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Introduction

« The systems engineering process is largely driven to
the end goal of developing a product

— Space systems involved in human lunar exploration
are still too immature to use the full, detailed systems
engineering process

« Simplified analyses of human lunar exploration
systems and architectures are required to narrow
the trade space

— Some systems engineering tools prove extremely
useful for simplifying these complex analyses



Space Systems: Lunar Architecture Analyses

e« Space systems analysis problems are complex,
especially when attempting to build a lasting
human exploration campaign

— Multiple elements:
* Propulsive elements of varying performance
» Payload elements of varying mass & function
— Multiple maneuvers:
e Several burns of varying degrees of difficulty

* Multiple burns may be completed by single
stage

— Multiple possible destinations:

* Choice between various lunar orbits and
other staging locations (i.e. Earth-Moon L1)

e Choice of lunar landing sites




Systems Engineering Tools

N2 Diagrams: Functional decomposition

— Aids In identifying dependencies between elements and
element functions

* |[dentify required element functions
* |dentify feed-forward and feed-back characteristics

« Trade Trees: Trade & sensitivity analysis organization

— Aids in organizing analyses that investigate trades of
characteristics and sensitivities to performance variations

« Simplified Modeling: Mass fraction-based assessment

— Provide quick, zero-level analysis to assess large
portions of a broad trade space in sufficient detail to
Isolate trend and sensitivity drivers



Space System Analysis Problem: Lunar Exploration

 Understanding commonalities & dependencies

— Must understand the performance dependencies of
certain mission elements on other mission elements

— Helps to identify which elements may be mission
performance drivers

e Discriminating between mission modes and methods

— Quick assessments of mission modes over a broad
trade space of payload masses and stage propellant

choices may help isolate promising mission modes
(i.e. direct return or lunar orbit rendezvous)

— Isolated trends may discriminate between parking
orbit type or landing sites or combined stage functions



NZ2 Diagram Example: Stage Calculations
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Stage must move a payload through space, providing energy
from propellant to accommodate delta-v requirements

Stage dry mass must accommodate propellant requirements
and loads, sized based on propellant mass fraction



NZ2 Diagram Example: Stage Calculations
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 Stage must move a payload through space, providing energy
from propellant to accommodate delta-v requirements

« Stage dry mass must accommodate propellant requirements
and loads, sized based on propellant mass fraction



N2 Diagram Example: Mission Calculations
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N2 Diagram Example:

Mission Calculations
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N2 Diagram Examples: Specific Mission Architectures
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N2 Diagram Examples: Specific Mission Architectures

Lunar Orbit Rendezvous

Lunar Orbit Rendezvous: EDS for LOI

Trans-Earth | Total Stage Total Stage | Total Stage
Injection Mass Mass Mass
Stage Dry Orbit Total Stage | Total Stage

Mass Alignment Mass Mass
Lunar Total Stage | Total Stage | Total Stage

Ascent Mass Mass Mass
Lunar Total Stage | Total Stage

Descent Mass Mass
Lunar Orbit | Total Stage

Insertion Mass

Trans-Lunar
Injection

Trans-Earth | Total Stage Total Stage | Total Stage
Injection Mass Mass Mass
Stage Dry Orbit Total Stage | Total Stage

Mass Alignment Mass Mass
Lunar Total Stage | Total Stage | Total Stage
Ascent Mass Mass Mass
Lunar Total Stage | Total Stage
Descent Mass Mass
Lunar Orbit | Total Stage
Insertion Mass
Stage Dry [ Trans-Lunar

Mass

Injection




N2 Diagram Examples: Specific Mission Architectures
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Lunar Direct Return: Single Stage Lander
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Trade & Sensitivity Analysis: The Trade Tree

« Broad trade space leads to extensive
trade tree

— Trades can be performed on staging
concepts, payload deployment
methods and propellant type

— Can be combined with sensitivities to
specific impulse or payload mass




Trade & Sensitivity Analysis: Trade Trees in Excel

All-At-Once  Single Stage Lander Descent Storable 330 ISP Ascent Storable 330 ISP

All-At-Once  Single Stage Lander Descent Storable 330ISP Ascent Storable 330 ISP

All-At-Once  Single Stage Lander Descent Methane 375 ISP Ascent Methane 375 ISP

All-At-Once  Single Stage Lander Descent Methane 395 ISP Ascent Methane 395 ISP

All-At-Once  Single Stage Lander ~ Descent LH2 430 ISP Ascent LH2 430 ISP .

All-At-Once  Single Stage Lander Descent LH2 Ascent LH2

s N 0. T e Adaptina trade tree to Excel
All-At-Once Two Stage Lander Descent Storable 330 ISP Ascent Storable 330 ISP

All-At-Once Two Stage Lander Descent Storable 330 ISP Ascent Methane 355 ISP

All-At-Once Two Stage Lander  Descent Storable 330 ISP Ascent Methane 375 ISP

.
All-At-Once Two Stage Lander Descent Storable 330 ISP Ascent Methane 395 ISP

All-At-Once Two Stage Lander  Descent Storable 330 ISP Ascent LH2 430 ISP a O W S O r l l S e O r a e r e e W I
All-At-Once 330 ISP

Two Stage Lander  Descent Storable Ascent LH2
All-At-Once  Two Stage Lander Descent Storable 330 ISP Ascent LH2
All-At-Once Two Stage Lander Descent Methane 355 ISP Ascent Storable 330 ISP
All-At-Once Two Stage Lander Descent Methane 355 ISP Ascent Methane 355 ISP
All-At-Once Two Stage Lander Descent Methane 355 ISP Ascent Methane 375 ISP
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All-At-Once Two Stage Lander Descent Methane 355 ISP Ascent LH2 430 ISP
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All-At-Once Two Stage Lander Descent Methane 375 ISP Ascent Methane 375 ISP
All-At-Once Two Stage Lander Descent Methane 375 ISP Ascent Methane 395 ISP [l
All-At-Once Two Stage Lander Descent Methane 375 ISP Ascent LH2 430 ISP
All-At-Once Two Stage Lander Descent Methane 375 ISP Ascent LH2 e S a I S e aS e O n a n
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All-At-Once Two Stage Lander Descent Methane 395 ISP Ascent Methane 395 ISP
All-At-Once Two Stage Lander Descent Methane 395 ISP Ascent LH2 430 ISP
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All-At-Once Two Stage Lander Descent Methane 395 ISP Ascent LH2
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All-At-Once Two Stage Lander Descent LH2 Ascent Storable 330 ISP
All-At-Once Two Stage Lander Descent LH2 Ascent Methane 355 ISP
All-At-Once  Two Stage Lander ~ Descent LH2 Ascent Methane 375 ISP - - - ~L
All-At-Once Two Stage Lander Descent LH2 Ascent Methane 395 ISP I n IVI u a C aS e r u n S O S e C I I C
All-At-Once Two Stage Lander Descent LH2 Ascent LH2 430 ISP
All-At-Once Two Stage Lander Descent LH2 Ascent LH2
All-At-Once  Two Stage Lander ~ Descent LH2 Ascent LH2

Ascent Methane

All-At-Once Two Stage Lander Descent LH2 450 ISP Ascent Methane 395 ISP
All-At-Once Two Stage Lander Descent LH2 450 ISP Ascent LH2 430 ISP
All-At-Once Two Stage Lander Descent LH2 450 ISP Ascent LH2

All-At-Once  Two Stage Lander ~ Descent LH2 450 ISP Ascent LH2

All-At-Once Two Stage Lander Descent LH2 450 ISP Ascent Storable 330 ISP
All-At-Once Two Stage Lander Descent LH2 450 ISP Ascent Methane 355 ISP ra e re e ra n C e S
All-At-Once Two Stage Lander Descent LH2 450 ISP 375 ISP




Sample Cases

Lunar Direct Return Specific Impulse Sensitivity

— Assumes mass for CEV, which is carried to the lunar
surface and returned directly from the lunar surface to
Earth

Lunar Orbit Rendezvous Parking Orbit Trade

— Separate stages for all burns with a transfer habitat,
CEV and staged lunar lander and surface habitat

— Trade between 100 km circular parking orbit and 100
X 5000 km elliptical parking orbit

Lunar Orbit Rendezvous Stage Propellant Trade

— Separate stages for all burns with a transfer habitat,
CEV and staged lunar lander and surface habitat

— Trade propellant options for each stage in all
combinations



LDR Trades & Sensitivities

Assume:
— LOx/LH, EDS
— 11 MT crew hab

Trade;

— Staged vs. Not
Staged Lander

— Descent &
Ascent
propellant

* NTO/N,H,
« LOx /CH,
e LOx/LH,
— Sensitivity to |
for each
propellant

Y

56 combos

LDR Trade Tree

LDR N2 Diagram
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IMLEO (MT)

LDR Trades & Sensitivities: Results
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LOR Parking Orbit Trade

Assume:
— LOXx/LH, EDS
— 5 MT capsule
— 4 MT trans hab
— 5 MT surface hab
— 2 MT ascent hab

Trade:

— 100 km circular
vs. 100 x 5000 km
elliptical orbit

— Run for all
propellant
combinations

243 propellant
combos for each
orbit case

LOR Trade Tree

LOR N2 Diagram
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LOR Parking Orbit Trade: Results
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LOR Stage Propellant Trade

Assume:
— LOx/LH, EDS
— 100 km circular
parking orbit

— 5 MT capsule

— 4 MT trans hab

— 5 MT surface hab
— 2 MT ascent hab

Trade:

— Run for all
propellant
combinations

243 propellant
combos

LORFTragme, Tree
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Average IMLEO (MT)

LOR Stage Propellant Trade: Results
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Sample Case Trade Results

 Lunar Direct Return Specific Impulse Sensitivity

— Alarge span in IMLEO values across traded specific impulses
leads to the conclusion that both the ascent and descent stages
are significant mission performance drivers

— As stage propellant performance increases, the mission is less
sensitive to variations in the propellant I,

— Staging the lander is preferable for the lunar direct missions

 Lunar Orbit Rendezvous Parking Orbit Trade

— Elliptical parking orbits can provide IMLEO savings over circular
parking orbits

— As EDS propellant performance decreases, elliptical orbit staging
savings increase but overall mission performance decreases

 Lunar Orbit Rendezvous Stage Propellant Trade

— Selection of LOI and Descent propellants are the largest drivers of
mission performance

— These stages move large masses through large delta-v’s



Conclusions

e Systems engineering tools can help simplify
complex architecture analysis problems

— They aid in identifying functional dependencies
among mission elements

— They aid in organizing and quickly assessing broad
trade spaces at a high level to isolate trade space
trends

e Using these tools for lunar exploration architecture
analyses helps to identify trends and dependencies
at a high level

— This allows engineers to direct the detailed analyses
down those paths that show the most promise of
delivering the best possible mission architecture






