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Abstract— We present an optimal timing control formulation
of the problem of controlling autonomous puppets. In partic-
ular, by appropriately timing the different movements, entire
plays can be performed. Such plays are produced by concate-
nating sequences of motion primitives and a compiler optimizes

these sequences, using recent results in optimal switch-time
control. Experimental results illustrate the operation of the
proposed method.

I. INTRODUCTION

This paper addresses the issue of when to switch between

different modes of operation when controlling a dynamical

system. This question falls squarely under the optimal timing

control problem for hybrid systems, which is an area of

research that has received a significant interest during the

last five years. In these types of problems, the control

parameter includes the schedule of the system’s modes and

the performance metric consists of a cost functional defined

on the system’s state (see [1], [4], [5], [7], [11], [16], [17],

[23], [24], [25], [27]).

The work in this paper draws its inspiration from recent

results on numerical optimal control of switched-mode sys-

tems, in which gradient-descent and second-order algorithms

have been developed [1], [13], [28], [29]. However, what is

novel in this paper as compared to the previous work is first

of all the application of optimal timing control to the problem

of controlling a collection of robotic puppets. Secondly, we

identify a formal motion description language that allows

us to specify what the puppets should be doing at a high

level of abstraction, and then use optimal control techniques

for compiling these high-level specifications into executable

control code. Thirdly, a formulation of the problem is given

in such a way that it can be decomposed into subproblems,

each involving the optimal timing sequence for the individual

puppets. The networking aspects, i.e. the way in which

these subproblems are combined, are then given a direct

interpretation in terms of the Lagrange multipliers in the

optimization problem.

When puppeteers execute entire plays, they typically break

it down into components, i.e. a play consists of multiple

acts and an act consists of multiple scenes. However, within

each scene, each piece, e.g. a puppet dance routine, is also

broken down into components and the dance is in fact both

annotated and executed as a string of movements, each of

which has its own characteristics, duration, and intensity.

What the research presented in this paper aims at is a way

of decomposing such complex control tasks in robotics into

strings of simpler control tasks, as shown in Fig. 1.

What we propose in this paper for formalizing high-level

specifications for puppetry is based on Motion Description

Languages (MDLs) [8], [12], [20], [21]. Specifically, a

MDL is a string of pairs, each specifying what control law

the system should be executing and an interrupt condition

corresponding to the termination of this control law. In order

for this language to be successful, it is important that it is

expressive enough to be able to characterize actual puppet

plays, and as such we draw inspiration from the way such

plays are staged by professional puppeteers. As an example,

consider a part of an actual play, as shown in Fig. 2.

The play that this example comes from is the “Rainforest

Adventures” - an original puppet play staged at the Center

for Puppetry Arts in Atlanta during 2005 [10], [19]. It shows

how the basic building blocks for a formal language for

puppet choreography can be derived from existing practices

in puppeteering.

In fact, the standard way in which puppet plays are

described is through four parameters, namely temporal du-

ration, agent, space, and motion (when?, who?, where?, and

what?) [3], [15]. Most plays are based on counts in that each

puppet motion is supposed to happen at a particular count.

(This becomes even more important if multiple puppets are

acting simultaneously on stage or if the play is set to music).

At each specified count, a motion can be initiated and/or

terminated.

The outline of this paper is as follows: In Section II, we

recall the basic definitions of a Motion Description Language

and show how these definitions can be augmented to be more

suitable for specifying puppet plays. We then, in Section III,

use the Calculus of Variations for parsing MDL strings in an

optimal way in order to produce effective control programs,

as supported by experimental results. The issue of networked

marionettes is the topic of Section IV, where we discuss how

to structure the optimization algorithm in such a way that

each puppet is (preferably) able to produce its own timing

sequence without having to take into account the movements

of all other puppets participating in the play.
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(a) Puppet in initial configuration. (b) Puppet in wave motion. (c) Puppet starting a walk. (d) The final step in the walk
mode.

Fig. 1. An image sequence of the puppet executing a wave followed by a walk mode.

II. MOTION DESCRIPTION LANGUAGES

As the complexity of many control systems increases, due

both to the system complexity (e.g. manufacturing systems,

[9]) and the complexity of the environment in which the

system is embedded (e.g. autonomous robots [2], [18]),

multi-modal control has emerged as a useful design tool.

The main idea is to define different modes of operation,

counts

agents

location

SR = Stage Right

SL = Stage Left

movements

Original play

Center for Puppetry Arts

Atlanta, GA

By Jon Ludwig (artistic director)

Fig. 2. Rainforest Adventures: This figure is an original puppet choreogra-
phy sheet from the Center for Puppetry Arts in Atlanta [10]. It shows how
the basic building blocks for a formal language for puppet choreography
can be derived from existing practices in puppeteering.

e.g. with respect to a particular task, operating point, or

data source. These modes are then combined according to

some discrete switching logic and one attempt to formalize

this notion is through the concept of a Motion Description

Language (MDL) [8], [12], [20], [21].

Each string in a MDL corresponds to a control program

composed of multiple controllers. Slightly different versions

of MDLs have been proposed, but they all share the common

feature that the individual atoms, concatenated together to

form the control program, can be characterized by control-

interrupt pairs. In other words, given a dynamical system

ẋ = f(x, u), x ∈ X, u ∈ U

together with a control program (κ1, ξ1), . . . , (κp, ξp), where

κi : X → U and ξi : X → {0, 1}, the system operates

on this program as ẋ = f(x, κ1(x)) until ξ1(x) = 1. At

this point the next pair is read and ẋ = f(x, κ2(x)) until

ξ2(x) = 1, and so on. (Note that the interrupts can also

be time-triggered, which can be incorporated by a simple

augmentation of the state space.)

A. MDLs for Puppetry

We directly note that the general MDL outlined in the

previous paragraph does not lend itself to the way puppetry

plays are specified. In fact, what we will do in this section

is to augment the standard MDL formulation, as discussed

in [14], to include factors such as spatial location. For this,

assume that the play starts at time t0 and that it ends at time

tf . Moreover, let the temporal resolution (the length of each

“count”) be ∆, and assume that (tf −t0)/∆ = M . Following

this, the set of all times over which the play is specified is

T = {t0, t0 + ∆, t0 + 2∆, . . . , t0 + M∆}.

Moreover, assume that the stage is divided into N dif-

ferent sections (typically this number is 6, namely Lower-

Left, LowerCenter, LowerRight, MiddleLeft, MiddleCenter,

MiddleRight, UpperLeft, UpperCenter, UpperRight), whose

planar center-of-gravity coordinates are given by r1, . . . , rN ,

with the set of regions being given by R = {r1, . . . , rN}.
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As before, assume that the puppet under consideration has

the dynamics

ẋ = f(x, u).

Now, given that we have constructed a number of control

laws κj , j = 1 . . . , C, corresponding to different moves

that the puppet can perform, with each control law be-

ing a function of x (state), t (time), and α (a parameter

characterizing certain aspects of the motion such as speed,

energy, or acceleration, as is the normal interpretation of

the parameterization of biological motor programs), we can

let the set of moves that puppet can perform be given by

K = {κ1, . . . , κC}. In fact, we will often use the shorthand

fj(x, t, α) to denote the impact that control law κj has

through f(x, κj(x, t, α)).
As already pointed out, each instruction in the puppet play

language is a four-tuple designating when, who, where, and

what the puppets should be doing. In other words, we let

the motion alphabet be given by L = T × T × R × K.

Each element in L is thus given by (T0, T1, r, κ), where the

interpretation is that the motion should take place during the

time interval T1 − T0, largely in region r, while executing

the control law κ.

Following the standard notation in the formal lan-

guage field, we let L⋆ denote the set of all finite-

length concatenations of elements in L (including the

empty string), and let puppet plays be given by

words λ ∈ L⋆. In particular, if we let λ =
(t0, T1, r1, κ1), (T1, T2, r2, κ2), . . . , (Tp−1, Tp, rp, κp), then

the puppet operates on this string through

ẋ =



















f1(x, t, α1), t ∈ [t0, T1)
f2(x, t, α2), t ∈ [T1, T2)

...

fp(x, t, αp), t ∈ [Tp−1, Tp].

This seems fairly natural, but two essential parameters

have been left out. First, the motion parameters α1, . . . , αp

have not yet been specified. Moreover, the desired regions

r1, . . . , rp have not been utilized in any way. In order to

remedy this, we need to construct not just a parser for puppet

plays, as given above, but also a compiler that selects the

“best” parameters (as well as durations) for the different

moves so that the play is executed as efficiently as possible,

which is the topic of the next section.

III. COMPILING MDL STRINGS THROUGH OPTIMAL

CONTROL

In this section we present a compiler that takes as inputs

strings in a MDL and optimizes over these strings by adjust-

ing the interrupt times as well as the parameters defining the

specifics of the individual control laws. Rather than solving

a large-scale problem explicitly, we start with the canonical

two-primitive MDL string. In fact, consider the following

optimal control problem:

min
τ,α1,α2

J(τ, α1, α2) =

∫ tf

0

L(x, t)dt + C1(α1) + C2(α2)

+ D(τ) + Ψ1(x(τ)) + Ψ2(x(tf )),

where

ẋ =

{

f1(x, t, α1), t ∈ [0, τ)
f2(x, t, α2), t ∈ [τ, tf ]

x(0) = x0.

This optimal control problem is the atomic prob-

lem involving how to execute the two-instruction play

(0, T, r1, κ1), (T, tf , r2, κ2) under the interpretation that

D(τ): is a cost that penalizes deviations from the presepci-

fied, nominal switching time T , Ci(αi) measures how much

energy it takes to use parameter αi for mode i, Ψi(·): ensures

that the puppet is close to r1 at time τ (and similarly for

x(tf )), and L(x, t) is a trajectory cost that may be used to

ensure that a reference trajectory is followed.

We can apply calculus of variations techniques, under suit-

able assumptions of continuous differentiability, to the cost

functional. The derivations are straightforward and follow

those of [1], [13], and they result in the optimality conditions

∂J

∂τ
= λ(τ

−
)f1(x(τ)) − λ(τ+)f2(x(τ)) +

∂D

∂τ
∂J

∂α2

= µ(τ+)

∂J

∂α1

= µ(0),

where the co-states λ and µ satisfy the following discontin-

uous (backwards) differential equations:

λ(T ) =
∂Ψ2

∂x
(x(T ))

λ̇ = −
∂L

∂x
− λ

∂f2

∂x
, t ∈ (τ, T )

λ(τ
−

) = λ(τ+) +
∂Ψ1

∂x
(x(τ))

λ̇ = −
∂L

∂x
− λ

∂f1

∂x
, t ∈ [0, τ)

µ(T ) =
∂C2

∂α2

µ̇ = −λ
∂f2

∂x
, t ∈ (τ, T )

µ(τ
−

) =
∂C1

∂α1

µ̇ = λ
∂f1

∂x
, t ∈ [0, τ).

By a direct generalization to more than two modes, this

construction allows us to produce a compiler that takes

plays and outputs strings of control modes with an optimized

temporal duration and mode parameterization.

A. Example

As an illustrative example, consider the following cost

functional:

J(τ, α1, α2) =

∫ tf

0

qT Pq dt + ρ(T − τ)2 + w1α
2
1 + w2α

2
2,

where q ∈ R
6 is the vector of generalized joint angles of the

puppet, P is a suitable weight matrix, and ρ, w1, w2 are cost

weights that prescribe relative weights to deviations from the

nominal switch time and motion intensity parameters.
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In Figure 3, the joint angles corresponding to the initial

conditions τ = 4, α1 = α2 = 1 are shown. Note that

this initial trajectory results in the left arm’s odd looking

behavior, where the wave motion stops the left arm in “mid-

air” as the walk motion begins. A more desirable trajectory

would lower the left arm completely before initiating a

walk. Therefore, we defined the weight matrix, P , such

that the joint angles are penalized for deviations from the

puppet’s “home” position, i.e. the left arm initial joint angles

θl = φl = 0. After an iterative, descent-based optimization

algorithm has terminated, the new values become τ =
4.3423, α1 = 1.3657, α2 = 0.9566, with the corresponding

joint angles shown in Figure 4. This plot shows that at

termination the joint angles were close to 0 before starting

the walk mode, resulting in a more natural looking motion.
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Fig. 3. Original joint angle trajectories.
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Fig. 4. Optimized joint angle trajectories.

Examining the total cost plot in Fig. 5(a) reveals that the

cost is indeed appropriately reduced as the gradient descent

algorithm ran past 20 iterations. Additionally, the derivatives

of J(τ, α1, α2) in Fig. 5(b) are shown to decrease over time,

and given enough iterations approaches 0.

B. Experimental Platform

In conjunction with the simulation results above, we have

also developed a hardware platform, as shown in Fig. 1. In

fact, the movement in that figure is the one obtain in the
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(a) Total cost as a function of iteration.
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Fig. 5. Plots of the total cost and the value of its various derivatives over
simulation time.

previous section, in which the puppet switches between a

wave and a walk mode.

The puppet system is comprised of three components:

hardware system, a Java control application, and Matlab

optimization routines. A diagram of the architecture is seen

in Fig. 6.

MDLp File

MDL Parser

optimize?
Yes

No

Optimization

Compiler

MDL Engine

Play

Java

Matlab

Java VM

τ̄
⋆, ᾱ

⋆

OS

Puppet

Hardware

Fig. 6. The puppet system software architecture.
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The puppet hardware is controlled by six Robotis Dy-

namixel motors [26]. These motors are suitable for this

application since they can be issued position and velocity

commands. Additionally, they are linked together by a mul-

tipoint serial interface (the RS-485 standard), which enables

a single command to generate motion on the six motors

simultaneously. A microcontroller connects all of the motors

together and communicates with a host computer via a serial

port.

The Java application has several functional pieces. First,

it manages the serial port so that commands may be sent to

the underlying puppet hardware. Additionally, it can parse

MDL files and generate a string of modes based on what is

available in the MDL library. These modes are then fed into

an MDL engine, which applies a particular mode’s control

action to generate a motion command. Once a user has

constructed a play, it may be fed into a Matlab optimization

routine, where the algorithm of section III and the kinematics

of the puppet are implemented. The Matlab routine then

outputs the optimal switch times (τ̄⋆) and scaling factors

(ᾱ⋆).

IV. NETWORKED TIMING CONTROL

Since most interesting puppet plays include more than

one marionette, we will be forced to handle situations in

which two (or more) puppets need to execute a movement

in a coordinated fashion. Due to the risk of tangling strings,

multi-puppet coordination is mainly done through spatial and

temporal adjacency.

For this, we assume that the play is comprised of n pup-

pets, each operating under their own dynamics. Additionally,

each puppet switches between mi control modes, with (as

before) the terminal time denoted by T = τmi
, i = 1, . . . , n.

In other words, a direct modification to the previous

formulation gives that each puppet be governed by the

dynamics,

ẋi(t) =



















fi,1(x, t), t ∈ [0, τi,1)
fi,2(x, t), t ∈ [τi,1, τi,2)

...

fi,mi
(x, t), t ∈ [τi,mi−1, τi,mi

]

for i = 1, · · · , n. Let moreover the cost functional be defined

as

J(τ̄1, . . . , τ̄n) =

∫ T

0

n
∑

i=1

Di(xi, t) dt =

n
∑

i=1

Ji(τ̄i)

where Di(x, t) is the cost associated with operating system

i for t ∈ [0, τi,m).
Now, to illustrate the way in which the temporal con-

straints show up, we, for the ease of notation (but without

loss of generality) assume that the temporal constraint only

affects the dth switch for systems j and k, where j, k ∈
{1, · · · , n}, as cd(τj,d, τk,d) = τj,d − τk,d 6 0.

It is directly clear that the way this optimization problem

can be solved is by simply augmenting the cost with the

Lagrangian term µcd(τj,d, τk,d), and then solve the problem

jointly across all the switching times for all the puppets.

However, we do not want to do this, and we instead illustrate

how recent ideas from so-called Team Theory, as described

in [22], can help distribute the computational burden across

the different puppets. (Note that the details given below are

not due to us, but rather that we highlight their application

to the problem of distributed timing control as it pertains to

the robotic marionette application.)

A. Distributed Coordination

Let, as before, puppets j and k (j 6= k) be temporally

constrained via the dth switch as cd(τj,d, τk,d) ≤ 0. Using

the developments in [22], the constrained problem becomes

L(τj,d, τk,d, µ) = Jj(τj,d) + Jk(τk,d) + µcd(τj,d, τk,d)

where we have assumed (without loss of generality) that the

only control parameters are τj,d and τk,d. It should directly

be noted that the cost functionals are decoupled (i.e. cost Jj

depends only on system j’s dynamics). Therefore, taking the

derivative of the Lagrangian with respect to µ results in the

expression,
∂L

∂µ
= τj,d − τk,d,

in combination with the previously defined gradient expres-

sions defined with respect to the switching times.

Now, algorithmically, this formulation is interesting in that

the dual problem becomes g⋆ = maxµ g(µ), µ > 0, where

g(µ) = inf
τj,d,τk,d

{Jj(τj,d) + Jk(τk,d) + µ(τj,d − τk,d)}.

As such, using a gradient descent for the switch times,

and a gradient ascent for the Lagrange multiplier µ, allows

us to largely decouple the solution and let the networking

aspect be reflected only through the update of the multiplier,

as was done in [22]. In fact, if we let

τ̇j,d = −
∂Jj

∂τj,d
− µ

τ̇k,d = − ∂Jk

∂τk,d
+ µ

µ̇ = τj,d − τk,d

all that needs to be propagated between the two systems is

the value of the Lagrange multiplier µ. This observation,

developed in [22], thus leads us to a general architecture for

solving networked switching time optimization problems, as

shown in Figure 7. A more complete exploration of this issue

is, however, left to a future endeavor.

V. CONCLUSIONS

In this paper we presented the a motion description

language for specifying and encoding autonomous puppetry

plays in a manner that is faithful to standard puppetry

choreography. The resulting strings of control-interrupt pairs

are then compiled in the sense that they are parsed by a

dynamical system that produces optimized, hybrid control

laws corresponding to strings of motions, locations, and

temporal durations for each motion primitive. This paper also

discusses some issues arising in modeling and how to capture

relevant motion primitives from empirical data. Experimental

and simulation results illustrate the viability of the proposed

approach.
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µi+1

τ i
j τ i

kµ ascent
λ̇j integration λ̇k integration

τj descent τk descent

ẋj integration ẋk integration

System j System k

Network

Fig. 7. This figure shows how to propagate information between the two subsystems (puppets) in order to solve the networked timing problem.
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