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SUMMARY 

 

In our study, the superhydrophobic surface based on biomimetic lotus leave is 

explored to maintain the desired properties for self-cleaning. Parameters in controlling 

bead-up and roll-off characteristics of water droplets were investigated on different 

model surfaces. The governing equations were proposed. Heuristic study is performed. 

First, the fundamental understanding of the effect of roughness on superhydrophobicity is 

performed. The effect of hierarchical roughness, i.e., two scale roughness effect on 

roughness is investigated using systems of 1) monodisperse colloidal silica sphere 

(submicron) arrays and Au nanoparticle on top and 2) Si micrometer pyramids and Si 

nanostructures on top from KOH etching and metal assisted etching of Si. The relation 

between the contact area fraction and water droplet contact angles are derived based on 

Wenzel and Cassie-Baxter equation for the systems and the two scale effect is explained 

regarding the synergistic combination of two scales. Previously the microscopic three-

phase-contact line is thought to be the key factor in determining contact angles and 

hysteresises. In our study, Laplace pressure was brought up and related to the three-

phase-contact line and taken as a key figure of merit in determining superhydrophobicity. 

In addition, we are one of the first to study the effect of tapered structures (wall 

inclination). Combining with a second scale roughness on the tapered structures, stable 

Cassie state for both water and low surface energy oil may be achieved. This is of great 

significance for designing both superhydrophobicity and superoleophobicity. 

 Regarding the origin of contact angle hysteresis, study of superhydrophobicity on 

micrometer Si pillars was performed. The relation between the interface work of function 
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and contact angle hysteresis was proposed and derived mathematically based on the 

Young-Dupré equation. The three-phase-contact line was further related to a secondary 

scale roughness induced.  

 Based on our understanding of the roughness effect on superhydrophobicity (both 

contact angle and hysteresis), structured surfaces from polybutadiene, polyurethane, 

silica, and Si etc were successfully prepared. For engineering applications of 

superhydrophobic surfaces, stability issues regarding UV, mechanical robustness and 

humid environment need to be investigated. Among these factors, UV stability is the first 

one to be studied. However, most polymer surfaces we prepared failed the purpose. Silica 

surfaces with excellent UV stability were prepared. This method consists of preparation 

of rough silica surfaces, thermal treatment and the following surface hydrophobization by 

fluoroalkyl silane treatment.  Fluoroalkyl groups are UV stable and the underlying 

species are silica which is also UV stable (UV transparent). UV stability on the surface 

currently is 5,500 h according the standard test method of ASTM D 4329. No degradation 

on surface superhydrophobicity was observed. New methods for preparing 

superhydrophobic and transparent silica surfaces were investigated using urea-choline 

chloride eutectic liquid to generate fine roughness and reduce the cost for preparation of 

surface structures.  

Another possible application for self-cleaning in photovoltaic panels was 

investigated on Si surfaces by construction of the two-scale rough structures followed by 

fluoroalkyl silane treatment. Metal (Au) assisted etching was employed to fabricate 

nanostructures on micrometer pyramid surfaces. The light reflection on the prepared 

surfaces was investigated. After surface texturing using KOH etching for micrometer 



 xxx

pyramids and the following nanostructure using metal assisted etching, surface light 

reflection reduced to a minimum value which shows that this surface texturing technique 

is highly promising for improving the photovoltaic efficiency while imparting 

photovoltaics the self-cleaning feature. This surface is also expected to be UV stable due 

to the same fluoroalkyl silane used. 

Regarding the mechanical robustness, epoxy-silica superhydrophobic surfaces 

were prepared by O2 plasma etching to generate enough surface roughness of silica 

spheres followed by fluoroalkyl silane treatment. A robustness test method was proposed 

and the test results showed that the surface is among the most robust surfaces for the 

superhydrophobic surfaces we prepared and currently reported in literature. 

 



 

1 

CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction to superhydrophobicity 

 Lotus effect or superhydrophobicity was described by Barthlott in 1996[1, 2]. 

When he studied lotus leaf surfaces, he found that the surface is rough instead of smooth. 

Combined with hydrophobic surface layers, a superhydrophobic state was observed. 

Water droplets falling on the surface bead up and roll off the surface instantaneously. 

Superhydrophobicity requires that both a surface hydrophobic layer and rough surface 

structures are present. This phenomenon is quite common in the biology arena, e.g., on 

some insects and plants leaves, shown in Figure 1. Artificial superhydrophobic surfaces 

were prepared before the phenomenon was widely acknowledged. In 1986, Sacher et al 

reported that very water repellent films were obtained by depositing 

hexamethyldisiloxane on silicon chips in a high-energy plasma at low temperature[3]. 

Drops of water had contact angles as high as 180˚ and rolled off the slightly inclined 

surfaces, which suggested a near-zero roll off angle. Morra et al had prepared a 

superhydrophobic surface by O2 plasma etching on PTFE surfaces in 1989[4]. Actually 

after 5 min of treatment, water drops rolled easily across the surface. Due to the absence 

of hysteresis, no obstacle to their movement occurred. The first super water- and oil-

repellent surface was developed in Tsujii’s group[5] on anodically oxidized aluminum 

surface after a hydrophobic treatment. 
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Figure 1. SEM images of different bio-surface structures: (a) Wasp wing, (b)Azaleas 
petal, (c) rose petal, (d) Colocasia esculenta leaf surface, (e)Micro- and nanostructures on 
the lotus leaf (Nelumbo nucifera)[6],  (f) cicada wing[7], (g) water strider[8], the leg with 
numerous oriented spindly microsetae, (Inset) Nanoscale groove structure on a seta. (h) 
surface of mosquito (culex pipiens) eye[9], (i) The wings of Papilio ulysses; the way the 
tiles are displayed together with the detail of the texture confer anisotropy to the 
texture[10].  

 The effect of roughness on surface wetting is scale-dependent. Besides the surface 

hydrophobicity, the surface roughness can be more important in achieving dewetting 

surfaces even without the most hydrophobic materials (e.g., fluorine containing 

polymers). On flat surfaces oil repellency is difficult to achieve. However, with 

appropriate surface roughness with special geometry designs, a superoleophobic surface 

may result. This signifies the importance of surface wetting/dewetting control via 

flexible, fine-tuned surface structure design at micro and nano scales. 

d 

a b c
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 On a flat surface, the change in surface free energy, ∆G, accompanying a small 

displacement of the liquid such that the change in area of solid covered, ∆A, is 

       LVLVSVSLSL AAG γγγ ∆+−∆=∆ )(                         (1) 

   LVSLSVSLSL AAG γθθγγ )cos()( ∆−∆+−∆=∆        (2) 

 At equilibrium, ∆G = 0 

 Therefore when ∆θ goes to zero, Young’s equation can be derived 

0cos =+− θγγγ LVSVSL  

or 

                        LV

SLSV
Y γ

γγθ −
=cos

                                (3) 

 On a smooth surface, this equation determines the contact angle of liquid droplets. 

 On a rough surface, Young’s equation no longer holds for the apparent contact 

angle due to the introduction of a new factor: surface roughness. Water droplet/solid 

interface contact can be either in Wenzel state or Cassie state (shown in Figure 2), 

depending on the surface hydrophobicity and geometries of the surface structures.  

   

Figure 2. The two contact regimes of water droplet with rough surfaces, (a) Wenzel 
contact regime, (b) Cassie contact regime. 

 Usually two equations were used for the calculation of the apparent contact angles 

corresponding to the two regimes. One is the Wenzel equation as shown in equation (4): 

                                YA r θθ coscos =                                               (4) 
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 This equation described the relation between the surface roughness r and the 

apparent contact angle, where r is determined by the ratio of total surface area to the 

projected surface area. This equation is valid for a complete solid/liquid contact interface. 

 For heterogeneous surfaces, the Cassie equation can be used to describe the 

heterogeneity effect on the apparent contact angle[11],  

                         1coscos −+= ff YA θθ                                         (5) 

where θA is the apparent contact angle on the rough surface, f is the projected surface 

fraction of solid, and θY is the contact angle on a flat surface as per Young’s equation. 

 On a rough surface, surface roughness can be determined by  

                            ojected

Actual

A
Ar
Pr

=
                                                      (6) 

 The development of the Wenzel and Cassie equations are shown below. 

 For water droplets on rough surfaces, according to equation 2 and 6,  

)cos()( Pr θθγγγ ∆−∆+−∆=∆ ALVojectedSVSLActual AAG  

When ∆θ goes to zero, the equation reduced to   

                  0cos)( =+− ALVSVSLr θγγγ                                        (7) 

Therefore, 

                
Y

LV

SVSL
A rr θ

γ
γγθ coscos =

−
=

            

 The Wenzel equation is thus derived as shown in equation 4[12].  

 This equation describes the relation between the surface roughness r and the 

apparent contact angle, where r is defined by eq. (6). This equation is valid for complete 

solid/liquid contact interfaces. 

 Similarly for the Cassie equation, considering the fraction of solid(S1)/air(S2) and 

solid/liquid interface,  

0cos)()( 222111 =−−+− ALVLSVSLSVS ff θγγγγγ  
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or  

                )()(cos 222111 LSVSLSVSALV ff γγγγθγ −+−=                   (8) 

When S2 is also air, γS2V = 0 and f1 + f2 = 1, equation (8) reduced to Cassie equation 

(equation 5) 

 Specifically, if the micropillar surface is composed of a second scale roughness, 

then the Cassie equation can be written as[13, 14], 

                                1coscos −+= frf YA θθ                                 (9) 

where r is the Wenzel roughness factor (as shown in equation 6) of the structures at the 

solid-liquid contact interface, f is f1 in eq 8 for short. 

 The Wenzel and Cassie equations describe the relationship between contact angle 

and surface roughness/solid contact fraction. For contact angle hysteresis, the 

investigation of mathematical description is still going on. The contact angle hysteresis of 

superhydrophobic surfaces can be characterized by the roll-off angle which is defined as 

the tilt angle at which a water droplet sitting on the surface starts to move; it can also be 

characterized by the contact angle hysteresis which is the difference between the 

advancing angle and the receding angle when the water droplet starts to move. They are 

illustrated in Figure 3. 
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Figure 3. Illustration of the water droplet contact angle, tilt angle and advancing and 
receding angles. 

 The relationship between contact angle hysteresis and tilt angle can be illustrated 

by the following equation: 

                         mg
d AR )cos(cossin θθγα −

=
                         (10) 

where d is the diameter of the moving droplet in the direction that is perpendicular to  the 

droplet movement and m is the mass of the droplet. 

 To achieve roll-off superhydrophobicity, the contact angle hysteresis must be 

controlled. Only when the hysteresis is small is the surface self-cleaning.  

1.2. Thermodynamics  

 In order to analyze the contact of the water droplet with the rough surface[15], 

Patankar gave an excellent discussion. First considering a Cassie drop on a rough 

substrate with negligible weight, the free energy, Gc, of the drop is represented by 

                           LVcSVSLcsLVc AfAfAG γγγγ )1()( 11 −+−+=                       (11) 
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 According to the Cassie equation, eqn (11) simplifies to 

                         ccLVsLVc AAG θγγ cos−=                                                    (12) 

where As is the area of the spherical liquid/air surface and Ac is the projected composite 

contact area, θc is the apparent contact angle on the surface that is in Cassie state. 

 By considering the volume of the droplet, and substituting appropriate 

expressions for As and Ac, eq 12 becomes[16] 

                         

3/13/2
3/23

)cos2()cos1(
9 cc

LV

c

V
G

θθ
γπ

+−=
                       (13) 

where V is the drop volume. 

Similarly, for a Wenzel drop, the free energy Gw, of the drop is[15, 16] 

wwLVsLVw AAG θγγ cos−=  

where θw is the apparent contact angle on the surface that is in Wenzel state. The left-

hand side denotes nondimensional energy. For the Wenzel state, the energy can also be 

described as eq 13 by replacing θc with θw. The generalized eq can be written as  

                                       3/13/2
3/23

)cos2()cos1(
9

θθ
γπ

+−=
LVV

G                    (14) 

The equation 14 is then a monotonically increasing function of θ for 0˚ ≤ θ ≤ 180˚. If θc  

> θw, the Cassie drop will have higher energy than the Wenzel drop. However, this does 

not necessarily mean that the Cassie state will always transition to the Wenzel state. In 

the transition from Cassie to Wenzel, the energy change during the process is given by 

the following eqn. 15 assuming a square pillar patterned surface. In this case, the 

liquid/vapor interface, initially at the top of the groove, moves down; that is, liquid 

begins to wet the sides of the pillars as shown in Figure 4. 
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Figure 4.  (a) Side view of liquid on top of pillars. The liquid interface is suspended from 
edge to edge on the pillars; (b) intermediate state in which the liquid enters the valley and 
therefore represents a transition from a Cassie to a Wenzel state; (c) intermediate state 
during transition where the liquid has not yet wetted the bottom of the valleys. 

 The transition is in general a nonequilibrium process where the local contact angle 

is not necessarily equal to the equilibrium value. The surface energy will change during 

transition. Assuming that the filling of the grooves occurs below the projected area, Ac, of 

the Cassie drop, the energy at any intermediate state is given by 

                cLVYc Ar
H
yGyG γθcos)1)(1()( −−−=                        (15) 

Where y is the location of the interface from the bottom of the groove (Figure 4b) r is the 

Wenzel roughness factor and G(y) is the drop energy of that state. As the liquid fills the 

grooves, As and Ac should change because some volume is moving out of the spherical 

liquid cap above the substrate. This in turn should change the energy, Gc, but we will 

assume these changes to be negligible compared to the surface energy changes (the 

second term on the right-hand side of eqn (15)) due to the wetting of the grooves. This 

assumption is justified because the surface area per unit volume is much larger in the 

grooves compared to the spherical liquid cap. Gc and Ac are therefore assumed constants 

in eqn (15). 

 Eqn (15) implies that the energy of the drop at intermediate states is larger that Gc 

for θe > 90˚. The maximum value is reached at y = 0 when the liquid has filled the 
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grooves but the liquid-solid contact at the bottom of the valley is yet to be formed (Figure 

4c). When the liquid wets the bottom of the valley, the corresponding change in energy is 

given by – (1 + cosθe) γLV (1 - f) Ac; that is, the energy of the system decreases. The liquid 

then wets a greater area of the substrate (Aw > Ac) and eventually reaches the equilibrium 

shape of a Wenzel drop at the energy Gw. Since we are assuming that θc > θw, we have Gc 

> Gw, as argued above. 

The maximum energy state (G(y) at y = 0) among all the intermediate states can be used 

to obtain an estimate of the barrier energy for the transition from Cassie wetting to 

Wenzel wetting, Gb,  

                          cLVecb ArGG γθcos)1( −−=                                     (16) 

 Even if the Cassie drop, on a surface roughness established by pillars, is 

transitioning to a Wenzel state at lower energy, it has to go through a higher intermediate 

energy state. Hence, energy must be provided to the drop to enable transition. The 

transition can be enabled, for example, by depositing the drop from some height, by 

pushing/sliding the drop, or simply due to its own weight.  

 With respect to hysteresis, a gain factor has been introduced by Mchale et al. to 

establish a relationship between the contact angle on a flat surface and the contact angle 

on a rough surface[17]. The model developed did not seek to explain at a microscopic 

level how contact angle hysteresis arises but simply used the Cassie and Wenzel concepts 

to predict how a preexisting hysteresis on a flat, smooth material is transformed when a 

superhydrophobic surface is created from the material. An advantage of their approach is 

that it may be possible, using a series of liquids with varying contact angles on the flat, 

smooth surface, to determine experimentally the relationship between Young’s contact 

angle and contact angle on rough surfaces as shown in Figure 5 and 6 and thereby 

numerically determine the gain factors required to predict changes in contact angle 

hysteresis. 
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Figure 5. Contact angles predicted by Wenzel’s equation for roughness factors of r = 1, r 
= 1.2, and r = 2. In the r >1 cases, a linear region with a slope greater than 1 occurs close 
to 90°, surrounded by super-linear regions, which then convert to saturation values of 0° 
or 180°. An operating point, A, on the r = 1 smooth surface becomes an operating point, 
B, on the r = 2 rough surface. [17] 

 

 

Figure 6. Contact angles predicted by the Cassie-Baxter equation (eq 3) using solid 
surface fractions of f = 1, 0.65, and 0.1. An operating point, A, on the f = 1 smooth 
surface becomes an operating point, C, on the f = 0.65 rough surface. [17] 

 

Figure 7. Gain factors, corresponding to curves in Figure 5, determining response of the 
contact angle on a Wenzel surface to a perturbation of the smooth-surface contact angle. 
[17] 
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Figure 8. Gain factors, corresponding to curves in Figure 6, predict the response of the 
contact angle on a Cassie-Baxter surface to a perturbation of the smooth-surface contact 
angle. [17] 

1.3. Low surface energy materials 

 A variety of materials have been used to prepare superhydrophobic surfaces 

including both organic and inorganic materials. For polymeric materials, which are 

generally inherently hydrophobic, fabrication of surface roughness is the primary focus. 

For inorganic materials, which are generally hydrophilic, a surface hydrophobic treatment 

must be performed after the surface structures are fabricated.  

 Most polymeric materials can be used to fabricate superhydrophobic surfaces.  

For instance, plasma etching has been employed to generate roughness on polymer 

surfaces to achieve superhydrophobicity; polyethylene has been etched by CF4/O2 

plasmas to prepare superhydrophobic surfaces[18]; direct catalytic polymerization 

process for superhydrophobicity[19] etc. In addition, transparent and superhydrophobic 

surfaces can be achieved such as on poly(ethylene terephthalate) surfaces[20]. Examples 

of inorganic materials that have been used to create superhydrophobic surfaces are silica, 

alumina, hepatite, boehmite, titania, and copper etc. which can be roughened to create 

superhydrophobicity if the roughened surfaces are treated appropriately with a 

hydrophobic material[21, 22]. For inorganic materials, the top surface should be covered 

with an organic layer or monolayer for the reduced surface energy. 
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 Low energy materials are particularly important in achieving stable 

superhydrophobic surfaces; among these materials, fluoropolymer/fluorocarbon is one of 

the lowest and F-C bonds are one of the most stable bonds. In addition, the bulky F atoms 

cover well the C atoms beneath the surface (compared to H atoms), thus preventing 

chemical attack of the weaker C-C bonds. These facts lead to the significant potential of 

fluorocarbon layers for self-cleaning coatings. Indeed, Teflon has been roughened to 

produce superhydrophobic surfaces. Short chain fluorocarbon silanes have also been 

investigated to form monolayers on a rough surface to achieve superhydrophobicity (10 

Å thickness is enough to give a hydrophobic layer without any effect of the underlying 

substrates)[23]. Studies have shown that the surface energy with CF3 groups is lower than 

that of CF2 covered surfaces[24].  

 Another very important low surface energy material is silicone. The siloxane 

backbone shows very high bond energy and the side CH3 gives the low surface energy. 

1.4. Structure effect 

 For superhydrophobic surfaces, surface structure/roughness is essential; 

geometrical shape is also critical in achieving the desired surface superhydrophobicity. 

As discussed in section 1.2, Patankar investigated the energy barrier between a Cassie 

and Wenzel state for surface geometries of inclined structures. He demonstrated that an 

energy barrier to prevent the transition from a Cassie high energy state to a Wenzel low 

energy state as shown in Figure 9, may not necessarily be present; that is, the transition 

may be spontaneous. 
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Figure 9. Side and top views of geometrical roughness obtained by periodically placed 
pillars with inclined side walls. 

 A Cassie drop will be formed only if a liquid-vapor interface can connect from 

pillar-to-pillar without touching the valleys. Such an interface can establish equilibrium at 

the top corners of the pillars only if θs ≤ θe ≤ 180˚. For other values of θe a Cassie drop is 

not possible and the valleys will always be filled with liquid.  

 A pyramidal Si surface represents a good model surface for the investigation of 

this structure inclination effect. It was shown mathematically that the inclination angle is 

very important in maintaining the Cassie state. Actually, as the inclination angle θs 

increases, the difficulty in achieving a Cassie superhydrophobic state increases. As 

predicted, the liquid-vapor interface on the composite surface cannot be maintained and 

the droplet is always in Wenzel state. However, by implementing a second scale of 

surface roughness on the pyramid surface, the liquid-vapor interface can be maintained 

on the pyramid top and a Cassie state can be effectively achieved.  

 A superoleophobic surface has also been reported by using the structure shown in 

Figure 10. In order to achieve oil repellency, a reentrant (or overhang) structure design 

was employed. On this surface, a high contact angle can be achieved even though the 

surface is hydrophilic (θ < 90˚). The reentrant structure was also fabricated in electrospun 

polymer/POSS composite fibers as shown in Figure 10 and 11.  
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Figure 10. (a) Cartoon highlighting the formation of a composite interface on surfaces 
with re-entrant topography. The geometric parameters R, D, H, and W characterizing 
these surfaces are also shown. The blue(top) surface is wetted while the red(bottom) 
surface remains nonwetted when in contact with a liquid whose equilibrium contact angle 
is θY (< 90°). (b) SEM micrographs for so-called micro-hoodoo surfaces having circular 
flat caps. The sample is viewed from an oblique angle of 30°. (c) Contact angles for 
octane on silanized micro-hoodoos as a function of f (φs).[25] 

 

 

Figure 11. (a) θadv  (red dots) and θrec (blue squares) for water on electrospun polymer 
surfaces. The inset shows a SEM micrograph for an electrospun surface containing 9.1 
weight % POSS. (b) θadv (red dots) and θrec (blue squares) for hexadecane on the 
electrospun surfaces, the inset of (A) shows a drop of hexadecane (dyed with Red) on a 
44 weight % fluorodecyl POSS electrospun surface. 

 Similar results have also been reported by fabrication of a nanonail structure on Si 

surfaces using plasma etching techniques[26]. Instead of attempting to guarantee that the 

Cassie-Baxter state always remains the minimum-energy state, this approach created a 

system in which the height of the energy barrier that separates the metastable Cassie-

Baxter state from the stable Wenzel state is designed to be sufficiently high to achieve 

effective pinning of the liquid in the desired nonwetting state. The idea is to create a 

special type of 3D surface topography that normally inhibits transitions from the Cassie-

a 

b 

c 
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Baxter state to the Wenzel state but that would allow such transitions under the influence 

of external stimuli, such as electrical fields. A particular example of such topography is 

the “nanonail” structure in Figure 12. 

 

 

 

Figure 12. (a) Scanning electron microscopy (SEM) image of 2-µm-pitch nanonails [26]. 
The nail head diameter D is ~405 nm, the nail head thickness h is ~125 nm, and the 
nanonail stem diameter d is ~280 nm. (b) A nanonail-covered substrate in action. 
Droplets of two liquids with the very different surface tensions, 72mN/m (water) and 
21.8 mN/m (ethanol), sit next to each other on the 2-µm-pitch nanonail substrate. 

 Porous Si surfaces from Au assisted electroless etching process have shown the 

ability to achieve an oil repellent surface[27, 28].  These structures show similar 

overhang character to that for nanonail structures as shown in Figure 13; droplet contact 

angles of water and various organic solvents are shown in Figure 14.  

  

Figure 13. Porous silicon surface fabricated by Au-assisted electroless etching. (a) Top-
view SEM image. (b) Schematic cross-sectional profile of water in contact with the 
porous silicon surface.[27] 

a b

a b
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Figure 14. Static contact angles of water, diethylene glycol, and hexadecane on flat 
silicon (Si), porous silicon (PS) with tilted pores, flat silicon coated with FTS (FTS-Si), 
and porous silicon with tilted pores coated with FTS (FTS-PS). [27] 

 

 Achievement of high contact angles for both polar (water) and nonpolar droplets 

(e.g., hexadecane) requires the design of surface structures similar to those shown in 

Figure 14. In order to achieve mechanical stability and optimized hierarchical surface 

structures for enhanced self-cleaning on superhydrophobic surfaces, it is critical to 

understand the fundamental surface physics, especially the surface-structure effect on 

superhydrophobicity to improve control over the surface structures (geometrical shapes, 

pitch, height, aspect ratio, hierarchical design etc) present.  These design criteria can then 

be used to achieve the requirements necessary for various applications.  

 As described previously, for surface superhydrophobicity, there are two 

requirements. The first is high contact angle (>150˚), which relates the contact angle to 

surface structure (expressed by the Wenzel surface roughness factor r) and can be 

described by the improved Cassie equation[13, 15].  The second parameter is the contact 

angle hysteresis, which is defined by the difference between the surface advancing 

contact angle and the surface receding contact angle.  

 

1.5. Approaches to preparing surface structures for superhydrophobicity 
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 Generally methods to prepare structures for superhydrophobic surfaces include 1) 

preparation of a rough surface by etching of hydrophobic substrates or hydrophilic 

substrates followed by a surface hydrophobization treatment, or 2) preparation of a rough 

surface by coating techniques using either hydrophobic materials or hydrophilic materials 

followed by hydrophobic treatment/coating. The hydrophobic treatment can be 

accomplished by techniques such as film or molecule deposition, solution coating or self-

assembly of hydrophobic layers (e.g., silane coupling agent, thiol). 

1.5.1 Etching approaches 

1.5.1.1 Lithography techniques 

 Lithography is a method to transfer patterns from a mask onto a substrate surface 

or film. Therefore the geometrical surface structure can be designed on masks (generally 

chromium on glass) and the mask can be employed repeatedly. Generation of structures 

on a substrate using lithography can be realized by the following steps.[29] In 

photolithography, a photoactive polymer layer (photoresist) is irradiated through a mask 

followed by layer development where either the exposed or unexposed polymer is 

removed selectively, leaving a positive or negative image of the mask on the surface. 

Photolithography can be sub-divided into different categories depending on the radiation 

used: UV, X-ray, etc.  Lithography is useful for generating superhydrophobic surfaces 

because the feature shape and pattern dimensions are well-defined. Therefore, model 

surfaces can be created for the investigation of fundamental effects, such as the 

relationship between surface structure shape, geometries and superhydrophobicity (high 

contact angle and low sliding angle/roll-off angle/hysteresis).  

 An extensive set of studies on superhydrophobic surfaces generated by 

photolithography was performed by Oner et al[29]. In these studies, they produced a 

large range of feature sizes with patterns etched in silicon, including square posts with 
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feature height from 20-140 µm and side lengths 2-128 µm (Figure 15a-c ) as well as 

staggered rhombus- and star-shaped structures. Bico et al. also investigated other 

structures such as shallow cavities and stripes on Si surfaces to understand the effect of 

isotropic and anisotropic structures on superhydrophobicity (Figure 15d, e). Choi et al. 

reduced Si structures to nanoscale dimensions (~200 nm in height) using interference 

lithography and showed that the structure shape can be controlled by the etching 

conditions[30] (Figure 15f, g). SU-8 features were also investigated using analogous 

lithography techniques to investigate the three-phase-contact-line effect on 

superhydrophobicity[31] as shown in Figure 15h. 

 

Figure 15. SEM images of surface structures from lithography techniques: a) Si square 
posts[29]; b) four-armed star-shaped posts[29]; c) indented square posts[29]; d) shallow 
cavities[32]; e) Si stripes[32]; f) sharp tip Si nanoposts[30]; g) Si reentrant structures[30] 
and h) patterned SU-8 surfaces of circular pillars[31]. 

1.5.1.2 Differential Plasma Etching  

a b c

d e f
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 Plasma techniques are widely employed in microelectronics processing (Si 

surface pattern etching), cleaning, removal of photoresists, and dielectric film deposition 

such as inorganic or polymer materials)[33]. Plasma etching techniques are also capable 

of surface roughness generation and therefore offer a method to fabricate 

superhydrophobic surfaces.  

 

Plasma etching of fluoropolymers 

 Using plasma etching techniques, polymer materials ranging from PTFE to 

silicones to polyethylene can be etched to produce a rough surface. To roughen PTFE, the 

technique of radio-frequency sputtering has been reported[4, 34]. For long sputtering 

times, a superhydrophobic Teflon surface was prepared by use of an O2 plasma; the 

resulting surface showed a water contact angle of 168˚[35]. Plasma ion beam treatment 

using O2 and Ar have also been reported in preparation of superhydrophobic PTFE 

coatings[36] with a surface morphology as shown in Figure 16.  

 

Figure 16. The SEM surface morphology of plasma treated PTFE surface by Ar/O2 
(2sccm/2sccm) 1.5KeV. 

 Using a simple plasma based technique that combines etching and plasma 

polymerization on silicon substrates, superhydrophobic surfaces have been fabricated by 

tailoring their surface chemistry and surface topology[37]. This technique showed the 

capability of large area processing and good reproducibility. Using SF6 as an etchant, 

surface roughness can be produced by over-etching the photoresist layer. Overall, the 
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method to generate superhydrophobic surfaces consisted of 3 steps. First, a 2.3 µm thick 

photoresist polymer layer (microposit S1813 supplied by Shipley Company) is deposited 

by spin coating on a silicon wafer. Then, photoresist layers are etched using an 

inductively coupled plasma with a magnetic pole enhanced ICP (MaPEICP) source. 

Third, the CFx layer is deposited on etched photoresist/Si wafer from C4F8 using the 

same plasma reactor but with the 13.56MHz r.f. capacitive plasma mode. The key step of 

this process is etching of the surface topography into the substrate to create high 

roughness before deposition of the fluorocarbon coating. Superhydrophobicity is 

achieved after the C4F8 plasma polymer deposition process.  

Plasma etching of silicon with micromask 

 SF6 and CHF3 plasmas were used to investigate the surface roughness generation 

on silicon surfaces for surface wettability modification[38]. Due to the nonuniform 

removal of photoresist (Microposit S 1813, Shipley, spincoating at 2000rpm), the reside 

that remains on the surface acts as localized masks to create roughness on the silicon 

surface.  After the surface roughness was formed as shown in Figure 17, a CFx layer was 

deposited on top of the rough surface using plasma-enhanced chemical vapor deposition 

(PECVD). The surfaces treated by the CHF3 plasma are all superhydrophobic up to 10 

min of etching, while SF6 etching will not produce superhydrophobic after 2.5 min 

etching; these results are due to differences in Si etch rate with the two fluorocarbon 

gases. After 5 min etching for SF6, the surface contact angle becomes 116˚, which is 

approximately the contact angle on a flat surface for CFx coatings. 
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Figure 17. SEM image of silicon surface etched by SF6 for (a) 1, (b,c) 2.5, and (d) 5 min. 
Image c is a magnified view (with an observation angle of 45°) of one residual 
photoresist particle on a peaked feature. The areas in images a, b, and d are 20 µm x 20 
µm; The area of image c is 2 µm x 2 µm[38]. 

 

 The roughness morphology at these process conditions shows a crystallographic 

anisotropy, where (111) planes are revealed. When an oxide mask was used, the surface 

roughness was reduced compared to that for a photoresist mask. When there is no mask, 

the surface roughness is very low which suggests an effect due to the photoresist mask 

layer (which redeposits during etching) on the surface roughness.  

Plasma etching of poly(dimethylsiloxane) 

 Polydimethylsiloxane is a very low surface energy material with a surface energy 

of 21-22mJ/m2, only slightly higher than PTFE (~18mJ/m2). However, after plasma 

treatment, the surface may show much higher surface energy. For instance, 

superhydrophobic PDMS has been fabricated by an SF6 plasma treatment followed by 

fluorocarbon film deposition that generated hydrophobic high aspect ratio columnar-like 

nanostructures as shown in Figure 18[39]. 

a
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Figure 18. SEM image of a PDMS elastomer (Sylgard 184) surface after a 6 min SF6 
plasma treatment. 1.45 µm-high nano-columns are shown. (b) Image of a water droplet 
rolling off the surface in (a) after being conformally coated with a 20 nm-thick FC 
film[39]. 

 

 In addition, under appropriate plasma processing conditions (SF6 plasma etching 

for a sufficient time to generate the appropriate surface roughness), superhydrophobic 

and simultaneously transparent surfaces can be produced[39], which is of great practical 

importance. In particular, nanostructured PDMS surfaces are visibly transparent for 

treatment times up to 2 min (height of column: 130 nm), although they become opaque 

for etching times longer than 4 min. However, the transmittance data were not shown.  

Domain selective plasma etching 

 To establish superhydrophobicity  of PET, a method consisting of a two-step 

process comprised of nanotexturing by an oxygen plasma treatment and subsequent 

deposition of a hydrophobic coating by means of low temperature chemical vapor 

deposition or plasma-enhanced chemical vapor deposition, was employed to form ultra 

water-repellent polymer sheets [20, 40, 41]. After oxygen etching, many protrusions are 

observed on the polymer surface. Since PET has two domains, that is, noncrystalline 

domains are more readily etched than the crystalline domains, these protrusions were 

probably formed as a result of domain-selective plasma etching. This surface nanotexture 

remained after deposition of the hydrophobic coatings using organosilane precursors;  

surface topologies are shown in Figure 19. The surface-modified substrate was 

b
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transparent (the polymer is optically transparent) and ultra water-repellent, showing a 

water contact angle greater than 150 degrees.  

 

Figure 19. AFM of PET (a) untreated, (b) O2 plasma treatment (c) FAS coating after O2 
plasma. 

 By selectively patterning a surface (deposited fluorocarbon polymer) a micro-

patterned polymer substrate with superhydrophobic/superhydrophilic domains as shown 

in figure 20 can be prepared. Such surfaces are extremely useful in chemical and 

biological sciences to keep surfaces from retaining or being fouled by samples and 

reagents. 

 

Figure 20. Environmental Scanning Electron Microscope (ESEM) image of micro-
patterned water droplets on a superhydrophobic/superhydrophilic surface prepared by a 
multi-step drying process[42]. 

 To achieve superhydrophobicity on LDPE surfaces, a similar process has been 

employed due to the fact that LDPE also shows non-crystalline and crystalline domains 

[43-45]. Two routes to achieve superhydrophobicity are possible. The first corresponds to 

a one-step synthesis (CF4 plasma modification of LDPE). The second route involves two 

steps (O2 plasma treatment followed by CF4 plasma deposition onto LDPE). However, 

these surfaces tend to lose their superhydrophobic behavior after water vapor 

condensation. 
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Figure 21. a) SEM image of PS samples treated with a CF4-O2 discharge with 17% O2 
for 5 min[46]; 300W 5 min plasma etching; b) transmittance of the prepared surfaces. 

 Superhydrophobicity can also be achieved by polystyrene (PS) etching in CF4-

O2[46]. By controlling the etching parameters, the surface wetting characteristics can be 

tailored from sticky to slippery superhydrophobicity. Using this process, the optical 

transparency can be maintained on the PS surfaces (Figure 21). 

  Woodward et al. used a two step CF4 plasma etching and fluorination process 

followed by sample curing to prepare a fluorinated rough polybutadiene surface (Figure 

22) [47]. This surface exhibited superhydrophobicity with a water contact angle of ~175˚ 

and contact angle hysteresis of 0.4˚. 

 

Figure 22. AFM height image of polybutadiene in CF4 plasma (power 50 W) for 900 s 
[47]. 

a b
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Figure 23. Electron microscopy images of a nanograss surface coated with a PFA thin 
film. [48] 

  Dorrer et al. reported a method to manipulate superhydropobicity/superhydro-

philicity by precise control of the surface chemistry using various polymer coatings on Si 

nanograss surfaces generated by anisotropic plasma etching (Figure 23) [48]. When a 

hydrophobic polymer poly(heptadecafluorodecylacrylate) (PFA) was used to coated Si 

nanograss surfaces, superhydrophobicity (179˚, no observable hysteresis) was achieved 

and the surface showed “condensation resistance” to water vapor. 

 

1.5.1.3 Metal assisted etching 

 The metal assisted etching process on Si surfaces involves: 1) deposition of metal 

nanoparticles (Au, Pt, Ag, Pd etc) on the Si surface, and 2) etching of the metal coated Si 

in HF/oxidant solutions[49]. During this process, Si is continuously etched away at the 

site of the metal/Si contacts and surface roughness formed by control of the metal particle 

density. Deposition methods including direct metal deposition by sputtering or electron 

beam evaporation and electrochemical deposition of metal particles from reactive metal 

precursors. Figure 24 shows the result of using different metals for assisted etching on Si 

surfaces. Metal has been deposited onto Si surfaces by reduction of metal precursors such 

as HAuCl4[28], AgNO3[50], Ni(NO3)2 [51]. E-beam evaporation or DC sputtering can 

also be used to deposit metal onto silicon surfaces for this etching process[49]. 
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Figure 24. SEM images of etched Si surfaces: a. from AgNO3/HF etching, 0.02/5.0; b. 
from Ni(NO3)2/HF etching 0.08/5.0[51]; c. evaporated Pt on Si, etching in HF/H2O2[49].  

1.5.1.4 Dislocation selective chemical etching and other etching methods 

 Dislocation selective chemical etching can be performed on the surface of 

polycrystalline metals such as aluminum, copper and zinc, to prepare rough surfaces as 

shown in Figure 25 [52-55]. The key to this etching technique is the use of a dislocation 

selective etchant that preferentially dissolves the dislocation sites in the grains. Water 

droplet contact angles higher than 150˚ and roll-off angles of less than 10˚ were obtained 

when surfaces were treated with fluoroalkylsilane. 

 

Figure 25. SEM images of different etched surfaces: a) zinc surface etched with 4.0 
mol/L HCl solution for 90 s at room temperature[52]; b) copper surface etched with a 
modified Livingston’s dislocation etchant for 24 h at ambient temperature[52]; c) Al 
etched by Beck’s dislocation etchant for 10 s; d) Al alloy (2024Al, 92.8wt% Al, 5.5wt% 
Cu) etching by NaOH[53]; e) Cu surface[54], Cu etching was carried out in a potassium 
persulfate solution. rough etched top and pits; f) Ti surfaces from sandblasting and acid 
etching.[55] 

a b c

a b c d 

e f



 27

 Superhydrophobicity can also be achieved by Al alloy etching using NaOH. 

Etching mainly occurred in the Al domain because of preferential dislocation etching; 

roughness is due to the remaining Cu and other elements on the surface. The as prepared 

surface shows a contact angle of 154˚ and sliding angle of ~3˚ after hydrophobic 

treatment. [53] On Cu surfaces, the microstructures can be prepared by photolithography 

and subsequent etching using a potassium persulfate solution[54]. A Ti surface with low 

surface energy was prepared by sandblasting and acid etching (HCl/H2SO4) after a 

hydrophobic treatment[55] (Figure 25f). The initial advancing contact angle on the 

surface is 139.9˚ without any hydrophobic treatment, which is the highest contact angle 

considering that there is no more hydrophobic treatment on the surface. However, the 

receding contact angle is < 5˚ and repeated measurement gave a contact angle of 0˚.  

 Electrochemical anodization can also be used to generate surface roughness. For 

example, Ti was treated by electrochemical anodization to form a sponge-like 

nanostructured TiO2 film on the surface[56] (Figure 26a). After a hydrophobic surface 

treatment, the advancing angle on the surface was 160.1˚ and the hysteresis was only 

0.8˚.  

 

 

Figure 26.  Anodized surfaces: a) Ti anodization, TiO2 formed on surface[56]; b) Al 
anodized surface[5]. 

 Al surfaces can also be anodized to prepare a fractal surface[5] (Figure 26b). 

After a fluorinated monoalkyl phosphate (F-MAP) treatment, the surface showed a water 

ba 
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droplet contact angle of 163˚ and rapeseed oil contact angle of 150˚. The fluorination 

chain length is very important in this case and the oil repellency for the silane coupling 

agent was much less than that of F-MAP. 

 

1.5.2 Coat-on/cast approach 

 This approach uses gas or liquid phase deposition or coating processes to deposit 

a thin film on substrates; during the deposition, rough solid structures evolve. Depending 

on the surface energy of the coating materials, the surface may (high surface energy 

materials) or may not (low surface energy materials, e.g. fluoropolymer, silicone, 

hydrocarbon etc) require a hydrophobic treatment to achieve superhydrophobicity. 

1.5.2.1 Plasma deposition  

  Particulate formation in atmospheric plasma process can be used for the 

generation of superhydrophobic surfaces[57]. Among many treatments that can be 

utilized to impart hydrophobic and superhydrophobic character to surfaces, plasma based 

processes have been widely studied and developed. Plasma-based treatment methods 

provide the advantages that no liquid waste is generated and the efficiency of surface 

activation by the dual action of radicals and charged particles (electrons and ions) is high. 

There are several reports of the use of atmospheric plasma processes, but plasma 

stability, low power operation, and high flow rates of precursors/diluents remain as 

challenges that must be solved for practical applications. One method of atmospheric 

plasma polymerization to form superhydrophobic surfaces on a wide range of substrates 

has been demonstrated[57]. The superhydrophobic coating was produced by an in-line 

atmospheric radio frequency (rf, 13.56MHz) plasma process using a mixture of CF4, H2 

and He gases. Roughness can be minimized while maintaining the superhydrophobicity 

to achieve transparent film on glass slides. The process can be applied to flat substrate 
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surfaces such as metal, silicon wafers, and glass as well as rough surfaces such as 

Kimwipe paper and cotton without the need for separate micro-roughening steps.  The 

system does not require reduced pressure and is operated in an in-line mode,rather than a 

batch mode. As a result, it can be scaled up for applications to large substrate surfaces or 

continuous processing, which is preferred for industrial manufacturing. Two parameters 

were important: the speed at which the sample was moved through the plasma and the 

use of hydrogen. The speed must be optimized and hydrogen is used to achieve effective 

polymer deposition. After more than 5 passes, the surface showed superhydrophobicity. 

XPS and AFM analyses showed that on the surface there are CFx particulates formed 

which are responsible for the high contact angle and low hysteresis. It is known that for 

microelectronics manufacturing, particulates are detrimental to device properties and 

reliability and should be avoided. However, for superhydrophobicity applications, 

particulates are intentionally produced. At a relatively high pressure and so a low mean 

free path of neutrals and ions, particles will be formed in the gas phase, which leads to 

the deposition of particulates onto substrates.  

1.5.2.2 Chemical Vapor Deposition (CVD) process 

 Silicone nanofilaments have been formed from trichloromethylsilane (TCMS) 

precursor via a gas phase reaction route at room temperature and pressure without a 

carrier gas[58]. Silanes with hydrolysable groups (chloride) react with water to form 

silanols, which then couple to hydroxyl groups at the surfaces, and subsequently 

polymerize to a silicone layer, depending on the reaction conditions. When dry reaction 

conditions with only traces of water were maintained, monolayers or nearly monolayer 

thick coatings resulted. When equimolar amounts of liquid TCMS and water vapor were 

used in the reaction vessel, a superhydrophobic surface was achieved; the coating then 

consisted of polymethylsilsesquioxane nanofilaments. This technique can be used to coat 

a variety of surfaces such as cotton fiber, wood, polyethylene, ceramics, titanium and 
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aluminum. In addition, on glass surfaces, a transparent coating can be achieved as shown 

in Figure 27. When the as deposited surface was treated in an O2 plasma followed by a 

treatment with fluoroalkylsilane, oil repellent surfaces resulted[59] as shown in Figure 

27c. 

 

 

Figure 27. Scanning electron microscopy images of silicone nanofilaments on silicon. b. 
UV-vis spectra of coated and uncoated glass slides[58]; d. 10 ml drop of colored 
hexadecane (yellow) and colored water (blue) on a PFOTS modified silicone 
nanofilament coating on glass.[59] 

 Zhu et al. reported a method of superhydrophobic materials preparation using 

two-tier CNT surfaces formed by growing patterned CNT arrays on CNT covered Si 

surfaces via CVD (Figure 28a)[60]. Because of the presence of nanoroughness on the 

CNT film/array surface, a two tier roughness can be achieved. Therefore, after coating 

the surfaces with a fluorocarbon film, superhydrophobicity was achieved with a contact 

angle of 167˚ and a hysteresis of 1˚. A CNT nanoforest has also been prepared by 

a b
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PECVD  (Figure 28b).[61] After the surface was coated with PTFE, superhydrophobicity 

was achieved down to the microscopic level. Even micrometer-sized water droplets can 

be suspended on top of the nanotube forest.  

 

Figure 28. a) Typical SEM images of CNT arrays on silicon substrates; b) SEM images 
of carbon nanotube forests prepared by PECVD with nanotube diameter of 50 nm and a 
height of 2 µm. [60, 61] 

1.5.2.3 Sol-gel process 

 Sol-gel processes can also produce rough surfaces on a variety of oxides such as 

silica, alumina, and titania[62, 63]. This approach is a very versatile process for the 

preparation of superhydrophobic thin films or bulk materials. Sol-gel process can form a 

flat surface coating, xerogel coating or aerogel coating depending on the process 

conditions; both xerogel and aerogel show rough or fractal surfaces. 

 Silica aerogels can contain up to 15 wt% of absorbed air and water vapor. In order 

to decrease the pore affinity to absorption and thus make aerogels less hydrophilic, a 

number of strategies have been used, such as avoiding the presence of terminal hydroxyl 

groups by co-gelling certain silicon precursors containing at least one non-polar chemical 

group i.e., CH3-Si[64]. Superhydrophobic silica aerogels can also be obtained by surface 

modification of standard silica gels with a heavily fluorinated silyl chloride followed by 

supercritical fluid solvent removal.[62] After either ambient drying or supercritical 

drying, both surfaces show superhydrophobic properties (Figure 29). 
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Figure 29. Drop of water on top of fluorinated aerogel, inset shows a close-up.[62] 

 Attempts have been made to synthesize highly flexible and superhydrophobic 

silica aerogels using methyltrimethoxysilane (MTMS) as a precursor by a two-step acid-

base sol-gel process[65] (Figures 30 and 31). The aerogels consist of cross-linked 

networks of silica polymer chains extended in three dimensions. Due to the presence of 

non-polar alkyl groups (i.e. methyl) attached to the silica polymer chains, the inter-chain 

cohesion is minimized resulting in an elastic and flexible three-dimensional network. 

Increased dilution of the MTMS precursor with methanol solvent yielded a silica network 

with a low degree of polymerization which exhibited higher flexibility. In contrast, for 

lower dilution of the MTMS precursor, an extensive polymerization resulted in dense and 

rigid structures. Because of the new property, i.e. flexibility, imparted to the aerogel, it 

can be bent into a variety of shapes and acts as a good shock absorber as well. A water 

droplet contact angle of 164˚ can be achieved on such aerogel surfaces. 

 

Figure 30. Flexible silica aerogels prepared at two different MeOH/MTMS molar ratio of 
35.[65] 
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Figure 31. Photograph of the three states of a flexible aerogel sample: (a) without stress, 
(b) with stress, (c) after releasing the applied stress.[65] 

 Another method to produce superhydrophobic silica materials is the phase 

separation method in which a hardening process ‘freezes’ a phase separation that occurs 

concurrently with hardening of one of the phases[66]. This method produced co-

continuous materials consisting of a solid phase and a liquid phase. When the liquid was 

removed, a porous structure remained. The materials system was comprised of condensed 

organo-triethoxysilane in a mixture of organic solvent and water. Such sol-gel materials 

show promise as stronger superhydrophobic surfaces and as bulk materials and are 

relatively cheap to produce. Reaction occurs through hydrolysis of the ethoxy groups and 

polymerization of the resulting silanol groups. Polymerization causes a decrease in dipole 

moment, leading to hydrophobic phase separation. The dried material has the organic 

groups on its surface, causing the foams to be superhydrophobic (Figure 32). 

 

Figure 32. Electron micrographs of gold-coated foams: MTEOS with 1.1 M ammonia, 
heated to 300 °C. [66] 

 Despite abrasion of these sol-gel surfaces, the high water droplet contact angle 

can be maintained. This result is significant for applications wherein handling and 
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mechanical abrasion are inevitable. Even at temperatures as high as 300˚C, no loss of 

superhydrophobicity is detected. 

 Another facile process involves initial formation of silica particles followed by 

surface fluorination in situ using trichlorosilanes[67]. Stable superhydrophobic surfaces 

with water contact angles over 170˚ and sliding angles below 7˚ have been produced by 

simply coating a particulate silica sol solution of co-hydrolyzed TEOS/fluorinated alkyl 

silane with NH3-H2O onto various substrates, including textile fabrics (e.g. polyester, 

wool and cotton), electrospun nanofiber mats, filter papers, glass slides, and silicon 

wafers (Figure 33). 

 

Figure 33. a) Reaction route of silica sol preparation and coating procedure; b) 
Photographic images of the coated polyester fabrics. [67] 

 Gao et al. reported a method to fabricate a perfect superhydrophobic surface 

(θA/θR = 180˚/180˚) by immersion of a Si wafer into CH3SiCl/toluene solution, rinsing 

with toluene, ethanol and water and drying the surface coating[68]. The surface 

morphology generated is shown in Figure 34. 

 

Figure 34. SEM images of a superhydrophobic surface from CH3SiCl3.[68] 

a b 
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 Alumina is a hard material that is abrasion resistant. Using a sol-gel process, 

nanoscale surface structures can be generated by various methods (Figure 35). Tadanaga 

et al. showed that by immersing the porous alumina gel films prepared by the sol-gel 

method in boiling water, alumina thin films with a roughness of 20 to 50 nm were 

formed[63]. As a result, high optical transparency can be achieved. After a surface 

hydrophobic treatment, a superhydrophobic surface with a contact angle of 165˚ resulted.  

  

Figure 35. FE-SEM photographs of the surface of the Al2O3 films immersed in boiling 
water for (a) 30, and (b) 600 s. [63] 

1.5.2.4 Layer-by-layer self-assembly 

 Layer-by-layer (LbL) self-assembly, which is based on the alternating 

physisorption of oppositely charged building blocks, represents a method to immobilize 

polyelectrolytes, colloid nanoparticles and biomacromolecules, such as enzymes, 

extracellular matrices (ECM), and DNA[69]. The sensitivity of the LbL multilayer 

towards its environment (e.g., pH, ionic strength) further provides new approaches to 

adjust the layered nanostructure with a tailored composition and architecture. The use of 

the LbL technique for constructing superhydrophobic coatings from poly(acrylic acid) 

(PAA) and polyethyleneimine (PEI), especially using Ag+ to enhance the exponential 

growth of the PEI/PAA multi-layers has been explored[70]. It was found that the addition 

of Ag+ can significantly improve the surface roughness as shown in Figure 36. On such 

surface, a high contact angle of 172˚ can be achieved after surface fluorination by 

(tridecafluoroctyl)triethoxysilane. 
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Figure 36. SEM image of (PAA/PEI-Ag+)7.5 film[70] 

 Zhai et al. prepared a polyelectrolyte multilayer surface by LbL assembly and 

then overcoated the surface with silica nanoparticles to mimick the hierarchical scale 

present on lotus leaf surfaces[71] (Figure 37). Superhydrophobicity was achieved after 

surface fluorination with a fluoroalkyl silane. 

  

Figure 37. SEM image of the fully treated polyelectrolyte structure (a 2 h immersion in a 
pH 2.7 solution followed by a 4 h immersion in a pH 2.3 solution, with no water rinse) 
with silica nanoparticles. [71] 

1.5.2.5 Monodisperse nanoparticles 

 Shiu et al. fabricated superhydrophobic surfaces by employing polystyrene (PS) 

monodisperse nanosphere lithography[72]. This method involves the formation of close-

packed nanosphere arrays, O2 plasma etching of the spheres, coating of the surface with 

Au, followed by octadecanethiol (ODT) treatment. The contact angle of the resulting 

surface was 168˚; images of the final surface are shown in Figure 38.  
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Figure 38. SEM image of a 440-nm-diameter double-layer polystyrene surface after 120 
s of oxygen plasma treatment; Bar: 1 µm.[72] 

1.5.2.6 Electrospinning 

 Electrospinning has become a popular method to generate continuous ultrathin 

fibers with micrometer and sub-micrometer diameters from a variety of polymeric 

materials. Electrospun fibers intrinsically provide at least one length scale of roughness 

for superhydrophobicity because of the small fiber size. The fiber mats composed solely 

of uniform fibers could be obtained by electrospinning a hydrophobic material (i.e., 

poly(styrene-block-dimethylsiloxane) block copolymer) blended with homopolymer 

polystyrene (PS)[73]. The roughness of the nonwoven mat, that resulted from the small 

diameters of the fibers (150–400 nm), combined with the enrichment of the 

dimethylsiloxane component at fiber surfaces yielded superhydrophobic surfaces (Figure 

39). The construction of hierarchical roughness improves the superhydrophobicity with 

improved water droplet contact angles and reduced contact angle hysteresis[74].  

 

 

Figure 39. SEM images of electrospun and poly(perfluoroalkyl ethyl methacrylate) 
(PPFEMA)-coated PMMA fibers with surface pore structures; electrospinning process 
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was performed from a chloroform solution in ambient conditions with 44% relative 
humidity. [73] 

 Superhydrophobic surfaces were also prepared from electrospinning of 

polyaniline/polystyrene webs[75] (Figure 40). This surface is conductive and stable in 

many corrosive solutions, including acidic or basic solutions over a wide pH range, and 

oxidative solutions.  

 

Figure 40. SEM image of an electrospun PANI/PS composite film with lotus-leaf-like 
structure.[75] 

1.5.2.7 Electrochemical deposition method 

 Two-dimensional gold nanostructures have been fabricated by electrochemical 

deposition of gold nanoparticles onto indium tin oxide (ITO) glass substrates modified 

with thin polypyrrole (PPY) films[76] (Figure 41a). Different structures can be formed 

depending upon the deposition conditions; e.g., dendritic rods, sheet, flower-like and 

pinecone-like structures.  The contact angle after dodecanethiol treatment on pinecone-

like structures is 153.4˚, at a tilt angle of 4.4˚. Zinc oxide conductive surface structures 

were also prepared by cathodic electrochemical deposition from aqueous solutions of 

ZnCl2/KCl[77] (Figure 41b).  Hierarchical spherical cupreous microstructures have been 

reported on an indium tin oxide (ITO) substrate by using Cu(NO3)2 aqueous solutions 

(Figure 41c).[78] Further chemisorption of a self-assembled monolayer of n-

dodecanethiol resulted in a superhydrophobic surface with a contact angle of 152˚.   
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Figure 41. SEM images of a) Au nanoparticles deposited on a 14-nm-thick PPY for 2000 
s[76]; b) ZnO thin films prepared by electrochemical deposition[77]; c) hierarchical 
spherical cupreous microstructures after 30 min deposition on ITO substrate[78]; d) 
perfluorooctanesulfonate-doped polyaniline film on Au coated glass surface from 
electrochemical deposition. [79] 

 Conductive PANI have also been reported[79] (Figure 41d), where 

superhydrophobic conducting polyaniline (PANI) films were electrochemically deposited 

in acetonitrile-H2O electrolyte containing aniline monomer and perfluorooctanesulfonic 

(PFOS) acid. By controlling the electrical potential, PANI films were changed between 

the doped state and un-doped state, resulting in reversibly switchable superhydrophobic 

and superhydrophilic surfaces.   
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1.5.5 Other formation methods 

1.5.5.1 Templating and imprinting 

 One of the simplest reproducible methods to prepare structured surfaces is the 

templating approach. Lee et al. reported that using AAO templating, PS 

superhydrophobic surfaces with well-defined nanostructures could be fabricated (Figure 

42a).[80] Templates from lotus leave have also been reported[81]. In this case, lotus 

leaves were used as a mold to make negative structures on PDMS surfaces by a replica 

molding process. This molded PDMS surface can be used as template to fabricate 

polymer surface structures similar to those on lotus leaf surfaces (Figure 42b).  

 

Figure 42. SEM images of a) nanostructured PS surfaces of nanopost arrays with an 
embossed base[80]; b) imprinted layers of epoxy-based azo polymer.[81] 

1.5.5.2 Sublimation method 

 Nakajima et al. prepared superhydrophobic and transparent boehmite and silica 

films by sublimation of aluminum acetylacetonate (AACA)[22]. After sublimation, 

surface roughness was generated (Figure 43) and superhydrophobicity was achieved by 

an appropriate fluoroalkyl silane surface treatment. 
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Figure 43. SEM micrographs of prepared films. a) Film prepared from a suspension 
containing boehmite and AACA; b) film prepared from a suspension containing silica 
and AACA. [22] 

1.5.5.3 Honey comb structures by moisture condensation 

 

Figure 44. Scanning electron micrograph of the 300-nm-sized honeycomb patterned film 
(top image and cross section) and the water contact angle on this film. [82] 

 Honeycomb-like microporous polymer films with 500 nm to 50 µm pores 

(diameter) have been prepared by casting polymer solutions under humid 

conditions(Figure 44). If a fluoropolymer was used, superhydrophobicity was 

achieved.[82] In this process, water droplets condensed on the solution film surface act as 

templates. Depending on the drying rate of solvents, pore size can be controlled by 

controlling the water droplet size. This surface can also be optically transparent under the 

proper formation conditions. 
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 Combination approaches using several formation techniques to create surface 

structures at different length scales to mimick lotus leaf surfaces has been reported.  The 

combination of LbL and electrochemical deposition of Au is one example[83]. 

 

1.6. Potential Applications  

 Superhydrophobicity is a relatively recent term that has been used to describe 

extreme water repellency of rough hydrophobic surfaces. However, such techniques  

have been practiced for a long time. Early products include breathable fabrics and certain 

membrane filters, which use the same structure effects as superhydrophobic surfaces, but 

these are rarely referred to as being superhydrophobic. For example, Gore-Tex®, which 

was patented in 1972, is superhydrophobic.  

 The number and scope of techniques to generate superhydrophobic surfaces has 

greatly increased in recent years with possible applications expanding with them. The 

main barrier that prevents implementation of self-cleaning surfaces is that the surfaces are 

easily damaged or contaminated during normal use, such as abrasive wear and washing 

cycles. Despite this limitation, over 200 patens have been granted that use or produce 

superhydrophobicity in some form and products are becoming commercially available. 

Specific applications that do not involve abrasion or contact with oils that may cause 

contamination, such as self-cleaning building walls and windows have made use of these 

super-water-repellent surfaces. Commercially, one of the greatest limitations to the use of 

such surfaces is the stability over time under outdoor conditions. Investigations to 

improve resistance to scratching are underway which could lead to useful products. As 

research continues, methods of production and materials used to form superhydrophobic 

surfaces will broaden and offer new applications.  

 Potential uses for self-cleaning surfaces are wide-ranging. Indeed, we are 

surrounded by many surfaces that we want to keep clean, from window panels to roof 
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tiles to bathroom surfaces and house walls. For example, cleaning of windows is 

expensive and cumbersome, especially if the windows are on skyscrapers. Water-related 

corrosion processes can also be prevented by such superhydrophobic surfaces. 

 The hydrophilic route to self-cleaning windows has been realized by several 

companies (PPG, Pilkington, TOTO) and has just been released to market. To what 

extent these windows will be a commercial success clearly remains to be seen; to some, a 

water film running off the glass may appear to be a nuisance. The main advantage of 

these surfaces is the combined hydrophilicity-photodegradation effect, which 

significantly aids in the cleaning process by decomposing organic moieties on the surface 

when illuminated under UV radiation. Furthermore, the fact that a controlled roughness is 

not needed in this approach is a clear technological advantage. Although the 

superhydrophilic effect is reversible in principle, the ageing of these surfaces under actual 

conditions is not known. Others argue that coatings for windows and mirrors should be 

superhydrophilic, causing water to form a transparent film which does not block the 

vision. However, superhydrophobic coatings on transparent windows may be problematic 

due to the fact that raindrops rolling off the surface can be distracting. 

 The alternative superhydrophobic approach, has not yet been realized in practice, 

but work in this direction is now underway. An ambitious attempt has been made by 

combining the basic elements of superhydrophobicity with biomimetic surface 

design[84]. A system under industrial development contains a reservoir with a 

hydrophobic polymer that is intended to mimic the wax of the lotus leaf: the outcome 

would be a self-cleaning surface that heals itself. The concept relies on a replenishment 

layer embedded in a glass that serves as a surface-repairing reservoir, refueling a 

hydrophobic cover layer when it has been depleted at the surface, and hence restores 

superhydrophobicity to the roughened surface.  

 Another important application for superhydrophobic surfaces may be in the field 

of oil/water separation[85]. Feng et al. demonstrated that a mesh coated with PTFE 
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showed two extremes in wettability for water and oil. For water, it is an extremely 

nonwetting surface (superhydrophobic), while for oil, it changed to complete wetting 

(superoleophilic). The extreme difference in wettability for water and oil showed the 

possibility to separate oil and water. When a mixture of oil and water is put on the mesh 

film, the water remains on the upper part of the film, while the oil penetrates through the 

mesh and can be collected underneath. 

 Corrosion induced failure plays an important role in microelectronic devices and 

electronic packaging failures[86, 87]. In order for microelectronic components and 

devices to perform their functions properly, highly reliable packaging is necessary. 

Failures of microelectronic devices and packages not only cause malfunction of the 

devices but also sometimes lead to catastrophic consequences for entire systems. Among 

all microelectronic device failures, corrosion related failure is responsible for more than 

20%. Corrosion in microelectronic packaging depends on the package type, electronic 

materials, fabrication and assembly processes, and environmental conditions such as 

moisture condensation, ionic or organic contaminants, temperature, residual and thermal 

stress and electrical bias. With the ever-shrinking feature sizes of microelectronic 

components and devices, susceptibility to corrosion-induced failures increases. Better 

performance and reliability requirements drive improved corrosion-resistance of 

packaging systems.  

 There are basically three types of packages for microelectronic components and 

devices:  ceramic, metal and plastic. Ceramic and metal packages are hermetic packages 

mainly used in military, aerospace and automobile applications where high reliability is 

required. Plastic packaging is non-hermetic, but is widely used because of its low cost 

and easy manufacturability. Compared to other package types, plastic packaging systems 

have more corrosion-related problems because the polymeric materials used in plastic 

package systems are more permeable to moisture which can then reach die, wires, bond 
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pads, lead frames and solder joints. Therefore, corrosion problems are long-term issues in 

microelectronic packages.  

 Corrosion involves electrochemical processes unless oxidation can take place at 

elevated temperature and dry environments. The basic requirements for electrochemical 

corrosion include an electrically conductive anode, cathode, interconnecting electrolyte 

(humidity environment) and driving force[88]. There are three major corrosion types: 

galvanic corrosion, pitting corrosion and stress corrosion cracking[89]. Under most of 

circumstances, water/moisture is a key in the corrosion process. Corrosion prevention is a 

matter of preventing moisture condensation on sensitive areas such as die interfaces, 

wires, bond pads, and solder joints. In order to prevent corrosion for improved device 

reliability, superhydrophobic coatings on microelectronic devices offer great potential for 

water-repellent and moisture resistant applications. 

 In microelectromechanical systems (MEMS), adhesion failure due to bonding and 

capillary force between moving parts and substrates is the major failure mechanism[90]. 

Superhydrophobic surfacea are promising to achieve antistiction in these applications due 

to the low surface energy. Reduction of friction using superhydrophobic surfaces to 

achieve slip flow in microfluidic channels is also of considerable interest[91].  

 Control or transfer of fluid droplets containing biologically relevant molecules 

(DNA and proteins) while minimizing contamination is of much significance in 

biotechnology and biomedical fields. Specifically, the construction of complementary 

DNA (cDNA))-microarrays prepared by spotting techniques requires specific wetting 

properties of the substrates. Glass slides-the substrates most commonly used-are usually 

only mildly hydrophobized, such that the drops of drying cDNA-solution produce 

unwanted ring-like structures, a nuisance known in the field as the ‘doughnut-effect’, 

(Figure 45a). This effect is related to the well-studied ‘coffee-stain effect’: an 

evaporation-driven convection mechanism that drives dissolved or dispersed particles 

inside the drop to the surface-pinned contact line where evaporation occurs rapidly[92]. 
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Superhydrophobicity is advantageous in this application since the nearly spherical drops 

on a superhydrophobic surface can shrink exactly like a drop in air. The positioning and 

shape of spotted drops can be steered by combining hydrophilic and hydrophobic 

patterns. The utility of this idea can be demonstrated by consideration of an actual 

biosystem: some desert beetles capture their drinking water by a hydrophobically-

hydrophilically structured back[93]. By prepatterning a substrate, hydrophilic prespotting 

(anchoring) on an otherwise hydrophobic or superhydrophobic surface results in new 

possibilities for improvements in spotting and analyzing DNA and proteins by avoiding 

wall contact.  

 

Figure 45. a) Complementary DNA microarray on a silanized glass plate. The doughnut-
like shapes of the deposits are clearly visible; b) liquid channels on a hydrophilically–
hydrophobically patterned substrate: a possible pathway to surface-tension controlled 
microfluidics[92]. 

 Beyond the possibility of improving fluid shapes on substrates, the possibility of 

guided motion of droplets on superhydrophobic surfaces offers the opportunity to 

develop a droplet-based microfluidics system, in contrast to the classical concept based 

on microfluidic channels. Driving the liquid along the channels and causing merger at 

predefined locations offers a novel way to mix reactants or direct biochemical reactions; 

this approach defines the concept of a ‘liquid microchip’ or ‘surface-tension confined 

microfluidics’[94]. One advantage of the open structures over capillaries, in addition to 

their ease of cleaning, is that blocking of the capillary by unforeseen chemical reactions 

is inhibited.  
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 To conclude this introduction into the vast number of approaches and applications 

for superhydrophobicity, an indication of the greatest challenge facing all self-cleaning or 

contaminant free surface applications must be offered: ageing and degradation of the 

artificial surfaces. For biotechnology applications, this is not so relevant; the surfaces will 

often be used for analytic purposes and hence designed as disposables. If one thinks of 

contaminant-free surfaces for use in medicine, the issues of reusability and hygiene are 

complex and at present unresolved. However,  a different issue is the use of self cleaning 

surfaces in outdoor applications. Examples are known already in which an initially 

improved product lost its advertised self-cleaning property too rapidly, and thereby did 

not justify the initial investment (LotusanTMprivate communiation). Clearly, failed 

products bear the risk of discrediting an entire field of applications. Ageing will remain 

difficult to foresee - pure empiricism reigns in its description - but the benefits to 

investors and product users require that ageing be under control. In addition, stability 

under high humidity conditions also needs improvement by designing small features with 

cost-effective approaches.  The dew point may be reduced on superhydrophobic surface 

with small features[95]. Oil or surfactant repellent or superoleophobic surfaces may also 

be desirable which add more constraints to superhydrophobicity design. As coatings 

improve and prices fall, use of superhydrophobic surfaces is likely to increase, 

particularly as understanding of many of the limitations is developed and perhaps 

mitigated by careful selection of coatings. 
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1.7. Challenges and research objectives 

1.7.1 Challenges 

Although very promising, successful application of superhydrophobic surfaces has a long 

way to go. Despite the fact that a variety of surfaces can be made superhydrophobic 

based on the principle of surface structuring and hydrophobization, practical issues such 

as robustness (e.g., mechanical robustness, chemical stability, UV stability, thermal 

stability), adhesion of nanostructures or coatings to substrates, moisture condensation and 

oil-repellency still require significant research efforts for both fundamental understanding 

and technical breakthroughs. 

Robustness 

 Robustness refers to both a stable high contact angle on the superhydrophobic 

surface over time and UV stability under UV illumination, e.g., outdoor applications. 

Superhydrophobicity is a surface sensitive property, and change of chemistry in the 

surface layer with a thickness of only 10 Å will significantly alter the surface energy, 

leading to failure of the superhydrophobicity. Under this situation, instead of cleaning the 

surface, contamination will accumulate (be trapped in the surface structures). Thus, 

chemical species present in the surface layer should have strong chemical bonds in 

addition to low surface energy. The two most investigated low surface energy materials 

(fluorocarbon polymers/chains and polydimethylsiloxane) both show high bond strength 

and therefore very good UV stability. Plasma-assisted deposition of fluorocarbon 

polymers using different precursors is preferred due to the cross-linked nature of the 

resulting layers and the improved adhesion observed[96]. Deposition of PDMS is more 

difficult as shown in reference [97]; the surface lost hydrophobicity after the plasma 

deposition process due to the energetic plasma species (plasma ions 250eV) and the 
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surface roughness was not high enough to achieve superhydrophobicity even after 

hydrophobic surface treatment. 

 Good abrasion resistance is also one of the most important 

characteristicsparameters for the practical application of superhydrophobic surfaces. One 

disadvantage of polymers is that they are soft so that surface structures can be easily 

deformed under exposure to mechanical force and heat. If this deformation is non-

reversible, the superhydrophobicity will be permanently lost. One method is to promote 

crosslinking in the polymer for hard surface structures by plasma deposition process such 

as those used to form highly crosslinked fluorocarbon polymers. The other method is to 

use hard inorganic materials e.g., ceramics, for the creation of the surface roughness, and 

after formation of self-assembled-monolayers on the rough surface, hard 

superhydrophobic surface may be possible. Reference[97] shows a promising approach to 

achieve water repellency by diamond like carbon and PDMS. However, it these results 

suggest that the surface roughness is not adequate, although the surface hardness may be 

greatly improved. Further investigation of the effect of plasma deposition conditions on 

the creation of sufficient roughness is necessary. 

Adhesion 

 In order to achieve superhydrophobic surfaces that are stable over long periods of 

time, the adhesion of deposited films is also a critical parameter. As shown in reference 

[37], after deposition of CFx species on the structured surface, the surface was 

superhydrophobic, however, when the surface was cleaned in an ultrasonic acetone bath, 

the contact angle dropped to 120˚. Adhesion between the deposited species and the 

substrate was very weak. However, good adhesion is expected  between the deposited 

polymer and the substrate materials through appropriate control of plasma species and 

deposition conditions. 
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Oil repellency 

 For a superhydrophobic surface, oil will always display a lower contact angle than 

that of water[25]. Therefore it is difficult to achieve self-cleaning of oil on 

superhydrophobic surfaces. Usually, reentrant/overhang structures are critical in 

achieving superoleophobicity [25]. However, there is another self-cleaning mechanism 

based on the photocatalytic property of crystalline TiO2 (especially anatase TiO2). 

Reference [98] showed the possibility of preparing a superhydrophobic TiO2 film by 

plasma etching followed by a hydrophobic surface treatment. Unfortunately, the surface 

lost superhydrophobicity due to oxidation of the surface hydrophobic species when 

irradiated with UV light.  Despite this limitation, it may be possible to impart 

photocatalytic self-cleaning properties to a superhydrophobic surface for organic or oil 

cleaning by etching and deposition of a passivation layer with reduced amounts of TiO2 

exposed on the surface. 

Optical transparency 

 Transparency of superhydrophobic films can be achieved by plasma etching or 

sol-gel processes[20, 39, 99], but most of the time, only the contact angle is reported or 

the hysteresis is very high. Further research should be performed to keep the surface 

structure sizes small while maintaining roll-off behavior that is characteristic of 

superhydrophobic surfaces.  

1.7.2 Research objectives 

1.7.2.1 Understanding the effect of surface structure on superhydrophobicity 

 As described above, two requirements exist for the establishment of surface 

superhydrophobicity. The first is high contact angle (>150˚). The relationship of contact 

angle to surface structure (expressed by the Wenzel surface roughness factor r) is 

described by the Cassie-Baxter equation. The second parameter is the contact angle 
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hysteresis, which is defined by the difference between advancing and receding contact 

angle. By careful design of the surface structure, superhydrophobicity can be controlled 

for a specific surface tension and surface structure, which will be helpful in optimization 

of self-cleaning properties. 

1.7.2.2 Developing UV stable superhydrophobic surfaces: Sol-gel process to prepare 

inorganic superhydrophobic surfaces  

 Polymeric materials, including polybutadiene, polypropylene (PP), polystyrene 

(PS), acrylate polymer, and polytetrafluoroethylene (PTFE) have been the primary 

materials utilized to prepare superhydrophobic surfaces. However, complications exist 

when polymeric materials are exposed to both atmospheric conditions where degradation 

occurs due to UV irradiation, and to impurities such as O2 and moisture present in the 

environment. The resulting changes to hydrophilic surfaces will result in a loss of 

superhydrophobicity. In order to achieve stable Lotus effect surfaces for outdoor 

applications, the UV stability should be addressed first. Thus, we focused on inorganic 

surfaces from sol-gel process, which are more UV resistant, to achieve this objective. 

1.7.2.3 Transparent superhydrophobic surface coatings through eutectic liquid templating 

 We propose the use of eutectic liquids to form silica aerogel films with optical 

transparency and superhydrophobic characteristics. Indeed, by careful control of film 

thickness, surface roughness, and a fluoroalkylsilane surface treatment, 

superhydrophobicity and transparency can be achieved from the use of a eutectic liquid 

composed of urea and choline chloride (2:1 molar ratio) with a melting point of 12 ˚C. 

1.7.2.4 Metal assisted HF/H2O2 etching of silicon wafers for surface structure fabrication 

and multifunctional surfaces  

 Si surface texturing is used in quite a few applications such as Si nanowire 

fabrication, non-reflecting solar cell surfaces, sensors, biochips, and microfluidics 
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devices. In this thesis we describe the use of a metal assisted etching technique to prepare 

surface structures for superhydrophobicity, while retaining other properties such as non-

reflection for multifunctional surfaces.  

1.7.2.5 Mechanically robust superhydrophobic surface 

 In the case of applications where handling of coated devices and abrasion of the 

superhydrophobic surface is inevitable, research on robustness improvement is critical. 

Thus, in this thesis, we investigate the preparation of superhydrophobic surfaces using 

polymer/silica nanoparticle coatings for improved robustness.  
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CHAPTER 2 

FUNDAMENTAL UNDERSTANDING OF 

SUPERHYDROPHOBICITY 

 

 Regarding superhydrophobic surface preparation, biomimetic method of creating 

hierarchical surface structures similar to lotus leave surfaces is frequently employed. 

Here we will focus on the preparation of two scale structures (micro- or submicro-

structures together with nanostructures) to achieve a self-cleaning superhydrophobic 

surface for the fundamental understanding of the superhydrophobic surface formation and 

the water droplet rolling-off (Cassie) and sticking (Wenzel) mechanism on a hydrophobic 

and rough surface. 

 Research into the creation of superhydrophobic surfaces, especially with respect 

to mimicking the two scale structure of lotus leaves, has received much attention. Recent 

studies suggest that topography at two length scales may not be necessary for 

superhydrophobicity.  That is, even with only one nano scale-size feature, if the solid 

surface fraction (relative to air) is very small, and the surface contact angle is smaller 

than 90˚, superhydrophobicity can still be effectively achieved[100]. However, such 

surfaces are not in a thermodynamically stable state. After extended times, water can still 

penetrate inside the nanostructures, indicating that surface hydrophobicity is required to 

achieve a stable state. With only micron scale-size features, superhydrophobicity can also 

be achieved on a macroscopic scale; But when dealing with micro-droplets of water, this 

approach is not effective[101].  In contrast, nature has designed lotus leaves with 

hierarchical length scales, there by supplying reproducibility, requisite mechanical 

properties, and geometrical optimization for a non-fouling and self-cleaning surface. 
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Indeed, use of this biomimetic approach from nature is a successful way to develop 

different applications of superhydrophobicity[93]. 

 Considerable effort has been expended to create hierarchically structured surfaces 

that mimick the surface structure of lotus leaves. For example, superhydrophobic surfaces 

with hierarchical structures can be formed by a number of techniques, including layer by 

layer process[71, 102], phase-separation micro molding methods using soluble 

polymers[103], binary colloidal assemblies[104], sol-gel silica[105], micellar solution 

casting of propylene-MMA diblock copolymer[106], polystyrene film preparation by the 

electrohydrodynamics method[107], carbon nanotube pattern generation [60, 61], laser 

etching of polydimethylsiloxane (PDMS) surfaces[108], and galvanic cell corrosion of a 

copper foil with aqueous phosphorus acid solution[76], nanosphere lithography[72], and 

adsorption of charged submicrometer polystyrene latex particles[109]. In addition, the 

relationship between surface structure, contact angle and hysteresis has also been widely 

studied[101, 110, 111]. Despite the extensive work reported, we are not aware of studies 

that illustrate a clear relationship between superhydrophobicity and the surface two scale 

roughness. 

2.1 Investigation into Hierarchical Surface Structures by Combining Colloidal Self-

Assembly and Au Sputter Deposition 

 Colloidal crystals can be formed on a substrate from monodisperse nano spheres, 

e.g., SiO2 spheres and polystyrene spheres, as a result of assembly into arrays of 

hexagonal close packed or FCC layers.  In this scenario, the as-formed surface is rough 

due to the regular arrangement of the monodisperse spheres. Although this surface is not 

superhydrophobic even after a surface treatment with hydrophobic surface modification 

agents[72], superhydrophobicity can be achieved by imparting nano scale structures on/in 

the surface to achieve multiscale roughness.  Furthermore, this surface can serve as a  

model surface for the investigation of the effect of surface roughness on 
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superhydrophobicity. In this study, we use monodisperse silica particles to form a thin 

layer on a glass slide. After deposition of a Au layer on top of the spheres followed by 

heat treatment to form Au nanoparticles, surface nanoroughness was generated. By 

controlling the Au deposition conditions, the necessary nanoroughness can be effectively 

designed into the surface.  Such tunability of the structures furthers the understanding of 

the effect of surface nanostructure on superhydrophobicity and suggests specific ways by 

which superhydrophobic surface properties such as mechanical stability and durability 

can be achieved. 

 

Heat treatment

Au sputter deposition 
and heat treatment

 

Figure 46. Schematic of the surface SiO2 layer; for simplicity, only one layer of silica 
spheres is illustrated.  It should be noted that the surface roughness will be the same for a 
monolayer and for a multilayer. 

2.1.1 Experimental section 

Materials. All solvents and chemicals are reagent grade and are filtered through 0.22 µm 

syringe filters (Gelman) except for tetraethyl oxysilane (TEOS, 99% Aldrich) which was 

distilled under vacuum condition before use. Absolute ethanol is obtained from VWR and 

29% ammonium hydroxide is purchased from Fisher. Ultrapure water (18.2MΩcm-1) is 

used directly from a Milli-Q water system. Microscope slides (75×25×1mm, Fisher) are 
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cut in half lengthwise and used as substrates, cleaned in Piranha solution (2:1 (vol/vol) 

mixture of 96% sulfuric acid and 30% aqueous hydrogen peroxide) at 80˚C for 30 min 

and subsequently rinsed extensively with de-ionized water and ethanol. The surface 

hydrophobicity modification agent trichloro(1H,1H,2H,2H-perfluorooctyl) silane (PFOS) 

is purchased from Aldrich.  

Colloidal silica nanosphere synthesis. Monodisperse silica nanospheres are synthesized 

following the Stöber-Fink-Bohn method[112]. Nanospheres with diameters ranging from 

200 to 700 nm and relative standard deviation <8% are obtained through strict control of 

the reaction conditions[113]. The size and size distributions of these samples are obtained 

from SEM and Beckman Coulter Model LS 13 320 laser diffraction particle size 

analyses. After the silica spheres were prepared, the colloidal suspension was centrifuged 

using an IEC multi centrifuge at 5000 rpm and washed and redispersed in absolute 

ethanol by ultrasonication. Five cycles were performed in order to achieve high purity 

colloidal suspensions.  

Self-assembly of silica spheres. Silica sphere dispersions (10ml) with concentrations of 

5wt% were placed in a cylindrical opticlear glass vial (Fisher Scientific, 3DR). The vial 

containing the sphere dispersion was immersed in an isothermal oil bath maintained at 75 

± 0.5 ˚C by a hotplate. The entire apparatus is placed on a vibration free bench. Prior to 

use, the microscope slides were soaked in a freshly prepared piranha solution 

(H2SO4/H2O2, 2:1) at 80˚C for 30 min, and rinsed with water followed by ethanol, and 

finally dried with a N2 stream. A clean microscope slide was then placed into a vial 

containing the heated 10 ml silica sphere dispersions. The vial was then covered with a 

glass dish to allow ethanol evaporation, while minimizing convection from room air. 

Au nanoparticle formation. The film of silica spheres was heated to 620 ˚C for 4 hrs to 

partially sinter the spheres and to improve adhesion between the silica spheres and the 

glass slide. A Au thin film was sputter deposited on the as-prepared silica sphere layer 
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using an Ernest Fullam sputter coater. The sample was then placed in a Lindberg oven 

and heated to 620 ˚C at a rate of 20˚C/min to form Au nanoparticles. 

Surface treatment by 1-pentadecanethiol (PDT) and PFOS. Samples with Au 

nanoparticles on their surface were placed in a PFOS/n-hexane solution (5mM) for 30 

min to permit adsorption of a PFOS layer on the SiO2 surface; subsequently the samples 

were treated at 150˚C in air for 1hr and at 220˚C for 5 min to promote silane hydrolysis 

and condensation, thereby forming a stable silanated layer on the silica surfaces. The 

samples were then placed in PDT/ethanol solution (1mM) overnight to form an organic 

monolayer on the Au surface. 

Characterization. The as-prepared samples were characterized by high resolution field-

emission scanning electron microscopy (FESEM; LEO 1530 FEG at 10 kV). For contact 

angle measurements, water droplets (4µl size) were formed with a 0.5 µl step on a 

microsyringe at a predefined height and static images were recorded; advancing contact 

angle of the droplet on the solid surface was determined from these images. Receding 

angles were measured by increasing the volume of the 4 µl water droplet to 6 µl and 

bringing it back to 4 µl by extracting the extra water with a volumetrically controlled 

pipette with the same 0.5 µl step. 

 

2.1.2. Results and discussion 

2.1.2.1 Contact angle changes of silica sphere arrays by chemical surface treatment 

 As shown schematically in Figure 46, monodisperse silica particle layers can be 

effectively formed on a glass slide by controlled evaporation of solvent[114, 115]. The 

particles are hexagonally ordered due to assembly through attractive capillary forces 

caused by solvent evaporation[116-118]. These structures can be considered a 
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hemispherical close packed model for the study of water droplet wetting/dewetting 

behavior on rough surfaces[119]. 

 
Figure 47. Self organized silica particle layer formed through controlled solvent 
evaporation (particle size: 200nm) 

 From Figure 47, it is obvious that the surface is periodic due to the regular sphere 

array on the glass slide. It is this order that allows the creation of structured surfaces as a 

result of the hexagonal packing of monodisperse spheres.  

 Using silica spheres with a diameter of 360 nm, we investigated the surface 

hydrophobicity by surface treatment with several silanes including: 

trichloro(1H,1H,2H,2H-perfluorooctyl) silane (PFOS), trichloro(3,3,3-

trifluoropropyl)silane (TFPS), n-dodecyl trichlorosilane (DDTS), and octadecyl 

trichlorosilane (ODTS). As a result of soaking in a 5 mM solution of silane/n-hexane, a 

silanated layer was adsorbed onto the silica surface. After heat treatment at 150˚C for 1 hr 

and 220˚C for 5 min, a uniform layer of silylating agent was formed on the silica particle 

surface with the hydrophobic chains protruding outward; this chemical moiety imparts 

hydrophobic properties to the surface. The resulting contact angle data are shown in 

Table 1. 
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Table 1. Experimental contact angles and theoretical predictions. 

silane 

Advancing contact 

angle on flat (glass) 

surface (˚) 

Advancing contact 

angle on silica sphere 

surface (˚) 

Calculated advancing 

contact angle 

according to Cassie 

equation (˚) 

TFPS 102.5 120.0 119.1 

DDTS 107.9 134.4 130.6 

ODTS 110.6 142.2 137.0 

PFOS 115.3 157.2 150.3 

 

 When glass slides were treated with silanating agents, the contact angles ranged 

from 102.5˚ to 115.3˚ due to the different physical (chain length) and chemical 

(fluorinated) structures of various organic moieties on the silanes. For the same chemical 

structures, the chain length effect can be seen from the higher contact angle of ODTS 

(C18) than DDTS (C12). And for PFOS, when a layer was formed on glass, the CF3 

groups protrude outward from the surface.  As a result, the CF3-modified surface gave the 

lowest surface energy and highest hydrophobicity compared to the other three. On a 

roughened surface formed by colloidal silica particles, the contact angles were amplified 

relative to those of a smooth surface.  

 According to the Cassie equation for a heterogeneous surface, 

                                             2211 coscoscos θθθ ffA +=                                       (17) 

where 121 =+ ff  

 When the surface is composed of solid (designated as1) and air (designated as 2), 

eq. 17 applies.  However, Cassie also indicated that when the solid surface is rough, eq. 

17 can be formulated as[11] 

                          1coscos 111 −+= frfA θθ                                                     (9) 
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where the parameter r is the ratio of the actual solid-liquid contact area to its vertical 

projected area (Wenzel roughness factor).  

 We should point out that most previous studies used the Cassie equation in the 

form as in eq. 17 

           

 

(a) (b) 

h R

Solid/liquid/air three 
phase contact line

Air/water interface

h R

Solid/liquid/air three 
phase contact line

Air/water interface
water

(c) 

Figure 48. Top view (a) and side view (b) of silica spheres on glass substrates (note that 
the contact line should not be a perfect circle on the sphere surface); (c) Illustration of 
water contact with silica spheres; where R is the radius of the silica sphere, and h is the 
distance of the solid/liquid/air three phase contact line to the center plane of the spheres, 
here we just draw a hemisphere array on substrate for simplicity. 

 That is, the roughness factor was not included, although it plays a crucial role in 

the apparent contact angle; in order to more accurately describes the observations, we 

used eq. 9 to incorporate the surface roughness factor r. For the silica sphere arrays as 
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shown in Figure 48, r is 2, assuming that water contacts the entire top hemisphere. Since 

321
π

=f
 for hexagonally arrayed spheres as shown in Figure 48 (a), eq. 9 becomes  

                
1

32
cos

3
cos 1 −+=

πθπθ A
                                                    (18) 

 Table 1 compares the experimental contact angles with those predicted from eq. 

17. It is clear that with an increase of the Young’s contact angle, θ1 or θY, the contact 

angle on the rough surface is increasingly higher than the calculated value; this trend is 

shown in Figure 49.  These comparisons indicate that the initial assumption of water 

contacting the entire hemisphere is not valid.  Rather the fraction of the sphere surface in 

contact with air at the edge of the water-solid interface increases with r, so that f1 

decreases. In addition, the experimental data cannot be fitted accurately to the Cassie 

equation if f1 or r is constant.  This fact suggests that the deviation of the measured 

contact angle from the calculated value results from the relationship of f1 to r, not from 

the deviation between the true value of f1 and the value used in the calculation. Such 

considerations further indicate that when the surface hydrophobicity increases (θ1 

increases), the amount of air trapped at the interface also increases, resulting in an 

increase in h and a decrease in r and f1 as shown in eq. 20 and 21; Overall, the surface 

contact angle increases. For better description of the relationship between apparent 

contact angle, Young’s contact angle and  surface roughness, the distance h of the 

solid/liquid/air three phase contact line to the center plane of sphere array needs to be 

incorporated. 
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Figure 49. (a) Comparison of the contact angle data to that predicted by the Cassie 
equation; (b) the relationship of the contact angles on rough surface (cos(θA)) and smooth 
surface (cos(θY)). 

 

 Geometrically, we can express f1 and r as 

                      
2

22

1 32
)(

R
hRf −

=
π

                                                           (19) 

                           hR
Rr
+

=
2

                                                                 (20) 

The Cassie equation can therefore be written in the form  

b 

a 



 63

 
1

32
)(cos

3
)(cos

2

22

1 −
−

+
−

=
R

hR
R

hR
A

πθπθ
                                      (21) 

where h is the height of the water/air/silica surface three phase contact line referenced to 

the center line of the silica spheres as shown in Figure 48(c).  

 We note here that unlike previous reports[119, 120], in the composite contact 

interface of water with each silica sphere and air, the microscopic water/air interface 

should not be tangent to the silica sphere (if it were tangent, the water contact angle on 

the silica surface would be 180˚).  Rather, the water/air interface is non-tangent to silica 

spheres so that the contact angle is <180˚, as illustrated in Figure 48(c).  And the three 

phase contact line on a silica sphere is not a perfect circle due to the periodic arrangement 

of silica spheres and the air cushion around the silica spheres. Correspondingly, there 

should be a periodic distortion of the microscopic three phase contact line on the 

composite contact surface. 

 As the surface hydrophobicity increases, the length of the three phase contact line 

over each individual silica sphere decreases, which increases the macroscopic apparent 

contact angle at the silica sphere array surface [121, 122].  For the PFOS treated surface, 

the contact angle is the highest relative to the surfaces modified with the other three 

silanes. However, the contact angle hysteresis for the PFOS surface is too high (>30˚) to 

achieve superhydrophobicity due to the relatively long three phase contact line, which 

leads to pinning of the water droplets.   

2.1.2.2 Effect of Au nanoparticle deposition 

 These above observations indicate that by grafting extremely hydrophobic 

materials (e.g., fluoro-silanes), on the silica colloidal sphere roughened surface, 

superhydrophobicity is still not attained. In order to achieve contact angles >150˚ with 

hysteresis <10˚ by structural approaches similar to those of lotus leaves, we altered the 

other important factor described in the Cassie equation: surface nanoroughness (r, as 
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expressed in eq. 4) on the silica sphere surface.  Nanoroughness can be imparted by 

fabricating hierarchical structures on top of the silica spheres, for example, by sputter 

deposition of a thin Au film which is composed primarily of Au nanocrystals with 

diameters <5 nm. Due to the small particle size, the melting point is dramatically reduced 

relative to that of bulk Au[123, 124]. As a result, heat treatment of the Au nanocrystals 

will cause melting at a temperature much below the temperature at which the silica 

particles are altered.  Furthermore, due to the surface tension, the small particles will 

aggregate to form larger Au particles with a size range of 30-50nm after re-solidification. 

By this method, nanosized Au particles can be successfully introduced on top of the silica 

spheres. 

2.1.2.2.1 Conditions of Au nanoparticle deposition 

 Heat treatment temperature effect on the nanostructure formation. We 

investigated three heat treatment temperatures for Au nanoparticle formation: 570, 620 

and 670˚C. From Figure 50, it is evident that when the Au film was heated to 570˚C, no 

obvious structure was formed.  When heated to 620˚C, Au nanoparticles were formed, 

while when heated to 670˚C, the Au nanoparticles sintered, thereby leaving no 

nanoparticles. 

 At a heat treatment temperature of 620˚C, treatment time was also investigated in 

order to determine the time needed to form appropriately sized Au nanoparticles; results 

are shown in figure 52.  After the surface was treated for 10 min, Au nanoparticle 

formation had begun and surface roughness existed. When the heat treatment time was 

increased to 30 min, Au nanoparticles were clearly observed but were not evident on the 

sides of the silica spheres (Figure 52.b).  At a heat treatment time of 2hrs, Au 

nanoparticles on the silica spheres attained a particle size between 30 and 50 nm, which is 

similar to the two scale structure characteristic of lotus leaves. For longer treatment 



 65

times, the structure showed no change; thus, a heat treatment time of 2 hrs was used for 

subsequent studies. 

 

 

Figure 50. Temperature effect on Au nanoparticle formation; Au deposition for 90 sec,  
followed by heat treatment for 2 hrs in air at a) 570˚C, b) 620˚C, c) 670˚C. 

Heat treatment time 

 Au sputter deposition time. As shown in supporting information in Figure 53, 

when the Au sputter deposition time is 40sec and is followed by a heat treatment at 620˚C 

for 2 hrs, the particle size is less than 10 nm).  When the Au deposition time reaches 60 

sec, ~10 nm Au nanoparticles are observed (some larger ones are formed, but they are a 

few in number) on the silica sphere surfaces; however, this particle size is not large 

enough to significantly increase the surface roughness factor r.  At a deposition time of 

(a) (b)

(c) 
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120 sec, Au nanoparticles are sintered, and the nanoroughness is eliminated due to the 

existence of more Au on the silica sphere surface. 

2.1.2.2.2 Relation between two-scale structures and contact angles 

 Water contact angles were measured for the samples shown in figures 52 and 53 

to determine if the surfaces displayed superhydrophobicity or superhydrophilicity. For 

surfaces shown in figures 52, the contact angles are <15˚.  In fact, for sample 53.c, the 

water droplet fully wet the surface (contact angle <10˚) due to the large capillary forces 

generated by the two scale structure.  These observations, demonstrate that if the surface 

is hydrophilic, the contact angle on the hierarchical surface is reduced still further by the 

introduction of roughness. This indicates that the as-prepared surfaces are described well 

by Wenzel’s roughness factor[12] (as shown in eq. 1). In order to achieve 

superhydrophobicity, it is necessary to treat the hydrophilic surface with modification 

agents to convert the surface into one that is hydrophobic. After the surfaces were treated 

with PFOS and PDT, the water contact angle increased substantially; the contact angles 

as a function of Au deposition time are shown in Figure 51.  The highest contact angle 

observed was 167.3˚C when the Au deposition time was 90 sec.  In addition, for the 

highest contact angle surface, the contact angle hysteresis is 8.5˚, which indicates that a 

superhydrophobic surface is achieved (hysteresis <10˚). However, for all other surfaces, 

the hysteresis values are >10˚, which is too large to be designated as a superhydrophobic 

surface; such observations result from the long three phase contact line.  And compared 

to the bare silica sphere, according to the surface roughness definition, the sphere with 

Au nanoparticles showed higher values of r due to the increased surface area after the Au 

nanoparticles were formed on the silica sphere surface.  Figure 54 shows a picture of a 

water droplet on the silica sphere/Au nanoparticle surface shown in Figure 53.c. From 

Figure 51 it is clear that surface contact angle hysteresis can be effectively reduced by the 

construction of a surface with two scale roughness using Au nanoparticles on SiO2 
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spheres. The phenomena observed are primarily due to the effect of surface geometry on 

the prevention of water penetration and to a reduction of the three phase contact line 

(discontinuity) that results from the introduction of nanostructures, which lower the 

energy barrier between metastable states during the movement of a water droplet. The 

increase of the apparent contact angle can be explained by eq. 4 as a result of the 

formation of Au nanoparticles which increased the surface area and thus an increased 

roughness factor r, and resulted in an increase in the apparent contact angle.  
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Figure 51. Dependence of contact angle on Au sputtering time for PFOS-treated two 
scale rough surfaces; the heat treatment was performed at 620˚C for 2hrs. 
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Figure 52. Effect of heat treatment time for a Au sputter deposition time of 90 sec; a) 10 
min, b) 30 min, c) 2 hrs, all at 620˚C. 
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(a) (b)
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Figure 53. SEM images of two-scale structured silica/Au surface morphology at various 
Au sputter deposition times;  a) 40sec, b) 60 sec, c) 90 sec, d) 120 sec. 

 

 
Figure 54. Photograph of the superhydrophobic surface from silica sphere/Au 
nanoparticle sample shown in figure 53(c). 

 

Conclusions 

 Using a controlled evaporation method, densely packed monodisperse silica 

spheres were organized onto a glass slide to create a rough surface for 

superhydrophobicity investigations.  After silanation of the sphere surfaces, the contact 

angle dependence on the surface roughness was fitted to a modified form of the Cassie 

equation that included a roughness factor.  Different surface hydrophobicity, generated 

by attaching different silanes containing various hydrocarbon or fluorocarbon chains to 

the sphere surfaces, led to variation in contact angles, but superhydrophobicity was not 

(c) (d)
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achieved.  Increased contact angles were achieved by employing a biomimetic approach 

similar to that of Lotus leaves to create a two scale rough structure.  The two scale 

roughness was realized by sputter deposition of a thin Au nanocrystalline layer on the as-

prepared silica spheres followed by heat treatment at 620˚C; this process sequence caused 

Au nanoparticles to form on the sphere surfaces.  The water contact angle observed on 

this biomimetic surface was >160˚, and the hysteresis was <10˚.  These studies 

demonstrate that an increase of the roughness factor can be realized by creation of 

nanoscale roughness on an initially rough surface, thereby enhancing 

superhydrophobicity.  Such surfaces may serve as model biomimetic surfaces and can be 

appropriate for applications that require mechanically stable superhydrophobic surfaces 

that resist fouling, dust incorporation, or inhibit corrosion.   

 

2.2 Wall Inclination Effect on Hierarchical silicon etched structures 

 The effect of surface structure on superhydrophobicity is of much interest due to 

the dependence of structure on the attainment of a high water contact angle and reduced 

contact angle hysteresis. Superhydrophobicity was first observed on lotus leaves where 

high water contact angle and low hysteresis cause water that falls on the surface to bead 

and roll off the surface, thereby leading to water repellency and self-cleaning 

characteristics[2, 125, 126]. Such surface properties are also critical in MEMS 

antistiction[127], friction reduction[128], and anti-corrosion[129] applications. In 

addition, superhydrophobic surfaces offer much promise for the formation of high 

performance micro/nano structured surfaces with multi-functionality that can be used in 

optical[130, 131], photoelectric[132], microelectronic, catalytic and biomedical 

applications. 

 Superhydrophobicity is generally achieved on a hierarchically structured surface. 

For instance, although both the Wenzel state and the Cassie state display a high contact 
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angle, transition from a Wenzel state to a Cassie state is required for reduced adhesion, 

and this transition occurs at a critical contact angle θc.[133] Substantial effort has been 

expended on the generation of micron-scale structured surfaces that also possess 

nanoscale roughness,[14, 60, 110, 134, 135] since superhydrophobicity can be achieved 

based on such hierarchical structures. However, most of the micron structures reported 

are structures with vertical walls[110, 136]; generally, these structures alone can maintain 

a Cassie state. Although the Cassie state does not ensure superhydrophobicity, addition of 

nanoscale roughness can facilitate the desired superhydrophobicity. For micron-scale 

structures in the Wenzel state, the ability to achieve superhydrophobicity is even more 

limited. That is, after a hydrophobic surface treatment, nano-scale structures are needed 

to first transition from the Wenzel state to the Cassie state, and then to enhance the 

contact to achieve superhydrophobicity. The effect of roughness on superhydrophobicity 

can be shown clearly from the Wenzel and Cassie-Baxter equations. However, the 

detailed effect of hierarchical structure especially on the Laplace pressure of water 

meniscus and thus the work of adhesion, both of which are crucial to maintain a high 

contact angle and low contact angle hysteresis, is not delineated by the two equations. 

Lafuma et al. have demonstrated that the Wenzel to Cassie transition can be induced by 

applying a pressure on the water droplet[133]. Recently Bormashenko et al. also showed 

that the transition can also be induced by vertical vibrating a water droplet on rough 

surfaces[137].  

 In this study, we mimick the hierarchical structure of lotus leaves by preparing an 

artificial superhydrophobic surface by simple silicon etching techniques to demonstrate 

and quantify the effect of two scale roughness on superhydrophobicity. The micron 

pyramid structures were prepared from anisotropic KOH etching. The nanostructures 

were prepared from metal assisted HF/H2O2 etching[130, 132, 138]. The transition from 

Wenzel state to Cassie state for superhydrophobicity was demonstrated by controlling the 

surface structures and surface hydrophobicity. 
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2.2.1 Experimental Details 

 n-type silicon (100) wafers with a resistivity of 3-10 Ω cm were used in all 

experiments. KOH etching was performed in a solution of KOH (3%wt), water and 

isopropyl alcohol (20% by volume) at 85˚C for 20-30 min. Prior to etching, a thin 

discontinuous layer of Au with a thickness of 5 nm was deposited by e-beam evaporation.  

Etching was then performed for various times in a HF/H2O2 solution (49%HF, 30%H2O2 

and H2O with a volume ratio of 1:5:10).  Subsequently, the Au nanoparticles of diameter 

~ 5-10 nm were removed by immersing the samples in KI/I2 (100 g KI and 25g I2 per 1L 

H2O) for 60 seconds. 

 Contact angle measurements were performed with a Rame-Hart goniometer that 

has a CCD camera equipped for image capture. Scanning Electron Microscopy (SEM) 

was used to investigate the surface morphology. After fabrication of the surface structure, 

surface fluorination was performed by treatment with various fluoroalkylsilanes. Ten 

millimolar solutions of 3,3,3-trifluoropropyl-trichlorosilane, dodecyltrichlorosilane, 

octadecyltrichlorosilane and perfluorooctyl trichlorosilane (PFOS) were formed  in 

hexane. For a specific treatment, the structured silicon wafer was soaked in one of these 

solutions for 30 min followed by a heat treatment at 150˚C in air for 1 hour, to complete 

the hydrophobic surface modification. 

2.2.2 Results and Discussion 

 When surfaces are randomly roughened, the surface structures are not vertically 

oriented to the substrate; thus, they often show inclined walls as shown schematically in 

Figure 55. The contact angle dependence on such surface structures is very important 

when considering superhydrophobicity. The studies described below generated silicon 

pyramids to serve as a model surface to investigate the effect of inclined side wall angles 

on hydrophobic and superhydrophobic behavior. Micron-sized surface pyramids were 

prepared by anisotropic KOH etching of silicon substrates with (100) orientation; the 
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bases on these pyramids result from the intersection of (111) orientated crystallographic 

planes. An SEM image of the surface is shown in Figure 56a. This surface was treated 

with PFOS which yielded a contact angle of 146.3˚ and a contact angle hysteresis >60˚. 

Deposition of nanometer sized Au particles on this pyramidal surface was followed by 

silicon etching in HF/H2O2 for 60 seconds, and then removal of the Au nanoparticles in 

KI/I2 for 60 seconds. These treatments resulted in the production of surface 

nanostructures directly on the pyramid surfaces. After PFOS treatment, the surface 

displayed superhydrophobicity with a contact angle as high as 165.8˚.  

 

Figure 55. Model structure of inclined side walls on a substrate surface. 

 

 

a b

c d
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Figure 56. Surface structures of silicon after etching in KOH at 80˚C for 25 min (a), two 
scale rough surfaces resulting from pyramid and nanostructure from Au assisted HF/H2O2 
etching; different magnifications (b,c,d), and nanostructures on a flat silicon surface with 
(111) orientation (e) from Au assisted etching are shown. 

 

 Superhydrophobicity is usually achieved through the formation of a composite 

interface (solid/water and air/water interfaces) with air trapped within the structure[16]. 

Figure 57 illustrates the geometry involved when water contacts surface structures with 

inclined walls. The Laplace pressure of the meniscus from water droplet/surface contact 

plays an important role in maintaining the composite interface by confining the water at 

the air/water interface. The relationship between the Laplace pressure and the inclination 

angle α is given by equation.(22)[139] 

            α
αθγ

tan
)cos(

0
0 hR

ppp
+

−
−=−=∆

                                               (22) 

where γ is the surface tension of water, θ is the Young’s contact angle of liquid on the 

surface, α is the inclination angle as illustrated in Figure 57, p is the pressure on the liquid 

side of the meniscus (drop internal pressure), and p0 is atmospheric pressure. From this 

equation it is clear that the Laplace pressure is dependent on water height h, Young’s 

contact angle θ and inclination angle α. The height h is dependent upon the hydrostatic 

pressure of water on top of the structured surface. It should be noted that for vertically 

walled structures, the Laplace pressure is dependent only on Young’s contact angle. 

e 
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Equation (22) indicates that the Laplace pressure is reduced due to the inclination angle 

α; the higher the inclination angle, the lower the Laplace pressure on the meniscus. When 

the inclination angle is sufficiently high for a particular surface structure (depending on 

θ), water wets the structured surface completely without air entrapment. In a metastable 

Cassie state, application of pressure to the water droplet can affect the hysteresis if the 

drop adheres to the surface.  This can lead to a transition from a Cassie state to a Wenzel 

state. The transition pressure is related to the Laplace pressure which holds the droplet 

upon the composite surface. For a surface structured with an inclination angle, the 

conversion takes place at a much lower pressure. 

 

Figure 57. Water contact interactions with surface structures with inclined walls. 

 

 The range of possible situations with varying inclination angles is illustrated in 

Figure 58. This phenomenon inhibits the ability to achieve a superhydrophobic state to a 

greater extent than experienced on vertical structures. Interestingly, this scenario is the 

one most likely encountered in nature. For structures with vertical walls, the water 

meniscus either remains on top of the structure or moves to the bottom of the structure 
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when pressure is applied to the water. However, because of the inclination angle, the 

Laplace pressure increases when the meniscus approaches the structure bottom 

(decreasing h, as shown in Figure 57). Equation (22) also shows that when the surface 

hydrophobicity increases (increase of θ), the Laplace pressure increases and more air can 

be trapped between the structures, leading to an increase in apparent contact angle and 

reduced contact angle hysteresis as illustrated in Figure 58. 

 

 
Figure 58. Water droplet on a hydrophobic surface with inclined wall structures of 
various angles. 

 

 The dependence of the apparent contact angle on Young’s contact angle and 

surface roughness is shown in Figure 59 as calculated from the Wenzel and Cassie-

Baxter equations. For the Cassie state, the surface solid/liquid contact fraction f1 is 

critical to establishing the apparent contact angle, while Young’s contact angle is not an 

important factor. However, the Wenzel state is more dependent on the Young’s contact 

angle. That is, surface hydrophobicity can be used to increase the apparent contact angle 

for Wenzel states, while for Cassie states, a reduction of the fraction of solid/water 

contact is needed.  
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Figure 59. Contact angle calculations based on the Wenzel equation: YA r θθ coscos =  
(dotted lines) and the Cassie-Baxter equation: 1coscos 11 −+= ff YA θθ   (solid lines). 
Data points: stars represent the contact angles on two scale rough silicon surfaces; 
triangles represent the contact angles on micron-scale pyramid surfaces; both surfaces 
have undergone silane treatment as described in Table 2. 

 

Table 2. Contact angles resulting from different silane treatment. 

Silane used Sessile drop 

contact angles on 

a flat Si surface 

(degree) 

Sessile drop 

contact angles 

on a silicon 

pyramid 

surface 

(degree) 

Advancing 

contact angles on 

a two scale 

structured Si 

surface  

(degree) 

Contact angle 

hysteresis 

(degree) 

TFPS 103.1 119.7 160.2 28.2 

DTS 106.7 132.1 162.9 17.9 

ODTS 111.0 139.1 164.7 4.4 

PFOS 115.5 146.3 165.8 2.1 

 For silicon surfaces with micron-sized pyramids, the effect of surface 

hydrophobicity on contact angle was investigated by performing surface treatments with 
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a variety of different silanes that display different Young’s contact angles on the surface 

(Table 2). 

 The triangles in Figure 59 designate the contact angles observed after silicon 

pyramid surfaces were treated with the four different silanes listed in Table 2. Clearly, 

with an increase in surface hydrophobicity (Young’s contact angle), the apparent contact 

angles increase consistent with the Wenzel equation. According to the data in Figure 59, 

the Wenzel surface roughness is ~2.0. Previous studies[15] have suggested that for 

surface structures with inclined side walls, there is no energy barrier for the transition 

between the Cassie state and the Wenzel state if Young’s contact angle αθ +°< 90Y . 

Therefore, the Cassie state will always transition to the Wenzel state because it is a lower 

energy state. Indeed, our observations indicate that although the contact angle is higher 

(Cassie state) when the water droplet initially touches the pyramid surface, the contact 

angle drops quickly to a lower value (Wenzel state) as a result of the absence of an 

energy barrier between the two states. 

 An effective way to increase the Laplace pressure for superhydrophobicity is to 

generate nano-structures on the silicon pyramid surface as shown in Figure 60; SEM 

images of the surface hierarchical structures are shown in Figures 56b, c, and d.  For a 

surface with inclined wall structures, the wetting behavior represents a combination of air 

entrapment, surface hydrophobicity and wall inclination. For the two scale structures on 

silicon surfaces, we presume that the nano-structure, as shown in Fig 2d, merely 

improves the surface hydrophobicity since the contact angle after PFOS treatment is 

148.1˚, which was obtained on nanostructures from Au assisted etching of a Si (111) 

surface, as shown in Fig 2e. But if the surface has only micron scale pyramids showing a 

Young’s surface contact angle of ~115˚ after PFOS treatment, the surface is not 

superhydrophobic According to Equation (1), the Laplace pressure is greatly enhanced 

when a high contact angle θ exists. In addition, the extended three phase contact line on 

smooth surfaces is segmented into smaller ones on pyramid surfaces with nanostructures. 
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As a result, the surface exists in a stable Cassie state and is superhydrophobic. This leads 

to an improvement in the superhydrophobic stability on micron-scale pyramid surfaces 

with air entrapment at the composite contact interface. The result of forming a 

hierarchical structure is to achieve/enhance the Cassie state and thus surface 

superhydrophobicity through the interplay of surface hydrophobicity, air entrapment and 

inclination angle.  Such effects cannot be achieved readily by structures with only one 

size scale. On two-scale rough surfaces, the increase of surface hydrophobicity also 

improves the apparent contact angle, but the effect is not a large, since these surfaces 

already show very high contact angles in the Cassie state as shown in Table 2 and Figure 

59 (stars). 
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Figure 60. Contact angles on silicon surfaces with different surface texturing after PFOS 
treatment. For a silicon pyramid surface that possesses a hierarchical structure, a 
superhydrophobic surface with minimum hysteresis results after PFOS treatment. 
Nanostructures were formed by Au assisted etching of silicon surfaces in HF/H2O2 for 
60 seconds with a Au layer of 5 nm on the silicon (111) surface. 

 The hierarchical structures not only facilitate improvement of the apparent contact 

angle, but also reduce the contact angle hysteresis as shown in Table 3.  
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Table 3. Contact angle hysteresis on different textured surfaces after PFOS treatment. 

Surfaces Hysteresis 

Si – 

Silicon pyramids >60˚ 

Silicon nano-structured surface* >60˚ 

Hierarchically structured 

pyramid surface* 

2.1˚ 

*Nanostructures formed from Au assisted etching of silicon surfaces in HF/H2O2 for 60 seconds with Au 
layer of 5 nm on the silicon (111) surface. 
 

 For contact angle hysteresis related to water/solid adhesion, the hydrophobic 

surface plays two roles. First, adhesion of the solid/water contact interface is reduced due 

to the lowered surface tension of the solid surface γs; the work of adhesion can be 

estimated as swadw γγ2= [23]. Second, the increased hydrophobicity of the surface 

gives a higher water contact angle (θ) on the surface due to the change in surface free 

energy. This results in a higher Laplace pressure, and so the meniscus moves away from 

the bottom of the structures. Therefore, the water/solid contact area is reduced leading to 

reduced adhesion between water and the solid surface. This fact is manifested in a 

difference in contact angle hysteresis of two-scale rough surfaces that have different 

silane treatments as shown in Figure 55. Such observations also confirm the proposal that 

hysteresis is more important than structure in achieving superhydrophobicity[121]. 

. 

Conclusions 

 Surface structures with inclined wall angles are important in establishing 

superhydrophobicity since they inhibit the ability to achieve a stable Cassie state from a 
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thermodynamic point of view. This consideration is related to the Laplace pressure on the 

water meniscus, which helps to maintain a composite contact interface. The Laplace 

equation was used to derive a relationship between Young’s contact angle and the 

geometry of surface structures. Surface hydrophobicity was varied by using different 

silane treatments on silicon pyramid surfaces to demonstrate that for these structured 

surfaces the stable state is the Wenzel state. By changing the surface hydrophobicity, the 

apparent contact angle changed according to the Wenzel equation for surface structures 

with inclined side walls. Superhydrophobicity can only be achieved if a second scale 

nano rough surface was constructed on top of the silicon pyramid surface to maintain a 

stable Cassie state. Contact angle hysteresis was related to surface adhesion between the 

liquid and the solid surface which is a function of liquid surface tension according to the 

Young-Dupré equation. The surface liquid/solid contact area, hydrophobicity and 

geometry of surface structures are thus inter-related in achieving superhydrophobicity. 

An increase in the surface hydrophobicity (Young’s contact angle) leads to a decrease in 

the water/substrate contact area fraction and therefore a reduction in contact angle 

hysteresis and an increase in the apparent contact angle. 
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CHAPTER 3 

RELATIONSHIP BETWEEN WORK OF ADHESION AND 

CONTACT ANGLE HYSTERESIS 

 

 For a superhydrophobic surface, in addition to the high contact angles, the contact 

angle hysteresis is also critical in achieving a roll-off characteristics. Contact angle 

hysteresis of a superhydrophobic surface is generally attributed to surface roughness and 

chemical heterogeneity[140], which result in a variation of contact angles across a 

surface. The difference between advancing and receding contact angles of a water droplet 

is termed contact angle hysteresis. Lower contact angle hysteresis corresponds to an 

enhanced ability for the water droplet to move on a surface[141], a process of great 

importance for the application of superhydrophobic surfaces to non-fouling applications. 

It is generally unclear whether contact angle hysteresis, analogous to other hysteretic 

phenomena (e.g., magnetism), can be described by irreversible transitions or “jumps” 

between domains of equilibrium states.  

 The effect of roughness on apparent contact angles can be modeled by the Wenzel 

and Cassie equations[11, 142]. Various model surfaces containing patterned structures 

(e.g., Si, polymers) with different shapes have been invoked for the investigation of the 

relationship between contact angle and surface roughness[14, 101, 122, 143, 144]. 

Furthermore, a relationship between the contact angle hysteresis on a smooth surface and 

on a rough surface has also been established[17]. In some cases, the drop contact 

perimeter or three phase contact line, has been proposed as a defining parameter[122]. 

Such considerations involve the effect of surface structure on the movement of the 

contact line around the drop, because most of the friction is experienced in the region of 

the contact line[145]. However, reported data on a patterned surface with various feature 
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sizes but a constant solid contact surface area and surface area fraction displayed no 

significant change in hysteresis with pattern scaling despite a change in the perimeter by 

a factor of 8; rather, the superhydrophobic contact angle remained constant to within 

2˚.[31]  

 Besides the water contact angle, the hysteresis should also be considered in 

determining the surface hydrophobicity. The sliding angle and driving force needed to 

start a drop-moving over a solid surface can be described as Equations 3 and 4, 

respectively: 

 

 mg
wARLV )cos(cos

sin
θθγ

α
−

=
             (23) 

     )cos(cos ARLVF θθγ −=              (24) 

 In equation 23, α is the sliding angle, m is the weight of the water droplet, w is the 

width of the droplet, γLV is the surface tension of the liquid, and the θA and θR are the 

advancing and retreating contact angles, respectively. In equation 24, F is the critical line 

force per unit length of the drop perimeter. These equations indicate how the difference 

between the contact angles on a sliding surface (the hysteresis) affect the water repellence 

(hydrophobicity).  

 In this chapter, a model to establish a relationship between the equilibrium state 

(work of adhesion) and the dynamic state (contact angle hysteresis in the form of 

AR θθ coscos − ) is proposed and predictions compared with previously published data. 

We also prepared patterned Si pillar arrays and treated them with different silanes to 

allow comparison to trends predicted by the model.  

According to Young-Laplace eq,  

  R
p γ2
=∆

                                                   (25) 
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where γ is the surface tension of liquid, and R is the radius of curvature for the liquid 

meniscus, concave: minus, convex: plus; ∆p = p - p0, the difference between the pressure 

under liquid surface and the atmospheric pressure. A certain curvature will lead to a 

pressure difference on the liquid meniscus. In the case of a cylindrical capillary, as shown 

in Figure 61, the shape of a meniscus (concave or convex) determines whether the 

surface tension holds a water droplet up (water repellency) or draws it down (water 

attraction). And the shape of a meniscus only depends on the surface tension of water and 

capillary materials. When the capillary is non–cylindrical and shows a tilt angle, the 

shape of liquid meniscus is dependent on the surface structures as shown in Figure 62. 

Even for a hydrophobic capillary surface, it may also show concave meniscus as 

illustrated in Figure 62b. Therefore the wetting property is surface structure dependent. In 

order to achieve water repellency, the convex meniscus in capillary is desirable and the 

surface tension will hold up the water droplet sitting on top of the structure. In contrast, 

the concave meniscus (Figure 62b) will extract water deep into the structures which will 

increase the adhesion of water on the structured surface and fail to achieve 

superhydrophobicity. Unfortunately, b is the most commonly seen scenario. In order for b 

to have the same meniscus as a, the surface should be either more hydrophobic than that 

of a or there is a second scale of roughness on the surface to increase the contact angle 

like lotus leaves. The former surface clearly will have an increased contact angle on the 

capillary surface and the latter one will also show an increased apparent contact angle due 

to the surface 2nd-roughness amplification of the Young’s contact angle. Therefore for 

both cases a convex meniscus will result. In addition to the surface physics parameters 

such as structure height, diameter and pitch size effects on superhydrophobicity, the tilt 

angle is also very important. 
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Figure 61. Three cases of water meniscus 
in capillaries with different surface 
tensions. 

 

Figure 62. Illustration of the shape 
dependency of water meniscus on a surface 
with young’s contact angle of 90˚. 

 

Figure 63. Illustration of the relation between apparent contact angle (θA) and Young’s 
contact angle (θY). 

 The geometrical effect on apparent contact angle is illustrated in Figure 63. 

Although the flat surface is hydrophilic, when on a pillar top surface, the apparent contact 

angle can be the sum of the Young’s contact angle and the tilt angle of the surface 

structure wall. This demonstrated how a hydrophilic surface can also be made 

superhydrophobic if the surface structures are properly designed. In addition, surface 

structures defined in such a way can be made even oleophobic as shown in Figure 64. 

Based on this research, the understanding of structure design for achieving a Cassie state 

contact (composite contact for superhydrophobicity) can be illuminated. This is of great 

significance for achieving superhydrophobicity on a moderate hydrophilic surface, and 

superoleophobic surface for oil self-cleaning. 
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Figure 64. Two-dimensional pillars with semicircular bumps/grooves. (a) Schematic of 
the structure. The bumps may pin the triple line because an advancing liquid-air (LA) 
interface results in a decrease in the contact angle (θ < θ0), making the equilibrium stable. 
Grooves provide equilibrium positions that satisfy the Young equation; however, the 
equilibrium is unstable because an advancing LA interface results in an increase in the 
contact angle (θ > θ0).[146] 

 

3.1 Experimental Details 

Photolithography was employed for the fabrication of micron-sized silicon pillars on 

silicon wafers.  A CEE 100CB Spinner Spin coater was used to apply a 2 µm thick 

photoresist (Shipley Microposit SC1813)  layer. Exposure using a Karl Suss MA-6 Mask 

Aligner operating at 365 nm generated a pattern that was developed with Microposit 319 

Developer. A Plasma-Therm ICP plasma reactor was invoked to perform silicon trench 

etching using the Bosch process with SF6 and C4F8 [147]. The photoresist was 

subsequently removed by rinsing in acetone. Resulting surfaces were treated in UV/ozone 

for 3 min and rinsed with acetone. Surfaces were then treated with a fluoroalkyl silane, 

either trichloro-(1H,1H,2H,2H-perfluorooctyl) silane (PFOS) or dodecyltrichlorosilane 

(DTS), to form a hydrophobic layer and thereby establish superhydrophobicity. Samples 

were placed in a PFOS/n-hexane (or DTS/n-hexane) solution (3 mM) for 30 min for 

adsorption of a PFOS (or DTS) layer on the patterned surface; subsequently the samples 

were treated in air at 150˚C for 1hr and at 220˚C for 5 min to promote silane hydrolysis 

and condensation, thereby forming a stable silanated layer on the surfaces. After the 

fluoroalkyl silane treatment, the films formed by this process on a flat Si surface 
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displayed a Young’s contact angle of 115˚ (PFOS) and 106˚ (DTS). The surface area 

fraction of the pillars was determined using image processing and analysis software 

ImageJ from NIH. The height of the pillars (30 µm) is sufficient to ensure a composite 

contact during the contact angle measurement. 

Characterization. The as-prepared samples were characterized by high resolution field-

emission scanning electron microscopy (FESEM; LEO 1530 FEG at 10 kV). Contact 

angle measurements were performed using a digital automated contact angle goniometer 

(Rame-Hart Inc., model 100) with water droplets (4µl size) formed using a 4 µl step on a 

microsyringe at a flow rate of 25 µl/s and at a predefined height; static images of the 

droplets were then recorded and advancing contact angles of the droplet on the solid 

surface determined from these images. Receding contact angles were measured by 

increasing the volume of the 4 µl water droplet to 10 µl and subsequently reducing the 

volume to 4 µl by extracting the extra water with a volumetrically controlled pipette 

using a 0.2 µl step changes with a flow rate of 5 µl/s. Fifteen measurements were 

performed at different locations on the surfaces and the values averaged to obtain the 

reported advancing and receding contact angles.  

3.2 Results and discussion 

 It is well-known that a heterogeneous surface (chemically or geometrically) 

usually shows a contact angle hysteresis[122, 148]. That is, for a geometrically rough 

surface, contact angle hysteresis originates primarily from the rough contact interface 

which depends upon the contact area of water with the structured surface. The contact 

area can be represented by the solid/liquid contact fraction (f1) as demonstrated in the 

Cassie-Baxter equation.  

1coscos 11 −+= ff YA θθ                                                               
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where f1 is the solid surface fraction and (1-f1) represents the air surface fraction with 

water, θA is the apparent contact angle and θY is the Young’s contact angle on a 

flat/smooth surface.  

 The determining factor during movement of a water droplet on a 

superhydrophobic surface may be considered the microscopic work of adhesion at the 

surface of an individual structure. According to the Young-Duprè equation[149], the 

work of adhesion can be expressed as  

                                                    )cos1( YLVadw θγ +=                                                   (26) 

where γLV is the surface tension of water on the solid surface; as a result, contact angle 

hysteresis can be related to LVγ and θY. Macroscopically, the hysteresis can be expressed 

using advancing and receding contact angles.  

3.2.1 Theory 

 The contact angle hysteresis was initially discussed based on contact line 

density[143]; subsequently, a gain factor was used to correlate the contact angle 

hysteresises between a flat surface and a rough surface[17]. A thermodynamic approach 

was also invoked to predict equilibrium contact angles and contact angle hysteresis[150]. 

Little information has been reported concerning the explanation of the relationship 

between dynamic contact angles (advancing and receding contact angles), the surface 

geometrical features and surface chemistry. The following discussion focuses on an 

investigation of the relationship between contact angle hysteresis and the work of 

adhesion which is dependent upon surface geometrical parameters and surface chemistry. 

For a water droplet moving on a tilted surface, the relationship between the force on a 

water droplet and the contact angle hysteresis on a surface has been described by[141],  

                                        )cos(cos)/(/sin ARLVworFwmg θθγϕ −=                            (27) 

where φ is the tilt angle of the surface relative to horizontal surface and w is the droplet 

width where the drop contacts the surface. 
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 The energy barrier to droplet movement gives rise to contact angle hysteresis on a 

surface as a result of surface non-uniformity from either chemical (distribution between 

polar and nonpolar regions) or physical (roughness) properties.  

 

Figure 65. Water droplet on top of a structured surface. 

 Figure 65 shows a water droplet positioned on top of patterned pillars. For the flat 

top surface, equation (26) becomes  

                                                         )cos1(1 YLVad fw θγ +=                                           (28) 

 It is reasonable to assume that the force needed to move a water droplet on a 

rough surface is that required to overcome the work of adhesion. Previous studies have 

suggested that for an advancing droplet, there is no energy barrier, but an energy barrier 

is experienced when the droplet recedes[110]. Therefore, the energy required to 

overcome the barrier at the receding edge of the water droplet can be expressed as  

                                                      RwF ad πδδ ⋅⋅=⋅                                                      (29) 

where the left hand side of equation (29) represents the work done by the force (F) 

needed to move the droplet a distance δ and R is the drop/surface contact radius. We 

postulate that this energy is equal to the work of adhesion involved in the movement of 

the drop. 

Therefore,  

                                  RfR YLVARLV πθγθθγ ⋅+=⋅− )cos1(2)cos(cos 1                          (30) 



 90

                                         )cos1(
2

coscos 1 YAR f θπθθ +=−                                           (31) 

where w = 2R, and a circular three phase contact line has been assumed.  

 From the above development, the factor AR θθ coscos −  may be more appropriate 

than is the difference in contact angles in describing contact angle hysteresis. For a 

superhydrophobic surface, even if the difference between advancing and receding contact 

angles is the same, the force needed to move two droplets of the same size is different if 

the surface has a different advancing contact angle as shown in Figure 66. 
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Figure 66. Difference of the cosines of advancing versus receding contact angles on 
advancing contact angles based on a constant contact angle hysteresis of 10˚. 

 That is, the general concept of contact angle hysteresis defined as the difference 

between the advancing and receding angles is not adequate to precisely correlate 

hysteresis with surface self-cleaning. To overcome this limitation, we use the cosine form 

of the contact angle hysteresis, i.e., AR θθ coscos − , as a measure of the hysteresis.  
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3.2.2 Relationship between work of adhesion and the contact angle hysteresis 
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Figure 67. Relationship between contact angle hysteresis expressed as AR θθ coscos −  
and work of adhesion. (eq 31) 

 In order to verify our approach, we compared our predicted correlations with 

previously published data [29, 31, 32, 60, 101, 144] as shown in Figure 67 Clearly, most 

of the data are consistent with the linear relationship shown, which suggests that the 

contact angle hysteresis as described by the difference in the cosines of the respective 

angles is related to the surface work of adhesion between the solid surface and the liquid 

droplet. Although some of the data in Figure 67 show marked deviations (references 29-1 

and 32 shown as dashes and open square), these specific studies used unique geometrical 

surface structures.  For instance, although the fit for pillar structures is quite reasonable, 

the surface containing holes shows a high deviation (open circle in Figure 67). When the 

hysteresis AR θθ coscos −  on such surfaces is sufficiently large, we can see from Figure 

67 (stars) that the deviation from equation (31) is also large. Under these circumstances, 

the droplet-surface contact may be in the Wenzel state instead of the Cassie state. Since 

equation (31) is based on the Cassie state, correlation of the work of adhesion with the 

difference of the cosines of the contact angles is inappropriate. 
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 In order to further verify our correlations (equation 31), we generated patterned Si 

pillars of different sizes arranged in square arrays with varied pitches, to serve as model 

surfaces for the study of geometrical effects on superhydrophobicity; the surface 

structures are shown in Figure 68 and the geometrical parameters are shown in Table 4.  

 

Figure 68. SEM images of model silicon pillar surfaces. 

 

a 

c d 

e 

b 
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Table 4. Geometrical parameters describing the prepared Si pillars. 

No. Nominal side length 
(µm) 

Nominal pitch size 
(µm) 

a 12 50 
b 12 30 
c 18 80 
d 18 60 
e 12 60 

*Note: the actual surface area fraction was measured using image processing and analysis software ImageJ from NIH 

 In order to achieve a superhydrophobic state, a surface treatment with 

(fluoro)alkyl silanes (PFOS, DTS) was performed. That is, on these structured surfaces, 

the surface roughness can be controlled by geometrical structure design, and 

hydrophobicity can be varied by surface treatment with different silanes. Thus, the 

parameters in equation (31) can be varied in a controlled fashion. The resulting contact 

angles and hysteresis (contact angle hysteresis and AR θθ coscos − ) are shown in Table 5 

and 6 and plotted in Figures 69 and 70 as a function of solid surface contact fraction f1. 

An increase in f1 for both PFOS and DTS treated surfaces causes the receding angles to 

decrease and contact angle hysteresis to increase while advancing angles remained 

essentially constant. The relationship between the work of adhesion and hysteresis as 

defined by ( AR θθ coscos − ) is shown in Figure 71. 

Table 5. Advancing and receding contact angles for PFOS treated Si surfaces. 

No. f1 Advancing contact 

angle, degree 

Receding contact 

angle, degree 

a 0.055 167.6 ± 1.2 156.8 ± 1.3 

b 0.156 167.1 ± 1.5 146.6 ± 3.2 

c 0.051 165.9 ± 1.5 156.7 ± 2.7 

d 0.091 166.2 ± 1.3 151.6 ± 3.3 

e 0.044 165.7 ± 0.5 158.6 ± 2.0 
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Table 6. Advancing and receding contact angles for DTS treated Si surfaces 

Number Surface solid fraction Advancing contact 

angle, degree 

Receding contact 

angle, degree 

a 0.055 163.1 ± 0.8 151.9 ± 1.2 

b 0.156 165.9 ± 0.6 142.6 ± 1.1 

c 0.051 164.2 ± 0.6 154.5 ± 1.1 

d 0.091 164.5 ± 0.6 149.4 ± 3.0 

e 0.044 165.0 ± 0.5 156.6 ± 1.6 
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Figure 69. Advancing and receding contact angles on Si pillar surfaces, a. PFOS treated 
surfaces; b. DTS treated surfaces.  
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Figure 70. The contact angle hysteresis (angle and AR θθ coscos − ) of PFOS and DTS 
treated Si pillar surfaces. 
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Figure 71. Hysteresis ( AR θθ coscos − ) vs. work of adhesion ( )cos1(1 Yf θ+ ) for 
patterned Si pillar surfaces treated with fluoroalkyl silanes. 

From Figure 71, it is clear that the experimental data fit equation (31) quite well. 

It is reasonable that the hysteresis as defined by ( AR θθ coscos − ) mostly originates from 

the work of adhesion between the water droplet and the solid surface.  In addition, some 

studies have proposed the incorporation of a line tension (one-dimensional surface 

tension) term in Young’s equation to investigate the effect of surface structures 

(roughness) on contact angle and to modify the Cassie and Wenzel equations[151, 152]. 

However, it has been suggested that for surfaces with features larger than 100 nm, which 

is the case in our study, the line tension is not significant [153]. Therefore, for micron-

sized surface structures such as pillars the line tension should be negligible. Thus, we 

assumed all contributions to the contact angle are from surface tension without 

considering the line tension effect.  

 For solid/water interfaces, small values of contact angle hysteresis are critical to 

achieve superhydrophobicity with reduced adhesion. In the current studies, the work of 

adhesion, which is dependent on Young’s contact angle and the surface tension according 

   PFOS 
 
DTS 
 
Prediction according to eq (31) 
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to the Young-Duprè equation (Eqn (26)), have been used to characterize the surface 

behavior.  

 For contact angle hysteresis related to water/solid adhesion, the hydrophobic 

surface plays two roles. First, adhesion of the solid/water contact interface is reduced due 

to the lowered surface tension of the solid surface γs (the work of adhesion can be 

estimated as swad γγγ 2=  [23]); therefore, contact angle hysteresis is reduced and the 

receding contact angle is increased. Second, the increased hydrophobicity of the surface 

yields a higher water contact angle (θ) on the surface which results in a higher apparent 

contact angle.  

 For air/liquid contact surfaces, the Laplace pressure is critical in establishing a 

stable superhydrophobic surface[154]. In addition, the three phase contact line may play 

an important role in maintaining the air/water interface of a composite contact since it has 

a significant effect on superhydrophobicity due to the effect on the Laplace pressure, 

primarily at the air/water interface. For an irregular three phase contact line, we postulate 

that the equivalent radius of a capillary is related to the three phase contact line. 

Therefore, the Laplace pressure on the water meniscus will vary depending upon the 

length of the three phase contact line for a specific solid fraction f1.  The shorter the three 

phase contact line, the easier the transition from a Cassie state to a Wenzel state. 

Specifically, when the three phase contact line averaged over unit solid area (irregular, 

fractal, etc) is longer, the edge area of the solid pillars can be considered a composite 

surface as illustrated in Figure 72. This situation will result in a higher contact angle on 

the edge[155, 156] than is predicted from the Cassie-Baxter equation due to the formation 

of a composite contact at the edge.  
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Figure 72. Surface structure illustration of top view of a microscopic pillar surface with 
rough edges. 

Conclusions 

 A relationship has been proposed between the surface work of adhesion and the 

dynamic contact angle hysteresis; this model was subsequently correlated with previously 

reported data. In order to evaluate both the surface geometrical effects and chemical 

effects on hysteresis, patterned Si pillars with different pillar size and pitch were 

prepared. These surfaces were modified with different (fluoro)alkyl silanes to vary the 

hydrophobicity. The hysteresis-work of adhesion model was consistent with contact 

angle measurements. This result implies that the droplet adhesion originates mostly from 

the work of adhesion at the water/solid contact interface. The hysteresis as defined by the 

difference in cosines of the advancing and receding contact angles ( AR θθ coscos − ) 

appears to be related to the work of adhesion which is a function of surface solid contact 

fraction f1 and Young’s contact angle. The Laplace pressure at the air/water interface may 

be dependent upon the three phase contact line to maintain a stable superhydrophobic 

state. 
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CHAPTER 4 

UV STABILITY IMPROVEMENT OF SUPERHYDROPHOBIC 

SURFACES 

4.1 Introduction 

 The bulk of power delivery from the generating sites to the load centers is done 

by overhead transmission lines. To minimize line losses, power transmission over such 

long distances is more often carried out at high voltages (several hundred kV). The 

energized high voltage (HV) line conductors have to be physically attached to the support 

structures. Also the energized conductors have to be electrically isolated from the support 

structures. The device used to perform the dual functions of mechanically support and 

electrical isolation is the insulator. Since transmission lines are often in remote locations 

that are hard to reach, it is desirable that once the line has been constructed that it will 

work satisfactorily, without maintenance, for the expected life of the line, generally 

exceeding 30 years. The quality of raw materials, processing, design, and quality control 

of the insulator are all important.  

 In many parts of the world, insulator contamination has become a major 

impediment to the interrupted supply of electrical power. Contamination on the surface of 

insulators gives rise to leakage current, and if high enough, flashover1.  

 So far, various techniques have been applied to address this problem:  

a) Cleaning with water, dry abrasive cleaner, or dry ice can effectively 

remove loose contamination from insulator, but it is expensive, labor 

intensive and only a short term solution;  

                                                 
1 A flash over is a disruptive discharge through air around or over the surface of insulation produced by the 
application of voltage wherein the breakdown path becomes sufficiently ionized to maintain an electric arc. 
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b) Mobile protective coatings, including oils, grease and pastes surface 

treatment, can prevent flashover, but have damaging results to the 

insulator during dry band arcing2 (in wetted and polluted areas);  

c) Grease-like silicone coating components, usually compounded with 

alumina tri-hydrate (ATH), provide a non-wettable surface and maintain 

high surface resistance, and have been used as protective coatings for the 

past 30 years. The major strength of the silicone grease lies in their ability 

to maintain a mobile water repellent surface, thereby controlling leakage 

current;  

d) Fluorourethane coatings were developed for high voltage insulators, but 

the field test was not successful, and its low adhesion to the insulators has 

been a problem;  

 Since 1970s, room temperature vulcanizing (RTV) silicone coatings has gained 

considerable popularity, and become the major products available in the market, such as 

Dow Corning’s Sylgard High Voltage Insulator Coatings (HVIC), CSL’s Si-Coat HVIC, 

and Midsun’s 570 HVIC. Service experience has indicated that of the various types of 

insulator coatings, the time between maintenance and RTV coating reapplication is the 

longest.  

 

 The techniques described above cannot prevent contamination, such as dust, 

accumulation on coating surfaces, thus these serve to manage the problem, yet none of 

                                                 
2 Dry-band arcing has been observed in highly polluted areas, mostly close to the sea. The wind from the 
sea drives saltwater droplets onto the fiber-optic-cable surface, which covers the cable with a thin layer of 
salt. Morning and evening fog or dew wets the pollution layer and forms a conductive layer on the cable 
surface. The layer resistance can vary between 100 k ohm/m to 100 M ohm/m. Capacitive coupling 
between the phase conductors and fiber-optic cable induces current along the wet pollution layer. The 
current magnitude increases from mid-span toward the towers, and the current maximum is usually near the 
armor rods. This current dries the layer and forms small dry bands. The dry band interrupts the current and 
generates a high voltage across the band. This voltage produces a flashover across the band and forms an 
arc. The heating effect of the arc extends the dry-band length, which stops the arcing. However, 
condensation and wind-driven saltwater from the sea wet the cable and reinitiate the arcing. Dry-band 
arcing is a periodic phenomenon that occurs when the cable is simultaneously wet and polluted. 
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the above techniques has satisfactory performance in heavy contamination environments. 

Table 7 showed water droplet contact angles on commercially available insulator material 

surfaces. In this work, a self-cleaning Lotus Effect coating is proposed and investigated 

as a novel protective coating for external electrical insulation systems. 

Table 7. Contact angles on outdoor insulator surfaces. 

Insulator materials Contact angles on the surfaces, degree 

Silicone 110 

Ethylene-vinyl acetate (eva) 120 

Ethylene propylene dimer (epdm) 75 

Glass 56 

Cycloaliphatic epoxy 55-60 

 
 Although the Lotus Effect was discovered in plants, it is essentially a 

physicochemical property rather than a biological property. Therefore, it is possible to 

mimic the lotus surface structure. To mimic the lotus surfaces, a Lotus Effect surface 

should be produced by creating a nanoscale rough structure on a hydrophobic surface or 

coating thin hydrophobic films on nanoscale rough surfaces.  

 Compared with superhydrophobicity of Lotus Effect, the mechanism of self-

cleaning is not completely investigated. In fact, the self-cleaning can be achieved if two 

conditions can be met:  

 a) The surface is superhydrophobic so that water drops have very large contact 

angle and small sliding angle, and  

 b) The adhesion between the water drop and dust particles is greater than the 

adhesion between the surface and dust particles.  

 
 Adhesion of two components, such as adhesion of dust or dirt to a surface, is 

generally the result of surface-energy-related parameters representing the interaction of 

the two surfaces which are in contact. In general, the two contacted components attempt 
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to reduce their free surface energy. Strong adhesion is characterized by a large reduction 

in free surface energy of two adhered surfaces. On the other hand, if the reduction in 

surface free energy between two components is intrinsically very low, it can generally be 

assumed that there will only be weak adhesion between the two components. Thus, the 

relative reduction in free surface energy characterizes the strength of adhesion.  Usually 

dust particles consist of materials have higher surface energy than the surface materials, 

and they are generally larger than the surface microstructure and just contact with the tips 

of these microstructures. This reduced contact area minimizes the adhesion between the 

lotus leaf surface and dust particles, so the particles can be picked up and removed from 

the leaf surface by the water droplet. Based upon the self-cleaning mechanism, it is likely 

that hydrophobic particles are less likely be removed by water droplet than hydrophilic 

dust particles on a lotus leaf, and small particles, which have a size close to or even 

smaller than the microstructures, will possibly be pinched in the microstructures instead 

of be removed by water droplet.       

 

4.2 Learnings from polymer Feasibility Study 

 In the proof of concept research, understanding the mechanism and developing 

superhydrophobic polybutadiene protective electrical coatings with the purpose that it 

could keep the surface of heavy electrical insulation devices dry and clean, minimizing 

the chances of surface degradation and surface contaminant-induced breakdown of the 

insulation devices, and significantly enhancing the electrical performance. 

 As proposed to use superhydrophobic coating as a protective coating for external 

insulators, various superhydrophobic coatings were prepared on insulating materials. 

Self-cleaning of contaminants were demonstrated on these superhydrophobic coatings. 

However, the UV stability is a big obstacle for the successful application on insulator 
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surfaces. In fact, for polybutadiene superhydrophobic surfaces prepared from SF6 plasma 

etching, after UV aging test according to ASTM D 4329, the self-cleaning surfaces failed 

completely as shown in Figures 73 and 74.  

 As can be seen from the SEM image (Figure 73) and EDX (Figure 75), after the 

surface was irradiated under UV light for as little as 2 days, the surface changed. The 

change can be seen by the growth of the smooth areas that destroyed the surface 

roughness. The loss of roughness causes a fall in the contact angle. And the surface 

chemistry changed as a result of the oxidation of the polymer surface (oxygen content 

increased to ~30 atom%). This effect continued even when UV protection was included; 

presumably this was ineffective as the damage is very highly localized to the surface 

layers.  

 

 

Figure 73. (a) Water droplets on Superhydrophobic Coatings; (b) SEM images of SF6 
etched polybutadiene thin films. 

a b
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Figure 74. The UV degradation of polymeric superhydrophobic surface; the 
superhydrophobic polybutadiene surface after UV aging for 48 hs. Water droplet contact 
angle on this surface:  ~ 70˚; polybutadiene surface treated with SF6 plasma (150w 10 
min). 

 According to literature, in order to create effective superhydrophobic coatings, 

biomimetic synthesis of hierarchical structure (two scale roughness) was optimized as the 

final goal in order to achieve a surface that right in Cassie regime with high contact angle 

and very low hysteresis so that self-cleaning surface is resulted. The surface 

hydrophobicity can be achieved by surface treatment like fluoroalkylsilane treatment (to 

form a Self Assembly Monolayer) or fluorocarbon thin film deposition etc. 

 Standard UV exposure and condensation tests following ASTM D 4329 were 

conducted on the prepared hydrophobic coatings, and the results in Table 8 suggest that 

the UV degradation poses one serious barrier in the successful application of the outdoor 

coatings. As such, in this study, the UV stability of the superhydrophobic coatings was 

emphasized. 
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Table 8. Contact angles of different materials before and after UV test according to 

ASTM D 4329. 

Name Contact angle before 

weathering test 

Contact angle after 

weathering test* 

EVA 115-120˚ 75 ˚ 

PTFE 115 ˚ 112 ˚ 

TEFLON AF 125˚ 120˚** 

Silicone/PTFE 155˚ 138˚*** 

polydimethylsilane 153˚ 80˚ 

Polybutadiene (SF6 treated) 162˚ 70˚ 

Anodized Al surface treated 

with PFOS 

175.6 120-130˚*** 

* UV tested for 200 hrs; ** UV tested for 2500 hrs; ***UV tested for 1000 hrs. 

 

Figure 75. The EDX of the degraded superhydrophobic surface; polybutadiene surface 
treated with SF6 plasma (150w 10 min). 

 For polybutadiene, UV stabilization using UV stabilizers and free radical 

scavengers were also performed. The results were shown in Figure 76. It showed that 

even with UV stabilizers, the surface cannot achieve an applicable self-cleaning surface. 
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The application requires that the UV aging test time should at least be 1000 h without any 

degradation on the surface property for possible outdoor applications. 
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Figure 76.  UV stability of polybutadiene superhydrophobic surfaces from SF6 plasma 
etching, stabilized with different UV stabilizers; 1) Polybutadiene + UV 5411, 2) 
Polybutadiene + UV 1164, 3) Polybutadiene + UV 3346, 4) Polybutadiene + UV 1577FF, 
5) Polybutadiene + 10%wt TiO2, 6) Polybutadiene + 5% carbon black. 

 

 On the basis of UV test results, we tried two methods of UV stabilization. One is 

to try using inorganic materials as the coating material to create two scale structures, 

followed by a surface treatment with low surface energy and UV stable materials, such as 

fluoroalkylsilane.  The other method is to create a surface self-healing mechanism as the 

lotus leaves possess. When the low surface energy material molecules were depleted, the 

underlying layer can continuously supply the molecules to the surface to maintain the 

surface hydrophobicity. i.e., the surface superhydrophobicity can be well maintained and 

UV stability is achieved. The second approach will be discussed in detail in chapter 8 
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4.2.1 Problem definition and research objectives 

 Although there have been numerous research efforts in creating such 

superhydrophobic surfaces, with various applications envisioned, there have been no 

commercial routines or products available on markets. Potential applications in the field 

of heavy electrical insulation have not been explored, while there is a great promise for 

such applications. In addition, to develop a Lotus Effect coating, a fundamental 

understanding of the Lotus Effect is critical. However, the understanding of Lotus Effect 

surfaces is still empirical/semi-empirical at present. Lack of theoretical framework of 

Lotus Effect/superhydrophobicity limits its potential application as a self-

decontamination and self-cleaning coating material applications. In addition, to develop 

reliable Lotus Effect coatings as insulating coatings, the following criteria must be met:  

 The coatings should be stable under harsh environmental conditions;  

 The coatings should have good compatibility with practical insulation materials 

(silicone and porcelain – glassy); 

 The coatings should remain adhered to the insulator after expansion and 

contraction of the device: 

 The coatings must be capable of application to insulators in a simple and practical 

way.  

 The basic premise of this work is to devise a coating that both inhibits the 

formation of a continuous film of water and removes dust with the high water flow.  

 
 

4.3 Coprecursor method from sol-gel processing 

 The sol-gel approach involves the creation of surface roughness by the 

evaporation of solvent (ethanol) after the formation of silica gel skeleton (gelation 

through silanol condensation), usually in the forms of particles, xerogel and aerogel 
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depending on the processing and drying conditions. The reactions are shown in Figure 

77. The surface hydrophobicity was achieved by the incorporation of the hydrophobic 

groups. The individual components are termed precursors (e.g. tetraethoxysilane, 

tetramethoxysilane, isobutyl trimethoxysilane etc.). When two or more precursors are 

combined to make the process more practical the process are termed coprecursor process. 

The second precursor contains the hydrophobic hydrocarbon/fluorocarbon group, e.g., 

TEOS-IBTMOS, TEOS-TFPS, etc, at least one of the precursors contributes hydrophobic 

groups, such as isopropyl, trifluoropropyl groups, etc. 

 

Figure 77. The generalized reaction mechanism for pre cursors  

 
 Self-cleaning surfaces have many potential applications, for example, surface 

decontamination on microelectronic equipment or devices, water repellent coatings, 

biocompatible surfaces, and friction reduction.  Such surfaces have been created on a 

variety of materials such as silicon[154], silicones [157], alumina [21, 22, 158], 

polyelectrolytes[102],carbon nanotubes[159, 160], polystyrene[72, 161], PTFE 

(polytetrafluoroethylene) [4], polybutadiene[162], fluorocarbons[163]and mono-

dispersed silica particles[14].  Several criteria have been established to characterize the 

surface including contact angle (>150˚), contact angle hysteresis (<10˚) and roll-off 

angle. However, complications exist when polymeric materials are exposed to 



 109

atmospheric conditions where degradation occurs due to UV irradiation and to exposure 

to impurities, O2, and moisture present in the environment. Also, because organic 

polymers are easily deformed when a force is applied, the surface structure is not stable 

when the surface undergoes abrasion from friction, handling, or dust particles. Recently, 

superhydrophobic silicone nanofilaments were fabricated for improved environmental 

durability[164, 165]. Sol-gel processes offer an alternative method to fabricate porous 

glass films under ambient conditions for improved durability. The mild preparation 

conditions offer the ability to incorporate a wide range of labile organic species into a 

glass composite.  In addition to the mild processing conditions, sol-gel derived materials 

exhibit tunable porosity[66, 166-168], transparency[105], hardness, and good thermal 

stability[66, 166-171]. To achieve superhydrophobicity, different surface treatment was 

performed including silane treatment, fluorocarbon deposition or coprecursor 

methods[169, 170, 172, 173]. However, UV stability has not been addressed extensively, 

especially for long times, which is a requirement for outdoor applications. Such 

applications are especially problematic, since the surface hydrophobicity imparted is 

usually due to the presence of hydrocarbons[65, 66]. In this chapter, porous silica 

generated by sol-gel processing is invoked to improve the UV stability of 

superhydrophobic films. This approach to the fabrication of inorganic superhydrophobic 

silica films uses tetraethoxysilane and trifluoropropylmethoxysilane (TFPS) as 

precursors. When TFPS is incorporated into silica, the surface contains hydrophobic 

trifluoropropyl groups, resulting in hydrophobicity. Furthermore, the sol-gel process 

allows the generation of rough surfaces which is ideal to establish surface roughness. By 

incorporating both surface hydrophobicity and controlled structure into the surface, an 

inorganic film with excellent superhydrophobic properties can be fabricated. 
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4.3.1 Experimental Details 

Silica monolith formation. The starting solution was prepared using a two-step (acid/base 

catalyzed) procedure. Tetraethoxysilane (TEOS, from Aldrich), trifluoropropyl 

trimethoxysilane (TFPS, from Aldrich), ethanol, and water were mixed in a 30 ml vial 

with varying ratios. The pH was adjusted to 1.8-2.0 by adding hydrochloric acid, and the 

mixture stirred for 120 min at 60˚C to make silica sol. Then NH4OH (1.0M) was added 

to the sol, (volume ratio of NH4OH solution to sol is 1:50) followed by mixing for 5 min 

at room temperature. The resulting gel was allowed to age for 48 hours. Incorporation of 

a small slit (6mm×3mm) in the vial cap allowed ethanol and water to evaporate slowly 

from the sol to form bulk silica.  

Silica film formation by casting. Glass slides were cleaned in Piranha solution (70:30 

(vol/vol) mixture of 96% sulfuric acid and 30% aqueous hydrogen peroxide) at 80˚C and 

subsequently rinsed extensively with de-ionized water and ethanol. The cleaned glass 

slides were used as substrates for the casting of silica films. The casting fixture was 

comprised of two glass slides. One slide acted as the substrate, and the other, which was 

treated with trimethylchlorosilane (TMCS) to prevent gel bonding, served as the cover. A 

chromium film of ~300 nm thickness was sputtered onto the surface of the substrate glass 

slide prior to gel formation. The procedure described above was used to prepare bulk 

silica sol; after NH4OH was added to the sol, the mixture was stirred for 3 min.  Several 

drops of the sol were then dispensed onto the substrate glass slide and covered with the 

TMCS treated glass slide. After gelation, aging for 1 week and evaporation of the 

solvent, a silica film resulted with surface groups shown in Figure 78. 
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Figure 78. The surface chemical structure of TFOS & TEOS. 

 

Characterization. Contact angle measurements, Scanning Electron Microscopy (SEM), 

Atomic Force Microscopy (AFM), and Thermogravimetric Analysis (TGA), were used to 

characterize the superhydrophobic surfaces. Contact angle measurements were performed 

with water droplets (4µl size) formed using a 0.2 µl step on a microsyringe at a 

predefined height; static images of the droplets were then recorded and advancing contact 

angles of the droplet on the solid surface determined from these images. Receding contact 

angles were measured by increasing the volume of the 4 µl water droplet to 10 µl and 

subsequently reducing the volume to 4 µl by extracting the extra water with a 

volumetrically controlled pipette using the same 0.2 µl step changes.. For SEM 

inspection, the samples were fixed to aluminum stubs with conductive tape before being 

coated with ~20 nm of gold in an Ernest Fullam sputter coater. The samples were then 

imaged using a LEO 1530 FEG SEM with Energy Dispersive X-ray Spectroscopy (EDS) 

capability. TGA analysis was performed with a TGA 2050 thermogravimetric analyzer 

from TA Instruments. A silica sample of ~10 mg was placed in a ceramic pan, and the 

pan positioned in the TGA furnace; a temperature ramp at a rate of 10˚C/min was used to 

heat the sample from room temperature to 800˚C in an air flow of 100 SCCM.   

UV exposure testing. UV exposure tests were performed by adhering to standard 

procedures for the fluorescent UV exposure of plastics (ASTM D 4329). A UVA-340 

lamp (xenon lamp) simulated the short and middle UV wavelength region corresponding 
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to daylight exposure. The test cycle was 8 h UV with the uninsulated black panel 

temperature controlled at 60 ± 3˚C, followed by 4 h condensation with the uninsulated 

black panel temperature controlled at 50 ± 3˚C. A radiometer monitored and controlled 

the amount of radiant energy that impinged on the sample. A thermometer was used to 

monitor the temperature in the test chamber. 

4.3.2 Results and Discussion 

 The existence of TFPS on the sample surface generates hydrophobicity due to the 

presence of CF3 from the trifluoropropyl groups (-Si-(CH2)3CF3). Indeed, the fluorine 

content is an indicator of surface hydrophobicity. The fluorine content of the surface can 

be quantified using EDS as shown in Figure 79; Table 9 gives the atomic fluorine 

percentage. When the ratio of TFPS to TEOS increases, the fluorine content increases 

and surface contact angle increases concomitantly. 

    

Figure 79. EDS spectra of the silica from different ratios of TFPS:TEOS, (a)  1:3; (b) 
TFPS:TEOS=1:1; (c) 2:1; (d) 3:1.   

 

 

a b c d
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Table 9. Fluorine content in the as prepared hydrophobic silica materials. 

TFPS/TEOS ratio Fluorine content (atom.%) 
1:3 10.26 
1:1 15.19 
2:1 18.25 
3:1 23.23 

 In the TFPS/TEOS sol-gel process, the hydrophobic nature of trifluoropropyl 

groups causes these groups to migrate to the surface. This process again increases the 

hydrophobicity of the surface. The dependence of surface contact angle on the molar ratio 

of precursors for the preparation of silica is shown in Figure 80. The contact angle 

increased with an increase in the ratio of TFPS/TEOS.  The hydrophobic surface resulting 

from TFPS, together with a ratio dependent surface morphology[174], yields an increase 

in the apparent contact angle with the increase in precursor ratio.  
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Figure 80. Dependence of water droplet contact angle on the composition of TFPS 
coprecursor in TEOS. 

 During the hydrolysis and condensation of TFPS/TEOS, TFPS acts as a 

coprecursor. TFPS has only three functional groups that can undergo hydrolysis and 

condensation, while TEOS has four. Thus, as the ratio of TFPS increases, the rate of 

hydrolysis and condensation diminishes due to the decrease in density of the functional 

groups as shown in Table 10. However, the methoxy groups in TFPS are more reactive 
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than the ethoxy groups in TEOS. This means that during the reaction, TFPS hydrolyses 

first to form hydrophobic clusters; TEOS clusters then attach to the TFPS cluster. From 

Table 10, it is clear that the gelation time does not vary significantly for the different 

molar ratios of the two precursors. This result is different from that obtained when using 

coprecursors with ethoxy groups as reported previously[175]; in that study, when 

increasing the coprecursor ratio, the gelation time increased dramatically. With an 

increase in coprecursor ratio, reduced surface bonding and therefore poor adhesion 

generally results. Through the attachment of TEOS clusters to TFPS clusters, it is 

expected that this process can increase the adhesion between the substrate and the sol. 

When TEOS is attached to TFPS clusters, adhesion originates mainly from the substrate 

and TEOS clusters. However, this process does not limit the hydrophobicity of the silica 

surface formed on the substrate as was demonstrated in Figure 80.  

Table 10. Effect of TFPS/TEOS molar ratio on the gelation time of silica alcosols 
(weight ratio of sol to NH4OH solution is 50:1) 

TFPS/TEOS molar ratio Gelation time, min 

1:3 13 

1:1 15 

2:1 18 

3:1 20 

 When a flat surface is treated with TFPS, the resulting contact angle is 102-105˚. 

Due to the surface roughness generated during the sol-gel process, the contact angle is 

much higher than that on a flat surface covered with trifluoropropyl groups.  Indeed, with 

the combination of surface hydrophobicity and surface roughness, a superhydrophobic 

surface (contact angle of 172˚ and hysteresis of 2˚) results when the ratio of TFPS/TEOS 

is increased to 3. The silica surface morphologies from the TFPS/TEOS sol-gel process 

are shown in Figure 81. At low TFPS ratio, the surface is rough at the nanoscale (Figure 

81a); the surface particle size is ~50nm. When the TFPS ratio increases, the surface 
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roughness scale increases, and when the ratio reaches 3, the surface is a combination of 

micro and nano structures.. The roughness generated combined with the surface 

hydrophobicity, yields a superhydrophobic surface with reduced contact angle hysteresis. 

  

  

Figure 81. SEM images of as prepared hydrophobic silica monolith (bulk silica). 
TFPS:TEOS ratio: a, 1:3, b, 1:1, c, 2:1, d, 3:1.TFPS:TEOS=1:3, 1:1, 2:1, 3:1. 

 Silica films were also prepared on glass microscope slides following the 

procedure described in the experimental section; similar contact angle results to those 

shown in Fig. 2 were observed. The water droplet shapes on the as prepared silica films 

with different TFPS/TEOS ratios are shown in Figure 82. Clearly, the film results follow 

exactly the same trend as does the silica monolith. SEM images of the surface 

morphologies for these TFPS/TEOS ratios are shown in Figure 83; again, the 

morphologies display the same roughness trend. For the superhydrophobic surface of 

a 

c 

b

c d



 116

Figure 83d, the surface is a combination of micro- and nano-scale structures. In addition 

to the differences in surface hydrophobicity, the surface morphology (roughness) 

differences are enhanced, thereby generating a superhydrophobic surface. For the silica 

surfaces in Figure 83b, when a hydrophobic fluorocarbon film of 30 nm thickness is 

deposited to achieve a hydrophobic surface while maintaining the surface roughness, the 

contact angle is only 142.3˚.  Such results confirm that establishing the requisite surface 

roughness is critical in achieving the superhydrophobic surfaces in these sol-gel 

processes. 

  

  

Figure 82. Water droplet contact on as prepared hydrophobic silica films. TFPS:TEOS 
ratio: a, 1:3, b, 1:1, c, 2:1, d, 3:1. 

a b

c d
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Figure 83. SEM images of as prepared hydrophobic silica thin film. TFPS:TEOS ratio: a, 
1:3, b, 1:1, c, 2:1, d, 3:1. 

 The thermal stability of the as prepared hydrophobic silica monolith was tested 

using TGA; relative weight changes are shown in Figure 84. It has been reported that for 

the weight loss of a silica gel, three weight loss regions exist[66, 176]. Below ~150˚C, 

weight loss is due to the removal of chemisorbed water molecules. At 225˚C to 500˚C, 

weight loss is due to reaction and binding of silanol groups, thereby releasing water. The 

final mass loss is due to the loss of hydrophobic groups in the material; this mechanism 

sometimes overlaps with the second loss range. The measurements in Figure 84 indicate 

that the hydrophobic materials with a TFPS/TEOS molar ratio of 1:1 can withstand 

temperatures up to 370˚C without releasing water. When the ratio of TFPS/TEOS 

increases, the onset of binding of silanol groups decreases. When the temperature exceeds 

a 

c d

b
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this critical point, the hydrophobic groups begin to decompose and the material 

undergoes further cross-linking and slow densification to form Si-O-Si linkages resulting 

in a loss of superhydrophobicity. A superhydrophobic surface prepared from 

TFPS:TEOS=3:1 is stable below 400˚C for 3 hours without any detectable contact angle 

and hysteresis changes. But after heating to 510˚C for 1 hour, the surface is no longer 

superhydrophobic (rather, it is superhydrophilic) possibly due to decomposition of the 

hydrophobic species on the surface[171]. Since PTFE has a degradation temperature of 

~400˚C[177], the as prepared hydrophobic silica materials display similar thermal 

stability as PTFE, and thus offer the possibility of high temperature applications for these 

superhydrophobic materials. 
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Figure 84. Thermal stability (TGA) evaluations of hydrophobic silica materials prepared 
from TFPS/TEOS mixtures. 

 Superhydrophobic surfaces fabricated from organic polymers are susceptible to 

degradation by UV radiation. The presence of UV labile segments, impurities (i.e., 

catalyst) and UV absorbing groups establishes sites where the polymer can undergo 

photo-oxidation to form carbonyl or hydroxyl groups in the bulk polymer and on the 

surface leading to degradation (i.e., unzipping) into smaller chains[178]. The introduction 

a 

b 
c 
d 
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of these hydrophilic groups on the surface leads to a loss of superhydrophobicity. 

However, outdoor applications for superhydrophobic materials require that the surface be 

UV resistant. For organic superhydrophobic surfaces, the standard UV test time 

according to ASTM D 4329 cannot exceed 500 hours without significant degradation of 

surface properties such as apparent contact angle and contact angle hysteresis. As shown 

in Figure 85, the superhydrophobic silica films fabricated in this study exhibit extended 

UV stability, which is much improved relative to that of organic polymers. The 

superhydrophobic surface is retained even after 1000 hours of UV exposure; in addition, 

as shown in Figure 85, the contact angle hysteresis is <5˚ throughout the test period 

which implies improved stability of the surface fluoropropyl groups to UV irradiation. 

This result suggests that these superhydrophobic surfaces may be stable in outdoor 

environments, which offers an advantage over polymeric materials used for this purpose. 

For the hydrophobic silica material, only side groups (-Si-(CH2)3CF3) exist on the 

material surface; these moieties are more UV stable than are polymers because of the 

strong Si-(CH2)3CF3 bond, and the negligible UV labile groups on the silica surface, In 

addition, the silica main chain is comprised of Si-O bonds, which have higher bond 

strength and thus better UV stability than do organic polymer materials.  



 120

0 200 400 600 800 1000
120

140

160

180

0

10

20

30

40

 

 

C
on

ta
ct

 a
ng

le
, d

eg
re

e

Accelerated UV aging time, hours

C
on

ta
ct

 a
ng

le
 h

ys
te

re
si

s,
 

de
gr

ee

  

Figure 85. UV stability test of superhydrophobic silica films formed from a TFPS:TEOS 
ratio of 3:1; contact angle deviation ± 0.7˚, contact angle hysteresis deviation: ± 1.5˚. 

Conclusions 

 The use of sol-gel processing with TEOS and TFPS as precursor and coprecursor 

at different molar ratios, superhydrophobic surfaces have been prepared that display a 

surface water droplet contact angle of 172˚, and a contact angle hysteresis 2˚ for a 

TFPS:TEOS ratio of 3. SEM analyses of the surface showed that the hydrophobicity is 

dependent on both the ratio of TFPS:TEOS and the surface roughness, which varied with 

TFPS:TEOS ratio. Thermogravimetric analyses and elevated temperature treatments 

indicated that the superhydrophobic silica materials are stable to temperatures of 400˚C. 

In addition, these superhydrophobic silicas show excellent UV stability with respect to 

contact angle and contact angle hysteresis for a test (ASTM D 4329) time of 1000 hours 

due to the strong Si-(CH2)3CF3 bond, which suggests possible outdoor applications where 

UV exposure is prevalent.  
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4.4 Improved UV and thermal stability from sol-gel processing 

 In the current section, porous silica generated by sol-gel processing followed by 

surface fluoroalkyl substitution is invoked to improve the thermal and long term UV 

stability of superhydrophobic films. This approach to the fabrication of inorganic 

superhydrophobic silica films uses tetramethoxysilane and isobutyltrimethoxysilane as 

precursors. When isobutyltrimethoxysilane is incorporated into silica, the surface 

contains hydrophobic isobutyl groups, resulting in the ability to fine tune hydrophobicity 

and adhesion. Furthermore, this method does not use supercritical drying which is 

frequently employed for the preparation of superhydrophobic materials[65]. The porosity 

and thus surface structure can be controlled by parameters such as reaction conditions, 

solvent evaporation rate and precursor ratio. In addition, due to the fact that C-F bonds 

are stronger than C-H bonds, it is expected that the incorporation of fluoroalkyl groups 

will impart improved UV stability to the coating and thereby make possible a variety of 

outdoor applications. Therefore, by designing both surface hydrophobicity and surface 

structure into the film, it should be possible to prepare an inorganic coating with stable 

superhydrophobicity.  

4.4.1 Experimental Details 

Bulk silica formation 

 The initial solution was prepared using a two-step (acid/base catalyzed) 

procedure. Tetramethoxysilane (TMOS), isobutyltrimethoxysilane (IBTMOS), ethanol, 

and water were mixed in the volumetric ratio of 1:1:2:1 in a 30 ml vial. The pH was 

adjusted to 1.5-1.8 by adding hydrochloric acid, and the mixture stirred for 120 min at 

60˚C to form silica sol. Ammonium hydroxide (NH4OH) was subsequently added to the 

sol, followed by mixing for 5 min at room temperature. The resulting gel was allowed to 
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age for 1 week. Slow evaporation of ethanol and water was permitted through a small slit 

(6mm×3mm) in the vial cap, thereby forming bulk silica within the vial. 

Silica film formation by casting 

 Glass slides were used as substrates for the casting of silica films. The slides were 

cleaned in Piranha solution (70:30 (vol/vol) mixture of 96% sulfuric acid and 30% 

aqueous hydrogen peroxide) and subsequently rinsed extensively with de-ionized water 

and ethanol. Film casting was performed by invoking two glass slides. One slide served 

as the substrate, and the other, which was treated with trimethylchlorosilane (TMCS) to 

prevent gel from bonding to it, served as the cover. A chromium film of ~300 nm 

thickness was sputtered onto the surface of the substrate glass slide prior to gel formation. 

Bulk silica sol was prepared according the procedure described above; after NH4OH was 

added to the sol, the solution was stirred for 3 min.  Several drops of the sol were then 

dispensed onto the substrate glass slide and the sol covered with the TMCS treated glass 

slide. After gelation, aging and evaporation of the solvent, a silica film resulted. 

Preparation of superhydrophobic poly-butadiene films  

 A polybutadiene/toluene solution (5%wt. with 2% UV stabilizer TINUVIN 

1577FF from Ciba and 1.5% antioxidant IRGANOX 1010FF from Ciba) was dispensed 

onto a silicon substrate at a spin speed of 2000 rpm to cast polybutadiene films (~10 µm). 

The film surface was subsequently exposed to an SF6 plasma at 150 mTorr and 150 W for 

10 min to form a superhydrophobic fluorinated polybutadiene surface as shown in Figure 

73b.  

Characterization  

 Contact angle measurements, Scanning Electron microscopy (SEM), Atomic 

Force Microscopy (AFM), Thermogravimetric Analysis (TGA), and Fourier Transform 

Infrared (FTIR) were used to characterize the superhydrophobic surfaces. Water droplets 
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of 1 mm diameter were placed onto surfaces using a microsyringe and static images were 

recorded from which the contact angle of the droplet on the solid surface was determined. 

For SEM inspection, samples were fixed to aluminum stubs with conductive tape prior to 

coating with ~20nm of gold in an Ernest Fullam sputter coater. The samples were then 

imaged using a LEO 1530 SEM. An Explorer AFM from Veeco was invoked for 

roughness determination; measurements were performed in contact mode. A cantilever 

with a nominal spring constant of 0.1 N/m was used with minimum force. For TGA 

analysis, a TGA 2050 thermogravimetric analyzer from TA Instruments was used. An 

approximately 10 mg silica sample was placed in a ceramic pan, and the pan positioned 

in the TGA furnace; a temperature ramp was applied from room temperature to 800˚C 

with an air flow of 100 SCCM.  FTIR spectra were obtained using a Nicolet Magna IR 

560 with an ATR accessory. Samples were stored in a drybox to prevent moisture 

absorption. The spectrometer was flushed with dry air continuously before and during 

FTIR measurements. 

Accelerated UV Weathering test  

 UV tests were performed by adhering to standard tests for the fluorescent UV 

exposure of plastics (ASTM D 4329). A UVA-340 fluorescent lamp was used to simulate 

the short and middle UV wavelength region corresponding to daylight exposure. The test 

cycle was 8 h UV with the uninsulated black panel temperature controlled at 60 ± 3˚C, 

followed by 4 h condensation with the uninsulated black panel temperature controlled at 

50 ± 3˚C. A radiometer was used to monitor and control the amount of radiant energy 

that impinged on the sample. A thermometer was used to monitor the temperature in the 

test chamber. 
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4.4.2 Results and Discussion 

 Solvent evaporation of the solution-cast coating results in film surface roughness. 

The presence of hydrophobic chemical groups on the silica surface as illustrated 

schematically in Figure 86, along with the surface roughness generated from solvent 

evaporation, yields an enhanced surface contact angle. As described below, a 

superhydrophobic silica film can be prepared from sol-gel processing using TMOS and 

IBTMOS.  

 
Figure 86. Illustration of hydrophobic groups on a treated silica surface. 

 

4.4.2.1 Acid-Base Catalyzed Sol-Gel Process 

Table 11. Physical characteristics of solutions resulting from different sol formulations. 

TMOS: IBTMOS:ethanol:H2O 

(Volume ratio) 

Phase separation 

during hydrolysis 

Transparency 

during Gelation 

Precipitation 

after gelation 

3:1:4:2 No Yes No 

1:1:2:1 No No No 

1:3:4:2 Yes No Yes 
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Table 12. Contact angles on surfaces resulting from various formulations of bulk silica. 

TMOS 

(ml) 

IBTMOS 

(ml) 

Ethanol 

(ml) 

H2O 

(ml) 

1M HCl  

(ml) 

NH4OH 

1.1 M (ml) 

Contact angle 

(˚) 

1 3 4 2 0.03 0.5 160.8 

2 2 4 1.9 0.1* 1 156.1 

3 1 4 2 0.03 1 75.3 

* HCl concentration is 0.1392 M. 

 Table 11 indicates that chemical reactions can occur that result in changes in the 

physical solution characteristics during the bulk silica formation process. When the 

concentration of IBTMOS was increased, e.g., TMOS:IBTMOS ratio of 1:3, phase 

separation occurred during hydrolysis as evidenced by the fact that the solution became 

cloudy (white) upon stirring. After the addition of ammonium hydroxide and 

equilibration, a separate viscous phase appeared at the bottom of the vial. After removal 

of the upper liquid phase, the viscous solution remaining in the vial underwent slow 

gelation and bulk silica formed. For a TMOS:IBTMOS ratio (v/v) of 1:1, no phase 

separation occurred; even after 120 min of reaction, the sol was still transparent. After 

gelation by addition of the ammonium hydroxide solution (1.1M), the sol became 

turbid/white and the solution gelled to form bulk silica. The time needed for this to occur 

depended on the amount of ammonium solution added; the more ammonium, the shorter 

the time to develop a turbid sol. During the controlled evaporation of solvent, the volume 

of silica was gradually reduced. Table 12 indicates the sol-gel process conditions and the 

final contact angles on the as-prepared silica surfaces.  
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Figure 87. SEM images of surfaces of as-synthesized bulk silica, (a) TMOS:IBTMOS = 
1:3, 1M hydrochloric acid: 0.03ml, 1.1M ammonia: 0.5ml (b) TMOS:IBTMOS = 1:1, 
0.1392 M hydrochloric acid: 0.1ml, 1.1M ammonia: 1ml; (c) TMOS:IBTMOS = 3:1, 1M 
hydrochloric acid: 0.03ml, 1.1M ammonia: 1 ml; (d) High resolution SEM image of the 
structures on a superhydrophobic silica surface from a mixture of TMOS/IBTMOS = 1:3. 
Inset: images of the shapes of water droplets in contact with the prepared silica surfaces. 

  

 The creation of superhydrophobic surfaces requires control of the surface 

roughness. For surfaces formed from mixtures of TMOS/IBTMOS with a ratio of 1:3, 

superhydrophobicity was achieved with large pore sizes of ~10 µm as shown in Figure 

87. In addition to the pores generated by evaporation of solvent, the particle size also 

contributes to the surface roughness as shown in Figure 87d. Surfaces from mixtures of 

TMOS/IBTMOS with a ratio of 1:1 still show superhydrophobicity although the isobutyl 

trimethoxysilane content is reduced. Furthermore, the pores are not spherical due to the 

increase of solvent solubility in the silica and the pore size is much reduced. Surfaces 

from mixtures of TMOS/IBTMOS with a ratio of 3:1 did not display superhydrophobicity 

because of the lower ratio of IBTMOS used; that is, the surface is generally flat with 

insufficient voids, and the contact angle is only 75.3˚.  

(c)  (d)
)

(b) (a) 



 127

 After fracture of bulk silica formed from a 1:1 mixture of TMOS:IBTMOS, the 

fractured surface still displayed superhydrophobicity because the surface remained rough; 

the water contact angle on this fractured surface was also above 150˚.  

4.4.2.2 Creation of Superhydrophobic Thin Films by Sol-Gel Processing 

 In addition to bulk silica, cast silica thin films were also prepared. Water droplet 

contact angles on different thin film surfaces are shown in Table 13. For a 

TMOS:IBTMOS ratio of 1:3, although superhydrophobicity was observed on bulk silica, 

~300 nm films cast from this mixture were not superhydrophobic. A possible reason for 

this result is that large pores such as those observed in the bulk materials cannot form in 

thin films. However, with a TMOS:IBTMOS ratio of 1:1, a superhydrophobic thin film 

with a contact angle of 165-170˚ was achieved. Figure 88 shows the surface 

microstructure of a 300 nm silica film cast onto a glass slide from a TMOS/IBTMOS 

ratio of 1:1; the surface consists of globules (20-50 nm in diameter) surrounding a 

network of pores (submicron size) formed by evaporation of solvent from the sol. These 

observations also indicate that surface roughness exists in two scales: the pores contribute 

to the submicron scale roughness, and the silica particles contribute to the nanoscale 

roughness. This two-scale surface roughness combined with the hydrophobic surface that 

resulted from the isobutyl groups in IBTMOS, generated a superhydrophobic film 

surface. 

Table 13. Thin silica films cast from different ratios of TMOS/IBTMOS. 

TMOS:IBTMOS (v/v) Contact angle, degree Contact angle hysteresis, 

degree 

1:3 101.0 Not measurable 

1:1 167.8 2-3 

3:1 73.6 Not measurable 
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Figure 88. High resolution SEM image of a silica film cast from TMOS:IBTMOS = 1:1. 

 

4.4.2.3 Stability of Superhydrophobic Surfaces 

 The hydrocarbon side group contained in the superhydrophobic silica can 

decompose (or be oxidized in air) at elevated temperature and thus cause the loss of 

superhydrophobicity. TGA studies of samples synthesized with TMOS/IBTMOS ratios of 

1:1 and 1:3, demonstrate that the onset of weight loss is ~200˚C and ~207˚C, 

respectively, as shown in Figure 89. With continued heating above the onset temperature, 

the organic groups in the silica structure begin to degrade due to oxidation or bond 

cleavage of the isobutyl groups.  TGA results showed that 27.7% loss is observed for a 

TMOS/IBTMOS ratio of 1:1. EDS results in Table 14 and Figure 90 also indicated that 

the isobutyl group content was 28.5%wt in the 1:1 silica (H atoms were included in the 

calculation) which agrees well with TGA data. For a TMOS/IBTMOS ratio of 1:3, 

similar results were observed to those with a TMOS/IBTMOS ratio of 1:1. Table 15 

shows the contact angle data on the heat-treated surfaces at different temperatures. 

Contact angle decreased with increasing heat treatment temperature and contact angle 

hysteresis increased. When the heat treated surface was again treated with 

IBTMOS/hexane solution, the surface superhydrophobicity was recovered (CA ~165˚ 

and hysteresis < 5˚). This suggests that thermal degradation of the surface is primarily 

due to a change in surface chemistry rather than to a change in the surface roughness. 
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FTIR analysis of the silica film after a heat treatment at 400˚C indicated that hydrocarbon 

absorptions were  absent as shown in Figure 91; CH3 and CH2 stretching vibration 

(2975-2840 cm-1) and deformation vibration (1232 cm-1, 1173 cm-1 894 cm-1 and 839 

cm-1) intensities were below the detectability limit after the heat treatment, confirming 

decomposition of the organic groups.  
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Figure 89. TGA results for silica from different TMOS/IBTMOS ratios. Temperature 
ramping rate: 4˚C/min. 

Table 14. EDS analysis results of the thin film from TMOS/IBTMOS = 1:1 

Element Weight% Atomic% 

C  25.13 35.13 

O  44.56 46.76 

Si  30.31 18.11 

Totals 100.00 100.00 
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Figure 90. EDS spectrum of the thin film from TMOS/IBTMOS = 1:1. 

 

Table 15. Thermal stability of the as-prepared superhydrophobic surfaces after heating 

for 2 hours at different temperatures. 

Heat treatment temperature, 

˚C 

Contact angle, degree Contact angle hysteresis, 

degree 

200 165.3 12.6 

300 91.7 >60 

400 15.2 Not measurable 
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Figure 91. FTIR spectra of the silica superhydrophobic silica thin film before and after 
heat treatment at 400˚C for 1 hour. 
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 Organic polymers with reactive (e.g., double bonds) or low energy (e.g., tertiary 

hydrogen) structures in the polymer main chain, are vulnerable to UV irradiation. When 

impurities (i.e., catalyst) and UV absorbing groups are present, the polymer can undergo 

a photo-oxidation process to form carbonyl or hydroxyl groups on the surface and thus 

degrade (unzip) into smaller chains[179]. The introduction of these hydrophilic groups 

leads to the loss of superhydrophobicity. As described previously, when the surface is 

hydrophilic, surface roughness enhances the hydrophilicity to superhydrophilicity. For 

the silica film, only small side groups (isobutyl groups) exist on the surface; these 

moieties are more UV stable than are polymers because negligible impurities and less 

UV-fragile defects exist on the silica surface; thus the silica film exhibits better UV 

stability than do organic polymers (polybutadiene fluorinated in SF6 plasma) as shown in 

Figure 92. In addition, the silica main chain is comprised of Si-O bonds, which have 

higher bond strength and thus better UV stability than organic polymer materials. Other 

commercially available polymers such as ethylene-vinyl acetate copolymer, polydimethyl 

siloxane and Teflon, all show surface degradation after long time UV aging tests. 
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Figure 92. UV moisture weathering of superhydrophobic PB and silica thin film 
surfaces.     Bottom curve: SF6 RIE etched PB + UV absorber TINUVIN 1577FF (2%) + 
antioxidant IRGANOX 1010FF (1.5%); Top curve: silica film from TMOS/IBTMOS 
(1:1) using a two step acid-base catalyzed sol-gel process. 
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 When a superhydrophobic surface begins to degrade, the hysteresis changes more 

rapidly than does the contact angle. This observation is shown in Table 16, where contact 

angles changed very little, while hysteresis changed significantly. Therefore, contact 

angle hysteresis can be used to evaluate the surface chemistry change when the contact 

angles remain almost unaltered. The surface fraction that is air beneath the water drop 

becomes smaller and smaller, until it ultimately disappears, and the Cassie model no 

longer accurately describes the surface/water contact. Instead, the contact interface is 

better described by the Wenzel state. The FTIR spectrum in Figure 93 shows that after 

UV irradiation, the SiO-CH3 deformation vibration band at 1444 cm-1 disappeared due 

to continued hydrolysis. The ≡CH deformation vibration band at 1352 cm-1 also 

disappeared while the OCH2 vibration band at 1330 cm-1 appeared after UV irradiation 

because of oxidative degradation of the isobutyl groups specifically on tertiary carbons.  

 

 

Table 16. Effect of UV irradiation on contact angle and hysteresis for a thin film formed 
from TMOS/IBTMOS = 1:1. 

UV weathering test 

of silica film 

Contact angle Hysteresis 

8 days 159-162˚ 3-5˚ 

12 days 158˚ 15-20˚ 
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Figure 93. FTIR comparison of silica thin films before and after prolonged UV 
irradiation.  Top curve: silica film from TMOS:IBTMOS=1:1 before UV test; bottom 
curve: the same silica film after UV testing for 12 days.  

 

 In order to mitigate the thermal and UV stability degradation of the 

superhydrophobic TMOS/IBTMOS surfaces, a heat treatment was performed on the 

silica thin films immediately after formation, to decompose/oxidize the organic moieties; 

subsequently, a fluoroalkyl silane treatment was carried out. AFM was used to probe the 

surface morphology of PFOS-treated superhydrophobic silica films. Figure 94 shows the 

surface morphology of a silica film produced from a 1:1 TMOS:IBTMOS mixture, that 

was heat treated at 500˚C and then PFOS treated; the root mean square (RMS) surface 

roughness from AFM was 330 nm.  On the rough surface, air can still be effectively 

trapped between the water droplet and the substrate. Thus, the Cassie state can be 

maintained to achieve a superhydrophobic surface with both high contact angle and low 

hysteresis as shown in the inset in Figure 94.  

1330 
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Figure 94. Superhydrophobic silica thin film AFM surface image after PFOS treatment; 
inset, water droplet image on the surface; Contact angle, ~168˚, hysteresis, 2˚. 

 

 Accelerated UV and thermal stability test results are shown in Figure 95 and 

Table 17. Because of the attachment of fluoroalkyl groups on the surface, improved 

thermal and UV stability were achieved due to the presence of a linear fluorocarbon chain 

on the silica surface. UV tests showed a stable superhydrophobic surface after a 5500 

hour testing period without degradation of either contact angle or contact angle 

hysteresis. A thermal treatment at 400˚C demonstrated that the surface is stable to this 

temperature, which is a significant improvement relative to the results obtained with a 

superhydrophobic surface that contained isobutyl groups. Further temperature increases 

resulted in a decrease of the contact angle and an increase of contact angle hysteresis. 

When the treatment temperature was 500˚C, the surface was no longer superhydrophobic 

(contact angle ~ 0˚) as a result of the decomposition/oxidation of the surface fluoroalkyl 

groups. To our knowledge, this is one of the most stable superhydrophobic surfaces 

reported to date. This finding demonstrates that it may be possible to use 

superhydrophobic/self-cleaning surfaces in harsh environments such as high UV 

irradiation, high temperature, and outdoor applications. 
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Figure 95. UV stability of a PFOS-treated rough silica thin film surface. 

 

Table 17. Thermal stability of a PFOS-treated superhydrophobic thin film surface after 

heating for 2 hours at different temperatures. 

temperature, ˚c contact angle, degree contact angle hysteresis, degree 

400 166.3 2.1 

450 160.4 >30 

500 ~0 not measurable 

 

Conclusions 

 Superhydrophobic bulk silica materials and analogous silica thin films were 

prepared by TMOS/IBTMOS two-step acid base catalyzed sol-gel processing. Thermal 

analysis shows that these superhydrophobic materials begin to lose superhydrophobicity 

when heated above 200˚C. UV weathering tests (ASTM D 4329) indicate that the silica 

materials demonstrate better stability compared to SF6 plasma etched polybutadiene 

films but lost superhydrophobicity due to the oxidative degradation of the isobutyl 

groups. When the superhydrophobic surfaces from TMOS/IBTOMS mixtures were 
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heated to 500˚C, the surface became superhydrophilic. When a PFOS treatment was 

performed on the surface, the attachment of fluoroalkyl groups resulted in 

superhydrophobicity. This surface is much more stable than a surface with isobutyl 

groups; after a UV testing time of 5500 hours, no degradation of either contact angle or 

contact angle hysteresis was observed for the PFOS-treated surface. Thermal stability of 

the PFOS-treated rough silica surfaces was also much improved at temperatures up to 

400˚C. The PFOS-treated superhydrophobic surface is one of the most stable surfaces 

reported to date. This approach to the generation of superhydrophobic surfaces may have 

much significance for the successful application of self-cleaning surfaces in a variety of 

environments. 
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CHAPTER 5 

TRANSPARENT SUPERHYDROPHOBIC SURFACES AND WATER 

VAPOR CONDENSATION  

 

 In this chapter, the preparation of superhydrophobic surface from sol-gel process 

with eutectic liquid (urea and choline chloride) will be investigated. After the preparation 

of the superhydrophobic surface, properties such as adhesion on the surface with AFM 

measurement, optical transparency and water vapor condensation will be examined. 

5.1. Introduction 

 The formation of superhydrophobic coatings with properties similar to those of 

lotus leaves is of interest for many applications. Achievement of optically transparent 

superhydrophobic coatings would make possible self-cleaning surfaces in application 

areas such as window coatings, anti-dust screens and optical devices. Lotus leaves 

display excellent water repellent surface properties with a high (>150˚) water droplet 

contact angle. The superhydrophobicity is based on two indispensable factors, a 

hydrophobic surface and hierarchically ordered surface structures[2, 142, 180]. Recently, 

insights into the hierarchical structures and the structural/ chemical properties required 

for superhydrophobicity have been greatly improved[14, 25, 28, 110, 154, 181]. In order 

to achieve light transparency, the surface roughness must be minimized to reduce the 

light scattering, while for superhydrophobicity, surface roughness is necessary. 

Therefore, establishment of the appropriate surface structure length scale, i.e., the trade 

off between superhydrophobicity and transparency, is critical to the preparation of films 

that display both properties. Previous studies of the optical transparency of 

superhydrophobic layers utilized formation methods such as the sublimation of aluminum 

acetylacetonate for the preparation of titania and boehmite films[22, 182], and the 
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fabrication of honeycomb-like microporous polymer films[82]. Formation of optically 

transparent films from organically modified silica sol [105] or silica particles using the 

Stöber method has also been reported[183]. Transparent nanoporous alumina surfaces 

have been fabricated using anodization followed by surface treatment in a gas phase 

(fluoro) alkyl silane[184]; in addition, superhydrophobic alumina layers derived from a 

sol-gel process have been described[63, 185]. The largest static contact angle reported 

was in the range of 146-153˚, but no hysteresis data were offered. A method of preparing 

flower like alumina surfaces was also reported by treating the alumina film in boiling 

water[185]. In these studies, although optical transparency was achieved, the reported 

contact angles were only ~150˚ and the hysteresis was either not reported or was 

significantly above 10˚ due to the dichotomy between the surface roughness needed for 

superhydrophobicity and the smooth surface required for optical transparency. Recently, 

a layer-by-layer technique has been reported for the preparation of transparent and 

superhydrophobic films using SiO2 nanoparticles of various sizes[186].  

  

 A eutectic liquid, which shows similar properties to those of ionic liquids[187], is 

a eutectic combination of salts that yields a reduced melting temperature for the salt 

mixture. Halide salts can form complexes with hydrogen donors and in at least one 

extreme case, choline chloride and urea (C-U) with a molar ratio of 1:2, form a non-

volatile deep eutectic liquid, with a melting point of 12 ˚C[188].  For choline chloride, 

only those compounds that form hydrogen bonds with chloride ions form a homogeneous 

liquid with a significant decrease in the freezing point. Compounds with greater ability to 

form hydrogen bonds display an enhanced freezing point depression when choline 

chloride and a hydrogen donor are mixed.  

 Due to the extraordinary water repellency properties of lotus leaves, 

superhydrophobicity has been studied intensively.  Superhydrophobicity on lotus leaf 

surfaces is due to the particular surface structure on the lotus leaves along with the 
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presence of waxy hydrophobic coatings. Applications of superhydrophobic surfaces 

include self-cleaning, anti-dust, anti-corrosion, fluid friction reduction in microfluidic 

devices, anti-stiction in MEMS devices, anti-bacterial coatings, and transparent coatings 

[22, 125, 129, 189-193]. Numerous methods have been developed to prepare 

superhydrophobic coatings, including layer by layer film formation[71, 102], electro-

spinning [73, 194], carbon nanotube modification [61, 195, 196], photolithographic 

methods[29], chemical vapor deposition (CVD) [197], and self assembly [14, 198]; all of 

these approaches have generated contact angles >150o. Superhydrophobicity requires two 

factors: surface hydrophobicity, which is according to the definition by Young’s 

equation, higher than 90˚, and appropriate surface structure, often designated surface 

roughness. When a surface has both of these factors in appropriate ranges, we can 

achieve superhydrophobic surfaces with contact angles (CAs) >150˚ and CA hysteresis 

<10˚. This property of superhydrophobicity has the potential for application to 

antistiction in MEMS devices. 

 Microelectromechanical systems (MEMS) have been used extensively to perform 

basic signal transduction operations in sensors and actuators. However, autoadhesion, or 

spontaneous sticking (stiction) between MEMS structures, remains a major limitation in 

bringing this new class of engineering devices to the broader market. Freestanding 

mechanical structures fabricated from polycrystalline silicon may strongly adhere to each 

other when brought into contact, due to hydrogen bonding between surface hydroxyl 

groups[199]. In a high humidity ambient, this problem is exacerbated by adsorption of 

water and capillary condensation. Water capillaries or condensation can cause 

catastrophic failure of MEMS devices[90]. Low surface energy coatings for anti-moisture 

condensation and thus antistiction are required for many practical MEMS devices[90, 

199, 200].  

 Two primary methods have been invoked to prevent these failures. One method 

uses a surface treatment with low surface energy coatings, e.g., octadecyl trichlorosilane 



 140

(OTS), to inhibit surface condensation of water[201]. The other method involves the 

fabrication of structured surfaces in order to reduce the contact area and thereby reduce 

the adhesion force between the free standing structures and the substrate[202].  

 We have prepared superhydrophobic silica surfaces using sol-gel processing and 

demonstrated for the first time antistiction by AFM adhesion tests using tipless probes. 

This approach greatly reduces the stiction of MEMS moving parts which will help to 

reduce stiction failures of MEMS devices. Water does not condense on this 

superhydrophobic surface thus eliminating capillary forces.  Furthermore, the adhesion 

force between the free standing structures and the substrate can also be effectively 

reduced due to the presence of surface nano-structures.   

 

 In the current chapter, we demonstrate the use of a eutectic liquid in a sol-gel 

process following the procedure described in Figure 96 to form silica films with optical 

transparency and superhydrophobic characteristics. We previously reported the 

fabrication of a silica film with excellent UV stability that demonstrated that 

superhydrophobic silica surfaces may be appropriate for outdoor self-cleaning 

applications[203]. Unlike the conventional sol-gel process, the process described in this 

report uses a unique solvent, a eutectic liquid with a melting point of 12 ˚C that is 

composed of urea and choline chloride (2:1 molar ratio).  Relative to common sol-gel 

solvents such as ethanol, this eutectic liquid has an extremely low vapor pressure and so 

will remain in the film throughout the process under ambient conditions. As a result, 

porous silica thin films can be formed after gelation in the presence of a base catalyst and 

subsequent extraction of the eutectic liquid. This porous film formation approach is also 

advantageous compared to that of aerogel silica formation using supercritical drying[65] 

because no specialized equipment or procedures are required for eutectic liquid 

processes. The, eutectic liquid can be used to control film thickness and surface 
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roughness, and after a fluoroalkylsilane surface treatment, superhydrophobic, transparent 

films can be achieved.  

 

5.2. Experimental Details 

5.2.1 Silica film formation 

 The general eutectic solution formulation is: tetraethoxysilane (TEOS): 0.6 g, 

choline chloride-urea (C-U): 2.4 g, ethanol: 3 g, 1M HCl aqueous solution: 0.3 g, 

ethylene oxide propylene oxide triblock copolymer P123 (EO20PO70EO20): 0.12 g. 

Hydrolysis and condensation to form the sol solution occurred after addition of HCl to 

the mixture followed by stirring for 3 hrs at room temperature. The sol solution was then 

diluted with ethanol and spin-cast onto one square inch precleaned glass microscope 

slides at 3000 rpm to form uniform films with thicknesses between 100 and 500 nm. The 

spincast procedure was: 1000 rpm for 5 seconds followed by a ramp to 3000 rpm (ramp 

speed: 1000 rpm/second) and finally hold at 3000 rpm for 15 seconds. The coated glass 

slide was placed in a desiccator with a container of 1 ml ammonia (29%) at the bottom, to 

promote gelation. After 2 weeks, the glass slide was removed from the desiccator and 

rinsed extensively with ethanol to remove the eutectic liquid in the film and thus yield a 

porous thin film on a glass microscope slide. 

 

5.2.2 Surface fluoroalkylsilane treatment 

 Substrates with spin-cast silica films were placed in a fluoroalkylsilane 

(trichloro(1H,1H,2H,2H-perfluorooctyl) silane, PFOS)/n-hexane solution (10 mM) for 30 

min to allow adsorption of a PFOS layer onto the SiO2 surface; subsequently the samples 

were heated to 150 ˚C in air for 1hr and at 220 ˚C for 5 min to promote silane hydrolysis 

and condensation, thereby forming a stable fluorosilanated layer on the silica surfaces. 



 142

5.2.3 Water vapor condensation experiments 

 Water vapor condensation was conducted by placing a substrate on a plate 

maintained at ~0 ˚C and exposing the substrate to water vapor that was generated by 

bubbling N2 through water (40˚C) to establish an environment of 100% humidity on the 

surface. Condensation was performed for a specific time period (0.5-30 min). The longer 

the exposure time, the larger the droplet size; typical droplet sizes over the times 

investigated ranged from 1 µm to 200 µm. 

5.2.4 Characterization 

 Scanning Electron Microscopy (SEM), contact angle measurements, Atomic 

Force Microscopy (AFM) and UV-Visible spectroscopy (UV-Vis) were used to 

characterize the superhydrophobic silica films. The as-prepared samples were 

characterized by high resolution field-emission scanning electron microscopy (FESEM; 

LEO 1530 FEG at 2-10 kV). Six contact angle measurements were performed on each 

sample (for average values) at different sample spots with water droplets (4 µl size) 

formed using 0.5 µl step changes on a microsyringe at a predefined height and static 

images recorded; advancing contact angles of the droplet on the solid surface were 

determined from these images. Receding contact angles were measured by increasing the 

volume of the 4 µl water droplet to 6 µl and subsequently reducing the volume to 4 µl by 

extracting the extra water with a volumetrically controlled pipette using the same 0.5 µl 

step changes; deviations of the measured contact angles were within ± 1˚. The difference 

between the measured advancing angle and the receding angle is termed the contact angle 

hysteresis, and is related to the sliding angle; the hysteresis value can be used to 

characterize the self-cleaning effect of a superhydrophobic surface. Surface roughness 

was measured with a Veeco NanoScope IIIa/Dimension 3000 AFM system in contact 

mode. The Si tip spring constant is 0.2 N/m. AFM force curves were measured with a 

tipless silicon nitride coated probe with a tip spring constant of 0.12 N/m.  
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5.3. Results and Discussion 

 On a rough surface, two different loss mechanisms are operative when light is 

incident on the surface. One is the (diffuse) reflection of light from a surface with a 

surface roughness greater than the wavelength of the light, and the other is light 

scattering. In order to overcome reflection losses, film thickness and surface roughness 

must be reduced. For this purpose, a two step acid-base catalyzed sol-gel process was 

employed to prepare films with the appropriate roughness using a eutectic liquid as 

shown in Figure 96. To allow the preparation of ultrathin silica films, a tri-block 

copolymer P123 was used to enhance wetting between the sol and the substrate during 

spin-casting; incorporation of this material improves the ability of the film to uniformly 

cover the substrate. Several different dilutions of the sol with ethanol were investigated in 

order to investigate changes in the optical transparency of the resulting thin film coatings. 

After spin-casting, gelation and extraction of the eutectic liquid and tri-block copolymer 

from the film, the desired roughness necessary for superhydrophobicity was achieved.  

5.3.1 Preparation of silica thin films 

 
Figure 96. Schematic illustration of the procedure to prepare silica rough surfaces. 
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 Silica thin films can be formed on glass substrates by spin-casting. However, 

films formed (e.g., by dipcoating, spin-casting) with the sol derived from acid catalyzed 

processes (e.g., TEOS, ethanol, H2O, HCl) are usually dense and film surfaces are 

smooth. Therefore on such surfaces the contact angle after fluoroalkyl silane (PFOS) 

treatment is ~115˚. Under acid catalyzed conditions, lightly branched small polymer 

molecules are formed in a traditional sol-gel process. On the other hand, a eutectic liquid 

(e.g., urea and choline chloride) incorporated into the sol-gel process can serve as a non-

volatile solvent and template for the formation of random and perhaps fractal structures 

in the silica. As a result, after spin-casting of the sol on glass substrates, gelation in an 

ammonium hydroxide atmosphere, and extraction of the eutectic liquid, asperities are 

formed; after a fluoroalkyl silane (PFOS) treatment, the surface contact angle can reach 

170˚ with a hysteresis of 2-3˚. However, the film is thick and although it shows some 

optical transparency at long wavelengths, the shorter wavelength transparency is limited 

due to light scattering from the porous film (Figure 97).  

 

Figure 97. Surface morphology of silica films formed from the eutectic liquid/sol-gel 
process; tetraethoxysilane (TEOS): 0.6 g, choline chloride-urea (C-U): 2.4 g, ethanol: 3 g, 
1M HCl aqueous solution: 0.3 g; film thickness: ~ 0.5 µm. 
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5.3.2 Reduction of the size of surface structure 

 In order to reduce the film thickness while maintaining superhydrophobicity, the 

effect of spin speed was first investigated. In the range of spin speed of 3000 rpm to 6000 

rpm, the CA and hysteresis of the silica films is shown in Figure 98. As spin speed 

increases, although the surface contact angles do not change significantly, the contact 

angle hysteresis changes dramatically from a very low hysteresis (~4˚) to a very large 

value (~40˚). This results in the degradation of surface superhydrophobicity for ultra-thin 

films, which is especially deleterious for self-cleaning applications where roll-off 

superhydrophobicity is needed. We should note that the film thickness was essentially 

constant even though spinning time was increased. Apparently, the film viscosity 

increases substantially during the spin-casting process, due to ethanol evaporation, and a 

concomitant reduction in film temperature, which causes the eutectic liquid to solidify 

(melting point ~12 ˚C). 
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Figure 98. Effect of spin speed on contact angle and contact angle hysteresis on silica 
films; silica sol prepared from tetraethoxysilane (TEOS): 0.6 g, choline chloride-urea (C-
U): 2.4 g, ethanol: 3 g, 1M HCl aqueous solution: 0.3 g. 
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Figure 99. SEM comparison of surface morphologies for as-prepared sol-gel film 
without (a) and with (b) surfactant P123; diluted sol with sol: ethanol = 1:1, silica sol 
from tetraethoxysilane (TEOS): 0.6 g, choline chloride-urea (C-U): 2.4 g, ethanol: 3 g, 
1M HCl aqueous solution: 0.3 g, P123 (for (b) only): 0.12 g; prepared at a spin speed of 
3000 rpm 

 In order to attain transparent superhydrophobic surface coatings, the film 

thickness and structure size must be reduced. Achievement of thinner films by invoking a 

more dilute sol solution with ethanol was investigated. However, the film formed with 

diluted sol (sol:ethanol = 1:1) was not desirable in this regard. Under these conditions, 

discontinuous sol/C-U droplets formed on the surface during the gelation and aging 

process which led to non-uniform surfaces as shown in Figure 99a. Furthermore, the final 

film was not superhydrophobic after PFOS treatment. Surface roughness uniformity was 

improved by incorporation of the triblock copolymer P123 into the sol to lower the 

surface tension of the solution. After incorporation of the polymer, the surface 

(a) 

(b)

(a)
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morphology following extraction of the eutectic liquid and the polymer, was much 

improved as shown in Figure 99b.  

 In order to further reduce the surface roughness while maintaining surface 

superhydrophobicity, further dilution of the sol with ethanol was investigated. As shown 

in Figure 100, dilution of the sol with ratios of ethanol:sol = 1:1, 3:1, 5:1 to 7:1, resulted 

in spin-cast films that showed surface roughness wherein the surface structure sizes 

dropped continuously with dilution. For a ratio of 1:1, the film was thick after gelation, 

and silica globules coalesced, forming large agglomerates; such structures yield rough 

surfaces for superhydrophobicity. The corresponding water droplet contact angles and 

hysteresis on these surfaces after PFOS treatment are shown in Figure 101. When the 

surface structures decreased in size as a result of further sol dilution, the contact angles 

on these surfaces remained high (> 160˚), but the hysteresis increased due to the reduced 

surface roughness as indicated by AFM measurements (Table 18). With further dilution 

to ethanol:sol = 7:1, the contact angle hysteresis reached ~10˚ due to the smaller but more 

open structure size on the surface (Root-Mean-Square (RMS) roughness (RRMS) is 69.1 

nm as shown in Table 18). The thickness dependence of films spin-cast from diluted sol 

was also investigated. With increased dilution, the thickness dropped continously as 

shown in Figure 102. 

 



 148

 

Figure 100. SEM surface images of dilute-sol-coated glass slides; ratios of ethanol:sol 
are: a. 1, b. 3, c. 5, and d. 7; silica sol from tetraethoxysilane (TEOS): 0.6 g, choline 
chloride-urea (C-U): 2.4 g, ethanol: 3 g, 1M HCl aqueous solution: 0.3 g, P123: 0.12 g; 
spin-cast at 3000 rpm. 

0 2 4 6 8
120

140

160

180

0

5

10

15

C
on

ta
ct

 A
ng

le
(d

eg
re

e)

Ethanol/sol

C
on

ta
ct

 A
ng

le
 H

ys
te

re
si

s
(d

eg
re

e)

 
Figure 101. Dependence of contact angle and hysteresis on the ethanol:sol ratio; silica 
sol from tetraethoxysilane (TEOS): 0.6 g, choline chloride-urea (C-U): 2.4 g, ethanol: 3 
g, 1M HCl aqueous solution: 0.3 g, P123: 0.12 g; spin-cast at 3000 rpm. 

(a) 

(c) 

(b) 

(d)



 149

 

0

200

400

600

orginal
sol

1:1 3:1 5:1 7:1

Ethanol:sol

Fi
lm

 th
ic

kn
es

s,
 n

m

 
Figure 102. Film thickness with different sol dilution from cross-sectional SEM;. silica 
sol from tetraethoxysilane (TEOS): 0.6 g, choline chloride-urea (C-U): 2.4 g, ethanol: 3 
g, 1M HCl aqueous solution: 0.3 g, P123: 0.12 g. 

Table 18. RMS Roughness from AFM measurements. 

Spin-cast films Rrms from AFM measurement, nm 

Ethanol:sol = 3:1 97.9 

Ethanol:sol = 5:1 79.1 

Ethanol:sol = 7:1 69.3 

 

 It has been reported that the surface structure height is very important in 

achieving a superhydrophobic state[195]. That is, in addition to contact areas on a rough 

surface, the size scale of surface structures determine the contact angle of a water droplet 

on the surface. Thus, to achieve superhydrophobicity, contact area, contact fraction 

(including structure density) and structure height are critical. This effect is demonstrated 

in Figure 101 where the hysteresis increases for films spin-cast from the diluted sol. 

Clearly, surface roughness of spin-cast films decreased continuously with dilution up to a 

dilution ratio of ethanol:sol = 7:1. 
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 These observations suggest that at the composite contact interface, interaction is 

primarily between the contact area of water with surface structures. For long range 

interactions between molecules, there are generally three types of forces operative: 

induction, orientation and dispersion. In particular, for the interaction between two 

dissimilar molecules of which one is non-polar, the van der Waals energy is almost 

completely dominated by the dispersion contribution.[23] For the water droplet-rough 

surface interaction, the force is mainly dispersion due to the hydrophobic nature of the 

superhydrophobic surface. When surface structures are very small, the non-contacting 

areas where there are large separations (air cushion) between the substrate and the water 

droplet, van der Waals interaction across the air cushion is dominated by the properties of 

the bulk or substrate material. In contacting areas, adhesion energies are dominated by 

the properties of the surface monolayer.[23] In addition, for dispersion forces under large 

separations (e.g. >100 nm), interactions across the air cushion are negligible due to the 

retardation effect[23]. Therefore, the interaction is primarily between the contact areas of 

water with surface structures. However, when the surface structure size (height) is greatly 

reduced and the dispersion forces are not completely eliminated, the van der Waals 

interaction across  the air cushion will inhibit the formation of the air cushion. Under this 

situation, a Cassie state is not attained and superhydrophobicity  cannot be achieved due 

to a large hysteresis.  

 

5.3.3 Optical transparency 

 Optically transparent and superhydrophobic coatings offer many potential 

applications in window glasses, auto wind shields, optical lenses and solar cell arrays.  

For porous films, numerous air/glass interfaces exist in the film and the transmittance of 

light is reduced due to light scattering; as a result such films appear white and opaque. 

When the film is thin and structure sizes are below ~ ¼ the wavelength of light, the film 

is transparent; when the structure size is even smaller, the scattered light can also be 



 151

minimized. Thus, reduction of the size of surface structures and film thickness can lead to 

minimization of transmission losses for superhydrophobic surfaces. As the sol is diluted 

with ethanol from a ratio of 1:1 to 7:1, the transmittance of the resulting film increases 

(Figure 103). Furthermore, curve d (ethanol:sol = 5:1) indicates that at longer 

wavelengths (> 490 nm), the transmittance is greater than that of a bare glass slide, while 

at wavelengths < 490 nm, transmittance is lower than the bare glass slide. Apparently, 

490 nm is the wavelength at which this specific structured film begins to scatter light. 

This wavelength corresponds to a rough surface layer of ~ 120 nm and the results are 

consistent with the thickness of ~130 nm observed from SEM images and shown in 

Figure 102; indeed, light scattering occurred on this surface. For a dilution of 7:1, the 

RMS roughness and thickness are reduced and the transmittance is always higher than 

that of the bare glass slide due to the antireflective property of the thin film. A 

photograph demonstrating the transparency of these superhydrophobic films is shown in 

Figure 104.  
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Figure 103. UV-Visible transmittance of glass microscope slides coated with 
superhydrophobic films generated with various ratios of ethanol:sol; silica sol from 
tetraethoxysilane (TEOS): 0.6 g, choline chloride-urea (C-U): 2.4 g, ethanol: 3 g, 1M HCl 
aqueous solution: 0.3 g, P123: 0.12 g; spin-cast at 3000 rpm. 
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Figure 104. Optical demonstration of a transparent superhydrophobic silica film with 
dilution ratio ethanol: sol of 5:1 spin-cast at 3000 rpm. 

5.3.4 Non-stick property on the superhydrophobic surface 

 In order to quantitatively demonstrate the non-stick or reduced adhesion 

properties of the superhydrophobic surfaces, AFM force curves were generated using a 

tipless probe (with large contact area). As shown in Figure 105, with the same silane 

(PFOS) treatment, the adhesive force is greatly reduced between the superhydrophobic 

surface and the Si3N4 surface of the probe compared to the force experienced by the 

probe in contact with a smooth glass surface.  
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Figure 105. Surface-probe interactions as determined from AFM force measurements 
between a tipless Si3N4 probe and either a superhydrophobic film spin-casted from 
ethanol:sol ratio of 5:1) or a PFOS-treated glass slide. 

5.3.5 Water vapor condensation on silica surfaces and comparison with micron-

structured silicon surfaces 

 In order to compare the rough silica surfaces prepared in our study with larger 

roughness structures more characteristic of those typically encountered in antistiction of 

MEMS devices for water droplet contact angle and water vapor condensation, we 

prepared micron-sized structures by photolithography and plasma etching processes on 

silicon surfaces. Recent reports indicate that superhydrophobicity is not achieved when 

water vapor has condensed on such a surface [101, 204]; indeed, we observe analogous 

results for micron-sized surface structures. After a fluoroalkyl silane treatment of the 

structured surface shown in Figure 106, the contact angle is 164.4 ± 1.8˚ and the 

hysteresis is 25.3 ± 3.2˚.  After water vapor condensation for 30 seconds on the micron-

sized structured surface, the water contact angle falls to 147.1±2.9˚ and the hysteresis 

increases to 62.7±6.6˚, as illustrated in Figure 107. For a rough surface, the water droplet 

can be considered to be in either a Cassie state or a Wenzel state as shown in Figure 108. 

a b 
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In the Cassie regime, the surface can display superhydrophobicity. However, in the 

Wenzel regime, although a high contact angle can be achieved due to the increased 

contact area, the hysteresis is too high to establish a superhydrophobic surface. 

Apparently, after water vapor condensation on the surface, the surface contact with the 

water droplet resides in the Wenzel regime and the hysteresis increases dramatically as 

shown by the comparison between Figures 107a and b.  

 

 

Figure 106. Silicon pillars with diameter of 12 µm, pitch size of 30 µm, and height: 25 
µm; a. side view, b. top view.  

 

 

a 

a b
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Figure 107. Contact angle hysteresis resulting from movement of a substrate in one 
direction (moving to right)    a, before water condensation, advancing CA, 164.4˚, 
hysteresis, 25.3˚; b, after water condensation for 30 s, advancing CA, 147.1˚, hysteresis, 
62.7˚.  

 

  
 

Figure 108. Schematic of a water droplet on a rough surface: a, Cassie regime, b, Wenzel 
regime where the edge effect is shown.  

 

 According to the Wenzel Equation, YA r θθ coscos = , when the surface roughness 

r is known, the apparent contact angle can be calculated from Young’s contact angle on a 

flat surface. Surface (Wenzel) roughness is 2.05 in our micron-sized model system (the 

ratio of the actual surface area to the projected area of a surface with pillars: height, 25 

µm, diameter, 12 µm, pitch, 30 µm). For water vapor condensation on the silicon pillar 

surface (contact angle of 147.1o), and a Young’s contact angle of 115.0˚ when a layer of 

fluoroalkyl silane exists on the surface, the predicted contact angle according to the 

Wenzel Equation is 149.9˚, which is in good agreement with the value observed 

b 

a b 
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experimentally. This result implies that the micron-sized surface structures with water 

condensation behave according to that predicted in the Wenzel regime. 

 As shown in Figure 108, in the Cassie regime, the interface is sufficiently stable 

to suspend the weight of water on top of the surface because the counteractive surface 

tension on the liquid/air interface is large. However, when the water/air interface is not 

stable, the counteractive surface tension cannot confine the water on top of the surface 

(i.e., balance the hydraulic pressure of water) and water will flow to the bottom of the 

pillar valleys; this situation occurs when a surface is covered with condensed water 

vapor. As a result, a composite interface characteristic of the Cassie regime is not formed. 

This situation is also possible when, according to the Young-Laplace Equation (equation 

2), Young’s contact angle for water (θ) is relatively low, or the pitch size is large. 

                      
eff

s r
ppp θγ cos2

0 −=−=                                   (32) 

where reff is the equivalent radius of a capillary, p is the pressure under the meniscus, p0 is 

the ambient pressure,  γ is the surface tension of liquid (water), and θ is the contact angle 

of water on the capillary surface. When R increases, ps decreases, and at sufficiently large 

pitch, water can flow into the regions between the pillars because the surface tension can 

not sustain the hydraulic pressure exerted on the interface by a water droplet. 

 

The Kelvin equation indicates that 
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p: vapor pressure 

M: molar molecular weight of pure liquid 

ρ: density of the liquid 

Vm(l): molar volume of liquid 

R0: radius of curvature of the liquid droplet 
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Convex meniscus: R0: > 0, contact angle θ > 90˚ 

Concave meniscus: R0: < 0, contact angle θ < 90˚ 

when the radius of curvature is greater than zero (r>0), a decrease in r will result in an 

increase of pressure p, which means that liquid will vaporize and vapor will not condense 

readily on the surface. This is the surface property that is expected. However, when r < 0, 

a decrease of r will result in a decrease of the vapor pressure. Therefore, vapor will 

condense on the surface even at a very low vapor pressure. This is often the case in 

MEMS stiction failures due to the fact that a concave water meniscus is formed between 

the freestanding parts and the substrate. In order to effectively eliminate the failure, the 

surface must be hydrophobic, i.e., condensation of vapor on the surface will be inhibited, 

and even it does condense, the capillary force is eliminated due to the convex meniscus.  

 For superhydrophobic antistiction, a low contact angle hysteresis is critical to 

attaining reduced adhesion. According to the Young-Dupré equation[149], the work of 

adhesion is a measure of surface adhesion. Surface adhesion can be reduced by proper 

design of the surface array structures (e.g., pitch, contact area), the geometry of the 

individual surface structures (reduced contact line on the pillar), and the surface 

(material) chemistry. However, the most important characteristic is the inclusion of 

nanoscale roughness which is an effective approach as demonstrated by the lotus leaf 

structure.  

 From the optical micrograph in Figure 109a, it is clear that condensed water 

droplets on fluoroalkylsilane treated glass substrates have diameters of several microns. 

When water vapor condenses on the micron-sized surface structures, the droplets will 

simply position themselves between the structures. When more water is condensed, a 

greater fraction of the available surface area will be filled. Ultimately, when water 

essentially fills the available surface between the pillars, the contact angle falls below 

120˚. Under these conditions, superhydrophobicity is lost because the water condensation 

has eliminated the counteracting meniscus between pillar tips.  
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 It is well-known that if pressure is applied to the top of a water droplet on a 

superhydrophobic surface, the surface will not display superhydrophobic properties, since 

the high pressure forces water to enter the spaces between pillars[133]. This intuitive 

result can be described by Equation (32) [149], where reff is linearly related to the pitch 

size. When the pressure difference sppp <− 0 , the water droplet is stable on the tip of 

the structured surface and superhydrophobicity can be maintained. When sppp >− 0 , 

water will penetrate between the structures because the meniscus is unstable under the 

applied force. When sppp =− 0 , the water droplet  is in a metastable state, and a slight 

increase of pressure on the droplet will lead to the intrusion of water between the pillars. 

Clearly, this also results in a loss of superhydrophobicity so that the water droplet will 

stick to the surface instead of rolling off. 

 

Figure 109. Water condensation on coated microscope glass slide surfaces for 30 s, a, 
flat surface with fluoroalkylsilane (PFOS) treatment; b, superhydrophobic surface from 
the modified sol-gel process with fluoroalkylsilane (PFOS) treatment. 

 In order to overcome these problems, nanostructures (or hierarchical structures) 

are necessary on superhydrophobic surfaces to establish stability. First, nanostructured 

surfaces have much smaller (effective) surface pitches and higher surface areas than do 

flat or micro-structured surfaces.  According to the Young-Laplace Equation (Eqn. (32)), 

a meniscus on nano-structured surfaces can withstand a much higher pressure than can a 

meniscus on surfaces with micron-scale roughness. For example, when the radius of 

a b 
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curvature reff is reduced to one-tenth of the original value, ps increases a factor of 10 times 

relative to that for the higher roughness. For nanostructured surfaces prepared by the sol-

gel process with the eutectic liquid as a templating agent (shown in Figure 110), the 

contact angle is 169.5 ± 1.5˚, with a hysteresis of 4.1 ± 1.3˚. In this instance, even after 

30 min of water vapor condensation at 100% humidity, the contact angle is 166.0˚ and 

the hysteresis 19.4˚; nevertheless, a water droplet can still roll off the surface. Therefore, 

a reduction in surface structure size is extremely effective in increasing the stability of 

superhydrophobic surfaces. 

 

Figure 110. Example of a superhydrophobic surface with nanoroughness from the sol-gel 
process on a microscope glass slide, after surface treatment with fluoroalkylsilane 
(PFOS). 

 

Figure 111. Hysteresis comparison immediately following water vapor condensation 
investigated by moving the substrate in one direction (moving to right): a, before water 
condensation, advancing CA: 169.5˚, hysteresis 4.1˚; b, immediately after water 
condensation, advancing CA: 166.0˚, hysteresis 19.4˚; c, because the previous water 
droplet removed the condensate, the surface shows improved hysteresis, advancing CA: 
168.3˚, hysteresis 4.5˚. 

a b c
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 The water vapor condensation tests indicate that the hysteresis is much smaller on 

nano-roughness surfaces than it is on micro-roughness surfaces, which demonstrates the 

significance of nanostructures on the reduction of CA hysteresis. After water vapor 

condensation on the superhydrophobic surface, although micro-water droplets were 

formed, the surface roughness maintained the water droplet contact in a Cassie state; 

when the water droplet grew, it easily rolled off the surface. This demonstrates that the 

surface will remain free of water and the capillary force is expected to be reduced. 

To further investigate the effect of condensed water on the behavior of superhydrophobic 

surfaces, contact angle measurements were performed both on a dry superhydrophobic 

surface (surface micro-morphology as shown in Figure 110) and on the same surface 

immediately after condensation; Figure 111 displays contact angles on these surfaces. On 

the surface where water vapor has been condensed, the advancing angle is 166.0˚ with 

hysteresis 19.4˚ (Figure 111b). Although there is hysteresis, the water does not stick to 

the structured surface; rather, the water droplet picks up the condensate on the 

superhydrophobic surface and rolls off when the surface is tilted. The high curvature-

induced pressure prevents water from penetrating between the structures. The initial 

hysteresis increase is due to a condensed water-induced increase of contact area which 

leads to an increase in the hysteresis. In addition, after picking up the micron-sized water 

droplets condensed on the surface (shown in Figure 109 b), the contact angle recovers to 

its original value as shown in Figure 111c. This sequence demonstrates that 

superhydrophobicity can be recovered if it was lost due to water condensation provided 

that the surface structure is controlled at the nano-scale. In comparison, for the micron 

roughness surfaces, contact angle changes are different before and after water 

condensation as shown in Figure 107. Furthermore, there should be a critical pitch size 

that either can prevent condensation within the rough structures, or after condensation, 

the capillary force generated can drive the water out of the structure. As a result, design 
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of surfaces with sufficiently small structure pitch and solid area fraction can ensure the 

formation of stable superhydrophobic surfaces, even when water condensate is present. 

Similar mechanisms are invoked by the nano scale roughness of lotus leaf surfaces which 

prevent the loss of superhydrophobicity in humid environments. 

5.3.6 Thermal stability of the superhydrophobic surfaces 

 The stability of the superhydrophobic surfaces under high temperature was tested 

at 450˚C and 520˚C for 30 min. Contact angle data before and after the heat treatment is 

shown in Table 19. Clearly at 450˚C, the superhydrophobic surface is stable, but when 

heated to a higher temperature, the surface hydrophobic groups begin to decompose, and 

the superhydrophobicity is lost. 

Table 19. Contact angle change after heat treatment. 

Temperature (˚C) 450 520 

CA before heat treatment (degree) 167.8 168.5 

CA after heat treatment (degree) 166.4 10 

 

Figure 112. Surface morphology of silica surfaces after heat treatment at 520 ˚C for 30 
min. 

 For samples treated at 520˚C, when the surface was treated with PFOS again, the 

water droplet contact angle is still around 166-169˚ which implied that no significant 

roughness change occurred. The surface morphology from SEM after heat treatment at 

520 ˚C was shown in Figure 112. 
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5.4. Conclusions 

 We have demonstrated that a sol-gel process using a eutectic liquid (urea and 

choline chloride with molar ratio of urea:choline chloride of 2:1) can be invoked to form 

superhydrophobic, optically transparent films on glass slides. These properties were 

achieved by minimizing the surface structure length scales and film thickness while 

maintaining the necessary roughness for superhydrophobicity. Such results indicate that 

an RMS surface roughness of 70-100 nm can reduce solid/water interaction at the contact 

interface while allowing excellent optical transparency. Thus, by controlling the surface 

roughness, both superhydrophobicity (high contact angle and low hysteresis) and optical 

transparency can be achieved simultaneously. This silica-based superhydrophobic surface 

offers much potential in self-cleaning applications where optical transparency is required. 

However, the mechanical robustness of these layers must be improved for 

implementation in commercial products. 

 Superhydrophobic silica films formed by a sol-gel process using a eutectic liquid 

as a templating agent were investigated. For comparison, a micron-structured (pillared) 

silicon surface was also prepared. Water vapor condensation results showed that 

nanorough silica surfaces prepared from sol-gel processing are more stable than the 

micron-structured surface. Water vapor condensation onto the surface causes a loss of 

superhydrophobicity for micron-size surface structures. Nanostructured surfaces 

demonstrated that water vapor condensation does not cause a loss of 

superhydrophobicity, despite the fact that after water condensation, hysteresis increases.  

Under these circumstances, the water droplet picks up the condensed water as it rolls off 

the surface, thereby cleaning the surface by removing condensed water droplets. After 

removal of the micron-sized water droplets, the hysteresis recovered to its original value. 

Results from AFM force curves with a tipless probe demonstrated a negligible interaction 

force between the tip and the nanorough superhydrophobic surfaces. Such results indicate 

that adhesion forces and capillary forces can be reduced by invoking a nanostructured 
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surface. Thermal stability tests showed that the superhydrophobic surface is stable at 

450˚C and thus offers applications for high temperature environments. The surface 

decomposed and superhydrophobicity was lost after heating to  520˚C. These approaches 

offer a method to effectively reduce stiction in MEMS devices and improve the system 

reliability. 
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CHAPTER 6 

SUPERHYDROPHOBIC SURFACE BY SI ETCHING  

 

 In this chapter, superhydrophobic surfaces on crystalline Si were investigated by 

etching techniques. The possible applications may be in the combination of 

superhydrophobicity with more functions from semiconductor Si. 

6.1 Introduction 

 Artificial superhydrophobic surfaces allow the design of self-cleaning and water 

repellent surfaces with high water contact angles and low contact angle hysteresis. 

Requirements for realization of superhydrophobicity are often viewed in two different 

ways. One view suggests that achievement of a high water droplet contact angle may be 

insufficient to establish superhydrophobicity[205]. That is, in self-cleaning applications, 

the ease with which a droplet rolls off the surface is critical. Therefore, contact angle 

hysteresis/roll off angle/sliding angle must be considered when evaluating 

superhydrophobicity. Alternatively, it is sometimes suggested that superhydrophobicity 

implies only a high water droplet contact angle[133]. Although a contact angle ≥150˚ is 

the accepted demarcation for considering a surface to be superhydrophobic, a wide range 

of contact angle hysteresis values have been reported for such surfaces. Generally, 

superhydrophobic surfaces with contact angle hysteresis >10˚ are termed “sticky” 

superhydrophobic and are considered most likely to be in the Wenzel wetting regime, 

while superhydrophobic surfaces with contact angle hysteresis <10˚ are termed 

slippery/roll-off superhydrophobic and are considered to be in the Cassie regime[206, 

207].  

 Superhydrophobic surfaces have been prepared using both organic materials such 

as polyethylene[208], polystyrene[209], and polyelectrolyte[210], and inorganic materials 
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such as Al2O3[185], Fe2O3[211], ZnO[212] and Si[27, 154]. In addition to the 

establishment of superhydrophobicity, these materials have been further functionalized to 

realize electro-active surfaces with controlled wetting properties[26], transparent 

surfaces[58], adhesive surfaces[213], photocatalytic surfaces[98] and photonic bandgap 

layers[214]. However, due to its widespread use in electronic and photovoltaic devices, 

incorporation of superhydrophobic properties into silicon surfaces may extend and 

enhance the more traditional applications of these devices. Numerous approaches have 

been reported to generate superhydrophobic silicon surfaces[26, 58, 102, 215-217], 

including wet etching [154, 216, 218], creation of silicon nano wires by CVD 

growth[219], and plasma etching of silicon pillars[122, 144], etc. In these studies, high 

contact angles and reduced contact angle hysteresis were intensively investigated[17, 27, 

29, 143, 156, 205, 220]. To achieve superhydrophobicity, biomimetic fabrication of two 

scale structures are frequently employed[14, 110, 195, 207, 221, 222]. By fabricating the 

nano- and micro-structures on silicon, multifunctional surfaces may be prepared that 

possess photoluminescence, anti-reflection, and superhydrophobic self-cleaning 

properties.  

Over the last decade, much attention has been directed to semiconductor materials 

with surface micro/nano structures, primarily due to potential applications in opto-

electronics, chemical and biochemical sensing and the possibility of creating material 

properties not readily obtained in the corresponding crystalline materials[223]. The 

surface micro/nano structures of semiconductors can be produced by anodic etching, 

where the semiconductor is biased positively in a conductive electrolyte to facilitate 

oxidation and subsequent removal of surface atoms. The magnitude of the applied 

voltage and current and the electrolyte composition are used to control etch rate and, thus, 

morphology and properties. This approach is hampered by the need for a conducting 

substrate that is stable under the electrochemical etching conditions and the need to 

explore the relatively large parameter space to identify the optimum etching conditions.  
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To circumvent these problems, an efficient chemical etching method to produce Si 

surface structures that requires no external bias was developed recently[132, 138], i.e., 

metal assisted etching of silicon surfaces has been employed to define specific structures 

on silicon surfaces[49, 138]. In this process, a discontinuous layer of Pt or Au (20 - 200 Å 

thick) is deposited on the silicon surface before immersing it in HF/H2O2. Reduction of 

the oxidant (H2O2) injects holes into the valence band of the semiconductor, which then 

participate in oxidative etching of the semiconductor surface. After deposition of a thin 

layer of a metal such as Au, Pt or Pt/Pd onto p- or n-type silicon surfaces, nanostructures 

can be formed by immersing this substrate into various mixtures of hydrofluoric 

acid/oxidant/solvent.  This approach has been used to prepare photoluminescent 

surfaces[130] and ’black’ anti-reflecting silicon surfaces[49]. In fact, the reflectivity can 

be reduced to nearly zero if the appropriate structures are formed.  Furthermore, 

superhydrophobic and oleophobic silicon surfaces have been reported using metal 

assisted etching of silicon (111) surfaces[27]. The use of etched silicon surfaces for 

photovoltaic applications has also been investigated, and a solar cell efficiency of 9.31% 

was reported[224]. Although the surface trapped most of the light incident on the silicon 

surface, the conversion efficiency was not as high as expected, probably due to the low 

current-collection efficiency of the front grid electrodes and high recombination velocity 

due to the large surface area. 

 In this study, we invoked a surface etching technique for the preparation of multi-

functional (self-cleaning, non-reflecting, water repellent) surface micro/nano structures 

for potential photovoltaic applications. We used metal (Au) assisted etching to form 

nanoscale roughness and thereby form hierarchical structures by metal assisted etching of 

micron-size pyramid textured surfaces. By creating this two scale rough surface, it is 

expected that low contact angle hysteresis, robust surface structures with low light 

reflectivity can be achieved. To date, these functions have not been achieved 

simultaneously using one size scale structure. These structures yield superhydrophobic 
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surfaces which may have important application in light harvesting, anti-reflection and 

light trapping properties of solar cells. It is expected that by controlled manipulation of 

surface structures via the etching process, multifunctional silicon surfaces can be 

achieved and cost-effective photovoltaics may be possible[225]. 

6.2 Experimental Details 

p-type silicon (100) wafers with a resistivity of 1-10 Ω cm were used in all 

experiments. KOH etching was performed in a solution of KOH (2~3%wt), water and 

isopropyl alcohol (20% by volume) at 80~85˚C for 20~30 min to create pyramidal 

structures (2-4 µm in height). To form nanostructures, a thin discontinuous layer of Au 

nanoparticles (5-10 nm diameter) was deposited by e-beam evaporation.  Etching was 

then performed for various times in a HF/H2O2 solution (49%HF, 30%H2O2 and H2O 

with a volume ratio of 1:5:10).  Alternatively, etching was then performed for various 

times in an HF/H2O2 solution (49%HF, 30%H2O2 and isopropyl alcohol with a volume 

ratio of 1:2:1).  Subsequently, the Au nanoparticles were removed by immersing the 

samples in KI/I2 (100 g KI and 25g I2 per 1L H2O) for 60 seconds. 

 Contact angle measurements were performed with a Rame-Hart goniometer that 

had a CCD camera equipped for image capture. Scanning Electron Microscopy (SEM) 

was used to investigate the surface morphology. After fabrication of the surface 

structures, surface fluorination was performed by treatment with perfluorooctyl 

trichlorosilane (PFOS). Typically, a ten millimolar solution of PFOS in hexane was used 

for these treatments. Specifically, the etched silicon wafer was immersed in the solution 

for 30 min followed by a heat treatment at 150˚C in air for 1 hour, to complete the 

hydrophobic surface modification. The nanostructured surface was characterized by 

diffuse reflectivity measurements to establish reflectivity. The weighted reflectance (WR) 
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was calculated by normalizing the hemispherical reflectance spectrum (350–1100 nm) 

by the AM (air mass) 1.5 spectrum. 

6.3 Results and Discussion: etching in aqueous solution 

 Au assisted etching in an HF-based etchant (HF/H2O2/H2O)[49] was used to 

generate surface nanostructures in an attempt to establish superhydrophobicity and 

maintain reduced reflectivity. Due to the presence of Au nanoparticles, electroless 

etching occurs at the Au/Si contact interface. H2O2 decomposition causes injection of 

holes into the silicon surface and etching by HF proceeds in the vicinity of the Au/Si 

contact. As a result, pits or nanostructures are formed on the surface. Figure 113 shows a 

schematic of the etch process; SEM micrographs of etched silicon surfaces using 

different Au thicknesses with different etch times are shown in Figure 114. As the etch 

time increased, the etched pore structure became larger. Increasing the Au layer thickness 

also resulted in different surface morphologies which had a direct effect on surface 

superhydrophobicity after the surface was treated with fluoroalkyl silane (see below).  
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Figure 113. Schematic of the Au assisted etching process in HF:H2O2:H2O = 1:5:10. 

 

a b
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Figure 114. Au assisted etching in HF/H2O2/H2O=1:5:10, with 2 nm Au layers after 
etching for 2 min (a) and 4 min (b); 5 nm Au layers for 2 min (c) and 4 min (d) etching; 
10 nm Au layers for 2 min (e) and 4 min (f) etching. 

 Evaluation of silicon surface superhydrophobicity was made by considering both 

the contact angle and the contact angle hysteresis, which was used to differentiate the 

contact state between water droplet and the structured surface. For Si surfaces etched 

using 2 nm, 5 nm and 10 nm Au layers and subsequently treated with PFOS, the 

advancing contact angles increased with an increase of the Au layer thickness. However, 

the most obvious difference is in the receding contact angles as shown in Figure 115. 

With an increase in the Au layer thickness, the receding angle increased thereby reducing 

the contact angle hysteresis (difference between advancing and receding angles). Longer 

etch times do not reduce the hysteresis within the etching period investigated (0~4 min). 

Apparently, the water/solid contact is best described by a Wenzel state rather than a 

dc 

e f
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Cassie state because of the large contact angle hysteresis which can be attributed to an 

increased contact area between water and silicon.  

 This observation also demonstrated that a large contact angle is not sufficient to 

achieve a superhydrophobic surface with roll-off characteristics. Our results indicate that 

for the Si surface generated by Au assisted etching, contact angle hysteresis is more 

important in evaluating the self-cleaning functionality. As shown in Figure 115, most of 

the advancing contact angles are above 150˚. However, the low receding contact angles 

(large hysteresis) indicate that the superhydrophobic surfaces are “sticky” since water 

droplets adhere to the surface even when the surface is vertical as shown in the inset to 

Figure 115.  
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Figure 115. Contact angles after PFOS treatment of etched Si surfaces containing 
nanostructures. Solid lines represent advancing angles; dotted lines represent receding 
angles; inset: micrograph of water droplets on a silicon surface after PFOS treatment with 
etching conditions: Au layer 5 nm, etched 4 min; contact angle  

 

Two scale surface structures 

 The above data have demonstrated that the surface nanostructures formed from 

Au assisted etching in HF/H2O2/H2O do not result in roll-off superhydrophobicity within 
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a short (<4 min) etch time. On lotus leaf surfaces, two scale roughness generates 

superhydrophobic and self-cleaning leaf surfaces. Our (and others’) results have shown 

that micron-sized silicon pyramids can be formed using KOH etching and nanostructures 

can be fabricated readily using Au assisted etching. It may be possible to form a 

hierarchical structure that allows a biomimetic superhydrophobic surface to be realized in 

silicon. Indeed, by first etching Si pyramids, followed by deposition of a 5 nm Au layer 

and subsequent Au assisted etching, micro-sized pyramids with attendant nanostructures 

can be generated by the two-step etching process. The pyramid Si surfaces alone cannot 

generate a superhydrophobic state (with a contact angle of ~140˚ after hydrophobization 

with PFOS). The nanostructure is critical on top of the pyramid surfaces to achieve both a 

high contact angle and low hysteresis after surface hydrophobization[154]. 

 

Figure 116. Si pyramid surface etched by Au assisted etching in HF/H2O2/H2O (v/v/v 
1:5:10) for a. 30 sec, b. 1 min, c. 2 min, d. 4min; Au layer thickness: 5 nm.  

a b

c d
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 As shown in Figure 116, after Au assisted etching of the silicon pyramid 

morphology, the surface became hierarchically rough. Treatment of the surface with 

PFOS to hydrophobize the surface yielded high contact angles and low hysteresis, as 

shown in the inset of Figure 117, water droplet falling on the surface tend to roll off the 

surface even the surface is horizontally positioned; this is in contrast to the contact angle 

results achieved on a nanostructured silicon surface created by only Au assisted etching 

(inset of Figure 115). Existence of the two roughness scales resulted in a roll-off 

superhydrophobic surface due to the reduced liquid contact area fraction. Figure 117 

indicates that with increased etch time, the contact angle hysteresis first decreased then 

increased after 2 min of Au assisted etching. The hysteresis reduction is due to the 

generation of nanoscale roughness superimposed on the microscale roughness; the 

subsequent hysteresis increase can be attributed to a reduction of the size of the silicon 

pyramids due to the prolonged Au assisted etching and the loss of the nanostructures. 

These effects are clearly shown in Figure 118, which displays cross-sections of the etched 

pyramid surfaces. Despite the changes in receding contact angle, the advancing contact 

angles remained nearly constant.  
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Figure 117. Contact angle and contact angle hysteresis on two-scale etched Si surfaces; 
inset, the dynamic water droplet moving on the superhydrophobic surfaces with two scale 
structures (Au assisted etching for 2 min on micro-pyramid surfaces); the droplet edge is 
blurred due to the fast movement of the water droplet. 
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Figure 118. Cross sections of Si pyramid surfaces etched by Au assisted etching in 
HF/H2O2/H2O (v/v/v 1:5:10) for a. 30 sec, b. 1 min, c. 2 min, d. 4min, Au layer: 5 nm.  

 

 On an inclined surface as depicted in Figure 57 in chapter 2, the Laplace pressure 

can be expressed as[154]: 
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where γ is the surface tension of water, θ is the Young’s contact angle of liquid on the 

surface, α is the inclination angle as illustrated in Figure 116, R0 is half the distance 

between base edges of two adjacent inclined walls, p is the pressure on the liquid side of 

the meniscus, and p0 is atmospheric pressure. 

 

 An effective way to increase the Laplace pressure and thus to promote 

superhydrophobicity is to generate nanostructures on the silicon pyramid surface[154].  

a b

c d
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According to Equation (22), the Laplace pressure is amplified when an enhanced contact 

angle θ can be generated on the pyramid wall surfaces; this effect can be achieved by 

invoking a second structure scale. In addition, the extended three phase contact line on 

smooth surfaces is segmented into smaller contact lines on pyramidal surfaces with 

nanostructures. As a result, the solid/liquid contact fraction was reduced and ultimately 

resulted in a stable Cassie state, which yielded superhydrophobic behavior. Such effects 

cannot be achieved readily by structures with only one size scale for either micron-size 

pyramids or nanostructures from Au assisted etching.  

Low reflectivity of surfaces from Au assisted etching 

 The Au assisted etching of silicon surfaces can generate ‘black’ low-reflectance 

surfaces as shown in Figure 119, where a weighted surface reflectance of 6.4% resulted 

after a 2 min etch. Because of the presence of surface nanostructures, the surface absorbs 

most of the incident light, thus reducing reflection, especially in the 300-1000 nm 

wavelength regime. The nano-textured surface may also increase the path length of light 

as it travels through the cell, which allows thinner solar cells with reduced cost; 

furthermore, the surface may trap the weakly absorbed light reflected from the back 

surface by total internal reflection at the front surface/air interface. Pyramid textured 

silicon surfaces are already employed for high efficiency solar cell applications to 

increase light absorption by silicon surfaces[226]. Therefore, when combined with the 

pyramid textures on silicon surfaces, the micro/nano structured surfaces can optimize 

light absorption, and also establish self-cleaning properties if the surface is treated with 

fluoroalkylsilanes or other hydrophobic material. On the micro/nano two scale structured 

surfaces, the weighted light reflectance is further reduced to 3.8% as shown in Figure 119 

and table 20. Longer wavelength light is reduced more. Such surface modifications 

should result in lowered maintenance costs and higher efficiencies due to reduction of 

dust/contamination build-up on solar cell surfaces.  
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Figure 119. Light reflection on silicon nano-textured surfaces generated by Au assisted 
etching. Au (5 nm thickness) assisted etching in HF:H2O2:H2O of 1:5:10 (v/v/v) for 2 min.  

Table 20. Weighted reflectance on different textured surfaces. 

Sample Weighted reflectance, % 

Flat Si surface 37.3 

Pyramid textured surface 12.3 

Nano-textured surface (Au assisted 

etching) 

6.4 

Two scale textured surface 3.8 

 
Conclusions 

 Nanostructured silicon surfaces were prepared by Au assisted etching. After a 

fluoroalkyl silane (PFOS) treatment, the surface showed a high (>150o) contact angle, 

although the contact angle hysteresis remained high, which prevented the establishment 

of roll-off superhydrophobicity. Au assisted etching of micron-sized silicon pyramid 

surfaces generated a hierarchical (micro/nano) structure which after PFOS treatment, 

yields a superhydrophobic surface with much reduced contact angle hysteresis. With an 

1 

2 
3 
4 
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increase in etch time, the contact angle hysteresis increased as a result of a size reduction 

in the silicon pyramids. The appropriate combination of the two scale structures is 

effective in achieving roll-off superhydrophobicity. Silicon surfaces fabricated by Au 

assisted etching on Si pyramid surfaces showed low light reflection, which offers 

significant advantages for high efficiency solar cells with self-cleaning properties. 

 

6.4 Results and Discussion: etching in solution contains isopropyl alcohol (IPA) 

 Metal assisted etching of Si surfaces is used in the preparation of black non 

reflecting surfaces[132]. This process may have considerable promise for light trapping 

in high efficiency solar cells. In this study, we investigate the application of this 

technique for the generation of superhydrophobicity for which structured surfaces are 

necessary. Au was used in our study for the metal layer on a silicon surface.  

6.4.1 Etching time 

 To achieve superhydrophobicity, hydrophobic surface modification, density of 

surface structures, and height and diameter of the asperities must be controlled; only then 

will the hydrophobic surface show a high Young’s contact angle. The density of the 

surface structures can be represented by the micro three phase contact line density which 

yields the necessary surface forces to suspend the liquid against the forces of gravity. The 

topographic features must be tall enough so that the liquid does not reach the underlying 

surface. Also, the diameter of individual feature needs to be small enough to reduce the 

solid/liquid contact area so that a higher apparent contact angle results. When the etching 

time is increased, the etching depth the silicon surface increases. The depth of the surface 

structures is important in achieving better dewetting properties. The time effect on the 

etch depth is shown in Figure 120. With time, the etching depth increased at different 



 179

rates for different thickness Au layers. For 10 nm Au layers ib silicon, the SEM images of 

surfaces etched at different time are shown in Figure 121. 
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Figure 120. Etching depth of Au assisted etching of Si in HF/H2O2. 

 

 

Figure 121. Cross-sections of 10nm Au layer assisted Si etching for etch times, (a) 1min, 
(b) 2min, (c) 4 min, and (d) 10 min.  
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c d 



 180

6.4.2 Thickness of the Au layer 

 The thickness of the Au layer is also very important in achieving the desired 

surface structures. We prepared Au layers of three different thicknesses on silicon 

surfaces: 2 nm, 5 nm and 10 nm as shown in Figure122. The effect of the Au layer on 

etching is shown in Figure 123. As the Au thickness increases, the surface structures are 

higher. This corresponds to the difference in the etching rate shown in Figure 120. For a 2 

nm Au layer (low particle density on silicon surface), the etch rate is much lower than 

that for 5 nm and 10 nm Au layers. This observation may be due to the low density of Au 

particles. However, for 5 nm and 10 nm Au layers on silicon surfaces which have a 

higher density than 2 nm Au, the higher density of Au particles may cause the etching to 

proceed at a higher speed. The etching rate for the 5 nm and 10 nm Au coated silicon 

surface is similar and the etching rate is also not dependent on the etching depth for 

thicker Au films on silicon surface. However, for 2 nm Au on silicon surface, the etching 

is slowed down when the etching proceeds. This also suggests a depth dependent 

diffusion effect on the etching process. 

 

a 



 181

 

 

Figure 122. Silicon surface with Au layers of thickness of, 2 nm, 5 nm and 10 nm 
respectively. 

 

b 

c 
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Figure 123. Cross-section of silicon etched for 2 min: 2 nm; 5 nm, 10 nm. 

6.4.3 Effect of Au layer on the etching morphology 

 The etched silicon surfaces are shown in Figures 124, 125, and 126 for different 

etching times with different Au layers on top. As shown from the figures, the surface 

morphology size scale  increased from nano scale when etched for a shorter time with 

thinner Au layer to submicron scale when etched at longer time with thicker Au layers. 

Clearly, the surface morphology can be manipulated over quite a large scale range. 

 

a 

b 
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Figure 124. 2 nm Au assisted etching of Si for different times, (a) 1 min, (b) 2 min, (c) 4 
min, and (d) 10 min. 

b 

c 
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Figure 125. 5nm Au assisted etching of Si for different times, (a) 1 min, (b) 2 min, (c) 4 
min, and (d) 10 min. 
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Figure 126. 10nm Au assisted etching of Si for different times, (a) 1min, (b) 2 min, and 
(c) 4 min and (d) 10 min. 

 We know that for anodic silicon etching, the voltage and current are critical. In 

our process electroless etching is used. The hydrogen peroxide affects the injection of 

holes from Au particles into silicon substrate; therefore, the particle size as well as the Au 

particle density may play an important role on the etching reaction since both affect the 

hole injection process. As a result, it is expected that for small Au particles (e.g., 2 nm), 

the increase in the particle size will result in an increase in the number of holes injected 

into silicon, while for large Au particles (5-10 nm) the size effect vanishes.   

According to Wenzel and Cassie, rough surfaces facilitate the enhancement of contact 

angles which cannot be achieved on a flat surface even with the most hydrophobic 

surface coatings available. The rough silicon surfaces obtained from the metal assisted 

etching process were therefore treated with fluoroalkyl silane (PFOS) to render the 

surface hydrophobic to investigate the surface roughness effect in achieving 

superhydrophobicity. Contact angle and contact angle hysteresis data are shown in 

Figures 127 and 128. With increasing etching time, the contact angles increased. All 

surfaces showed contact angles greater than 140˚ while for a flat silicon surface treated 

with the same silane, the contact angle is only ~115˚. In addition, the contact angle 

hysteresis of all samples decreased with etching time, which suggests an enhanced 

surface roughness with longer etching times. The effect of the thickness of Au layers is 

d c 



 186

also shown in Figures 127 and 128. With thicker layers, contact angles were higher and 

hysteresis was much reduced relative to that of thinner Au layers. For 10 nm Au layers, 

the silicon surface etched for 10 min showed a contact angle of 167.7˚ as shown in Figure 

129 and a hysteresis of 12.4˚.  
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Figure 127. Contact angles for etched silicon samples. 
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Figure 128. Contact angle hysteresis for etched silicon samples. 
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Figure 129. Shape of the water droplet on a silicon surface etched with a 10 nm Au layer 
for 10 min and treated with PFOS. 

6.4.4 Light reflection measurement 
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Figure 130. Surface diffuse reflectance of as etched silicon surfaces with 5 nm Au layer 
for 4 min with comparison to flat and pyramidal Si surfaces. 

 The as etched silicon surfaces appeared black (nonreflecting) due to the presence 

of nanostructures on the surfaces. Figure 130 shows measurement results on a flat silicon 

surface, pyramid textured silicon surface and an etched (nanotextured) silicon surface 

with a 5 nm Au layer for 4 min. Over a broad wavelength (350-980 nm) the reflectance of 

the nanotextured surface is lower than that of flat silicon and pyramid textured silicon and 

the weighted reflectance between 350-1200 nm is 6.0% which is much less than that on a 

micron-pyramid textured silicon surface (~12.3%), which are commonly employed in 

high efficiency solar cells[226]. This implies that the surface should absorb more sunlight 

1 

2 

3 
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than some other textured silicon surfaces. This property indicates a promising application 

of the nanotextured surfaces for photovoltaic applications with self-cleaning capability. 

Conclusions 

 The Au assisted etching of silicon surfaces with Au layers of 2 nm, 5 nm and 10 

nm was investigated. Increased etching time resulted in surface structures with greater 

depths. The etching rate for thicker Au layer coated silicon was constant while for a 2 nm 

Au layer coated silicon surface, the etching rate was dependent on etch depth which 

suggested a diffusion-controlled etching process. The surface morphologies changed 

from small nanostructures at shorter times to large submicron structures at longer etching 

times. When the etched surfaces were treated with PFOS, the surfaces all showed high 

contact angles (superhydrophobicity). An increase in etching time resulted in a higher 

contact angle and a reduced hysteresis. With increased thickness of the Au layer, 

analogous trends were observed. Reflectance measurements showed that the etched 

surface showed a much reduced reflectance compared to that of pyramid textured silicon 

surfaces which are commonly employed in high efficiency solar cells. This shows that the 

surfaces prepared using Au assisted etching technique is promising for light absorption 

for photovoltaic applications. 
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CHAPTER 7 

HIERARCHICAL AND ROBUST SUPERHYDROPHOBIC 

SURFACES 

 

 Superhydrophobic surfaces offer significant advantages for many applications 

such as self-cleaning[125, 227], anticorrosion[228-230] and slip flow in microfluidics[91, 

231]. Artificial superhydrophobic surfaces have been investigated extensively through the 

creation of hierarchical surface roughness design[14, 195], surface structure geometry 

design for superhydrophobic and superoleophobic surfaces[25, 27, 154], and designs to 

reduce contact angle hysteresis[29, 181]. Many different materials have been used to 

fabricate superhydrophobic surfaces. However, the superhydrophobic surfaces generated 

via current surface modification techniques are mostly not suitable for practical 

applications due to limited mechanical abrasion resistance of surface structures, stability 

to water vapor condensation, oil/surfactant repellency and surface chemical stability. 

Durability, chemical bonding alteration, mechanical modification, and degradation due to 

high energy irradiation, are major limitations to the successful application of 

superhydrophobic surfaces for self-cleaning and water repellence. Recent studies have 

begun to address the mechanical robustness to environmental[164] and UV irradiation 

exposure[232], chemical stability[165, 233] and water immersion stability[71]. However, 

little work has been reported on the investigation of mechanical abrasion/friction 

resistance of superhydrophobic surfaces, which is one of the most important practical 

limitations for self-cleaning applications.  

 Like on lotus leave surfaces, nature selected hierarchical structures for 

superhydrophobic functions. Through continuous supply of hydrophobic wax onto leave 

surface, a lotus leave maintained its hydrophobic coating layer. However, what is the 
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advantage of hierarchical structures over one scale structures regarding the structure 

stability under mechanical abrasion or friction? Currently, most work reported is related 

to the hierarchical effect on the increase of contact angle and the reduction in contact 

angle hysteresis. Actually research is not going into the aspect of mechanical robustness. 

Researches regarding the improvement of superhydrophobicity (high contact angle and 

reduced contact angle hysteresis/sliding angle) were reported on the hierarchical 

surfaces[146, 154, 234-237].  

7.1 Robustness Improvement on Si Hierarchical Surfaces 

 Pyramid surface is expected to show better mechanical strength due to its 

geometry compared to pillars. However, pyramid surface can not achieve a 

superhydrophobic state due to the fact that Cassie water/surface contact cannot be 

maintained. In order to achieve a stable superhydrophobic state, a second scale roughness 

is needed on top of pyramids. The hierarchical surface should also show certain 

mechanical stability. Although mechanically durable surfaces were theoretically 

discussed[235], the durability is mainly from the strength of individual structures on a 

surface. No test on mechanical durability was reported in literature. In this chapter, we 

will focus on understanding the mechanical stability and improvement of robustness on 

hierarchically structured superhydrophobic surfaces. The model Si surface we used 

showed two scale structures from etching techniques (micrometer size pyramids with Si 

nanostructures on top).  

 In order to investigate the abrasion resistance of the surfaces, a specific 

methodology was invoked as illustrated in Figure 131: Polyester/cellulose Technicloth II 

wipes were used as abrasion substrates and a superhydrophobic surface faces the abrasion 

substrate. With applying a normal pressure (~3450 Pa) on the superhydrophobic surface, 

the surface was moved in one direction. The contact angle and hysteresis change over 

abrasion length (maximum length of ~3 meters) were monitored. 
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Figure 131. Illustration of the abrasion test on a superhydrophobic surface. 

 After preparation of the surface structures, surface fluorination was performed by 

treatment with perfluorooctyl trichlorosilane (PFOS). Typically, a 3 millimolar solution 

of PFOS in hexane was used for these treatments. Substrates were immersed in the PFOS 

solution for 30 min followed by a heat treatment at 150˚C in air for 1 hour, to complete 

the hydrophobic surface modification.  

 One of the limitations in the application of superhydrophobic surface coatings to 

commercial products is the abrasion resistance of the surface. Because of the presence of 

surface micro- and nano-structures, the roughness can be easily altered due to surface 

abrasion-induced break-down of small surface structures. In addition, abrasion may also 

result in removal of the hydrophobic layer on the rough surface. Both of these effects 

result in a failure of the self-cleaning surfaces. In order to address these issues, the 

abrasion test shown in Figure 131 was employed to evaluate abrasion resistance of the 

superhydrophobic surfaces. Initially, different superhydrophobic surfaces were tested. 

The data was shown in Table 21. From the test, the two scale superhydrophobic Si 

surfaces showed the best result with an almost constant contact angle and a hysteresis 

increase as shown in Figure 132 (from ~ 2˚ to 13.6 ± 3.0˚). For all other materials, contact 

angles decreased to below 140˚ which suggested a significant superhydrophobicity loss. 

Indeed, on the failed surfaces by abrasion, the self-cleaning effect vanished completely; 
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water droplets stuck to the surfaces even turn the superhydrophobic surface upside down. 

While on the two-scale structured Si surface, water droplet can still roll off while at a 

higher sliding angle. 

Table 21. Abrasion resistance of different superhydrophobic surfaces. 

Superhydrophobic surfaces Initial contact angles Contact angles after 

abrasion length of 25 cm 

PU 168.1 ± 1.6˚ 138.7 ± 5.0˚ 

PTFE 161.3 ± 1.0˚ 130.2 ± 4.0˚ 

Silica  165.4 ± 1.5˚ 124.3 ± 5.0˚ 

Si nanostructures 166.4 ± 1.5˚ 127.7 ± 4.5˚ 

Si two scale structures 168.1 ± 0.7˚ 167.4 ± 1.5˚ 
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Figure 132. Contact angle hysteresis change on two-scale Si structures before and after 
abrasion test. 

 For better understanding of the good superhydrophobicity retaining effect on two-

scale surfaces, microscopic investigation is necessary.  
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 The surfaces were examined before and after abrasion test using SEM. For 

surfaces with only nano-scale structures, the roughness was changed greatly. Most of the 

surface structures were removed as shown in Figure 133b. This demonstrated that the 

surface nanostructures are very weak under abrasion forces. The surface structure change 

resulted in the decrease in water droplet contact angle on the surface. However, when the 

surface nanostructures were fabricated on micro-pyramid textured Si surfaces, the 

abrasion test showed that the surface water droplet contact angles maintained almost 

unchanged while there is a hysteresis increase after the test. This can also be explained by 

the surface structural changes. As shown in Figure 134, before abrasion test, 

nanostructures are uniformly covered on micro-pyramids surface. Due to abrasion, the 

surface structures on the top of pyramids was removed (Figure 134 b). However, the 

surface structures at the lower part of pyramids were retained. This two-scale structure 

can still maintain a high water droplet contact angle on the surface. While the top surface 

was depleted of nanostructures, water droplet will have a higher contact area on Si 

structures than that before the abrasion test, as shown in Figure 135. This corresponds to 

an increased contact angle hysteresis. 
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Figure 133. A Si surface with nano-scale surface structures; a. before abrasion, b. after 
abrasion.  

a 

b 



 195

 

Figure 134. A Si surface with two-scale structures (micro-pyramids and nanostructures); 
a. before abrasion, b. after abrasion. 

 

Figure 135. Illustration of water droplet contact on Si surfaces before and after abrasion. 

 This retain in superhydrophobicity can be explained by a protection mechanism. 

During abrasion, the breakdown of nanostructures is mainly on peaks of the pyramid 

structures where contact is inevitable. Therefore, the lower level nanostructures were 

protected from contacting as shown in Figure 136 and no abrasion happened on this 

lower part of Si micro-structures.  

a 

b 
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Figure 136. Illustration of the effect of abrasion on the surface structures. 

7.2 Robust Superhydrophobic Surfaces from Epoxy/Silica Nanoparticles 

 We have reported methods to maintain a stable superhydrophobic silica surface 

under UV weathering conditions as described previously[232]. Based on the 

understanding of protection of hierarchical structures on improved robustness, in this 

section, we will focus on achieving the mechanical stability of superhydrophobic surface 

coating with the combination of silica nanoparticles and epoxy resin. For polymeric 

materials, intrinsic molecular structures make it difficult to overcome durability issues 

due to their vulnerability to UV exposure[178], and the flexibility of the materials. For 

inorganic materials, the brittle nature of the materials results in damage to surface micro- 

and nano- structures due to abrasion forces applied to the surface. In order to overcome 

the drawbacks of both organic and inorganic materials while maintaining adequate 

durability of the surface, we have combined polymeric (epoxy) material and inorganic 

nanoparticles for a low cost process for the fabrication of superhydrophobic surfaces.  In 

these composite materials, the epoxy serves as an adhesion and stress relief layer, while 

the inorganic nanoparticles at the surface of the polymeric layer generates an abrasion 
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resistant surface layer that possesses the nano-structure necessary to impart 

superhydrophobicity as shown in Figure 137.  

 
Figure 137. Illustration of O2 plasma etching of epoxy/SiO2 nanoparticle composite films 
for surface rough structures. 

7.2.1 Experimental Details 

 One gram of silica particles (100 nm diameter) was mixed in 10 g toluene and 

sonicated for 5 min. Then bisphenol A diglycidyl ether (EPON 828) 1 g, hexahydro-4-

methylphthalic anhydride 0.75 g, and imidazole 0.03 g were added to the silica/toluene 

solution and stirred for 30 min to form a final coating mixture. Glass slides were pre-

cleaned by UV/ozone treatment for 5 min and then rinsed with water and ethanol. Drops 

of the mixture were then placed on cleaned glass slides; alternatively, the slides were also 

covered by the mixture via dip coating or doctor blading. After toluene vaporization, the 

coating was cured at 150 ˚C for 4 h. Plasma etching was conducted under the following 

conditions: 150 W rf  power, 0.5 torr pressure and an O2 flow rate of 75 sccm. After 

fabrication of the surface structures, surface fluorination was performed by treatment 

with perfluorooctyl trichlorosilane (PFOS). Typically, a ten millimolar solution of PFOS 

in hexane was used for these treatments. Specifically, the etched silicon wafer was 

immersed in the solution for 30 min followed by a heat treatment at 150˚C in air for 1 

hour, to complete the hydrophobic surface modification. 

 In order to investigate the abrasion resistance of the surfaces, a specific 

methodology was invoked as illustrated in Figure 131. 
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Condensation tests were performed in a chamber at 45 ± 3˚C in the presence of 

water. A thermometer was used to monitor the temperature in the test chamber. 

Contact angle measurements were performed with a Rame-Hart goniometer that had a 

CCD camera equipped for image capture. Scanning Electron Microscopy (SEM) was 

used to investigate the surface morphology (LEO 1530 FESEM). After preparation of the 

surface structures, surface fluorination was performed by treatment with perfluorooctyl 

trichlorosilane (PFOS). Typically, a 3 millimolar solution of PFOS in hexane was used 

for these treatments. Substrates were immersed in the PFOS solution for 30 min followed 

by a heat treatment at 150˚C in air for 1 hour, to complete the hydrophobic surface 

modification.  

7.2.2 Results and Discussion 

7.2.2.1 Superhydrophobic surfaces from Bisphenol A epoxy with silica nanoparticles 

 Bisphenol A epoxy is widely used in surface coatings, adhesives 

(microelectronics packaging), and composite materials (such as carbon fiber and fiber 

glass reinforced epoxy). In order to improve the abrasion resistance of epoxy coatings, 

silica or alumina particles are usually coated onto the epoxy surface. The adhesion 

between the epoxy and inorganic particles is strong due to the hydroxyl groups formed in 

the epoxy. In our study, we coated glass slides with epoxy mixed with silica 

nanoparticles; the resulting surface of this structure was expected to be rough while 

maintaining surface adhesion. However, we found that after coating and a surface 

hydrophobic treatment by PFOS, the contact angle is < 140˚; the surface is shown in 

Figure 138a. It is clear that the surface roughness is not sufficient to achieve a 

superhydrophobic self-cleaning state. In order to enhance the surface roughness, O2 

plasma etching was conducted for various times. The surface morphologies generated are 

shown in Figures 138b-e, where it is evident that the surface roughness increased  
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continuously with etching time. This change yields an increase in contact angle after 

surface hydrophobic modification by PFOS. Contact angles and hysteresis are shown in 

Figure 139. The contact angles increased to establish superhydrophobicity after 5 min of 

etching; concomitantly, the hysteresis values dropped.  

 

   

  

             

Figure 138. Surface morphology from SEM images:  surface before etching (a), O2 
plasma etched for 1 min (b), 5 min (c), 10 min (d) and 15 min (e). 

a b c 
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Figure 139. Contact angle (a) and hysteresis (b) for surfaces etched for various times. 
Inset (a): Water droplet contact angles on etched surfaces. 1) epoxy surface before 
etching, 2) O2 plasma etched for 1 min, 3) O2 plasma etched for 5 min, 4) O2 plasma 
etched for 10 min, 5) O2 plasma etched for 15 min. 

 Observed trends of water droplet contact angles and hysteresis can be explained 

by consideration of the surface morphologies generated through different etching times. 

1 2 3 4
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First, all surfaces have sufficient roughness to establish high (>150o) contact angles. 

However, surfaces etched for short (5 min) times display nonuniformity (Figure 140) in 

that the micro-bump top surface epoxy (Figure 140 b) is not completely etched; therefore, 

most of the silica particles remain embedded in the polymeric layer. This geometry 

results in high contact angle hysteresis.  

 

Figure 140. Surface morphology after 5 min O2 plasma etching (a), magnified micro-
bump surface (b), and magnified surface of valley areas in between the micro-bumps (c). 

 At etching times of 10 and 15 min, the surface is rougher as shown in Figures 141 

and 142. Especially on the micro-bump surfaces, the tops of the silica particles are 

exposed. Therefore, both a high contact angle and a reduced hysteresis result. The 

difference between the 10 and 15 min etched surfaces is that for an etching time of 10 

min, silica particles formed a densely packed layer while for an etching time of 15 min, 

the surface morphology of the micro-bump top surface is significantly roughened.  The 

densely packed surface only gives a limited surface roughness and thus a lower water 

droplet contact angle compared to a rougher surface like that shown in Figure 142 b. 

However, the density of the micro-bumps from 10 min etching in Figure 141 is very low, 

and the micro-bump effect on contact angle hysteresis is not an obvious difference from 

the surface etched for 15 min, shown in Figure 139. 

a b

c
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Figure 141. Surface morphology after 10 min O2 plasma etching (a), magnified micro-
bump surface (b), and magnified surface of valley areas in between the micro-bumps (c). 

 

Figure 142. Surface morphology after 15 min O2 plasma etching (a), magnified micro-
bump surface (b), and magnified surface of valley areas in between the micro-bumps (c). 

7.2.2.2 Abrasion test for robust structure 

 One of the limitations in the application of superhydrophobic surface coatings to 

commercial products is the abrasion resistance of the surface. Because of the presence of 

surface micro- and nano-structures, the roughness can be easily altered due to surface 

a b

c

a b

c
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abrasion-induced break-down of small surface structures. In addition, abrasion may also 

result in removal of the hydrophobic layer on the rough surface. Both of these effects 

result in a failure of the self-cleaning surfaces. In order to address these issues, an 

abrasion test was designed to evaluate abrasion resistance of the superhydrophobic 

surfaces. Initially, different superhydrophobic surfaces were tested. The data was shown 

in Table 22. From the test, the epoxy/silica and Si two scale superhydrophobic surfaces 

showed the best result with a high contact angle. For all other materials, contact angles 

decreased to below 140˚ which suggested a significant superhydrophobicity loss. 

 

Table 22. Abrasion resistance of different superhydrophobic surfaces. 

Superhydrophobic surfaces Initial contact angles Contact angles after 

abrasion length of 25 cm 

PU 168.1 ± 1.6˚ 138.7 ± 5.0˚ 

PTFE 161.3 ± 1.0˚ 130.2 ± 4.0˚ 

Silica 165.4 ± 1.5˚ 124.3 ± 5.0˚ 

Si nanostructures 166.4 ± 1.5˚ 133.2 ± 4.5˚ 

Si two scale structures 168.1 ± 0.7˚ 167.4 ± 1.5˚ 

Epoxy/silica nanoparticles 169.2 ± 1.1˚ 168.6 ± 1.7˚ 
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Figure 143. Contact angles and contact angle hysteresis changes after abrasion test on O2 
plasma treated epoxy/SiO2 surfaces. 

 The effect of abrasion on water droplet contact angles and hysteresis was 

investigated on epoxy/silica superhydrophobic surfaces to investigate the mechanism of 
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superhydrophobicity failure. The results are shown in Figures 143 and 144; three O2 

etching conditions were considered: 5, 10 and 15 min. Contact angles were essentially 

constant with abrasion for 5 min etching, while for 10 and 15 min etching, an initial drop 

in contact angles is observed. The rapid drop of contact angles for surfaces etched for 15 

min suggests that the surface undergoes a surface structure change which indicates that 

the fragile surface structures were damaged. This observation is apparently due to the fact 

that for longer plasma etching times, the epoxy layer was etched extensively resulting in 

a loss of adhesion between the silica spheres and the epoxy. The contact angle hysteresis 

change with abrasion length also suggests surface structure changes which critically 

affect wetting and adhesion. For 15 min plasma etching, the hysteresis increased more 

than that for the other etched surfaces. With increasing plasma etch time, epoxy is etched 

more extensively and the surface is rougher, while the robustness of the surface structures 

is reduced. For a 5 min etched surface, although it showed the lowest increase in 

hysteresis with abrasion, the initial contact angle is low while the initial hysteresis is 

large. With 10 min etching, contact angle behavior similar to that for the15 min etched 

surface is observed, while the hysteresis behavior is similar to that of the 5 min etched 

surface.  

 The surface structure change with abrasion for a 15 min etched surface is shown 

in Figure 144 of the contact angle images with moving substrate to one direction. After 

abrasion, the surface morphologies were shown in Figure 145. Scratches can be seen on 

the whole surface (Figure 145 a). 

 

Figure 144. Contact angles hysteresis changes with abrasion; a) before abrasion test, b) 
10 inch, c) 20 inch, d) 40 inch, e) 60 inch, f) 120 inch abrasion length for O2 plasma 
etching of 15 min. 

a b c d e f 
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Figure 145. Surface morphology of plasma etched epoxy/silica nanoparticle surfaces 
after abrasion test, O2 plasma etching for 15 min, low magnification overview of the 
abraded surface (a), and the high resolution images on a micro-bump (b) and on valley 
surfaces (c).  

 
 For surfaces etched for 10 min, the abrasion occurs mainly on the surface of the 

micro-bumps as shown in Figure 146. Surface morphology in the valleys is similar to 

those surfaces before abrasion, although minor scratches are evident as shown in Figure 

146 c. High resolution SEM images of the micro-bump top surface is shown in Figure 

146 b, where the surface has been scratched and flattened as a result of the mechanical 

friction. This flattened top gives rise to the increase in contact angle hysteresis observed 

(Figure 143), while the unchanged valley surface maintains a high contact angle. This 

effect is illustrated schematically in Figure 147. While roughness was reduced on the top 

(micro-bump) structures, most of the roughness was maintained in the valleys between 

the micro-bumps due to the fact that the top surface structures protect the valley surface 

from abrasion. However, for surfaces etched for 15 min, the morphology changed 

significantly, as shown in Figure 145. The extensive etching generated poorly adhering 

silica particles. After abrasion, these particles detached from the underlying epoxy layer 

as shown in Figure 145. Although the contact angle remains high due to the presence of 

loosely bonded surface structures as shown in Figure 145 c, the hysteresis has increased 

greatly and adhesion of the surface structures to substrates is reduced. 

a b c 
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Figure 146. The surface morphology of plasma etched epoxy/silica nanoparticle surfaces 
after abrasion test, O2 plasma etching for 10 min, low magnification of the abraded 
surface (a), and high resolution images on a micro-bump (b) and on valley surfaces (c). 

 

Surface 
abrasion

 

Figure 147. The surface abrasion effect on surface roughness, micro-bump surface 
roughness was reduced due to the mechanical abrasion while the valley surface roughness 
persisted. 

 

7.2.2.3 Exposure to hot water 

 In order to investigate the stability of superhydrophobic surfaces in hot water, 

experiments were performed by soaking a superhydrophobic surface in 45˚C water for 24 

a b c 
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hours; results are shown in Figure 148. Although the hysteresis increased immediately 

after the surface was removed from the water, after 4 hours of air exposure, the hysteresis 

decreased and approached the initial hysteresis value prior to water soaking. These results 

suggest that the rough surface may trap water upon soaking. Therefore, immediately after 

removal from the water, the trapped water increases the interaction between the surface 

and the water droplet. When the water vaporizes, the interaction decreases and 

consequently hysteresis is reduced. However, the final hysteresis is still higher than that 

of the initial surface without water soaking. This also suggests that there is a minor 

change in surface chemistry (from hydrophobic to hydrophilic in the presence of hot 

water) since hysteresis is very sensitive to chemical changes. 
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Figure 148. Contact angle hysteresis before and after 45 ˚C water soaking for 24 hours 
on surfaces of O2 plasma etching for 10 min; a) before soaking in hot water, b) 
immediately after soaking in hot water, c) 4 h after removal from hot water. Insets: 
Contact angle images of water droplets. 

7.2.2.4 Effect of water vapor condensation on the stability of superhydrophobic surfaces 

 Stability of superhydrophobic surfaces to water vapor condensation is very 

important because most applications for these surfaces, such as self-cleaning or water 

repellency, have water vapor present. For the epoxy/silica films in the current study, long 

term stability tests As shown in Figure 149, were performed in water vapor for ~9500 
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hours, the contact angles remained constant in the range of 165-166˚ while the hysteresis 

throughout the test period remained < 2.5˚.  
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Figure 149. Water vapor condensation effect on contact angles on superhydrophobic 
epoxy/silica surfaces generated by O2 plasma etching and PFOS treatment; the contact 
angle hysteresis throughout the test remained < 2.5˚. 

Conclusions 

 Robust superhydrophobic surfaces were demonstrated on hierarchical Si surfaces 

with micro-pyramids and nanostructures. A protection mechanism of nanostructures by 

micro-pyramids was proposed. A mechanically robust superhydrophobic surface coating 

was prepared using epoxy and silica nanoparticles followed by plasma etching. Surface 

roughness was enhanced with O2 plasma treatment time. Surface hydrophobicity was 

achieved by fluoroalkyl silane treatment. Adhesion of structures to the substrate was 

improved by the epoxy resin, while the mechanical stability of surface structures was 

improved by the inorganic silica nanoparticles with a protection mechanism from micro-

bumps on the surface. By appropriate plasma etching (10 min etching in O2), the surface 

roughness can be maximized while the adhesion between epoxy and silica particles is not 
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significantly reduced. Therefore a mechanically robust superhydrophobic surface can be 

achieved. Abrasion on the surface mainly results in the loss of roughness on the top of the 

micron-scale (micro-bump) structures while the roughness in the valley between the 

micron structures is intact. After surface abrasion, water droplet contact angles remain 

high; however, the contact angle hysteresis increases significantly due to the structure 

change on the top of the micro-bump structures.  The surface retains its 

superhydrophobicity even after hot water soaking. Water vapor condensation tests 

showed that the surface remains superhydrophobic after ~9500 hours testing time. 
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CHAPTER 8 

SUPERHYDROPHOBICITY BY PARTICLE COATING ON 

SUBSTRATES WITH MOBILE AND HYDROPHOBIC SPECIES 

 

 This chapter describes the investigation of applications of superhydrophobic 

coatings on high voltage insulator surfaces for self-cleaning to prevent flashover and dry 

band arcing in outdoor applications. The weathering resistance of the surface is the first 

priority for successful application. Currently, the protection methods (high voltage 

stabilization and contamination) of polymeric insulator surfaces (EVA, silicone, EPDM) 

involve mobile protective coatings which incorporate oil, grease or pastes in the surface 

layer. The continuous supply of hydrophobic substances mitigates the contamination 

problem on the insulator surface. 

 Based on our previous research on superhydrophobicity and weathering 

improvement, an alternative method to resolve the UV stability issue is investigated.  

This method mimicks the continuous generation of superhydrophobicity on lotus leaves 

wherein surface self-healing occurs by continuously secreting hydrophobic species (wax) 

to the surface. This mechanism is applicable to surfaces that contain mobile and 

hydrophobic protective species. In this chapter, we attempt to establish this mechanism 

on silicone and EVA high voltage insulator substrates by coating an inorganic particle 

layer on the surface. Both silicone and EVA insulators are commercially available and 

are known to contain the mobile and hydrophobic species[238-240]. 

8.1 Sol Gel Technology for Particulates 

 There are numerous application areas for sol gel technologies[241]. One of the 

largest application areas is in film formation, which can be achieved by spin-coating or 

dip-coating a substrate. Other methods include spraying, electrophoresis, inkjet printing 
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or roll coating. Optical coatings, protective and decorative coatings, and electro-optic 

components can be applied to glass, metal and other types of substrates with these 

methods. 

 The sol-gel process is a well-established process for making glass/ceramic 

materials, which involves the transition of a system from a liquid (the colloidal “sol") into 

a solid (the "gel") phase. This procedure allows the fabrication of materials with a large 

variety of properties: ultra-fine powders, inorganic membranes and thin film coatings. In 

a typical sol-gel process for particulate formation, the precursor is subjected to a series of 

hydrolysis and polymerization reactions to form soluble species; the species then 

condense/nucleate into a new phase in which a solid is dispersed in a solvent 

http://en.wikipedia.org/wiki/Macromolecule. For silica particle formation, this process is 

usually termed the Stöber method[242], which yields monodisperse particles. For titania 

particle preparation, highly reactive organometallic precursors condense in the presence 

of water to form particles without the need for a catalyst[243]. 

 Monodisperse silica particles usually assume a close-packed arrangement on 

surfaces after coating as described in Chapter 2. We found that on such surfaces the 

contact angle is 130-140˚ after fluoroalkyl silane treatment. In order to achieve a much 

higher surface roughness for superhydrophobicity, we introduced titania particles into the 

system to achieve bimodal size distributions and thus a higher surface roughness. The 

process used is shown in Figure 150. 
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Figure 150. Process for the preparation of SiO2/TiO2 particle suspension in ethanol. 

8.2 Experimental  

 Synthesis of monodisperse silica spheres is accomplished using the Stöber-Fink-

Bohn method which involves using base (ammonia) as catalyst[112]. The production of 

monodispersed silica particles is described below. 

 At 60 ˚C TEOS undergoes hydrolysis to form silanol groups which are further 

catalyzed in the presence of ammonia to undergo condensation reactions and thereby 

form siloxane polymers (branched or linear depending on the reaction conditions) 

dissolved in solvent. When the polymer particles are sufficiently large, aggregates form 

which remain separated from each other by the negative surface charges. Initially, the 

surface charge is too small to repel the aggregates, so the aggregates undergo particle 

growth to form larger ones by an Ostwald ripening process wherein smaller particles 

dissolve and redeposit on large particles until uniform size is achieved. When more 

TEOS is added, the particles can grow larger due to the reaction between newly added 
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hydrolyzed TEOS and the silica sphere surface silanol groups (seed growth). The particle 

size was controlled by catalyst (pH), water concentration and TEOS concentration. 

 

A typical formulation for Silica particle formation is: 

TEOS: 3 g, ethanol: 50 ml, DI water: 3 g, ammonia hydroxide (29%wt): 10 ml. 

By controlling the amount of ammonia hydroxide, water, TEOS, and the reaction 

temperature, the silica particle size of can be controlled. Figure 151 gives the average 

particle diameter (d) in terms of the concentrations (mol/l) of water H2O, ammonia (NH3) 

and TEOS and thereby shows how the size distributions can be controlled. 

 
Figure 151. Control of silica particle sizes[242]. 
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Figure 152. Monodisperse silica spheres produced using different conditions (primarily 
acidity); a) 200 nm, b) 300 nm, c) 370 nm, d) 600 nm by varying ammonia content in the 
reaction. 

 

8.2.1 Mixing ratio determination 

 The particle sizes needed to form the appropriate surface structures for 

superhydrophobicity must first be established.  For this purpose, we considered silica and 

titania particles as follows: 

• Small particles: SiO2, density 2.2g/mol; Large particles: TiO2 density 4g/mol 

• Assuming the silica particle size << titania particle size 

• To insure that the correct surface structures can be formed the approximate 

minimum weight ratio of the two particles (TiO2/SiO2) should be calculated 

according to Figure 153. 

a b 

c d 
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Note: Safety measures should be taken when coating nanoparticles, i.e., the coating 

process should be performed in a well ventilated fume hood.  
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Figure 153. Illustration of the calculation of TiO2/SiO2 particle weight ratio. 

 

In order to achieve better adhesion between the coating and the substrate, better 

self-cleaning, and also incorporate more functionality into the surface coating, the second 

species was added. Our studies mainly focused on TiO2 formation by sol-gel processing 

to form bimodal TiO2 /SiO2 particles. 

 Spherical TiO2 particles were first prepared by controlled hydrolysis of titianium 

tetraisopropoxide in ethanol. An ethanol volume of 100 mL was mixed with 0.4-0.6 mL 

of aqueous salt (NaCl) followed by addition of 2.0 ml of titanium  tetraisopropoxide at 

ambient temperature under an inert gas atmosphere, by using a magnetic stirrer. Reagents 

had to be mixed completely so that nucleation would occur uniformly throughout the 

solution. Depending on the concentration, visible particle formation started after several 

seconds or minutes and gave a uniform suspension of TiO2 beads. After 5 hours the 
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reactions were completed and the spheres were collected on a Millipore filter and washed 

with ethanol. 

 After the synthesis reaction of TiO2 particles had proceeded for 30 min, silica 

sphere/ethanol dispersion (~5%wt, 10-50 ml) was added to the reaction media for another 

4.5 hrs. The particles SiO2 (shell)/TiO2(core) formed are shown in the figure 154. 

  

 

 

 

Figure 154. Particles of TiO2 with SiO2 particles coated on top, Titania / Silica – Large / 
Small, CA: 169˚. 

8.3 Superhydrophobic surfaces from SiO2/TiO2 coatings 

 When using these bimodal particles to coat the surface of silicone parts from a 

number of manufacturers, the surfaces achieved superhydrophobicity without any further 

surface treatment (termed autophobicity). After the silica particles were dipcoated or 

painted onto the silicone surface, the surface changed over time from a hydrophilic to a 

hydrophobic and finally to a superhydrophobic surface as shown in Figure 155. It is most 

probable that diffusion of the mobile and hydrophobic species, e.g., silicone oils or other 

species accounts for this effect. The particles used are SiO2 and TiO2 with TiO2 particle 

size ~800 nm and SiO2 ~150 nm. 
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Figure 155. After Coating Process. The autophobicity (improvement in hydrophobicity 
with resting time) of silicone surfaces (the effect applies to all silicone surfaces). Note 
that the contact angle of the silicone material is 120˚ before treatment. 

 

   
Figure 156. Particle coating (SiO2/TiO2) to improve the hydrophobicity of the silicone 
surface: figure (a) Contact angle: 167.8˚, hysteresis 6.7˚; (b) after surface treatment with 
PFOS, contact angle: 176˚, hysteresis< 1˚. 

 When the superhydrophobic silicone surface was further treated with PFOS, the 

contact angle increased to 176˚ as shown in Figure 156. The superhydrophobicity was 

improved: Contact angle: 176˚, hysteresis <1˚. The surface morphology from SEM was 

shown in Figure 157. Two scale roughness with micrometer sized TiO2 and nanosized 

SiO2 was formed. 
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Figure 157. SEM image of the silicone plaque surface coated with the SiO2/TiO2 
particles. 

 
 Figure 158 shows the water droplet contact angle and hysteresis on different 

insulator materials. For all the materials with hydrophobic mobile species, 

superhydrophobicity can be achieved. 
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Figure 158. Contact angle and hysteresis on different surfaces coated with SiO2/TiO2 
particles; Silicone 1 and 2 are two silicone materials from different companies, 1: Hubble, 
2: Korean company. 

 The self-healing capability was tested on silicone surfaces by measuring the 

contact angle and hysteresis change upon ageing in a UV/humidity chamber for ~5500 

hours; Figure 159 shows the results of contact angle and hysteresis changes with time. 

From the contact angle, no significant difference was observed. However, the hysteresis 

immediately after UV aging shows a significant difference between the exposed and 

unexposed regions. With increased rest time, the difference is reduced.  
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Figure 159. Self-healing effect of superhydrophobic surfaces after UV test for 5497 
hours. 

 

Figure 160. Field test of superhydrophobic coated insulators. 
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CHAPTER 9 

FUTURE WORK 

 

While superhydrophobic surfaces have been achieved on a variety of material 

surfaces with UV stability, robustness and more functionalities, considerable work 

remains regarding the geometry control of surface micro/nano structures for 

superoleophobicity, mechanical durability and incorporate more functionalities to the 

surface by appropriate surface treatment. In this chapter, some future work is given based 

mainly on geometry control of micro/nano structures. 

Superoleophobicity. Regarding superoleophobic surfaces, more efforts should be 

focused on the surface micro and nano structure control to achieve a re-entrant structure 

or overhang structure to achieve nonwetting by manipulation of micro/nano structures. 

Si (111) surface can be etched to form reentrant or overhang structures. We 

performed the Si (111) etching in Fe(NO3)3/HF by metal assisted etching technique. The 

etching proceeds at room temperature for 3 hours. The surface morphology and the cross-

section view of the structure were shown in Figure 161 and 162 respectively. 

  
Figure 161. The surface morphology and cross-section of the etched Si (111) surfaces; a) 
top view, b) cross-section view of the top surfaces. 

After the surface treatment with PFOS, the surface can be superhydrophobic. 

Surface contact angles with different liquid droplet were shown in Figure 2. One most 

a b
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significant observation on this surface is that the surface showed superoleophobicity. For 

regular superhydrophobic surfaces, the ethylene glycol showed a contact angle of < 30˚. 

However, on this Si surface, the ethylene glycol contact angle can go to ~160˚. When the 

surface tension of liquids decreased, the superhydrophobic contact angle on the rough 

surface also decreased and the hysteresis increased significantly when the surface tension 

decrease. For ethylene glycol which shows a surface tension of 47.7 mN/m, the contact 

angle is still high enough for a superhydrophobic surface although the contact angle 

hysteresis is large. 
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Figure 162. Contact angles of different liquids on etched Si surfaces treated by PFOS. 

 

Table 23. Surface tensions for common liquids. 

Common liquid Surface tension, mN m-1 (or mJ/m2) 

Water (20˚C) 72.8 

Glycerol 63.4 

Ethylene glycol 47.7 
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Mechanical robustness. Although we have shown that robustness can be 

improved by appropriate hierarchical structure design on Si surfaces or using epoxy/silica 

nanoparticles, further investigation on using abrasive materials, such as Al2O3, SiC, 

diamond like carbon, is necessary to make a structured surface with excellent mechanical 

durability. Special processing approaches should be developed because of the difficulties 

in processing these materials. In addition, cost effective technology is another important 

factor in the application of superhydrophobic surfaces. 

Self recovery superhydrophobic surfaces. Self-recovering surfaces are quite 

common on lotus leaves for both surface structures and hydrophobic species. For 

artificial surfaces, self recovery of structures requires is more technically demanding. 

However, self recovery of hydrophobic species is demonstrated achievable. Further work 

should be focusing on the selection of hydrophobic species which showed both a low 

surface energy and improved bonding on substrate surfaces, low volatility and UV and 

chemical stability. Functionalized polydimethyl siloxanes and fluorinated molecules are 

preferred for this purpose. 

Self-cleaning photovoltaics. Energy is the toughest issue our society will face in 

the near future. Alternative clean energy solutions to oil must be brought up and applied 

not only for energy demand, but also for environmental protection. Photovoltaics are 

attracting more and more attention in this regard. Self-cleaning photovoltaic surfaces with 

micro/nano structures show great potential in dust cleaning, reduction in frost formation, 

water repellency, and added functionalities such as reduced light reflection. One 

drawback is the increased surface area of the semiconductor surfaces which may increase 

the surface recombination of electron/holes, which is a big issue in photovoltaic 

efficiency. Some potential methods to passivate Si surfaces are discussed below.  

1) Silane solution treatment[244].  

Surface treatment with silanes to form self assembled monolayer (SAM), as 

shown in Figure 163, to reduce the surface energy, was proposed. On the passivated 
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surface, Si-O-C bonds are formed. In the preliminary experiments, the PI found that this 

monolayer (1-2 nm in thickness, dependent on the hydrophobic side chain length) can 

dramatically change the SiO2/silicon surface from hydrophilic (contact angle 5-10˚) to 

hydrophobic (contact angle 115-120˚). From the point view of superhydrophobicity, the 

lower the surface energy is, the better self-cleaning surface can be achieved. In addition, 

the well-formed SAM layers will passivate the surface defects which are disadvantageous 

for the lifetime of free carriers (electrons/holes) in silicon semiconductor that are 

generated by absorbed photons. The SAM types and processing conditions require 

systematic exploration to fabricate well passivated and self-cleaning surfaces with 

reduced surface recombination rate. 

 
 

 

 

Figure 163. Silane SAM formation on silicon wafer surface. 
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2) HMDS vapor phase treatment[245, 246]. 

 

 

Figure 164. Illustration of the surface passivation using hexamethydisilazane (HMDS). 

This surface treatment method can be conducted in HMDS vapor phase to 

eliminate the surface defects of SiOH groups for improved surface property while 

achieving hydrophobic surface through trimethyl groups as shown in Figure 164. 

3) Grignard reagent solution treatment[247]. Due to the Si-C bonding, the surface 

electron states can be maintained. This surface treatment method leads to the production 

of defined organic overlayers on Si surfaces. These surface reactions have been shown to 

produce improved resistance to surface oxidation, while maintaining excellent 

electrochemical and electrical properties. In fact, the surface recombination velocity of 

the methylated Si surface has recently been determined to be less than 20 cm/second, 

which is comparable to high quality hydrogen-terminated Si surfaces but which is stable 

in contact with atmospheric ambient[248, 249]. This method may help to find an efficient 

and cost-effective way to passivate the Si surface. 

 

4) Surface grafting of silicone[250]. (nano-patterning and doping) Picture 

illustration as shown in Figure 165. 

Methods 1 and 2 generate surface Si-O-Si bonding at the interface. The stability 

of such interface should be investigated especially under direct sunlight irradiation. 

Methods of 3 and 4 are targeting at formation of direct Si-C bonding which is expected 

for improved electrical performance of devices. With the development of new surface 

-NH3 
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processing techniques, new methods can also be tried with continuous literature survey. 

The effect can be compared with regard to the surface recombination velocity and 

minority carriers lifetime. 

 

 

 

Figure 165. Illustration of the surface passivation with PDMS.  
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