

berths, this modeling perspective typically provides more freedom for port operators

in the decision of assigning berth positions.

15

2.1.1 Models with Discrete Berths

Among the first studies developed in the discrete berth case are [34] and [9]. The

former compares three heuristic berth allocation rules using simulation, and proposes

a first-come-first-served (FCFS) heuristic, whereas the latter formulates an integer

programming model for assigning vessels to berth positions. Researchers in [29] also

develop a model for a discrete berth structure, and propose a heuristic solution proce-

dure based on a Lagrangian relaxation of the original model. They extends this work

in [28] by incorporating service priorities for vessels. A genetic algorithm is proposed

in [54] for a nonlinear formulation of the discrete BAP. The approach allows simulta-

neous service for up to two vessels assigned to the same berth area if total vessel size

does not exceed the size of the berth area.

2.1.2 Models with Continuous Berths

The berthing area was first modeled as a single linear facility rather than a collection of

discrete areas in [40]. The paper proposes the so-called berth planning problem (BPP)

of determining a feasible berthing plan for a berth of finite length and a set of arriving

vessels with known lengths, predetermined duration of stays, and fixed berthing times.

A two-dimensional packing problem formulation is proposed, and a heuristic solution

method is presented that yields good results on the instances considered. Among

other studies using linear berthing area models, [39] considers the static problem

variant with a minimum makespan objective, and provides worst-case performance

analysis for a heuristic based on the first fit decreasing algorithm for the bin packing

problem. The static BAP with the objective of minimizing total weighted completion

time is considered in [25], and a solution method based on a multiprocessor task

scheduling model is proposed. The authors assume that vessel lengths and processing

times are positively correlated. They present a lower bound, and perform worst-case

analysis on a heuristic solution approach. This work is extended to handle dynamic

16

variant in [24], two mathematical formulations along with a tree search procedure

are presented, and a heuristic for the case with batch arrivals is introduced. Results

indicate that instances with up to 10 vessels can be solved optimally within reasonable

computation time limits.

The study in [57] also concentrates on the dynamic BAP with a different objective

that penalizes both deviations from best berthing locations and also delayed vessel

completion times. The paper presents a mixed integer programming formulation,

which is then discretized in time and space. Computational experiments indicate

that a solution method based on Lagrangian relaxation works well for instances with

fewer than 7 vessels, and provides near optimal solutions for most instances with fewer

than 20 vessels. In [32], a simulated annealing algorithm is proposed for the same

setting and objective function. Computational results demonstrate that the method

solves most instances with fewer than 7 vessels optimally; larger instances are solved,

but their solution quality is not assessed. In [30], the authors extend their previous

work on the discrete berth variant of the dynamic BAP to the linear berthing area

case. In the proposed model, vessel processing time depends on berthing position.

The paper details a heuristic adapted from their discrete case heuristic, and compares

the performance of the two approaches. No optimality gaps are reported for the in-

stances solved. Researchers in [14] propose a new model to minimize total weighted

service time for a dynamic BAP with a berthing area partitioned into discrete berths.

The model is based on the multiple depot vehicle routing problem with time windows,

and the paper develops a tabu search heuristic for its solution. The paper addition-

ally proposes modifications that enable application of the heuristic to the dynamic

BAP with a linear berthing area. Computational results indicate that the algorithm

improves FCFS rule solutions with reasonable computation times.

The papers [18] and [72] both focus on the dynamic BAP with the objective of

minimizing total weighted vessel delay and penalties for deviating from best berthing

17

locations. Researchers in [18] formulate the problem as a rectangle packing problem

and present a simulated annealing algorithm. The neighborhood structure used is

defined by augmenting the sequence pair approach proposed in [27] using similar ideas

to those in [50] which represents a solution by a pair of permutations of rectangles.

Optimality gaps are provided for congested scenarios. For lightly loaded scenarios,

where optimal solutions are known, it is shown that the algorithm generates high-

quality solutions. The dynamic berth allocation problem is treated as a multi-stage

decision making procedure in [72]. A stochastic beam search solution algorithm is

developed. The algorithm is shown to outperform the simulated annealing algorithm

proposed in [18] on test instances, but the paper does not provide measures of berth

congestion for the instances considered.

2.1.3 Comparison of Models

As mentioned before, models with discrete berths have been employed widely by

viewing the berthing area as a finite set of berths where each berth can accommodate

only one vessel at a time. With such models, if the spatial dimension is ignored, berths

can be viewed as points. As a result, these models treat the BAP as a parallel machine

scheduling problem, where a vessel is treated as a job and a berth as a machine. The

vessel’s arrival time is the job release time. Models with continuous berthing areas,

on the other hand, allow that vessels can berth anywhere along the berth. Compared

to models with discrete berths, this modeling perspective typically provides more

freedom for port operators in the decision of assigning berthing positions. However,

solving continuous berthing area models is typically much harder.

Models that use discrete berthing areas can be used effectively by some terminals

even though such terminals have single continuous berthing areas. If vessels calling are

approximately the same length, the terminal operator can simply divide the berthing

area into discrete segments of common vessel size. Similarly, if the berth is longer

18

Figure 6: Discrete berth models can be employed for some continuous berths.

than twice but shorter than three times the length of any vessel calling, defining two

discrete berths is enough to model all possible simultaneously berthing possibilities.

Figure 6 illustrates the idea.

The growth trend in container vessel sizes has resulted in a parallel increase in the

diversity of vessel sizes, since older vessels are generally not retired but instead placed

into service on different routes. For terminals that serve a mix of container vessels of

different lengths, dividing the berthing area into discrete segments is not easy. Using

long segments will result in poor berth utilization, while using short segments may

result in infeasible models for otherwise feasible problems. Because of this, flexible

berth allocation planning is gaining more importance, especially in busy hub ports

where vessels of various sizes are calling and long continuous berths are employed.

2.2 Problem Formulation

In this chapter, we consider a dynamic variant of the BAP where the berthing area

is modeled as a linear facility that can berth multiple vessels simultaneously. We

propose an objective function that balances the goals of ocean carriers (who desire

minimal processing delay for arriving vessels) and the terminal operator (who desires

maximum vessel and container throughput). The primary contributions of this study

include:

19

• The introduction of a lower bound that can be found in polynomial time for any

instance of the dynamic variant of BAP, where the bound is provably tighter

than the linear programming relaxation bound for a standard integer program-

ming model for the problem; and

• The development of an effective tabu search algorithm specifically designed for

the continuous berth variant of the BAP algorithm that utilizes a novel solution

encoding and a nested neighborhood search procedure.

We consider a problem where the berth is modeled as a single continuous linear

structure having B equal size sections. We discretize time and assume an infinite

planning horizon. When berthed, a vessel covers a number of adjacent sections de-

pending on its size, and multiple vessels can moor at the berth and receive service

simultaneously. We concentrate on the dynamic problem where we have a set V of

vessels with known arrival times, where n = |V|. For each vessel k ∈ V , we define:

hk: length of vessel k measured in number of required berth sections,

pk: processing time of vessel k,

ak: arrival time of vessel k,

dk: due time of vessel k (where dk ≥ ak + pk),

fk: lateness penalty of vessel k,

bk: planned berthing position of vessel k,

tk: berthing time of vessel k,

ck: the earliest time that vessel k can depart (its completion time tk + pk).

A feasible solution of the BAP is called a berth schedule x. Any such x can be

depicted on a time-space diagram where the horizontal axis measures time and the

vertical axis represents berth sections; see Figure 7. In such a representation, a vessel

20

can be represented by a rectangle whose length is its processing time and height is

its length. Given a known vector of arriving vessel information {hk, pk, ak, dk, fk},
the optimization problem is then to determine berthing section bk and berthing time

period tk for each vessel k. If we say vessel k is berthed at position bk at time tk,

we mean berth sections [bk, bk + hk − 1] are occupied by vessel k for time periods

[tk, tk + pk − 1]. This also means that once a vessel is berthed, its location cannot be

changed during service, and no preemption is allowed.

Our objective is to minimize
∑

k∈V(ck−ak)+
∑

k∈V fk(ck−dk)
+. The first term is

the sum of the dwell times (often called flow times in the scheduling literature), where

a vessel’s dwell time is measured between arrival and departure including both time

waiting to be berthed and servicing time while berthed. The second term is a penalty

accrued by tardy vessels, where (ck − dk)
+ measures the tardiness of vessel k using

the standard notation z+ = max(z, 0). This objective function attempts to balance

the terminal operator’s goal of fast vessel (and therefore container) throughput with

a penalty term that attempts to treat different vessels fairly. Parameter fk provides

flexibility in prioritizing vessels for early processing.

We present two widely used mixed integer programs to formulate BAP. The first

formulation considers the space covered by the vessel rectangles, and hence called Po-

sition Assignment Formulation (PAF). The PAF has been used to construct solution

methods based on Lagrangian Relaxation in [24] and [57]. The other formulation

considers the relative position of the vessel rectangles in the time space diagram,

and hence is called Relative Position Formulation (RPF). Due to the relatively small

number of binary variables, this formulation is generally used to solve small instances

directly. Optimal solutions generated by RPF can then be used in the evaluation of

heuristic methods generated.

21

2.2.1 Position Assignment Formulation

In PAF, we suppose that the time-space area is divided into T ×B unit blocks where

each block has the width of one time unit and height of one berth section. Let block

(x, y) be the block for time unit x ∈ [1, T], and berth section y ∈ [1, B]. For instance,

in Figure 7, vessel 5 covers blocks (15, 5),(16, 5),(17, 5),(18, 5),(15, 6),(16, 6),(17, 6),

and (18, 6). The following binary variables are needed in PAF:

δklt =





1 if vessel k berths at location (berth section) l at time t,

0 otherwise;

σkxy =





1 if vessel k covers block (x, y),

0 otherwise.

Then, PAF can be written as follows:

Minimize
n∑

k=1

(ck − ak) +
n∑

k=1

fk(ck − dk)
+ (1)

subject to

B−hk+1∑

l=1

T−pk+1∑
t=1

δklt = 1 ∀k (2)

t+pk−1∑
x=t

l+hk−1∑

y=l

σkxy − pkhk − (δklt − 1)M ≥ 0 ∀k, l, t ≥ ai (3)

n∑

k=1

σkxy ≤ 1 ∀x, y (4)

pk +

B−hk+1∑

l=1

T−pk+1∑
t=ak

tδklt ≤ ck ∀k (5)

δklt ∈ {0, 1} ∀k, l, t (6)

σkxy ∈ {0, 1} ∀k, x, y (7)

22

In PAF, Constraint (2) ensures that each vessel must be berthed exactly once re-

specting vessel size and vessel arrival time. Constraint (3) forces that blocks occupied

by each vessel rectangle must be adjacent, whereas Constraint (4) guarantees that a

block can only be occupied by at most one vessel rectangle. Constraint (5) relates

the earliest possible time that a vessel can leave to its berthing time and processing

time.

Figure 7: Representation of a berth schedule on a time-space diagram

2.2.2 Relative Position Formulation

Another standard approach to formulate an integer program for the continuous berth

allocation problem is based on constraining the relative positions of vessels in the

time-space representation of the problem. The primary decision variables in RPF

are:

23

x`k =





1 if vessel k berths after vessel ` departs,

0 otherwise;

y`k =





1 if vessel k berths completely above vessel ` on the time-space diagram,

0 otherwise.

A feasible selection of these primary variables then constrain the secondary set of

decisions {bk, tk, ck} for all ships k, modeled as continuous variables. The formulation

is then:

Minimize
n∑

k=1

(ck − ak) +
n∑

k=1

fk(ck − dk)
+ (8)

x`k + xk` + y`k + yk` ≥ 1 ∀ k, ` ∈ V and k < ` (9)

x`k + xk` ≤ 1 ∀ k, ` ∈ V and k < ` (10)

y`k + yk` ≤ 1 ∀ k, ` ∈ V and k < ` (11)

t` ≥ ck + (xk` − 1)M ∀ k, ` ∈ V and k 6= ` (12)

b` ≥ bk + hk + (yk` − 1)M ∀ k, ` ∈ V and k 6= ` (13)

tk ≥ ak ∀ k ∈ V (14)

ck ≥ tk + pk ∀ k ∈ V (15)

bk ≤ B − hk + 1 ∀ k ∈ V (16)

bk ≥ 1 ∀ k ∈ V (17)

x`k ∈ {0, 1}, y`k ∈ {0, 1} ∀ k, ` ∈ V and k 6= ` (18)

Constraints (9) through (11) ensure that no vessel rectangles overlap. Constraints

(12) and (13) ensure that the selected berthing times and berthing positions are

24

consistent with the definitions of x`k and y`k, where M is a large positive scalar. Con-

straint (14) and (15) force berthing time to occur no earlier than arrival time, and

departure time to occur no earlier than service completion time. Constraints (16)

and (17) guarantee that all vessels fit on the berth.

We now characterize some of the features of optimal solutions to this formulation.

Theorem 1 will be used in the development of our heuristic solution approach.

Definition 1 For a given berth schedule, vessel k is said to be supported in time if

tk = ak or tk = t` + p` for some vessel `.

Definition 2 For a given berth schedule, vessel k is said to be supported in space if

one of the following conditions holds: bk = 1, or bk = B − hk + 1, or bk = b` + h`, or

bk = b` − hk for some vessel `

Definition 3 For a given berth schedule, vessel k is said to be packed if it is supported

both in time and in space.

Lemma 1 In any optimal berth schedule, all vessels are supported in time.

Proof. Any berth schedule with some vessel k which is not supported in time can be

improved by moving the rectangle representing vessel k to the left on the time-space

diagram. 2

Lemma 2 There exists an optimal berth schedule where all vessels are supported in

space.

Proof. A vessel rectangle k which is not supported in space can be moved up or

down on the time-space diagram without any change in the objective function until

vessel k becomes supported in space. 2

25

Theorem 1 There exists an optimal berth schedule where all vessels are packed.

Proof. The proof directly follows Lemma 1 and Lemma 2. 2

Refer again to Figure 7. In this example, b1 = 2, t1 = 3 and c1 = 9. Vessel 1 is

supported in space because b1 = b3 − h1, but is not packed since t1 > a1 and there

is no vessel on the berth scheduled before vessel 1. Similarly, vessel 2 is supported

only in space, vessel 3 is packed, vessel 4 is supported only in time, and vessel 5 is

supported neither in time nor space. Furthermore, vessel 2 and vessel 5 are tardy

since c2 = 15 > 13 = d2 and c5 = 19 > 18 = d5. This solution cannot be optimal

because all vessels are not supported in time.

2.2.3 Hardness of the Problem

This BAP variant is clearly NP -hard; instances with unit length vessels (hk = 1) and

no lateness penalties (fk = 0) are each a machine scheduling problem with release

times, no job preemption, and the objective of minimizing the sum of job completion

times, known to be NP -hard even with a single machine (B = 1) [38]. The mixed

integer program (9)-(17), when solved directly with off-the-shelf commercial software,

can be used to find optimal solutions for small instances with up to 10 vessels in a

reasonable amount of time. However, larger instances likely to be found in practice

cannot be readily solved with this approach.

2.3 Lower Bound Analysis

In this section we introduce a polynomially-computable lower bound for the objective

function value of the dynamic BAP formulated in the previous section. This bound

is provably stronger than the linear programming relaxation bound, and is therefore

of potential use in improving the computational performance of the proposed model.

The relaxation used to generate the bound is somewhat similar to one used in [25] for

26

the static BAP with a minimum total weighted flow time objective, but our approach

handles dynamic problems (with positive arrival, or release, times), and can also

properly accommodate nonzero lateness penalties.

For any instance of our problem, we can construct a corresponding parallel ma-

chine scheduling problem P using the relaxation illustrated partially in Figure 8.

First, each berth segment is treated as a separate parallel machine; thus, B identical

machines are defined. Next, for each vessel k, we create pk × hk jobs, each with unit

length and unit processing duration. We use a two-dimensional index (i, j) for each

of these jobs, where i refers to the spatial position and j the time position. For each

job (i, j), we set its release time rk
ij = ak + j − 1; while such a construct does not

prevent a job with time index j from being processed after a job with time index

j + 1, it at least prevents clearly infeasible start times given the vessel arrival time.

Similarly, we set a due time dk
ij = dk − (pk − j). Each job is also assigned a set

Bk
ij of feasible machines (berthing locations), limited by the berthing area bound-

aries: Bk
ij = {b = 1, ..., B : b ≥ i , b ≤ B + i − hk}. Parameters αk

ij = 1
pkhk

and

βk
ij = fk

pkhk
are assigned to each job (i, j) for vessel k, and will be used as objective

function weights. The objective is to assign each job to a feasible machine, minimiz-

ing the sum of total weighted completion time and total weighted tardiness, given

by
∑

k,i,j αk
ijc

k
ij +

∑
k,i,j βk

ij(c
k
ij − dk

ij)
+, where the completion time ck

ij of job (i, j) for

vessel k is tkij + 1 when it is processed in time period tkij.

Theorem 2 LBP = dC∗
P +Φ−Ψe is a lower bound for BAP where C∗

P is the optimal

objective function value of P constructed for BAP, Φ =
∑n

k=1(pk − 1)/2, and Ψ =

∑n
k=1 ak.

Proof. Any feasible solution of BAP generates a feasible solution for the correspond-

ing P . In such a solution, for each job (i, j) defined for vessel k, ck
ij = ck − pk + j

holds. Then, ck
ij − dk

ij = ck − pk + j − (dk − pk + j) = ck − dk. Hence,

27

Figure 8: Construction of lower bounding scheduling problem P for a given dynamic
BAP instance

n∑

k=1

hk∑
i=1

pk∑
j=1

αk
ijc

k
ij =

n∑

k=1

hk∑
i=1

pk∑
j=1

1

pkhk

(ck − pk + j) =
n∑

k=1

(
ck −

pk∑
j=1

pk − j

pk

)
(19)

and

n∑

k=1

hk∑
i=1

pk∑
j=1

βk
ij(c

k
ij − dk

ij)
+ =

n∑

k=1

hk∑
i=1

pk∑
j=1

fk

pkhk

(ck − dk)
+ =

n∑

k=1

fk(ck − dk)
+ , (20)

which implies

CP =
n∑

k=1

hk∑
i=1

pk∑
j=1

αk
ijc

k
ij+

n∑

k=1

hk∑
i=1

pk∑
j=1

βk
ij(c

k
ij−dk

ij)
+ =

n∑

k=1

(
ck −

∑pk−1
j=1 j

pk

)
+

n∑

k=1

fk(ck−dk)
+ .

(21)

Since C∗
P ≤ CP , and (

∑pk−1
j=1 j)/pk = (pk − 1)/2,

C∗
P +

n∑

k=1

pk − 1

2
−

n∑

k=1

ak ≤
n∑

k=1

(ck − ak) +
n∑

k=1

fk(ck − dk)
+ (22)

28

With all integer parameters, the right hand side of Expression 22, which is the

objective function of the BAP, is integer. Hence, LBP = dC∗
P + Φ − Ψe is a lower

bound for the BAP. 2

Theorem 3 P can be solved in polynomial time.

Proof. P can be modeled as a minimum weight matching problem on a bipar-

tite graph G = (N1 ∪ N2 , E). For each job (i, j) of vessel k, we define a unique

node in N1. We also define a unique node in N2 for each (berth, time period) pair.

We then construct the edge set E as follows: {(p, q) : p ∈ N1 , q ∈ N2 , bq ∈
B(p) , r(p) ≤ tq}, where (bq, tq) is the (berth, time period) pair associated with

node q, r(p) is the ready time rk
ij of the job associated with node p, and B(p) is the

set of allowable berth positions Bk
ij for that job. Edge weights cpq are defined to be

cpq = α(p)(tq +1)+β(p)(tq +1−d(p)), where again α(p) and β(p) are the appropriate

constants αk
ij and βk

ij for the job associated with node p, and d(p) is its due date dk
ij.

It is well known that weighted bipartite matching can be solved in polynomial time

(see, for example, discussion in [4]). 2

Theorem 4 LBP ≥ LBLP where LBLP denotes the objective function value of the

optimal solution to the LP relaxation of the mixed inter program (9)-(18).

Proof. In a feasible solution of the LP relaxation, it is easy to see that berthing

times tk and positions bk can be chosen such that any vessel rectangles may overlap

one another. Therefore, in every optimal solution, ck = ak + pk ∀k ∈ V . Since we

assume that dk ≥ ak + pk, it is clear that the LP relaxation yields the weak lower

bound given by the sum of vessel processing times:

LBLP =
n∑

k=1

(ck − ak) =
n∑

k=1

pk . (23)

29

In P , ck
ij = tkij + 1 ≥ rk

ij + 1 and rk
ij = ak + j − 1 for each job j in set i of vessel k.

Therefore,

C∗
P ≥

n∑

k=1

hk∑
i=1

pk∑
j=1

ak + j

pkhk

, (24)

which, by Theorem 2, implies,

LBP ≥
⌈ n∑

k=1

pk∑
j=1

ak + j

pk

+
n∑

k=1

pk − 1

2
−

n∑

k=1

ak

⌉
. (25)

Rearranging terms then yields the result:

LBP ≥
⌈ n∑

k=1

pk + 1

2
+

n∑

k=1

pk − 1

2

⌉
=

n∑

k=1

pk = LBLP . (26)

2

2.4 A Meta Heuristic: The Nested Tabu Search Algorithm

The meta-heuristic term was coined in the same paper that introduced the term tabu

search ([22]), and has come to be widely applied in the literature, both in the titles

of comparative studies and in the titles of volumes of collected research papers (see

e.g. [35], [21], [56], [10], and [5]).

A meta-heuristic refers to a master strategy that guides and modifies other heuris-

tics to produce solutions beyond those that are normally generated in a quest for

local optimality. The heuristics guided by such a meta-strategy may be high level

procedures or may embody nothing more than a description of available moves for

transforming one solution into another, together with an associated evaluation rule.

30

The contrast between the meta-heuristic orientation and the local optimality ori-

entation is significant. The primary conception of a heuristic procedure is to envision

either a clever rule of thumb or an iterative rule that terminates as soon as no solutions

immediately accessible could improve the last one found. Such iterative heuristics are

often referred to as descent methods, ascent methods, or local search methods. The

emergence of methods that departed from this classical design constituted an im-

portant advance. Meta-heuristics in their modern forms are based on a variety of

interpretations of what constitutes intelligent search. These interpretations lead to

design choices which in turn can be used for classification purposes. The most well-

known and widely used meta-heuristics are genetic algorithms, simulated annealing,

and tabu search.

In this section, we present a meta-heuristic method based on the tabu search

algorithm to solve the dynamic BAP with a linear berth structure. The well known

tabu search method can be rooted to [22], and more detail can be found in [23].

Briefly, the method explores solution space by moving at each iteration to the best

non-tabu neighbor of the current solution. In order to avoid cycling, solutions that

were recently visited are made tabu for a number of iterations.

The heuristic we design uses a simple yet interesting method for encoding a feasible

solution, and a nested search approach with two layers for exploring neighbors. The

outer layer, TS1, searches a neighborhood defined by a berthing priority list of vessels,

while the inner layer, TS2, searches for best vessel berth positions given a priority list.

For computational efficiency, both layers of the nested search considers only packed

berth schedule solution candidates at each iteration; recall that by Theorem 1, there

exists an optimal solution to the problem that is packed.

31

2.4.1 Encoding and Decoding a Solution

We use two vectors of size n, B and L, to encode a feasible solution. Entries of B
are the berth positions of vessels. Entries of the ordered list L are vessel indices,

and the order determines berthing priority. The vector pair (B, L) defines a unique

feasible berth schedule x as follows: beginning with the first vessel in L, berth each

vessel k at the berthing position given in B at the later of ak or the earliest time that

the berthing time-space rectangle to be occupied by k is not occupied by any earlier

berthed vessel. With appropriate data structures, this decoding operates in O(n)

time. Note then that all vessels are supported in time in feasible solutions defined in

this way.

Figure 9: Multiple priority lists may correspond to a single berth schedule

Although there is a one-to-one mapping from B and L to a feasible berth schedule

x, the reverse is not true. While a given schedule uniquely defines a set of berth

positions B, it may correspond to many different vessel priority lists. Therefore, for

any given berth schedule x, we define a unique vessel priority list called the primal

32

list, LP (x). The primal list ordering of vessels is created by sorting the vessel indices

according to their berthing times tk, breaking ties in favor of smaller berth positions

bk. Figure 9 shows an example where a single berth schedule is encoded by eight

different vessel priority lists, where the primal list is (2, 1, 3, 4, 5).

We will also mark each feasible berth schedule encountered during the search with

a large scalar mark M(x) determined by an arbitrary function g({bk}, {tk}). Figure

10 summarizes the relationships between vessel priority lists, the berthing position

vector, a feasible berth schedule, and its corresponding scalar M .

Figure 10: Encoding and decoding a berth schedule

2.4.2 Initial Solution

It is possible to generate a feasible solution x0 using only a vessel priority list L
by constructing a berth position vector using a two-dimensional hierarchical first-fit

(FF) rule. Such a first-fit rule places vessel rectangles k on the time space diagram

one by one in the order specified by L at the earliest possible berthing time (i.e., the

smallest time t ≥ ak with hk available contiguous berth sections), and at the lowest

index berth section at that time. Note that this first-fit rule yields a packed solution.

33

Thus, initial solutions can be generated using any method for creating a sorted

L. In our approach, we use the following initial vessel priority lists:

• First-come, first-served (FCFS): LFCFS is sorted by non-decreasing vessel arrival

times ak

• Earliest due date (EDD): LEDD is sorted by non-decreasing vessel due times dk

• Modified earliest due date (mEDD): LmEDD is sorted by non-decreasing penalty-

weighted due times dk

fk

The initial solution is chosen to be the one of the above with the smallest objective

function value. Since the rules for generating the priority lists are simple but intuitive,

this approach for building an initial solution mimics decision rules-of-thumb that a

terminal operator might use to generate berth schedules.

2.4.3 Fundamentals of the Nested Search

Given some L and B, and their corresponding berth schedule x, a neighboring solution

can be defined by some change to B, or to L, or to both vectors. We define a nested

approach that explores changes to B given a fixed LP (x) as an inner search TS2, while

an outer search TS1 explores changes to L. The first berth position vector B created

for any new L in the outer search is the one defined by the hierarchical FF rule.

An example set of nested search steps is illustrated in Figure 11. In this instance,

a1 = 1, a2 = 2, a3 = 4, a4 = 3, and a5 = 8 and all vessel due times are 17. Part A

of the figure depicts the berth schedule generated by the first-fit rule berth positions

corresponding to L = (1, 2, 3, 4, 5). If we conduct a outer search TS1 move that swaps

vessels 3 and 4 in the vessel list yielding L = (1, 2, 4, 3, 5), we reach the better solution

illustrated in Part B. Next, we conduct two inner search TS2 moves to generate the

schedules in Part C and D. In Part C, we illustrate a move where we change only the

berth position of vessel 2 from 7 to 10. A second move yields the improved solution

34

in Part D, where we again change only the berth position of vessel 5 from 1 to 8. It

can be shown that the schedule in Part D is an optimal schedule for this instance.

Note that all vessels in all berth schedules given in figure 11 are packed.

Figure 11: Illustration of moving from one solution to another by modifying L and
B

We now outline the major steps. At each iteration of TS1, we modify the current

L using single swap moves within a randomized neighborhood. Given a list L, define

the (p, r, q) randomized neighborhood of lists NL(p, r, q,L) as all lists generated by a

single swap in L of the position of one of q randomly-selected vessels (denoted vessel

k) with the position of one of p randomly-selected vessels from among the r closest

neighbor vessels to k in L. Closeness in L is measured as the absolute difference in

35

position in the list.

Each candidate neighbor list generated in an iteration of TS1 is initially assigned

a berth position vector B by the FF rule (corresponding to a packed solution). These

pairs now form a set of candidate moves, each with a corresponding berth schedule

x, mark M(x), and primal vessel list LP (x). Each non-tabu candidate move is now

considered in sequence, where a tabu move is one whose mark M(x) is currently in

the tabu list. If the mark M(x) has not yet been considered during the current TS1

iteration, we initiate the inner search TS2 with x as the initial solution.

In an iteration of TS2, we generate a set of candidate moves using changes to

a single entry in the berth position vector B corresponding to the current solution

y while keeping the primal list LP (y) fixed. Note that the initial solution used in

an iteration of TS2 is packed, and we will restrict neighbor candidates to also be

packed in each iteration of TS2. Let VS be the set of all vessels that have adjacent

unoccupied berth sections in schedule y for the entire vessel berthing time; note that

these sections may be above or below the vessel in the time-space diagram, but not

both. For example, in part A of Figure 11, VS = {2, 4, 5}. Given B, we define

the (s,VS) randomized neighborhood of berth position vectors NB(s,VS,B) as all

those generated by changing the berth position of one of s randomly-selected vessels

from the set VS; for the selected vessel, the berth position is shifted up or down

in the direction of the adjacent unoccupied berth sections as far as possible before

encountering another berthed vessel. Note that the shifted vessel is still supported

in space. For each Bj ∈ NB(s,VS,B), a feasible berth schedule is decoded using the

vector pair (Bj,LP (y)); recall the discussion in Section 2.4.1. Thus, TS2 moves from

one packed solution to another.

The importance of primal vessel lists for the nested search is now established.

Lemma 3 If LP (y) is the primal list for current berth schedule y, every candidate

move in an iteration of TS2 yields a new berth schedule with an objective value smaller

36

Figure 12: The importance of using the primal list in the inner search, TS2

or equal to the current.

Proof. Let v be the vessel whose berth position is shifted in the candidate move,

and let tv be its berthing time in the current solution y. By definition, each vessel

k currently berthed at some time tk < tv precedes v in the list LP (y) since it is the

primal list. Therefore, these vessels will have the same berthing times in the new

solution. The same is true for each vessel ` 6= v currently berthed at t` = tv, since

the shifted berth position of v is restricted by these vessels. Vessel v and any vessel

m where tm > tv may be berthed at the same time, or an earlier time after the shift

of vessel v. Clearly, vessel v can berth no later than its current berthing time tv,

since the berthing times and positions of precedent vessels in LP (y) do not change.

By simple induction, it can be shown that since the berthing time of a vessel m is

37

constrained only by its arrival time am and the completion time of some precedent

vessel in LP (y), and precedent vessel berthing times are always no later than their

current berthing times, each vessel m is berthed at a time no later than its current.

Thus, the lemma holds. 2

Figure 12 illustrates these ideas. Suppose vessel 1 has a1 = 3, vessel 4 has a4 = 5,

and all other vessels arrive at time 1. In the example, if the candidate move is to

shift the berth position of vessel 4 downward by setting b4 = 8, we reach the schedule

on the left part of the figure using the primal list LP = (2, 1, 3, 4, 5). Importantly,

however, if the list corresponding to the current solution were not the primal, such a

candidate move may be decoded into a solution with a worse objective. For example,

list L = (1, 3, 4, 2, 5) also corresponds to the initial solution. However, the same berth

position shift in this case yields the solution on the right part of the figure, with a

clearly higher objective function value.

The tabu list in TS2 prevents reverse berth shift moves (defined as shifting a vessel

back to its previous berth position) for a random number of iterations θ2, where θ2 is

distributed discrete uniform on [θmin
2 , θmax

2]. At the completion of TS2, a best (lowest

objective function value) berth position vector and corresponding best solution is

identified for the current candidate move of TS1. After all candidate TS1 moves have

been evaluated for the current iteration, the best (lowest objective function value)

move is selected as the new current solution x, with its corresponding vessel list L
and berth position vector B. The mark M(x) of this solution is placed into the

TS1 tabu list for a random number of iterations θ1, where θ1 is discrete uniform on

[θmin
1 , θmax

1].

38

2.4.4 Steps of the Nested Tabu Search Algorithm

In this section, we provide step-by-step detail for the proposed nested search. The

overall procedure is illustrated in Figure 13. Let x0 be the initial berth schedule so-

lution for TS1, and let y0 be the initial solution for TS2. Furthermore, let x, x∗ and

y, y∗ denote the current and the best solutions found by TS1 and TS2 respectively.

Let C(x) represent the objective function value for solution x.

Figure 13: Schematic Representation of the Nested Tabu Search Approach

2.4.4.1 Steps of TS1(x
0, x∗):

Step 1: Initialization. Set p, r, and q. Let x0 be the lowest-cost solution found

from among the three initial vessel lists, LFCFS, LEDD, and LmEDD, each with

a berth position vector determined by the FF rule. Let L and B be the vessel

list and berth position vector yielding x0. Set x = x∗ = x0. Initialize counters

tT1 = 0 and tS1 = 0, which denote the total number of iterations, and the number

of successive iterations with no improvement in the best objective function value

respectively. Set the value of tM1 , which is the maximum number of iterations

allowed with no improvement.

Step 2: Neighborhood Search. Set tT1 = tT1 + 1. For each candidate list Li ∈

39

NL(p, r, q,L), construct an associated Bi by the FF rule, and let xi be the

associated berth schedule solution. For each solution xi such that M(xi) is not

in the tabu list and has not yet been considered during this step, run TS2(xi, x
∗
i).

Let a be the move i with the smallest value of C(x∗i).

Step 3: Solution Updates. Set x = x∗a, and let L = La. If C(x) < C(x∗), set x∗ = x

and tS1 = 0. Otherwise, set tS1 = tS1 + 1. Update the tabu list, adding M(x) for

the appropriate random number of iterations and removing any marks whose

duration has expired. If tS1 < tM1 , go to Step 2. Else, stop. The best solution

found is x∗.

2.4.4.2 Steps of TS2(y
0, y∗):

Step 1: Initialization. Set the value of s. Set y = y∗ = y0, and let B be the berth

position vector for solution y. Initialize counters tT2 = 0 and tS2 = 0, which de-

note the total number of iterations, and the number of successive iterations with

no improvement the best objective function value respectively. Set the value of

tM2 , which is the maximum number of iterations allowed with no improvement.

Step 2: Neighborhood Search. Set tT2 = tT2 + 1. Construct set VS for y. Consider

each move yj decoded from non-tabu berth position vector Bj ∈ NB(s,VS,B)

combined with primal list LP (y), and let b be the move j with the smallest

value of C(yj).

Step 3: Solution Update. Set y = yb. If C(y) < C(y∗), set y∗ = y and tS2 = 0.

Otherwise, set tS2 = tS2 + 1. Update the tabu list by inserting the reverse berth

position move associated with solution yb into the tabu list for the appropriate

random number of iterations, and removing reverse moves whose duration has

expired. If tS2 < tM2 , go to Step 2. Else, stop. The best solution found is y∗.

40

2.4.5 Multi-start Version

Multiple starts or related “kick” moves are widely used techniques in metaheuristic

search algorithms. They attempt to direct the search to unexplored areas of the

solution space when the algorithm gets trapped by a local optimum.

We develop and test a multi-start version of the nested tabu search described

earlier. Instead of running the search with a large limit on successive non-improving

iterations, we restart R times with a smaller limit. To generate the R initial solutions,

we use a diversified search to create R vessel lists. This is done using a modified

version of TS1 that does not call TS2; each candidate list is only evaluated by the

berth schedule resulting from the FF rule. Furthermore, we select relatively smaller

values for q and p to increase the randomization in neighborhood and hence increase

diversification in the search. The R best lists found in this search are stored and used

as the R initial lists in the multi-start version of the heuristic.

2.5 Computational Experiments

Computational experiments on randomly generated sets of test instances were con-

ducted to evaluate the performance of the algorithm proposed. Six sets of test prob-

lems were used, each containing 10 different randomly generated instances. The first

three of these sets include relatively small problems for a terminal with B = 12,

and n = 10, 12, and 14 vessels respectively. The next three problem sets contain

larger instances with B = 20 and with n = 20, 25, and 30 vessels. For both sets

of instances, the vessel lengths are random and range from 2 to 6 berthing positions:

hi ∼ UD[2, 6], where UD[a, b] is the discrete uniform distribution on the closed interval

[a, b]. The vessel processing times vary depending on vessel length, and are determined

as follows. For vessel k with length hk, we generate hk integers p1
k, ..., p

hk
k randomly

where pi
k ∼ UD[1, 4] for hk = 2, pi

k ∼ UD[1, 5] for hk ∈ {3, 4}, and pi
k ∼ UD[1, 6]

for hk ∈ {5, 6}. We then let pk = maxi{pi
k}. Constructing processing times in this

41

way models the idea that different sections of the ship may require different process-

ing times, but the berthing duration of the ship can be no smaller than the largest

processing time for any ship section. Finally, we distribute the vessel arrival times

in the instances, but consider only the more difficult cases when many vessels are in

port ready to be berth simultaneously; more discussion on this point follows in the

next paragraph. In the first three problem sets, the vessel k arrival time is given

by ak ∼ UD[1, 10], while in the second three sets, ak ∼ UD[1, 20]. Vessel due times

are also generated randomly, and are determined by adding a random multiple of

a vessel’s processing time to its arrival time: dk = ak + Kpk where K ∼ UD[1, 3].

Lateness penalties also vary by vessel, and are given by fk ∼ UD[3, 5].

Table 1: Statistics for test BAP instances used
Set B n Average RUmax Average RUavg

1 12 10 2.175 1.236
2 12 12 2.483 1.389
3 12 14 3.008 1.635
4 20 20 1.615 0.822
5 20 25 1.800 0.997
6 20 30 2.495 1.296

Vessel arrival times in our problem context are like release times in classic ma-

chine scheduling problems. It is well-known that while release times generally increase

theoretical problem complexity, they can often lead to simple-to-solve practical in-

stances. In the dynamic BAP, suppose for example that the kth arriving vessel has

ak ≥ ak−1 +pk−1. Clearly, serving the vessels in first-come, first-served order is always

optimal. Therefore, to measure the practical difficulty of the instances used in this

computational study, we use the concept of required utilization (RU). Suppose that

every vessel were berthed at its arrival time, ignoring available berth positions. Then,

at every time period t, one can determine the minimum number of required berth

sections for the vessels by adding up the lengths of vessels berthed at that time; note

42

that this includes all vessels k for which t ∈ [ak, ak + pk − 1]. RUt is then the ratio of

this minimum to B. Let RUmax for an instance be the maximum value of RUt, and let

RUavg be the average RUt from time 1 until time maxk∈V{ak +pk−1}. If RUmax > 1,

then that at least one vessel in the instance cannot be berthed at its arrival time. The

higher the value of RUavg, the more likely that many vessels will wait before berthing

and may even experience completion time delay past their due times. We report the

average RUmax and RUavg for the instances in each set of problems in Table 1. For

sets of instances with higher values of these statistics, we expect the problems to be

more difficult to solve.

The parameter values for each layer of the nested tabu search were determined by

experimentation, and are presented in Table 2 for both the single-start (TS) and the

multi-start (mTS) versions. Note that the parameters controlling the outer search

neighborhood NL(p, r, q,L) indicate that each of q = 5 randomly-selected vessels

will be swapped in the list with p = 5 nearby vessels in each iteration, but the TS

neighborhood with r = 10 results in more search diversification than the mTS neigh-

borhood which only considers the 5 nearest neighbors. Similarly, the outer search

tabu duration parameters lead to longer tabu durations for TS, also increasing di-

versification. In the inner layer, the same parameter values are used for both versions.

Table 2: Tabu search parameters used for BAP computational experiments
Parameter TS mTS

R - 10
p 5 5
r 10 5
q 5 5

tM1 50n 5n
θmin
1 n/2 n/4

θmax
1 n n/2
s max{2, |V |/3} max{2, |V |/3}

tM2 n/2 n/2
θmin
2 2 2

θmax
2 5 5

43

Instances will be numbered in the tables using two digit numbers xy, where x

corresponds to the set and y indicates the individual instance number. The cost of

the initial solution for each of the test instances, and the initial list used to construct

it, can be found in Table 3 and 4.

Table 3: Test results for small BAP instances
Instance IS List IS LBLP LBP LBMIP UBMIP TS mTS Imp. (%)

10 EDD 108 45 67 90 90 90 90 100
11 EDD 62 41 49 54 54 54 54 100
12 FCFS 200 46 110 159 159 159 159 100
13 EDD 96 44 53 74 74 74 74 100
14 FCFS 59 40 45 54 54 54 54 100
15 mEDD 105 46 61 81 81 81 81 100
16 EDD 71 40 47 60 60 60 60 100
17 EDD 139 51 108 138 138 138 138 100
18 mEDD 197 49 89 131 131 131 131 100
19 EDD 123 45 69 115 115 115 115 100
20 mEDD 173 54 87 131 131 131 131 100
21 mEDD 240 50 103 118 170 170 170 57
22 mEDD 166 53 85 123 123 123 123 100
23 FCFS 193 54 84 124 124 124 124 100
24 EDD 93 47 66 79 79 79 79 100
25 FCFS 144 55 84 121 121 121 121 100
26 FCFS 155 58 93 120 120 120 120 100
27 FCFS 275 56 107 164 164 164 164 100
28 EDD 137 57 91 117 117 117 117 100
29 FCFS 160 52 82 119 119 119 119 100
30 mEDD 295 60 112 108 156 156 156 76
31 FCFS 359 61 194 157 249 247 247 68
32 FCFS 206 61 95 133 133 133 133 100
33 mEDD 410 61 190 136 254 250 250 73
34 FCFS 252 62 115 87 170 166 166 63
35 FCFS 410 52 150 126 219 213 213 76
36 EDD 198 59 101 100 142 142 142 58
37 FCFS 185 60 93 130 130 130 130 100
38 mEDD 446 65 234 141 334 332 332 54
39 EDD 529 65 253 142 352 329 329 72

Table 3 and Table 4 also present the two polynomially-computable lower bounds,

LBLP and LBP . Theorem 4 proves that LBP ≥ LBLP , and the empirical results

show that LBP generally improves LBLP substantially. LBP is on average 54%, 64%,

and 152% higher the LBLP for small instances (1y, 2y, and 3y) respectively. For

large instances (4y, 5y, and 6y), the average improvement is 14%, 44%, and 115%

respectively.

44

The RPF was applied to all of the instances in sets 1, 2, and 3 using CPLEX

with default parameters on an Intel 2.4 GHz Pentium processor running Linux with

2 GB memory. CPLEX solved optimally all instances in set 1 in an average of 77

seconds, and 9 out of 10 instances in set 2 in an average of 1.7 hours. However,

only 2 of the instances in set 3 could be solved optimally, and the average run time

for these instances was approximately 4 hours. For unsolved instances, CPLEX ran

for approximately 13 hours on average before stopping due to insufficient memory.

The best lower bound (LBMIP) and the objective function value for the best integer

solution found (UBMIP) by the MIP for problems in sets 1, 2, and 3 are also presented

in Table 3.

The objective function values for the solutions found by TS and mTS are also

presented in Table 3 and Table 4. Note that for the small instances in Table 3, TS and

mTS always found berth schedules with the same cost. Furthermore, they always

found the optimal solutions for instances where the optimal solution was obtained

by MIP. For the remaining 9 instances where optimality cannot be proved, the al-

gorithms found a better solution than the MIP in 6 instances, and found an equal

cost solution for the remaining 3 instances. The last column in Table 3 measures

the percentage improvement (reduction) in the optimality gap computed between the

best lower bound (maximum of LBP and LBMIP) and the initial solution versus the

gap computed for the tabu search solution. Note that LBP provides better bounds

for problems that cannot be solved optimally for all problems in set 3. It appears,

therefore, that as problems size increase, the lower bounding method described in

Section 2.3 becomes quite valuable. For cases where the optimal solution is found,

the gap improvement percentage is 100%, which indicates that the gap is completely

removed. The average gap improvement generated by the tabu search is 91% over all

instances in sets 1, 2, and 3, and 69% for the ones not solved to provable optimality

by CPLEX. Recall that the initial solution is the best found by simple, practical

45

scheduling rules.

Table 4: Test results for large BAP instances
Instance IS List IS LBLP LBP TS mTS TS Imp. (%) mTS Imp. (%)

40 FCFS 157 82 102 112 110 82 85
41 EDD 199 92 108 124 121 82 86
42 EDD 168 87 112 134 134 61 61
43 EDD 129 87 102 119 119 37 37
44 FCFS 77 70 71 76 76 17 17
45 EDD 149 91 97 111 111 73 73
46 FCFS 197 90 106 132 132 71 71
47 FCFS 185 93 106 129 129 71 71
48 FCFS 103 89 90 96 96 54 54
49 FCFS 150 86 93 112 112 67 67
50 FCFS 455 119 200 248 245 81 82
51 EDD 143 93 95 112 112 65 65
52 FCFS 427 108 175 226 224 80 81
53 EDD 338 116 156 184 184 85 85
54 mEDD 543 114 280 366 366 67 67
55 FCFS 254 114 145 173 172 74 75
56 FCFS 221 116 135 153 153 79 79
57 EDD 88 78 80 82 82 75 75
58 FCFS 293 116 148 175 175 81 81
59 mEDD 358 115 171 223 223 72 72
60 EDD 523 123 256 331 333 72 71
61 EDD 771 134 377 470 470 76 76
62 mEDD 1262 149 715 866 859 72 74
63 FCFS 630 139 288 413 408 63 65
64 EDD 466 126 198 228 225 89 90
65 FCFS 539 126 245 336 336 69 69
66 mEDD 673 145 278 392 392 71 71
67 FCFS 579 144 260 370 370 66 66
68 EDD 250 128 146 174 174 73 73
69 FCFS 304 123 161 208 206 67 69

Test results for the larger instances in sets 4, 5, and 6 are presented in Table 4.

TS and mTS found a solution with the same cost for 20 of these instances. For 9

of the remaining, mTS found a better solution, and for only one instance the berth

schedule found by TS had a lower cost. Since these instances are too large to run

on CPLEX, only LBP is presented, and is used to calculate gaps. For all instances,

significant gap improvements were generated by the tabu search heuristics. The

average improvement was calculated as 70%, similar to the same statistic for small

instances not solved to provable optimality by CPLEX. Furthermore, the amount of

improvement seems fairly consistent from the set 4 instances to the set 6 instances.

46

Average improvement is 62%, 76%, and 72% for sets 4,5, and 6, respectively for both

TS and mTS. This indicates that the performance of the tabu search algorithms

proposed do not appear to decline as problem size increases.

Table 5: Average computational times (in sec.) for test BAP instances
Set n MIP Best TS Total TS Best mTS Total mTS
1x 10 77 <1 2 1 2
2x 12 10235 <1 4 1 3
3x 14 40472 1 6 1 4
4x 20 - 3 16 6 13
5x 25 - 14 37 12 35
6x 30 - 56 105 39 99

Finally, Table 5 presents the computational times in seconds observed during

tests. With the parameters used, it appears that mTS finds slightly better solutions

in slightly less amount of total run time compared to TS. For instances with 10

to 14 vessels, optimal solutions are generated within 1 second while it takes hours

with the MIP. Best solutions for large problems with 30 vessels are found within 1

minute. We also observe an exponential increase in average run time as the problem

size increases. This is a direct result of the nested approach. However, we believe

that the largest problems solved in these test instances represent the largest problems

that might need to be solved in practice, and are likely to actually be more difficult.

47

CHAPTER III

THE MULTIPLE BERTH ALLOCATION PROBLEM

3.1 Introduction

In many terminals, there may exist more than one continuous linear berth structure

with the capability to handle multiple vessels of different sizes simultaneously. If

a terminal has such a berth structure and if some of the vessels calling can dock

any one of these berths, then the multiple berth allocation problem arises. This

problem arises, for example, in terminals with a long berthing area divided into two

or more sections because of kinks or physical obstacles which restrict quay crane or

yard operations. As in the BAP, we assume that each vessel requires a predetermined

time for unloading and loading of containers. However, these processing times may

depend on the berth selected due to the variation in the speed of equipment used at

each berth and the distance to the yard stack. The MBAP is defined as the problem

of assigning vessels to berths and determining the berthing position and time within

the assigned berth to optimize some performance metric. Both dynamic and static

variants of the MBAP can be defined depending on the presence of vessels at the time

of decision making. In this chapter, we study the dynamic variant of MBAP where

arrival of vessels at different times during the planning horizon is allowed.

It is easy to see that the MBAP is an NP -hard problem, since the BAP is already

NP -hard. To the best of our knowledge, no other study on the MBAP exists in the

literature even though it is a direct extension of the BAP.

48

3.2 Problem Formulation

In the MBAP, we consider a number of berths and a set of container vessels that need

to be moored at one of these berths. Berth set is denoted by M where m = |M|
and V represents the vessel set where n = |V| is the total number of vessels. We

discretize berth q into Bq equal size sections. Section sizes are equal for all berths.

Hence, the length of a berth can be represented by the number of sections it has. We

also discretize time and assume an infinite planning horizon. For each vessel k ∈ V ,

we define:

hk: length of vessel k measured in number of required berth sections,

pq
k: processing time of vessel k at berth q,

p∗k: minimum processing time required by vessel k (p∗k = minq{pq
k}),

ak: arrival time of vessel k,

dk: due time of vessel k (dk ≥ ak + p∗k),

fk: lateness penalty for vessel k,

qk: berth number that vessel k is assigned,

bk: berthing position of vessel k,

tk: berthing time of vessel k,

ck: the earliest time that vessel k can depart.

Similar to the BAP, a feasible solution for the MBAP can be represented by a

set of time-space diagrams, one for each berth, where each horizontal axis measures

time and each vertical axis represents berth sections. In such a representation, a

vessel can be represented by a rectangle on one of the diagrams whose length is

its processing time depending on berth assignment and height is its length. Given

known {hk, p
1
k, ..., p

m
k , ak, dk, fk}, the optimization problem is then to determine berth

assignment qk, berthing position bk and berthing time period tk for each vessel k. If

we say vessel k is berthed at section bk of berth qk at time tk, we mean berth sections

49

[bk, bk + hk − 1] of berth qk are occupied by vessel k for time periods [tk, tk + pqk

k − 1].

This also means that once a vessel is moored, its berth and position cannot be changed

during service, and no preemption is allowed.

We use the same objective function as in the BAP introduced before, which to

minimize
∑

k∈N(ck−ak)+
∑

k∈N fk(ck−dk)
+. Then, the PAF and the RPF constructed

for the BAP can be modified for the MBAP as described in the following sections.

3.2.1 Position Assignment Formulation

In the PAF formulation of the MBAP, the following binary variables are used:

δk
qlt =





1 if vessel k berths at location (berth section) l of berth q at time t,

0 otherwise;

σk
qxy =





1 if vessel k covers block (x, y) of berth q,

0 otherwise.

Then, the PAF for the MBAP can be written as:

Minimize
n∑

k=1

(ck − ak) +
n∑

k=1

fk(ck − dk)
+ (27)

50

subject to

m∑
q=1

Bq−hk+1∑

l=1

T−pq
k+1∑

t=1

δk
qlt = 1 ∀k (28)

t+pq
k−1∑

x=t

l+hk−1∑

y=l

σk
qxy − pq

khk − (δk
qlt − 1)M ≥ 0 ∀k, q, l, t ≥ ak (29)

n∑

k=1

σk
qxy ≤ 1 ∀q, x, y (30)

m∑
q=1

B−hk+1∑

l=1

T−pq
k+1∑

t=ak

(t + pq
k)δ

k
qlt ≤ ck ∀k (31)

δk
qlt ∈ {0, 1} ∀k, q, l, t (32)

σk
qxy ∈ {0, 1} ∀k, q, x, y (33)

Note that the PAF for the MBAP defines blocks for each berth separately. Namely,

we construct block (q, x, y) for each berth q, time period x and berth section y, and

prevent mooring vessels in multiple berths using the summation limits in Constraint

(28) and adjacency restriction imposed by Constraint (29).

3.2.2 Relative Position Formulation

In addition to the binary variables used in the RPF of the BAP to prevent vessel

overlapping, the following variable set is defined for the MBAP to keep track of berth

assignments:

wq
k =





1 if vessel k moors at berth q,

0 otherwise.

Then, the problem can be formulated as follows:

Minimize
n∑

k=1

(ck − ak) +
n∑

k=1

fk(ck − dk)
+ (34)

51

subject to

x`k + xk` + y`k + yk` ≥ wq
k + wq

` − 1 ∀k, l, q where k < ` (35)
m∑

q=1

wq
k = 1 ∀k (36)

t` ≥ ck + (xk` − 1)M ∀k, ` where k 6= ` (37)

b` ≥ bk + hk + (yk` − 1)M ∀k, ` where k 6= ` (38)

tk ≥ ak ∀k (39)

ck ≥ tk +
m∑

q=1

pq
kw

q
k ∀k (40)

bk ≤
m∑

q=1

Bqw
q
k − hk + 1 ∀k (41)

bk ≥ 1 ∀k (42)

x`k ∈ {0, 1}, y`k ∈ {0, 1} ∀k, ` where k 6= ` (43)

wi
k ∈ {0, 1} ∀k, i (44)

Constraint (35) says that vessel rectangles cannot overlap if corresponding vessels

are assigned to the same berth. Constraint (36) ensures that each vessel should be

assigned to a berth. In Constraint (40), the expression
∑m

q=1 pq
kw

q
k defines the duration

of stay for vessel k depending on berth assignment. Similarly, in Constraint (41), the

expression
∑m

q=1 Bqw
q
k gives the length of the berth that vessel k is assigned. With the

help of these expressions, Constraints (37) - (42) work in the same way as Constraints

(12) - (17) do in the RPF of BAP.

3.3 Lower Bound Analysis

In this section we introduce a polynomially-computable lower bound for the objective

function value of the dynamic MBAP using a similar argument introduced for the

BAP lower bound.

For any instance of the MBAP, we construct a weighted bipartite matching prob-

lem PM on a bipartite graph G = (N1 ∪ N2, E). For each vessel k, we create p∗k × hk

52

nodes in N1. We use a two dimensional index (i, j) for each of these nodes defined for

vessel k, where i refers to the spatial position and j the time position. Hence, each

node in N1 is represented by a triplet (k, i, j). Similarly, we define a unique node

in N2 for each (berth section, time period) pair of each berth. Hence, each node in

N2 is represented by a triplet (q, b, t) where q,b, and t are the corresponding berth,

berth section, and time period respectively. For each node (k, i, j) in N1, we define

parameters rk
ij, dk

ij, αk
ij, and βk

ij as follows.

rk
ij = ak + j − 1

dk
ij = dk − p∗k + j

αk
ij = 1

p∗khk

βk
ij = fk

p∗khk

We construct the edge set E by creating an edge between node (k, i, j) in N1 and

node (q, b, t) in N2 if rk
ij ≤ t and i ≤ b ≤ Bq − hk + i. For each edge {(k, i, j), (q, b, t)}

created, we assign a weight c{(k,i,j),(q,b,t)} defined as follows.

c{(k,i,j),(q,b,t)} = αk
ij(t + 1 + pq

k − p∗k) + βk
ij(t + 1 + pq

k − p∗k − dk
ij)

+

We know that the minimum weight bipartite matching problem can be solved in

polynomial time. Thus, PM can be solved in polynomial time.

Theorem 5 LBPM
= dC∗

PM
+ Φ−Ψe is a lower bound for MBAP where C∗

PM
is the

optimum objective function value of PM constructed for MBAP, Φ =
∑n

k=1(p
∗
k−1)/2,

and Ψ =
∑n

k=1 ak.

Proof. Let qk
ij,b

k
ij, and tkij denote respectively the q,b, and t values of node (q, b, t)

that corresponding (k, i, j) node is matched in PM . First, it is easy to see that any

feasible solution of MBAP yields a feasible solution for the corresponding PM . In

53

such a solution, for each node (k, i, j) defined for vessel k, qk
ij = qk, bk

ij = bk + i − 1,

and tkij = tk + j − 1 hold. Furthermore ck = tk + pqk

k is true for each vessel. Then the

corresponding PM solution has the objective function value:

CPM
=

n∑

k=1

hk∑
i=1

p∗k∑
j=1

(
αk

ij(t
k
ij + 1 + pqk

k − p∗k) + βk
ij(t

k
ij + 1 + pqk

k − p∗k − dk
ij)

+)
(45)

Using a little algebra, the first part of the objective function can be rewritten as

∑n
k=1

∑hk

i=1

∑p∗k
j=1 αk

ij(t
k
ij + 1 + pqk

k − p∗k) =

=
∑n

k=1

∑hk

i=1

∑p∗k
j=1

1
p∗khk

(tk + j − 1 + 1 + pqk

k − p∗k) =

=
∑n

k=1

∑hk

i=1

∑p∗k
j=1

1
p∗khk

(ck − (p∗k − j)) =
∑n

k=1(ck −
∑p∗k

j=1
(p∗k−j)

p∗k
) =

=
∑n

k=1(ck −
∑p∗k−1

j=1
(j)
p∗k

) =
∑n

k=1(ck − (p∗k−1)p∗k
2p∗k

) =
∑n

k=1 ck −
∑n

k=1
(p∗k−1)

2

Similarly, the second part of the objective function can be rearranged as

∑n
k=1

∑hk

i=1

∑p∗k
j=1 βk

ij(t
k
ij + 1 + pqk

k − p∗k − dk
ij)

+ =

=
∑n

k=1

∑hk

i=1

∑p∗k
j=1

fk

p∗khk
(tk + j − 1 + 1 + pqk

k − p∗k − dk + p∗k − j)+ =

=
∑n

k=1

∑hk

i=1

∑p∗k
j=1

fk

p∗khk
(tk + pqk

k − dk)
+ =

∑n
k=1 fk(ck − dk)

+

which yields

CPM
=

n∑

k=1

ck −
n∑

k=1

(p∗k − 1)

2
+

n∑

k=1

fk(ck − dk)
+ (46)

because CP ∗M ≤ CPM
,

CP ∗M +
n∑

k=1

p∗k − 1

2
−

n∑

k=1

ak ≤
n∑

k=1

(ck − ak) +
n∑

k=1

fk(ck − dk)
+ (47)

54

With parameters being all integer, the right hand side of expression (47), which

is the objective function of MBAP, is integer. Hence, LBPM
= dCP ∗M + Φ − Ψe is a

lower bound for MBAP. 2

Theorem 6 LBPM
≥ LBLP where LBLP denotes the objective function value of the

optimal solution to the LP relaxation of the RPF.

Proof. In a feasible solution to the LP relaxation, it is easy to see that wqk

k = 1

for qk = {q|p∗k = pq
k} can be chosen and berthing times and positions can be set

in such a way that any vessel rectangles may overlap one another. Hence, in any

optimal solution,
∑m

q=1 pq
kw

q
k = p∗k and ck = ak + p∗k hold ∀k ∈ N . Because we assume

dk ≥ ak + p∗k,

LBLP =
n∑

k=1

(ck − ak) =
n∑

k=1

p∗k (48)

In any feasible PM solution, tkij ≥ rk
ij and rk

ij = ak + j − 1 for each (k, i, j) triplet.

Then,

C∗
P ≥

n∑

k=1

hk∑
i=1

p∗k∑
j=1

αk
ij(t

k
ij + 1) ≥

n∑

k=1

p∗k∑
j=1

(ak + j)

p∗k
(49)

which, by Theorem 5, implies,

LBPM
≥

⌈ n∑

k=1

p∗k∑
j=1

ak + j

p∗k
+

n∑

k=1

p∗k − 1

2
−

n∑

k=1

ak

⌉
. (50)

Rearranging terms then yields the result:

LBPM
≥

⌈ n∑

k=1

p∗k + 1 + p∗k − 1

2

⌉
=

n∑

k=1

p∗k = LBLP (51)

55

2

3.4 Solution Method

In this section, we present how the nested tabu search algorithm designed for the

BAP can be modified to solve the MBAP efficiently. The presence of multiple berths

changes the way we encode a feasible solution and also changes the neighborhood

structure used in TS1 designed for the BAP.

3.4.1 Encoding and Decoding a Solution

We use a vector of size n, B, and a set of lists containing a total of n elements to encode

a feasible solution. Entries of B are the berth positions of vessels. L = {L1, ...,Lm}
is a collection of vessel priority lists defined for each berth. The nq entries of the

ordered list Lq are vessel indices, and the order determines berthing priority for berth

q. Here, nq denotes the number of vessels assigned to berth q, and
∑m

q=1 nq = n.

Any B and L pair defines a unique feasible berth schedule x as follows: for each

berth q, beginning with the first vessel in Lq, berth each vessel k at the berthing

position given in B at the later of ak or the earliest time that the berthing time-space

rectangle to be occupied by k is not occupied by any earlier berthed vessel. With

appropriate data structures, this decoding operates in O(n) time. To encode a berth

schedule x, the vessel berth positions uniquely define B, and we use the primal list,

LP
q (x), constructed for each berth q as described in the previous chapter. With such

an encoding note that the schedule for each berth can be decoded independent of

each other.

3.4.2 Initial Solution

An initial berth schedule, x0, can be generated by using a single aggregate vessel list

LA and placing each vessel in the list one by one on the berth which results in the

56

minimum completion time for the vessel considered; note that the berthing position

for each vessel that minimizes the completion time on a given berth mimics the two-

dimensional first-fit rule used in the prior chapter for assigning berth positions in

the case of a single berth. The minimum cost solution provided by the lists LFCFS,

LEDD, and LmEDD is chosen. This greedy procedure provides a feasible packed berth

schedule which mimics decision rules-of-thumb that a terminal operator might use,

and can be used as an initial solution.

3.4.3 Fundamentals of the Nested Tabu Search

For a given L and B, and their corresponding berth schedule x, a neighboring solution

can be defined by some change to B, or to L, or both. The nested approach described

in the previous chapter is utilized. It explores changes to B given a fixed LP (x) =

{LP
1 (x), ...,LP

m(x)} as an inner search TS2, while an outer search TS1 explores changes

to L.

At each iteration of TS1, we modify the current L using swap and insertion moves

within a randomized neighborhood. We define the (p, r, q) randomized neighborhood

of list sets NL(p, r, q,L) as follows. We first select q vessels randomly. Then, for each

vessel k selected, we generate a candidate vessel set Ck which includes all vessels that

are berthed at time periods between tk − r and ck + r in the corresponding berth

schedule x, which is generated by the FF decoding each berth vessel priority list

Lq ∈ L. We consider a random subset Ĉk ⊆ Ck where |Ĉk| = r. For each ` ∈ Ĉk, if

qk = q` in berth schedule x, we create a move by swapping the positions of k and ` in

Lqk
. Otherwise, if qk 6= q`, we create both a swap move which places vessel k in Lq`

at the position of vessel ` and places vessel ` in Lqk
at the position of vessel k, and

also an insertion move which removes vessel k from Lqk
, and places it after vessel `

in Lq`
.

Entries of B that correspond to vessels in each list Lq which is modified by a

57

candidate move are updated using the FF rule. The resulting B and L correspond

to berth schedule x with marks Mq(x) and primal lists LP
q (x) for each berth q. Each

non-tabu candidate move is considered in sequence, where a tabu move is one whose

mark vector M(x) = {M1(x), ..., Mm(x)} is currently in the tabu list. If the mark

M(x) has not yet been considered during the current TS1 iteration, we initiate the

inner search TS2 with x as the initial solution.

TS2 is only run for berth q if the upper layer move changes Lq. The details

of the inner search is exactly the same as described for the BAP in the previous

chapter. At the completion of the TS2 runs for the berths specified, a best (lowest

objective function value) berth position vector and corresponding best solution is

identified for the current candidate move of TS1. After all candidate TS1 moves have

been evaluated for the current iteration, the best move is selected as the new current

solution x, with its corresponding B and L. The mark vector M(x) of this solution

is placed into the TS1 tabu list for a random number of iterations Θ1, where Θ1 is

discrete uniform on [Θmin
1 , Θmax

1]. Furthermore, if the move selected changes the berth

assignment of some vessels, assigning these vessels back to their previous berths is

defined tabu for Υ1 iterations where Υ1 is discrete uniform on [Υmin
1 , Υmax

1].

Similar to the BAP, a multi-start variant of the nested tabu search algorithm can

be utilized for the MBAP with initial solutions found as described in the previous

chapter.

3.5 Computational Experiments

Computational experiments on randomly generated test instances were conducted

to evaluate the performance of the nested tabu search algorithm designed for the

MBAP. Nine sets of test instances were used, each containing 5 different randomly

generated instances. The first four of these sets include relatively small problem

instances for a terminal with m = 2, B1 = 9, and B2 = 6. They have 10, 12, 14, and

58

16 vessels respectively. For these instance sets, we assume ak ∼ UD[1, 10] for vessel

k, where ∼ UD[a, b] represents a randomly generated integer between a and b. The

remaining five sets represent larger instances with respectively 30, 35, 40, 45, and 50

vessels visiting a terminal with m = 4, B1 = 20, B2 = 15, B3 = 10, and B4 = 6.

ak ∼ UD[1, 15] for vessels in these instances. Note that these terminals get busier

from set 1 to set 4, and set 5 to set 9. For all instances, hk ∼ UD[2, 6], and each

instance has at least one vessel of each size. For vessel k with length hk, we generate

hk integers p1
k, ..., p

hk
k randomly where pi

k ∼ UD[1, 4] for hk = 2, pi
k ∼ UD[1, 5] for

hk ∈ {3, 4}, and pi
k ∼ UD[1, 6] for hk ∈ {5, 6}. We set pk = maxi{pi

k}. Then, we

select one of the berths randomly for each vessel and declare it as the vessel’s favorite

berth q∗k where p
q∗k
k = pk. For any other berth q 6= q∗k we set pq

k = bLpkc where

L ∼ UD[1.25, 1.75] for each vessel k. Finally, for all vessels, dk = ak + Kp
q∗k
k where

K ∼ UD[1, 3], and fk ∼ UD[3, 5].

Table 6: Statistics for the small MBAP instances
Set m B1 B2 n RUmax RUavg

1 2 9 6 10 1.950 1.079
2 2 9 6 12 2.392 1.294
3 2 9 6 14 2.493 1.410
4 2 9 6 16 2.492 1.479

Similar to the computational experiments in Chapter 2, we use the term required

utilization (RU) to measure the congestion at the terminal for a given problem in-

stance. RU q
t denotes the ratio of berth q sections required to berth q sections available

at time t to moor arriving vessels having berth q as their favorite berth exactly at

their arrival times. RUmax and RUavg are computed over all berths and reported in

Table 6 and Table 7 along with the size of the instances for small and large instance

sets respectively.

Instances are numbered in the tables using two digit numbers xy, where x corre-

sponds to the set and y indicates the individual instance number.

Table 8 summarizes the tabu search parameters used for both single-start (TS)

59

Table 7: Statistics for the large MBAP instances
Set m B1 B2 B3 B4 n RUmax RUavg

5 4 20 15 10 6 30 1.541 0.748
6 4 20 15 10 6 35 1.671 0.860
7 4 20 15 10 6 40 1.949 1.011
8 4 20 15 10 6 45 2.031 1.080
9 4 20 15 10 6 50 2.592 1.318

and multi-start (mTS) versions.

Table 8: The MBAP tabu search parameters used in the computational experiments
Parameter TS MTS

R - max{10, n/2}
p 5 5
r 10 5
q 5 5
t21 50n 5n

θmin
1 n/2 n/4

θmax
1 n n/2

Υmin
1 n/2 n/4

Υmax
1 n n/2
s max{2, |V |/3} max{2, |V |/3}
t22 n/2 n/2

θmin
2 2 2

θmax
2 5 5

The cost of the initial solution is provided in Table 9 and 10 for small and large

instances respectively. Table 9 and 10 also present the two polynomially computable

lower bounds LBLP and LBPM
. Theorem 6 proves that LBPM

≥ LBLP , and empir-

ical results show that LBPM
improves LBLP by 20%, 45%, 58%, and 68% for small

instances 1y, 2y, 3y, and 4y) respectively. The improvement is observed as 11%, 15%,

20%, 31%, and 55% for large instances 5y, 6y, 7y, 8y, and 9y respectively.

The mixed integer program presented above was applied on small instances using

CPLEX on an Intel 2.4 GHz Pentium processor running Linux with 2GB memory.

We let CPLEX run for at most 2 hours, and it was able to solve all 5 instances in

sets 1 and 2, and 3 out of 5 instances in set 3 optimally. None of the set 4 instances

could be solved optimally within two hours. The lower bound (LBMIP) and the best

60

Table 9: Test results for small MBAP instances
Instance IS LBLP LBPM

LBMIP UBMIP TS mTS Imp. (%)
10 81 43 48 59 59 59 59 100
11 81 47 55 70 70 70 70 100
12 108 49 59 85 85 85 85 100
13 79 40 55 71 71 71 71 100
14 107 45 50 63 63 63 63 100
20 191 60 89 127 127 127 127 100
21 160 56 90 141 141 141 141 100
22 97 50 64 83 83 83 83 100
23 132 51 70 100 100 100 100 100
24 124 52 77 90 90 90 90 100
30 272 67 123 166 230 230 230 40
31 289 65 113 168 168 168 168 100
32 104 57 74 91 91 91 91 100
33 200 64 103 146 150 150 150 93
34 157 64 90 117 117 117 117 100
40 334 72 121 134 163 154 154 90
41 339 74 128 192 217 217 217 83
42 150 67 89 102 114 114 114 75
43 165 67 105 115 151 145 145 40
44 427 72 149 195 321 318 318 47

integer solution found (UBMIP) are provided in Table 9.

Best solutions found by TS and mTS are presented in Table 9 and 10. Note that

for small instances presented in Table 9, TS and mTS provide berth schedules with

the same cost. Furthermore, they found the optimal solutions for instances where the

optimal solution was obtained by MIP. For the remaining 7 instances where optimality

was not proved, when compared to MIP solution, our algorithms found an equivalent

solution in 4 cases, and came up with better solutions for the rest. The last column

in Table 9 presents the improvement in optimality gap obtained by the tabu search

algorithms over the initial solution. Here, LBMIP is used to compute gaps. For

cases where the optimality is proved, the gap is reported as 100%, which means the

gap is completely removed. The average gap improvement realized over the initial

solution by tabu search is 88% over all small instances, and 67% for the ones where

the optimality could not be proved.

Table 10 presents the results for large instances. TS and mTS found equivalent

solutions for all set 5 and 3 of set 6 instances. For the rest, mTS found better solutions

61

Table 10: Test results for large MBAP instances
Instance IS LBLP LBPM

TS mTS TS Imp (%) mTS Imp (%)
50 165 136 147 154 154 61 61
51 212 144 158 178 178 63 63
52 169 132 143 156 156 50 50
53 208 146 163 180 180 62 62
54 229 141 165 191 191 59 59
60 269 164 186 225 225 53 53
61 219 158 171 192 192 56 56
62 396 180 228 281 280 68 69
63 368 174 197 250 248 69 70
64 261 160 182 213 213 61 61
70 285 170 186 215 213 71 73
71 394 192 277 328 321 56 62
72 457 184 221 275 273 77 78
73 361 188 216 258 255 71 73
74 227 164 177 200 199 54 56
80 552 223 316 410 399 60 65
81 388 195 228 281 274 67 71
82 488 205 246 303 296 76 79
83 483 206 265 310 305 79 82
84 697 227 329 444 437 69 71
90 656 235 328 415 413 73 74
91 1775 268 575 995 993 65 65
92 835 237 324 420 419 81 81
93 706 230 338 438 420 73 78
94 674 228 305 385 381 78 79

compared to TS. Since these instances are too large to run on CPLEX, LBPM
is used

to calculate gaps. The average gap improvement is 66% for TS, and 68% for mTS.

Furthermore, the amount of improvement seems consistently to increase as we go from

set 5 instances to set 9 instances for both tabu search versions. They are computed

as 59%, 61%, 66%, 70%, and 74% on average for TS, and 59%, 62%, 68%, 74%, and

76% on average for mTS for instances in sets 5, 6, 7, 8, and 9 respectively.

Table 11 presents computational times in seconds observed during tests. With the

parameters used, it appears that for large instances the single-start tabu search TS

finds slightly worse solutions than the multiple-start mTS, but finds these solutions

slightly faster. For small instances, optimal solutions are generated by both methods

under 10 seconds where MIP may spend hours. The largest instance takes less than

12 minutes to solve by the tabu search algorithms proposed.

62

Table 11: Average computational times for test MBAP instances
Set MIP TS mTS
1x 5 3 4
2x 50 5 7
3x 4328 7 8
4x 7858 10 12
5x - 79 106
6x - 142 189
7x - 240 318
8x - 235 498
9x - 485 693

63

CHAPTER IV

THE QUAY CRANE SCHEDULING PROBLEM

4.1 Introduction

Quay cranes are very important resources at container terminals. They are used to

load containers onto and discharge containers from vessels at the quayside of termi-

nals. Quay cranes along the same berth are mounted and operate on a common set of

rails. This prevents quay cranes from passing each other at any time. In this chapter,

we focus on the problem of scheduling quay cranes at container terminals for a given

berth schedule, namely the Quay Crane Scheduling Problem (QCSP).

The problem of scheduling quay cranes has been studied before in many different

settings. Reference [16] considers both the static problem of assigning cranes to a set

of vessels present at port at the time of decision making to minimize total weighted

vessel completion time, as well as a dynamic extension in which vessels arrive over

time. Each vessel consists of a number of holds where each hold can be processed by

only one crane at a time; this model captures the distribution of unloading/loading

work along the length of each vessel and properly accounts for the physical space

occupied by cranes. However, the length of the berth is not modeled, and thus it is

assumed that the berth is long enough to handle all vessels simultaneously. Further-

more, the paper also assumes that cranes can pass each other. The paper develops

a mixed integer program for the static problem, and provides scheduling principles

that are then used to produce heuristic solutions to both the static and dynamic

problems. Researchers also study the static quay crane scheduling problem with no

berth length limitation in [59]. The developed model uses an objective of minimiz-

ing weighted tardiness, and is solved via a branch and bound method. Instead of

64

considering individual vessel data, an aggregate study using probability distributions

describing vessel arrivals and workloads is performed in [17] to analyze the effect

of quay crane allocation strategies on long-run maximum terminal throughput and

average vessel delay.

A branch and bound algorithm and a greedy randomized adaptive search pro-

cedure (GRASP) is proposed in [33] to solve a quay crane scheduling and load se-

quencing problem restricted to a single vessel. Compared to the approach in [59],

the proposed model captures more details like individual locations of containers to be

moved onto or off the vessel and properly restricts cranes so that they may not pass

each other during operation, which we denote as non-crossing constraints. The objec-

tive used is to minimize a weighted sum of the makespan of the vessel and the total

completion time of all quay cranes. The computational complexity of the problem is

not discussed.

Quay crane scheduling with non-crossing constraints is also the focus of [43] and

[75] (see also [41], [42] and [74]). In [43], the problem is modeled as a maximum weight

bipartite graph matching problem. Jobs represent container unloading/loading work,

and arise at specific locations along the quayside. The collection of jobs may repre-

sent work for a single ship, or multiple ships. Vertices define jobs and cranes, and

the container throughput realized when a crane is assigned to a job is assigned to

be the weight of each connecting edge. Since spatial constraints that restrict cranes

passing each other and prevent job processing due to the physical size of cranes com-

plicate the matching problem, the paper develops a dynamic programming algorithm

to solve problems with such constraints. Furthermore, the model is enhanced to

consider more complex spatial constraints that they call job separation constrains

which limits processing of certain jobs simultaneously. The enhanced model is an

NP -hard optimization problem, and the authors propose solution via a probabilistic

tabu search and a squeaky wheel optimization with local search. Since real-world

65

terminals focus on completing all vessel unloading/loading jobs as earlier as possible,

this model is enhanced in [75] to consider the real-world practice of attempting to

minimize the completion time of the latest job.

There are several other recent studies on quay crane scheduling also applicable to

single vessel case. Among these, a heuristic is proposed in [53] to solve the scheduling

problem of identical quay cranes moving on a linear rail. The approach attempts to

minimize a given ship’s stay time in port by finding an appropriate work schedule

for each quay crane. Only one crane can operate on individual ship bay at a single

time. The problem is formulated using an integer programming model, and the model

is decomposed by partitioning the ship into non-overlapping zones. The authors of

[48] formulate the quay crane problem as a VRP with side constraints including

precedence relationships between vertices. Their formulation strengthens the model

given in [33]. The objective is to minimize the weighted sum of the completion

time of a single vessel and the idle times of cranes which originate from interferences

between cranes since cranes roll on the same rails and a minimum safety distance

must be maintained between them. In [37], the quay scheduling with non-interference

constraints is studied. The study is motivated by the problems studied in [33]. The

objective is the minimization of the makespan for a single container vessel, and the

paper develops a genetic algorithm approach that obtains near optimal solutions for

the proposed MIP model.

Quay crane scheduling for a given berth schedule is first mentioned in [44]. The

objective of the problem considered in that reference is to minimize the maximum

relative tardiness of vessel departures. The authors propose a heuristic decomposition

into a vessel level model and a berth level model. The vessel level model provides

the optimal processing time for any given number of quay cranes assigned to each

individual vessel. The berth level model considers the entire set of vessels. Quay

cranes are assigned among the vessels using the results from the given berth allocation

66

and from the vessel level model. Since a quay crane assigned to a vessel cannot be re-

deployed to another vessel until all cranes assigned to the first vessel have completed

their work, this model reduces to a simplified problem that we call dedicated crane

allocation in this thesis. In practice, better solutions can be found that do not impose

this restriction.

In this chapter, we focus on a quay crane scheduling problem (QCSP) defined for

a given berth schedule. A berth schedule provides berthing positions and berthing

priorities for a given set of vessels. Therefore, the crane scheduling problem variant

we study is defined for multiple vessels that are planned to dock at a berth over some

finite planning horizon. The primary contributions of this chapter include:

• The classification and analysis of different crane scheduling methods;

• The development of an effective tabu search algorithm designed for the most

realistic crane scheduling model that allows crane roaming and shifting; and

• The introduction of the crane assignment problem and a polynomial time method

for its solution.

The QCSP variants that we consider in this thesis use the output of the berth

allocation problem (BAP) as input. The result of BAP can be expressed on a time-

space diagram similar to that in Figure 7. In practice, many terminal operators use

a hierarchical approach for scheduling berths and quay cranes. They first determine

a good berth schedule using estimates on total processing (berthing) time for each

vessel by solving the BAP. The resultant berth schedule specifies the berthing position

and an estimated berthing time for vessels considered in the planning horizon. Once a

reasonable berth schedule is determined, port operators attempt to allocate available

quay cranes to vessels that are planned to berth simultaneously. Once cranes are

assigned, the actual berthing and completion times of vessels are determined with

more precision.

67

Because we consider a variant of the problem with multiple vessels, the number

of containers discharged from and loaded onto vessels is expected to be large. Since a

limited number of quay cranes can simultaneously work a ship due to the size of the

cranes and guidelines for safe crane separations, we develop a reasonable model of the

distribution of container unload/load workload along the length of each vessel. We

assume that each vessel is divided along its length into holds, where each hold can be

visualized as a number of container rows. We assume that the aggregate workload,

measured in units of processing time, of each hold can be reasonably estimated; for

example, this might be computed as the product of the number of containers to be

handled in the hold and the average processing time per container. The problem

setting we use is very similar to those used in [16] and [59]. In these studies, vessels

are also partitioned into holds to model the work distribution into account.

Defining holds as 3 or 4 container rows seems to be reasonable, given average

crane widths and guidelines for safe crane separation during operation. Note that

such a hold definition also allows us to measure the length of each vessel in terms of

the number of holds they have, and the berth length in terms of the total number of

holds it can accommodate. Of course, such a discretization is likely to be imperfect,

and may result in wasted berthing space and/or less-than-optimal crane utilization.

Furthermore, we recognize that we assume that cranes simultaneously processing

adjacent holds on single vessels may need to be scheduled carefully so that no safety

distances are compromised while they work on nearby container within their assigned

holds. We also assume that when work starts on a hold it continues until completion

without interruption, and a vessel can leave the port only after every hold on that

vessel is processed.

It is expected that the container processing time of a vessel decreases when more

quay cranes are assigned to it as long as there is no interference between the assigned

quay cranes and other relevant resources are allocated accordingly.

68

In our model, we discretize time and berth space. The number of containers in a

hold structure as we define it can be close to 1000 for modern mega-ships. Hence, the

processing time required for such a hold can be as large as a full day. Therefore, we

choose to discretize time using relatively larger time periods of 3 or 4 hours. Berth is

discretized into sections so that the length of each berth section is equal to the length

of a hold. We have Q identical quay cranes which operate on a single set of rails.

Vessel set is denoted by V where n = |V|. For each vessel k ∈ V , we define:

hk: number of holds of vessel k,

pi
k: processing time of hold i of vessel k,

pmax
k : maximum hold processing time for vessel k (pmax

k = maxi{pi
k}),

ak: arrival time of vessel k,

dk: due time of vessel k (where dk ≥ ak + pmax
k),

fk: lateness penalty for vessel k,

bk: berthing position of vessel k,

tk: berthing time of vessel k,

ck: the earliest time that vessel k can depart.

Additionally, for each vessel k, we define a set, Ω(k), of vessels such that vessel

` is in Ω(k) if vessel ` is planned to dock after vessel k in the BAP and requires at

least one of the berth sections occupied by vessel k.

Given a known vector of arriving vessel information and berth allocation plan

represented together by {hk, p
1
k, ..., p

hk
k , ak, dk, fk, bk} for each vessel k, the optimiza-

tion problem is then to find actual berthing time period tk, and a crane alloca-

tion plan which specifies the duration of stay for vessel k and hence determines ck.

We consider the same objective function used in previous chapters. We minimize

∑
k∈N(ck − ak) +

∑
k∈N fk(ck − dk)

+ which is the sum (or average) of the dwell times

and the total penalty accrued due to tardy vessels.

69

4.2 Problem Types and Models

In this section we describe two problem types that arise depending on the method

used for assigning cranes to vessels. In the first method, the terminal operator assigns

a number of cranes to each vessel and these cranes can only work on that specific

vessel until it leaves port. This method may be chosen for its simplicity in practice

or there may be specific restrictions in the agreement between the terminal operator

and the ocean carrier. We refer to this approach as dedicated crane assignment

and call the resulting problem the dedicated quay crane scheduling problem. In the

alternative approach, cranes assigned to a vessel may leave that vessel if needed and

can be allocated to other vessels simultaneously docked. Hence, cranes can roam

on the berth between vessels during operation. We refer to this method as roaming

crane assignment and call the resulting problem the roaming quay crane scheduling

problem.

Before presenting models for dedicated and roaming crane scheduling, we also

discuss the important issue of crane blocking, and how crane shifting can be used to

overcome problems related to crane blocking. The decision of using crane shifting or

not creates two variants for both dedicated and roaming crane scheduling.

4.2.1 Crane Blocking and Crane Shifting

As noted, quay cranes operate on rails mounted on the berth. This configuration

prevents cranes from passing each other during operation. This restriction can create

a situation that we call crane blocking in this thesis. We say a crane is blocked if we

cannot find any job (hold) that the crane can work within the region it can presently

reach, which may be restricted by one or two adjacent cranes that are working. If

in a time period, the adjacent cane or cranes are working on holds such that there

exists no other hold requiring work in between, then this crane is blocked for that

time period.

70

An assumption that we already mentioned is that when work starts on a hold

it continues until completion without interruption. However, this assumption does

not prevent a change of cranes during the processing of a hold, as long as the hold

processing is not interrupted. We call this change of cranes during the processing of

a hold crane shifting. Quay cranes move relatively slowly, with speeds around 40-60

m/min. Given our assumptions, the time required to move a quay crane from the

position of one hold to the position of an adjacent hold should be on the order of a

few minutes. This is a very small amount of time, given that time is discretized into

3-4 buckets. Hence, relatively speaking, we can say that quay cranes move quickly

on the berth, compared to the time it takes to process one hold.

In practice, terminal operators may assign one crane to each hold and avoid crane

shifting for operational simplicity. This decision, however, increases crane blocking

and may lead to under-utilization of these valuable resources. With crane shifting

performed at the beginning of each time period, crane blocking can always be pre-

vented. In order to benefit from crane shifting, terminal operators should know when

and which cranes to shift. However, getting this information is tricky unless the

problem is modeled and solved appropriately. In the following sections, we introduce

models with and without crane shifting for both dedicated and roaming crane schedul-

ing. In each model, we omit the time required to move cranes on the berth since,

as mentioned above, this time will be very small compared to the length of a time

period considered. Models with no crane shifting provide solutions where the hold

assignment of each individual crane is determined specifically, namely which crane

works on which hold in what time periods is explicitly specified. On the other hand,

models that allow crane shifting only determine the time periods during which each

hold is processed. The only resource constraint in such models is a limit on the total

number of cranes used in any time period. In order to generate a complete solution

and an operational plan for cranes in this case, individual crane assignments should

71

be specified. For this reason, we define the Crane Assignment Problem (CAP), which

will be described later, to determine work plans (routes) for each quay crane with the

objective of minimizing total distance traveled by cranes during shifting moves along

the berth over the planning horizon.

4.2.2 Dedicated Quay Crane Scheduling

In dedicated quay crane scheduling, the terminal operator first decides on the number

of cranes to be allocated to each vessel. Then, he assigns those cranes to jobs (holds)

within each vessel. Since the cranes assigned to each vessel can only operate on that

specific vessel while it remains berthed, crane blocking may occur. However, the

terminal operator can also decide whether or not to allow crane shifting within each

vessel. Hence, two problems can be defined; one with crane blocking and no intra-ship

crane shifting, and another with crane shifting within each vessel.

Both of these problems can be decomposed into subproblems, and can be solved

to optimality in two stages. In the first stage, we define a vessel level problem for each

vessel considered in the planning horizon. The vessel level problem is to minimize the

processing time for a vessel for a given number of assigned quay cranes. By solving

the vessel level problem for all possible numbers of cranes that can be assigned to

each ship, we generate data elements pk(q), the total processing time required for a

ship k given that q cranes are assigned. In the second stage (master problem), we

determine the most appropriate number of quay cranes and specifically which cranes

to assign to each vessel to minimize the objective value.

While we need to solve many vessel level problems, the vessel level problems are

each of small sizes and easy to solve in both crane blocking and crane shifting (within

vessel) case. Because of the decomposition, the master problem also is relatively

small.

72

4.2.2.1 Vessel Level Problem Formulation with Crane Blocking

The vessel level model with crane blocking and no intra-vessel crane shifting finds

the minimum processing time of a vessel for a given number of assigned quay cranes.

As a reminder, we assume that jobs cannot be interrupted, and therefore a crane

assigned to a hold of the vessel must process that hold until all container operations

are completed. Note that this problem allows a crane to move from one hold of a ship

to another, but only after all work at the initially assigned hold is completed. In the

problem formulation, we keep track of the locations of individual cranes. Hence, we

define:

Lt
m: location of crane m at time period t.

A vessel level model is defined for a particular vessel. For conciseness of exposi-

tion, we drop the subscript of the vessel in the presentation and hence define:

H: number of holds,

pi: processing time of hold i,

Furthermore, we use the following binary variable set:

zt
mi =





1 if crane m starts working on hold i at time t,

0 otherwise;

Then, the problem can be formulated as a mixed integer program as follows where

T represents the number of time periods in the planning horizon which should be set

large enough to model the problem feasibly but no larger than
∑

pi.

73

Minimize p(Q) (52)

subject to

Q∑
m=1

T∑
t=1

zt
mi = 1 ∀i (53)

p(Q) ≥ tzt
mi + pi − 1 ∀m, i, t (54)

Lt
m ≤ Lt

m+1 − 1 ∀m, t (55)

Lt+t̄
m ≥ (zt

mi − 1)H + i ∀m, i, t, t̄ ∈ {0, .., pi − 1} (56)

Lt+t̄
m ≤ (1− zt

mi)H + i ∀m, i, t, t̄ ∈ {0, .., pi − 1} (57)

1 ≤ Lt
m ≤ H ∀m, t (58)

zt
mi ∈ {0, 1} ∀m, i, t (59)

Constraint (53) ensures that a crane is assigned to each hold. p(Q) defines the

total stay of the vessel given Q quay cranes. Hence, it should be no smaller than the

completion times of all holds, which is guaranteed by Constraint (54). Constraint (55)

ensures that cranes cannot cross over each other. Constraints (56) and (57) together

ensures that if a crane is assigned to a hold, it should stay at that hold until hold

is completely processed. Constraint (58) says that cranes cannot leave vessel until

completion.

4.2.2.2 Vessel Level Problem Formulation with Crane Shifting

In the vessel level model with crane shifting, we need not keep track of individual

crane locations. It is sufficient instead to find processing start times for each hold

while respecting the work continuity constraint, without exceeding a limit on the total

number of cranes working during each time period. Hence, we can use the following

set of binary variables:

74

zt
i =





1 if work on hold i starts at time t,

0 otherwise;

Then, the problem can be formulated as a mixed integer program follows:

Minimize p(Q) (60)

subject to

T∑
t=1

zt
i = 1 ∀j (61)

H∑
i=1

t̄∑

t=t̄−pi+1

zt
i ≤ Q ∀i, t̄ ∈ {pi, .., T} (62)

p(Q) ≥ tzt
i + pi − 1 ∀i, t (63)

zt
i ∈ {0, 1} ∀i, t (64)

Constraint (61) ensures that work is initiated for each hold. Constraint (62) limits

the total number of cranes that we can use at each time period to Q, the number of

cranes considered for this problem. p(Q) is the total processing time of the vessel,

which must be no less than the completion times of all holds, which is guaranteed by

Constraint (63).

4.2.2.3 Master Problem Formulation

The vessel level models determine the minimum total vessel processing times required

by each vessel for different number of quay cranes assigned. Recall that we let pk(q)

represent this minimum processing time when using q dedicated cranes to work ship k.

Using these results, we now formulate the master problem to determine the number of

quay cranes (and which cranes) to be assigned to each vessel to minimize the objective

function. Naturally, for each vessel, there is a range for the number of quay cranes

75

that can be assigned. The lower limit of the range can be set to 1, while the upper

limit can be set to hk, since only one crane can work on a hold at a time.

The following binary variables are used in the model:

uq
k =





1 if q cranes are assigned to vessel k,

0 otherwise;

vm
k =





1 if crane m is assigned to vessel k,

0 otherwise.

αt
k =





1 if work on vessel k starts after time t,

0 otherwise.

βt
k =





1 if work on vessel k stops before time t,

0 otherwise.

zt
k =





1 if work is in progress at time t on vessel k,

0 otherwise.

Then, the problem can be formulated as a mixed integer program:

Minimize
n∑

k=1

(ck − ak) +
n∑

k=1

fk(ck − dk)
+ (65)

76

subject to

1 ≤
Q∑

m=1

vm
k ≤ hk ∀k (66)

Q∑
m=1

vm
k =

hk∑
q=1

quq
k ∀k (67)

t` ≥ ck ∀k, ` ∈ Ω(k) (68)

ck ≥ tk +

hk∑
q=1

pk(q)u
q
k ∀k (69)

ck ≤ tβt
k + (1− βt

k)T ∀k, t (70)

tk ≥ tαt
k + 1 ∀k, t (71)

αt
k ≥ αt+1

k ∀k, t (72)

βt
k ≤ βt+1

k ∀k, t (73)

αt
k ≥ 1 ∀k, t < ak (74)

βt
k ≤ 0 ∀k, t < ak + pmax

k (75)

αt
k + βt

k + zt
k = 1 ∀k, t (76)

0 ≤ zt
k ≤ 1 ∀k, t (77)

Lt
m ≥ (zt

k + vm
k − 2)M + bk ∀m, k, t (78)

Lt
m ≤ (2− zt

k − vm
k)M + bk + hk − 1 ∀m, k, t (79)

Lt
m ≤ Lt

m+1 − 1 ∀m, t (80)

1 ≤ Lt
m ≤ B ∀m, t (81)

uq
k ∈ {0, 1}, vm

k ∈ {0, 1}, αt
k ∈ {0, 1}, βt

k ∈ {0, 1} ∀m, k, t, q (82)

Constraint (66) sets the range for the number of quay cranes that can be assigned

to each vessel where Constraint (67) calculates the number of cranes assigned to

each vessel. Overlapping of vessel rectangles is prevented by Constraint (68). The

expression
∑hk

q=1 pk(q)u
q
k gives the total berth time of vessel k. Hence, Constraint

(69) sets a lower bound on the earliest time that each vessel can leave. Constraints

(70), (71), and (76) force the values of the α, β, and z variables to take on correct

77

values where the z variables are equal to one while a crane is working at a vessel;

these z variables are then used in constraints (78) - (79) to track the locations of the

Q individual cranes. Constraints (72) - (75) are valid inequalities on binary variables

α and β. Note that as a result of Constraint (76) and (77), z variables will always

have a value either 0 of 1 and we can define them as continuous variables. Constraints

(78) and (79) together keep cranes grouped together on the vessel to which they are

assigned; note that the details of what cranes do while assigned to a vessel k cannot be

determined by this formulation, but are already known from the vessel-level problem

given the assignment of q cranes. Constraint (80) is the non-crossing constraint for

cranes, and Constraint (81) keeps each crane on the berth.

4.2.3 Roaming Quay Crane Scheduling

In roaming quay crane scheduling, the terminal operator can move cranes from one

vessel to another during processing. Since the number of cranes working a vessel may

thus change over time, this problem cannot be easily decomposed like the dedicated

scheduling problems. However, depending on whether or not crane shifting is allowed,

the following two mixed integer models can be constructed.

4.2.3.1 Problem Formulation with Crane Blocking

In the case with crane blocking, only one crane can work on a hold of a vessel dur-

ing total loading/unloading period of the hold. To keep track of individual crane

assignment and crane location we use the following binary variable set:

zt
mki =





1 if crane m starts working on hold i of vessel k at time t,

0 otherwise.

Then, the problem can be formulated as a mixed integer program as follows:

78

Minimize
n∑

k=1

(ck − ak) +
n∑

k=1

fk(ck − dk)
+ (83)

subject to

t` ≥ ck ∀k and ` ∈ Ω(k) (84)
Q∑

m=1

T∑
t=1

zt
mki = 1 ∀k, i (85)

zt
mki ≤ 0 ∀m, k, i ∀t < ak (86)

ck ≥ tzt
mki + pi

k ∀m, k, i, t (87)

tk ≤ tzt
mki + (1− zt

mki)T ∀m, k, i, t (88)

ck ≥ tk + pmax
k ∀k, t (89)

Lt
m ≤ Lt

m+1 − 1 ∀m, t (90)

Lt+t̄
m ≥ (zt

mki − 1)B + bk + i− 1 ∀m, k, i, t, t̄ ∈ {0, .., pi
k − 1} (91)

Lt+t̄
m ≤ (1− zt

mki)B + bk + i− 1 ∀m, k, i, t, t̄ ∈ {0, .., pi
k − 1} (92)

1 ≤ Lt
m ≤ B ∀m, t (93)

zt
mki ∈ {0, 1} ∀m, k, i, t (94)

In the formulation, overlapping of vessel rectangles is prevented by Constraint

(84). Constraint (85) ensures that a crane should be assigned to each hold of each

vessel. Arrival time restrictions are handled by Constraint (86). Constraint (87)

guarantees that a vessel can depart only after every hold of the vessel is processed,

and Constraint (88) ensures that the vessel should dock before any processing work.

Constraint (89) is a valid inequality that says each vessel should stay at least the

number of time periods required to process the hold with the maximum workload.

Constraint (90) is the non-crossing constraint for cranes. Constraints (91) and (92)

together keep cranes at the position of the hold that they are assigned until its

completion, while Constraint (93) keeps cranes on the berth.

79

4.2.3.2 Problem Formulation with Crane Shifting

In the roaming crane scheduling model with crane shifting, we need not keep track of

individual crane assignments. Instead, we find work start times for each hold without

exceeding the limit on the total number of cranes working at each time period. Hence,

we can use the following set of binary variables:

zt
ki =





1 if work starts on hold i of vessel k at time t,

0 otherwise.

Then, the problem can be formulated as a mixed integer program as follows:

Minimize
n∑

k=1

(ck − ak) +
n∑

k=1

fk(ck − dk)
+ (95)

subject to

t` ≥ ck ∀k and ` ∈ Ω(k) (96)
T∑

t=1

zt
ki = 1 ∀k, i (97)

n∑

k=1

hk∑
i=1

t̄∑

t=t̄−pi
k+1

zt
ki ≤ Q ∀t̄ ∈ {pi

k, .., T} (98)

zt
ki ≤ 0 ∀k, i ∀t < ak (99)

ck ≥ tzt
ki + pi

k ∀k, i, t (100)

tk ≤ tzt
ki + (1− zt

ki)T ∀k, i, t (101)

ck ≥ tk + pmax
k ∀k, t (102)

zt
ki ∈ {0, 1} ∀k, i, t (103)

Overlapping of vessel rectangles is prevented by Constraint (96). Constraint (97)

ensures that work starts on each hold of each vessel. Constraint (98) ensures that we

cannot use more that Q cranes at any time. Arrival time restrictions are handled by

Constraint (99). Constraint (100) guarantees that a vessel can depart only after every

80

hold of the vessel is processed, and Constraint (101) ensures that a vessel should dock

before any processing work begins. Constraint (102) is a valid inequality that says

each vessel should stay at least the number of time periods required to process the

hold with the maximum workload.

4.2.4 Analysis of Crane Scheduling Problems

Let C∗
Db and C∗

Ds denote the optimum objective function value for the dedicated quay

crane scheduling problem with crane blocking and crane shifting respectively. Simi-

larly, let C∗
Rb and C∗

Rs denote the optimum objective function value for the roaming

quay crane scheduling problem with crane blocking and crane shifting respectively.

Then, we can make the following observation immediately.

Lemma 4 C∗
Rs ≤ C∗

Rb ≤ C∗
Db and C∗

Rs ≤ C∗
Ds ≤ C∗

Db.

It is easy to see the correctness of Lemma 4 because any feasible solution with

dedicated crane assignment is also a feasible solution for roaming crane assignment,

and any feasible solution with crane blocking is also a feasible solution with crane

shifting. This being said, the question is how much we can improve the terminal

operator objective function by allowing roaming and shifting. In order to investigate

the magnitude of this gain, we present a computational experiment.

We generated 20 small instances with 6 vessels. Each vessel has 2 to 4 holds, and

each instance has at least one vessel of each size. Berth length is set to 7 holds meaning

that two 2-hold and one 3-hold vessel can be moored simultaneously. Processing times

assigned to each hold of each vessel are related to vessel size. For a 2-hold vessel

pi
k ∼ UD[1, 4], for a 3-hold vessel pi

k ∼ UD[1, 5], and for a 4-hold vessel pi
k ∼ UD[1, 6]

for the ith hold of vessel k. Furthermore, ak ∼ UD[1, 8], dk = ak + Kpk where

K ∼ UD[1, 3], and fk ∼ UD[3, 5] for each vessel k.

We first solve the BAP for all instances generated with pk = pmax
k . The optimal

solution of the BAP not only provides a berth schedule but also generates a lower

81

bound for the QCSP. This is because only one crane can be assigned to each hold

at a time, and hence the handling time of each vessel cannot be smaller than the

processing time required by the maximum hold of the vessel. We denote this lower

bound as LBBS. The results are summarized in Table 12.

Table 12: Computational analysis of crane scheduling strategies
Instance LBBS C∗

Rs C∗
Rb C∗

Ds C∗
Db

1 31 31 40 40 41
2 37 37 46 52 52
3 31 33 45 45 45
4 56 56 56 61 61
5 22 28 28 28 28
6 29 29 38 36 45
7 48 48 60 60 60
8 45 63 74 74 74
9 39 41 51 62 70

10 43 43 64 64 66
11 44 50 57 75 75
12 26 28 29 52 52
13 51 52 65 61 75
14 39 42 44 47 47
15 23 23 29 28 29
16 53 53 63 77 77
17 110 110 112 110 115
18 23 31 34 36 36
19 31 39 48 50 50
20 39 39 44 57 62

Base: LB 1.000 1.085 1.285 1.407 1.461
Base: C∗

Rs 0.932 1.000 1.188 1.302 1.356

As depicted in Table 12, when roaming and shifting is used, a crane schedule

only 8.5% above the lower bound is found on average. When roaming is allowed but

shifting is not performed, the optimum objective function value increases by 18.8%

compared to the shifting case. With dedicated crane scheduling method, the best

solution found is 30.2% worse than the roaming case even when shifting is used, and

35.6% worse when crane blocking is allowed within each vessel.

Because roaming and shifting provides significant efficiency in crane usage, termi-

nal operators would like to utilize these crane scheduling techniques as effectively as

82

possible. Therefore, in the remainder of the chapter we focus on the roaming quay

crane scheduling with shifting, and provide a fast solution method that can handle

realistic instances for this version of the QCSP.

4.3 A Tabu Search Algorithm

The mixed integer program (96)-(103) can only be solved for small instances in a

reasonable amount of time. Thus, in this section we present a tabu search algorithm

which enables us to solve QCSP instances of larger size approximately, but very

quickly. We first describe how a good initial solution can be constructed quickly.

Then we present the fundamentals of the tabu search algorithm proposed.

4.3.1 Initial Solution

In order to find an initial solution, a greedy heuristic for the QCSP is designed using

the following crane scheduling principles provided by [16].

Principle 1: A crane should not be idle if there are any holds on ships that are

berthed, but have not yet begun processing.

Principle 2: If any cranes are working on a ship, at least one of them should be

assigned to the maximum hold. The maximum hold of a ship corresponds to

the unprocessed hold that requires the most crane time to finish processing. If

cranes are available to be assigned to a vessel, it is sensible to begin work on

the maximum hold as soon as possible since no other hold will take as long to

complete processing.

These principles, coupled with the given berth schedule, suggest the following

heuristic scheduling strategy:

1. Construct a vessel list Lv: We let Lv be the primal vessel list of the

preliminary berth schedule determined by solving the BAP assuming that the ship

83

processing time is given by the processing time of the maximum hold. As described

in Chapter 2, the primal vessel list of schedule x, which is denoted by LP
v (x) in this

chapter, sorts vessels in the increasing order of their berthing times while breaking

ties in favor of the minimum indexed berthing position.

2. Construct a hold list Lk
h for each vessel k: We construct a hold list Lk

h for

vessel k by following the maximum-hold-first rule; thus, the list contains holds sorted

in non-increasing order of hold processing times with ties broken arbitrarily.

3. Construct a global hold list Lh: The global hold list is constructed by

concatenating the individual hold lists Lk
h for each vessel k in the vessel order given

by Lv.

4. Berth vessels and allocate cranes using Lh: We select the first unpro-

cessed hold in the list (let k be the vessel index and i be the hold index within the

vessel). If this is the first hold of vessel k considered, we find the first time period

tk ≥ ak where berth sections {bk, ..., bk + hk − 1} are unoccupied, and mark them

occupied by vessel k for time periods {tk, ..., T}. Then, we find the first time period

tik where at least one crane is available in time periods {tik, ..., tik + pi
k − 1}. We re-

duce the number of available cranes at those time periods by 1, and mark the ith

hold of vessel k as processed. If this is the last hold of vessel k considered, we set

ck = maxi{tik + pi
k} and mark berth sections {bk, ..., bk + hk − 1} as unoccupied for

time periods {ck, ..., T}. We continue until all holds in Lh are processed.

4.3.2 Fundamentals of the Tabu Search

Any feasible solution to the QCSP with crane roaming and shifting can be encoded

by a global hold list Lh, which serves as a priority list, assuming that this encoding

is decoded using the method given in Step 4 of the method for developing an initial

solution; from now on, we will call this the first-fit hold list decoding. However, as in

the BAP, there may exist multiple hold lists that decode to the same crane schedule.

84

Therefore, for any given crane schedule z, we define a unique priority list called the

primal hold list, LP
h (z). The primal list ordering of holds is created by sorting holds in

non-decreasing order of work start times, breaking ties in favor of the hold positioned

in the minimum index berth section. Note that the first-fit hold decoding can be

performed in O(n̂) time, where n̂ is the total number of holds in the problem.

Unlike the case with the vessel list encodings used in the tabu search that we

develop for the BAP, not every hold list can be decoded without ambiguity into a

feasible solution. Consider two vessels that occupy some of the same berth sections

in the berth schedule. In order for the hold list to be used to decode unambiguously

into a feasible solution, all holds of the vessel scheduled to berth earlier should be

processed before all holds of the vessel scheduled to berth later. Therefore, every hold

of the first vessel should be listed before any hold of the second vessel in the list. The

initial hold list generated by the heuristic algorithm always yields a feasible decoding

since holds of each vessel are grouped together in the list.

At each iteration of the tabu search algorithm, we modify the current Lh us-

ing single swap moves within a randomized iteration-dependent neighborhood. The

iteration-dependent neighborhood changes depending on the iteration count of the

search. In implementation, we divide the search iterations into n distinct stages,

where n is the number of vessels. At stage s ∈ {1, ..., n}, given a global hold list Lh,

we define (p, r, q) randomized neighborhood of lists N s
L(p, r, q,Lh) as all lists gener-

ated by a single swap in Lh of the position of one of q selected holds (denoted as

hold i) with the position of one of p randomly-selected holds among the r closest

neighbor holds to hold i in Lh. Closeness in Lh is measured as the absolute difference

in position in the list. The set of q holds are determined by first selecting a vessel

and then randomly picking a hold within the selected vessel. Here, the probability of

selecting a hold from vessel k at stage s is denoted by Πs
k and calculated as follows.

85

Πs
k =

πs
k∑n

k=1 πs
k

(104)

where

πs
k(j) = (n− |j − s|)α ∀ j, s ∈ {1, ..., n}. (105)

In this expression, k(j) is the index of the jth vessel in the vessel primal list LP
v (x)

of the current schedule x, and α ≥ 0 is a guiding parameter set by the user. If α = 0,

holds of all vessels are selected with equal probability to generate swap moves. On the

other hand, if α > 0, holds of vessels planned to berth earlier are selected with higher

probability in the beginning of the search, and as search progresses the probability of

selecting holds of vessels planned to berth later increases. The intuition is that any

improvement obtained at an iteration by changing the latter portions of the schedule

can be lost if an earlier portion of the schedule is modified in the subsequent iterations,

whereas the reverse is not true. Computational experiments are performed for both

α = 1 and α = 0 cases to test the effectiveness of the guiding mechanism.

As mentioned earlier, some hold priority lists visited during the search may not

feasibly decode into a crane schedule. The infeasibility of a list, however, is easily

detected. A list created by a move that swaps positions of a hold of vessel ` and a

hold of vessel k can be determined using the following procedure.

1. If k = `, the move is feasible; stop. Else, go to 2.

2. If k ∈ Ω(`) or ` ∈ Ω(k), the move is infeasible; stop. Else, go to 3.

3. Let uk and u` be the list positions of the hold of vessel k and the hold of vessel `

selected by the corresponding move respectively where uk < u`. Let v(j) denotes

the vessel of the jth hold in the current Lh. If v(j) ∈ Ω(k) or ` ∈ Ω(v(j)) for

any uk < j < u`, the move is infeasible; stop. Else, the move is feasible; stop.

86

At the beginning of the search, setting Lh to the primal hold list reduces the

probability of creating many infeasible moves since holds that can be processed si-

multaneously are also positioned close to each other in the list. However, as the

search proceeds, this list structure can deteriorate and we may generate more infea-

sible moves. Therefore, at the end of each stage, we update the current solution to

be the best solution found so far, and also set the current hold list to the primal hold

list of the best solution.

At the end of each iteration, we also place the reverse of the move selected into

a tabu list for θ iterations, where θ is a positive integer distributed discrete random

uniform on [θmin, θmax]. A reverse move is defined as swapping back the positions of

the same two holds in Lh.

4.3.3 Steps of the Tabu Search Algorithm

In this section, we provide step-by-step detail for the proposed search algorithm. Let

z0 be the initial solution, and let z and z∗ be the current and the best solution found

by the tabu search respectively. Let C(z) represent the objective function value for

solution z.

Step 1: Initialization. Set s = 1. Compute Πs
k. Set p, r, and q. Let z0 be the initial

solution found with the primal hold list LP
h (z0). Let Lh = LP

h (z0), z = z∗ = z0.

Initialize the counter tT = 0 which denotes the total number of iterations at

current stage. Set the value of tM , which is the maximum number of iterations

allowed at each stage.

Step 2: Neighborhood Search. Set tT = tT + 1. For each candidate list Li
h ∈

N s
L(p, r, q,Lh), first check feasibility. If Li is feasible, decode it into crane sched-

ule zi. Construct a list U by ranking the feasible moves in nondecreasing order

of C. Select the first move i in U . If the move is not tabu or if C(zi) < C(z∗),

87

then let a be the move i. If the move is tabu or does not improve the best

solution, consider the next move in U and repeat the check.

Step 3: Solution Update. Set z = za. If C(z) < C(z∗), set z∗ = z. Update the

tabu list by inserting the reverse swap move associated with solution za into

the tabu list for the appropriate random number of iterations, and removing

reverse moves whose duration has expired. If tT < tM , update tT = tT + 1 and

go to Step 2. Else if s < n, set tT = 0, update s = s + 1, recompute Πs
k, set

z = z∗ and Lh = LP
h (z∗) and go to Step 2. Else, stop. The best solution found

is z∗.

4.4 The Crane Assignment Problem

In this section we introduce the problem of individual crane assignment (CAP). It is

the problem of assigning specific quay cranes to optimum work locations determined

by the QCSP with the objective to minimize the total distance traveled by cranes

on the berth over the planning horizon. This problem arises when crane shifting is

used while scheduling cranes. In the QCSP with crane shifting, we do not keep track

of individual crane positions because any blocking can be resolved by shifting cranes

appropriately. Hence, we only determine the time periods that we need to work on

each hold. Since the location of vessels are given by the berth schedule, the output of

the QCSP provides the locations of work at each time period that we require cranes.

If the total number of quay cranes required at a given time period is equal to the

number of available cranes, then the assignment is both trivial and unique. We should

assign them according to their relative positions on the rail since they cannot pass

each other. However, if the total number of cranes required at any time period is less

than the total number of available cranes, the decision of assigning cranes to work

positions at that time period affects the total distance traveled by cranes during the

planning horizon.

88

Figure 14: Illustration of the graph constructed to solve the CAP

To solve the CAP, we construct the graph G = (N ∪S1 ∪S2,A1 ∪A2 ∪A3 ∪A4).

The node set N is generated by defining two nodes (i, t, 1) and (i, t, 2) for each berth

section - time period pair (i, t) where 1 ≤ i ≤ B and 1 ≤ t ≤ T . Here, B is the size of

the berth in number of berth sections, and T is the completion time of the last vessel

in the planning horizon. The arc set consists of four disjoint subsets A1, A2, A3, and

A4. A1 includes the arcs from (i, t, 1) to (i, t, 2) for all (i, t) pairs. We call these arcs

work arcs. A2 is the set of arcs defined from (i, t, 2) to (j, t + 1, 1) for all 1 ≤ i, j ≤ B

and 1 ≤ t < T . We call these arcs reposition arcs. The flow cost associated with each

reposition arc is defined as c
(j,t+1,1)
(i,t,2) = |i − j|, which is the number of berth sections

between i and j. No flow cost is assigned to work arcs. We also define source and

sink nodes, S1 and S2. A3 denotes the set of arcs emanating from S1 to nodes (i, 1, 1)

whereas A4 is the set of arcs defined from (i, T, 2) to S2 for all i. No flow cost is also

associated with these arcs.

When cross-over constraints are relaxed, the CAP problem can be solved as a

minimum cost flow problem on the graph constructed. To do this, we place an inflow

89

and outflow of Q (total number of quay cranes) units at nodes S1 and S2 respectively.

Furthermore, the upper bound on the flow on each arc is set 1 where the lower bound

on work arcs between (i, t, 1) and (i, t, 2) is also set equal to 1 if a crane is needed

at berth section i at time t. Thus, a feasible solution determines Q disjoint paths

between S1 and S2 that cover the work required on the berth. The resulting linear

program is provided below, where f
(j,p,l)
(i,t,k) denotes the flow on arc defined from (i, t, k)

to (j, p, l) where 1 ≤ i, j ≤ B, 1 ≤ t, p ≤ T , and 1 ≤ k, l ≤ 2.

Minimize
B∑

i=1

B∑
j=1

T−1∑
t=1

c
(j,t+1,1)
(i,t,2) f

(j,t+1,1)
(i,t,2) (106)

subject to

B∑
j=1

f
(i,t,1)
(j,t−1,2) − f

(i,t,2)
(i,t,1) = 0 ∀i, t (107)

B∑
j=1

f
(j,t+1,1)
(i,t,2) − f

(i,t,2)
(i,t,1) = 0 ∀i, t (108)

B∑
j=1

f
(j,1,1)
S1

= Q (109)

B∑
j=1

fS2

(j,T,2) = Q (110)

0 ≤ f
(i,t,2)
(i,t,1) ≤ 1 ∀i, t (111)

0 ≤ f
(j,t+1,1)
(i,t,2) ≤ 1 ∀i, j, t (112)

0 ≤ f
(j,1,1)
S1

≤ 1 ∀j (113)

0 ≤ fS2

(j,T,2) ≤ 1 ∀j (114)

f
(i,t,2)
(i,t,1) = 1 ∀(i, t) requiring work (115)

The linear program (107)-(115) has a totally unimodular coefficient matrix and

provides an integer optimal solution. Therefore, when cross-over constraints are re-

laxed, it determines the optimal quay crane paths (movements) in polynomial time.

90

Lemma 5 Crane paths can cross over in the optimal solution found by the linear

program (107)-(115), but an alternate optimal where crane paths do not cross over

always exists.

Proof. Consider a feasible solution to the linear model (107)-(115), where paths of

two cranes cross over at some time period. Let us assume that the first crane moves

from berth section l1 to l2, the second one moves from berth section l3 to l4, and

l1 < l3. Since the paths cross over, we know that l4 < l2. The cost of such a reposi-

tioning is |l2 − l1|+ |l4 − l3|, and one of the six cases below should hold.

1. l1 < l3 ≤ l4 < l2

2. l1 < l3 ≤ l4 < l2

3. l1 ≤ l4 < l2 ≤ l3

4. l4 ≤ l1 ≤ l2 ≤ l3

5. l4 ≤ l1 < l3 ≤ l2

6. l1 ≤ l4 ≤ l3 ≤ l2

If case 1 or 2 holds, |l2 − l1|+ |l4 − l3| = |l2 − l3|+ |l4 − l1|. If case 3, 4, 5, or 6 holds,

|l2 − l1| + |l4 − l3| = l2 − l1 + l3 − l4 > l3 − l2 + l4 − l1 = |l4 − l1| + |l2 − l3|. This

means that there exists another feasible solution where the first crane moves from l1

to l4, and the second crane moves from l3 to l2. Since l1 < l3 and l4 < l2, cranes do

not cross over, and the objective function is not higher. 2

Theorem 7 The CAP can be solved in polynomial time.

Proof. Lemma 5 indicates that if crane paths cross over in the optimal solution,

either case 1 or 2 should hold, and an alternate optimal solution can be constructed

as described above where no cross over exists. Such an alternate solution can be

defined by assigning cranes to the work arcs carrying unit flow in the order of crane

index, because there exist exactly Q work arcs carrying unit flow at each time period.

91

2

4.5 Computational Experiments

The test instances generated for the BAP were also used in computational experiments

conducted for the QCSP. We again use the six sets of instances where the first three

sets include relatively small problems for a terminal with B = 12 and 10 to 14 vessels,

and the second set contains larger instances with B = 20 and 20 to 30 vessels. We set

Q = 6 for small instances and Q = 10 for large ones. For each vessel k, we generated

hk integers pi
k, ..., p

hk
k randomly and selected the maximum of these as the processing

time for vessel k in the BAP. For the QCSP, the integer pi
k now more specifically

represents the processing time required by hold i of vessel k. Furthermore, since

maxi{pi
k} was used as the processing time of vessel k in the BAP, the best solutions

found for the BAP problem defined on these instances has not only generated a berth

schedule required by the QCSP but also provided a lower bound on the cost of that

solution, LBBS. This lower bound essentially is one that assumes that an unlimited

supply of cranes is available at any time period.

Table 13: The tabu search parameters used in the computational experiments
Parameter Value

p 5
r 10
q 5

tM 25
θmin 5
θmax 10

The parameter values used in the computational experiments are provided in Table

13. The parameter tM is the number of iterations completed during each stage. Since

we have n stages, the total number of iterations performed is tMn.

Table 14 and Table 15 summarize results for small and large instances respec-

tively. As indicated before, the best BAP solutions for these instances provide the

92

Table 14: Summary of results for small QCSP instances
Instance IS LBBS LBMIP UBMIP α = 1 α = 0 α = 1 (%) α = 0 (%)

10 111 90 106 106 106 106 24 24
11 74 54 65 65 65 65 45 45
12 176 159 159 159 159 159 100 100
13 149 74 100 100 100 101 65 64
14 93 54 67 67 67 67 67 67
15 111 81 83 83 83 83 93 93
16 92 60 86 86 86 86 19 19
17 165 138 160 160 160 160 19 19
18 181 131 161 161 161 167 40 28
19 147 115 135 135 135 135 38 38
20 209 131 164 164 164 164 58 58
21 198 170 182 182 182 182 57 57
22 185 123 158 158 158 159 44 42
23 157 124 134 134 134 134 70 70
24 126 79 96 96 96 96 64 64
25 203 121 184 184 184 184 23 23
26 158 120 154 154 154 154 11 11
27 181 164 164 164 164 164 100 100
28 200 117 175 175 175 175 30 30
29 197 119 171 171 171 171 33 33
30 229 156 195 195 195 195 47 47
31 383 247 333 333 333 333 37 37
32 160 133 145 145 145 149 56 41
33 400 250 297 336 323 323 51 51
34 219 166 196 196 200 200 36 36
35 298 213 254 254 254 256 52 49
36 184 142 161 161 161 161 55 55
37 170 130 134 134 134 134 90 90
38 478 332 441 441 441 441 25 25
39 397 329 356 356 356 357 60 59

berth schedule input for the QCSP. LBBS denotes the objective function value of the

corresponding berth schedules and yields a lower bound for the QCSP.

The mixed integer program presented in Section 4.2.3.2 was applied to all instances

using CPLEX with default parameters on an Intel 2.4 GHz Pentium processor run-

ning Linux with 2 GB memory. MIP runs were limited to 2 hours. For 29 of the

small instances and for 18 of the large instances, the optimal solution was found by

CPLEX. For the remaining, the lower bound LBMIP and the upper bound UBMIP

are provided. In instance 33, where MIP failed to prove optimality, the tabu search

with α = 1 provided a better solution, and in instance 34, where the MIP found

the optimal solution, the tabu search found a worse solution. In the remaining 28

93

small instances, the tabu search finds the optimal solution when α = 1. Similarly,

in 24 of the large instances, the search algorithm found solutions with a better or

same objective function value, and in only 6 cases it found slightly worse solutions

compared to the MIP.

The last two columns present the improvement in the lower bound gap provided

by the search algorithm in the α = 1 and α = 0 cases respectively. The lower

bound gap is calculated with respect to LBBS, and improvement is calculated as

(initial gap - final gap)/initial gap. When the two cases are compared, we see that

in 6 of the small instances, the search with α = 1 provided better solutions. In

the remaining, equivalent solution are found by both searches. For large instances,

setting α = 1 provided better solutions in 21 instances, and keeping α = 0 found

better crane schedules in only 2 cases. In the remaining 7 instances, solutions with

the same objective function value were found by both approach. This indicates that

the additional guiding mechanism generally helps to find better solutions, and it

becomes more effective as problem size increases.

Finally, Table 16 presents the computational times in seconds observed during

tests. We see that MIP provides the optimal solution for small instances in set 1 and

2 fairly quickly, while the run time limit is reached for many of the larger instances.

On the other side, with the parameters used, the tabu search algorithm found optimal

or near optimal solutions almost instantaneously for small instances and in 13 seconds

for large ones. Since the number of iterations performed are equal for α = 1 and α = 0

cases, total run times are similar. However, we observe that in the α = 1 case, the

best solution was found later while tabu search got stuck at local optima in the earlier

stages when α = 0. Therefore, as expected, the guiding mechanism designed provides

a more patient but consistent search.

94

Table 15: Summary of results for large QCSP instances
Instance IS LBBS LBMIP UBMIP α = 1 α = 0 α = 1 (%) α = 0 (%)

40 121 112 118 118 118 121 33 0
41 167 124 128 128 128 129 91 88
42 308 134 162 236 236 243 41 37
43 163 119 124 124 125 125 86 86
44 81 76 78 78 78 80 60 20
45 136 111 111 111 111 111 100 100
46 225 132 137 175 171 179 58 49
47 186 129 144 144 144 158 74 49
48 102 96 96 96 96 96 100 100
49 137 112 112 112 112 113 100 96
50 357 248 268 286 286 294 65 58
51 156 112 124 124 124 124 73 73
52 459 226 244 390 344 348 49 48
53 331 184 221 282 274 275 39 38
54 614 366 425 425 427 432 75 73
55 269 173 180 180 180 180 93 93
56 271 153 183 242 221 229 42 36
57 124 82 89 94 95 100 69 57
58 352 175 196 319 300 306 29 26
59 295 223 243 243 246 251 68 61
60 431 331 351 351 351 364 80 67
61 787 470 530 686 656 653 41 42
62 1157 866 899 1092 1039 1039 41 41
63 586 413 475 475 479 476 62 64
64 293 228 239 239 240 245 82 74
65 517 336 383 383 383 384 74 73
66 713 392 448 548 535 572 55 44
67 522 370 417 475 465 465 38 38
68 274 174 203 203 203 204 71 70
69 458 208 288 288 288 313 68 58

Table 16: Summary of computation times observed in seconds
MIP Best Solution Time Total Solution Time

Set Time α = 1 α = 0 α = 1 α = 0
1x 13.3 0.1 0.2 1.4 1.2
2x 61.0 0.3 0.2 1.3 1.5
3x 1334.7 0.6 0.6 1.9 2.3
4x 1458.4 2.2 1.0 4.1 4.5
5x 4667.5 6.3 2.2 8.2 9.0
6x 5048.0 9.1 2.8 12.3 12.7

95

CHAPTER V

THE SIMULTANEOUS BERTH AND QUAY CRANE

SCHEDULING PROBLEM

5.1 Introduction

In this chapter, we focus on the simultaneous scheduling of berth and quay cranes. In

practice, berth scheduling and quay crane scheduling problems are generally consid-

ered sequentially by terminal operators. They first determine a berth schedule using

estimates of the duration of berthing for each vessel. Then, they try to split quay

cranes efficiently between the vessels that are planned to moor simultaneously at the

same berth. Such sequential planning can be achieved using the models developed

in this thesis: first solve the BAP introduced in Chapter 2, and use its output as

an input to solve the QCSP mentioned in Chapter 4. In this chapter, we develop

models and methods for scheduling these two resources simultaneously, namely the

simultaneous berth and quay crane scheduling problem (BQCSP).

The number of cranes that a terminal operator can assign to a vessel depends

on the number of cranes used by other vessels simultaneously moored at the berth.

Assigning a crane to a vessel is equivalent to reducing the number of cranes that can

be assigned to other vessels. Naturally, the total number of cranes that a terminal

operator can utilize at each time period cannot exceed the total number of cranes

on hand. This limitation can cause an inferior crane allocation for some vessels

compared to what is projected in the berth scheduling phase, and thus vessels may

be forced to stay longer than expected at berth. Such delays then may affect vessels

to be moored later. A terminal operator may be able to determine a better and

more accurate operational plan if actual crane requirements are considered while

96

determining berth schedules, which is the motivation behind simultaneous berth and

quay crane scheduling.

Reference [16] introduced the problem of quay crane scheduling. Although the

paper assumes a berth of infinite length, it discusses the impact of berth limitations

on quay crane schedules. However, most studies on quay crane scheduling also assume

infinite length berths or simply focus on crane planning for a single vessel (see Chapter

4). Similarly, most papers published on the berth allocation problem assume a known

ship processing duration, and do not consider the impact of crane availability (see

Chapter 2).

The problem of simultaneously scheduling berth and quay cranes was first intro-

duced in [58]. The authors formulate an integer programming model which determines

the berthing position on a continuous berth and the berthing time of each vessel, as

well as the number of cranes assigned to each vessel at each time period. However,

the paper assumes that vessel processing times decrease linearly with the number of

quay cranes assigned to a vessel. The authors agree that this assumption is not real-

istic, and does not agree with the models used by other studies on crane scheduling

(including the simple one used in [16]). This is because of the fact that the work

required on a vessel is generally not evenly distributed on the vessel.

Researchers in [11] also draw attention to the relationship between berth alloca-

tion and quay crane scheduling. The problem they define considers a discrete berth

structure where each berth can serve one vessel at a time and a number of quay cranes

which can be moved from one berth to another when required. Vessel handling time is

dependent on the berth where it is assigned; however, the number of cranes required

by each vessel is known, and hence the impact of crane assignment on handling time

is not considered. In a simplification, the paper assumes that vessel handling does not

begin until the predetermined number of cranes are available at the corresponding

berth. The objective of the problem considered is to minimize the total time spent by

97

vessels at the port. They present a mixed integer program, and introduce a solution

method based on a genetic algorithm.

The problem variant introduced in this chapter is defined for a long continuous

berth which can handle multiple vessels simultaneously. On this berth, a number

of identical quay cranes operates on a single set of rails for container loading and

unloading. We consider the case where vessel processing time depends on the number

of quay cranes assigned to the vessel, where a ship is considered processed once cranes

have completed the work of a set of holds identical to those introduced in Chapter 4.

In this model, each vessel is divided along its length into holds of 3 or 4 container rows

where at most one quay crane can work on a hold in a time period. We also assume

that once started, work needs to continue on a hold until completion. Note that these

assumptions do not prevent assigning more than one crane to a vessel, and cranes can

be shifted from hold to hold both within ships and between ships, as long as cranes are

not allowed to pass one another. Consequently, the model we develop determines the

berthing position and berthing time of each vessel while simultaneously determining

when to assign a quay crane to each hold of each vessel for container loading and

unloading. The primary contributions of this study include:

• The introduction of a BQCSP variant which considers a continuous berth struc-

ture and detailed crane assignments to vessel holds;

• The introduction of a lower bound that can be found in polynomial time for

any instance of the BQCSP, where the bound is provably tighter than the linear

programming relaxation bound for a standard integer programming model for

the problem; and

• The development of an effective tabu search algorithm which utilizes a nested

neighborhood search procedure.

98

5.2 Problem Formulation

We consider a berth modeled as a continuous structure having B equal size sections

and Q identical quay cranes operating on a single set of rails. We discretize time and

assume an infinite planning horizon (T time periods where T is large). For modeling

purposes, each vessel is divided into equal size sections that we call holds. Each hold

consists of 3 or 4 container rows. Therefore, the length of a vessel can be represented

by the number of holds it has. Furthermore, the length of a berth section is also set

equal to the length of a hold, and it is assumed that the berth is B holds in total length.

When berthed, a vessel covers a number of adjacent berth sections depending on its

length. Multiple vessels can moor at the berth and receive service simultaneously.

We assume that only one crane can work on a hold at a given time period. Note that

this does not prevent more than one crane working on the same vessel if vessel has

multiple holds that need service. Each hold requires a known processing time, and we

require that when started, work continues without interruption until the container

loading and unloading is done for the hold even though the crane working on the

hold may change at each time period. Therefore, we allow crane roaming and shifting

which is described in detail in Chapter 4. A vessel can leave the port only after

container loading and unloading is completed on every hold.

We concentrate on the dynamic version of the problem where we have a set V of

vessels with known arrival times, where n = |V|. For each vessel k ∈ V , we define:

hk: number of holds of vessel k,

pi
k: processing time of hold i of vessel k,

pmax
k : maximum hold processing time for vessel k (pmax

k = maxi{pi
k}),

ak: arrival time of vessel k,

dk: due time of vessel k (where dk ≥ ak + p∗k),

fk: lateness penalty for vessel k,

bk: berthing position of vessel k,

99

tk: berthing time of vessel k,

ck: the earliest time that vessel k can depart.

Figure 15: Representation of a BQCSP solution on the time-space diagram

A feasible solution x of the BQCSP consists of a berth schedule and a crane sched-

ule. Any such feasible solution x can be represented by a time-space diagram where

the horizontal axis measures time and the vertical axis represents berth sections; see

Figure 15. In such a representation, a vessel can be represented by a rectangle whose

length is its duration of stay at berth and height is its length (number of holds). Fur-

thermore, crane locations are also depicted using solid and empty squares, where solid

and empty squares represent busy and idle cranes respectively. Given a known vector

of arriving vessel information {hk, p
1
k, ..., p

hk
k , ak, dk, fk}, the optimization problem is

then to find berthing section bk, berthing time period tk, and a crane allocation plan

which determines the duration of stay for each vessel k and hence ck. If we say vessel

k is berthed at position bk at time tk, we mean berth sections [bk, bk + hk − 1] are

occupied by vessel k for time periods [tk, ck − 1]. This also means that once a vessel

100

is berthed, its location cannot be changed during service.

Our objective is the same as in the BAP and the QCSP which is to minimize

∑
k∈V(ck − ak) +

∑
k∈V fk(ck − dk)

+ representing the sum of the dwell times and the

total penalty accrued by tardy vessels.

Table 17: A sample BQCSP instance
k 1 2 3 4 5
ak 2 1 3 2 1
dk 8 4 11 5 5
fk 3 4 3 3 4
hk 2 3 3 4 4
p1

k 3 2 2 3 3
p2

k 4 2 4 1 2
p3

k - 2 1 0 2
p4

k - - - 1 4

An example instance of the problem is provided in Table 17, where B = 7 and

Q = 4. A feasible solution for this instance is provided in Table 18 where zi
k denotes

the work start time of hold i of vessel k. The solution is also schematized in Figure

15.

Table 18: A feasible solution to the sample BQCSP instance
k 1 2 3 4 5
bk 1 1 1 3 4
tk 3 1 9 6 1
ck 9 3 13 9 6
z1
k 5 1 9 6 3

z2
k 5 1 9 6 3

z3
k - 1 9 - 3

z4
k - - - 7 1

The problem can be formulated as a mixed integer program. The model provided

below combines the RPF provided for the BAP, and the model presented for the

roaming QCSP with crane shifting. The primary decision variables are:

101

x`k =





1 if vessel k berths after vessel ` departs,

0 otherwise;

y`k =





1 if vessel k berths completely above vessel ` on the time-space diagram,

0 otherwise.

zt
ki =





1 if work starts on hold i of vessel k at time t,

0 otherwise;

A feasible selection of these primary variables then constrain the secondary set of

decisions {bk, tk, ck} for all ships k, modeled as continuous variables. The formulation

is:

Minimize
n∑

k=1

(ck − ak) +
n∑

k=1

fk(ck − dk)
+ (116)

102

x`k + xk` + y`k + yk` ≥ 1 ∀k, ` ∈ V and k < ` (117)

x`k + xk` ≤ 1 ∀k, ` ∈ V and k < ` (118)

y`k + yk` ≤ 1 ∀k, ` ∈ V and k < ` (119)

t` ≥ ck + (xk` − 1)M ∀k, ` ∈ V and k 6= ` (120)

b` ≥ bk + hk + (yk` − 1)M ∀k, ` ∈ V and k 6= ` (121)

tk ≥ ak ∀k ∈ V (122)

tk ≤ tzt
ki + (1− zt

ki)T ∀k ∈ V ∀i ∈ {1, ..., hk} ∀t ∈ {1, ..., T} (123)

ck ≥ tzt
ki + pi

k ∀k ∈ V ∀i ∈ {1, ..., hk} ∀t ∈ {1, ..., T} (124)

ck ≥ tk + pmax
k ∀k ∈ V (125)

T∑
t=1

zt
ki = 1 ∀k ∈ V ∀i ∈ {1, ..., hk} (126)

n∑

k=1

hk∑
i=1

t̄∑

t=t̄−pi
k+1

zt
ki ≤ Q ∀t̄ ∈ {pi

k, ..., T} (127)

bk ≤ B − hk + 1 ∀k ∈ V (128)

bk ≥ 1 ∀k ∈ V (129)

x`k ∈ {0, 1}, y`k ∈ {0, 1} ∀k, ` ∈ V and k 6= ` (130)

zt
ki ∈ {0, 1} ∀k ∈ V ∀i ∈ {1, ..., hk} ∀t ∈ {1, ..., T} (131)

Constraints (117) through (119) guarantee that no vessel rectangles overlap. Con-

straints (120) and (121) ensure that the selected berthing times and berthing positions

are consistent with the definitions of x`k and y`k, where M is a large positive scalar.

Constraint (122) forces berthing to occur no earlier than arrival time, and Constraint

(123) forces hold processing to start after berthing. Constraint (124) ensures that

vessels depart only after all holds are processed, and Constraint (125) is a valid in-

equality that provides a lower bound on ck given tk. Constraint (126) ensures that

work starts on each hold of each vessel and Constraint (127) ensures that no more

103

than Q quay cranes are used at any time period. Constraints (128) and (129) guar-

antee that all vessels fit on the berth.

5.3 Lower Bound Analysis

In this section, we introduce two polynomially-computable lower bounds for the ob-

jective function value of the dynamic BQCSP.

5.3.1 Lower Bound 1

The first lower bound is obtained by relaxing the crane capacity constraint. If we

assume that Q = B, a quay crane can be positioned at each berth section. In such

a case, each hold of any given vessel can be assigned a crane immediately after the

vessel is berthed. This means that vessel k is always processed in pmax
k time periods

when berthed. Therefore, the resulting problem is equivalent to the dynamic BAP

introduced in Chapter 2 with pk = pmax
k for vessel k ∈ V . This implies that the

polynomially-computable lower bound introduced for the BAP in Chapter 2 is also

valid for the BQCSP. We call this lower bound LB1 in this chapter.

Theorem 8 LB1 ≥ LBLP where LBLP denotes the objective function value of an

optimal solution to the LP relaxation of the mixed integer program (117)-(131).

Proof. In a feasible solution of the LP relaxation, it is easy to see that berthing times

tk and positions bk can be chosen such that any vessel rectangles may overlap one

another. Furthermore, z variables can be selected in such a way that Constraint (125)

becomes binding, and ck = ak + pmax
k . The rest of the proof follows the discussion

presented in the proof of Theorem 4 in Chapter 2.

5.3.2 Lower Bound 2

The second lower bound is obtained by relaxing the berth length limitation. If we

assume that B =
∑n

k=1 hk, a vessel can be berthed immediately upon arrival. Then,

104

using a similar idea utilized in construction of LB1 in Chapter 2, we can construct a

corresponding parallel machine scheduling problem P2 using the relaxation illustrated

partially in Figure 16. First, each quay crane is treated as a separate parallel machine;

thus, Q identical machines are defined. Next, for hold i of vessel k, we create pi
k jobs,

each with unit length and processing duration. We use a two-dimensional index (i, j)

for each of these jobs, where i refers to the spatial position and j the time position. For

each job (i, j), we set its release time rk
ij = ak + j−1 and due time dk

ij = dk− (pi
k− j).

Parameters αk
ij = 1∑

pk
and βk

ij = fk∑
pk

are assigned to each job (i, j) defined for vessel

k, and will be used as objective function weights. The objective is to assign each

job to a feasible machine, minimizing the sum of total weighted completion time and

total weighted tardiness, given by
∑

k,i,j αk
ij +

∑
k,i,j βk

ij(c
k
ij − dk

ij)
+, where the com-

pletion time ck
ij of job (i, j) for vessel k is tkij +1 when it is processed in time period tkij.

Figure 16: Construction of lower bounding scheduling problem P2 for a given dy-
namic BQCSP instance

Theorem 9 LB2 = dC∗
P2

+Φ−Ψe is a lower bound for the BQCSP where C∗
P2

is the

optimal objective function value of P2 constructed for the BQCSP, Φ =
∑n

k=1

∑hk
i=1

∑pi
k−1

j=1 j
∑hk

i=1 pi
k

,

and Ψ =
∑n

k=1 ak.

105

Proof. Any feasible solution of the BQCSP generates a feasible solution for the

corresponding P2. In such a solution, for each job (i, j) defined for vessel k, ck
ij ≤

ck − pi
k + j holds. Then, ck

ij − dk
ij ≤ ck − pi

k + j − (dk − pi
k + j) = ck − dk. Hence,

n∑

k=1

hk∑
i=1

pi
k∑

j=1

αk
ijc

k
ij ≤

n∑

k=1

hk∑
i=1

pi
k∑

j=1

1∑hk

i=1 pi
k

(ck − pi
k + j) =

n∑

k=1


ck −

hk∑
i=1

pi
k∑

j=1

pi
k − j∑hk

i=1 pk




(132)

and

n∑

k=1

hk∑
i=1

pi
k∑

j=1

βk
ij(c

k
ij−dk

ij)
+ =

n∑

k=1

hk∑
i=1

pi
k∑

j=1

fk∑hk

i=1 pi
k

(ck−dk)
+ =

n∑

k=1

fk(ck−dk)
+ , (133)

which implies

CP2 =
n∑

k=1

hk∑
i=1

pi
k∑

j=1

αk
ijc

k
ij+

n∑

k=1

hk∑
i=1

pi
k∑

j=1

βk
ij(c

k
ij−dk

ij)
+ =

n∑

k=1

ck−
∑n

k=1

∑hk

i=1

∑pi
k−1

j=1 j
∑hk

i=1 pi
k

+
n∑

k=1

fk(ck−dk)
+.

(134)

Since C∗
P2
≤ CP2 ,

C∗
P2

+

∑n
k=1

∑hk

i=1

∑pi
k−1

j=1 j
∑hk

i=1 pi
k

−
n∑

k=1

ak ≤=
n∑

k=1

(ck − ak) +
n∑

k=1

fk(ck − dk)
+. (135)

With all parameters integer, the right hand side of Expression 135, which is the

objective function of the BQCSP, is integer. Hence, LB2 = dC∗
P2

+ Φ−Ψe is a lower

bound for the BQCSP. 2

Theorem 10 P2 can be solved in polynomial time.

106

Proof. P2 can be modeled as a minimum weight matching problem on a bipartite

graph constructed similarly as in the proof of Theorem 3 in Chapter 2. 2

Consequently, the lower bound LB = max{LB1, LB2} is a polynomially com-

putable lower bound for the BQCSP, and by Theorem 8, it is tighter than the lower

bound obtained by the LP relaxation of the MIP presented.

5.4 Solution Method: A Two Phase Tabu Search Heuristic

In order to obtain a good solution, the decision maker should consider allocating

two different resources simultaneously: berth area and quay cranes. Furthermore,

an inferior solution can be improved by changing the berthing position of a vessel,

or modifying the crane allocation plan, or doing both. For example, in Figure 17

schedule A can be improved by changing the berth location of vessel 5 as in schedule

B. Further improvements can be observed by changing the crane schedule using the

berth allocation plan of B. Schedule C represents the case where work is started on

hold 1 of vessel 1 before hold 4 of vessel 4. This shifts the crane idleness in time

period 4 in schedule B to time period 8 in schedule C. In schedule D, we start work

on hold 2 of vessel 5 before hold 1 of the same vessel. This makes it feasible to start

work on vessel 3 on time period earlier.

In the following sections, we provide search methods that combine the ideas in the

tabu search algorithms proposed for the BAP and the QCSP in Chapter 2 and Chap-

ter 4. We first show how these search procedures can be combined in a straightforward

manner using the idea of nested neighborhoods. Then, we discuss the computational

limitations to this approach, and present how the solution procedure can be decom-

posed into two phases for a more efficient and effective search.

107

Figure 17: An illustration of improving a given solution by changing berth schedule
and quay crane schedule

5.4.1 Encoding and Decoding a Solution

We associate a feasible solution of the BQCSP with three attributes; a berth position

vector B, a vessel list Lv, and a global hold list Lh. Among these, the pair (B,Lh) is

sufficient to define a unique berth and quay crane schedule x as follows. Begin with

the first unprocessed hold (k, i) in Lh where k is the vessel index and i is the hold

index within the vessel. If this is the first hold of vessel k considered, we find the first

time period tk ≥ ak where berth sections {bk, ..., bk + hk − 1} are not occupied, and

mark them occupied by vessel k for time periods {tk, ..., T}. Then, we find the first

time period tik where at least one crane is available in time periods {tik, ...tik + pi
k− 1}.

We reduce the number of available cranes at those time periods by 1, and mark

hold i of vessel k as processed. If this is the last hold of vessel k considered, we set

ck = maxi{tik + pi
k} and mark berth sections unoccupied for time periods {ck, ..., T}.

We continue until all holds in Lh are processed. With appropriate data structures,

108

this decoding operates in O(n̂) time where n̂ is the total number of holds. Recall the

discussion in Chapter 4 that describes how this encoding/decoding approach may not

always identify a feasible solution. If there exist two vessels occupying a number of

overlapping berth sections, in order to have a feasible decoding all holds of the first

vessel should be listed before all holds of the second vessel in Lh.

This limitation of the hold list decoding becomes more important for the BQCSP,

because the vessel priority list (which vessels should be berthed before which others)

has not been predetermined like the case for the QCSP. Note that the hold list

limitation implies that if simple swap or insertion moves are used to generate neighbor

solutions by changing Lh, it is impossible to change the relative positions of vessels

sharing overlapping berth sections without encountering infeasible hold lists. For

example, changing the relative positions of vessel 1 and vessel 2 in the berth schedules

given in Figure 17 by modifying the corresponding Lh requires repositioning of all

holds of vessel 1 before all holds of vessel 2 in Lh. This is only possible if either multiple

hold swaps or reinsertions are performed in an iteration, or infeasible solutions are

allowed within the search. Therefore, we associate each solution with a vessel list Lv

where the order of the list determines berthing priority. As will be described later,

this list will help us to change the positions of blocks of holds in Lh, and therefore it

will create a simple mechanism for changing the relative positions of vessel rectangles

on the time-space diagram.

Parallel to the discussions provided in Chapter 2 and Chapter 4, for a given

berth and quay crane schedule x, there always exists an encoding where the berth

schedule component is encoded by B and Lv, and the quay crane schedule component

is encoded by Lh. As mentioned earlier, while a given schedule uniquely defines a

set of berth positions B, it may correspond to many different Lv. Similarly, a given

quay crane schedule may correspond to multiple Lh. Therefore, we again employ a

unique primal vessel list LP
v (x), and a unique primal hold list LP

h (x) when encoding

109

a berth and quay crane schedule x to utilize their benefits described in Chapter 2

and Chapter 4 within the search algorithms designed. Before presenting the details

of these algorithms, we first describe how an initial solution is constructed.

5.4.2 Initial Solution

We generate an initial feasible solution x0 using only a vessel priority list Lv by

constructing a berth position vector using a two-dimensional first-fit (FF) rule and

by constructing a hold processing order by utilizing the maximum-hold-first (MHF)

rule. The FF rule places vessel rectangles k on the time space diagram one by one

in the order specified by Lv at the earliest possible berthing time (i.e., the smallest

time t ≥ ak with hk available contiguous berth sections), and the lowest index berth

section at that time. For each vessel k placed, the MHF rule allocates cranes to holds

in the decreasing order of the hold processing time, and for the hold i to which a

crane is next assigned it finds the earliest time period tik where at least one crane is

available in the next pi
k time periods.

Thus, initial solutions can be generated using any method for creating a sorted

Lv. In our approach, we use LFCFS
v , LEDD

v , and LmEDD
v which respectively denote

the priority lists created by first-come first-served, earliest due date, and modified

earliest due-date (minimum dk/fk first) rules.

The initial solution is chosen to be the one of the above with the smallest objective

function value. This simple approach for building an initial solution mimics decision

rules-of-thumb that a terminal operator might use to generate berth schedules.

5.4.3 Single Phase Search

The single phase search algorithm developed in this section integrates the tabu search

algorithm presented for the QCSP in Chapter 4 as a third layer to the nested tabu

search algorithm provided for the BAP in Chapter 2. This integration is illustrated in

Figure 18 where the QCSP search is referred to as TS3. The resulting layered search

110

approach modifies the berth schedule in the first two layers, and tries to find a good

crane schedule in the innermost layer for each berth schedule visited.

The integration of TS3 to TS2 is very similar to the integration of TS2 to TS1

described in Chapter 2. In the previous one, we initiate a search on berthing positions

of vessels, which changes B, for each qualified move that modifies Lv in the first layer

search. The best berthing position vector B found by the inner search defines the cost

of the corresponding first layer move. In such a nested search algorithm, each move

considered in the second layer results in a berth schedule. Using this, for each berth

schedule visited in the second layer, in order to find a good crane schedule, we initiate

TS3 whose best solution will define the cost of the corresponding second layer. Such

a three layer nested search structure enables us to evaluate different combinations of

berth scheduling and crane scheduling decisions systematically.

Figure 18: Schematic representation of the single phase search approach for the
BQCSP

At the beginning of each TS3 run initiated for the corresponding berth schedule

component of the partial solution x, we generate the initial Lh by sorting holds of

vessels in the order of primal vessel list Lv(x) using MHF rule. We then decode the

resulting Lh into the initial quay crane schedule for the given berth schedule, and

follow the steps of the TS3 provided in Chapter 4. At the end of each TS3 run, the

best quay crane schedule found is combined with the corresponding berth schedule

111

to yield the complete berth and quay crane schedule x.

We provide the step-by-step detail for the proposed search algorithm below. Let

x0, y0, and z0 denote the initial solution; x, y, and z be the current solution; and

x∗, y∗, and z∗ represent the best solutions found by TS1, TS2 and TS3 respectively.

Let C(x) represent the objective function value for solution x. Furthermore, p1, r1,

and q1 are neighborhood parameters for TS1, and p3, r3, and q3 are neighborhood

parameters for TS3.

5.4.3.1 Steps of TS1(x
0, x∗):

Step 1: Initialization. Set p1, r1, and q1. Let x0 be the lowest-cost solution found

from among the three initial vessel lists, LFCFS
v , LEDD

v , and LmEDD
v , each with

a berth position vector determined by the FF rule and a crane schedule deter-

mined by MHF rule. Let Lv, Lh and B be the vessel list, the hold list and the

berth position vector associated with x0. Set x = x∗ = x0. Initialize counters

tT1 = 0 and tS1 = 0, which denote the total number of iterations, and the number

of successive iterations with no improvement in the best objective function value

respectively. Set the value of tM1 , which is the maximum number of iterations

allowed with no improvement.

Step 2: Neighborhood Search. Set tT1 = tT1 + 1. For each candidate list Li
v ∈

NL(p1, r1, q1,Lv), construct an associated Bi by the FF rule and Li
h by the

MHF rule, and let xi be the associated solution. For each solution xi such that

M(xi) is not in the tabu list and has not yet been considered during this step,

run TS2(xi, x
∗
i). Let a be the move i with the smallest value of C(x∗i).

Step 3: Solution Updates. Set x = x∗a, and let Lv = La
v. If C(x) < C(x∗), set x∗ = x

and tS1 = 0. Otherwise, set tS1 = tS1 + 1. Update the tabu list, adding M(x) for

the appropriate random number of iterations and removing any marks whose

duration has expired. If tS1 < tM1 , go to Step 2. Else, stop. The best solution

112

found is x∗.

5.4.3.2 Steps of TS2(y
0, y∗):

Step 1: Initialization. Set the value of s. Set y = y∗ = y0, and let B be the berth

position vector for solution y. Initialize counters tT2 = 0 and tS2 = 0, which de-

note the total number of iterations, and the number of successive iterations with

no improvement the best objective function value respectively. Set the value of

tM2 , which is the maximum number of iterations allowed with no improvement.

Step 2: Neighborhood Search. Set tT2 = tT2 + 1. Construct set VS for y. Consider

each move yj decoded from non-tabu berth position vector Bj ∈ NB(s,VS,B)

combined with primal list LP
v (y) and the yielding MHF rule primal hold list

LP
h (y), and run TS2(yj, y

∗
j). Let b be the move j with the smallest value of

C(y∗j).

Step 3: Solution Update. Set y = y∗b , and let B = Bb. If C(y) < C(y∗), set y∗ = y

and tS2 = 0. Otherwise, set tS2 = tS2 + 1. Update the tabu list by inserting the

reverse berth position move associated with solution yb into the tabu list for the

appropriate random number of iterations, and removing reverse moves whose

duration has expired. If tS2 < tM2 , go to Step 2. Else, stop. The best solution

found is y∗.

5.4.3.3 Steps of TS3(z
0, z∗):

Step 1: Initialization. Set s = 1. Compute Πs
k for each vessel k. Set p3, r3, and

q3. Let z0 be the initial solution found with the primal hold list LP
h (z0). Let

Lh = LP
h (z0), z = z∗ = z0. Initialize the counter tT3 = 0 which denotes the

total number of iterations at current stage. Set the value of tM3 , which is the

maximum number of iterations allowed at each stage.

Step 2: Neighborhood Search. Set tT3 = tT3 + 1. For each candidate list Ll
h ∈

113

N s
L(p, r, q,Lh), first check feasibility. If Ll is feasible, decode it into solution zl.

Construct a list U by ranking the feasible moves in nondecreasing order of C.

Select the first move c in U which is not tabu or C(zc) < C(z∗).

Step 3: Solution Update. Set z = zc and let Lh = Lc
h. If C(z) < C(z∗), set

z∗ = z. Update the tabu list by inserting the reverse swap move associated with

solution zc into the tabu list for the appropriate random number of iterations,

and removing reverse moves whose duration has expired. If tT3 < tM3 , update

tT3 = tT3 + 1 and go to Step 2. Else if s < n, set tT3 = 0, update s = s + 1,

recompute Πs
k for each vessel k, set z = z∗ and Lh = LP

h (z∗), and go to Step 2.

Else, stop. The best solution found is z∗.

5.4.4 Two Phase Search

The three layer neighborhood structure employed by the single phase search approach

is expected to result in high computation times if we desire to search a somewhat large

portion of the solution space. In this section, we describe how that algorithm can be

decomposed into two phases for a more efficient and effective search.

Note that in the single phase algorithm, the first two layers look for possible good

berth schedules, and the third layer is utilized to find a good feasible quay crane

schedule for each berth schedule visited. In the two phase search approach described

in this section, we separate the third layer from the first two layers. In the first phase,

we run TS1 and TS2 just like in the BAP case. However, instead of running TS3 for

each berth schedule x visited, we first relax the crane capacity constraint by setting

Q = B, and hence find a lower bound solution with objective function value LB(x).

Since Q = B means that we have a quay crane ready for each hold immediately after

mooring, such a lower bound schedule can be constructed by decoding the vector

pair (B,Lv) into a solution as described in Chapter 2 assuming pk = pmax
k for vessel

k. Furthermore, for each berth schedule x visited in the first phase, we can quickly

114

construct a feasible solution using the MHF rule having an objective function value

of UB(x). LB(x) gives an idea of how good the vessel rectangles are packed, and

UB(x) provides us a prediction of the impact of crane allocation. Using LB(x) and

UB(x), we calculate a score S(x) for berth schedule x as

S(x) = λLB(x) + (1− λ)UB(x) (136)

where λ is a constant set by the decision maker and has a value between 0 and 1.

During the first phase, we store a set W of best different berth schedules, where

w = W is defined by the decision maker and may depend on the size of the instance.

We say that two berth schedules xa and xb are same if they have the same mark M

determined by an arbitrary function g({bk}, {tk}).

Figure 19: Schematic representation of the two phase search approach for the
BQCSP

In the second phase, for each xj ∈ W , we execute TS3 to find a near optimal

quay crane schedule. In the end, we select the best resulting berth and quay crane

schedule x∗ found after the w TS3 runs performed in the second phase. Figure 19

illustrates the overall procedure. Since TS3 is called only w times for the promising

berth schedules, such a two phase search procedure enables us to search a larger and

more promising portion of the solution space.

115

5.4.5 Additional Remarks

The lower bound LB(x) computed in the two phase search can also be utilized in

the single phase search to increase run time efficiency. At any TS2 iteration, after

move construction, we compute LB(yj) for each move j as described in the previous

section. We then sort them in the nondecreasing order of LB(yj), and start running

TS3 for these moves in that order. In this manner, before evaluating a move, we

can first compare its lower bound with the cost of the best move evaluated so far.

If the lower bound is not less than the cost of the best move found so far, we can

skip this move since it will not be selected at this iteration. As a result, some of

the moves yielding bad solutions can detected and eliminated without running TS3.

Similarly, in two phase search, for each candidate berth schedule x stored in W ,

we first compare LB(x) to the best solution found so far by running TS3 for the

previous berth schedules in W . If the lower bound of the corresponding candidate is

not smaller than the best solution found so far, we can skip that candidate.

We can also use LB(x) to improve the run time of TS3. Note that the objective

function value of the best solution that we can find for the corresponding berth

schedule x cannot be less that LB(x). Therefore, if we find such a solution, we can

terminate TS3. For this reason, whenever the best solution z∗ is updated, we compare

it with the corresponding lower bound for early termination.

116

5.5 Computational Experiments

Computational experiments were conducted on test instances generated in Chapter

2 and used in Chapter 4 in order to evaluate the performance of the algorithms

proposed.

Table 19: Single Phase Search and Two Phase Search parameters used in the com-
putational experiments

Parameter 1PhS 2PhS
p1 3 5
r1 8 10
q1 3 5
tM1 5n 50n

θmin
1 n/2 n/2

θmax
1 n n
s max{2, |V |/3} max{2, |V |/3}

tM2 5 n/2
θmin
2 2 2

θmax
2 5 5
α 1 1
p3 3 5
r3 10 10
q3 3 5
tM3 5

⌈
10UB

LB

⌉
w - 10n

The parameter values for each layer of the search algorithms were determined

by experimentation, and are presented in Table 19 for both the single phase search

(1PhS) and the two phase search (2PhS) versions. Although the parameters used in

the second layer are similar, there exist differences in the first and the third layer. A

smaller neighborhood is considered and fewer iterations are allowed in the first and

second layer searches for 1PhS compared to 2PhS.

Note also that, the number of iterations allowed at each stage of TS3 is dependent

on the gap between lower bound and the upper bound of the corresponding berth

schedule transferred from the second layer. If this gap is larger, such a dynamic

parameter setting lets TS3 run longer.

The mixed integer program provided in Section 5.2 could not solve any of the

117

Table 20: Test results for small BQCSP instances
Instance IS LBLP LB1 LB2 1PhS 2PhS 1PhS Imp. (%) 2PhS Imp. (%)

10 111 45 67 65 98 98 30 30
11 74 41 49 54 64 63 50 55
12 235 46 110 114 159 159 63 63
13 137 44 53 70 92 87 67 75
14 95 40 45 53 66 64 69 74
15 113 46 61 66 83 83 64 64
16 79 40 47 52 70 70 33 33
17 209 51 108 118 154 154 60 60
18 239 49 89 107 160 154 60 64
19 170 45 69 82 130 130 45 45
20 219 54 87 77 160 160 45 45
21 257 50 103 105 173 173 55 55
22 191 53 85 112 148 142 54 62
23 266 54 84 90 130 130 77 77
24 152 47 66 71 87 87 80 80
25 232 55 84 118 156 155 67 68
26 222 58 93 109 146 146 67 67
27 340 56 107 98 164 164 76 76
28 208 57 91 134 162 162 62 62
29 200 52 82 113 159 160 47 46
30 337 60 112 124 168 168 79 79
31 490 61 194 262 307 301 80 83
32 297 61 95 101 145 141 78 80
33 506 61 190 257 313 305 78 81
34 371 62 115 139 192 192 77 77
35 451 52 150 192 245 231 80 85
36 302 59 101 113 154 154 78 78
37 240 60 93 101 133 132 77 78
38 731 65 234 269 391 392 74 73
39 609 65 253 273 357 351 75 77

instances considered to optimality. Therefore, we generated and additional set of 100

very small instances with B = 7, Q = 4 and n = 5. CPLEX was able to solve them

in 10 minutes on average on an Intel 2.4 GHz Pentium processor running Linux with

2 GB memory. However, the maximum run time observed reached 2.5 hours for some

instances. On the other hand, both 1PhS and 2PhS provided the optimal solution

under 2 seconds for these instances.

Table 20 and Table 21 present the three polynomially-computable lower bounds,

LBLP , LB1 and LB2. Theorem 8 proves that max{LB1, LB2} ≥ LBLP , and the

empirical results show that the lower bounds LB1 and LB2 introduced improves LBLP

substantially. This improvement is 73%, 95%, and 201% for small instances (1y, 2y,

118

Table 21: Test results for large BQCSP instances
Instance IS LBLP LB1 LB2 1PhS 2PhS 1PhS Imp. (%) 2PhS Imp. (%)

40 177 82 102 95 114 113 84 85
41 199 92 108 96 126 126 80 80
42 287 87 112 156 196 188 69 76
43 171 87 102 101 122 122 71 71
44 98 70 71 61 77 77 78 78
45 194 91 97 86 111 111 86 86
46 307 90 106 118 160 152 78 82
47 248 93 106 102 140 140 76 76
48 116 89 90 75 96 96 77 77
49 177 86 93 86 113 112 76 77
50 515 119 200 225 283 264 80 87
51 153 93 95 88 119 114 59 67
52 545 108 175 245 311 305 78 80
53 435 116 156 202 256 244 77 82
54 651 114 280 311 435 420 64 68
55 302 114 145 142 179 179 78 78
56 362 116 135 170 201 197 84 86
57 102 78 80 81 92 91 48 52
58 527 116 148 212 260 253 85 87
59 409 115 171 188 252 245 71 74
60 562 123 256 246 370 359 63 66
61 1102 134 377 508 605 587 84 87
62 1535 149 715 712 965 927 70 74
63 845 139 288 312 467 449 71 74
64 542 126 198 188 252 240 84 88
65 766 126 245 212 427 373 65 75
66 851 145 278 381 474 466 80 82
67 668 144 260 304 424 428 67 66
68 305 128 146 150 198 190 69 74
69 384 123 161 181 262 242 60 70

and 3y), and 20%, 69%, and 138% for large instances (4y, 5y, and 6y) respectively.

The objective function values of the best solutions found by 1PhS and 2PhS are

also presented in Table 20 and Table 21. Note that for 16 of the small instances in

Table 20, both approaches found solutions with the same cost. For the remaining,

2PhS found better solutions in 12 cases an 1PhS performed better in only 2 instances.

For large instances, 2PhS substantially outperformed 1PhS by finding better solutions

in 22 instances. In 7 of the remaining instances they found solutions with the same

objective function, and in only one case 1PhS found a slightly better solution.

The last two columns in Table 20 and Table 21 measure the precentage improve-

ment (reduction) in the optimality gap computed between the best lower bound and

119

the initial solution versus the gap computed for the best solutions by the 1PhS and

the 2PhS respectively. The average gap improvement is 53%, 63% and 78% by the

1PhS, and 56%, 64% and 79% by the 2PhS for instances 1y, 2y, and 3y. For large

instances 4y, 5y and 5y, these figures are 77%, 72% and 71% for 1PhS, and 79%, 76%

and 76% for 2PhS respectively. This indicates that the performance of the search

algorithms proposed do not appear to diminish as problem size increases.

Table 22: Average computation times observed (in sec.) for test BQCSP instances
Set 1PhS 2PhS 2PhS (P1) 2PhS (P2)
1 57 41 11 30
2 99 60 21 39
3 257 104 32 72
4 2810 241 133 108
5 5059 1234 540 694
6 10408 1817 916 901

Table 22 presents the computational times in seconds observed during tests. As

one can see clearly, two stage search method reduces the computational time while

providing better solutions. The last two columns in the table presents the run time

used by each phase of the 2PhS. With the parameters used, almost equal time was

spent on searching for promising berth schedules and good quay crane schedules.

Lastly, Table 23 exposes the benefit of simultanous berth and quay crane schedul-

ing. The columns SEQ and SIM respectively present the objective function values of

the best solutions found by the sequential and the simultanous berth and quay crane

scheduling. The values in SEQ column are the best solutions found for the QCSP

discussed in Chapter 4. Recall that in that chapter, we first solved the BAP and used

its solution to solve the QCSP. On the average we observe 6.9% and 7.3% reduction

in cost for small and large instances respectively. This saving reaches almost 28% for

some instances.

120

Table 23: Comparison of sequential and simultaneous berth and quay crane planning
Instance SEQ SIM Diff.(%) Instance SEQ SIM Diff.(%)

10 106 98 8.2 40 118 113 4.4
11 65 63 3.2 41 128 126 1.6
12 159 159 0.0 42 236 188 25.5
13 100 87 14.9 43 125 122 2.5
14 67 64 4.7 44 78 77 1.3
15 83 83 0.0 45 111 111 0.0
16 86 70 22.9 46 171 152 12.5
17 160 154 3.9 47 144 140 2.9
18 161 154 4.5 48 96 96 0.0
19 135 130 3.8 49 112 112 0.0
20 164 160 2.5 50 286 264 8.3
21 182 173 5.2 51 124 114 8.8
22 158 142 11.3 52 344 305 12.8
23 134 130 3.1 53 274 244 12.3
24 96 87 10.3 54 425 420 1.2
25 184 155 18.7 55 180 179 0.6
26 154 146 5.5 56 221 197 12.2
27 164 164 0.0 57 94 91 3.3
28 175 162 8.0 58 300 253 18.6
29 171 159 7.5 59 243 245 -0.8
30 195 168 16.1 60 364 359 1.4
31 333 301 10.6 61 653 587 11.2
32 145 141 2.8 62 1039 927 12.1
33 323 305 5.9 63 476 449 6.0
34 196 192 2.1 64 240 240 0.0
35 254 231 10.0 65 383 373 2.7
36 161 154 4.5 66 535 466 14.8
37 134 132 1.5 67 465 428 8.6
38 441 391 12.8 68 203 190 6.8
39 356 351 1.4 69 309 242 27.7

Avg. 6.9 Avg. 7.3

121

CHAPTER VI

THE VOYAGE AND BERTH SCHEDULING PROBLEM

6.1 Introduction

Ocean shipping is the major transportation mode of international trade, and it is

likely to be the predominant method of transporting large volumes at very low costs

between continents in the near future. Parallel to increases in world trade and ocean

shipping demand, the world vessel fleet has experienced enormous growth in the last

few decades. There exist three general modes of operation in ocean shipping: indus-

trial, tramp, and liner [36]. In industrial shipping, the cargo owner or shipper also

controls the ships and manages this fleet to serve its cargo demand at minimal cost.

In tramp shipping, a carrier has a certain amount of contract cargo that it is com-

mitted to carry between specified ports within a specific time frame, and it attempts

to maximize the profit earned from both contracted and spot cargo solicited when

excess capacity is available. Liner shipping carriers operate according to published

itineraries and schedules available to shippers. Although the way they operate may

differ, all shipping companies have one main objective in common: to utilize their

fleets optimally.

In this chapter, we focus on a tactical level problem in liner shipping, which

accounts for more than half of the total cargo volume shipped. Liner shipping differs

significantly from industrial and tramp services especially when it comes to routing

and scheduling issues. The differences result primarily from the fact that liner services

operate on fixed schedules that are determined by vessels sailing circuits of ports. The

number of ships operating on a given liner service route, the distance traveled by a

ship on the route, and the speed of the ships all determine the frequency of service

122

provided on the route, and thus also implies a certain level of customer service between

port pairs.

A liner carrier faces important decisions at different planning levels. At the strate-

gic level, the carrier must determine the fleet size and mix. Because a ship is a very

large capital investment, this strategic decision is extremely important. Then, a ser-

vice network is designed which includes both terminal contracts and the determination

of service routes. Given a service network, the carrier makes tactical decisions such

as the assignment of ships to routes, and scheduling routes at each port visited; these

decisions then allow the carrier to publish itineraries. Cargo booking which is the

decision of accepting or rejecting cargo and routing which is the decision of selecting

paths for booked cargo to connect origin and destination points are key operational

level decisions.

In this study, we focus on the problem of scheduling liner carrier routes (or vessel

voyages) considering berthing limitations at container terminals. A route defines a

sequence of ports to visit for vessels assigned to the route. Many researchers have

studied the problem of designing vessel routes. A comprehensive literature review

is provided in [64], [65] and [12] on the research work conducted in the last three

decades. In [61], a nonlinear integer program and a lagrangean relaxation method is

provided to maximize the total profit by finding the optimal sequence of ports to visit

for each ship as well as the optimal amount of cargo to be transported between each

pair of ports by each ship. More recently, the study presented in [3] integrates tactical

level ship scheduling and an operational level cargo routing problem. A mixed inte-

ger program is formulated and algorithms are developed to solve realistic instances.

Constraints enforce weekly frequency requirements and handle transshipments, which

require overlapping of vessel schedules at some ports to smoothly transfer containers

between routes. A heterogeneous fleet with ships of different sizes, cost structures

and speeds is considered.

123

The problem we study, on the other hand, uses a set of ship routes as input and

schedules vessel voyages on these routes considering berth capacities and terminal

business. At each port visited, ships dock at berths of container terminals for loading

and unloading. Many of these terminals, including large ports in Europe, China,

Singapore, Taiwan, are multi-user terminals. The terminal operator decides when and

where to berth each arriving vessel. Thus, arriving vessels are not always processed

immediately upon their arrival. The actual berthing time of a vessel depends on the

ship traffic and arrangements made with operators of other vessels by the terminal

operator. On the other hand, many terminals in the US, Japan, and Korea are

dedicated terminals. Berths within dedicated terminals are leased by ocean carriers.

Because of high leasing costs, only large ocean carriers and their alliance partners

operate with dedicated berths. Under such arrangements, only vessels employed by

the lessee carrier are processed at the berth, and as a result dedicated terminals have

lower berth utilizations than multi-user terminals. At dedicated terminals, however,

the terminal operator and the carrier practically operate as the same party and thus

the carrier may decide on mooring schedules of all vessels visiting the terminal.

Large ocean carriers have many vessels operating on different routes which visit

both busy multi-user terminals but also intersect at some dedicated terminals. In

this study, we aim to solve the problem of determining when to visit each port for

vessels operating on each predetermined route to minimize total operating cost while

respecting capacity limitations at dedicated terminals and avoiding congested time

periods at multi-user terminals. We name the resulting problem the voyage and berth

scheduling problem (VBSP). The itinerary of a liner route has two components; ports

to visit, and the times to visit these ports. Hence, the VBSP tries to determine the

latter component of liner shipping itineraries optimally for a given set of routes.

124

6.2 Problem Formulation

In the VBSP, we consider a large ocean carrier operating on a set R of predetermined

vessel routes. We assume that vessels operating on the same route are similar in

size, fuel consumption, etc. The set of ports visited by vessels traversing route r is

denoted by Nr ∈ N . N = ND ∪ NM represents the set of all ports served by the

carrier where ND is the set of ports with dedicated terminals, and NM is the set of

ports with multi-user terminals. Ri represents the subset of routes that visit port i.

For each route r, predr(i) and succr(i) respectively denote the ports visited before

and after port i ∈ Nr within the route, and dij represents the sailing distance between

port i and port j. We assume that dedicated terminals have discrete berthing areas

such that only one vessel can be processed at a berth, and all cranes on the berth

can be allocated to the vessel receiving service at the berth. Hence, the capacity, Bi,

of a dedicated terminal (at port i) is expressed by the number of berths leased by

the carrier. We assume that the container handling time required by ships of route r

at terminal i is pre-computed using demand estimates and denoted by pr
i . The pre-

computed processing time should almost accurately represent the actual dwell time

in dedicated terminals since we know the number of quay cranes available for each

ship. However, in multi-user terminals the processing time experienced by a vessel

may be affected by the traffic at the terminal at the time of arrival.

Most large ocean carriers provide regular weekly service at each port in their

networks for each route. Thus, we assume that the service frequency is equal to one

per week for all routes, implying that a vessel will visit each port in a route on the

same day every week. Note that the number of vessels operating on a route depends

on the total duration of the route. For example, a route providing service between

ports on the US East Coast and Europe with a total cycle time of 4 weeks, would

require 4 vessels to provide weekly service.

125

6.2.1 Cost Structure

In this section we discuss costs observed while operating liner shipping routes. While

traversing a route, a vessel can be in three states; it can be sailing, it can be waiting

to get moored, or it can be receiving service at a terminal. Different cost structures

are associated with each of these three states. Furthermore, the number of ships

required to provide weekly service varies by the total route duration. Therefore, we

also assume that each ship assigned to a route requires a fixed cost.

6.2.1.1 Sailing Cost

The two components of sailing cost are the cost of the crew and the fuel consump-

tion. Crew cost can be approximated by an hourly rate paid for the aggregate crew.

Therefore, the crew cost function resembles the one depicted in Figure 20.

Figure 20: Illustration of a typical vessel crew cost function used in VBSP

Fuel consumption, on the other hand, depends on the speed of the ship, and it

is expected to be the major component of the operating expenses of a ship. For

a general diesel-powered vessel, the fuel consumption of the main engines is directly

related to the third power of the sailing speed [63]. Although the relationship between

speed and fuel consumption is an empirical one, the third power of the speed is a good

126

approximation and supported by regression analysis as well as theoretical models [15].

A small size ship of 1500 TEUs which burns around 40 tons of fuel per day at nominal

(maximum) speed may save 20 tons per day by reducing the speed by 20%, and at

$1250 per ton these savings amount to $25000 per day. The largest container ship in

use, Emma Maersk, with a capacity of 11000 TEUs burns 310-320 tons of fuel per

day at nominal speed. Using the following notation,

d: leg distance,

ν0: nominal speed,

ν: sailing speed,

t0: minimum possible sailing duration (d/ν0),

t: sailing duration (d/ν),

f0: daily fuel consumption at nominal speed,

f : daily fuel consumption at sailing speed,

F0: total fuel consumption at nominal speed,

F : total fuel consumption at sailing speed,

[63] provides the following expression:

f

f0

=
(ν

ν0

)3

=
(t0

t

)3

.

Since F0 = f0t0 and F = ft, the following expression relates total fuel consumption

to sailing time:

F = F0

(t0
t

)2

.

Therefore, the fuel cost function is expected to resemble the one provided in Figure

21. As depicted in the figure, the fuel cost function is defined within the range of

minimum and maximum possible ship speeds, νmin
rij and νmax

rij , for a given leg from i

to j of route r. νmin
rij is set in order to satisfy a desired maximum travel time along

the leg, such that the maximum travel time is acceptable from the perspective of

customer service and will not lead to a decrease in shipping demand. On the other

127

Figure 21: Illustration of a typical fuel consumption function used in the VBSP

hand, νmax
rij is determined by considering the absolute vessel maximum speed and the

fuel tank capacity of the ships used on route r, and the distance between port i and

port j. If dij is short, νmax
rij is set equal to the maximum speed. However, for long

legs, νmax
rij is set to be the fastest speed for the vessel to complete the leg without

fuel replenishment. Then, minimum and maximum sailing times are computed as

tmin
rij = dij/ν

max
rij and tmax

rij = dij/ν
min
rij .

Fuel cost and crew cost functions may be different for each route and for each leg

of the route.

6.2.1.2 Waiting Cost

While waiting at port to be berthed, no fuel is burned by main engines of the ship;

however, a small amount of fuel is used for auxiliary systems and the cost of the crew

is incurred. Therefore, waiting cost is modeled as a linear function of time.

6.2.1.3 Terminal Cost

The cost incurred at container terminals depends on whether the terminal is dedicated

or multi-user. However, in both cases the total cost is related partly to the number of

containers handled. Ocean carriers usually enter into long term leases for dedicated

128

terminals. Lease costs may include fixed charges for handling containers, or there

may exist additional per visit charges related to the volume of cargo handled. We

assume that these handling costs are not dependent on the day/time of the week the

terminal is visited. This assumption os reasonable since the time required to load

and unload containers can be predicted accurately at dedicated terminals. Thus, the

cost of docking at such terminals can be omitted in our optimization problem.

Figure 22: Illustration of typical terminal cost functions used in the VBSP

In busy multi-user terminals, on the other hand, it is possible that the cost of

berthing will be related to the time of the visit. In such terminals, there exist heavy

and light traffic periods throughout the week. In heavy traffic periods, ship processing

may be delayed because of berth and quay crane limitations along with the scarcity

of other resources. In such time periods, terminal operators may charge more for each

container handled. The expected terminal cost functions are illustrated by Figure 22,

and we assume that they may vary for each route visiting the same terminal.

129

6.2.1.4 Ship Cost

The number of ships required to operate a route with the desired service frequency

is related to the total duration of the route. Naturally, there exists a desired number

of ships for each route; however, traversing a route in a shorter or longer amount

of time with fewer or more ships may result in better overall operating cost. In our

model we define the number of ships operating on each route as a decision variable.

The marginal cost of assigning an additional ship to a route can be constant or may

increase as we add more ships to the route.

6.2.2 Modeling with Network Flow

In this section, we provide a mathematical formulation based on network flow which

can be used to solve the VBSP. This formulation enables us to model the nonlinear

sailing cost by discretizing time. We construct a time expanded network represented

by a directed graph G = (V,A). V is constructed by defining ω vertices for each

port that the ocean carrier provides service. ω represents the number of time periods

in one week. Thus, each time period is equal to (7 × 24)/ω hours. Each vertex is

represented by υ(i,t) where i is the port index and t is the time index. The total

number of vertices in G is ω|N |.
The arc set A contains two disjoint subsets A1 and A2. A1 is the set of terminal

arcs defined for each route r ∈ R. These arcs connect υ(i,t) to υ(i,t+1) for 1 ≤ t < ω,

and υ(i,ω) to υ(i,1) for all i ∈ Nr. Terminal arcs represent berthing at the corresponding

terminal for container unloading and loading. There exist ω|Nr| terminal arcs defined

for route r, and the total number of terminal arcs is ω
∑

r∈R |Nr| in the network. A2

is the set of voyage arcs defined for each route r ∈ R. Voyage arcs connect υ(i,t) to

υ(j,u) where i ∈ Nr, j = succr(i), and 1 ≤ t, u ≤ ω. As the name indicates, voyage

arcs represent vessel voyages from one port to another. For example, when ω = 28

(each time period is a quarter day), an arc connecting υ(1,19) to υ(2,11) represents

130

Figure 23: Representation of the graph used to model the VBSP

a voyage that starts at 19th time period (Friday 12:00pm) in the week at port 1,

and ends at 11th (Wednesday 12:00pm) time period in the week at port 2. This arc

represents a voyage duration of 20 + ωk time periods (5 + 7k days) where k is a

nonnegative integer and given by the data. For each leg of route r, ω2 voyage arcs are

defined to cover all temporal possibilities. The total number of voyage arcs in G is

ω2
∑

r∈R |Nr|. Therefore, |A2| = ω|A1| and |A| = ω(ω + 1)
∑

r∈R |Nr|. This indicates

that the choice of the time period length significantly affects the size of the graph

constructed. Assuming a long time period length like one day reduces the size of the

graph and probably makes the problem easier to solve; however, the solution obtained

will be too rough to accurately handle dedicated terminal capacity constraints and

any transshipment modeled. On the other hand, shorter time period lengths (like

one hour) provide better planning while increasing the graph size and making the

problem harder to solve in practice.

As mentioned before, a vessel can be in either one of the three states: sailing,

waiting, and berthed. However, waiting can be considered as sailing with zero speed.

131

Figure 24: Illustration of the voyage cost function used in the model constructed
for the VBSP

This reduces the number of states to two, and we say that a vessel is either sailing or

berthed at a terminal at any time period. These two states can be covered by voyage

arcs and terminal arcs in the graph constructed.

Voyage cost can be defined by combining fuel cost and crew cost as depicted in

Figure 24 for each route and each leg of the route. It is a convex function of time

having a minimum value at t∗. We assume that waiting, if there is any, occurs after

sailing. The variation in leg duration is limited by one week. Therefore, the voyage

cost is defined in [tmin
rij , tmin

rij + ω). Note that this does not limit sailing for more

than one week which is very common for trans-Atlantic or trans-Pacific lags, and the

maximum one week variation on leg duration is a valid assumption in practice.

In our model, V τ
rij denotes the cost of route r ships going from port i to port j in τ

time periods, P r
it is the cost of receiving service by ships traversing route r at terminal

i at time period t in the week, and Qr
l is defined as the cost of operating route r with

l ships. f r
(i,t)(j,u) represents the amount of flow from υ(i,t) to υ(j,u). The variable κr

l

has a value of 1 if l ships are assigned to route r, and 0 otherwise. Furthermore,

132

[t]ω ≡ (t − 1)(mod ω) + 1 is defined to calculate and expose time correctly. Hence,

the VBSP can be formulated as follows.

Minimize
∑
r∈R

∑
i∈Nr

j=succr(i)

tmin
rij +ω−1∑

τ=tmin
rij

V τ
rij

ω∑
t=1

f r
(i,t)(j,[t+τ]ω) +

∑
r∈R

∑

i∈Nr∩NM

ω∑
t=1

P r
itf

r
(i,t)(i,[t+1]ω) +

+
∑
r∈R

νmax
r∑

l=νmin
r

Qr
l κ

r
l (137)

subject to

tmin
rki +w−1∑

τ=tmin
rki

k=precr(i)

f r
(k,[t−τ]ω)(i,t) + f r

(i,[t−1]ω)(i,t) = f r
(i,t)(i,[t+1]ω) +

tmin
ij +w−1∑

τ=tmin
ij

j=succr(i)

f r
(i,t)(j,[t+τ]ω)

∀r ∈ R, ∀i ∈ Nr, 1 ≤ t ≤ ω (138)

tmin
rij +w−1∑

τ=tmin
rij

k=precr(i)

f r
(k,[t−τ]ω)(i,t) =

tmin
rij +w−1∑

τ=tmin
rij

j=succr(i)

f r
(i,[t+pr

i]ω)(j,[t+pr
i +τ]ω) ∀r ∈ R, ∀i ∈ Nr, 1 ≤ t ≤ ω

(139)

smax
r∑

l=smin
r

κr
l = 1 ∀r ∈ R (140)

∑
i∈Nr

j=succr(i)

tmin
rij +w−1∑

τ=tmin
rij

τ

ω∑
t=1

f r
(i,t)(j,[t+τ]ω) +

∑
i∈Nr

pr
i = ω

smax
r∑

l=smin
r

lκr
l ∀r ∈ R (141)

tmin
rij +w−1∑

τ=tmin
rij

j=succr(i)

ω∑
t=1

f r
(i,t)(j,[t+τ]ω) = 1 ∀r ∈ R, ∀i ∈ Nr (142)

133

∑
r∈Ri

f r
(i,t)(i,[t+1]ω) ≤ Bi ∀i ∈ ND, 1 ≤ t ≤ ω (143)

κr
l ∈ {0, 1} ∀r ∈ R, smin

r ≤ l ≤ smax
r (144)

f r
(i,t)(i,[t+1]ω) ∈ {0, 1} ∀r ∈ R, ∀i ∈ Nr, 1 ≤ t ≤ ω (145)

f r
(i,t)(j,[t+τ]ω) ∈ {0, 1} ∀r ∈ R, ∀i ∈ Nr, j = succr(i), 1 ≤ t, τ ≤ ω (146)

Objective function (137) minimizes total flow cost on voyage and terminal arcs

as well as total cost of vessels used. Constraint (138) is the general flow balance

constraint defined for each υ(i,t). Vessels operating on route r are required to spend

pr
i time periods at each terminal i ∈ Nr. In the other words, a vessel that berths

terminal i at time period t leaves at time period t + pr
i . For this reason, Constraint

(139) sets voyage arc inflow at time period t equal to voyage arch outflow at time

period t + pr
i . Constraint (140) guarantees that only one of the possible fleet size

possibilities can be selected for each route r. In this constraint, smin
r and smax

r are the

minimum and maximum number of vessels that can be assigned to route r respectively.

The expression
∑smax

r

l=smin
r

lκr
l gives the number of vessels operating on route r which is

equivalent to the duration of route r in weeks. Therefore, Constraint (141) relates

the duration of route r to the number of vessels assigned to route r. Constraint (142)

ensures that the total amount of flow on each leg of each route is equal to one. This

also initiates flow on G for each route considered. Capacity of dedicated terminals

are considered by Constraint (143) which limits the total amount of flow passing on

terminal arcs by the number of berths the terminal has. (144) sets κr
l as binary

variables. Arc flow variables are also defined as binary variables by (145) and (146).

134

6.2.3 Analysis of the Network Flow Formulation

Definition 4 A valid route flow (say defined for route r) is a flow that circulates

on a cycle in G which consists of Nr voyage arcs (one voyage arc per leg (i, j)), and

∑
i∈Nr

pr
i terminal arcs (pr

i adjacent terminal arcs for each port i) where i ∈ Nr and

j = succr(i).

Lemma 6 The mathematical program (138) - (146) solves the corresponding VBSP.

Proof. A feasible solution of the VBSP can be represented as a collection of unit

valid route flows defined for each route on G. Such a flow also respects dedicated

terminal capacities. Any feasible solution to (138) - (146) defines a set of unit valid

route flows because flow variables are binary and (142) guarantees unit flow on ex-

actly one arc per leg for each route while (138) and (139) guarantee unit flow on

exactly pr
i adjacent terminal arcs for port i of route r. Furthermore, (143) ensures

dedicated terminal capacity feasibility. Therefore, any feasible solution to the VBSP

is also a feasible solution to the mathematical program (138) - (146) and vice versa. 2

The mathematical model (138) - (146) is a multi-commodity network circulation

model with side constraints where each route r can be considered as a commodity.

Constraint (143), which is actually a flow bundle constraint, is the only constraint

that binds commodities (routes). In the other words, if Constraint (143) is relaxed,

the problem can be decomposed into |R| separate problems defined for each route.

This also implies that any route which operates only on multi-user terminals can

be optimized independent of others. In the general multi-commodity network flow

problem, when flow bundle constraints are relaxed the subproblems are reduced to

single commodity network flow problems with unimodular node-arc incidence matrix.

This means that when flow variables are set as continuous variables, there exists an

integer flow which is optimal for each subproblem. However, in our problem with the

135

model presented, this is not the case when Constraint (143) is relaxed, and (145) and

(146) are replaced with (147) and (148).

0 ≤ f r
(i,t)(i,[t+1]ω) ≤ 1 ∀r ∈ R, ∀i ∈ Nr, 1 ≤ t ≤ ω (147)

0 ≤ f r
(i,t)(j,[t+τ]ω) ≤ 1 ∀r ∈ R, ∀i ∈ Nr, j = succr(i), 1 ≤ t, τ ≤ ω (148)

Lemma 7 When Constraint (143) is relaxed, for given feasible κr
l values, there may

exist a fractional solution to the linear program (138) - (142),(147), and (148) which

is better than any of the feasible integer solutions.

Proof. We prove the correctness of Lemma 7 using the following example. Consider

a route r that consists of two ports 1 and 2. Let ω = 4, pr
1 = pr

2 = 2. The cycle

represented by red arcs and the cycle represented by blue arcs both define feasible

solutions with unit flow, and they yield valid route flows meaning feasible solutions

to the corresponding VBSP. However, the two cycles represented by solid arcs also

define a feasible solution with a flow of 1/2. Note that such a flow is not a valid

route flow and cannot represent a feasible solution for the corresponding VBSP. On

the other hand, such a flow does not use any terminal arcs and expected to have a

smaller cost than any other valid route flow when terminal arc costs are high. 2

In order to eliminate fractional solutions similar to the one illustrated above,

we define the following two valid inequalities. Expression (149) says that the total

flow on terminal arcs for each route-terminal pair should be at least as large as the

processing time required by the corresponding route at the corresponding terminal.

For an integer solution this implies that at least pr
i arcs should carry a unit flow for

each route r visiting terminal i. Expression (150) indicates that starting at time t,

the successive pr
i terminal arcs should carry a flow at least as large as the total flow

136

Figure 25: An example of a possible fractional optimal solution for the model

on voyage arcs entering υ(i,t) for each route r. Therefore, (149) and (150) together

with (139) guarantee that a flow entering υ(i,t) via a voyage arc should follow the path

υ(i,t), υ(i,t+1), ..., υ(i,t+pr
i) on terminal arcs and leaves υ(i,t+pr

i) via a voyage arc.

ω∑
t=1

f r
(i,t)(i,[t+1]ω) ≥ pr

i ∀r ∈ R, ∀i ∈ Nr (149)

tmin
ij +w−1∑

τ=tmin
ij

k=precr(i)

f r
(k,[t−τ]ω)(i,t) ≤ f r

(i,t+t̄)(i,[t+t̄+1]ω) ∀r ∈ R, ∀i ∈ Nr,

1 ≤ t ≤ ω, 0 ≤ t̄ < pr
i (150)

Lemma 8 When Constraint (143) is relaxed , for given feasible κr
l values, there exists

an integer optimal solution to the linear program (138) - (142), and (147) - (150).

Proof. In this formulation, any feasible flow defined for route r should travel on pr
i

successive arcs on each i ∈ Nr, and Constraint (141) sets the duration of total flow

equal to K weeks where K is the number of vessels operating on the route. Further-

more, since there is no source or sink nodes and any feasible flow is a circulation, it

can be decomposed into a set of flows traversing a finite number of cycles. Therefore,

when Constraint (143) is relaxed, any feasible flow defined for each route should either

137

consists of valid route flows, or be a flow on a cycle illustrated as in part A of Figure

26.

Figure 26: Existence of an optimal valid route flow on the graph

The flow on the cycle illustrated in part A has a value of 1/2 and travels on two

adjacent paths having durations of K − ε and K + ε weeks (a combination of more

than two paths is also possible and the following discussion can easily be modified

for any such case). In the illustration, the flow of 1/2 units travel on adjacent blue

(starts at υ(1,2) and ends at υ(1,1)) and red (starts at υ(1,1) and ends at υ(1,2)) paths

having durations of 11 and 13 time periods respectively where K = 3, ω = 4, and

pr
i = 2 for i = {1, 2, 3}. For any such flow, there exists a leg where one path has

an arc having a duration of k + ε and the other one has an arc having a duration of

k− ε. In the illustration, the blue path has an arc from υ(2,4) to υ(3,1) having a travel

time of 1 time period, and the red path has an arc from υ(2,3) to υ(3,2) having a travel

time of 3 time periods. However, there exists another solution which uses the arcs

from υ(2,4) to υ(3,2) and υ(2,3) to υ(3,1) instead of the arcs from υ(2,4) to υ(3,1) and υ(2,4)

to υ(3,1). Since voyage cost is a convex function of time, such an alternative solution

cannot have a higher cost. Moreover, it is a combination of a number (in this case

two) of valid route flows as depicted in part B of Figure 26. In such a solution blue

138

and red cycles should have the same unit flow cost in order to be optimum, and a unit

flow traversing any one of these cycles defines an alternate optimal solution which is

integer. 2

Lemma 9 When terminal arc flow variables, f r
(i,t)(i,[t+1]ω), are set binary for each

r ∈ R, i ∈ Nr ∩ND and 1 ≤ t ≤ ω, there exists an optimal solution to (138) - (144),

and (147) - (150) which defines a valid route flow for each route r, and hence provides

an optimal solution to the VBSP.

Proof. When dedicated terminal flow variables are set binary a solution illustrated

by part A of Figure 26 cannot be feasible. Hence, for each route, any feasible solu-

tion can be decomposed into a set of valid route flows which use the same terminal

arcs for dedicated terminals. Therefore, for each route, a unit flow traversing on the

corresponding cycle of any one of the valid route flow in the optimal solution does

not violate terminal capacity constraints and generates an alternate optimal solution

which is integer. 2

6.3 Hardness of the Problem

In this section we investigate the theoretical hardness of the VBSP. We show that the

VBSP is NP -hard in general whereas polynomial time algorithms can be constructed

for special cases. We also discuss the effect of Lemma 8 and 9 as well as the impact of

dedicated berth utilization on the practical hardness of the problem and the effeciency

of the model presented. We assume that
∑

r∈Ri
pr

i ≤ ωBi for obvious feasibility and

∑
r∈Ri

pr
i /ωBi gives the utilization of terminal i ∈ ND.

Theorem 11 If dedicated terminal capacity constraints are relaxed, the VBSP can

be solved in polynomial time.

139

Proof. Lemma 8 says that for given feasible κr
l values, the linear program (138)

- (142), and (147) - (150) solves the VBSP with relaxed dedicated port capacity

constraints optimally. The number of binary κr
l variables is equal to smax

r − smin
r + 1

for each route r, and Constraint (140) indicates that only one of them has a value of

1 in any feasible solution. Moreover,

smin
r ≥

(∑
i∈Nr

j=succr(i)

tmin
rij +

∑
i∈Nr

pr
i

)/
ω

and

smax
r ≤

(∑
i∈Nr

j=succr(i)

(tmin
rij + ω) +

∑
i∈Nr

pr
i

)/
ω =

(∑
i∈Nr

j=succr(i)

tmin
rij + |Nr|ω +

∑
i∈Nr

pr
i

)/
ω

Consequently,

smax
r − smin

r ≤ |Nr| ≤ |N | (151)

We know that when dedicated terminal capacities are relaxed, the problem can

be decomposed into |R| subproblems, one defined for each route. Since each of these

problems can be solved by setting one of the (smax
r − smin

r + 1) κr
l variables equal

to 1 in turn, (151) indicates that the VBSP with relaxed dedicated port capacity

constraints can be solved by solving |R||N | linear programs, which can be achieved

in polynomial time. 2

Theorem 11 yields the following two corollaries.

Corollary 1 Optimum voyage and berth schedules for vessels operating on routes

that visit only multi-user terminals can be found in polynomial time independent of

other routes.

Corollary 2 A polynomially computable lower bound can be obtained for the VBSP

by relaxing dedicated terminal capacity constraints.

140

Theorem 12 If |ND| = 1, Bi = 1 for i ∈ ND, and multi-user terminal cost is not

time dependent, the VBSP can be solved in polynomial time.

Proof. In such a VBSP variant, the cost of docking at multi-user terminals can

be removed from the objective function since terminal cost and terminal processing

times are constant. This also implies that the schedule at the dedicated terminal

d has no impact on total cost, and a feasible solution can be found trivially since

∑
r∈Rd

pr
d ≤ ω. Therefore, the optimization problem is reduced to the problem of

finding cr which is the sum of the optimal voyage and vessel costs for each route r.

Since scheduling at the dedicated terminal is trivial, this can be achieved by relaxing

Constraint 143, and solving each subproblem defined for each route. Theorem 11 says

that this can be achieved in polynomial time. 2

Theorem 13 If |ND| = 1, Bi = 1 for i ∈ ND, and multi-user terminal cost is time

dependent, the VBSP is NP -hard.

Proof. When multi-user terminal cost is time dependent, the schedule generated for

the dedicated terminal d affects route cost. For any time period that route r vessels

are scheduled at the dedicated terminal, there may exist a different optimum cost

(voyage and ship cost) for traversing the rest of the route. However, the optimum

cost of docking at the dedicated terminal at time t for route r vessels, which is denoted

by crt, can be found in polynomial time as Theorem 11 indicates. Therefore the VBSP

can be transformed into a variant of the single machine scheduling problem with time

dependent processing cost, and can be reformulated as follows.

Minimize z =
∑
r∈Rd

∑
1≤t≤ω

crtxrt (152)

141

subject to

ω∑
t=1

xrt = 1 ∀r ∈ Rd (153)

∑
r∈Rd

t̂∑

t=t̂−pr
d+1

xr[t]ω ≤ 1 1 ≤ t̂ ≤ ω (154)

xrt ∈ {0, 1} ∀r ∈ Rd, 1 ≤ t ≤ ω (155)

In the formulation, xrt is a binary variable equal to 1 when route r vessels are

scheduled to dock at time period t at the dedicated terminal and 0 otherwise.

We know that the single machine scheduling problem 1||∑r wrUr is NP -hard [60].

In this problem, pr and dr denotes the processing time and due time of job r. If tr

denotes the start time of job r, Ur = 1 if tr + pr > dr and Ur = 0 otherwise. wr

denotes weight defined for job r. Any instance of 1||∑r wrUr can be converted into

the decision version of the corresponding VBSP formulated above as follows.

ω =
∑

r

pr, z = 0, and crt =





0 if t + pr ≤ dr,

wr dr < t + pr ≤ ω

M otherwise.

Therefore, we can conclude that when |ND| = 1, Bi = 1 for i ∈ ND, and multi-

user terminal cost is time dependent, the VBSP is NP -hard. 2

Theorem 14 Bi ≥ 2 for at least one i ∈ ND, the VBSP is NP -hard.

Proof. Consider a dedicated terminal d with Bd = 2. By obvious feasibility assump-

tion
∑

r∈Rd
pr

d ≤ 2ω; however, in order to have a feasible solution to the correspond-

ing VBSP we need to answer whether or not there exists subsets S1 and S2 where

S1 ∪ S2 = Rd and S1 ∩ S2 = ∅ such that
∑

r∈Sk
pr

d ≤ ω for k = 1, 2. This decision

problem is NP-complete because it is an instance of the partition problem. There-

fore, we conclude that when Bi ≥ 2 for at least one i ∈ ND, the VBSP is NP -hard. 2

142

Corollary 3 The VBSP is NP -hard in general.

Lemma 8 and Theorem 11 indicate that any route that operates only on multi-

user terminals can be separated from the model and the optimal voyage schedules on

such a route can be determined in polynomial time. This helps reducing the size of

the NP -hard problem. Furthermore, Lemma 9 suggests that defining flow variables

only on dedicated terminal arcs as binary is enough to find the optimal solution of

the VBSP. This further reduces the practical hardness of the problem since at most

|ND|
|N |(ω+1)

of the flow variables are defined for dedicated terminal arcs.

Utilization of dedicated terminals also impacts the practical hardness of the VBSP.

Lower berth utilization is equivalent to relaxing the corresponding berth capacity

constraint. Theorem 11 says that when this constraint is relaxed, the VBSP can be

solved easily. Therefore, when dedicated berth utilization in the problem instance

is lower we expect the proposed model to perform better in finding feasible integer

solutions.

6.4 Further Discussion

An ocean carrier considers anticipated shipper demand while determining ship routes

and scheduling ships on these routes. Routes should be constructed to cover all ports

that the carrier provides service and ship schedules should enable efficient and effec-

tive cargo booking and routing while providing customer satisfaction and consistent

demand.

In the VBSP, we basically focus on the temporal aspect of operating predeter-

mined ship routes. The model we constructed determines optimal berthing times at

each port while considering berth capacities at dedicated terminals and congested

time periods at multi-user terminals. This tactical level planning affects decision

making in the operational level. Because of this reason, while determining berth and

143

voyage schedules, the ocean carrier may want to consider additional important issues

including terminal time windows, reasonable service line durations, planning of trans-

shipments, and reliability of constructed itineraries. In this section, we describe how

the proposed model can be extended to handle these additional important real life

issues.

6.4.1 Terminal Time Windows

Terminal time windows may exist both in dedicated and multi-user terminals. One

reason is the temporal regularity of demand. If some cargo regularly appears at a

terminal at a given time period in each week, the ocean carrier may want ships of

a suitable route to visit this terminal at or around the corresponding time period.

Besides, terminal operators of multi-user terminals may provide time windows for the

ocean carrier. In such cases, the ocean carrier can receive service at such terminals

only in the time periods specified.

Terminal time windows can be incorporated in our model as follows. Let’s [lri , u
r
i]

denote a time window where lri is the earliest time period that a ship operating on

route r can dock at terminal i, and ur
i = lri + λr

i is the latest time period it can leave.

Here, pr
i ≤ λr

i < ω for feasibility. Then, Constraint (156) provided below correctly

models terminal time windows.

lri +λr
i∑

t=lri

f r
(i,[t]ω)(i,[t+1]ω) ≥ pr

i ∀r ∈ R, ∀i ∈ Nr (156)

6.4.2 Service Line Durations

Ocean carriers compete on providing fast service for shippers. In order to have a

consistent demand, duration of service lines should be as short as possible or at least

no longer than ones of competitors. A liner route consists of two parts. We call the

first part the service path, and the set of ports in the service path is denoted by

Pr ⊂ Nr. The second part is called the return path, and the set of ports in the return

144

path is Nr\Pr. The total duration of the route is related to the number of vessels

operating on the route as depicted by Expression (141); however, the ocean carrier

may want to limit the duration of the service path in order to provide fast service.

This can be modeled by Constraint (157) provided below where µr is the maximum

allowed duration for the service path of route r.

∑
i∈Pr

j=succr(i)

tmin
rij +w−1∑

τ=tmin
rij

τ
ω∑

t=1

f r
(i,t)(j,[t+τ]ω) +

∑
i∈Pr

pr
i ≤ µr ∀r ∈ R (157)

6.4.3 Transshipments

Some of the ports that vessels of an ocean carrier visit while traversing their routes

may act as transshipment ports. Transshipment ports are intermediate ports where

cargo may change ships (routes). Transshipments are inevitable since an ocean carrier

can only operate a limited number of routes, and the origin and destination of many

cargoes do not both appear on the same route. Therefore, at some terminals cargo

is moved from one ship to another, in the other words, from one route to another.

This can be seen as what airline passengers having itineraries with multiple flights

do where airplanes follow their own regular routes and passengers change airplanes

to reach their destinations.

In order to reduce waiting of cargo at terminals the ocean carrier would like to

overlap berthing of ships on which a transshipment is scheduled as much as possible.

Assume that a transshipment is planned between two routes r and q at terminal i

where pr
i ≤ pq

i . If δi
rq denotes the maximum allowed difference between the time

period route r vessels berth and the time period route q vessels berth at terminal

i, the following constraints can be used to handle the corresponding transshipment.

Constraint (158) is used if route r ships need to berth earlier, and Constraint (159)

145

is employed otherwise.

f r
(i,t)(i,[t+1]ω) ≤

t+δi
rq∑

t′=t

f q
(i,[t′]ω)(i,[t′+1]ω) 1 ≤ t ≤ ω (158)

f r
(i,t)(i,[t+1]ω) ≤

t∑

t′=t−δi
rq

f q
(i,[t′]ω)(i,[t′+1]ω) 1 ≤ t ≤ ω (159)

6.4.4 Schedule Reliability

The reliability of service promised by ocean carriers is very important for shippers.

Highly reliable itineraries increase the competitive advantage of an ocean carrier and

have a positive effect on demand. In this section we describe how the reliability of

voyages and berth schedules can be increased by appropriately modifying the instance

data and parameters.

6.4.4.1 Voyage Reliability

Voyage reliability is defined as the ability to sail at the planned speed. In the pre-

vious section, we mentioned that the maximum speed of a ship on a leg is not only

determined by the speed limit of the ship but also affected by the leg distance, fuel

consumption, and fuel tank capacity. Schedules with very high speeds may increase

the possibility of running out of fuel, and hence decreases reliability of the schedule.

Furthermore, voyage speed and fuel consumption is also affected by weather condi-

tions. As expected, under severe weather conditions, the maximum speed that a ship

can reach decreases while the fuel consumed to achieve that speed increases. Since

our problem is a tactical level problem and weather cannot be predicted in advance,

the ocean carrier may want to put an additional speed buffer, εr
ij, for sailing from port

i to port j within route r. Therefore, the corresponding modified maximum sailing

speed ν̂max
rij and minimum possible sailing time t̂min

rij are defined as follows.

ν̂max
rij = νmax

rij − εr
ij (160)

146

t̂min
rij =

dij

νmax
rij − εr

ij

(161)

Such a modification may not be necessary for all legs. That’s because the problem

has a built-in incentive to move away from the maximum speed since sailing around

maximum speed is expensive. However, especially for long legs fast sailing speeds can

create large absolute reduction in route duration, and decreases the number of ships

required by the route which may generate savings in ship cost. Therefore, for some

instances sailing at high speeds may be attractive for the model, and buffers may be

employed efficiently in order to increase voyage reliability of such legs even though it

can increase the total cost.

6.4.4.2 Berth Reliability

Consider a berth schedule where ships are planned to dock immediately after another

for processing. In such a schedule, any delay observed in the voyage of a ship creates a

delay in the berthing time of that ship and the following ship scheduled on the berth.

This may cause a catastrophic overall disruption of the voyage and berth schedule

constructed. By the obvious feasibility assumption,
∑

r∈Ri
pr

i ≤ ωBi for terminal i ∈
ND. Therefore, ωBi −

∑
r∈Ri

pr
i gives the idle capacity of the terminal. Distribution

of this idleness over the berth schedule determines the reliability of the schedule.

If idle time periods are grouped together in the schedule, we expect the schedule

be less reliable as opposed to an alternative schedule where idle time periods are

distributed between ship processing. In the model presented, such reliable schedules

can be achieved by properly defining a berth buffer, εr
i , for each dedicated terminal i

visited by ships of route r ∈ Ri. To preserve obvious feasibility,

∑
r∈Ri

εr
i ≤ ωBi −

∑
r∈Ri

pr
i (162)

and processing times are modified as follows.

p̂r
i = pr

i + εr
i (163)

147

We assume that buffer is placed after vessel processing in the schedule. Hence, in order

to maintain correctness of the model, the voyage cost in the following leg should be

modified as described below.

V̂ τ
rij = V

τ+εr
i

rij tmin
rij − εr

i ≤ τ < tmin
rij + ω − εr

i . (164)

Furthermore, the minimum sailing time in the following leg should be adjusted as

follows.

t̂min
rij = tmin

rij − εr
i (165)

(166)

The resulting modified voyage cost function for the corresponding leg is illustrated

in Figure 27.

Figure 27: Change in voyage cost function with berth schedule buffer

Such a modification creates more reliable schedules with possible total cost in-

creases. Furthermore, (163) yields higher berth utilizations, which means a tighter

Constraint (143), and makes the problem practically harder to solve. Moreover, when

Bi ≥ 2 for terminal i ∈ ND where buffers are used, parallel to Theorem 14, feasibility

148

of the problem may be endangered. Therefore, the decision maker should be careful

while determining εr
i values.

6.4.5 Fleet Restrictions

In the model proposed, we define the number of vessels operating on each route as

a decision variable, and assume that each vessel assigned to each route comes with

a cost. In such a case, finding a feasible solution is not hard since any arbitrary

feasible berth schedule also defines feasible voyages between ports. However, such

an arbitrary solution may yield very long leg and route durations and may require

many vessels. In the optimal solution found by the model, since vessel cost is taken

into account, we do not expect too many vessels required. However, the decision

maker may still want to limit the total number of ships used for all routes or for a

subset of routes which require similar type of vessels. This can be modeled by adding

the following constraint into the model where R̂ ⊆ R, and K denotes the maximum

number of ships that can be used by routes in R̂.

∑

r∈R̂

smax
r∑

l=smin
r

lκr
l ≤ K (167)

6.5 Computational Experiments

In this section we present the results of our computational experiments. The efficiency

of the mathematical model proposed and the practical hardness of the problem has

been discussed in Section 6.2.3 and Section 6.3 respectively. Parallel to these discus-

sions, our experiments show that the mathematical model proposed can efficiently

solve realistic instances with an off-the-shelf commercial solver. In our experiments,

we use CPLEX 9.0 on an Intel 2.4 GHz Pentium processor running Linux with 2GB

memory.

We first describe how test instances used are generated. The performance of the

149

model is presented on these variable size test instances. Then, impact of time win-

dows, service line durations, transshipments, and schedule reliability improvements

on the cost and the solution time will be discussed.

6.5.1 Instance Generation

The VBSP uses the output of a higher level network design or route construction

problem. Thus, we relate the size of our problem instances to the size of instances

solved by previous papers which study the problem of liner route construction. For

example; [3] solves the corresponding route determination problem for instances hav-

ing 6 to 20 ports. The number of routes in their final solution ranges from 3 to 8

routes. Test instances they consider are close to being realistic since there exists a

limited number of major ports in the world and the number of routes that an ocean

carrier can operate is restricted by the size of its fleet. For instance; a route from Asia

to US East Coast may have a total duration of 8 weeks, which means 8 ships are re-

quired to operate such a route, and most large ocean carriers have around 100 vessels.

Therefore, we consider networks of 3 sizes having 10, 15, and 20 ports denoted by

A, B, and C respectively. For each of these networks we consider five different route

sets. We consider instances with 5, 7, 11, 13, and 15 routes for A; instances with 7,

9, 11, 13, and 15 routes for B; and instances with 9, 11, 13, 15, and 17 routes for

C. Each route visits between 3 and 10 ports. Since we only need to consider routes

visiting at least one dedicated terminal (Corollary 1), such networks represent real-

istic instances and are compatible with published itineraries of major ocean carriers

(see [46], [55], [26], and [6]). In A, ports are distributed in two regions representing

US East Coast and Southeast Asia. In B, we add ports located in regions repre-

senting US West Coast, Korea, and Japan to the ones in A. In addition to these,

network C has ports in regions representing Europe, and South Asia. The distance

matrix is generated according to the published itineraries of major ocean carriers.

150

The number of dedicated terminals ranges from 1 to 5. In our base instances we set

dedicated berth utilization as 65% for all dedicated terminals. The impact of higher

berth utilization is also investigated in the experiments. Container processing time

is generated randomly between half a day and 3 days for each terminal, and adjusted

randomly in order to match utilization figures used for dedicated terminals. The fuel

consumption and crew cost of ships operating on each route is randomly generated

within appropriate realistic values. Similarly, multi-user terminal cost is generated

according to a randomly generated busyness pattern for each terminal. We assume a

fixed ship cost for each route which is a relatively higher figure compared to voyage

and terminal costs. Finally, we assume that each time period represents quarter days,

hence, ω = 28.

6.5.2 Results

We set the optimality gap limit as 0.03% and let CPLEX terminate after 3 hours if

optimality cannot be proved earlier. Table 24 summarizes results. Each grid presents

the polynomially computable lower bound, the optimal cost, total voyage cost, total

terminal cost, total ship cost, and run time in seconds form top to bottom respectively

for each network and dedicated terminal combination. For example; the first grid

1 − A5 provides the result of the scenario with 5 routes and 1 dedicated terminal

on network A, which consists of 10 ports. For each network, we solve instances with

fewest number of routes only with one dedicated terminal, and as the number of

routes increase for the same network we define additional terminals as dedicated.

For example; the instance A5 is solved with only one dedicated terminal. A7 is first

solved with the same single dedicated terminal. Then, an additional terminal is set

as dedicated, and the instance is solved with two dedicated terminals, and so on. In

the other words, going from one row to the next row for a network (column) exposes

the effect of leasing an additional terminal. Same terminals are defined as dedicated

151

for instances on the same row.

Computational experiments show that the model proposed can be used efficiently

to solve realistic instances with commercial MIP solvers. Optimal solutions are found

in 52 to 1245 seconds, which is acceptable for a tactical level problem. We expect to

see an increase in computation time as problem size increases by defining more routes

for a given network; namely, as we go from left to right on the same row within the

network. Although this is the general pattern, for some networks the computation

time is not affected much or even dropped. For example, the scenario 1−A5 is solved

in 77 seconds whereas 1− A13 takes only 61 seconds.

152

T
a
b
le

2
4
:

S
u
m

m
ar

y
of

re
su

lt
s

fo
r

te
st

V
B

S
P

in
st

an
ce

s
N

D
A

5
A

7
A

9
A

11
A

13
B

7
B

9
B

11
B

13
B

15
C

9
C

11
C

13
C

15
C

17
32

40
1

42
51

5
47

46
8

58
52

9
66

67
8

40
44

4
48

28
3

61
00

6
69

13
8

80
13

4
50

75
8

59
97

4
70

55
0

82
09

2
93

72
4

32
44

4
42

51
7

47
49

9
58

55
0

66
69

7
40

48
2

48
32

5
61

02
7

69
14

8
80

21
6

50
81

2
59

98
4

70
56

0
82

12
4

93
86

6
1

86
71

11
48

2
12

61
7

17
26

2
17

53
0

11
37

5
12

27
4

15
05

7
18

35
2

23
05

6
14

52
8

15
65

5
19

04
9

22
87

0
27

46
5

77
3

10
35

88
2

12
88

11
67

11
07

10
51

97
0

17
96

21
60

12
84

13
29

15
11

22
54

24
01

23
00

0
30

00
0

34
00

0
40

00
0

48
00

0
28

00
0

35
00

0
45

00
0

49
00

0
55

00
0

35
00

0
43

00
0

50
00

0
57

00
0

64
00

0
77

52
82

90
61

73
63

10
4

87
30

6
13

1
76

13
7

11
6

43
3

42
17

7
47

17
4

58
14

1
66

31
7

47
95

9
60

96
5

68
87

8
79

83
5

59
79

2
70

34
4

81
60

6
93

48
9

42
19

9
47

21
6

58
16

9
66

37
7

47
98

5
61

04
5

68
93

7
79

94
2

59
83

9
70

37
7

81
71

7
93

65
4

2
-

11
43

2
12

56
9

17
22

9
17

52
9

-
12

16
8

15
06

9
18

29
3

23
01

0
-

15
62

6
18

97
2

22
88

3
27

45
9

76
7

64
7

94
0

84
8

81
7

97
6

16
44

19
32

12
13

14
05

18
34

21
95

30
00

0
34

00
0

40
00

0
48

00
0

35
00

0
45

00
0

49
00

0
55

00
0

43
00

0
50

00
0

57
00

0
64

00
0

11
7

11
9

10
7

96
95

12
2

19
6

37
7

29
1

27
1

19
3

62
8

46
95

0
58

05
0

66
26

5
60

76
4

68
68

9
79

68
8

70
05

3
81

50
2

93
33

0
46

98
1

58
16

2
66

43
4

60
89

1
68

75
2

79
74

2
70

10
2

81
53

2
93

49
8

3
-

-
13

31
4

17
23

7
17

58
8

-
-

14
96

7
18

35
9

23
01

9
-

-
18

86
4

22
86

9
27

38
7

66
7

92
5

84
6

92
4

13
93

17
23

12
38

16
63

21
11

33
00

0
40

00
0

48
00

0
45

00
0

49
00

0
55

00
0

50
00

0
57

00
0

64
00

0
12

5
35

8
55

1
37

3
28

9
63

9
33

3
21

5
88

7
57

78
4

66
00

6
68

56
5

79
41

8
81

21
4

93
09

4
57

83
0

66
15

4
68

59
4

79
56

3
81

27
7

93
24

2
4

-
-

-
17

18
4

17
53

7
-

-
-

18
24

7
22

15
8

-
-

-
22

83
9

27
45

1
64

6
61

7
13

47
14

05
14

38
17

91
40

00
0

48
00

0
49

00
0

56
00

0
57

00
0

64
00

0
54

5
61

6
39

4
88

0
43

3
10

54
65

97
6

79
29

2
92

82
2

66
06

9
79

38
9

92
96

3
5

-
-

-
-

17
53

8
-

-
-

-
22

23
5

-
-

-
-

27
39

5
53

1
11

54
15

68
48

00
0

56
00

0
64

00
0

10
71

12
45

11
37

153

This is because of the fact that the number of routes visiting the single dedicated

terminal is same in both scenarios, which is 5. Since binary variables are defined only

for these routes at the corresponding terminal, the branching and bounding effort

is expected to be similar for the scenarios on the same row. Hence, the increase in

computation time, if there is any, is due to the additional routes that do not visit

any dedicated terminal and do not require any binary variables. We know that such

routes can be optimized separately in polynomial time. Therefore, the planner may

expect to observe very little computation time increase when additional routes visiting

only multi-user terminals are added in the service network if such routes are handled

separately. On the other hand, we see a more consistent increase in computation

time as we go from top to bottom in the same column. This is expected because as

more terminals are defined dedicated more variables are set binary and less number of

routes can be optimized separately in polynomial time. The largest scenario 5−C17,

which has 20 ports, 5 dedicated terminals, and 17 routes, takes 1137 seconds to solve

optimally. The longest computation time is observed for the scenario 5−B15, which

is 1245 seconds.

Table 24 also shows the strength of the lower bound mentioned in Corollary 2.

On average, the lower bound is only 0.11% below the optimal solution. We can

say that the strength of the lower bound is not affected by the problem size. For

scenario 1 − A7, the lower bond is only 0.005% below the optimal solution, whereas

for scenario 3−A13 it is 0.254%, which is the largest gap observed. This means that

the decision maker can have a good estimate of the optimal route operating cost by

quickly computing the lower bound.

In the following sections, we present the effect of other considerations like terminal

time windows, service line duration limits, transshipments, and schedule reliability

improvements on the optimal operating cost and solution time. We select the scenario

5−B15 as our base scenario since it requires the most computation time to find the

154

optimal solution.

6.5.2.1 Terminal Time Windows

We generate 10 time windows for randomly selected port-route pairs in scenario 5−
B15. Results are presented in Table 25. Row 0 provides the statistics for the optimal

solution with no terminal time windows. Row k presents the result in presence of

the first k time windows generated. Hence, each row includes the time windows

considered in the previous row and an additional one.

Table 25: Effect of time windows on the optimal solution
TW LB Total Cost Voyage Cost Terminal Cost Vessel Cost Run Time
0 79292 79389 22235 1154 56000 1245
1 79346 79420 22114 1306 56000 1026
2 79470 79534 22152 1382 56000 963
3 79741 79784 22139 1645 56000 956
4 79883 79933 22142 1791 56000 1067
5 79934 80020 23004 2016 55000 812
6 79952 80032 23024 2008 55000 566
7 80166 80215 23016 2199 55000 657
8 80409 80475 22453 2022 56000 623
9 80614 80686 22423 2263 56000 604
10 80650 80690 22413 2277 56000 552

We observe an average cost increase of 0.16% for each time window added. Since

time windows may force berthing at unfavorable time periods, a pretty consistent

increase in terminal cost is observed. The model tries to compensate that increase

in terminal cost by selecting less costly voyage arcs in the first four scenarios, and

by reducing the total number of vessels in rows 5 to 7. Time windows also increase

the lower bound. The lower bound is 0.12% below the optimal solution in the base

scenario, and 0.08% below the optimal solution on average for scenarios with time

windows. Hence, the lower bound performance is not negatively affected by time

window constraints.

We observe a downward trend in computation cost as we add more time win-

dows. This is expected because adding time windows is equivalent to partially fixing

variables or restricting the feasible set, hence makes the problem easier to solve.

155

6.5.2.2 Service Line Durations

We generate 5 service line duration constraints for 5 randomly selected routes. The

number of legs in each service line varies between 3 and 5. Table 26 summarizes

results. Each row represents the scenario generated by adding another constraint to

the scenario given by the previous row. Row 0 provides the statistics for the optimal

solution with no service line duration constraints.

Table 26: Effect of service line duration limits on the optimal solution
SLD LB Total Cost Voyage Cost Terminal Cost Vessel Cost Run Time

0 79292 79389 22235 1154 56000 1245
1 79362 79408 22225 1183 56000 721
2 79377 79423 22269 1154 56000 698
3 79406 79452 23118 1334 55000 732
4 79429 79479 23174 1305 55000 802
5 79441 79491 23184 1307 55000 1054

The average increase in cost is observed as 0.03% for each service line duration

constraint added. Since such constraints force faster sailing, an increase in voyage

cost is observed. Shorter service lines may also imply shorter route durations which

translates into fewer ships. This is observed in scenarios 3, 4 and 5; however, ships

should sail faster on each leg in such cases, hence voyages become a lot costly. Service

line duration constraints also increase the lower bound. The lower bound is computed

0.06% below the optimal solution on average for scenarios with service line durations.

Experiments also show that service line duration constraints do not increase compu-

tation time. Hence, they can be handled efficiently by the model proposed.

6.5.2.3 Transshipments

We generate 10 transshipment constraints where for each constraint a terminal and

two routes visiting the terminal is randomly selected. Table 27 summarizes results.

Each row represents the scenario generated by adding another constraint to the sce-

nario given by the previous row. Row 0 provides the statistics for the optimal solution

with no transsipment constraints.

156

Table 27: Effect of transshipments on the optimal solution
TRS LB Total Cost Voyage Cost Terminal Cost Vessel Cost Run Time

0 79292 79389 22235 1154 56000 1245
1 79292 79397 22203 1194 56000 1271
2 79292 79405 22185 1220 56000 1368
3 79292 79436 22218 1218 56000 1259
4 79292 79531 22225 1306 56000 1375
5 79292 79539 22192 1491 56000 3496
6 79292 79615 22220 1395 56000 1654
7 79292 79619 22229 1390 56000 1422
8 79292 79621 22231 1390 56000 1928
9 79292 79785 23054 1731 55000 3050
10 79292 79799 23949 1759 55000 2746

Because the lower bound is computed by treating each route separately, trans-

shipment constraints do not have any influence on the lower bound. Therefore, as we

have more such constraints, we expect to have a looser lower bound. For example,

the lower bound is only 0.12% below the optimal solution for Row 0 whereas the

gap is 0.64% for Row 10 where all 10 transshipment constraints are included in the

model. Each transshipment modeled generates a 0.05% increase in the total operat-

ing cost on average. Most of this cost increase is due to the increase in terminal cost

since overlapping of vessel schedules at terminals may require unfavorable berthing

times. We may also expect to see an increase in computation time. Scenarios with

transshipment constraints took 1957 seconds on average.

6.5.2.4 Schedule Reliability

We also investigate the effect of voyage speed buffers and berth buffers which can be

used to increase the reliability of schedules. We first generate 10 voyage speed buffers

for one leg of 10 randomly selected routes. Table 28 summarizes results. Each row

includes the buffers considered in the previous row and an additional one. Row 0 is

the base scenario with no speed buffers. We see that some speed buffers do not have

any effect on the optimal solution. This is because of the expected tendency to move

away from the maximum speed because sailing at maximum speed is highly costly.

As a result, only 4 out of 10 additional constraints changed the optimal solution. We

157

see an average cost increase of 0.57% for these constraints. This is because speed

buffers force slow sailing when the corresponding constraint is binding. This means

that the total route duration and hence vessel cost may increase or in order to keep

the number of ships the same, very costly speed increases may be utilized on the

other legs of the route. We can also say that voyage speed buffers also impact the

lower bound and the lower bound performance do not diminish in the presence of

such constraints.

Table 28: Effect of voyage speed buffers on the optimal solution
VR LB Total Cost Voyage Cost Terminal Cost Vessel Cost Run Time
0 79292 79389 22235 1154 56000 1245
1 79292 79389 22235 1154 56000 1071
2 79687 79773 22543 1230 56000 1904
3 79687 79773 22543 1230 56000 1969
4 80292 80364 22088 1276 57000 1495
5 80292 80364 22088 1276 57000 1679
6 80875 80961 22741 1220 57000 1837
7 80875 80961 22741 1220 57000 1872
8 81135 81221 22963 1258 57000 1145
9 81135 81221 22963 1258 57000 1251
10 81135 81221 22963 1258 57000 1138

In the base 5 − B15 scenario, each dedicated terminal is visited by vessels of 5

different routes. Since we set utilization at 65%, the total idle time at these dedicated

terminals is 10 time periods (60 hours) per week. In order to evaluate the effect of

berth buffers, we generate two sets of scenarios. We define ε = 1 in the first set and

ε = 2 in the second set for each possible route and dedicated terminal combination.

Table 29 and 30 present results. In these tables, Row 0 gives statistics for the optimal

solution with no berth buffer, and Row k represents the optimal solution with berth

buffers on k dedicated terminals. Similar to other experiments, each row includes

buffers defined by the previous row and an additional one.

Berth buffers do not have any effect on the lower bound since the lower bound is

computed by relaxing capacity constraints at dedicated terminals and an each route

is evaluated separately. Therefore, we expect to have looser lower bounds as we place

158

more berth buffers in the model.

Table 29: Effect of berth buffers with ε = 1 on the optimal solution
BRwB1 LB Total Cost Voyage Cost Terminal Cost Vessel Cost Run Time

0 79292 79389 22235 1154 56000 1245
1 79292 79437 22189 1248 56000 1881
2 79292 79463 22224 1239 56000 2015
3 79292 79496 22227 1269 56000 3038
4 79292 79530 22239 1291 56000 4089
5 79292 79556 22235 1321 56000 5078

Table 29 summarizes the scenarios with ε = 1 for each route and dedicated ter-

minal combination. Experiments show that as we place buffers of one time periods

for each vessel at a dedicated berth, we see an average of 0.04% increase on the total

cost. Since buffers are simply included in the processing time of vessels in the model,

adding buffers is equivalent to increasing the utilization at the corresponding termi-

nal. In our scenarios, adding ε = 1 to the processing time of each vessel increases

the utilization of the corresponding berth from 65% to 82.5%. This means a tighter

Constraint (143), and problem is expected to become harder to solve in practice. This

is what we observe since computation time increases as we apply buffers at additional

berths.

Table 30: Effect of berth buffers with ε = 2 on the optimal solution
BRwB2 LB Total Cost Voyage Cost Terminal Cost Vessel Cost Run Time

0 79292 79389 22235 1154 56000 1245
1 79292 79471 22187 1284 56000 1424
2 79292 79575 23106 1469 55000 3777
3 79292 79669 22295 1374 56000 6837
4 79292 79737 23058 1679 55000 7215
5 79292 79844 23105 1739 55000 10800

Table 30 summarizes the statistics for the scenarios where ε = 2. Since buffers are

larger, the cost increase is observed as 0.11% on average. Note that when buffers are

applied at a dedicated terminal, the berth utilization increases from 65% to 100%,

which implies a very tight capacity constraint. Therefore, we observe sharper increases

in computation time as ε = 2 are used at additional terminals. In the scenario

159

presented in Row 5 of Table 29, utilization is 100% at all dedicated terminals, and

the computation time hit the limit of 3 hours, and CPLEX terminated the run before

optimality is proved.

160

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

This thesis provides a comprehensive study on planning problems related to berth

and quay cranes which are the most important resources in container terminals at

seaports. It contributes filling many of the gaps in the literature that appear due to

recent trends and changes in maritime logistics, like the introduction of mega-ships

and increasing popularity of flexible continuous berth structures.

In Chapter 2, a variant of berth allocation problem (BAP) which considers dy-

namic arrival of vessels and a single berth having a long continuous structure that

can serve multiple vessels simultaneously is considered. Two different mixed integer

programming (MIP) formulations are provided, and a meta-heuristic algorithm based

on tabu search which employs a novel nested neighborhood structure to solve large

problems is developed. A polynomially computable lower bound is also introduced

which can be computed quickly in polynomial time, and is provably tighter than

the bound generated by solving the LP relaxation of the associated MIP. Computa-

tional experiments show that the algorithm is able to provide high quality solutions

in relatively short computation times. Instances with 10 to 14 vessels were solved

optimally by the nested tabu search algorithm under 4 seconds, whereas, for some of

these instances, it took days to solve with the MIP. More realistic instances with 20

to 30 vessels were also solved within 100 seconds. For those instances, we were able

to reduce the optimality gap of a reasonable initial solution by 70% on average.

In chapter 3, the multiple berth allocation problem (MBAP), where multiple

physically-disjoint berths may be used to moor arriving vessels is introduced. Ar-

riving vessels can be assigned to any berth within the terminal, but the processing

161

time required for vessels can change depending on berth assignments. Models and so-

lution methods developed for the BAP are generalized to handle the MBAP. A lower

bound analysis is again conducted, and the results are again used in the development

of polynomially-computable bounds provably stronger than that of the LP relaxation.

Computational experiments show that the solution approach designed provides near

optimal solutions for real size problems in reasonable amount of time.

The quay crane scheduling problem (QCSP) is the focus of Chapter 4. Most ear-

lier studies concerning quay crane scheduling focus on detailed models applicable to

either one vessel or a set of vessels docked at the time of decision making. In this

thesis, a QCSP variant defined for a given berth schedule is analyzed. Hence, in

the problem variant studied, not only are the vessels that are present at the berth

at the time of decision making considered but also vessels planned to arrive later.

Concepts of crane blocking and crane shifting is defined, and two crane scheduling

methods; dedicated crane scheduling and roaming crane scheduling are introduced.

Exact optimization models are developed for each crane scheduling method under

both blocking and shifting assumptions. These models are used to analyze the meth-

ods computationally using a set of small instances. It is shown that roaming crane

scheduling with crane shifting can provide significantly better operational plans by

increasing crane utilization. A tabu search algorithm to solve realistic instances un-

der this scenario is designed. The individual crane assignment problem (CAP) is

also introduced and a polynomial time solution method is provided. Computational

experiments indicate that the tabu search algorithm designed is able to find optimal

solutions almost instantaneously for small problems with 10 to 14 vessels and 6 cranes.

For larger problem instances with 20 to 30 vessels and 10 cranes, the optimality gap

was improved by approximately 68% within 5 to 15 seconds respectively. Designing

fast search algorithms for the case with no crane shifting or crane roaming may be

an interesting subject for future research activities.

162

In chapter 5, the problem of simultaneous scheduling of berth and quay cranes

(BQCSP) is discussed. A mixed integer program and a two phase tabu search heuristic

is provided. Two polynomially-computable lower bounds are also introduced. Com-

putational experiments show that the algorithm designed can reduce the optimality

gap of a reasonable initial solution by 66% within 1 minute for moderate size instances

with 10 to 14 vessels and 6 cranes. The algorithm provided even better improvement

for larger instances with 20 to 30 vessels and 10 cranes. An average of 77% reduction

in the optimality gap of the initial solution in 3 to 30 minutes is observed. This thesis

also shows that simultaneous scheduling of berth and quay cranes may yield savings

as large as 35% over the hierarchical planning approach used by terminal operators.

The simultaneous scheduling approach can easily be extended for the multiple berth

case in a future study. The nested neighborhood structure and the two stage search

procedure provided can be utilized efficiently to design a solution method for such an

extension.

Finally, the voyage and berth scheduling problem (VBSP) is introduced in Chapter

6, which is the problem of scheduling vessel voyages considering dedicated berth

resource limitations. A model based on multi-commodity network flow is presented.

It is proven that when only dedicated terminal capacities are relaxed, the model

can be decomposed for each route and an optimal integer flow can be found by an

improved version of the LP relaxation with the help of additional valid inequalities.

This result is used to reduce the problem size. Methods to handle transshipments,

terminal time windows and service level requirements are provided. Ideas to improve

the reliability of schedules are also discussed. The VBSP is defined for predetermined

vessel routes. A future study can be conducted on the problem of determining vessel

routes considering berth resource limitations. The efficiency of the model and the

ideas presented in this thesis can guide a smooth integration of the vessel routing

problem and the voyage and berth scheduling problem.

163

REFERENCES

[1] “Sysmic risk management for port systems.” http://www.neesgc.gatech.edu/.
Accessed in October 2008.

[2] Agarwal, R., Network Design and Alliance Formation for Liner Shipping. PhD
thesis, School of Industrial and Systems Engineering, Georgia Institute of Tech-
nology, 2007.

[3] Agarwal, R. and Ergun, O., “Ship scheduling and network design for cargo
routing in liner shipping,” Transportation Science, vol. 42, 2008.

[4] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B., Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[5] Al-Mahmeed, A. S., “Tabu search combination and integration,” Meta-
Heuristics: Theory and Applications, I. H. Osman and J. P. Kelly (eds.), Kluwer
Academis Publishers, pp. 319–330, 1996.

[6] APL. http://www.apl.com. Accessed in July 2008.

[7] Baird, A. J., “Container vessels in the new millennium: Implications for sea-
ports,” Singapore Maritime and Port Journal, 2001.

[8] Baird, A. J., “Optmising the container transhipment hub location in northern
europe,” Journal of Transport Geography, vol. 14, pp. 195–214, 2006.

[9] Brown, G. G., Lawphongpanich, S., and Thurman, K. P., “Optimizing
ship berthing,” Naval Research Logistics, vol. 41, pp. 1–15, 1994.

[10] Charon, I. and Hurdy, O., “Mixing different components of metaheuristics,”
Meta-Heuristics: Theory and Applications, I. H. Osman and J. P. Kelly (eds.),
Kluwer Academis Publishers, pp. 589–604, 1996.

[11] Chen, A. I. H. C., Nishimura, E., and Papadimitriou, S., “The simulta-
neous berth and quay crane allocation problem,” Transportation Research, Part
E, vol. 44, pp. 900–920, 2008.

[12] Christiansen, M., Fagerholt, K., and Ronen, D., “Ship routing and
scheduling: status and perspectives,” Transportation Science, vol. 38, pp. 1–18,
2004.

[13] Christiansen, M. and Nygreen, B., “A method for solving ship routing
problems with inventory constraints,” Annals of Operations Research, vol. 81,
pp. 357–378, 1998.

164

[14] Cordeau, J., Laporte, G., Legato, P., and Moccia, L., “Models and
tabu search heuristics for the berth-allocaiton problem,” Transportation Science,
vol. 39, pp. 526–538, 2005.

[15] D. A. Schrady, G. K. S. and Vassian, R. B., “Predicting ship fuel con-
sumption,” Tech. Rep. NPS-OR-96-007, Naval Postgraduate School, Monterey,
California, 1996.

[16] Daganzo, C. F., “The crane scheduling problem,” Transportation Research,
Part B, vol. 23B, pp. 159–175, 1989.

[17] Daganzo, C. F., “Crane productivity and ship delay in ports,” Transportation
Res Record, vol. 1251, pp. 1–9, 1990.

[18] Dai, J., Lin, W., Moorthy, R., and Teo, C.-P., “Berth allocation plan-
ning optimization in container terminal.,” Working Paper,Georgia Institute of
Technology, National University of Singapore, 2004.

[19] Edmond, E. D. and Maggs, R. P., “How useful are queue models in port
investment decisions for container berths,” Journal of the Operations Research
Society, vol. 29, pp. 741–750, 1978.

[20] Fagerholt, K., “Optimal fleet design in a ship routing problem,” International
Transactions in Operational Research, vol. 6, pp. 453–464, 1999.

[21] Gendreau, M., Laporte, G., and Potvin, J.-Y., “Metaheuristics for the ve-
hicle routing problem,” Local Search Algorithms, J.K. Lenstra and E.H.L. Aarts
(eds.), John Wiley Sons, Chichester, 1995.

[22] Glover, F., “Future paths for integer programming and links to artificial in-
telligence,” Computers and Operations Research, vol. 5, pp. 533–549, 1986.

[23] Glover, F. W. and Laguna, M., Tabu Search. Kluver Academic Publishers,
1997.

[24] Guan, Y. and Cheung, R. K., “The berth allocation problem: models and
solution methods,” OR Spectrum, vol. 26, pp. 75–92, 2004.

[25] Guan, Y., Xiao, W., Cheung, R., and Li, C., “A multiprocessor task
scheduling model for berth allocation: heuristic and worst-case analysis,” Oper-
ations Research Letters, vol. 30, pp. 343–350, 2002.

[26] Hanjin. http://www.hanjin.com. Accessed in July 2008.

[27] Imahori, S., Yagiura, M., and Ibaraki, T., “Local search algorithms for the
rectangle packing problem with general spatial costs,” Math Program, vol. 97,
pp. 543–569, 2003.

[28] Imai, A., Nishimura, E., and Papadimitriou, S., “Berth allocation with
service priority,” Transportation Research, Part B, vol. 37, pp. 437–457, 2001.

165

[29] Imai, A., Nishimura, E., and Papadimitriou, S., “The dynamic berth allo-
cation problem for a container port,” Transportation Research, Part B, vol. 35,
pp. 401–417, 2001.

[30] Imai, A., Sun, X., Nishimura, E., and Papadimitriou, S., “Berth allocation
in a container port: using a continuous location space approach,” Transportation
Research, Part B, vol. 39, pp. 199–221, 2005.

[31] Kim, K., Lee, K., and Hwang, H., “Sequencing delivery and receiving op-
erations for yard cranes in port container terminals,” International Journal of
Production Economics, vol. 84, pp. 283–292, 2003.

[32] Kim, K. and Moon, K., “Berth scheduling by simulated annealing,” Trans-
portation Research, Part B, vol. 37, pp. 541–560, 2003.

[33] Kim, K. and Park, Y., “A crane scheduling method for port container termi-
nals,” European Journal of Operational Research, vol. 156, pp. 752–768, 2004.

[34] Lai, K. and Shih, K., “A study of container berth allocation,” Journal of
Advanced Transportation, vol. 26, pp. 45–60, 1992.

[35] Laporte, G. and Osman, I., “Metaheuristics in combinatorial optimization,”
Annals of Operations Research, vol. 60, 1995.

[36] Lawrence, S. A., International Sea Transport: The Years Ahead. Lexington
Books, Lexington, MA, 1972.

[37] Lee, D.-H., Wang, H., and Miao, L., “Quay crane scheduling with non-
interference constraints in port container terminals,” Transportation Research
E, doi:10.1016/j.tre.2006.08.001, 2006.

[38] Lenstra, J., Rinnooy Kan, A., and Brucker, P., “Complexity of machine
scheduling problems,” Annals of Discrete Mathematics, vol. 1, pp. 343–362, 1977.

[39] Li, C., Cai, X., and Lee, C., “Scheduling with multiple-job-on-one-processor
pattern,” IIE Transactions, vol. 30, pp. 443–445, 1998.

[40] Lim, A., “The berth planning problem,” Operations Research Letters, vol. 22,
pp. 105–110, 1998.

[41] Lim, A., Rodrigues, B., and Xiao, F., “Approximation schemes for the crane
scheduling ptoblem,” In: Algorithm theory, SWAT 2004: Ninth Scandinavian
workshop on algorithm theory, Humlebaek, July 8-10, Springer, Berlin, pp. 323–
335, 2004.

[42] Lim, A., Rodrigues, B., and Xiao, F., “Solving the crane scheduling prob-
lem using intelligent search schemes (extended abstract),” In: Wallace M (ed)
Principles and practice of constraint programming - proceedings of 10th interna-
tional conference CP 2004; Toronto, September 27 - October 1, Springer, Berlin,
pp. 747–751, 2004.

166

[43] Lim, A., Rodrigues, B., Xiao, F., and Zhu, Y., “Crane scheduling with
spatial constraints,” Naval Research Logistics, vol. 51, pp. 386–406, 2004.

[44] Liu, J., Wan, Y.-W., and Wang, L., “Quay crane scheduling at container
terminals to minimize the maximum relative tardiness of vessel departures,”
Naval Research Logistics, vol. 53, pp. 60–74, 2006.

[45] Lodi, A., Martello, S., and Vigo, D., “Approximation algorithms for the
oriented two-dimensional bin packing problem,” European Journal of Operational
Research, vol. 112, pp. 158–166, 1999.

[46] Maersk. http://www.maersk.com. Accessed in June 2008.

[47] McLellan, R., “Bigger vessels: how big is too big?,” Maritime Policy and
Management, vol. 24, pp. 193–211, 1997.

[48] Moccia, L., Cordeau, J.-F., Gaudioso, M., and Laporte, G., “A branch-
and-cut algorithm for the quay crane scheduling problem in a container termi-
nal,” Naval Research Logistics, vol. 53, pp. 45–59, 2006.

[49] Moggia, L., New Optimization Models and Algorithms for the Management
of Maritime Container Terminals. PhD thesis, Universita Degli Studi Della
Calabria, 2004.

[50] Murata, H., Fujiyoshi, K., Nakatake, S., and Kajitani, Y., “Vlsi module
placement based on rectangle packing by the sequence pair,” IEEE Trans Comput
Aided Des Integrated Circuits Sys, vol. 15, pp. 1518–1524, 1996.

[51] Ng, W., “Crane scheduling in container yards with inter-crane interference,”
European Journal of Operational Research, vol. 164, pp. 64–78, 2005.

[52] Ng, W. and Mak, K., “Yard crane scheduling in port container terminals,”
Applied Mathematical Modelling, vol. 29, pp. 263–276, 2005.

[53] Ng, W. and Mak, K., “Quay crane scheduling in container terminals,” Engi-
neering Optimization, vol. 38, pp. 723–737, 2006.

[54] Nishimura, E., Imai, A., and Papadimitriou, S., “Berth allocation plan-
ning in the public berth system by genetic algorithms,” European Journal of
Operations Research, vol. 131, pp. 282–292, 2001.

[55] OOCL. http://www.oocl.com. Accessed in June 2008.

[56] Osman, I. H. and Kelly, J. P., Metaheuristics: Theory and Applications.
Kluwer Academic Publishers, Norwell, MA, 1996.

[57] Park, K. and Kim, K., “Berth scheduling for container terminals by using a
sub-gradient optimization technique,” Journal of the Operational Research Soci-
ety, vol. 53, pp. 1054–1062, 2002.

167

[58] Park, Y. and Kim, K., “A scheduling method for berth and quay cranes,” OR
Spectrum, vol. 25, pp. 1–23, 2003.

[59] Peterkofsky, R. and Daganzo, C., “A branch and bound soluiton method
for the crane scheduling problem,” Transportation Research, Part B, vol. 24B,
pp. 159–172, 1990.

[60] Pinedo, M., Scheduling: Theory, Algorithms, and Systems. Prentice Hall, 1996.

[61] Rana, K. and Vickson, R., “Routing container ships using lagrangean relax-
ation and decomposition,” Transportation Science, vol. 25, pp. 201–214, 1991.

[62] Rodrigue, J. P., “Six generations of containerships.” http://people.

hofstra.edu/geotrans/eng/ch3en/conc3en/containerships.html. Ac-
cessed in May 2008.

[63] Ronen, D., “The effect of oil price on the optimal speed of ships,” The Journal
of the Operational Research Society, vol. 33, pp. 1035–1040, 1982.

[64] Ronen, D., “Cargo ships routing and scheduling: Survey of models and prob-
lems,” European Journal of Operational Research, vol. 12, pp. 119–126, 1983.

[65] Ronen, D., “Ship scheduling: The last decade,” European Journal of Opera-
tional Research, vol. 71, pp. 325–333, 1993.

[66] Stahlbock, R. and Voß, S., “Operations research at container terminals: a
literature update,” OR Spectrum, vol. 30, pp. 1–52, 2008.

[67] Steenken, D., Voß, S., and Stahlbock, R., “Container terminal operation
and operations research - a classification and literature review,” OR Spectrum,
vol. 26, pp. 3–49, 2004.

[68] Sterling, F. W., Marine Engineer’s Handbook. 239 West 39th Street, New
York: McGraw-Hill, 1920.

[69] Stopford, M., “Is the drive for ever bigger containerships irresistible?,” MD
Clarkson Research, Lloyds List Shipping Forecasting Conference, April 2002.

[70] Toth, P. and Vigo, D., “The granular tabu search and its application to the
vehicle routing problem,” Informs Journal on Computing, vol. 15, pp. 333–346,
2003.

[71] Vis, I. and de Koster, R., “Transshipment of containers at a container termi-
nal: An overview,” European Journal of Operational Research, vol. 147, pp. 1–16,
2003.

[72] Wang, F. and Lim, A., “A stichastic beam search for the berth allocation
problem,” Decision Support Systems, vol. 42, pp. 2186–2196, 2007.

168

[73] Yang, C. H., “The impact of bigger vessels on shipping and ports.” Shipping,
Logistics and Port Research Center, Korea Maritime Institute, 2004.

[74] Zhu, Y. and Lim, A., “Crane scheduling with spatial constraints: mathematical
model and solving approaches,” In: AIM 30-2004, eight international symposium
on artificial intelligence and mathematics, Fort Lauderdale, January 4-6, 2004.

[75] Zhu, Y. and Lim, A., “Crane scheduling with non-crossing constraint,” Journal
of the Operational Research Society, vol. 57, pp. 1464–1471, 2006.

169

VITA

Aykagan Ak received his BS degree in Industrial Engineering from Middle East Tech-

nical University in 2004. He joined the Ph.D program in Industrial Engineering with

Manufacturing and Logistics track in the H. Milton Stewart School of Industrial and

Systems Engineering at Georgia Institute of Technology in the same year. He received

his MS degree in Industrial Engineering in 2006. During his Ph.D. study he worked

with Dr. Alan L. Erera. He focused on alternative recourse strategies for stochastic

vehicle routing problem and tactical and operational level scheduling problems at

seaports. Aykagan’s research interests are in mathematical programming and meta-

heuristic algorithms for hard problems. He joined the science team at Manhattan

Associates in August 2008.

170

