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SUMMARY

Much of the literature on supply chain management (SCM) has overlooked the importance

of nonprice factors to consumer demand and does not include it in its model1. Even

when a nonprice factor such as service is being considered, it is often studied only at the

seller/retailer-customer level, and rarely at the manufacturer-customer level. The literature

overlooks the fact that manufacturer, as well, can influence demand through interacting

with customers via nonprice factors. In reality, for example in a PC market, the demand for,

say, IBM PCs does not depend solely on price, but on IBM’s level of technical customer

supports as well. This research is being conducted to fill in this gap by studying the

influence of both price and services in a dynamic supply chain environment.

To capture both horizontal strategic interaction and vertical strategic interaction be-

tween firms in a supply chain, this report studies a case where there are two manufacturers

producing competing products and selling them through a common retailer. The two man-

ufacturers must decide on the wholesale price and the level of service they plan to provide

to the consumer. We assume that the two manufacturers have equal bargaining power and

makes their decisions simultaneously. We assume, as a base case, that the manufacturers

have more bargaining power than the retailer. Thus, the manufacturers have the power

to set wholesale prices and service levels before the retailer sets the retail prices. The

retailer, having less power, makes his decisions (on retail price and ordering quantity of

1Examples of nonprice factors are customer supports, service quality, advertising, etc.
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each product) after observing the actions of the manufacturers. Each firm are assumed

to optimize only its own profit (uncoordinated). The consumer demand depends on two

factors: (1) retail price, and (2) service level provided by the manufacturer. All firms in

the industry are assumed to behave as if they have perfect knowledge of the demand and

the cost structures within the industry.

We extend the study on this basic model in three directions. First, we explore the role

of bargaining power in supply chain strategic interactions; particularly, we investigate the

strategic behavior of firms when the retailer possesses more bargaining power than that

assumed in the base case. We derive and compare equilibrium solutions for the supply

chain under three different scenarios (e.g., Manufacturer Stackelberg, Retailer Stackelberg,

and Vertical Nash). We found that it is more beneficial to consumers when there is no dom-

inant player(s) in vertical strategic interaction. Furthermore, when one manufacturer has

economic advantage in providing service, the retailer will act to separate market segment

by selling products with low service at low price and selling products with high service at

high price.

We then extend the framework to study multi-period model. In this model, demand

also depends on the past period retail prices and service levels, as well as current prices

and service levels. This assumption captures the “learning through repeated transactions”

behavior of demand. We investigate how the “learning” behavior by consumers would

affect the strategic behavior of firms over multiple periods. Game-theoretic approaches

and dynamic system and control theory are used as tools to model the problem. We found

that if demand is only sensitive to price in its learning process, the company with any

type of cost advantage will gain more profit and capture a larger market base than its

xv



competitor. The retailer will sell both products at the same retail price but the firm with

cost advantage will be able to support more service to its customers.

We also compare the results from our model to those obtained from a myopic model.

In a myopic model, the firms only care about their profits in the current period and ignore

any future effects their behavior might cause over time. We found that myopic firms are

not capable to cope with the learning consumers. Their markets shrink and they earn less

profit over time. On the other hand, our model, with think-ahead firms, can prevent this

phenomenon from happening. Firms plan their actions to take advantage of the learning

behavior of demand. The service levels and prices are chosen such that the firms are

rewarded by the consumers. Thus, markets keep growing for both products while firms can

keep earning more profits.

Finally, we examine a single period problem with stochastic demand. When demand

is uncertain, the retailer faces a newsvendor-type problem. In our model, the newsvendor

must manage two competing products against a price-dependent demand. The retailer

must decide how much to order from the two manufacturers and at what price each product

should be sold in order to maximize his profit. This problem has not been examined in

literature. We investigate this problem and analyze how uncertainty can impact strategic

interactions among firms in the supply chain, and compared the results to the deterministic

case. We derive an expression for the newsvendor’s optimal retail prices. We also derive a

sufficient condition such that there exists a unique solution for the retail prices. Next, we

extend the model to include the two manufacturers. We provide an algorithm to search for

the equilibrium wholesale price and service level, given that the manufacturers know the

retailer’s reaction function. Some numerical examples are provided.
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CHAPTER I

INTRODUCTION

1.1 Background and Motivation

Over the past decade, supply chain planning has gained significant importance, due pri-

marily to advances in information technology such as Enterprise Resource Planning (ERP),

distributed client-server networks, and the Internet. As an example, with the advent of

the Internet, several auction sites have emerged, allowing consumers to bid on their desired

item. Consumers have more access to information about products, including price and

quality of products as well as level (or quality) of customer service manufacturers provide

to their customers. This phenomenon has created a paradigm shift for both retailers and

manufacturers. Retailers (or more appropriately, e-tailers) are now more inclined to com-

pete on price (see Keeney(1999) [39], Brynjolfsson et al.(2000) [5], and Dewan et al. (2003)

[19] for more details on online competition).

On the other hand, manufacturers, rather than competing solely on price, have focused

more on using services and/or the quality of their products to build brand loyalty. As an

example, IBM and Dell are famous for their customer support. These reputations give them

an edge over their competitors when customers decide which brand to buy. When customers

buy a new computer, they not only consider the hardware, but also the software that

comes with it. Customer service is also one of the attributes that influences the customers’

decision. This is because customer support can “help the customers obtain maximum value

1



from their purchases” (Goffin (1999)[27]). Another example is in electronics appliances such

as washer/dryer machines, refrigerators, etc. In the washer market, Maytag and GE are

competing to sell their appliances through common retailers such as Sears or Bestbuy. The

major concern for end consumers is not only low price but also the service that comes with

the appliance. Therefore, it is important for both GE and Maytag to provide good service

in order to maintain loyal customers and lure customers from their competitors.

These examples show efforts by manufacturers to distinguish themselves from their

competitors through nonprice factors such as services. In both markets mentioned above,

the manufacturers interact directly with the end consumers to create demand for their

products. This emphasizes the importance of services on demand, which has been largely

overlooked by academics. However, the return on investment in services usually has a

decreasing return to scale; the next dollar invested in service produces a lesser increment

in service than the last dollar invested. In other words, it costs more to provide the next

unit of service than the last one1. Therefore, it is important to find the optimal level of

service (or quality) that can be achieved for any given demand level.

Aside from emphasizing service and quality, competitive pressures have also forced

manufacturing and service organizations to streamline their supply chain operations, reduce

system operating costs, while improving speed and reliability. All of these must be done

through channel coordination and channel selection.

Different objectives of channel members, however, can create conflicts within a channel.

As a result, its members often fail to reach the system-wide optimal pricing decisions. For

example, in a market with a monopolist or a group of oligopolists, the manufacturers have

1See Chapter 2 for literature review with similar assumption
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more negotiation power than the retailers and are therefore able to sell their product with a

premium above the competitive price. Many studies focus on vertical coordination among

channel members through various transfer pricing schemes or formal agreements such as

contracts to achieve maximum channel profit. Many of these studies consider only one

manufacturer (monopoly) and its channel intermediaries, the analysis of competition and

cooperation is confined only to vertical interaction, and involves only one product.

Little attention has been given by researchers to a larger segment of most consumer

goods and electronics markets in which retailers sell multiple (often competing) brands at

the same location. This latter channel structure represents numerous markets including

those consisting of specialty stores (e.g. consumer electronics, sporting goods, and automo-

bile parts, to name a few), department stores, supermarkets, and convenience stores. This

research analyzes the channel structure with multiple-brand vendors (common retailer).

Specifically, we analyze a market structure in which there are two competing manufacturers

and one common retailer. We also include nonprice factor in the study of the competition.

In the majority of the existing literature in economics and operations research, when

a nonprice factor such as service is considered, it is often studied only at the retail level.

Only a few studies explore the fact that manufacturers can influence the demand through

nonprice factors as well. Our goal is to investigate the above channel structure with price

and nonprice factors considered together. Figure 1 shows the channel structure studied in

this research.

Our study integrates pricing and service/support decisions into one model. Tradition-

ally, decision on levels (quality) of customer support, wholesale prices, and production have

all been determined by separate divisions within the same manufacturing firm. The same

3



is true for a retailer who must make decisions on retail price and ordering quantity to the

manufacturers or wholesalers. We plan to study these decisions within a single framework

to see how certain parameters affect the optimal solution. Our research would impact

the way firms operate and make their decisions regarding competition and supply chain

coordination.

One of the main features lacking in the existing literature is the study of channel

structure in the multi-period setting with learning demand2. Also lacking in the literature

is the study on how bargaining power affects behavior of firms in a supply chain. We are

interested in the behavior of retailers and manufacturers when faced with learning demand.

We plan to investigate how learning demand and bargaining power can affect service levels,

retail price, wholesale price, and the profit of each firms. We believe this is an important

contribution that has not been explored in the existing literature.

In our model, we define service as the following:

DEFINITION 1.1. Service is any action which the provider takes to enhance the ex-

perience of the customer while he/she is consuming the product. Hence, the customer’s

willingness to pay for that product increases. Examples of services include post-sale cus-

tomer support, improved quality, etc.

Service may increase the value of the product to the customer because it results in

informational asymmetries that favor the firm, or possibly because it generates benefits

that customers weigh against search costs when deciding where to shop (for alternatives).

2This simply means that the customer demand in the current period depends on prices and service
levels in the past period(s).
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1.2 Problem Description

The model considered in this report has two manufacturers and one retailer. The manufac-

turers sell physical products to the retailer and provide services directly to the consumer.

The consumer demand for each product is sensitive to both retail price and service level

provided by the manufacturer. Figure 1 shows the schematic presentation of this supply

chain. We assume that the two manufacturers have equal bargaining power. This translates

to simultaneous moves by both of them. We also assume, as a base case, that the manu-

facturers have more bargaining power than the retailer. Thus, they have the power to set

wholesale prices and service levels before the retailer sets the retail prices. Chronologically,

within each period, events happen in the following order (see Figure 2):

Manufacturer 1

Retailer

retail price (p2)

service (s1) service (s2)

Manufacturer 2

Potential Customer

retail price (p1)

wholesale price (w2)wholesale price (w1)

demand (Q1)

demand (Q2)

order (Q1)

order (Q2)

production cost (c1) production cost (c2)

Di = ai - bppi + θp(pj - pi) + bssi – θs(sj - si)

Figure 1: Main Model.
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Retailer gives orders
and sets retail price

Manufacturers 
announce 

wholesale prices 
and service levels

Demand for the 
season is realized

Retailer gets profits
and charges for 
any shortages 

or leftovers

Suppliers’ profit 
is realized

For each period (transaction):

3
1

4a

2

4b

Figure 2: Timeline of events within each transaction.

Step 1. The manufacturers simultaneously announce wholesale prices to be offered to the

retailer and service levels to be offered to consumers.

Step 2. In response to the manufacturers’ announcement, the retailer decides the retail price

and ordering quantity of each product that would maximize his expected profit. The

retailer’s ordering quantities become incoming demands for each manufacturer.

Step 3. The consumer demand for each product is realized.

Step 4. The shortage cost or disposal cost for each product is charged to the retailer, depend-

ing on the demand and the stocking level. The manufacturers realize their profit in

this transaction.
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We extend the study on this basic model in three directions (see Figure 3). First, we

explore the role of bargaining power in supply chain strategic interactions; particularly,

we investigate the strategic behavior of firms when the retailer possesses more bargaining

power than that assumed in the base case. We derive and compare equilibrium solutions for

the supply chain under three different bargaining power assumptions (e.g., Manufacturer

Stackelberg, Retailer Stackelberg, and Vertical Nash). The results from this investigation

will shed some light on how retail prices and service levels are influenced by bargaining

power. Details of our investigation are given in Chapter 3.

We then extend the problem to multiple periods. In the multiple period model, demand

also depends on past period retail prices and past service levels. This is to capture the

“learning through repeated transactions” behavior of demand. For example, in PC industry,

consumers upgrade their PCs every 3-5 years. Thus, it is possible that customers gain more

experience on price and service every time they upgrade their products. The price they

paid and the service they received during their last experience will influence their next

upgrading decisions. We investigate how “learning” behavior by consumers would affect

the strategic behavior of firms over multiple periods. Game-theoretical approaches and

dynamic system and control theory are used as tools to model the problem. Details on this

part of the research are given in Chapter 4.

Lastly, we modify our model to capture demand uncertainty. When demand is stochas-

tic, the retailer faces a newsvendor-type problem. In the classic newsvendor problem, there

is only one product, with a given fixed price and uncertain demand. In our model, however,

the newsvendor must manage two competing products against a price-dependent demand.

The retailer must decide how much to order from the two manufacturers and at what price
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each product should be sold. We investigate this problem and analyze how uncertainty

can impact strategic interactions among firms in the supply chain, as compared to the de-

terministic case. Chapter 5 provides details of our investigation on the uncertain demand

case. The next section gives guidelines and details of each chapter within this report.

Demand Uncertainty

Number of Periods

Retailer Bargaining 
Power

Base case: Single period, deterministic demand,
Manufacturer Stackelberg.

Chapter 4: Multiple periods, 
deterministic demand,
Manufacturer Stackelberg 

Chapter 3: Single period, deterministic demand,
Retailer Stackelberg & Vertical Nash

Chapter 5: Single period, 
stochastic demand,

Manufacturer Stackelberg

Figure 3: Research Direction.

1.3 Outline and Research Contribution of this report

This report examines a supply chain structure with two competing manufacturers and a

common retailer. The demand depends on prices and service levels. In Chapter 2 we review

the relevant literature, and compare it to the problem we investigate in this thesis.
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Next we investigate the role of bargaining power in Chapter 3. Namely, we consider the

problem with single period setting and with deterministic demand. We derive the expres-

sions for the equilibrium retail prices, wholesale prices, and service levels under different

bargaining power assumptions. We then compare results from the three scenarios and de-

rive some insights on the strategic interactions among firms in the supply chain. We then

study the influence of each parameter in the model on the equilibrium solution by using

sensitivity analysis.

In Chapter 4 we extend the basic case over multiple periods. We study the behavior

of each firm (one retailer and two competing manufacturers) over time when faced with

“learning” demand. We assume that demand for each product in any given period is affected

by two types of components: (1) the difference in prices and service levels between the two

products in the previous period, and (2) the amount of investment by each manufacturer

at the beginning of each period to expand the market base of its product (or brand). We

approach the problem by introducing a new methodology for game-based decision making

in multiple periods by combining a game-theoretic approach with concepts from dynamic

systems and control theory. Finally, we derive economic and managerial insights using the

knowledge from dynamic systems and control theory.

In Chapter 5 we consider the first part of the stochastic problem by studying the two-

product newsvendor problem with price-dependent demand. We derive an expression for

the optimal retail price. We also derive a sufficient condition such that there exists a unique

solution for the retail price and for the order quantity for both products. We find that the

hazard rate of the demand distribution is crucial for the existence of a unique solution. We

also give a set of conditions that must be satisfied by the optimal solution. Next, we extend
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the model to include the two manufacturers. We then formally describe the model using

mathematical expressions. The results from the investigation of two-product newsvendor

are used to determine the retailer’s reaction function. We then propose an algorithm to

provide the manufacturers with the equilibrium wholesale price and service level, given that

they know the retailer’s reaction function. Finally, some numerical examples are shown.

Chapter 6 concludes with our contributions and gives some possible extensions to our

thesis for future studies.

10



CHAPTER II

LITERATURE REVIEW

2.1 Introduction

There are many existing studies on supply chain management. They range from economics

and marketing to operations research and management. We will concentrate on those that

are related to our model. As shown in Chapter 1, our research spans three different direc-

tions. Each direction requires different combinations of knowledge from various relevant

fields. In the single-period deterministic problem considered in Chapter 3, game theory

and optimization are used to investigate the problem. Chapter 4 requires game theory

and dynamic systems and optimal control to model multi-period problem with demand

learning. Lastly, Chapter 5 studies the supply chain with stochastic demand. The model

requires knowledge from both game theory and operations research. In this chapter, related

literature for each direction will be reviewed and addressed.

We categorize literature into groups according to the three research directions of this

thesis. To systematically review existing literature, it is very helpful to consider the fol-

lowing five factors:

(1) Channel structure: Number of Supplier(s) and Retailer(s). The structure of the

channel being studied is the most important factor. Early studies focus on one re-

tailer and one manufacturer (two-stage supply chain) or two competing retailers.
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Recent studies include other situations such as one supplier-multiple retailers, multi-

ple suppliers-single retailer, or multiple suppliers-multiple retailers. We assume one

retailer and two suppliers in our model.

(2) Number of products: Single versus Multiple. Most models in the literature assume a

single product; some assume two or more competing (heterogeneous, substitutable)

products. Our model assumes two competing products, each being produced by a

different manufacturer.

(3) Decision attribute(s): Price versus Nonprice. In most literature, firms compete only

on price. However, nonprice factors such as service, advertisement and quality level

can also influence the demand for the product. In the literature, there are differences

in how various types of nonprice factors are defined and used in different models. For

example, So (2000) [80] uses a delivery time guarantee, Iyer (1998) [32] uses locational

differentiation among retailers, while Hall and Porteus (2000) [28] use customer ser-

vice capacity. In our model, we define our nonprice factor to be the level (or quality)

of service. This is similar to the definition used in McGahan and Ghemawat (1994)

[58].

(4) Demand: Deterministic versus Stochastic. Most of the marketing and economic lit-

erature assumes that the demand is deterministic while most of the literature in

operations assumes a stochastic demand. In this thesis, we investigate the problem

with both deterministic and stochastic demand assumptions. The literature on the

deterministic case provides good background to our stochastic model and should be

studied carefully.
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(5) Number of periods: Single versus Multiple. Most marketing and microeconomic

models assume a single period and focus on how each player interacts and on critical

factors that influence their decision. The multi-period model, on the other hand,

is used to capture the dynamic and “learning” aspect of the model. Our model

in Chapter 4 is multi-period, but results from the single-period problem studied in

Chapter 3 are the basic building blocks for the multi-period model.

Different combinations of the above 5 factors give rise to various situations. Some have

been extensively studied, while some have been overlooked and not yet explored. Table

2.1 shows some of the literature categorized according to the assumption used in the main

model on various factors (e.g., demand, number of periods, attributes, number of products,

and channel structure). In the table, our problem is compared to the rest of the literature.

The marketing literature often focuses on the coordination of pricing decisions in a

single period, without production and inventory considerations. The operations literature,

on the other hand, has traditionally been focused on coordinating production and inventory

decisions, assuming that price and, hence, demand are given. The problems that are most

heavily studied are within the EOQ setting where both the supplier and the retailer face a

fixed production/ordering cost and a linear inventory holding cost.

Other studies in marketing and management literature focus on decentralized supply

chain and try to find mechanisms to coordinate the actions among various players to achieve

the optimal (centralized) solution. In a decentralized supply chain, closely inter-related

business activities are often performed by multiple firms with conflicting objectives. When

the decisions of these firms are uncoordinated, the supply chain as a whole encounters a

significant loss of efficiency. Coordination of activities among different firms offers numerous
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Structure Attributes # Prod. # Periods Representing Paper(s)
1 Retailer, 1 Manu. Price & Service 1 1 Jeuland & Shugan (1983)
1 Retailer, 1 Manu. Price 1 1 Moorthy (1987)
1 Retailer, 2 Manu. Price 1 1 Choi (1991)
1 Retailer, 1 Manu. Price & Power 1 1 Ertek and Griffin (2002)

2 Firms Price & Service 1 1 McGahan and Ghemawat (1994)
N Firms Price & Service 1 1 So (2000)

2 Retailers, 1 Supplier Price & Service 1 1 Tsay and Agrawal (2000)
1 Supplier, 2 Retailers Price & location 1 1 Iyer (1998)

1 Retailer, 2 Supplier Price & Service 2 1 Chapter 3

2 Firms Price & Advertising 2 ∞ Vilcassim et. al. (1999)
2 Firms Advertising 2 t > 1 Fruchter and Kalish (1997)
2 Firms Advertising 2 ∞ Chintagunta (1993)
2 Firms Price & Brand 2 ∞ Chintagunta and Rao (1996)
1 Firm Price & Inventory 1 t > 1 Federgruen and Heching (1999)

1 Newsvendor Price 1 t > 1 Pertuzzi and Dada (1999)
1 Newsvendor Price 1 t > 1 Petruzzi and Dada (2002)

1 Retailer, 1 Supplier Price 1 t > 1 Chen et al. (2000)

1 Retailer, 2 Supplier Price & Service 2 t > 1 Chapter 4

1 Newsvendor Price 1 1 Silver et al. (1998)
1 Newsvendor Price & Quantity 1 1 Lau and Lau (1988)
1 Newsvendor Price & Quantity 1 1 Dana and Petruzzi (2001)
1 Newsvendor Price & Quantity 2 1 Khouja et al. (1996)
1 Newsvendor Price 2 1 Li et al. (1991)
1 Newsvendor Price m > 1 1 Lau and Lau (1995)
N Newsvendor Price 1 1 Lippman and McCardle (1997)

1 Newsvendor, 1 Supplier Price 1 1 Lariviere and Porteus (2001)
1 Newsvendor, N suppliers Price 1 2 Petruzzi and Dada (2001)

1 Firm Price & Inventory 1 1 Johnson and Montgomery (1974)

1 Newsvendor, 2 suppliers Price & Service 2 1 Chapter 5

Table 1: Summary table of the existing literature

challenges and opportunities both for academic and real-world applications. Therefore,

there exist many studies in economics , marketing, and operations management addressing

coordination among firms in supply chain. Examples of reviews of advances in this problem

can be found in Thomas and Griffin (1996) [84], Simchi-Levi et al. (1999) [79], Tayur et

al. (1999) [82], and Cachon (2001) [10].

Our model combines marketing and operations approach to study both pricing and

ordering decisions faced by firms in the supply chain. We investigate strategic interactions

among firms in the supply chain using combinations of game theory, dynamic systems and

control theory, and operations research. The coordination issue is not the focus of this

thesis1.

1Possible extensions of this thesis are be given and discussed in Chapter 6
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In the following sections of this chapter, we review some of the works related to our

problem. In Section 2.2 we review literature in which models assume a deterministic de-

mand. These models are mostly from the marketing or economics literature and are used

to demonstrate the coordination of channel through price or other payment schemes. The

literature provides a good basis for understanding how players in each stage of a supply

chain interact with one another. Literature on nonprice competition is also discussed in

this section since our model assumes that demand is sensitive to both price and service2.

Section 2.3 reviews literature in which multiple-period models are analyzed, especially

those that involve “learning” through repeated transactions. There are two streams of

research on “learning.” The first group refers to “learning” as a process of updating in-

formation on demand distribution (e.g., Petruzzi and Dada (2001) [68] and Cachon and

Porteus (1999) [8]). Another stream of research imbeds “learning” into demand function

as part of demand modelling (e.g., Vilcassim et al. (1999) [91]). We follow this latter

approach in our analysis of the multi-period problem in Chapter 4.

Section 2.4 reviews literature involving the newsvendor model and its extensions. Our

model defined in Chapter 5 differs from existing models because of additional assumptions

on (1) price-dependent demand, and (2) multiple products being sold by the newsvendor.

The existing literature assumes and studies models with only one of these assumptions at

a time, but never assumes both in the same model. Our work in Chapter 5 is an important

extension to existing literature on the newsvendor model.

2The deterministic version of our model can be seen in Chapter 3.
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2.2 Deterministic Demand

The literature with deterministic demand can be separated into two main groups. In the

first group, demand is assumed to depend solely on price. In the second group, demand

may depend on other attribute(s) such as service or quality.

2.2.1 Price-Sensitive Demand Models

Studies on horizontal competition between two or more producers (or sellers) can be traced

back to classic economic models such as Cournot, Bertrand, and Stackelberg competition.

Reviews on these models and their variants can be found in Tirole (2000) [87]. However,

these studies are primarily based on a single-echelon environment. Early studies on a

multi-echelon environment can be found in Jeuland and Shugan (1983) [35], McGuire and

Staelin (1983) [59], Moorthy (1987) [62], and Ingene and Parry (1995) [31]. Most of these

studies consider only the case with a single manufacturer and a single retailer. They

have focused on vertical coordination among channel members through measures such as

transfer pricing schemes or formal agreements. Particularly, Jeuland and Shugan (1983)

show that the supplier can use a quantity discount schedule to induce the retailer to choose

the channel-optimal retail price. Moorthy (1987) shows that channel coordination can also

be achieved through a simple two-part tariff: the supplier sells the product at his own

(marginal) production cost and charges the retailer a fixed side-payment.

Lee and Staelin (1997) [51] examine strategic pricing policies in uncoordinated supply

chain (no vertical integration or two-part tariff). Using a game theoretic approach, the

paper shows that the question of using linear or nonlinear demand functions is not as crit-

ical as whether the demand functions imply vertical strategic substitute (VSS) or vertical
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strategic complement (VSC). They also show that it is not always beneficial to use the

knowledge of the competitors’ reactions.

Kim and Staelin (1999) [42] examine a single period profit maximizing game with two

manufacturers and two retailers. The manufacturers must decide on how large a side pay-

ment to give to each retailer, and retailers decide on how much of this side payment to

use to promote the manufacturer’s product. The authors derive the optimal solutions and

perform sensitivity analysis on the results. They find that if consumers become more sen-

sitive to differences in merchandizing activity between brands within a store, the retailers’

profits increase and the manufacturers’ profits decrease.

Weng (1995) [93] studies both pricing and production/ordering decisions. Weng con-

siders a system with a single manufacturer and multiple, identical retailers and shows that

channel coordination can be achieved by using a quantity discount policy. Chen et al.

(2001) extend Weng’s model to non-identical retailers. Both papers consider a static model

(i.e., stationary demand) with concave cost function, which is different from our dynamic

model.

Choi (1991) [15] examines a channel structure with two competing manufacturers and

one common retailer that sells both manufacturers’ products. The study includes a one-

period problem with deterministic, price-sensitive demand, and three noncooperative games

of different power structures between the two manufacturers and the retailer, i.e., two

Stackelberg games and one Nash game.

Tsay and Agrawal (2000) [90] study a distribution system in which a manufacturer

supplies a common product to two independent retailers. The demand is deterministic

and depends on both the retail prices and retail services. They show that the intensity
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of competition with respect to each competitive dimension plays a key role, as does the

degree of cooperation between the retailers.

Zhao and Wang (2002) [98] study the multiple-period problem of a system with one

supplier and one retailer facing a deterministic, price-sensitive and time-dependent demand

over a finite horizon (one selling season). They study the case where the manufacturer is

the Stackelberg leader and give the retailer a price schedule for every period in the coming

season. Dynamic programming techniques are used to obtain some key results and to show

that there exists a wholesale price schedule that can lead to the channel-optimal solution.

Ertek and Griffin (2002) [22] study decentralized pricing-production decisions in a

supplier-buyer channel with EOQ cost structure. They examine the impact of power struc-

ture on price, sensitivity of market price, and profits in a single-product, two-stage supply

chain with one supplier and one retailer. They consider the cases where each of the player

(supplier/retailer) has a dominant bargaining power. However, they do not address coor-

dination issues.

2.2.2 Service/Quality-Sensitive Demand Models

Nonprice factors include services, quality, negotiation power, etc. However, the majority

of the studies mentioned above have considered price or product quantity as the only

dimension of competition. Some researchers have recognized this weakness and developed

models containing additional attribute(s) that may influence consumer demand. Early

research to include attributes such as product quality and service can be found in economics

literature such as Spence (1975) [81] and Dixit (1979) [20]. In marketing literature, Jeuland

and Shugan (1983) include nonprice variable such as quality and services in their model with
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the profit function as a linear function of service amount. Our model, on the other hand, has

the profit function as a nonlinear function to service amount due to the decreasing returns

of providing service. Moorthy (1988) [63] examines a competition in duopoly through both

price and quality. Our model considers both horizontal and vertical relationships. Recently,

there have been many studies that incorporate nonprice factors in a model to analyze its

impact on competition or channel coordination.

Iyer (1998) [32] examines a channel with one manufacturer and two retailers who com-

pete on both price and non-price factors. He assumes that consumers are heterogeneous

in spatial locations (as in the spatial models of horizontal differentiation) and in their will-

ingness to pay for retail services (as in the model of vertical differentiation). In the model,

the manufacturer is the Stackelberg leader, while the two retailers move simultaneously.

The paper shows that in markets with small locational differentiation and substantial di-

versity in consumer willingness to pay, the manufacturer’s problem is not just to align

retailer interests, but also to use a channel contract to induce the optimal level of retail

differentiation.

McGahan and Ghemawat (1994) [58] study a single-transaction, game-theoretic model

in which duopolists attempt to retain old customers through service and attract new cus-

tomers through price. They use a two-stage model in which the duopolists simultaneously

commit to expenditures on customer service in the first stage and then (simultaneously)

name their prices in the second stage. The paper shows that large firms are likely to exhibit

greater customer retention rates than their smaller rivals in equilibrium.

Hall and Porteus (2000) [28] study a finite multiple-period problem in which two firms

compete by investing in capacity that is used to provide goods or services to their customers.
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They assume that there is a fixed total market of customers whose demands for the goods

or service are random. The paper obtains results for both single-period and finite-horizon

problems.

So (2000) [80] studies the problem where several heterogeneous service firms use delivery

time guarantees to compete for customers in the marketplace. Demand is deterministic and

is assumed to be sensitive to both price and delivery time guarantees. The objective of the

firm is to maximize profit by selecting the optimal price and time guarantee. He finds that

the high capacity firms provide better time guarantees, while firms with lower operating

costs offer lower price, and the differentiation becomes more acute as demands become

more time-sensitive.

2.3 Multiple-Period Models

Existing studies on multiple-period models can be separated into two groups. Studies in the

first group are mostly from the industrial engineering and operations research community;

they focus on production and/or inventory management by a single firm. The second

group is mostly from the marketing and management community; they concentrate on

competition and interactions among firms through either price or nonprice factor(s) over

time. Our research in Chapter 4 fits into the second group. Literature in each group is

reviewed here.

2.3.1 Productions and Supply Chain Management

Early literature in this group include Thomas (1970) [83], who considers the joint pricing-

production decision in a discrete-time (multi-period) setting. Federgruen and Heching
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(1999) [23] consider pricing-production models with concave revenue functions. Particu-

larly, they examine a multiple-period, single-item problem, in which a firm faces uncertain

price-dependent demand. The paper addresses the simultaneous determination of pricing

and inventory replenishment strategies for such a firm in both finite and infinite horizon

models, with the objective of maximizing total expected discounted profit or its time aver-

age value.

There is a rich collection of literature on supply chain coordination with stochastic de-

mand. Several mechanisms have been identified to coordinate manufacturer-retailer chan-

nels. They include the inventory buyback/return policy (Pasternack (1985) [67] and the

quantity flexibility policy (Tsay (1999) [89]) for models without pricing decisions, and with

revenue sharing contracts (Cachon and Lariviere (2000) [9]) and with a two-part tariff

(Weng (1997) [94]) for systems with pricing and production decisions. The coordination

mechanisms serve as means to share risk among firms in a channel in order to resolve in-

centive incompatibilities due to uncertainties. For an up-to-date, comprehensive review on

this line of research, the reader is referred to Cachon (2001) [10].

2.3.2 Multi-period Dynamic Competition

The majority of studies in this group are from the marketing and management community.

Marketing literature models demand as diffusion of acceptance with adoption rate/sales

rate and focus on consumer adoption process of a new product. The current research on

diffusion models originated with the Bass model (Bass (1969) [3]), which does not include

price. Robinson and Lakhani (1975) [73] were the first to incorporate the variable of price

into the Bass model. In recent work, the cost experience curve has been introduced on
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the production side; hence there are learning effects on both demand and cost. Most

applications deal with durable goods where each adopter represents one unit of sales. In

most cases, repeated sales have been ignored. However, Jeuland and Dolan (1982) [34]

and Mahajan et al. (1983) [57]) included repeated purchases in their models. Dockner

(1985) [21] generalizes the Robinson-Lakhani model to a duopoly. Dockner applies a game-

theoretic approach to find a Nash Equilibrium. However, this group of literature focuses

only on price as the main decision variable. It also does not consider the role of retailer in

the supply chain during dynamic competition.

There is another parallel stream of research in economics and marketing that is not

based on Bass’s diffusion model. Demand is assumed to be derived from aggregate (retailer

level) scanner data. Our model follows this approach which is common in microeconomics

(see Tirole (2000) [87] and Shy (2000) [76]). Both price and nonprice variable(s) can be

included in the model. Hotelling (1929) [30] was the first to introduce a formal model of

product differentiation through price and location. Gabszewicz and Thisse (1979) [26] and

Cohen and Whang (1997) [17] develop models where customers’ preference for products

can be strictly ordered (for example, quality - the higher, the better). Other studies such

as Chintagunta (1993) [13] examine the sensitivity of equilibrium profits in advertising

game in a duopolistic market. Chintagunta and Rao (1996) [14] consider pricing strategies

in a dynamic duopoly. Fruchter and Kalish (1997) [24] investigate dynamic competition

through advertisement between two firms.

It is only recently that “learning” through repeated transactions has been integrated

into multi-period models. There are two streams of research on “learning.” Petruzzi and

Dada (2001, 2002) [69], [70] and Cachon and Porteus (1999) [8] are among the studies in
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the first group which regard “learning” as a process of updating information on demand

distribution. Petruzzi and Dada (2001) analyze the problem of determining inventory and

pricing decisions in a two-period retail setting when an opportunity to refine information

about uncertain demand is available. In particular, they determine the optimal stocking

and pricing policies over time when a given market parameter of the demand process,

though fixed, is initially unknown. Petruzzi and Dada (2002) [70] extend the problem by

considering a multiple period problem. The authors use dynamic programming to formulate

their model.

Another stream of research embeds “learning” into the demand function as part of de-

mand modelling. Vilcassim et al. (1999) [91] use this approach in their analysis of price and

advertising competition among firms in a given product market. Firm (or brand) level de-

mand functions account for the contemporaneous and carry-over effects of these marketing

activities, and also allow for the effects of competitor actions. This approach enables them

to quantify both the direction and magnitude of competitive reactions, and also to identify

the form of market conduct that generates the particular pattern of interaction. We follow

this latter approach of “learning” in our analysis of multi-period problem in Chapter 4.

2.4 Newsvendor Model

The classical newsvendor problem assumes that the selling price is given and that the de-

mand is independent of the product’s price. This assumption is used in many extensions of

the newsvendor problem. However, recently many researchers start to address the newsven-

dor problem with price-dependent demand. Our model in Chapter 5 follows this trend. In

this section, we first review some of the extensions on the classical newsvendor that still
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assume price-demand independence. Newsvendor models with joint price-ordering decision

are then discussed.

2.4.1 Price-Independent Demand Model

Numerous extensions to the classical newsvendor model have recently been proposed in

the literature (see Khouja (1999) [41] for extensive reviews). In particular, Lau and Lau

(1988) [45] introduce a price-sensitive demand model under two objectives to maximize

expected profit to and maximize the probability of achieving a target level of profit. Parlar

(1988) [66] characterizes a duopoly of two newsvendors who become competitors because

their products are partially substitutable (i.e., when either of the firms’ stock is out, a

fixed fraction of the excess demand transfers to the other). Lippman and McCardle (1997)

[55] generalize this by considering various scenarios where the realized aggregate demand is

initially split between the firms as a function of their inventory levels and more substitutable

patterns. In their model, the two newsvendors sell perishable goods and choose quantities

to be sold at a predetermined market price. Both papers (Parlar (1988) and Lippman

and McCardle (1997)) examine the existence and uniqueness properties of Nash solutions.

However, explicit computation of the equilibria turns out to be nontrivial in both settings.

Lau and Lau (1988) [46] study a two-product newsvendor problem under the objective

of maximizing the probability of achieving a profit target. Li et al. (1990) [53] present an

analytical solution of the problem for the case of independent and uniformly distributed

demands. Lau and Lau (1991) [47] present an analytical solution of the problem for the case

of independent and exponentially distributed demands. The problem of a multi-product

newsvendor problem with capacity constraints is examined in Lau and Lau (1995) [48].
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Khouja et al. (1996) [40] examine a single-period newsvendor problem with two sub-

stitutable products. However, as in the classic newsvendor problem, they assume that the

price is given. Since many local optimal solutions may exist, the authors use Monte Carlo

simulation to identify the optimal solution (no analytical solution is given).

Lariviere and Porteus (2001) [43] study a simple supply chain contract in which a

manufacturer sells to a retailer facing a (standard) newsvendor problem with wholesale price

as the lone contract parameter. They study a single-period model with the manufacturer

as a Stackelberg leader. The “optimal” contract is created such that it maximizes the

manufacturer’s profit subject to assuring retailer acceptance (the retailer has opportunity

cost to compare with the expected profit).

Petruzzi and Dada (2001) [69] study a two-period newsvendor problem with the possibil-

ity of refining information about the uncertain demand. The newsvendor uses the demand

information he gets in the first period to help him plan for his actions in the second period.

2.4.2 Joint Price-Ordering Decisions

Research in joint pricing-ordering decisions was first formulated by Whitin (1955) [95]. He

incorporates pricing into the classic Economic Order Quantity (EOQ) model by assuming

that the demand rate depends linearly on the price. Major extensions to Whitin’s model

include Porteus (1985) [71], who considers investment to reduce setup cost, and Cohen

(1977) [16], who models perishable products. The decisions in all these models are static in

nature but the analysis on these models provide the basis for research on newsvendor-type

model.

Although most newsvendor models assume that price is given, there have been, in recent
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years, many papers addressing the newsvendor problem with price-sensitive demand. Lau

and Lau (1988) [45] is one of the earliest papers that study the problem with newsvendors

facing such demand. In their model, the newsvendor simultaneously decides the price and

order quantity. However, they use an alternative objective of maximizing the probability of

achieving the target profit level. Petruzzi and Dada (1999) [68] also examine an extension

of the classical newsvendor problem in which ordering quantity and selling price are set

simultaneously because the demand faced by the newsvendor is price-sensitive. They first

study a single-period version of the problem and then extend it to a multiple-period one.

Using the change-of-variable method, they find the condition that would guarantee the

existence of a unique solution. Chapter 5 of this thesis extends their work to the case of a

two-product newsvendor facing price-sensitive demand.

Dana and Petruzzi (2001) [18] examine a firm’s price and inventory policy when it faces

uncertain demand that depends on both price and inventory level. The authors extend

the classic newsvendor model by assuming that consumers choose between visiting the

firm and consuming an exogenous outside option. The paper investigates both the case in

which the firm’s price is exogenous and the case in which price may be chosen optimally.

The paper shows that the firm holds more inventory, provides a higher fill rate, attracts

more customers, and earns higher profits when it internalizes the effect of its inventory on

demand.

26



CHAPTER III

SINGLE-PERIOD DETERMINISTIC DEMAND

3.1 Introduction

With the current dynamic and competitive environment, product manufacturers must com-

pete with more complicated strategies than simply lowering their price. Non-price factors

such as service have become more important in affecting a consumer’s decision to buy a

product. In this research, service is defined as any action that the manufacturer takes

to “help the customers obtain maximum value from their purchases” (Goffin 1999, [27]).

Example of services include post-sale customer support, product advertising, improved

product quality, product delivery, etc.

There are quite a few successful firms that have focused on service and quality of their

products in building brand loyalty. For example, IBM and HP are both famous for their

customer support. This reputation gives them an edge over their competitors. Another

example can be seen in consumer electronics such as digital cameras. Nikon and Canon

are competing to sell their products through common retailers such as Ritz Camera or

BestBuy. One of the major concerns for end customers is not only how low the price is, but

also how good the service he or she expects to receive that comes with the product. In both

of these examples, the manufacturers interact directly with the end consumers through the

service channel.

The impact of the manufacturer’s service quality to consumers’ buying decisions is likely
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to influence the strategic interactions between a manufacturer and his retailer regarding

pricing and ordering quantity. Moreover, competitive pressure from other manufacturers

and their interactions with the retailer are issues that a manufacturer must also consider

in its decision processes. Our research focuses on the supply chain depicted in Figure 4,

where each manufacturer provides services directly to the customers and the retailer sells

competing products to end consumers1. To the best of our knowledge, very few studies

have considered all these issues of price and service interactions, manufacturers’ competition

and supply chain’s channel coordination simultaneously; even though most consumer goods

and electronics products are sold by retailers who sell multiple competing brands at the

same location (See Chapter 2 for literature reviews). This research will make significant

contributions in this important research area.

In order to study the role of service in competition between two manufacturers in this

supply chain we need to make assumptions regarding vertical strategic interactions between

manufacturers and the retailer. In general, in a market with a monopolist or a group of

oligopolists the manufacturers would possess more bargaining power than the retailer and

would be able to sell their product with some premium above the competitive price. On

the other hand, if the retailer possesses more negotiation power, it can bring down the

manufacturer’s profit and absorb the majority of the profit to itself. The reason we need to

consider these cases is because the retailer that deals with a number of competing products

is often a large retailer that can influence the market substantially. It has been reported

that the bargaining power has transferred from manufacturers to retailers in some retailing

1This research does not study the impact of retailer’s service to customers due to its potential “conflict”
with the service provided by the manufacturers. Issues about possible differentiation between services from
the retailer and those from the manufacturers is not the focus of our study here.
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Manufacturer 1

Retailer

retail price (p2)

service (s1) service (s2)

Manufacturer 2

Potential Customer

retail price (p1)

wholesale price (w2)wholesale price (w1)

demand (Q1)

demand (Q2)

order (Q1)

order (Q2)

production cost (c1) production cost (c2)

Di = ai - bppi + θp(pj - pi) + bssi – θs(sj - si)

Figure 4: Schematic illustration of the supply chain.

markets (see Messinger and Narasimhan (1995) [60] and Yoruk and Radosevic (2000) [97]).

Thus, it is important to study how bargaining power can affect the supply chain equilibrium

solution. To achieve this goal, the following three scenarios are examined: Manufacturer

Stackelberg (MS), Retailer Stackelberg (RS), and Vertical Nash (VN).

In this chapter we apply a game-theoretic approach to derive equilibrium solutions for

prices (and ordering quantities), service levels, and profits for each channel member. The

derivations are benchmarked with results obtained in the literature (e.g., Choi 1991) with-

out service factors. Our research concludes that consumers receive more service when every

channel member possesses equal bargaining power (e.g., Vertical Nash). An interesting but
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less intuitive result shows that as market base of one product increases, the competitor

also benefits but at a smaller amount than the manufacturer of the original product. Fur-

thermore, when one manufacturer has some economic advantage in providing service, the

retailer will take an active role to separate market segments by selling the product with

low service at a low price and selling the product with high service at a high price.

In Section 3.2 a basic model of noncooperative games is developed. Demand function,

cost structure for each firm, and vertical strategic interactions are also specified in this

section. Section 3.3 presents derivations and comparisons of analytical equilibrium solutions

(e.g., prices, services, and profits) under three scenarios using the game-theoretic approach.

Section 3.4 performs analysis on the results and sensitivity analysis on key parameters by

examining their influences on the equilibrium solution. The last section summarizes major

findings and delineates several possible extensions to this research.

3.2 Model

In our supply chain structure, there are two manufacturers producing different but substi-

tutable products. Both of these manufacturers sell their products to a common retailer,

who in turn sells the products to the end consumer. We assume that there is only one

retailer in the area. In other words, we assume that the distance between each retailer is

so large that there is no competition among retailers. This may be a strong assumption

for some markets. However, it allows us to focus on the competition between the two

manufacturers. We also assume that consumer demand for each product is sensitive to two

factors: (1) retail price, (2) service provided by the manufacturer. Notice that only services

that are provided by the competing manufacturers are considered. Effectively, we ignore
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the effect of the services provided by the retailer to the customer demand for each product.

We can think of this as the retailer providing the same level of service to both products;

the only difference to the customer’s perception (other than price) is the services provided

by the manufacturer.

We assume also that the investment in services has a decreasing return to scale. Namely,

the next dollar invested by the manufacturer returns less service than the last dollar in-

vested, i.e., it is harder (and costs more) to provide the next unit of service than the last

one. This can be reflected in the quadratic form of the cost of providing services. The same

quadratic equation is also used in Tsay and Agrawal (2000).

In this section, the mathematical model of the supply chain depicted in Figure 1 is

defined. In our model, we assume that all activity occurs within a single period. There are

two manufacturers, indexed by i ∈ {1, 2}, and one retailer. Each manufacturer produces

one product, also indicated by the same index as its producer, and also provides service

directly to consumers. The retailer carries the products of both manufacturers and faces

a deterministic consumer demand that is influenced by both the retail prices and the

manufacturer’s service of both products. Each manufacturer must decide on his product’s

wholesale price and level of service to be provided to consumers, while the retailer controls

the retail price of both products.

3.2.1 Demand Function

Our model represents a generalization of the model found in Choi (1991). Given this

structure, we next specify the consumer demand function and cost structure for each firm.

In defining the demand function, we follow the approach by McGuire and Staelin (1983)
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[59]. This approach uses a set of basic characteristics of the type of demand of each product,

e.g., downward sloping in its own price, increasing with respect to the competitor’s price,

and then specifies an analytically feasible function (e.g., linear) that captures these desired

characteristics. An alternative approach would derive specific (nonlinear) functions facing

the retailer. Typically, this latter approach requires making explicit assumptions concerning

consumer tastes, or the existence of a few types of market segments. Examples of this latter

approach can be seen in Lal and Matutes (1994) [44].

As pointed out by Lee and Staelin (1997) [50] and Choi (1991), although a liner demand

functions do not have good forecasting properties (possibility for negative quantities), they

outperform multiplicative and exponential demand functions for analysis of the primary

interests such as category pricing or product line pricing. For our model, we make the

following assumptions regarding demand functions:

ASSUMPTION 1. The demand structure is symmetric between the two products. De-

mand for one product is decreasing in its own retail price and increasing in the competitor

retail price. On the other hand, it is increasing in its own service and decreasing in the

competitor service.

ASSUMPTION 2. Product i has market base ai and production cost ci. Market base ai

measures the size of product i’s market. It is the demand of product i faced by the retailer

when both products are priced at zero but the manufacturers offer no service.

ASSUMPTION 3. Decreasing product retail price or increasing service level will trigger

two phenomena. First, a group of customers will decide to switch from the other product.

Second, a group of customers who otherwise would not have bought either product will

purchase at this lower price or higher service. The opposite happens when price is increased
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or service level is decreased.

From Assumption 1 to 3, the demand for product i, which is the same as the retailer

ordering quantity, can be expressed as:

Qi(pi, pj, si, sj) = ai − (bp + θp)pi + θppj + (bs + θs)si − θssj (1)

where ai > 0, bp > 0, θp > 0, bs > 0, θs > 0, i = 1, 2, and j = 3− i.

Here, ai is a non-negative constant. It can be thought of as a “market base” (Tsay and

Agrawal 2000) as defined in Assumption 2. We assume that ai is large enough so that Qi

will always be non-negative. We can think of (bp + θp) as the measure of the responsiveness

of each manufacturer’s market demand to its own price. As specified in Assumption 3, when

the price of product i is decreased by one unit, the product will gain bp+θp more customers.

Amongst these customers, θp of them are switching from the competitor’s product while bp

of them are the direct result of a larger market demand due to the smaller price. In other

words, bp of them would not buy the product otherwise. A similar explanation can be used

for service-related parameters bs and θs.

Note that we can rearrange the terms in Equation 1 to the following form:

Qi(pi, pj, si, sj) = ai − bppi + θp(pj − pi) + bssi − θs(sj − si). (2)

This is similar to the demand function used in Tsay and Agrawal (2000) [90], except their

model was used to study a system with one manufacturer and two competing retailers in

their study.

Just as in Choi (1996) and Tsay and Agrawal (2000), the functional representation

of the mean demand given here has the property that, for a fixed set of retailer’s and
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manufacturers’ actions, the total market size does not change with variation in θp, θs. This

can be seen through a comparison with the alternative form

Qi(pi, pj, si, sj) = ai − bppi + θppj + bssi − θssj.

Here, increasing θp(θs) would increase (decrease) the total demand. This is difficult to “ra-

tionalize economically as well as to reconcile with the aspiration of using these parameters

to represent competitive industry” (Tsay and Agrawal 2000).

3.2.2 Cost Structure

In our model, the manufacturers can influence the demand by setting the wholesale prices

and the service levels. On the other hand, the retailer can independently influence the

(retail) price of each product. We do not assume any collusion or cooperation among firms.

Each channel member has the same goal: to maximize his own profit. This leads us to the

following assumption:

ASSUMPTION 4. All channel members try to maximize their own profit and behave

as if they have perfect information of the demand and the cost structures of other channel

members.

The state of information specified in Assumption 4 is typical in analytical modelling,

although it overstates the information climate of the real world. From the model and

Assumption 4, the retailer’s objective is to maximize its profit function, which can be

described by the following equation:

ΠR =
2∑

i=1

(pi − wi)Qi(pi, pj, si, sj) (3)

where Qi(pi, pj, si, sj) is as specified in Equation 2.
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To specify each manufacturer’s profit function, we note that manufacturers carry two

types of cost: production cost and service cost. The latter includes the cost of providing

service to customers. This may include the total wage of employees in the service de-

partment, the cost of training these employees, or the cost of hiring outsiders to provide

customer service. Just as in Tsay and Agrawal (2000) [90], we assume diminishing returns

of service. This is specified in the next assumption.

ASSUMPTION 5. Cost of providing service has a decreasing-return property; the next

dollar invested would produce less unit of service than the last dollar - i.e., it becomes more

expensive to provide the next unit of service.

This diminishing return of service can be captured by the quadratic form of service

cost. In our model we assume that the cost of providing si units of service is ηisi
2/2. This

function is also used in Tsay and Agrawal (2000) [90]. Thus, the manufacturers’ profit

function can be written as:

ΠMi
= (wi − ci)Qi(pi, pj, si, sj)−

ηis
2
i

2
;i = 1, 2 (4)

where ηi is the service cost coefficient of manufacturer i.

3.2.3 Strategic Interactions

Note that so far we have not made any assumptions regarding the bargaining power pos-

sessed by each channel member. The assumption regarding bargaining power possessed by

each firm can influence how the pricing game is solved in our model. Depending on the

situation in any particular industry, the bargaining power of retailers and manufacturers

can vary significantly. In the last few decades there are widely accepted notion that retail-

ers are gaining “power” over the manufacturers. However, the validity of the notion that
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retailers are gaining power at the expense of the manufacturers is being questioned and

studied by researchers in recent years(Ailawadi et al. 1995 [1], Messinger and Narasimhan

1995 [60], Kim and Staelin 1999 [42]).

Following the notions in Choi (1991), variation in bargaining power in a particular

supply chain can create one of the following three scenarios:

1) Manufacturer Stackelberg (MS): The manufacturers have more bargaining power

than the retailer and thus are the Stackelberg leader.

2) Retailer Stackelberg (RS): The retailer has more bargaining power than the manu-

facturers and is the Stackelberg leader.

3) Vertical Nash (VN): Every firm in the system has equal bargaining power.

In modelling the problem, the level of bargaining power possessed by each firm (as

compared to the other firms) is translated into whether the firm is a leader or a follower.

In the game-theoretical approach, the firm with more bargaining power has the first-mover

advantage (Stackelberg leader). The firm with less power would have to respond to the

leader’s decisions. For example, in the Manufacturer Stackelberg game, both manufacturers

simultaneously select wholesale prices and service levels in the first step. The retailer

observes the decisions made by the manufacturers and makes his response to those decisions

in the second step (by choosing retail prices). In the Retailer Stackelberg game the events

take place in reverse, while every firm moves simultaneously in the Vertical Nash game. In

this research, we analyze our model with all three scenarios of different power structures.

We are interested to see the effect of bargaining power on the results.
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3.3 Analytical Results (Manufacturer Stackelberg, Re-

tailer Stackelberg, Vertical Nash)

To analyze our model, we follow a game-theoretical approach. The leader in each scenario

makes his decisions to maximize his own profit, conditioned on the follower’s response

function. The problem can be solved backwards. We begin by first solving for the reaction

function of the follower of the game, given that he has observed the leader’s decisions. For

example, in Manufacturer Stackelberg, the retailer reaction function is derived first, given

that the retailer has observed the decisions made by the manufacturers (on wholesale prices

and service levels). Then, each manufacturer solves his problem given that he knows how

the retailer would react to his decisions.

3.3.1 Manufacturer Stackelberg

3.3.1.1 Retailer Reaction Function

The retailer in this game must choose retail prices p∗1 and p∗2 to maximize his equilibrium

profit. That is,

p∗i ∈ argmax
pi

ΠR(pi, p
∗
j |w1, w2, s1, s2) (5)

where ΠR(pi, pj|w1, w2, s1, s2) denotes the profit to the retailer at this stage when he sets

retail prices pi, pj, given earlier decisions by the manufacturers are w1, w2, s1, s2. The first

order condition can be shown as

0 =
∂ΠR

∂pi

= ai − 2bppi + θp(pj − 2pi) + bssi − θs(sj − si) + wibp + wiθp

+pjθp − wjθp (6)
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where i ∈ {1, 2} and j = 3− i. To check the optimality, we check the Hessian matrix:

∂Π2
R

∂p2
i

= −2bp − 2θp

∂Π2
R

∂pi∂pj

=
∂Π2

R

∂pj∂pi

= 2θp

Assuming that bp > 0 and θp > 0, we have a negative definite Hessian. Therefore, the p1

and p2 calculated above are the optimal reaction functions for the retailer.

Using the first and second order optimality conditions above, we have the following

expression for the retailer’s reaction function

p∗i =
wi

2
+

(bp + θp)ai + θpaj

2bp(bp + 2θp)
− θs(sj − si)

2(bp + 2θp)
+

(bp + θp)bssi + θpbssj

2bp(bp + 2θp)
(7)

where i ∈ {1, 2} and j = 3− i. From equation (7) and (1), we can also obtain the demand

quantities for products 1 and 2 as

Q∗
i =

ai

2
− (bp + θp)

2
wi +

θp

2
wj +

(bs + θs)

2
si −

θs

2
sj (8)

where i = 1, 2 and j = 3− i. We can see that the equilibrium quantities p∗i and Q∗
i for each

product are linear functions of the wholesale prices and service levels by the manufacturers,

and the market bases (a1 and a2).

3.3.1.2 Manufacturers Decisions

Using the retailer’s reaction function, we can derive each manufacturer’s optimal wholesale

price and service level. This is carried out by maximizing each manufacturer’s profit shown

in Equation (4), given the retailer reaction function. The manufacturer i chooses the

wholesale prices w∗
i and service level s∗i to maximize his own individual profit. Recall that
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the manufacturers move simultaneously. Thus, a Nash Equilibrium exists between them.

That is,

w∗
i ∈ argmax

wi

ΠMi
(wi, w

∗
j , s

∗
i , s

∗
j) (9)

and

s∗i ∈ argmax
si

ΠMi
(w∗

i , w
∗
j , si, s

∗
j) (10)

where ΠMi
(wi, wj, si, sj) is the profit of manufacturer i at this stage when manufacturers

set their wholesale prices at wi, wj and service levels at si, sj. To find the optimal wholesale

price, wi, we first look at the first order condition.

0 =
∂ΠMi

∂wi

= ai − bp

[
wi +

(bp + θp)ai + θpaj

2bp(bp + 2θp)
− θs(sj − si)

2(bp + 2θp)
+

(bp + θp)bssi + θpbssj

2bp(bp + 2θp)

]
+θp

[
aj − ai

2(bp + 2θp)
+
wj − 2wi

2
+

(2θs + bs)(sj − si)

2(bp + 2θp)

]
+bssi − θs(sj − si) +

cibp
2

+
ciθp

2

0 =
∂ΠMi

∂si

= (wi − ci)

[
− bpθs

2(bp + 2θp)
− bp(bp + θp)bs

2bp(bp + 2θp)
− θp(bs + 2θs)

2(bp + 2θp)
+ bs + θs

]
− ηisi

The second order condition is given below to check the optimality:

∂Π2
Mi

∂w2
i

= −bp − θp

∂Π2
Mi

∂wi∂si

=
bs + θs

2
∂Π2

Mi

∂s2
i

= −ηi

Assuming that bp > 0 and θp > 0, we have a negative definite Hessian. Therefore, the wi

and si calculated above are the optimal reaction functions for the manufacturer i.

39



The detailed derivation of these expressions may be found in Appendix A. The following

proposition gives the actual closed form solution of wholesale price and service level.

PROPOSITION 3.1. The manufacturer’s equilibrium wholesale price and service level

are:

w∗
i =

2ηiAj

A1A2 −B1B2

[
ai +Djaj + (Ei + FiDj)ci + (Fj + EjDj)cj

]
(11)

s∗i = (bs + θs)
{ Aj

A1A2 −B1B2

[
ai +Djaj + (Fj + EjDj)cj

]
+

[
Aj(Ei + FiDj)

A1A2 −B1B2

− 1

2ηi

]
ci

}
(12)

where i = 1, 2 and j = 3 − i and Ai = 4ηi(bp + θp) + (bs + θs)
2, Bi = 2ηiθp − θs(bs +

θs)
(

bp−bs+2θp

bp+2θp

)
, Di = Bi

Ai
, Ei = (bp + θp)− (bs+θs)2

2ηi
, Fi = θs(bs+θs)

2ηi
− θpbs(bs+θs)

2ηi(bp+2θp)
.

Proof: See Appendix A.

Note that if service is not taken into account or is assumed to be zero, equation (7),

(8), and (11) reduce to

pNS
i

∗
=

wi

2
+

(bp + θp)ai + θpaj

2bp(bp + 2θp)
(13)

QNS
i

∗
=

ai

2
− (bp + θp)wi

2
+
θpwj

2
and (14)

wNS
i

∗
=

1

4(bp + θp)2 − θ2
p

[
2(bp + θp)ai + θpaj + 2(bp + θp)

2ci + θp(bp + θp)cj

]
(15)

for i ∈ {1, 2} and j = 3 − i. These are the results derived by Choi (1991). Choi (1991)

defines a linear duopoly demand function as Qi = a − bpi + γpj where b = bp + θp and
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γ = θp. His model does not take into account the service provided by manufacturers and

assumes that the two products have equal market base (a1 = a2 = a). Thus, his model is a

special case of our model. Comparing equations (8) and (14), we can see that Qi
∗ (demand

bs+θs

θs
Slope  =

Qi
s < Qi

NS

Sj

Si

Qi
s > Qi

NS

Figure 5: Regions where Qi
∗ and QNS

i
∗

are compared.

of product i when both manufacturers provide service) will be greater than QNS
i

∗
(demand

of product i when no service is provided) if

si

sj

≥ θs

(bs + 2θs)
. (16)

Figure 5 shows the regions where Qi
∗ and QNS

i
∗

are compared. Thus, when manufac-

turer i provides its service si ≥ θs

(bs+2θs)
sj, product i can capture a bigger market than its

competitor.

Now, comparing equations (7) and (13), pi
∗ (retail price of product i when both man-

ufacturers provide service) will be greater than pNS
i

∗
(retail price of product i when no
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(bp+θp)bs + bpθsSlope  =

pi
s < pi

NS

Sj

Si

pi
s > pi

NS

bp(bp+2θp) (wi
S – wi

NS)

bpθs + θpbs bpθs + θpbs

Figure 6: Regions where pi
∗ and pNS

i
∗

are compared.

service is provided) if the following condition is satisfied

w∗
i − wNS

i

∗ ≥ [bpθs + θpbp]sj − [(bp + θp)bs + bpθs]si

bp(bp + 2θp)
. (17)

In other words, if

sj ≤ bp(bp + 2θp)(w
∗
i − wNS

i
∗
)

bpθs + θpbp
+

[(bp + θp)bs + bpθs]

bpθs + θpbp
si, (18)

then pi
∗ will be greater than pNS

i
∗
. Figure 6 shows the regions where pi

∗ and pNS
i

∗
are

compared.

3.3.2 Retailer Stackelberg

The Retailer Stackelberg scenario arises in markets where retailers’ sizes are large compared

to their suppliers. For example, large retailers like Walmart and Target can influence each
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product’s sales by lowering price. Because of their sizes, the retailers can maintain their

margin on sales while squeezing profit from their suppliers. The suppliers are mostly

concerned with receiving orders from the retail giants. Similar game-theoretic framework

as applied in the Manufacturer Stackelberg case is implemented to solve this problem;

i.e., the problem is solved backwards. First, the suppliers’ problem is solved to derive

the response function conditional on the retail prices chosen by the retailer. The retailer

problem is then solved given that the retailer knows how the manufacturers would react to

the retail prices he sets.

3.3.2.1 Manufacturers Reaction Functions

Each manufacturer is trying to maximize his own profit

ΠMi
= (wi − ci)Qi −

ηis
2
i

2

for i ∈ {1, 2}. To cope with competition, manufacturer i chooses equilibrium wholesale

price wi and service level si. That is, for each manufacturer i

w∗
i ∈ argmax

wi

ΠMi
(wi, w

∗
j , s

∗
i , s

∗
j |p1, p2) (19)

and

s∗i ∈ argmax
si

ΠMi
(w∗

i , w
∗
j , si, s

∗
j |p1, p2) (20)

where ΠMi
(w1, w2, s1, s2|p1, p2) is the profit to manufacturer i at this stage when manufac-

turers set wholesale prices w1, w2 and service levels s1, s2, given earlier decisions on retail

price p1, p2 by the retailer.
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The first order conditions are

0 =
∂ΠMi

∂wi

= Qi + (wi − ci)(−bp − θp)

0 =
∂ΠMi

∂si

= (wi − ci)(bs + θs)− ηisi

The second order condition is given below to check for optimality

∂Π2
Mi

∂w2
i

= −bp − θp

∂Π2
Mi

∂wi∂si

= bs + θs

∂Π2
Mi

∂s2
i

= −ηi

The second order condition shows that we have a negative definite Hessian. Therefore, the

wi and si calculated above are the optimal reaction functions for the manufacturer i.Using

the first and second order conditions above, the response wholesale price and service level

for each manufacture can be derived and are given in the next proposition.

PROPOSITION 3.2. The manufacturer’s response function given retail prices pi and pj

are:

w∗
i =

ηiHj

H1H2 −K2

[
ai − Ljaj − (θpLj +G)pi + (GLj + θp)pj + (Mi − LjNi)ci

]
.

(21)

s∗i =
Hj(bs + θs)

H1H2 −K2

[
ai − Ljaj − (θpLj +G)pi + (GLj + θp)pj

]
(22)

where G = bp + θp, Hi = ηi(bp + θp) − (bs + θs)
2, K = θs(bs + θs), Li = K

Hi
,Mi = Hi

ηi
=

(bp + θp)− (bs+θs)2

ηi
, Ni = K

ηi
= θs(bs+θs)

ηi
,
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Proof: See Appendix A.

We can see that the optimal service responses for both manufacturers do not depend

on the production cost. Even for the optimal wholesale price responses, the manufacturers

do not need to know the production cost of their competitors. Retail prices can be easily

observed in the market. The value of market bases can be estimated by the manufacturers

by conducting a market survey.

3.3.2.2 Retailer Decision

Having the information about the reaction functions of manufacturers, the retailer would

then use them to maximize his profit

ΠR = (p1 − w1(p1, p2))Q1(p1, p2) + (p2 − w2(p1, p2))Q2(p1, p2). (23)

The retailer in this game must choose retail prices p∗1 and p∗2 to maximize his equilibrium

profit. That is,

p∗i ∈ argmax
pi

ΠR(pi, p
∗
j) (24)

where ΠR(p1, p2) denotes the profit to the retailer at this stage when he set retail prices

p1, p2. The first order condition can be shown as

0 =
∂ΠR

∂pi

=

(
1− ∂wi(pi, pj)

∂pi

)
Qi(pi, pj) + (pi − wi(pi, pj))

∂Qi(pi, pj)

∂pi

+

(
−∂wj(pi, pj)

∂pi

)
Qj(pi, pj) + (pj − wj(pi, pj))

∂Qj(pi, pj)

∂pi

(25)

where

∂wi(pi, pj)

∂pi

=
2ηiHj

HiHj −K2
(θpLj −G) (26)

45



∂wj(pi, pj)

∂pi

=
2ηjHi

HiHj −K2
(GLi − θp) (27)

∂wi(pi, pj)

∂pj

=
2ηiHj

HiHj −K2
(GLj − θp) (28)

∂wj(pi, pj)

∂pj

=
2ηjHi

HiHj −K2
(θpLi −G) (29)

To check for optimality, we check the Hessian matrix:

∂Π2
R

∂p2
i

= −2bp − 2θp

∂Π2
R

∂pi∂pj

=
∂Π2

R

∂pj∂pi

= 2θp

Assuming that bp > 0 and θp > 0, we have a negative definite Hessian. Therefore, the p1

and p2 calculated above are the optimal reaction functions for the retailer.

Using the first and second order optimization conditions, the equilibrium retail prices

can be derived and are given in the following proposition.

PROPOSITION 3.3. In the Retailer Stackelberg case, the equilibrium retail price p∗1 and

p∗2 chosen by the retailer are

p∗1 =
(X2U1 − Y V1)a1 + (Y V2 −X2U2)a2 + (X2ρ1 − Y σ1)Wc1 + (Y ρ2 −X2σ2)Wc2

X1X2 − Y 2

p∗2 =
(Y U1 −X1V1)a1 + (X1V2 − Y U2)a2 + (Y ρ1 −X1σ1)Wc1 + (X1ρ2 − Y σ2)Wc2

X1X2 − Y 2
.

Proof: See Appendix A.

These equations show linear relationship between retail price and market bases and

production costs. When bs = θs = 0, the expressions are reduced to the results given in

Choi (1991).
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3.3.3 Vertical Nash

The Vertical Nash model is studied as a benchmark to both the Manufacturer Stackelberg

and Retailer Stackelberg cases. In this model, every firm has equal bargaining power and

thus makes his decisions simultaneously. This scenario arises in a market in which there

are relatively small to medium-sized manufacturers and retailers. In this market it is

reasonable to assume that a manufacturer may not know the competitor’s wholesale price

but can observe its retail price. Since a manufacturer cannot dominate the market over

the retailer, his price decision is conditioned on how the retailer prices the product. On

the other hand, the retailer must also condition its retail price decisions on the wholesale

price.

Again, game-theoretic framework is employed to derive the reaction function of each

firm in the supply chain. Fortunately, the reaction functions for the retailer and the man-

ufacturers were already derived in the Manufacturer Stackelberg game and the Retailer

Stackelberg game respectively. From the Manufacturer Stackelberg game, the retailer reac-

tion function for given wholesale prices w1, w2 and service levels s1, s2 is given in Equation

7 as

p∗i =
w∗

i

2
+

(bp + θp)ai + θpaj

2bp(bp + 2θp)
−
θs(s

∗
j − s∗i )

2(bp + 2θp)
+

(bp + θp)bss
∗
i + θpbss

∗
j

2bp(bp + 2θp)

where i ∈ {1, 2} and j = 3 − i. From the Retailer Stackelberg game, the manufacturers

reaction function for given retail prices p1, p2 are given in Equations 121 and 22 as

w∗
i =

ηiHj

H1H2 −K2

[
ai − Ljaj − (θpLj +G)pi + (GLj + θp)pj + (Mi − LjNi)ci

]

s∗i =
Hj(bs + θs)

H1H2 −K2

[
ai − Ljaj − (θpLj +G)pi + (GLj + θp)pj

]
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for wholesale price and service level respectively. Hi, K, Li,Mi, Ni, and G for i = 1, 2 and

j = 3 − i are defined as in the Retailer Stackelberg game. Solving the above equations

simultaneously yields the Nash equilibrium solution. The equilibrium retail prices can be

derived and are given in the following proposition.

PROPOSITION 3.4. In Vertical Nash case, the equilibrium retail price p∗1 and p∗2 chosen

by the retailer are

p1 =
(γ2κ1 + λ1κ2)a1 + (γ2ν1 + λ1ν2)a2 + γ2ψ1c1 + λ1ψ2c2

γ1γ2 − λ1λ2

(30)

p2 =
(γ1κ2 + λ2κ1)a1 + (γ1ν2 + λ2ν1)a2 + γ1ψ2c1 + λ2ψ1c2

γ1γ2 − λ1λ2

(31)

where κi, λi, νi and ψi for i = 1, 2 are constants.

Proof: See Appendix A.

3.3.4 Comparison of Results

In this section, we compare the results from the three different scenarios to focus on the

effect of power structure on prices, service levels, and profits of each channel member.

However, when the two manufacturers are not identical (in production cost or market

base), it is difficult to compare the results from different scenarios since there will be a

market leader and a follower. In order to separate the effects of different power structures

from the effects of cost differences, we assume identical manufacturers (same market base,

production cost and service cost coefficient). This assumption simplifies the results given

previously by setting ai = aj = a, ci = cj = c, and ηi = ηj = η. The following theorem

summarizes the results with the identical manufacturers assumption.
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THEOREM 3.1. When the two manufacturers are identical (same market base, produc-

tion cost and service cost coefficient), the retail price, wholesale price, service level, demand

quantity, and profit can be calculated as shown in Table 3.1

Scenario
MS VN RS

Manufacturers

Wholesale Price 2η
A−B

(a + (E + F )c) η
Φ

(
a +

2(H+K)+bs(bs+θs)
η

c
)

η
Ψ

(
a +

2(H+K)+ηbp

η
c
)

Service Level
(bs+θs)

A−B
(a + Γc) bs+θs

Φ
(a− bpc) bs+θs

Ψ
(a− bpc)

Profit η
A−B

Υ(a + Γc)
η[H+η(bp+θp)]

2Φ2 (a− bpc)2
η[H+η(bp+θp)]

2Ψ2 (a− bpc)2

Retailer

Retail Price 1
bp

(
Λ +

2ηbp

A−B

)
a +

(
Θ +

2η(E+F )
A−B

)
c

Φ−(H+K)
bpΦ

a +
(H+K)

Φ
c

H+K+2ηbp

bpΨ
a + H+K

Ψ
c

Profit 2
bp

(Λa− bpΘc)2 2
bp

[
η(bp+θp)

Φ
(a− bpc)

]2 η(bp+θp)

bpΨ
(a− bpc)2

Demand Λa− bpΘc
η(bp+θp)

Φ
(a− bpc)

η(bp+θp)

Ψ
(a− bpc)

Note:

Γ = E + F − A−B
2η

, Λ =
A−B−2ηbp+bs(bs+θs)

2(A−B)

Θ =
η(E+F )

A−B
− bs(bs+θs)

2bp

(
E+F
A−B

− 1
2η

)
, Φ = 2(H + K) + ηbp + bs(bs + θs)

Ψ = 2(H + K + ηbp), Υ = 2(Λa + bpΘc)− (bs+θs)2

2(A−B)
(a + Γc)

Table 2: Comparison of results from three scenarios

Proof: See Appendix A.

When bs = θs = 0, the results given in Table 3.1 reduce to the results given by Choi

(1991) in which competition in service is not taken into account. The results in Table 3.1

show that the equilibrium wholesale and retail price, service level, and demand quantity

are a linear function of both market base and production cost. By comparing the results

from each scenario, we have the following proposition.

COROLLARY 3.1. When the two manufacturers are identical (same market base, pro-

duction cost and service cost coefficient) and ηbp > bs(bs + θs) and a > bpc, s
MS < sRS <

sV N .

Proof: See Appendix A.
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This proposition states that when the manufacturers possess the most bargaining power,

consumers receive the least benefit from service. The proposition shows that the consumers

are better off when there is no dominant power between the retailer and manufacturers.

This is reflected in higher service levels and greater demand quantity in the VN scenario

as compared to those in MS and RS.

We next compares other quantities among the three scenarios. We find that the results

of comparison depend on the value of bs and θs. When bs and θs are greater than zero, the

results from Manufacturer Stackelberg can vary, depending on the values of the parameters.

Thus, they can not be compared to the results from the other two cases. However, when

bs = θs = 0, the results from all three games in Table 3.1 can be simplified and compared.

The following corollary states these findings.

COROLLARY 3.2. When the two manufacturers are identical (same market base, pro-

duction cost and service cost coefficient) and ηbp > bs(bs + θs) and a > bpc, we have the

following results

(a) If bs and θs > 0 (b) If bs and θs = 0

1 N/A pMS < pV N < pRS

2 QRS < QV N QMS, QRS < QV N

3 wV N > wRS wMS > wV N > wRS

4 ΠV N
M > ΠRS

M ΠMS
M > ΠV N

M > ΠRS
M

5 ΠV N
R < ΠRS

R ΠMS
R < ΠV N

R < ΠRS
R

Proof: See Appendix A.

Part (b) of Corollary 3.2 is similar to the results given by Choi (1991) and Lee and

Staelin (1997) [50]. Their models do not include the service component (i.e., bs = θs = 0 in
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their models). Thus, Proposition 3.2 provides more general results than those in existing

literature.

Note that when bs and θs > 0, it is not possible to compare the results from the

Manufacturer Stackelberg case with the other two cases. This is because the values of

bs and θs can influence the nature of competition. When bs and θs are significant larger

than bp and θp, the two manufacturers will focus on service competition. On the other

hand, if bp and θp are significant larger than bs and θs, manufacturers will concentrate on

price competition. Thus, the relative amount of price and service level in the Manufacturer

Stackelberg case as compared to the other two cases can vary.

Note also that we can not compare the retail price among the three cases. This is also

due to the nature of competition in the industry. When bp and θp are significant larger

than bs and θs, the result will be close to that given in part (b) (i.e., pMS < pV N < pRS).

However, if bs and θs are significant larger than bp and θp, the manufacturers will focus

on service competition. In this case, no definite statement can be concluded from the

comparison of the retail price between the three cases.

3.4 Numerical Studies

In this section, we use numerical approach to studies the behavior of firms when facing

changing environment. We follow existing literature (e.g., Tsay and Agrawal (2000) [90]

and Vilcassin et al. (1999) [91]) in defining the range of some parameters2. We explore how

retail prices, wholesale prices, service levels, and profits are affected by changes in industry

conditions, i.e., ai, ci, ηi, bp, θp, bs and θs. Changes in ai, ci, and ηi reflect changes from

2The range of parameters we use in this section can be found in Appendix A.

51



individual company. On the other hand, variations in bp, θp, bs and θs reflect the dynamic

environment of the whole industry. This is because the degree to which prices or services

affect brand loyalty can change over time due to continuing competition. Thus, the results

in this section can help us understand the sensitivity of our results to either firm-specific

or industry-wide changes.

3.4.1 Individual Manufacturer Change

From the results in the last section, we found that, regardless of power structure, as market

base of manufacturer i increases, the firm can sell its product at a higher price and with

larger quantity. This brings in more revenue and makes it affordable for the manufacturer to

provide more services. This in turn creates even more demand for the product and increases

profit. We also found out that as the market base of product i increases, manufacturer j’s

profit also increases. This might be counterintuitive but can be explained as follows: the

increase in competitor’s profit is due to the factor θp in demand function which reflects the

fact that some fixed proportion of customers will switch from product i to product j due

to competition. However, the increase in price, service level and profit of product j will be

smaller than those of product i. This result is summarized in the next proposition.

OBSERVATION 3.1. Regardless of power structure, an increase in market base in one

company benefits its competitor as well but at a lesser extent. Namely,

a) 0 <
∂wj

∂ai
< ∂wi

∂ai

b) 0 <
∂sj

∂ai
< ∂si

∂ai

c) 0 <
∂pj

∂ai
< ∂pi

∂ai

d) 0 <
∂Qj

∂ai
< ∂Qi

∂ai
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e) 0 <
∂ΠMj

∂ai
<

∂ΠMi

∂ai

f) 0 < ∂ΠR

∂ai

Similar phenomenon also occurs when ci increases, except that now the increase has

adverse effect on demand quantity, service level and profit of product i. The result shows

that firm i will sell its product at a higher price and provide less service. This brings

the firm less profit. We found out that as ci increases, pj also increases. However, this

increase in pj is at a smaller magnitude than the increase in pi. As si decreases due to

a higher ci, sj increases. Thus, demand and profit for product j increase while those for

product i decrease. Note that the retailer is also hurt if the production cost of one of the

manufacturers increases; this is because of the decrease in total demand due to a higher

price. The next proposition states this result.

OBSERVATION 3.2. Regardless of power structure, an increase in production cost in

one company decreases its profit while increases its competitor’s profit, but at a lesser extent.

a) 0 <
∂wj

∂ci
< ∂wi

∂ci

b) 0 <
∂sj

∂ci
< −∂si

∂ci

c) 0 <
∂pj

∂ci
< ∂pi

∂ci

d) 0 <
∂Qj

∂ci
< −∂Qi

∂ci

e) 0 <
∂ΠMj

∂ci
< −∂ΠMi

∂ci

f) 0 > ∂ΠR

∂ci

We also found that when manufacturer i has an advantage on service cost coefficient

(i.e., ηi < ηj), it will provide more service, and sell the product at lower wholesale price.
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However, its product will have a higher retail price. This leads us to the following result.

OBSERVATION 3.3. When ηi < ηj, the retailer will act as a market segmenter and sell

the product with high service at high (retail) price and sell the product with low service at

low (retail) price. Namely, si > sj and pi > pj even though wi < wj.

When manufacturer i has an advantage on service cost coefficient (i.e., ηi < ηj), he can

sell at a lower price since his service cost is less than that of his competitor. However, the

retailer will sell product i at a higher retail price. The retailer makes up for the smaller

profit from the low service product by a bigger profit from the higher service product. This

result emphasizes the role of the retailer as an intermediary. The consumers can not enjoy

better service and lower price offered by manufacturer i due to the existence of the retailer.

In order to receive high service offered by manufacturer i, they must pay a higher price.

3.4.2 Industry Change

To study the influence of bp, θp, bs and θs, we assume that the two manufacturers are

identical with the same market base (ai), production cost (ci), and service cost coefficient

(ηi). Tables 3.2 to 3.4 show the results from changes in both the individual and industry

parameters. The effect can be either monotonic increasing (as indicated by a + sign) or

decreasing (− sign), or neither (+/− sign). It can be linear (as indicated by subscript l),

nonlinear with a convex (cx), or a concave (cc) characteristic, or neither (nl). The results

from this analysis give the next observation.

OBSERVATION 3.4. The characteristic of changes in prices, service levels and profits

from variations in bp, and θp does not depend on the power structure assumption. On

the other hand, the characteristic of changes due to service-related parameters (bs and θs)
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depends on the power structure assumption and on the values of other parameters.

We next examine in details the results from Table 3.2 to 3.4 on the sensitivity of prices,

service levels, and profits to changes of each parameter.

Manufacturer Stackelberg
ai ci ηi bp θp bs θs

Wholesale Price +l +l +cc −cx −cx −cc −nl

Service Level +l −l −cx −cx −cx +cc −cx

Profit +cx −cx +/− −cx −cx +/− −cc

Retail Price +l +l +cc −cx −cx +/− −cx

Profit +cx −cx −cx −cx +cc +nl +/−
Demand +l −l −cx −cx +cc +nl +/−

Table 3: Sensitivity Analysis with Increases in Specific Parameters for Manufacturer
Stackelberg

Retailer Stackelberg
ai ci ηi bp θp bs θs

Wholesale Price +l +l +cc −cx −cx +cx +/−
Service Level +l −l +/− −cx −cx +cx +/−

Profit +cx −cx −cx −cx −cx +nl +/−
Retail Price +l +l +cx −cx −cx +nl +/−

Profit +cx −cx −cx −cx +cc +nl +/−
Demand +l −l −cx −cx +cc +/− +/−

Table 4: Sensitivity Analysis with Increases in Specific Parameters for Retailer Stackelberg
Case

Vertical Nash
ai ci ηi bp θp bs θs

Wholesale Price +l +l +cc −cx −cx +cx +cx

Service Level +l −l −cx −cx −cx +cx +cx

Profit +cx −cx +cc −cx −cx +/− −cc

Retail Price +l +l −cx −cx −cx +cx +cx

Profit +cx −cx −cx −cx +cc +cx +cx

Demand +l −l +cc −cx +cc +cx +cx

Table 5: Sensitivity Analysis with Increases in Specific Parameters for Vertical Nash Case

3.4.2.1 Market Sensitivity to Own Price (bp)

Recall that bp is the number of new customers the product attracts as its price is decreased

by 1 unit. This is different from the number of a competitor’s customers who switch

products due to a price difference, θp. As can be seen in Tables 3.2 to 3.4, as price sensitivity
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increases, the manufacturers tend to concentrate on lowering price and provide less service.

However, it turns out that demand decreases due to less service. Therefore, the profits for

the retailer and manufacturers decrease.

3.4.2.2 Market Sensitivity to Price Difference (θp)

We can see that as θp increases, the two manufacturers tend to concentrate on competing

to lower the price. This allows them to decrease the service level since it is not the key

competing factor. As the two manufacturers compete in price, they also induce a gain

in demand quantity. The retailer’s profit improves as it enjoys more sales. However, the

manufacturers’ profit decreases due to the competition to cut price.

3.4.2.3 Market Sensitivity to Own Service (bs)

When the value of bs is less than the value of bp, the two manufacturers will concentrate

on lowering retail price. This is because consumer demand is more sensitive to price than

service. This leads to a decreasing retail price and a smaller service level. When bs is

higher than bp, the two manufacturers will begin to compete to provide a higher service

level. This allows the retailer to charge a higher retail price as demand is more sensitive to

service changes than to price changes. However, since the cost of providing the next unit of

service increases by a power of 2, it is not economical to keep increasing the service level.

Therefore, when the service reaches a certain level the two competitors must again switch

to competing to offer the lower price. This leads to a decreasing retail price again when

bs is large. Demand quantities for both products and the retailer’s profit increase when

this phenomenon occurs. The manufacturers’ profit first increases due to higher revenue.

However, it later decreases when the cost of providing services gets too high, as they can

56



not make up for the investment in service from sales to the retailer.

3.4.2.4 Market Sensitivity to Service Difference (θs)

We next examine the effects of varying the value of θs, the market sensitivity to difference

in service, on the optimal solution, given that the two manufacturers are symmetrical. It

turns out that as θs increases, the level of service decreases. This phenomenon may be

explained as follows: since the cost of providing service increases by a power of 2, it is not

economical to invest in service when the market is so sensitive to the competitor’s service.

Therefore, the service level lowers when θs increases. The two manufacturers switch to

competing to lower the price. This is reflected in the low price for both products when θs is

high. The demand for both products first increases because of price competition. However,

it then decreases once the level of service decreases beyond a certain level. The profits of

the retailer and manufacturers express the same property. Namely, they decrease as the

market sensitivity to competitor’s service increases.

3.5 Conclusions

Our primary objective is to highlight the importance of service from manufacturers in the

interactions between two competing manufacturers and their common retailer, facing end

consumers who are sensitive to both retail price and manufacturer service. We also explore

the role of the retailer and its bargaining power by examining the supply chain over three

different scenarios. Using the game-theoretic approach, our analysis found a number of

insights into the economic behavior of firms, which could serve as the basis for empirical

study in the future.

In this chapter, we derive expressions for equilibrium retail and wholesale prices, service
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levels, profits, and demand quantity for each product. We then analyze the results and give

some insights on the influence of each parameter. Our results show that it is more beneficial

to consumers when there is no dominant player(s) in vertical strategic interaction. In such

case, the consumers receive more manufacturer service and can buy the product at a lower

price. A counterintuitive result shows that as market base of one product increases, the

competitor also benefits but at a smaller magnitude. Furthermore, when one manufacturer

has an economic advantage in providing service, the retailer will act to separate market

segment by selling products with low service at a low price and selling products with high

service at a high price.

Our results, however, are based upon simplistic assumptions about the demand function.

Thus, there are possible extensions to improve our model. First, different or more general

forms of the demand function can be used to analyze the problem. Another possibility

is to consider the problem with demand uncertainty. In that case, the problem faced by

the retailer will be a two-product newsvendor problem with price-dependent demand (we

consider this stochastic demand assumption in Chapter 5).

Our model assumes a decreasing return in providing service to the consumers. An alter-

native assumption is to assume economies-of-scale in providing service. Similar alternatives

can also be applied to the production cost function. Our model assumes linear production

cost (fixed per-unit production cost). A more general production function can be used to

reflect scale economies.

We can extend the model over multiple periods to specifically study temporal dynamics

in the supply chain. The learning effect can be then examined. The new model can

analyze how firms and consumers can make use of their experiences and learn over repeated
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transactions. We explore this multiple period model in Chapter 4.

Furthermore, the retailer in our model enjoys regional monopolistic advantage. An

alternative is to build a model with two or more competing retailers. Other possibilities may

include the situation where one manufacturer owns and controls a retailer as a “company

store” and competes with regular channel. A more general model can also be built to

have the service components both from the manufacturers and from the retailer. Another

possible extension is to examine various mechanisms to coordinate the supply chain, such

as vertical integration or two-part tariffs.
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CHAPTER IV

LEARNING IN SUPPLY CHAIN WITH

REPEATED TRANSACTIONS AND SERVICE

CONTRIBUTIONS

4.1 Introduction

Chapter 3 studies the situation where two manufacturers compete through one common

retailer. We examine the problem with a single period model. However, in reality, the

interactions between the manufacturers, retailer, and consumers can occur repeatedly over

multiple periods or product generations. For example, in the PC industry, consumers

upgrade their PCs every 3-5 years (see [2]). The industry has also seen its product life

cycle decrease in recent years ([4], [52]). Thus, customers gain more experience on price and

service every time they upgrade products. The price they paid and the service they received

during their last experience will influence their next upgrading decisions. In addition,

with the advent of the Internet, information on prices and service reputation of many

manufacturers has been made available to consumers on many websites.

In this chapter, we study the inter-temporal behavior of the manufacturers and retailer

in the supply chain introduced in Chapter 3. Each period can be thought of as one selling

season or a span over one product generation. Thus each period in our model can span over

one quarter, 6 months, or 2 years, depending on the nature of the product being considered.
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We are interested in studying the behavior of each firm (one retailer and two competing

manufacturers) over time when faced with “learning” demand. Namely, we assume that

demand for each product in any given period is affected by two types of components: (1)

the difference in prices and services between the two products in the previous period, and

(2) the amount of investment by each manufacturer between each period to expand the

market base of its product (or brand). This assumption on the behavior of consumers

demand reflects the fact that consumers have learned from the experience they had with

the service provided by each manufacturer and the price they paid for the product. They

also are influenced by the investment by each manufacturer to expand its product’s market

base (i.e., promotions, advertising campaigns, etc.).

Thus, within each period, a manufacturer has to make decisions on wholesale price,

service level and amount of investment to expand its market base for that period. The

decision on the amount of investment is taken at the very beginning of each period. The

decisions on the wholesale price and service level are taken by each manufacturer after the

market has been influenced by the investment. Finally, the retailer makes its decision on

the retail price of both products at the end of each period. The decision cycle is repeated

over time in this order. Note that we concentrate on the Manufacturer Stackelberg model

in this chapter1.

In the past, some studies in literature have addressed the pricing in a multi-period

setting. From economic literature, there is stream of research that addresses the issue

of competing firms over multiple periods (see [87] and [76]). However, most studies in

existing literature model problems as a simple repeated game over multiple periods, with

1The study on the Retailer Stackelberg and Vertical Nash is possible in the future and is discussed in
Chapter 6.
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no demand learning. To our knowledge, no one has considered the situation with both

learning consumer demand and competing products sold through one common retailer.

There are also some studies in operations literature that study decision-making over

multiple periods. However, the majority of them only consider a single manufacturer. Issues

related to competition and gaming in pricing decisions among different firms have only been

addressed recently. For example, Cohen and Whang (1997) [17] study a set of strategic

choices facing manufacturers as they design the joint product/service bundle for a product

which may require after-sales service. The price and service quality/price are characterized

by an equilibrium to a sequential game. Vilcassim et al. (1999) [91] formulate a game-

theoretic model of firm interaction to analyze the dynamic price and advertising competition

among firms in a given product market. However, their model does not include a retailer.

Their study uses an econometric model to estimate demand and competitive interaction

parameters and derive some managerial implications for competitive interactions.

In this chapter, we approach the problem by introducing a new methodology for game-

based decision making in multiple (transactions) periods using dynamic systems and control

theory. By applying this new methodology, we answer the following questions:

i. How do the manufacturers make their pricing decisions over time?

ii. How are the prices and service levels in the second period influenced by those in the

first period?

iii. How does the whole supply chain behave over time? What indication(s) is there for

us to learn about the firms’ inter-temporal behavior?

In Section 4.2, the notations are defined and the model is described. The analysis of the
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model using game theory and dynamic systems and control theory is presented in Section

4.3 and 4.4, respectively. Numerical examples are given in the Section 4.5 to represent

possible real world cases. The comparison of results from our model and a myopic model

is presented in Section 4.6. Finally, in Section 4.7 we give final remarks for this chapter.

4.2 Model

4.2.1 Notations

In multiple period model, each decision variable has a subscript t to indicate period being

considered. This is in addition to subscript i which indicates the manufacturer (or product)

associated with the variable.

Let i = 1, 2 be the index for manufacturer/product.

t = 1, 2, ..., N is the index for transaction (or period or cycle or season).

ΠR,t = Retailer’s total profit in the tth transaction.

ΠMi,t = Manufacturer i’s total profit in the tth transaction.

pi,t = Retail price of product i in the tth transaction.

si,t = The amount of service provided by supplier i to the consumer in the tth transaction.

wi,t = Wholesale price of product i to the retailer in the tth transaction.

Qi,t = Demand for product i in the tth transaction.

ai,t = Market base for product i in the tth transaction.

Ii,t = Investment from manufacturer i to expand its market base at the beginning of

the tth transaction.
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4.2.2 Supply Chain Descriptions

We study the same supply chain structure introduced in the previous chapter. In addition

we extend the problem over multiple periods, i.e. there are two suppliers (manufacturers).

Each supplier manufactures one product. The two products are sold competitively to end

consumers through one common retailer. Just as in Chapter 3, the demand for each product

in each period depends on two factors: (1) the difference in retail prices between the two

competing products, and (2) the difference in level of service provided by the product’s

manufacturer and its competitor.

Thus, within each period, the demand for each product can be expressed as:

Qi,t = ai,t − (bp + θp)pi,t + θppj,t + (bs + θs)si,t − θssj,t (32)

where the definition and range of bp, θp, bs, and θs are the same as is defined in Chapter 3.

Notice that now the variables have two subscripts: one to indicate the manufacturer and

the other to indicate time.

In this chapter, we concentrate on the Manufacturer Stackelberg model. We assume

that the suppliers in oligopolistic markets are able to establish a supplier-driven channel

2. In each transaction the manufacturer decides the level of service. In this model, we use

the same definition of service as defined in Chapter 1. We assume that both manufacturers

are Stackelberg leaders of the supply chain. They simultaneously announce the value of

their decision variables before any transaction occurs. In our model, each manufacturer

announces (simultaneously) the wholesale price and the service level. After that the retailer

2The studies on the other two models introduced in Chapter 3 (Retailer Stackelberg and Vertical Nash)
are possible in the future.
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reacts to the announcement by deciding what the retail price of each product should be.

However, the multi-period model studied in this chapter also takes into account the

inter-temporal influence of retail prices and services on consumer demand in the next

period. This is a result of the “learning” behavior of consumers. This “learning” behavior

is reflected in the increase or decrease in the size of each product’s market base over time

(indicated by ai,t in the Equation 32 above. Particularly, each product’s market base is

affected by two inter-temporal factors: (1) the difference in retail price from the previous

period, and (2) the difference in level of service provided by the manufacturers in the

previous period.

In addition to these two inter-temporal factors, the manufacturers can influence the

size of their product’s market base by making some investment to expand its market base

(i.e., through advertising campaigns, improved business infrastructure, alliance formation,

promotions, etc.) at the beginning of each period. This action taken by the manufacturers

also affects the size of ai,t.

Figure 7 shows the timeline of events within each period. Within each period, the

overall pricing and ordering decisions in the channel follow the following sequence:

Step 1. Manufacturers simultaneously choose the level of investment to influence their market

base for this period.

Step 2. The market base (ai,t) for each product is updated according to the influence from

the following factors: (1) the difference in retail price from the previous period, (2)

the difference in level of service provided by the manufacturers in the previous period,

and (3) the amount of investment each manufacturer make at the beginning of the

65



Retailer gives orders
and sets retail price

Manufacturers 
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market base. 
Each manufacturer 
invests to expand 
its market base.

1

Demand for the 
season is realized

5

Inter-temporal Intra-temporal

Figure 7: Timeline of events within each transaction.

period to influence the size of its product’s market base. The information about the

market base is revealed before the next step.

Step 3. Manufacturers simultaneously choose their wholesale price to be offered to the retailer

and the service levels to be offered to end consumers. Each manufacturer makes their

decisions so as to maximize its own profit.

Step 4. In response to manufacturers’ actions, the retailer decides the retail price of both

products so as to maximize his expected profit.

Step 5. The consumer demand for each product is realized. The profit for every firm in the
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supply chain is realized.

We assume that each manufacturer has complete information about its competitor and

the retailer’s cost parameters and also the consumer’s demand responsiveness to the retail

price. Therefore, considering the problem from Step 3 to Step 5, for given wholesale prices

chosen in Step 3, the manufacturer knows the retailer’s response in Step 4 and, hence, their

own profit in Step 5. Each manufacturer will take this into account so as to choose the

wholesale price and service level to maximize his own profit. Similar reasoning also applies

when we consider the problem faced by the manufacturers in Step 1. The manufacturers

can anticipate the market reaction (through the size of market base) in Step 2 when making

their decisions on the amount of investment in Step 1. Furthermore, the manufacturers in

Step 1 can also take into account their own best anticipated courses of action in Step 3 and

the retailer reactions in Step 4 to maximize their individual profit to be realized in Step 5.

Figure 8 give a schematic representation of the supply chain being studied in this chapter.

4.2.3 Learning Demand Function

As mentioned briefly in the description of the events that occur within each period, the

market base (ai,t) for each product in any period is influenced by the following factors: (1)

the difference in retail price from the previous period, (2) the difference in level of service

provided by the manufacturers in the previous period, and (3) the amount of investment

each manufacturer make at the beginning of the period to influence the size of his prod-

uct’s market base. We also make the following assumptions about the consumer behavior

regarding prices and services they received.
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Figure 8: Supply Chain System.

ASSUMPTION 1. Consumers have the memory of past transactions only for the last

period.

This assumption simply states that consumer’s memory on history of past transactions

can go back to only one period. This assumption simplifies our model on the learning part

of consumers.

ASSUMPTION 2. In learning process, consumers memorize and value the differences
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in retail prices and service levels from the last period.

We make this assumption to emphasize the net effect of the differences in retail prices

and services on demand. In other words, consumers only care about the relative differences

in the retail prices and service levels between the two products. Information on past prices

and service reputation has been made available recently to consumers on many websites

on the Internet.

ASSUMPTION 3. The investment by one manufacturer (Ii,t) does not directly affect

the market base of the other product within the same period (aj,t).

This assumption separates the direct effect of investment by one manufacturer from

the action by another manufacturer. However, through strategic movement by the two

manufacturers, it is possible that an indirect effect exists. Namely, an increase in investment

by manufacturer i can induce more investment by manufacturer j. Our analysis of the

model considers this indirect influence through game-theoretic framework.

ASSUMPTION 4. The investment in market base by a manufacturer has a decreasing

return-to-scale.

This assumption is used to capture the fact that the manufacturers can not keep in-

vesting their money to expand their market base. The assumption is characterized by the

square root of Ii,t in Equation (34).

With the assumption above, the exact market base equation is given below:

ai,t+1 = ai,t − γ(pi,t − pj,t) + σ(si,t − sj,t) + β
√
Ii,t+1 (33)
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Equation (33) can be rewritten algebraically as a1,t+1

a2,t+1

 =

 a1,t

a2,t

 +

 −γ γ

γ −γ


 p1,t

p2,t



+

 σ −σ

−σ σ


 s1,t

s2,t

 +

 β
√
I1,t+1

β
√
I2,t+1

 (34)

Equations (33) and (34) reflect the “learning” by consumers about the experience they

had gained before making their buying decisions within this period (before Step 3-5 begins).

4.2.4 Manufacturers’ and Retailer’s Profit Functions

As in Chapter 3, Manufacturer i’s profit within each period is the revenue minus cost.

However, in this chapter we introduce Ii,t as part of the cost to influence the market base

in period t. Therefore, the manufacturer’s profit is slightly modified in this chapter.

ΠMi,t = (wi,t − ci)Qi,t −
ηis

2
i,t

2
− Ii,t (35)

where i = 1, 2 and ηi is the service cost coefficient of manufacturer i. The retailer’s profit

within each period is still the same as in Chapter 3. Namely,

ΠR,t =
2∑

i=1

(pi,t − wi,t)Qi,t (36)

where Qi,t is as specified in Equation (32).

However, in this chapter we make the following assumption about the objective of each

firm in the supply chain when making its decisions within each period t.

ASSUMPTION 5. In any period t, both the manufacturers and the retailer are maxi-

mizing their own “moving” two-period profit when making their decision on either prices
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or service levels.

This assumption states that both manufacturers and the retailer have a “one-period

look-ahead” behavior. This means that in any period t, each firm will try to maximize the

sum of profits in period t and t+1. Vilcassim et al. (1999) [91] also assume this framework

in their analysis on firms competing on both price and advertisement3. This two-period

optimization assumption is in contrast to the alternative “myopic” assumption in which

firms only care for current period profit when making their decisions. It is also in contrast

to another alternative model in which firms try to maximize their profits over all N periods

(i.e., until the end of a finite time horizon). The difficulty in that framework is tractability

of the closed-form solution.

The firms in our model try to maximize two-period profits. The question in our frame-

work is whether the moving two-period solution provides a reasonable approximation to

the behavior of firms in the real world. To address this question, we refer to results from an

empirical study by Vilcassim et al. (1999) [91]. They found that the relative effect of cur-

rent period actions on demand two periods in the future “ranged from around 18% to 9%,

while the effect three periods into the future was at most around 8%.” Hence, the moving

two-period model can be treated as a reasonable approximation to real profit maximizing

behavior of firms.

Thus, in any period, the manufacturers must ask how the decision they makes on

investment (Ii,t), will affect the market base in the same period t. They must also ask how

the decision on wholesale price and service level in period t would induce the reaction by

3Their study uses econometric model to estimate the demand and competitive interaction parameters.
Some parameters in our study rely on their study to get an estimation on the range of value.
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the retailer within period t, and also the market base in period t + 1. The market base

(ai,t) would in turn influence the decisions by every firm in period t+ 1. The retailer must

also ask a similar question. Specifically, the retailer must think ahead how his reaction to

wholesale prices and service levels in period t would affect both products’ market bases

(and his own profit) in period t+ 1.

The game-theoretic approach to analyze the problem must then take this fact into

account. Note that the analysis on this situation requires more than just a simple repeated

game framework, but a combination of game theory and dynamic systems control. The

game concepts are employed to analyze strategic interactions among firms in the supply

chain. Equilibrium can then be derived. Dynamic systems and control theory concepts are

employed to analyze the evolving equilibrium of the supply chain over time.

4.3 Analysis of the Model Part I: Equilibrium

The equilibrium concept used in our analysis is the subgame-perfect equilibrium. Using a

game-theoretic framework, the problem is solved backwards. Note that the problem must

be analyzed with a two-period framework, according to the way firms set their objectives

as described earlier. However, even though firms maximize their profits over two periods

(t and t+ 1), the decision process is carried out every period by each firm until the end of

time horizon.

Thus, to make a decision for period t, we begin by considering the t+1st period problem.

Once the reaction functions in the t+1st period are derived, the decision problems by each

firm in the tth period are then derived and analyzed. The methodology in calculating

(re)action functions in both periods is similar. First, the reaction function (on retail price)
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by the retailer must be derived. Then the equilibrium wholesale price and service level

given by each manufacturer are derived. Finally, the amount of investment (to induce

market base) made by each manufacturer must be calculated. The only difference between

the calculations in both periods is that when performing the calculations in the t + 1st

period, we assume that firms already have information on the value of prices and service

levels in the tth period and they are trying to maximize only the profit in the t+1st period.

The calculations for values in the tth period are carried out with the assumption that firms

know the reaction functions in the t + 1st and they all try to maximize their individual

profits over two periods.

4.3.1 Second (Next) Period Analysis

We solve the problem by first separating the problem into two phrases. The first one can be

called an inter−temporal subproblem. This is the subproblem where the decision variables

involve some variables from the previous period. This subproblem covers the Step 1 and

Step 2 defined in Figure 7. The other subproblem is an intra− temporal subproblem. This

is the subproblem in which all the parameters and variables are the results of decisions

made within the period. This subproblem covers the Step 3 to Step 5 in Figure 7. We

solve the problem by working backwards. Thus, we solve the intra-temporal subproblem

first. Then we can consider solving the inter-temporal part of the problem.

4.3.1.1 Intra-Temporal Subproblem

The intra − temporal subproblem in period t + 1 is the same as the problem we already

studied in Chapter 3. This is because by the time the retailer made decision on retail prices

in Step 5 and the manufacturers make their decisions on wholesale prices and service levels
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in Step 3, the market base parameters (ai,t+1 for i = 1, 2) have already taken into account

the investment made by the manufacturers in Step 1 of period t+1 and any inter-temporal

effects from the previous period. Thus, the objective function of each manufacturer right

before the start of Step 3 does not include the investment (Ii,t+1). Therefore, the results

of studies on the Manufacturer Stackelberg model in Chapter 3 can be applied to the

intra − temporal subproblem here. The manufacturer’s equilibrium wholesale price and

service level are w1,t+1

w2,t+1

 =

 ϕ1 ϕ1D2

ϕ2D1 ϕ2


 a1,t+1

a2,t+1

 +

 ϕ1n11 ϕ1n12

ϕ2n21 ϕ2n22


 c1

c2


 s1,t+1

s2,t+1

 =

 l1 l1D2

l2D1 l2


 a1,t+1

a2,t+1

 +

 m11 m12

m21 m22


 c1

c2

 (37)

where i, j ∈ {1, 2}, j 6= i and

Ai = 4ηi(bp + θp) + (bs + θs)
2 Bi = 2ηiθp − θs(bs + θs)

(
bp−bs+2θp

bp+2θp

)
Di = Bi

Ai

Ei = (bp + θp)− (bs+θs)2

2ηi
Fi = θs(bs+θs)

2ηi
− θpbs(bs+θs)

2ηi(bp+2θp)

n11 = E1 + F1D2 n12 = F2 + E2D2

n21 = F1 + E1D1 n22 = E2 + F2D1

ϕi =
2ηiAj

A1A2−B1B2
li = ϕi

(bs+θs)
2ηi

m11 = l1(E1 + F1D2 − 1
ϕ1

) m12 = l1(F2 + E2D2)

m21 = l2(F1 + E1D1) m22 = l2(E2 + F2D1 − 1
ϕ2

).
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With the results shown above we can calculate for the expression of the retail price (pi,t

for i = 1, 2) and demand quantity (Qi,t for i = 1, 2). That is p1,t+1

p2,t+1

 =

 t11 t12

t21 t22


 a1,t+1

a2,t+1

 +

 y11 y12

y21 y22


 c1

c2

 (38)

 Q1,t+1

Q2,t+1

 =

 g11 g12

g21 g22


 a1,t+1

a2,t+1

 +

 h11 h12

h21 h22


 c1

c2

 (39)

where the definition of tij, yij, gij, and hij for i, j ∈ {1, 2} are given in Appendix B.

Note that the market bases (ai,t+1 for i = 1, 2) in Equation (37) to (39) are the market

bases after the “learning” effect by the consumer (shown in Equation (34)) has taken

place earlier in the period. In the next section, the amount of investment (Ii,t+1) each

manufacturer should invest to influence the market base will be derived.

4.3.1.2 Inter-Temporal Decisions

We next consider the decisions by the two manufacturers on the investment (Ii,t+1). The

objective function of the manufacturers at this stage is as shown in Equation (35). The

manufacturer i must choose the investment I∗i,t+1 to maximize its equilibrium profit. Let

pt = [p1,t, p2,t], wt = [w1,t, w2,t], st = [s1,t, s2,t], It = [I1,t, I2,t]. The investment I∗i,t+1 at

equilibrium can be expressed as

I∗i,t+1 ∈ argmax
Ii,t+1

ΠMi,t+1(Ii,t+1, I
∗
j,t+1|pt,wt, st, It) (40)

where ΠMi,t+1(Ii,t+1, I
∗
j,t+1|pt,wt, st, It) denotes the profit to manufacturer i at this stage,

given earlier decisions on retail price pt, wholesale price wt, service levels st, and Investment
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It. Using Equation 34, the first order conditions can be shown as

0 =
{

2ηiQi,t+1Kj + (wi,t+1 − ci)
[1

2
− (bp + θp)ηiKj + θpηjDiKi +

(bs + θs)
2

2
Kj

−θs

2
(bs + θs)DiKi

]
− ηi(bs + θs)Kjsi,t+1

} β

2
√
Ii,t+1

− 1 (41)

where i, j ∈ {1, 2} and j 6= i.

Given the first order condition in Equation 41 and the results from Equation 37, 37,

and 39, one can derive the following linear relationship between the square root of the

investment amount and the market bases, retail prices and service levels from previous

period t.
√
I1,t+1√
I2,t+1

 =

 δ11 δ12

δ21 δ22


 a1,t

a2,t

 +

 (δ12 − δ11)γ −(δ12 − δ11)γ

(δ22 − δ21)γ −(δ22 − δ21)γ


 p1,t

p2,t



+

 −(δ12 − δ11)σ (δ12 − δ11)σ

−(δ22 − δ21)σ (δ22 − δ21)σ


 s1,t

s2,t

 +

 ∆1

∆2

 (42)

where the definition of δij, and ∆i for i, j ∈ {1, 2} are given in Appendix B.

Finally, the market base in period t+1 (ai,t+1), which is the market base after influence

from the investment I1,t+1 and I2,t+1 has been taken into account, can be derived by substi-

tuting Equation (42) into Equation (33). As a result, the market base in period t+ 1 can

be expressed as a function of the retail prices, service levels, and market bases in period t

as  a1,t+1

a2,t+1

 =

 (δ12 − δ11)γβ − γ −(δ12 − δ11)γβ + γ

(δ22 − δ21)γβ + γ −(δ22 − δ21)γβ − γ


 p1,t

p2,t



+

 −(δ12 − δ11)σβ + σ (δ12 − δ11)σβ − σ

−(δ22 − δ21)σβ − σ (δ22 − δ21)σβ + σ


 s1,t

s2,t
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+

 (βδ11 + 1) βδ12

βδ21 (βδ22 + 1)


 a1,t

a2,t

 +

 ∆1

∆2

 (43)

4.3.2 First (Current) Period Analysis

After knowing how each firm will behave in period t+ 1 given the information on decision

in period t, we next consider the decisions faced by each firm in period t.

4.3.2.1 Intra-Temporal Subproblem

Retailer Reaction Function

The retailer’s decision on the retail prices of both products in period t can now be

examined. Note that the objective of the retailer is now to maximize the profit over two

periods. Specifically, its objective function is

ΠR,t(pt|wt, st, It) =
t+1∑
τ=t

2∑
i=1

(pi,τ − wi,τ )Qi,τ (44)

where ΠR,t(pt|wt, st, It) is the sum of retailer’s profit in period t and t+ 1 when the retail

price in period t is pt = [p1,t, p2,t]. The retailer must find the retail price p∗1,t and p∗2,t to

maximize its profit. That is,

p∗i,t ∈ argmax
pi,t

ΠR,t(pi,t, p
∗
j,t|wt, st, It) (45)

where ΠR,t(pi,t, pj,t|wt, st, It) is the retailer profit when the retail price is pi,t and pj,t, given

earlier decisions on wholesale prices wt, service levels st, and investment It. The first order

condition for Equation (44) is used to find p∗i,t (i ∈ {1, 2}).

∂ΠR,t

∂pi,t

= Qi,t + (pi,t − wi,t)
∂Qi,t

∂pi,t

+ (pj,t − wj,t)
∂Qj,t

∂pi,t
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+
(∂pi,t+1

∂pi,t

− ∂wi,t+1

∂pi,t

)
Qi,t+1 + (pi,t+1 − wi,t+1)

∂Qi,t+1

∂pi,t

+
(∂pj,t+1

∂pi,t

− ∂wj,t+1

∂pi,t

)
Qj,t+1 + (pj,t+1 − wj,t+1)

∂Qj,t+1

∂pi,t

Using the first order condition above, the retailer’s reaction function to wholesale prices

and service levels in period t can be derived as p1,t

p2,t

 =

 ψ11 ψ12

ψ21 ψ22


 s1,t

s2,t

 +

 ζ11 ζ12

ζ21 ζ22


 w1,t

w2,t

 +

 Υ1

Υ2

 . (46)

where the expressions for ψij, ζij, and Υi for i, j ∈ {1, 2} and j 6= i are given in Appendix

B.

Manufacturers Decision Process

The retailer’s reaction function in Equation (46) gives the manufacturers information

on how their decisions will affect the retail prices and their profits. The manufacturers then

use this information to set wholesale prices and service levels to maximize their individual

profits over two periods (t and t + 1). Each manufacturer’s objective at this stage can be

expressed as

ΠMi,t =
t+1∑
τ=t

[
(wi,τ − ci)Qi,τ −

ηis
2
i,τ

2
− Ii,τ

]
(47)

for i, j ∈ {1, 2} and j 6= i. Note that in Equation (47), Ii,t is a constant. This is because

when the manufacturers make their decisions on the wholesale prices and service levels,

the decisions on I1,t and I2,t have already been made. Each manufacturer must choose the

wholesale price and service level to maximize its own objective. That is,

w∗
i,t ∈ argmax

wi,t

ΠMi,t(wi,t, w
∗
j,t, s

∗
i,t, s

∗
j,t|It) (48)

78



and

s∗i,t ∈ argmax
si,t

ΠMi,t(w
∗
i,t, w

∗
j,t, si,t, s

∗
j,t|It) (49)

where ΠMi,t(wt, st|It) is the profit of manufacturer i at this stage when manufacturers set

wholesale prices at wt and service levels at st, given earlier decisions on investment It.

First order conditions for each i = 1, 2 can be derived as follows:

0 =
∂ΠMi,t

∂wi,t

= Qi,t + (wi,t − ci)
∂Qi,t

∂wi,t

+
∂wi,t+1

∂wi,t

Qi,t+1

+(wi,t+1 − ci)
∂Qi,t+1

∂wi,t

− ηisi,t+1
∂si,t+1

∂wi,t

− ∂Ii,t+1

∂wi,t

0 =
∂ΠMi,t

∂si,t

= (wi,t − ci)
∂Qi,t

∂si,t

− ηisi,t +
∂wi,t+1

∂si,t

Qi,t+1

+(wi,t+1 − ci)
∂Qi,t+1

∂si,t

− ηisi,t+1
∂si,t+1

∂si,t

− ∂Ii,t+1

∂si,t

Solving the first order conditions above, the expression for wi,t and si,t can be derived as

linear functions of ai,t and ci (for i ∈ {1, 2}). w1,t

w2,t

 =

 κ11 κ12

κ21 κ22


 a1,t

a2,t

 +

 ν11 ν12

ν21 ν22


 c1

c2

 (50)

 s1,t

s2,t

 =

 ϑ11 ϑ12

ϑ21 ϑ22


 a1,t

a2,t

 +

 ς11 ς12

ς21 ς22


 c1

c2

 (51)

The expressions for ϑij, ςij, κij, and νij for i ∈ {1, 2} and j = 3− i are given in Appendix

B.

4.3.2.2 Inter-Temporal Subproblem

Continuing working backwards, the next step is for the manufacturers to analyze their

decisions on the level of investment Ii,t. Manufacturer i’s objective at this stage can be
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expressed as

ΠMi,t =
t+1∑
τ=t

δτ−t
[
(wi,τ − ci)Qi,τ −

ηis
2
i,τ

2
− Ii,τ

]
(52)

where i ∈ {1, 2} and δ is discount factor. For simplicity, we assume that δ is 1 from now on.

Here Ii,t (i ∈ {1, 2}) are decision variables. Each manufacturer must choose the investment

Ii,t to maximize its equilibrium profit. That is,

I∗i,t ∈ argmax
Ii,t

ΠMi,t(Ii,t, I
∗
j,t) (53)

where ΠMi,t(I1,t, I2,t) is manufacturer i’s profit over two periods when manufacturer 1 and 2

invest I1,t and I2,t, respectively. The first order condition from Equation (52) with respect

to the investment Ii,t is then stated as follows

0 = (wi,t − ci)
∂Qi,t

∂Ii,t
+
∂wi,t

∂Ii,t
Qi,t − ηisi,t

∂si,t

∂Ii,t
+ (wi,t+1 − ci)

∂Qi,t+1

∂Ii,t

+
∂wi,t+1

∂Ii,t
Qi,t+1 − ηisi,t+1

∂si,t+1

∂Ii,t
− ∂Ii,t+1

∂Ii,t
− 1 (54)

Solving the first order condition in Equation (54), the investment I∗i,t must satisfy the

following relationship
√
I∗1,t√
I∗2,t

 =

 $11 $12

$21 $22


 a1,t−1

a2,t−1

 +

 ε11 ε12

ε21 ε22


 c1

c2

 . (55)

where the expressions for $ij, and εij for i, j ∈ {1, 2} and j 6= i are given in Appendix B.

Using the fact that the market base in the tth period is

ai,t = ai,t−1 − γ(pi,t−1 − pj,t−1) + σ(si,t−1 − sj,t−1) + β
√
Ii,t (56)
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We can derive the system equation for the market base as a1,t

a2,t

 =

 χ11 χ12

χ21 χ22


 a1,t−1

a2,t−1

 +

 ω11 ω12

ω21 ω22


 c1

c2

 (57)

where the expressions for χij, and ωij for i, j ∈ {1, 2} and j 6= i are given in Appendix B.

The result in Equation (57) is based on the assumption that ai,0 = ai where ai is the

initial market base for product i, and pi,0 = si,0 = 0 for i ∈ {1, 2}.

4.4 Analysis of The Model Part II: Dynamic Sys-

tems

Equation (57) governs the dynamics of market bases and production cost over time. Alter-

natively, we can write it in the following form:

a1,t

a2,t

c1,t

c2,t


=



χ11 χ12 ω11 ω12

χ21 χ22 ω21 ω22

0 0 1 0

0 0 0 1





a1,t−1

a2,t−1

c1,t−1

c2,t−1


. (58)

or

Φ(t) = MΦ(t− 1) (59)

Equation (58) and (59) both represent a homogeneous dynamic system. Note that the

production cost c1,t and c2,t does not change over time. From the system equation above,

a “system equilibrium” point can be defined in the following definition.

DEFINITION 4.1. A vector Φ is an equilibrium point of a dynamic system if it has the
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property that once the system state vector is equal to Φ it remains equal to Φ for all future

time.

Thus, with the assumption that Φ(0) 6= 0, a system equilibrium point must satisfy the

condition

Φ = MΦ (60)

Equation (60) is useful to find the system equilibrium when one exists. From dynamic

system theory, the existence of system equilibrium depends on the value of the dominant

eigenvalue of M . Specifically, the following lemma is derived from dynamic system theory.

LEMMA 4.1. (Luenberger [1979])Long term behavior of the market base sizes is deter-

mined by the dominant eigenvalue of M. Subdominant eigenvalues of M determine how

quickly the market bases converge or diverge.

Lemma 4.1 follows directly from dynamic system theory (see Luenberger (1979) [56]

for details) and the structure of homogeneous dynamic system of market bases stated in

Equation (58) and (59). The dominant eigenvalue of M is the eigenvalue with the largest

absolute value. Subdominant eigenvalues of M refer to all other eigenvalues of M. From

Lemma 4.1, we can analyze the dynamic behavior of the whole supply chain (i.e., retail

prices, wholesale prices and service levels) through the dynamic behavior of market bases

governed by Equation (58) and (59). This is because from Section 4.3 we can express any

such variables in any period as a function of market bases and production costs in that

period. From the special structure of M, one can find the dominant eigenvalue directly

from the component of M.

82



THEOREM 4.1. Let λD be the dominant eigenvalue of M, then λD equals

(a) 1, if 1 > |χ11|,|χ22|

(b) χ11, if |χ11| > 1,|χ22|

(c) χ22, if |χ22| > 1,|χ11|

where χ11, χ22 are as defined in Equation (58).

Proof:

Eigenvalues of M are scalars λ such that M − λI is singular. This implies one must

solve for λ that satisfies det(M− λI) = 0. However, from the definition of M in Equation

(58), eigenvalues of M are 1, χ11, and χ22 (with 1 having algebraic multiplicity of 2 in this

case). Thus, the dominant eigenvalue must be the biggest of these three numbers. �

The following theorem states the condition that governs the convergent or divergent

behavior of the system.

THEOREM 4.2. If the dominant eigenvalue of M equals to 1, the market bases of both

products converge to a constant over time. Otherwise, the market bases diverge. If the

dominant eigenvalue equals to 1, the system can converge or diverge.

Proof: See Appendix B.

Theorem 4.2 states the dynamic behavior of the market bases of both products over

time. Although the theorem states only the behavior of market bases, other quantities

such as wholesale prices, retail prices, service levels, and demand quantity also follow the

behavior of market bases. If the market bases converge, these variables will converge as

well. Likewise, if the market bases diverge, they will also diverge.
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Even when we know exactly whether the market bases will converge or diverge from the

eigenvalue of M, the dynamic period-by-period behavior of the market bases (and prices

and service levels) can vary. For example, there can be some oscillation in the market bases’

sizes before each of them converge to a value. Alternatively, the market base can smoothly

increase or decrease to a value over time. In the first case, the leader-follower roles can be

alternating between the two products. Namely, the two products can switch the market

leader-follower role4 during the oscillation and before they reach the final convergent value.

The following theorem states the conditions that govern the period-by-period behavior of

the market bases.

THEOREM 4.3. The dynamic behavior of market bases can be predicted by the value of

its dominant eigenvalue as follows:

(i) If every eigenvalue of M is positive, the dynamic pattern of market bases is a geo-

metric sequence of the form rk, which (increasingly) diverge if r > 1 and converge if

r ≤ 1. No oscillation occurs in this case.

(ii) If there is at least one eigenvalue that is negative, the response is an alternating

geometric sequence of the form (−1)k|r|k. If |r| < 1, market base sizes will converge

with decreasing oscillations. If |r| > 1, market base sizes diverge with increasing

oscillations.

Proof: See Appendix B.

Theorem 4.3 characterizes the period-by-period behavior of the system variables. When

4A firm holds market leadership if it has bigger market base than its competition. On the other hand,
the firm will be called the market follower if it has a smaller market base.
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the dominant eigenvalue is negative, the market leader-follower roles between the two man-

ufacturers can be alternating every period due to the oscillation in the system variables (i.e.,

market bases, prices, service levels). When the dominant eigenvalue is real and positive, it

is still possible that the two manufacturers switch their market leadership. However, this

switching can only occur once since there will be no oscillation in the system variables.

Figure 9 shows the situation when all eigenvalues are positive. The dominant eigenvalue

of M is 1.000, while the subdominant eigenvalue equals 0.0588. The system smoothly con-

verges to the system equilibrium predicted by Equation (60). Figure 10 presents a situation
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Figure 9: The evolution of equilibrium market bases when β = 0.0, γ = 2.8, σ = 2.8,
bp = bs = 2, θp = θs = 1.1, a1,0 = 100, a2,0 = 160, c1 = 5, c2 = 15, η1 = η2 = 5 (Manufacturer
1: Red, Manufacturer 2: Blue, Retailer: *).

when the dominant eigenvalue is greater than one (1.0046 in this case). The subdominant

eigenvalue is 0.0595. In this case, the system does not converge to a system equilibrium.

However, it has a smooth behavior with no oscillation over time.
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Figure 10: The evolution of equilibrium market bases when β = 0.3, γ = 2.8, σ = 2.8,
bp = bs = 2, θp = θs = 1.1, a1,0 = 100, a2,0 = 160, c1 = 5, c2 = 15, η1 = η2 = 5 (Manufacturer
1: Red, Manufacturer 2: Blue, Retailer: *).

Figure 11 presents an example of a situation when the dominant eigenvalue is positive

and equal to 1 but the subdominant eigenvalue is negative and greater than −1. In this

example, the dominant eigenvalue of M is 1, while the subdominant eigenvalue equals -

0.5634. Figure 11 shows that after some oscillation, the system settles down to the system

equilibrium (which follows Equation (60)).

Figure 12 shows the situation when the dominant eigenvalue is positive and greater

than 1 but the subdominant eigenvalue is negative and greater than −1. In this example,

the dominant eigenvalue of M is 1.0046, while the subdominant eigenvalue equals −0.5671.

As can be seen from the figure, the system oscillates during the first few periods before

it settles on a smoother increasing behavior. Note that Manufacturer 1 starts off being a

market leader but ends up by being a market follower. Detailed discussions on this behavior
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Figure 11: The evolution of equilibrium market bases when β = 0.0, γ = 3.8, σ = 2.8,
bp = bs = 2, θp = θs = 1.1, a1,0 = 100, a2,0 = 160, c1 = 5, c2 = 15, η1 = η2 = 5 (Manufacturer
1: Red, Manufacturer 2: Blue, Retailer: *).

of the two manufacturers will be presented in Section 4.5. In the next section, numerical

examples from several scenarios are presented. Some observations and managerial insights

are then provided.

4.5 Numerical Studies on Special Cases

In this section, we show numerical examples of possible real cases. We follow existing

literature (e.g., Tsay and Agrawal (2000) [90] and Vilcassin et al. (1999) [91]) in defining

the range of some parameters. The range of parameters we use in this section can be found

in Appendix B.
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Figure 12: The evolution of equilibrium market bases when β = 0.3, γ = 3.8, σ = 2.8,
bp = bs = 2, θp = θs = 1.1, a1,0 = 100, a2,0 = 160, c1 = 5, c2 = 15, η1 = η2 = 5 (Manufacturer
1: Red, Manufacturer 2: Blue, Retailer: *).

4.5.1 No Oscillation

From Equation (58) and (59) and Theorem 4.3, the occurrence of oscillation behavior of

market depends on the parameter values. With numerical studies, we observe a range of

parameters such that the system smoothly moves to the system equilibrium as defined in

Equation (60). The following observation gives the market conditions such that oscillation

in market behavior would not occur.

OBSERVATION 4.1. The oscillation behavior of the supply chain system will not occur

if all the following conditions hold:

(a) γ ≤ max (bp, θp)

(b) σ ≤ max (bs, θs)
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(c) 0.5σ ≤ γ ≤ 1.5σ.

This observation states that if values of both γ and σ are not very different from each

other and not far different from bp, θp, bs, and θs, market base evolution over time will be

smooth (no oscillations). Part (a) and (b) is reasonable and valid in most situations since

demand should be more sensitive to current price (service) than last period price (service).

To understand part (c), we should examine the case when this condition is not satisfied.

If demand is a lot more sensitive to last period price than last period service (γ >> σ), a

two-period profit-maximizing manufacturer may sell product at a low price in period t and

plan to overprice in period t+ 1. However, when period t+ 1 is reached, the manufacturer

will find that it has a smaller market base in period t + 1 due to overpricing. It then

would have to underprice again in period t + 2 in order to regain the market base loss

due to overpricing in period t + 1. This phenomenon would repeat itself overtime and

cause oscillation in market bases, prices, and service levels. A similar situation can occur

when demand is more sensitive to last period service than the last period price. Thus, in a

situation where demand sensitivities to prices and service levels are not far different from

each other, there will be no oscillation in the system.

Now, consider the situations given in Figure 11 to 12. The only difference in parameter

values between these situations is the β value. When β = 0, the investment Ii,t will not

affect the market base for product i in period t for i = 1, 2. Namely,

ai,t = ai,t−1 − γ(pi,t−1 − pj,t−1) + σ(si,t−1 − sj,t−1) (61)

for i, j ∈ {1, 2} and j 6= i. This is the case when consumers are not sensitive to the

investment made by the manufacturers in current period. Thus, it is not beneficial to the
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manufacturers to invest in any market expansion activities (Ii,t = 0 for i ∈ 1, 2). On the

other hand, if β > 0, the consumers are sensitive to the market investment made by the

manufacturers. Thus, it is always beneficial for the manufacturers to invest some money for

market expansion activities in this case. The following observation captures both scenarios.

OBSERVATION 4.2. The value of consumer sensitivity to market expansion investment

(β) determines whether the system is convergent or divergent:

(i) When β = 0 there will be no investment to expand market bases in any period and

the system will converge.

(ii) When β > 0 the manufacturers will keep investing in expanding the market bases and

the system will diverge.

Figure 9 and 11 shows the situation when β = 0. They show that the system finally

becomes stable. When β > 0, both manufacturers will keep investing to expand their

market bases. In that case, the market base will keep growing as shown in Figure 10 and

12.

From now on, we assume that β > 0 so that the investment to expand market base

by manufacturers will not be zero (Ii,t > 0 for i = 1, 2). We also assume the validity of

conditions given in Observation 4.1 on the range of γ and σ. This is to prevent oscillations

in market bases over time.
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Figure 13: The evolution of equilibrium market bases when β = 0.0, γ = 0.6, σ = 1.8,
bp = bs = 2, θp = θs = 1.1, a1 = 100, a2 = 100, c1 = 5, c2 = 5, η1 = 7, η2 = 5 (Manufacturer
1: Red, Manufacturer 2: Blue).

4.5.2 Service-Emphasized Market

Figure 13 shows a typical case where demand is more sensitive to last period service than

last period price in the learning process5. In this case, we find that the firm with service

cost advantage will be the winner over time. This result assures the importance of service

component in competitions over repeated transactions.

5It is unrealistic to consider market with service only sensitivity and ignore the price component all
together (i.e., β = γ = 0). At least that is not the product type we are concentrating on with our model.
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Figure 14: The evolution of equilibrium market bases when β = 0.0, γ = 1.8, σ = 0.0,
bp = bs = 2, θp = θs = 1.1, a1 = 100, a2 = 100, c1 = 5, c2 = 15, η1 = 5, η2 = 5 (Manufacturer
1: Red, Manufacturer 2: Blue).

4.5.3 Price Sensitive Market

In this example, we investigate the result of a special case where consumers only care about

prices from previous period in their learning process. Namely, β = σ = 0 while γ > 0.

Since β = 0, the system will finally converge to a system equilibrium. In this case, the

final retail price of both products will be the same. However, the company with the cost

advantage (either production cost or service cost advantage) can afford to sell its product

cheaper while providing more service to consumers. This leads to an equilibrium in which

the company with the cost advantage gets more demand for its product and earns greater

profit. The retailer will sell both products at the same price. The following observation
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states this result.

OBSERVATION 4.3. Given that demand is only sensitive to price in its learning process

(i.e., β = σ > 0 and γ > 0), the company with any type of cost advantage will gain more

profit and capture a larger market base than its competitor. The retailer will sell both

products at the same retail price but the firm with cost advantage will be able to support

more service to its customers.

This situation emphasizes the role of the retailer as a middle man who can control the

consumer demand through retail price setting. Since demand is not sensitive to service

from the last period, the role of the middle man is highlighted in this case. Figure 14 shows

the system dynamics in a typical price-sensitive market.

4.5.4 Identical Manufacturers

In this example, we consider the situation when the two manufacturers are identical in

product and service cost. Namely, c1 = c2 = c and η1 = η2 = η. We observe that no matter

how different the initial value the manufacturers have for market bases, both products will

be sold at the same price with the same level of service provided to the consumers. An

example of this scenario is shown in Figure 15.

OBSERVATION 4.4. If all the costs are the same, the two manufacturers will converge

to the same market size and sell their products at the same price, while providing equal

level of service to consumers. This happens even though the two products may start with

different market bases initially.

This observation emphasizes the importance of production and service cost components
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Figure 15: The evolution of equilibrium market bases when β = 0.3, γ = 2, σ = 2,
bp = bs = 2, θp = θs = 1.1, a1 = 120, a2 = 80, c1 = c2 = 15, η1 = η2 = 5 (Manufacturer 1:
Red, Manufacturer 2: Blue, Retailer: *).

in competition between the two manufacturers over repeated transactions. If the two man-

ufacturers possess similar underlying production and service capability, initial advantage

by either company on the market base vanishes over time.

4.5.5 Production Cost Leader vs. Service Cost Leader

In this example, we study competition between two manufacturers that possess different

advantages. One manufacturer, company 1, possesses superior production technology and

thus has a lower production cost. The other, company 2, is more efficient in providing

service and thus has a smaller service cost coefficient. Thus, c1 < c2 and η1 > η2. We

are interested in investigating the extent to which each advantage can help a company to
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compete with the other.

The following observation states that the company with service cost advantage will

always win in the long-run over the company with production cost advantage, no matter

how big the production cost advantage or how small the service cost advantage.

OBSERVATION 4.5. Given that demand is equally sensitive to both price and service

level (i.e., bp = bs, θp = θs, γ = σ > 0) and β > 0, the company with service cost advantage

may earn less profit and capture smaller market base in the beginning. However, it will

finally gain more profit and capture larger market base than its smaller-production cost

competitor. This happens no matter how big the production cost advantage company 1 has

over company 2, or how small the service cost advantage company 2 has over company 1.

This observation emphasizes the importance of service component in competition over

the long-run. Figure 16 shows a typical situation in the competition between a production

cost leader and a service cost leader. Notice that at the beginning, the service cost leader

may have a smaller demand and earn less profit. However, as it keeps increasing service

levels to consumers, it can finally win more customers and earn bigger profit than its

production cost leader competitor. Note also that the production cost leader company has

a bigger initial market base but that still does not change the end result.

4.6 Comparisons with Myopic Model

In this section we compare our results with myopic models. In the model, the two man-

ufacturers and the retailer just try to optimize their single-period profits. We study and

compare the results from this myopic model to those from our model. We perform this

comparison under two different assumptions on demand. In the first case, demand is
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Figure 16: The evolution of equilibrium market bases when β = 0.9, γ = 1.8, σ = 1.8,
bp = bs = 2, θp = θs = 1.1, a1 = 100, a2 = 500, c1 = 3, c2 = 25, η1 = 9, η2 = 5 (Manufacturer
1: Red, Manufacturer 2: Blue).

memoryless. Consumers in this case do not learn from past experience and only concern

about prices and services in current period. For our model, this is a special case when

β = γ = σ = 0. In the second case, consumers learn from past experience. Thus, demand

for product i will depend on prices and service in both the previous and the current periods.

To begin our comparison, we first state the equilibrium decisions made by myopic firms.

4.6.1 Myopic Decision Model

Myopic firms optimize profit in the current period only. In comparison to our model, it

is as if firms are in the second stage of the two-period profit-optimizing model studied in

Section 4.3.1. Therefore, the results from Section 4.3.1 can be applied here. Thus, for any
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time period t, manufacturers’ investment to expand market base within current period can

be calculated by
√
I1,t√
I2,t

 =

 δ11 δ12

δ21 δ22


 a1,t−1

a2,t−1

 +

 (δ12 − δ11)γ −(δ12 − δ11)γ

(δ22 − δ21)γ −(δ22 − δ21)γ


 p1,t−1

p2,t−1



+

 −(δ12 − δ11)σ (δ12 − δ11)σ

−(δ22 − δ21)σ (δ22 − δ21)σ


 s1,t−1

s2,t−1

 +

 ∆1

∆2


Also, from Section 4.3.1 the wholesale prices, retail prices, service levels, and demand

quantities for both products can be calculated by w1,t

w2,t

 =

 ϕ1 ϕ1D2

ϕ2D1 ϕ2


 a1,t

a2,t

 +

 ϕ1n11 ϕ1n12

ϕ2n21 ϕ2n22


 c1

c2


 s1,t

s2,t

 =

 l1 l1D2

l2D1 l2


 a1,t

a2,t

 +

 m11 m12

m21 m22


 c1

c2


 p1,t

p2,t

 =

 t11 t12

t21 t22


 a1,t

a2,t

 +

 y11 y12

y21 y22


 c1

c2


 Q1,t

Q2,t

 =

 g11 g12

g21 g22


 a1,t

a2,t

 +

 j11 j12

j21 j22


 c1

c2

 .
All the parameters are as defined previously in Section 4.3.1. We now compare the numer-

ical results from our model and the myopic model.
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4.6.2 Myopic Firms with Memoryless Demand

Figure 17 compares the results from our model and those from a model with myopic firms.

The market bases are the same for both models and do not change over time since there is

no learning demand. The manufacturers do not have to invest since demand is not affected

by their investments (β = 0). It can be seen that the manufacturers’ profits are higher in

our model. Service levels and prices are also higher in our model, even though demand is

smaller. Thus, the manufacturers in our model concentrate on the higher end of the market

(high service, high price), where as the manufacturers in myopic model focus on the lower

end (low service, low price). This is an important insight for firms in a market where the

learning effect from consumers is small. High-end consumers are willing to pay more for

higher service level and firms can earn more profits focusing on this group of consumers.

4.6.3 Myopic Firms with Learning Demand

Figure 18 shows the comparison when consumers learn from the past period. This figure

shows the major difference between the results from our model and those from a myopic

model. In a myopic model, the firms only care about their profits in the current period and

ignore any future effects their behavior might cause over time. Thus, they are not capable

to cope with the learning consumers. Their markets shrink and they earn less profit over

time. On the other hand, our model, with think-ahead firms, can prevent this phenomenon

from happening. They plan their actions to take advantage of the learning behavior of

demand. The service levels and prices are chosen such that the firms are rewarded by the

consumers. Thus, markets keep growing for both products while firms can keep earning

more profits.
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Figure 17: Comparison between Myopic and Two-period profit optimizing model. β =
0, γ = 0, σ = 0, bp = bs = 2, θp = θs = 1.1, a1 = 120, a2 = 80, c1 = 5, c2 = 5, η1 = 6, η2 = 5
(Myopic: xxx, Two-Period: –, Manufacturer 1: Red, Manufacturer 2: Blue).

4.7 Final Remarks

To develop our multi-period model, we apply both game theory and dynamic systems

and control theory to characterize our model. We assume that firms use a moving two-

period profit-maximizing strategy. Demand is assumed to have a “learning” capability.

Information on the previous period prices and services, as well as manufacturers’ investment

to expand market bases, can influence market base of each product in current period. Using

concepts from dynamic systems and control with numerical studies on some special cases,

some managerial insights are obtained.
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Figure 18: Comparison between Myopic and Two-period profit optimizing model. β =
0.5, γ = 0.4, σ = 0.3, bp = bs = 2, θp = θs = 1.1, a1 = 120, a2 = 80, c1 = 5, c2 = 5, η1 =
6, η2 = 5 (Myopic: xxx, Two-Period: –, Manufacturer 1: Red, Manufacturer 2: Blue).

We find that if demand is only sensitive to price in the learning process, the manufac-

turer with any type of cost advantage will gain more profit and capture a larger market

base than its competitor. The retailer will sell both products at the same retail price but

the firm with cost advantage will be able to support more service to its customers. Also,

if all the costs are the same between two identical manufacturers, they will possess equal

market size and sell their products to the same group of customers even though they may

initially start with different market bases.

Our main finding is that if demand is equally sensitive to both price and service level,

the manufacturer with service cost advantage may earn less profit and capture a smaller
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market base in the beginning. However, it will finally gain more profit and capture a larger

market base than its smaller-production cost competitor. This happens no matter how big

the production cost advantage its competitor has, or how small the service cost advantage

the manufacturer has over its competitor.

We realize that our assumption on constant unit production cost over time may not

be realistic. Other alternatives such as economy-of-scale production cost or decreasing

return-to-scale production cost can be explored in the future. These assumptions will

affect the pricing behavior of both products over time. In our case, since unit production

cost is constant, a firm can increase service levels and keep charging a higher price without

worrying much about production cost. Thus, retail price can keep increasing as long as

service can make up for the price increase. Other assumptions on production cost are likely

to yield different results.
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CHAPTER V

COMPETITION IN SUPPLY CHAIN WITH

UNCERTAIN DEMAND

5.1 Introduction

In Chapter 3 we studied the supply chain with two manufacturers producing different but

substitutable products. These manufacturers sell their products to a common retailer, who

in turn, sell the products to the end consumer. We assumed in Chapter 3 that consumer

demand for each product is deterministic and is sensitive to two factors: (1) retail price,

(2) service provided by the manufacturer. In this chapter, the single-period problem is

extended to the case where demand is stochastic. Figure 19 shows the supply chain that

will be studied in this chapter.

Only the manufacturers Stackelberg case is considered here. The manufacturers try

to maximize their own profits and simultaneously announce wholesale prices and service

levels at the beginning of the period. The retailer must decide how much to order from each

manufacturer and what the retail price of each product should be. The order quantities

from the retailer become demands for the manufacturers to fill. We assume that the

manufacturers’ production process and the retailer’s procurement process have zero lead-

time. At the retailer level, products are put into inventory. Demand for each product is

then satisfied from the retailer’s inventory. At the end of the period, the retailer will either
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Manufacturer 1

Retailer

retail price (p2)

service (s1) service (s2)

Manufacturer 2

Potential Customer

retail price (p1)

wholesale price (w2)wholesale price (w1)

demand (D1)

demand (D2)

order (Q1)

order (Q2)

production cost (c1) production cost (c2)
At period t

µi = ai - bppi + θp(pj - pi) + bssi – θs(sj - si)

Di = µi + ε

Figure 19: Stochastic Model.

obtain a salvage value for any leftover inventory, or be charged a shortage cost for each

unit of unfulfilled demand (i.e., there is no backlogging).

In summary, for each transaction, the overall pricing and ordering decisions in the

channel follow the following sequence:

Step 1. Manufacturers simultaneously announce wholesale prices to be offered to the retailer

and service levels to be offered to consumers.

Step 2. In response to the manufacturers’ announcements, the retailer decides the retail price

and ordering quantity of each product that would maximize his expected profit. Re-

tailer’s ordering quantities become incoming demands for each manufacturer.
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Step 3. Consumer demand for each product is realized.

Step 4. Shortage cost or disposal cost for each product is charged to the retailer, depending

on the demand and the stocking level. The manufacturers realize their profit in this

transaction.

Figure 20 shows the timeline of events in this model.

Retailer gives orders
and sets retail price

Manufacturers 
announce 

wholesale prices 
and service levels

Demand for the 
season is realized

Retailer gets profits
and charges for 
any shortages 

or leftovers

Suppliers’ profit 
is realized

For each period (transaction):

3
1

4a

2

4b

Figure 20: Timeline of events within each transaction.

We assume that each manufacturer has complete information about its competitor

and the retailer’s cost parameters and also the consumer’s demand responsiveness to the

retail price. Therefore, for given wholesale prices chosen in Step 1, each manufacturer can

anticipate the retailer’s response in Step 2. Each manufacturer will take this into account
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so as to choose the wholesale price and service level in Step 1 to maximize its own profit

in Step 4.

We also assume that the retailer, though not knowing the exact demand for each product

for a given retail price, knows its distribution. Since demand for each product is stochastic

and is price- and service-sensitive, the retailer is facing a two-product newsvendor problem

with a joint price-ordering decision in each period. This means the retailer has to take into

account the demand sensitivity to the retail price when he determines the retail price and

the order quantity for each product1.

In our model, the consumer demand is sensitive to prices and to service provided by

the manufacturers. However, from the retailer’s point-of-view, demand is only sensitive to

retail price. This is because we are assuming that manufacturers posses more bargaining

power and announce their wholesale price and service level before the retailer makes its

decision about the retail price and order quantity. The retailer can only react by choosing

the retail price and ordering quantity for each product. It is as if he is facing a newsvendor-

type problem. In order to study the model, it is important to first study how the retailer

would solve his problem.

The two-product newsvendor problem with price-dependent demand distribution will

be examined first because it is the problem faced by the retailer in our model. The notations

to be used in this chapter will be given. In Section 5.2, the decision faced by every firm in

the supply chain (two manufacturers and one retailer) will be analyzed. Specifically, their

profit functions will be defined. The demand function will also be specified.

1Note that as opposed to the traditional newsvendor model where the retail price is fixed, the retail
price of each product is a decision variable of the retailer. This problem was first addressed by Lau and
Lau (1988) [45] for a single product newsvendor.
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In Section 5.3, the standard newsvendor model and its key results will be presented.

Some key literature on the newsvendor problem with price-dependent demand distribution

will also be briefly reviewed. A new newsvendor model will be introduced and studied.

Conditions that would guarantee the existence of a unique optimal solution is presented.

These conditions can be viewed as generalizations of the results in existing literature.

Finally, numerical examples is provided in Section 5.5.

5.2 Supply Chain Model

The supply chain in this case is similar to the one defined in Chapter 3. However, with

stochastic demand, the amount of the order the retailer places to each manufacturer is not

necessarily the same as the actual demand size. There are some costs associated with the

uncertainty in demand. Thus, the retailer’s profit is defined slightly differently from the

one given in the deterministic case. It is important to define some new variables as well as

redefine some of the old variables.

5.2.1 Notations

Let i = 1, 2 be the index for the manufacturer/product.

TRR = Retailer’s total revenue.

TRMi
= Manufacturer i’s total revenue.

TCR = Retailer’s total cost.

TCMi
= Manufacturer i’s total cost.

ΠR = Retailer’s profit.
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ΠMi
= Manufacturer i’s profit.

pi = Retailer’s selling price of product i.

wi = Manufacturer i’s selling price to the retailer.

Qi = Amount bought from manufacturer i by the retailer.

Di = Total demand of product i by end consumers.

si = Service level for product i provided by manufacturer i.

ci = Per unit production cost of product i as faced by manufacturer i.

gi = Retailer’s unit salvage value of product i’s leftover at the end of the season. Note

that if this quantity is negative, it can be regarded as the holding cost or the disposal cost.

bi = Retailer’s oppportunity cost of product i. This cost is charged when there is not

enough inventory to satisfy the demand.

5.2.2 Retailer’s Profit Function

The retailer has two types of revenue for each product. The first type is the revenue received

from the sale of each product within the normal transaction (at price pi). The amount sold

is the minimum of Qi and Di. The other income is the salvage value of each product, gi,

obtained at the very end of the sale season if there are leftovers, i.e., if Qi > Di. Note that

if gi is negative, then it stands for the cost of getting rid of the product (disposal cost).

Therefore, the retailer’s revenue can be expressed as

TRR =
2∑

i=1

{
pimin(Qi, Di) + gi(Qi −Di)

+
}
. (62)
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There are also two types of cost faced by the retailer. The first one is the cost of acquiring

each unit of the product, wi. This is the same as the wholesale price charged by each

manufacturer. The second type of cost is the underage cost, bi. This cost is charged when

there is not enough inventory to meet the realized demand. The retailer’s total cost can

then be expressed as

TCR =
2∑

i=1

{
wiQi + bi(Di −Qi)

+
}
. (63)

From (62) and (63), we can write the retailer’s profit function as

ΠR =
2∑

i=1

{
pimin(Qi, Di) + gi(Qi −Di)

+ − [wiQi + bi(Di −Qi)
+]

}
. (64)

5.2.3 Manufacturer’s Profit Function

We assume that each manufacturer uses a per-unit charge (wiQi) for the product sold to

the retailer. Therefore, TRMi
= wiQi. The types of cost faced by each manufacturer are

the cost of producing each unit of product and the costs of providing the service. As done

in previous chapters, we make the assumption that the cost of providing service has a

decreasing-return-to-scale property. Namely, the cost of providing si unit of service is ηisi
2

2
.

This cost function reflects the assumption that it is getting more expensive to provide the

next unit of service. Therefore, each manufacturer’s profit function can be expressed as

ΠMi
= (wi − ci)Qi −

ηisi
2

2
. (65)

5.2.4 Demand Function

The expected demand can be expressed by

µi(pi, pj, si, sj) = ai − bppi + θp(pj − pi) + bssi − θs(sj − si) (66)
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where ai, bp > 0 and bs, bu, θp, θs, θu ≥ 0, and are defined as in Chapter 3. We can rewrite

the above equations in the matrix form as µ1

µ2

 =

 a1

a2

 +

 −(bp + θp) θp

θp −(bp + θp)


 p1

p2

 (67)

+

 (bs + θs) −θs

−θs (bs + θs)


 s1

s2

. (68)

In short,

µ(p, s) = A + Bpp + Bss. (69)

We define εi as a random variable for product i where i ∈ 1, 2. It is defined on the range

[Ai, Bi] and has zero expectation. We further assume that εi is the same for every period.

Let Fi(.) represent the cumulative distribution function of εi, and fi(.) be the probability

density function. Therefore, εi ∼ Fi(0, σ
2
i ). With this definition of εi, we can express the

demand function as

D(p, s, ε) = µ(p, s) + ε

= A + Bpp + Bss + ε, (70)

where ε = [ε1 ε2]
T .

Note that in the case of a single period problem with deterministic demand and no

learning, Equation (69) reduces to

D(p, s) = A + Bpp + Bss. (71)

This describes the case studied previously in Chapter 3.
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5.3 Two-Product Newsvendor Problem

In our model, the retailer must calculate four decision variables: the order quantities and

the retail prices for both products. The retailer is facing the two-product newsvendor

problem with a price-dependent demand distribution. This model requires more special

treatment than the classical newsvendor model where the demand is independent of the

given fixed retail price. The retail price will affect the mean of the demand distribution.

Retailer

retail price (p2)

Potential Customer

retail price (p1)

wholesale price (w2)wholesale price (w1)

demand (D1)

demand (D2)

order (Q1)

order (Q2)

Mean Demand (µi) = ai - (bp +θp)pi + pj

Figure 21: Two-Product Newsvendor Problem .

Although many studies have been developed on the newsvendor problem over the past

decade, none have addressed the problem faced by the retailer in our model. The price

sensitive version of the newsvendor problem was first formulated by Whitin (1955)[95]. In
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his model, selling price and stocking quantity are decided simultaneously. Whitin used

the newsvendor model where the probability distribution of demand depends on the unit

selling price, and where price is a decision variable rather than an external parameter. Mills

(1959)[61] refined the formulation by explicitly specifying mean demand as a function of

selling price.

The problem of the newsvendor with price-dependent demand was later studied by Lau

and Lau (1988)[45] and Petruzzi and Dada (1999). Lau and Lau (1988) considered the

problem where the demand distribution is normal with expected demand linearly related

to price, and has a constant standard deviation. Petruzzi and Dada (1999) investigated

an extension to the problem. Particularly, they studied the problem with both the linear

demand function (additive form) and the constant elasticity demand function (multiplica-

tive form). They also gave conditions such that a unique optimal solution exists. However,

both Lau and Lau (1988) and Petruzzi and Dada (1999) only considered the case of a single

product newsvendor.

5.3.1 Classical (Standard) Newsvendor Model

First, we review the classical newsvendor model where the retail price is given. Let cu

denote the underage cost associated with each demand that cannot be met, and co denote

the overage cost associated with each newspaper that is not sold. The retailer (newsvendor),

facing the uncertain demand D, has to decide the order quantity Q that minimizes his cost.

That is, the retailer seeks to minimize expected cost

Min C(Q) = cuE(D−Q)+ + coE(Q−D)+
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where X+ denotes the function max(0, X). It is well known that the optimal order quantity

Q∗ is implicitly determined by the equation (see Silver et al. (1998)[78] p. 386)

Q∗ = F−1

(
cu

cu + co

)
(72)

It can be shown that this optimal solution can also be obtained if one tries to maximize

the profit instead of trying to minimize the cost. Let p be the per-unit selling price, w be

the per-unit cost of acquiring inventory, g be the per-unit salvage value, b be the per-unit

shortage cost, and demand be distributed over the range [A,B] with cumulative distribution

function F (·). As a result, we can write the expected profit as

E[Π] = pEmin[D,Q]− wQ+ gE(Q−D)+ − bE(D −Q)+. (73)

The (expected) marginal cost is given by

w + b
d

dQ
E(D −Q)+ = w + b

d

dQ

[∫ B

Q

xdF (x)−Q(1− F (Q))

]
= w + b[−Qf(Q)− (1− F (Q)) +Qf(Q)]

= w − b(1− F (Q)).

The (expected) marginal revenue is given by

d

dQ
[pEmin[D,Q] + gE(Q−D)+] = p

d

dQ

[∫ Q

A

xdF (x) +Q(1− F (Q))

]
+g

d

dQ

[
QF (Q)−

∫ Q

A

xdF (x)

]
= p[Qf(Q) + (1− F (Q))−Qf(Q)]

+g[F (Q) +Qf(Q)−Qf(Q)]

= p(1− F (Q)) + gF (Q)
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Equating marginal revenue with marginal cost yields the optimal inventory level, Q∗, as

Q∗ = F−1

(
p+ b− w

p+ b− g

)
. (74)

Now, if we let p+ b−w = cu and w− g = co, the optimal solution given above will be the

same as the one shown in Equation 72.

In the next section, basic theory for the two-product newsvendor problem with a price-

dependent demand distribution will be developed.

5.3.2 Model Development

Let the demand of product i be distributed with mean µi(p1, p2) and a constant standard

deviation σi, where µi(p1, p2) can be expressed as

µi(p1, p2) = ai − bppi + θp(pj − pi). (75)

Here, the definitions of ai, bp, and θp are as defined in previous chapters. Namely, ai can

be thought of as a “market base” [90] of product i. As defined in Chapter 3, bp can be

thought of as the measure of the responsiveness of each manufacturer’s market demand to

his own price, and θp is the measure of the sensitivity of the market to the price difference

between the two products (loyalty).

Let εi be a random variable defined on the range [Ai, Bi]. We also assume that εi is

the same for every period and has zero expectation. Let Fi(.) represent the cumulative

distribution function of εi, and fi(.) be its probability density function. Therefore, εi ∼

Fi(0, σ
2
i ). With the definition of µi(p1, p2) and εi given, we can express the demand for

product i as

Di(p1, p2) = µi(p1, p2) + εi. (76)
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We note that there are four different scenarios for the retailer’s profit, as shown in

Figure 22.

D1

D2

Q1

Q2

Scenario 1

D1 ≤Q1
D2 ≤Q2

Scenario 2

D1 >Q1
D2 ≤Q2

Scenario 3

D1 ≤Q1
D2 >Q2

Scenario 4

D1 >Q1
D2 >Q2

Figure 22: Quantity and Demand.

(1) If D1 ≤ Q1 and D2 ≤ Q2:

Π(Q1, Q2, p1, p2) = p1D1(p1, p2, ε1)− w1Q1 + g1[Q1 −D1(p1, p2, ε1)]

+ p2D2(p1, p2, ε2)− w2Q2 + g2[Q2 −D2(p1, p2, ε2)] (77)

(2) If D1 > Q1 and D2 ≤ Q2:

Π(Q1, Q2, p1, p2) = p1Q1 − w1Q1 − b1[D1(p1, p2, ε1)−Q1]

+ p2D2(p1, p2, ε2)− w2Q2 + g2[Q2 −D2(p1, p2, ε2)] (78)
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(3) If D1 ≤ Q1 and D2 > Q2:

Π(Q1, Q2, p1, p2) = p1D1(p1, p2, ε1)− w1Q1 + g1[Q1 −D1(p1, p2, ε1)]

+ p2Q2 − w2Q2 − b2[D2(p1, p2, ε2)−Q2] (79)

(4) If D1 > Q1 and D2 > Q2:

Π(Q1, Q2, p1, p2) = p1Q1 − w1Q1 − b1[D1(p1, p2, ε1)−Q1]

+ p2Q2 − w2Q2 − b2[D2(p1, p2, ε2)−Q2] (80)

Now, consistent with the approach by Thowsen (1975)[86] and Petruzzi and Dada

(1999)[68], we define a new decision variable:

zi = Qi − µi(p1, p2) (81)

where µi(p1, p2) is the expected demand for product i. This transformation of decision

variables provides an alternative interpretation of the order quantity (Petruzzi and Dada

(1999)): If zi is larger than the realized value of εi, then there are leftovers. If zi is smaller

than the realized value of εi, then the shortage cost is applied. Therefore, we can say that

the retailer will not select a value of zi lower than Ai or greater than Bi because he is sure

to lose money. Thus,

Ai ≤ zi ≤ Bi. (82)

One can think of zi as the Risky Order Quantity (ROQ) since it is the amount ordered

above the expected demand2. Using (81), we can rewrite the conditions in (77) - (80) as:

2It can also be interpreted as a surrogate for safety stock [68], since safety stock is defined as the
deviation of stocking quantity from expected demand (i.e., safety stock ≡ Qi − E[Di(p1, p2, ε)].
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ε1

ε2

z1

z2

Scenario 1

z1 ≤ε1
z2 ≤ε2

Scenario 2

z1 >ε1
z2 ≤ε2

Scenario 3

z1 ≤ε1
z2 >ε2

Scenario 4

z1 >ε1
z2 >ε2

Figure 23: z and e.

(1) If ε1 ≤ z1 and ε2 ≤ z2:

Π(z1, z2, p1, p2) = p1[µ1(p1, p2) + ε1]− w1[µ1(p1, p2) + z1] + g1[z1 − ε1]

+ p2[µ2(p1, p2) + ε2]− w2[µ2(p1, p2) + z2] + g2[z2 − ε2] (83)

(2) If ε1 > z1 and ε2 ≤ z2:

Π(z1, z2, p1, p2) = p1[µ1(p1, p2) + z1]− w1[µ1(p1, p2) + z1]− b1[z1 − ε1]

+ p2[µ2(p1, p2) + ε2]− w2[µ2(p1, p2) + z2] + g2[z2 − ε2] (84)

(3) If ε1 ≤ z1 and ε2 > z2:

Π(z1, z2, p1, p2) = p1[µ1(p1, p2) + ε1]− w1[µ1(p1, p2) + z1] + g1[z1 − ε1]

+ p2[µ2(p1, p2) + z2]− w2[µ2(p1, p2) + z2]− b2[z2 − ε2] (85)
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(4) If ε1 > z1 and ε2 > z2:

Π(z1, z2, p1, p2) = p1[µ1(p1, p2) + z1]− w1[µ1(p1, p2) + z1]− b1[z1 − ε1]

+ p2[µ2(p1, p2) + z2]− w2[µ2(p1, p2) + z2]− b2[z2 − ε2] (86)

Using (81) and (83) - (86), we can write the retailer’s expected profit as:

E[Π(z1, z2, p1, p2)] =
2∑

i=1

{∫ zi

Ai

{pi[µi(p1, p2) + xi] + gi[zi − xi]} fi(xi)dxi

− wi[µi(p1, p2) + zi]

+

∫ Bi

zi

{pi[µi(p1, p2) + zi]− bi[xi − zi]} fi(xi)dxi

}
(87)

We can rearrange the expression (87) into a combination of the riskless profit and the

loss due to the risk created by demand uncertainty. This can be accomplished by first

defining

Θi(zi) =

∫ zi

Ai

(zi − xi)fi(xi)dxi = Expected leftover of zi.

Θi(zi) =

∫ Bi

zi

(xi − zi)fi(xi)dxi = Expected shortage of zi.

For each i in (87), by adding and subtracting
∫ Bi

zi
pixifi(xi)dxi and using the fact that

the mean of the distribution F(.) is zero, we obtain the following lemma.

LEMMA 5.1. The expected profit that the retailer receives for each product i is

E[Πi(z1, z2, p1, p2)] = (pi − wi)µi(p1, p2)− (wi − gi)Θi(zi)− (pi + bi − wi)Θi(zi)

. (88)

Proof: See Appendix C.
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The right side of Equation 88 can be separated into two parts. The first term, (pi −

wi)µi(p1, p2) represents the riskless profit function, the profit for a given price when there

is no uncertainty in the demand of product i. The last two terms together represent the

loss function which takes into account the loss due to overage or underage cost of product

i created by the uncertainty in demand (Mills (1959)[61], Silver and Peterson (1985)[77],

and Petruzzi and Dada (2001)[69]). From (88), we can rewrite (87) as

E[Π(z1, z2, p1, p2)] =
2∑

i=1

{
(pi − wi)µi(p1, p2)− (wi − gi)Θi(zi)− (pi + bi − wi)Θi(zi)

}
. (89)

Now, in order to maximize the retailer’s expected profit, we calculate the first and

second partial derivatives of E[Π(z1, z2, p1, p2)] with respect to z1, z2 and p1, p2. Note that

∂Θi(zi)/∂zi = Fi(zi) and ∂Θi(zi)/∂zi = −(1− Fi(zi)). The first order derivatives are

∂E[Π(z1, z2, p1, p2)]

∂z1

= −(w1 − g1) + (p1 + b1 − g1)(1− F1(z1)) (90)

∂E[Π(z1, z2, p1, p2)]

∂z2

= −(w2 − g2) + (p2 + b2 − g2)(1− F2(z2)) (91)

∂E[Π(z1, z2, p1, p2)]

∂p1

= a1 − 2(bp + θp)p1 + 2θpp2 + (bp + θp)w1 − θpw2 −Θ1(z1)

(92)

∂E[Π(z1, z2, p1, p2)]

∂p2

= a2 − 2(bp + θp)p2 + 2θpp1 + (bp + θp)w2 − θpw1 −Θ2(z2)

(93)

The second order derivatives are

∂2E[Π(z1, z2, p1, p2)]

(∂z1)2
= −(p1 + b1 − g1)f1(z1), (94)
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∂2E[Π(z1, z2, p1, p2)]

(∂z2)2
= −(p2 + b2 − g2)f2(z2), and (95)

∂2E[Π(z1, z2, p1, p2)]

(∂p1)2
= −2(bp + θp) =

∂2E[Π(z1, z2, p1, p2)]

(∂p2)2
. (96)

Notice from (96) that, for any given z1 and z2, E[Π(z1, z2, p1, p2)] is concave in both p1

and p2. Therefore, we can first solve for p1 and p2 as functions of z1 and z2 using (92) and

(93). Then, we can substitute these functions into E[Π(z1, z2, p1, p2)] and optimize with

respect to z1 and z2. Similarly, since (94) and (95) imply that for any given p1 and p2,

E[Π(z1, z2, p1, p2)] is concave in both z1 and z2, so we can optimize z1 and z2 for the given

p1 and p2 using (90) and (91), and then search for the values of p1 and p2 that maximize

E[Π(z1, z2, p1, p2)]. Both procedures yield the same answer (see [69]), but only the first

method will be used here. The following proposition gives the expressions for optimal

retail price as a function of z1 and z2.

PROPOSITION 5.1. Given z1 and z2, the optimal pi can be calculated by:

pi
∗ = pi(z1, z2) = p0

i − αΘi(zi)− βΘj(zj) (97)

where α = bp+θp

2bp(bp+2θp)
, β = θp

2bp(bp+2θp)
, p0

i =
(bp+θp)ξi+θpξj

2bp(bp+2θp)
and ξi = ai + (bp + θp)wi − θpwj.

Proof: See Appendix C.

The optimal prices shown in proposition 5.1 can be separated into two parts. The first

part, p0
i , is the riskless price. It is the price that maximizes the riskless part of the Equation

(88). The optimal prices, p1
∗ and p2

∗, are less than the optimal riskless price due to the

risk created by the demand uncertainty for each product. Both Mills (1959) and Petruzzi

and Dada (1999) give similar observations for the single product case.
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We can now use (97) by substituting them into the profit function to optimize E[Π(z1, z2)].

Attention needs to be paid to the shape of E[Π(z1, z2)] since the function might have mul-

tiple optimal points, or the point that satisfy the first order condition might not be the

global optimal, or no optimal point might exist. These scenarios might occur depending on

the parameters of the problem. For example, suppose the manufacturers are symmetrical

and demand is uniformly distributed. Let bp =0.8, θp =0.2, w1 = w2 = 5, g1 = g2 = 3,

b1 = b2 = 4, a1 = a2 = 2, B1 = B2 = 8. In such a case, Figure 24 shows that no unique

maximum point exists. On the other hand, with the same demand distribution, suppose

we let bp =0.4, θp =0.6, w1 = w2 = 5, g1 = g2 = 3, b1 = b2 = 4, a1 = a2 = 20, B1 = B2 = 2.

Then, we can see from Figure 25 that there exists a unique solution.
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Figure 24: Surface plot shows that no unique maximum exists.
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Figure 25: Surface plot shows that a unique maximum point exists.
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Therefore, we have to analyze the shape of the function and find the sufficient condition

for the existence of a unique solution. The following proposition gives such a condition.

PROPOSITION 5.2. For p1
∗ and p2

∗ given in Proposition 5.1, the newsvendor’s optimal

ordering quantity for each product i, Qi
∗, equals µi(p1

∗, p2
∗) + zi

∗, where each of z1
∗ and

z2
∗ can be determined according to the following:

(i) For any arbitrary distribution function Fi(·), zi
∗ can be found by an exhaustive search

over the region [Ai, Bi].

(ii) Let φi(·) = fi(·)
1−Fi(·) be the hazard rate of the distribution Fi(·). If, for each i,

2φ(zi)
2 +

dφ(zi)

dzi

> 0 (98)

for zi ∈ [Ai, Bi], then the largest zi ∈ [Ai, Bi] that satisfies the first order optimality

condition is zi
∗.

(iii) If condition (ii) is met and

2bp(bp + 2θp)(bi − wi) + (bp + θp)(ξi + Ai) + θp(ξj −Θj(zj)) > 0

for each i = 1, 2 and j = 3 − i, then (z1
∗, z2

∗) is the unique point in the space

[A1, B1]× [A2, B2] that satisfies the first-order optimality condition.

(iv) The optimal zi
∗ must satisfy the following equations:

(w1 − g1) =

{
(bp + θp)(ξ1 −Θ1(z1)) + θp(ξ2 −Θ2(z2))

2[(bp + θp)2 − θ2
p]

+ b1 − g1

}
(1− F1(z1))

and

(w2 − g2) =

{
θp(ξ1 −Θ1(z1)) + (bp + θp)(ξ2 −Θ2(z2))

2[(bp + θp)2 − θ2
p]

+ b2 − g2

}
(1− F2(z2))
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where ξi = ai + (bp + θp)wi − θpwj.

Proof: See Appendix C.

The above results are generalizations of the results by Petruzzi and Dada (2001)[68].

The differences arise from: (a) the fact that the retailer is carrying two competitive products

while Petruzzi and Dada (2001) studied the case with only a single product, and (b) the way

we define our demand function (when θp = 0, our results reduce to their results). Condition

(iii) guarantees that E[Π(z,p(z))] is unimodal, provided that 2φ(zi)
2 + dφ(zi)/dzi > 0.

It turns out that all Increasing Failure Rate (IFR) distributions (see Shaked and Shan-

thikumar (1994)[75]) such as the normal or uniform distribution would satisfy condition

(ii). Note that condition (ii), 2φ(zi)
2 + dφ(zi)/dzi > 0, is a necessary condition but not a

sufficient condition. Therefore, having a demand with a IFR distribution is not sufficient

for a unique solution to exist. Only when condition (iii) is also satisfied would there exist

a unique solution.

However, for a general IFR distribution, it is difficult to obtain the closed form solution

for condition (iv) in Proposition 5.2. Therefore, in the next section, we will focus on

uniformly distributed demand.

5.3.2.1 EXAMPLE: Uniformly Distributed Demand

Since the uniform distribution has the IFR property, we can use it in our initial investi-

gation. For i ∈ 1, 2, εi is distributed over the range [−Bi, Bi] because it is now uniformly

distributed and must have a mean of zero. As a result, fi(.) = 1
2Bi

and Fi(x) = x+Bi

2Bi
. The

124



failure (or hazard) rate is calculated to be

φi(x) =
fi(x)

1− Fi(x)
=

1/2Bi

1− (x+Bi)/(2Bi)
=

1

Bi − x
. (99)

The expected shortage at zi, Θi(zi), and the expected leftover at zi, Θi(zi), can be calculated

as (the details of the derivations of the following expressions can be found in Appendix C):

Θi(zi)) =
(Bi − zi)

2

4Bi

(100)

Θi(zi)) =
(Bi + zi)

2

4Bi

(101)

We know that −Bi ≤ zi ≤ Bi from (82); (100) shows that the expected shortage of zi

is monotonically decreasing in the range [−Bi, Bi], which is consistent with our intuition.

Figure 26 shows such a property for the case where Bi = 2.

Using condition (iv) in proposition 5.2, we find that the optimal solution (z1
∗, z2

∗) must

satisfy the following condition when both products have uniformly distributed demand.

LEMMA 5.2. Assuming that both products have uniformly distributed demand, the fol-

lowing condition must be satisfied for each i ∈ {1, 2} and j = 3− i at the optimal solution:

2bp(bp + 2θp)(wi − gi) =
[(bp + θp)ξi + θpξj + 2bp(bp + 2θp)(bi − gi)]

2Bi

(Bi − zi)

− (bp + θp)(Bi − zi)
3

8B2
i

− θp(Bi − zi)(Bj − zj)
2

8BiBj

(102)

Proof: See Appendix C.

In the special case where both products have the same parameters, i.e., g1 = g2 =

g, b1 = b2 = b, B1 = B2 = B, ξ1 = ξ2 = ξ, and w1 = w2 = w, we can further simplify

the above lemma. One can think of this as having identical manufacturers, i.e. the two
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Figure 26: Expected shortage is monotonically decreasing within the defined range.

manufacturers possess the same production technology and produce similar products. In

this case, the newsvendor would choose the same decision variable for both products, i.e.,

z1 = z2 = z. Therefore, the conditions in Lemma 5.2 can be reduced to:

2bp(w − g) = [ξ + 2bp(b− g)]
B − z

2B
− (B − z)3

8B2
(103)

5.4 The Solutions

Now, to analyze the whole supply chain, we work backwards to find the equilibrium solution.

First, we find the retailer’s reaction function, given the information about the suppliers’

action and the demand from the last period. Namely, we express demands Q1, Q2 and retail
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prices p1, p2 as a function of wholesale prices w1, w2, and service levels s1, s2. We calculate

the retailer’s reaction function using the results from Section 5.3, where we studied the

two-product newsvendor problem with a price-dependent demand distribution. We then

find the suppliers’ optimal action given that they know how the retailer is going to react

to their moves.

5.4.1 Retailer’s Reaction Function

In Section 5.3 we provide conditions that guarantee the existence of a unique optimal

solution. The results can now be applied to find the retailer’s reaction function. Since the

existence of a unique optimal solution for the retailer is important in gaming if we are to

use the concept of pure strategy, we assume that condition (iii) in proposition 5.2 is valid

from now on.

Note that in this chapter we write µi for i ∈ {1, 2} as a function of p1, p2, s1, s2, as

opposed to the expression in Equation (75). This is because, from the point of view of the

newsvendor (retailer), s1 and s2 are already known by the time of his decision; he only

needs to take into account his action (p1, p2) on the mean of demand distribution. Thus,

the market base defined in Equation (75) equals to ai + bssi− θs(sj − si) where i, j ∈ {1, 2}

and j 6= i. To find the retailer’s reaction function, we must express z1 and z2 in terms

of w1, w2, s1 and s2 using condition (iv) given in Proposition 5.2. Namely, we have to

simultaneously solve

(w1 − g1) =

{
(bp + θp)(ξ1 −Θ1(z1)) + θp(ξ2 −Θ2(z2))

2[(bp + θp)2 − θ2
p]

+ b1 − g1

}
(1− F1(z1))
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and

(w2 − g2) =

{
θp(ξ1 −Θ1(z1)) + (bp + θp)(ξ2 −Θ2(z2))

2[(bp + θp)2 − θ2
p]

+ b2 − g2

}
(1− F2(z2))

where ξi = ai + (bp + θp)wi − θpwj. It turns out that such closed forms of z1
∗ and z2

∗ can

not be easily obtained. However, we can get the values of z1
∗ and z2

∗ for any given w1, w2,

s1 and s2 by using numerical analysis. This is done by plotting the “reaction surface” of

z1
∗ and z2

∗ as a function of w1, w2, s1 and s2.

In general, given such “reaction surfaces” z1
∗ and z2

∗ from the retailer, we can find the

corresponding optimal p1
∗ and p2

∗ by using the result from Proposition 5.1. The optimal

order quantity for each product can then be obtained using Proposition 5.1 and 5.2. The

retailer’s optimal ordering quantity for each product i can then be calculated to be

Qi
∗(w, s) = µi(p1

∗, p2
∗) + zi

∗(w1, w2, s1, s2) (104)

5.4.2 Manufacturers’ Problem

Each manufacturer i faces the demand distribution given in (104) and (??). His profit

function can then be expressed as

ΠMi
= (wi − ci)Qi(w1, w2, s1, s2)−

ηisi
2

2
. (105)

We assume that both manufacturers have complete access to the information of their com-

petitor and make their moves simultaneously. The Nash Equilibrium will be chosen by each

manufacturer, after taking into account the other’s decision when choosing wholesale price

and service level to maximize his profit. That is, (w1
∗, w2

∗, s1
∗, s2

∗) is a Nash equilibrium
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if, for each i = 1, 2,

wi
∗ = argmax

wi

ΠMi
(w1, w2

∗, s1
∗, s2

∗) and, (106)

si
∗ = argmax

si

ΠMi
(w1

∗, w2
∗, s1, s2

∗). (107)

Normally, if the first-order condition approach is valid, the optimal wholesale price and

service level for each product can be obtained by solving the two sets of first-order optimality

conditions simultaneously. Namely, we have for each product i,

∂ΠMi

∂wi

= 0 = Qi(w1, w2, s1, s2) + (wi − ci)
∂Qi(w1, w2, s1, s2)

∂wi

(108)

∂ΠMi

∂si

= 0 = −ηisi + (wi − ci)
∂Qi(w1, w2, s1, s2)

∂si

(109)

To gain the main insights of our model, we assume here that there exists a unique solution

set of w1
∗, w2

∗, s1
∗, and s2

∗ that satisfies the first order condition specified above.

5.4.3 Equilibrium Search Algorithm

We can see from the previous section that the retailer’s reaction function can not be easily

obtained as a closed form function of wi and si for i = 1, 2. Therefore, we propose the

following simple algorithm for the manufacturers to calculate their optimal wholesale price

and service level.

ALGORITHM 5.1. For a single period problem and a given IFR demand distribution,

(Step 0) Set WL
i and SL

i to be 0 and WU
i and SU

i to be some positive numbers such that

WL
i << WU

i and SL
i << SU

i .

(Step 1) For each i, discretize values of wi and si for WL
i < wi < WU

i and SL
i < si < SU

i into

N points.
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(Step 2) Calculates the value of z1 and z2 that satisfy the following equations for each combi-

nation of w1, w2, s1, s2.

(i) 2bp(bp + 2θp)(bi − wi) + (bp + θp)(ξi + Ai) + θp(ξj −Θj(zj)) > 0

(ii) (wi − gi) =
{

(bp+θp)(ξi−Θi(zi))+θp(ξj−Θj(zj))

2[(bp+θp)2−θ2
p]

+ bi − gi

}
(1− Fi(zi))

(iii) Ai ≤ zi ≤ Bi.

(Step 3) From the surface of z1
∗ and z2

∗ obtained in Step 1, use the results from Proposition

5.3 and 5.2 to find the corresponding surface of p1
∗, p2

∗, Q1
∗, and Q2

∗.

(Step 4) Using Q1
∗ and Q2

∗ obtained in the previous step, each manufacturer can calculate his

profit(ΠMi
) by using Equation (105).

(Step 5) From the profit surface (ΠMi
) obtained in the last step, find the optimal wi

∗ and si
∗

that maximize the profit, where

wi
∗ = argmax

wi

ΠMi
(wi, wj

∗, si
∗, sj

∗) and,

si
∗ = argmax

si

ΠMi
(wi

∗, wj
∗, si, sj

∗).

(Step 6) If for each ΠMi
,

∂ΠMi

∂wi

∣∣∣wi
∗,

∂ΠMi

∂wj

∣∣∣wj
∗,

∂ΠMi

∂si

∣∣∣si
∗, and

∂ΠMi

∂sj

∣∣∣sj
∗ are all less than δ, Stop.

Else, for each i, set

WL
i = wi

∗ − WU
i −WL

i

N
,

WU
i = wi

∗ +
WU

i −WL
i

N
,

SL
i = si

∗ − SU
i − SL

i

N
,

SU
i = si

∗ +
SU

i − SL
i

N

and go to Step (1).
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In this algorithm, we start from a wide range of wholesale prices and service levels and

narrow down to find the optimal solution. We stop when the slope of the profit surface is

less than δ, where δ can be chosen to be a very small number (ideally, we want to stop at

the point where the slope is zero).

5.5 Identical Duopolists with Uniformly Distributed

Demand

In this section, we give a numerical example and study the effects of each parameter on the

optimal solution. We focus on the case where demand is uniformly distributed. We also

assume that the two manufacturers are identical. This means that they both possess the

same technology and skills and have the same market base (a1 = a2). In Section 5.3 we

developed some calculations for the uniformly distributed demand. In this section, we will

use the calculations in examples involving identical manufacturers. We know from Lemma

5.2 that, for identical duopolists, the following equation must be satisfied

2bp(w − g) = [ξ + 2bp(b− g)]
B − z

2B
− (B − z)3

8B2
. (110)

However, we know from Proposition 5.1 and equation (??) that, for identical duopolists, ξt

in the above equation can be written as

ξ = a+ bpw + bss.

Therefore, we can rewrite equation (110) as

2bp(w − g) = [a+ bpw + bss+ 2bp(b− g)]
B − z

2B
− (B − z)3

8B2
(111)

where we define u0 = 0.
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Let bp = 0.7, θp = 0.2, bs = 0.8, θs = 0.2, a1 = a2 = 40, b1 = b2 = 2, g1 = g2 = 4, c1 =

c2 = 5, η1 = η2 = 2, and B1 = B2 = 15. From section 5.3, we know that deriving a closed

form solution for z1
∗ and z2

∗ for a general demand distribution is very difficult. In Lemma

5.2, the necessary condition for the optimal solution to uniformly distributed demand is

given. In such a case, solving for the closed form solution of zi is still not a simple task.

Even in the special case where the two manufacturers are identical, we have the following

two conditions that must be satisfied simultaneously

1) 2bp(w − g) = [a+ bp(w + 2b− 2g) + bss]
B − z

2B
− (B − z)3

8B2
(112)

2) −B ≤ z ≤ B (113)

where the first condition follows from Lemma 5.2 and the second condition follows from

the definition of z. Note that since the two manufacturers are symmetrical, their wholesale

price and service level will be equal. Therefore, w1 = w2 = w and s1 = s2 = s. Also,

z1 = z2 = z, which can be derived using Equations 112 and 113. This scenario gives an

example of the “reaction surface” for the case of identical manufacturers with uniformly

distributed demand.

Figure 27 gives the surface of the optimal z∗ for each value of w and s obtained by using

Equation (103). The surfaces for p∗ and Q∗ are derived from the optimal z∗ and are given

in Figures 28 and 29, respectively.

Figure 28 shows that at any wholesale price, the higher the level of service the man-

ufacturers provide, the higher the price the retailer can charge. This shows that services

add value to the customers who are more willing to pay a higher price for the product with
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a higher level of service. Figure 28 also shows that, at any level of service, the higher the

wholesale price, the higher the retail price. This is due to double marginalization. There-

fore, the retail price is highest when the manufacturers set a high wholesale price and also

provide a high level of service. The opposite is true when the retail price is lowest.

Figure 29 shows that the ordering quantity is inversely related to the wholesale price

and is directly related to the level of service. We see that the ordering quantity is lowest

when the wholesale price is at its highest and the level of service is at its lowest. The

opposite happens when the price is low and the level of service is high. This behavior is

consistent with our intuition.

From the figures, we can compare and see the common relationship between z∗, p∗, and

Q∗. When the price p∗ is high (in other words, when w and s are high), z∗ and Q∗ are low.

Using Algorithm 5.1 defined previously, we can obtain the manufacturers’ profit. Figure

30 shows the surface of the the manufacturers profit. The values of w∗ and s∗ turn out

to be 26.9744 and 12.5256, respectively. The corresponding optimal manufacturer profit

is 295.9627. Using Equation (103), we calculate z to be −0.5444. Using Propositions 5.1

and 5.2, we calculate the optimal retail price, p∗, and optimal ordering quantity, Q∗, to be

40.3396 and 17.0384 respectively. The corresponding expected retailer’s profit is 358.55093.

The following table compares these results with those obtained from the deterministic

demand model (with the same parameters) in Chapter 3.

As can be seen from the table, to cope with uncertainty, the retailer must order a

larger quantity to avoid shortage cost. At the same time, the retail and the wholesale

prices are chosen to be higher to extract more revenue from each unit sold. However, the

3From an experiment with 50 runs
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Parameter Deterministic Stochastic
Wholesale Price (w1 = w2) 23.2439 26.9744

Service Level (s1 = s2) 2.7366 12.5256
Manufacturer Profit (ΠM1 = ΠM2 ) 266.1563 295.9627

Retail Price (p1 = p2) 41.7571 40.3396
Ordering Quantity (Q1 = Q2) 14.9993 17.0384

Retailer Profit (ΠR) 479.8361 358.5509 (expected)

Table 6: Comparing results from the deterministic demand case and stochastic demand
case when both manufacturers are symmetrical.

manufacturers have to provide more services to attract more potential customers. The

manufacturers earn higher profit in the stochastic case while the retailer earns less. This is

because the retailer has to order more to avoid a shortage penalty, while being exposed to

the possibility of being able to sell less than the expected value. The fact that manufacturers

have more power (first mover advantage) also gives them the advantage over the retailer

when there is uncertainty in demand. Moreover, manufacturers have control over service

levels, which can influence consumer demand as well.

5.6 Final Remarks

In this chapter, we first study the two-product newsvendor problem with price-dependent

demand. We find that there can exist many optimal solutions within the defined range.

Therefore, the first and second optimality condition would not give the unique solution.

We provide the conditions such that a unique optimal solution exists, and give some sample

calculations for the uniformly distributed demand case.

We then consider the whole supply chain by including the two manufacturers into the

model. We focused on the Manufacturer Stackelberg case. With the model in place, we

used the results from Section 5.3 to find the retailer’s reaction function. We then proposed

an algorithm for the manufacturers to find the equilibrium wholesale price and service level,
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given that they can anticipate the retailer’s reaction function. Finally, a numerical example

is provided for the case where the two manufacturers are symmetrical and the demand is

uniformly distributed.

In our model, we assume that there is no delivery time lag, that the leftover from one

period cannot be carried over to the next period, and that the excess demand is lost. The

extension to relax these assumptions is possible in the future.
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Figure 27: Optimal z as a function of w and s in the first period for the case of identical
duopolists and uniformly distributed demand.
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Figure 28: Optimal p as a function of w and s in the first period for the case of identical
duopolists and uniformly distributed demand.
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Figure 29: Optimal Q as a function of w and s in the first period for the case of identical
duopolists and uniformly distributed demand.
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Figure 30: Optimal manufacturer profit as a function of w and s in the first period for
the case of identical duopolists and uniformly distributed demand.
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CHAPTER VI

SUMMARY AND FUTURE RESEARCH

6.1 Summary

This thesis aims at developing and analyzing models using techniques from various fields to

gain some insights in the area of supply chain management. More specifically, we focus on

a two-stage supply chain with two manufacturers and one common retailer. Following an

introduction in Chapter 1 and a literature review in Chapter 2, we presented an analysis

of the deterministic demand case in Chapter 3.

In Chapter 3, we extended the model from existing literature by including service from

the manufacturers to consumers. We studied how different assumptions on bargaining

power between retailer and manufacturers influence their strategic interactions at equilib-

rium. We also investigate how parameters associate with the supply chain (such as market

base, market sensitivities, and production cost) can affect the equilibrium solution. We

analyze the effects through parameters such as the retail price, wholesale prices, service

levels, retailer’s ordering quantities, and profits. We found that it is more beneficial to

consumers when there is no dominant player(s) in vertical strategic interaction. In such

case, the consumers receive more manufacturer service and can buy product at a lower

price. A counterintuitive result shows that as the market base of one product increases, the

competitor also benefits but at a lesser extent. Furthermore, when one manufacturer has

economic advantage in providing service, the retailer will act to separate market segment
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by selling the product with low service at a low price and selling the product with high

service at a high price.

Chapter 4 studies the model over multiple periods with demand learning. The learning

process assumed in demand function is to capture how experience from past interactions

influences customer demand in the future. Information on the previous period prices and

services, as well as manufacturers’ investment, can influence the market size of each product

in the current period. We apply both game theory and dynamic systems and control theory

to characterize our model. We assume that firms use a moving two-period profit-maximizing

strategy. Using concepts from dynamic systems and control theory with numerical studies

on some special cases, managerial insights are obtained.

We find that if all the costs are the same between two identical manufacturers, they will

eventually possess equal market size and sell their products to the same group of customers

even though they may start with different market bases initially. Our main finding is

if demand is equally sensitive to both price and service level, the company with service

cost advantage may earn less profit and capture a smaller market base in the beginning.

However, it will finally gain more profit and capture a larger market base than its smaller-

production cost competitor. This happens no matter how big the production cost advantage

its competitor has, or how small the service cost advantage the company has over its

competitor.

In Chapter 5, we first study the two-product newsvendor problem with price-dependent

demand. We find that there can exist many optimal solutions within the defined range.

Therefore, the first and second optimality condition would not give the unique solution.

We provide the conditions such that a unique optimal solution exists, and give some sample
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calculations for the uniformly distributed demand case.

We then consider the whole supply chain by including the two manufacturers into the

model. We focused on the Manufacturer Stackelberg case. With the model in place, we

used the results from Section 5.3 to find the retailer’s reaction function. We then proposed

an algorithm for the manufacturers to find the equilibrium wholesale price and service level,

given that they can anticipate the retailer’s reaction function. Finally, a numerical example

is provided for the case where the two manufacturers are symmetrical and the demand is

uniformly distributed.

6.2 Future Research Plan

One possible extension is to compare our model to the supply chain with a centralized

planner - a single firm with the capability to produce both products to meet the uncer-

tain consumer demand. Explorations on different payment schemes to induce the system-

optimal solutions (e.g., two-part tariff, or other type of payment contract) can be carried

out. Expected contribution here will be an important inclusion to the existing literature

on channel coordination (see Cachon (2001) [10] for reviews).

Another interesting extension would be to study the n-product newsvendor model with

price-dependent demand. This would generalize the results from Chapter 5. This extension

would contribute to the literature on the newsvendor model.

It is also possible to investigate and compare our results to those from models with

other forms of demand function. In our model, we used linear additive demand function.

Some of the possible alternatives are to use exponential demand functions. One particular

interesting question is whether these changes would have any major influence to the results
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we derived.
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APPENDIX A: APPENDIX FOR

CHAPTER 3

A.1 Proof to Proposition 3.1 (Supplier Stack-

elberg)

I first study the equilibrium in this game. In this Supplier Stackelberg game, each supplier

first simultaneously announces his price and service level. The retailer observe the prices

and service levels and then decides the prices he is going to charge for each product.

Consumer demand for product i, qi, is

Qi(pi, pj, si, sj) = ai − bppi + θp(pj − pi) + bssi − θs(sj − si)

Here, bs and bp measure the responsiveness of each manufacturer’s market demand to

its own price and service, respectively. On the other hand, θs and θp measure the loyalty of

the market. Namely, when the price of product i is decreased by one unit, it will gain bp+θp

more customers. Among these customers, θp of them are switching from its competitor’s

product while bp of them are the direct result of bigger market demand due to smaller price.

Supplier i’s profit function is

ΠMi
= (wi − ci)Qi −

ηis
2
i

2

for i ∈ {1, 2}. Note that the quadratic function is used here to reflect the diminishing

return on investment in providing services.

144



Retailer’s profit is

ΠR = (p1 − w1)Q1 + (p2 − w2)Q2

To solve this problem, we work backwards in time (a standard approach in solving

Stackelberg game). We first look at the retailer’s reaction function after he has the infor-

mation about prices and service levels announced by the suppliers. The retailer’s profit

function can be expressed as:

ΠR = (p1 − w1)[a1 − bpp1 + θp(p2 − p1) + bss1 − θs(s2 − s1)]

+(p2 − w2)[a2 − bpp2 + θp(p1 − p2) + bss2 − θs(s1 − s2)].

Retailer’s Problem

We first find the retailer’s reaction function for product i:

0 =
∂ΠR

∂pi

= ai − 2bppi + θp(pj − 2pi) + bssi − θs(sj − si) + wibp + wiθp

+pjθp − wjθp

2bppi + 2θppi = ai + θppj + bssi − θs(sj − si) + wi(bp + θp) + θp(pj − wj)

pi =
ai + bssi − θs(sj − si) + wi(bp + θp) + θp(2pj − wj)

2(bp + θp)
.

To check the optimality, we check the Hessian matrix:

∂Π2
R

∂p2
i

= −2bp − 2θp

∂Π2
R

∂pj∂pi

=
∂Π2

R

∂pi∂pj

= 2θp

∂Π2
R

∂p2
j

= −2bp − 2θp.
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Assuming that bp ≥ 0 and θp ≥ 0, we have a negative definite Hessian. Therefore, the p1

and p2 calculated above are the optimal reaction functions for the retailer. Solving for p∗i

and p∗j by plugging pi into pj, we have

p∗i =
wi

2
+

(bp + θp)ai + θpaj

2bp(bp + 2θp)
− θs(sj − si)

2(bp + 2θp)
+

(bp + θp)bssi + θpbssj

2bp(bp + 2θp)
. (114)

This is the reaction function of the retailer given that he has observe w1, w2, s1 and s2.

Suppliers’ Problem

The suppliers in this game move simultaneously. They simultaneously announce wi and

si, their prices and level of services they are going to invest, respectively. Knowing the

reaction function from the retailer, they calculate the optimal wi and si.

Supplier i faces the following demand function:

Qi = ai − bppi + θp(pj − pi) + bssi − θs(sj − si). (115)

From the retailer’s reaction function, we know that:

p∗j − p∗i =
aj − ai

2(bp + 2θp)
+

(wj − wi)

2
+

(2θs + bs)(si − sj)

2(bp + 2θp)
. (116)

Substituting (116) and (114) into (115), we have

Qi = ai − bp

[wi

2
+

(bp + θp)ai + θpaj

2bp(bp + 2θp)
− θs(sj − si)

2(bp + 2θp)
+

(bp + θp)bssi + θpbssj

2bp(bp + 2θp)

]
+θp

[ aj − ai

2(bp + 2θp)
+
wj − wi

2
+

(2θs + bs)(sj − si)

2(bp + 2θp)

]
+ bssi + θs(sj − si)

ΠMi
= (w1i− ci)

{
ai − bp

[wi

2
+

(bp + θp)ai + θpaj

2bp(bp + 2θp)
− θs(sj − si)

2(bp + 2θp)

+
(bp + θp)bssi + θpbssj

2bp(bp + 2θp)

]
+ θp

[ aj − ai

2(bp + 2θp)
+
wj − wi

2
+

(2θs + bs)(sj − si)

2(bp + 2θp)

]
+bssi − θs(sj − si)

}
− ηis

2
i

2
.
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To find the optimal wholesale price, wi, we first look at the first order condition.

0 =
∂ΠMi

∂wi

= ai − bp

[
wi +

(bp + θp)ai + θpaj

2bp(bp + 2θp)
− θs(sj − si)

2(bp + 2θp)
+

(bp + θp)bssi + θpbssj

2bp(bp + 2θp)

]
+θp

[
aj − ai

2(bp + 2θp)
+
wj − 2wi

2
+

(2θs + bs)(sj − si)

2(bp + 2θp)

]
+bssi − θs(sj − si) +

cibp
2

+
ciθp

2

From this condition, we have

wi =
1

2(bp + θp)

{
θpwj + ai + ci(bp + θp) + (bs + θs)si +

(
θpbs

(bp + 2θp)
− θs

)
sj

}
(117)

To find the optimal level of service, we also find the first order condition.

0 =
∂ΠMi

∂si

= (wi − ci)

[
− bpθs

2(bp + 2θp)
− bp(bp + θp)bs

2bp(bp + 2θp)
− θp(bs + 2θs)

2(bp + 2θp)
+ bs + θs

]
− ηisi

From this first order condition, we have

s∗i =
(wi − ci)(bs + θs)

2ηi

(118)

Substitute (118) into (117), we have

w∗
i =

2ηi

4ηi(bp + θp) + (bs + θs)2

{
ai +

(2ηi(bp + θp)− (bs + θs)
2

2ηi

)
ci

+
(θs(bp + 2θp)− θpbs

2ηj(bp + 2θp)

)
(bs + θs)cj

+
(
θp +

[θpbs − θs(bp + 2θp)](bs + θs)

2ηj(bp + 2θp)

)
wj

}
(119)

Let

Ai = 4ηi(bp + θp) + (bs + θs)
2

Bi = 2ηiθp − θs(bs + θs)

(
bp − bs + 2θp

bp + 2θp

)
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Di =
Bi

Ai

Ei = (bp + θp)−
(bs + θs)

2

2ηi

Fi =
θs(bs + θs)

2ηi

− θpbs(bs + θs)

2ηi(bp + 2θp)

We can now rewrite (119) as

w∗
i =

2ηi

Ai

[
ai + Eici + Fjcj + (

Bj

2ηj

)wj

]

Using this equation, w∗
i becomes:

w∗
i =

2ηiAj

AiAj −BiBj

[
(ai +Djaj) + (Ei + FiDj)ci + (Fj + EjDj)cj

]

Substitute (120) into (118), we have

s∗i = (bs + θs)
{ Aj

AiAj −BiBj

[
(ai +Djaj) + (Fj + EjDj)cj

]
+

[Aj(Ei + FiDj)

AiAj −BiBj

− 1

2ηi

]
ci

}

These w∗
i , and s∗i constitute the Nash equilibrium and take into account to retailer’s reaction

function.
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A.2 Proof to Proposition 3.2 and 3.3 (Retailer

Stackelberg)

In this situation, we assume that the retailer has more power in the relationship with the its

suppliers. This higher power is reflected in its earlier move than the suppliers. Particularly,

the retailer first announce the margin (and retail price) it desires. The suppliers then take

this information and decide their optimal wholesale price and service level.

Let mi be the margin of product i enjoyed by the retailer. Namely,

pi = wi +mi.

Suppliers’ Problem

Since the retailer moves first in this game, we need to calculate for the suppliers’reaction

function. Note that the suppliers move simultaneously. Therefore, we need to calculate the

Nash equilibrium between them. The profit function for supplier i can be expressed as:

ΠMi
= (wi − ci)Qi −

ηis
2
i

2
; where

Qi = a− bppi + θp(pj − pi) + bssi − θs(sj − si)

To find the suppliers’ reaction function, we need to find the first order condition which can

be expressed as:

0 =
∂ΠMi

∂wi

= Qi + (wi − ci)
∂Qi

∂pi

∂pi

∂wi

where

∂Qi

∂pi

= −bp − θp
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∂pi

∂wi

= 1

Therefore,

0 = ai − (bp + θp)pi + θppj + (bs + θs)si − θssj − (bp + θp)(wi − ci)

To find the optimal level of service for supplier i, we also find the first order condition:

0 =
∂ΠMi

∂si

= (wi − ci)
∂Qi

∂si

− 2ηisi

0 = (wi − ci)(bs − θs)− 2ηisi

Therefore,

s∗i =
(wi − ci)(bs − θs)

2ηi

From this equation, we can derive w∗
i to be

w∗
i =

2ηi

2ηi(bp + θp)− (bs + θs)2

{
ai − (bp + θp)pi − θppj +

[
(bp + θp)−

(bs − θs)
2

2ηi

]
ci

−θs(bs − θs)

2η2

cj −
θs(bs − θs)

2ηj

wj

}
(120)

Let

G = bp + θp

Hi = 2ηi(bp + θp) + (bs + θs)
2

K = θs(bs + θs)

Li =
K

Hi

Mi =
Hi

ηi

= (bp + θp)−
(bs + θs)

2

ηi

Ni =
K

2ηi

=
θs(bs + θs)

ηi
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Using the above notation, Equation (120) can be expressed as

w∗
i =

2ηiHj

HiHj −K2

[
ai − Ljaj − (θpLj +G)pi + (GLj + θp)pj + (Mi − LjNi)ci

]
.

The corresponding equilibrium service level can be calculated to be

s∗i =
Hj(bs + θs)

HiHj −K2

[
ai − Ljaj − (θpLj +G)pi + (GLj + θp)pj

]

Retailer’s Problem

Retailer is the Stackelberg leader in this problem. He makes decision about p1 and p2 after

observing w1, w2, s1 and s2. His profit function can be expressed as:

ΠR = (p1 − w1(p1, p2))Q1(p1, p2) + (p2 − w2(p1, p2))Q2(p1, p2)

To calculate for his optimal actions, we need to use the first order condition:

0 =
∂ΠR

∂pi

=

(
1− ∂wi(p1, p2)

∂pi

)
Qi(p1, p2) + (pi − wi(p1, p2))

∂Qi(p1, p2)

∂p1

+

(
−∂wj(p1, p2)

∂pi

)
Qj(p1, p2) + (pj − wj(p1, p2))

∂Qj(p1, p2)

∂pi

where

∂wi(p1, p2)

∂pi

=
2ηiHj

HiHj −K2
(θpLj −G)

∂wj(p1, p2)

∂pi

=
2ηjHi

HiHj −K2
(GLi − θp)

∂wi(p1, p2)

∂pj

=
2ηiHj

HiHj −K2
(GLj − θp)

∂wj(p1, p2)

∂pj

=
2ηjHi

HiHj −K2
(θpLi −G)

Using the above conditions, we can calculate p∗1 and p∗2 to be

p∗1 =
(X2U1 − Y V1)a1 + (Y V2 −X2U2)a2 + (X2ρ1 − Y σ1)Wc1 + (Y ρ2 −X2σ2)Wc2

X1X2 − Y 2
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p∗2 =
(Y U1 −X1V1)a1 + (X1V2 − Y U2)a2 + (Y ρ1 −X1σ1)Wc1 + (X1ρ2 − Y σ2)Wc2

X1X2 − Y 2
.

where

W = H1H2 −K2

U1 = ξ1ρ1 + ω1γ1 + ξ2L1σ2 + ψ2φ2

U2 = ξ2σ2 + ω1φ1 + ξ1L2ρ1 + ψ2γ2

V1 = ψ1γ1 + ξ1σ1 + ω2φ2 + ξ2L1ρ2

V2 = ψ1φ1 + ξ2ρ2 + ω2γ2 + ξ1L2σ1

X1 = 2(ω1ρ1 + ψ2σ2)

X2 = 2(ω2ρ2 + ψ1σ1)

Y = ψ1ρ1 + ψ2ρ2 + ω1σ1 + ω2σ2

ξi = ηiHj

ωi = HiHj −K2 + ηiHj(G+ θpLj)

ψi = ηiHj(GLj + θp)

γi = ηiHjG

φi = ηiKG

ρi = ηiG(HjG+ θpK)

σi = ηiG(GK + θpHj)
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A.3 Proof to Proposition 3.4 (Vertical Nash)

Game-theoretic framework is employed to derive the reaction function of each firm in the

supply chain. Fortunately, the reaction functions for the retailer and the manufacturers

were already derived in the Manufacturer Stackelberg game and the Retailer Stackelberg

game respectively. From the Manufacturer Stackelberg game, the retailer’s reaction func-

tion for any given wholesale prices w1, w2 and service levels s1, s2 is provided in Equation

(7) as

p∗i =
w∗

i

2
+

(bp + θp)ai + θpaj

2bp(bp + 2θp)
−
θs(s

∗
j − s∗i )

2(bp + 2θp)
+

(bp + θp)bss
∗
i + θpbss

∗
j

2bp(bp + 2θp)

where i ∈ {1, 2} and j = 3 − i. From the Retailer Stackelberg game, the manufacturers

reaction function for given retail prices p1, p2 are given in Equations 121 and 22 as

w∗
i =

ηiHj

H1H2 −K2

[
ai − Ljaj − (θpLj +G)pi + (GLj + θp)pj + (Mi − LjNi)ci

]

s∗i =
Hj(bs + θs)

H1H2 −K2

[
ai − Ljaj − (θpLj +G)pi + (GLj + θp)pj

]
for wholesale price and service level respectively. Hi, K, Li,Mi, Ni, and G for i = 1, 2 and

j = 3 − i are defined as in the Retailer Stackelberg game. Solving the above equations

simultaneously yields the Nash equilibrium solution. The final expressions for the retail

prices are

p1 =
(γ2κ1 + λ1κ2)a1 + (γ2ν1 + λ1ν2)a2 + γ2ψ1c1 + λ1ψ2c2

γ1γ2 − λ1λ2

p2 =
(γ1κ2 + λ2κ1)a1 + (γ1ν2 + λ2ν1)a2 + γ1ψ2c1 + λ2ψ1c2

γ1γ2 − λ1λ2

where

γ1 = 2bp(bp + 2θp)W + η1H2(θpL2 +G)bp(bp + 2θp) + ϑ1H2(bs + θs)(θpL2 +G)
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−ϑ2H1(GL1 + θp)

γ2 = 2bp(bp + 2θp)W + η2H1(θpL1 +G)bp(bp + 2θp) + ϑ1H1(bs + θs)(θpL1 +G)

−ϑ2H2(GL2 + θp)

κ1 = η1H2bp(bp + 2θp) + (bp + θp)W + ϑ1H2(bs + θs)− ϑ2H1L1

κ2 = −η2H1L1bp(bp + 2θp) + θpW − ϑ1H1L1(bs + θs) + ϑ2H2

ν1 = −η1H2L2bp(bp + 2θp) + θpW − ϑ1H2L2(bs + θs) + ϑ2H1

ν2 = η2H1bp(bp + 2θp) + (bp + θp)W + ϑ1H1(bs + θs)− ϑ2H2L2

ψ1 = η1bp(bp + 2θp)H2(U1 − L2V1)

ψ2 = η2bp(bp + 2θp)H1(U2 − L1V2)

λ1 = η1H2(GL1 + θp)bp(bp + 2θp) + ϑ1H2(bs + θs)(GL2 + θp)− ϑ2H1(θpL1 +G)

λ2 = η2H1(GL1 + θp)bp(bp + 2θp) + ϑ1H1(bs + θs)(GL1 + θp)− ϑ2H2(θpL2 +G)

ϑ1 = θsbp + bs(bp + θp)

ϑ2 = (θpbs − bpθs)(bs + θs)
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A.4 Proof to Theorem 3.1

When the two manufacturers are identical, the wholesale prices, retail prices, and service

levels for the two manufacturers will also be identical (i.e., they are going after the same

market).

Manufacturer Stackelberg

From Section 3.3.1, if we let a1 = a2 = a, c1 = c2 = c, η1 = η2 = η, we will have

H1 = H2 = H, L1 = L2 = L, M1 = M2 = M , and N1 = N2 = N . The consumer demand

and retailer reaction function now become

QMS =
a

2
− bpw

MS

2
+
bss

MS

2

pMS =
a

2bp
+
wMS

2
+
bss

MS

2bp
.

The decision on equilibrium wholesale price and service level by each manufacturer can

also be calculated to be

wMS =
2η

A−B
[a+ (E + F )c]

sMS =
(bs + θs)

A−B
a+ (bs + θs)

[E + F

A−B
− 1

2η

]
,

respectively. Using these expressions, the retail price and demand quantity can be calcu-

lated as a linear function of a and c as follows

QMS =
[1

2
− bpη

A−B
+
bs(bs + θs)

2(A−B)

]
a−

[bpη(E + F )

A−B
− bs(bs + θs)

2(A−B)

(E + F

A−B
− 1

2η

)]
c

pMS =
[A−B + 2bpη + bs(bs + θs)

2bs(A−B)

]
a−

[η(E + F )

A−B
+
bs(bs + θs)

2bp

(E + F

A−B
− 1

2η

)]
c

In this case, pMS − wMS = QMS

bp
. Therefore, the retailer profit can by calculated as

ΠMS
R = 2(pMS − wMS)QMS
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=
2

bp
(QMS)2

The manufacturer’s profit can be calculated as

ΠMS
M = (wMS − c)QMS − η(sMS)2

2

=
2η

A−B

[
a+ (E + F − A−B

2η
)c

]
(QMS)− η(bs + θs)

2

2(A−B)2

[
a+ (E + F +

A−B

2η
)c

]2

Retailer Stackelberg

With identical manufacturers, each manufacturer reaction functions on wholesale price and

service level are

wRS =
η

H +K
[a− bpp

RS] + c

sRS =
(bs + θs)

H +K
[a− bpp

RS]

The equilibrium retail price can be also be simplified as shown below

pRS =
H +K + 2ηbp

2bp(H +K + ηbp)
a+

H +K

2(H +K + ηbp)
c.

With this expression for retail price, the wholesale price and service level can be expressed

as

wRS =
η

2(H +K + ηbp)
a+

2(H +K) + ηbp
2(H +K + ηbp)

c,

sRS =
bs + θs

2(H +K + ηbp)
[a− bpc].

Demand quantity can be calculated to be

QRS =
η(bp + θp)

2(H +K + ηbp)
[a− bpc].
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The manufacturer margin, wRS − c, can be derived to be η
2(H+K+ηbp)

[a − bpc]. Thus, the

manufacturer’s profit can be calculated to be

ΠRS
M = (wRS − c)QRS − η(sRS)2

2

=
η(η(bp + θp) +H)

8(H +K + ηbp)2
[a− bpc]

2.

The retailer’s profit can be derived as

ΠRS
R = 2(pRS − wRS)QRS

=
η(bp + θp)

2bp(H +K + ηbp)
[a− bpc]

2.

Vertical Nash

For the Vertical Nash case, we can use the reaction function from the previous two cases.

These functions are

pV N =
a

2bp
+
wMS

2
+
bss

MS

2bp
,

wV N =
η

H +K
[a− bpp

RS] + c,

sV N =
(bs + θs)

H +K
[a− bpp

RS].

To obtain the equilibrium solution, the three equations above are solved simultaneously.

The equilibrium retail price can be calculated to be

pV N =
[ H +K + ηbp + bs(bs + θs)

bp(2(H +K) + ηbp + bs(bs + θs))

]
a+

[ H +K

2(H +K) + ηbp + bs(bs + θs)

]
c.

The equilibrium wholesale price and service level are

wV N =
[ η

2(H +K) + ηbp + bs(bs + θs)

]
a+

[ 2(H +K) + bs(bs + θs)

2(H +K) + ηbp + bs(bs + θs)

]
c,

sV N =
bs + θs

2(H +K) + ηbp + bs(bs + θs)
(a− bpc).
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The consumer demand can be derived to be

QV N = a− bpp
V N + bss

V N

=
η(bs + θs)

2(H +K) + ηbp + bs(bs + θs)
(a− bpc).

The manufacturer profit margin, wV N − c is

wV N − c =
η

2(H +K) + ηbp + bs(bs + θs)
(a− bpc).

Thus, the manufacturer profit can be calculated to be

ΠV N
M =

η[η(bs + θs) +H]

2[2(H +K) + ηbp + bs(bs + θs)]
(a− bpc)

2.

Using the above equations for equilibrium retail price, wholesale price and consumer de-

mand, the retailer profit are

ΠV N
R =

2(QV N)2

bp
=

2

bp

[ η(bp + θp)

2(H +K) + ηbp + bs(bs + θs)
(a− bpc)

]2

.
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A.5 Proof to Corollary 3.1

From Table 3.1, we can see that if ηbp > bs(bs + θs), Φ < Ψ. Therefore,

bs + θs

Φ
(a− bpc) >

bs + θs

Ψ
(a− bpc).

sV N > sRS.

For the service provided in the Manufacturer Stackelberg case,

sMS =
(bs + θs)

H −K
a+ (bs + θs)

[M +N

H −K
− 1

2η

]
=

(bs + θs)

H −K

[
a− (bp +

(bs + θs)
2

η
)c

]
.

From the definition given in Chapter 3, we have

H −K = 2η(2bp + θp) + (bs + θs)
2 +

θs(bs + θs)(bp + 2θp − bs)

(bp + 2θp)

> 2η(bp + θp) + 2ηbp

> Ψ

Therefore,

sMS =
(bs + θs)

H −K

[
a− (bp +

(bs + θs)
2

η
)c

]
<

(bs + θs)

Ψ

[
a− (bp +

(bs + θs)
2

η
)c

]
<

(bs + θs)

Ψ
(a− bpc)

< sRS

Therefore, sMS < sRS < sV N . �
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A.6 Proof to Corollary 3.2

The case when bs = θs = 0 is trivial and will not be given here. We are focus on the case

when bs, θs > 0. We know that if ηbp > bs(bs + θs), Φ < Ψ. Thus, from the results given in

Theorem 3.1, it follows immediately that

QV N > QRS

ΠV N
M < ΠRS

M

To prove that ΠV N
R < ΠRS

R , we first note that

X2 > {X − (ηbp − bs(bs + θs))}{X + (ηbp − bs(bs + θs))}

{2η(bp + θp) + ηbp − bs(bs + θs)}2 > {2η(bp + θp)}{2η(bp + θp) + 2ηbp − 2bs(bs + θs)}

{2(H +K) + ηbp + bs(bs + θs)}2 > {2η(bp + θp)}{2(H +K) + 2ηbp}

1

2(H +K) + 2ηbp
>

2η(bp + θp)

2(H +K) + ηbp + bs(bs + θs)

1

Ψ
>

2η(bp + θp)

Φ2

η(bp + θp)

bpΨ
(a− bpc)

2 >
2η(bp + θp)

Φ

η(bp + θp)

bpΦ
(a− bpc)

2

H +K + 2ηbp
bpΨ

a+
H +K

Ψ
c >

Φ− (H +K)

bpΦ
a+

(H +K)

Φ
c

ΠRS
R > ΠV N

R

To show that wV N > wRS, we begin with the assumption that a > bpc and ηbp >

bs(bs + θs). Therefore,

0 <
(ηbp − bs(bs + θs)

ΦΨ

)(η(a− bpc)

Φ

)
0 < η

(ηbp − bs(bs + θs)

ΦΨ

)
a+

(ηbp − bs(bs + θs)

Ψ

)(Φ− ηbp
Φ

− 1
)
c

0 < η
(ηbp − bs(bs + θs)

ΦΨ

)(
a+

Φ− ηbp
η

c
)
−

(ηbp − bs(bs + θs)

Ψ

)
c
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0 < wV N − wRS

Therefore, wV N > wRS.
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A.7 Range of Parameters Used in Numerical

Studies

Parameter Range

bp {0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5}

θp {0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5}

bs {0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5}

θs {0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5}

ai {40, 60, 80, 100, 120}

ci {2, 4, 6, 8, 10}

ηi {2, 4, 6, 8, 10}

The range of these parameters are based on related literature such as Tsay and Agrawal

(2000) [90] and Vilcassin et al. (1999) [91] (see Chapter 2 for the review of these papers).

Figure 31 to 37 show how changes in each parameter affect the equilibrium solution.
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Figure 31: Analysis of the supply chain when a1 is changing.
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Figure 32: Analysis of the supply chain when c1 is changing.
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Figure 33: Analysis of the supply chain when η1 is changing.
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Figure 34: Analysis of the supply chain when bp is changing.
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Figure 35: Analysis of the supply chain when θp is changing.
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Figure 36: Analysis of the supply chain when bs is changing.
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Figure 37: Analysis of the supply chain when θs is changing.
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APPENDIX B: APPENDIX FOR
CHAPTER 4

B.1 Parameters Specifications for Equation (38)

and (39)

G = θsbp+bs(bp+θp)

2bp(bp+2θp)
, H = θpbs−θsbp

2bp(bp+2θp)

t11 = ϕ1

2
+ (bp+θp)

2bp(bp+2θp)
+Gl1 +Hl2D1, t12 = ϕ1D2

2
+ θp

2bp(bp+2θp)
+Gl1D2 +Hl2

t21 = ϕ2D1

2
+ θp

2bp(bp+2θp)
+Hl1 +Gl2D1, t22 = ϕ2

2
+ (bp+θp)

2bp(bp+2θp)
+Hl1D2 +Gl2

y11 = ϕ1
E1+F1D2

2
+Gm11 +Hm21, y12 = ϕ1

F2+E2D2

2
+Gm12 +Hm22

y21 = ϕ2
F1+E1D1

2
+Hm11 +Gm21, y22 = ϕ2

E2+F2D1

2
+Hm12 +Gm22

g11 = 1
2
− bp+θp

2
ϕ1 + θp

2
ϕ2D1 + bs+θs

2
l1 − θs

2
l2D1,

g12 = − bp+θp

2
ϕ1D2 + θp

2
ϕ2 + bs+θs

2
l1D2 − θs

2
l2,

g21 = − bp+θp

2
ϕ2D1 + θp

2
ϕ1 + bs+θs

2
l2D1 − θs

2
l1,

g22 = 1
2
− bp+θp

2
ϕ2 + θp

2
ϕ1D2 + bs+θs

2
l2 − θs

2
l1D2,

h11 = − bp+θp

2
ϕ1(E1 + F1D2) + θp

2
ϕ2(F1 + E1D1) + bs+θs

2
m11 − θs

2
m21

h12 = − bp+θp

2
ϕ1(F2 + E2D2) + θp

2
ϕ2(E2 + F2D1) + bs+θs

2
m12 − θs

2
m22

h21 = − bp+θp

2
ϕ2(F1 + E1D1) + θp

2
ϕ1(E1 + F1D2) + bs+θs

2
m21 − θs

2
m11

h22 = − bp+θp

2
ϕ2(E2 + F2D1) + θp

2
ϕ1(F2 + E2D2) + bs+θs

2
m22 − θs

2
m12
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B.2 Parameters Specifications for Equation (42)

αi,t = ai,t − γ(pi,t − pj,t) + σ(si,t − sj,t)

φi = (Ei + FiDj)ci + (Fj + EjDj)cj

µi = Ai(bs+θs)
A1A2−B1B2

λi =
[

Ai(bs+θs)(Fi+EiDi)
A1A2−B1B2

]
ci +

[
Ai(Ej+FjDi)

A1A2−B1B2
− 1

2ηj

]
(bs + θs)cj

τi = 1
2

[
(bs + θs)µj − (bp + θp)ϕi + θpϕjDi − θsµiDi

]
υi = 1

2

[
(bs + θs)µjDj − (bp + θp)ϕiDj + θpϕj − θsµi

]
%i = − (bp+θp)ϕi

2
φi +

θpϕj

2
φj − θs

2
λi + (bs+θs)

2
λj

ρi = (1
2

+ τi)αi,t + υiαj,t + %i

Λi = ϕiρi + ξiϕi(αi,t +Djαj,t + φi)− ηiµ
2
j(αi,t +Djαj,t)− ηiµjλj − ξ1c1

ri = ϕi(0.5 + 2τi)− ηiµ
2
j

Ψi = ϕiυi + ϕi(0.5 + τi)Dj − ηiµ
2
jDj

δ11 = β(2−β2r2)(0.5ϕ1+r1)+β3Ψ1Ψ2

(2−β2r1)(2−β2r2)−β4Ψ1Ψ2
, δ12 = β(2−β2r2)Ψ1+β3Ψ1(0.5ϕ2+r2)

(2−β2r1)(2−β2r2)−β4Ψ1Ψ2

δ21 = β(2−β2r1)Ψ2+β3Ψ2(0.5ϕ1+r1)
(2−β2r1)(2−β2r2)−β4Ψ1Ψ2

, δ22 = β(2−β2r1)(0.5ϕ2+r2)+β3Ψ1Ψ2

(2−β2r1)(2−β2r2)−β4Ψ1Ψ2

∆1 = β(2−β2r2)Ω1+β3Ψ1Ω2

(2−β2r1)(2−β2r2)−β4Ψ1Ψ2
, Ω1 = ϕ1%1 + (0.5 + τ1)ϕ1φ1 − η1µ2λ2 − (0.5 + τ1)c1

∆2 = β3r2Ω1+β(2−β2r1)Ω2

(2−β2r1)(2−β2r2)−β4Ψ1Ψ2
, Ω2 = ϕ2%2 + (0.5 + τ2)ϕ2φ2 − η2µ1λ1 − (0.5 + τ2)c2

ν̂ = ν̂1
2 − ν̂2

2

α̂1 = β(δ12 − δ11 − 1
β
), α̂2 = β(δ22 − δ21 + 1

β
)
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B.3 Parameters Specifications for Equation (46)

ψ11 = ν̂(ν̂2ϑ̂3 − ν̂3ϑ̂2), ψ12 = ν̂(ν̂2ϑ̂4 − ν̂4ϑ̂2)

ψ21 = ν̂(ν̂1ϑ̂3 − ν̂3ϑ̂1), ψ22 = ν̂(ν̂1ϑ̂4 − ν̂4ϑ̂1)

ζ11 = −ν̂(θpν̂2 + (bp + θp)ϑ̂2), ζ12 = ν̂((bp + θp)ν̂2 + θpϑ̂2)

ζ21 = ν̂(θpν̂1 + (bp + θp)ϑ̂1), ζ22 = −ν̂((bp + θp)ν̂1 + θpϑ̂1)

Υ1 = ν̂(ν̂2ϑ̂5 + ν̂5ϑ̂2), Υ2 = ν̂(ν̂5ϑ̂1 + ν̂1ϑ̂5)

κ̂1 = t11γα̂1 + t12γα̂2, κ̂2 = ϕ1γα̂1 + ϕ1D2γα̂2

κ̂3 = g11γα̂1 + g12γα̂2, κ̂4 = t21γα̂1 + t22γα̂2

κ̂5 = ϕ2D1γα̂1 + ϕ2γα̂2, κ̂6 = g21γα̂1 + g22γα̂2

µ̂1 = −t11σα̂1 − t12σα̂2, µ̂2 = −ϕ1σα̂1 − ϕ1D2σα̂2

µ̂3 = −g11σα̂1 − g12σα̂2, µ̂4 = −t21σα̂1 − t22σα̂2

µ̂5 = −ϕ2D1σα̂1 − ϕ2σα̂2, µ̂6 = −g21σα̂1 − g22σα̂2

φ̂1 = (βδ11 + 1)a1,t−1 + βδ12a2,t−1 + β∆1, φ̂2 = (βδ22 + 1)a2,t−1 + βδ21a1,t−1 + β∆1

ψ̂1 = g11φ̂1 + g12φ̂2 + j11c1 + j12c2, ψ̂2 = g21φ̂1 + g22φ̂2 + j21c1 + j22c2

ν̂1 = −2(bp + θp) + 2κ̂3(κ̂1 − κ̂2) + 2κ̂6(κ̂4 − κ̂5), ν̂2 = 2θp − 2κ̂3(κ̂1 − κ̂2)− 2κ̂6(κ̂4 − κ̂5)

ν̂3 = (bs + θs) + 2µ̂3(κ̂1 − κ̂2) + 2µ̂6(κ̂4 − κ̂5), ν̂4 = −θs − 2µ̂3(κ̂1 − κ̂2)− 2µ̂6(κ̂4 − κ̂5)

ν̂5 = a1,t + ψ̂1(κ̂1 − κ̂2) + κ̂3τ̂1 + ψ̂2(κ̂4 − κ̂5) + κ̂6τ̂2

ϑ̂1 = 2θp − 2κ̂3(κ̂1 − κ̂2)− 2κ̂6(κ̂4 − κ̂5),

ϑ̂2 = −2(bp + θp) + 2κ̂3(κ̂1 − κ̂2) + 2κ̂6(κ̂4 − κ̂5),

ϑ̂3 = −θs − 2µ̂3(κ̂1 − κ̂2)− 2µ̂6(κ̂4 − κ̂5),

ϑ̂4 = (bs + θs) + 2µ̂3(κ̂1 − κ̂2) + 2µ̂6(κ̂4 − κ̂5),

ϑ̂5 = a2,t − ψ̂1(κ̂1 − κ̂2)− κ̂3τ̂1 − ψ̂2(κ̂4 − κ̂5)− κ̂6τ̂2
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B.4 Parameters Specifications for Equation (50)

and (51)

κ11 = ν̃51ρ̃4−φ̃51ρ̃1

ρ̃1ρ̃2−ρ̃3ρ̃4
, κ12 = ν̃52ρ̃4−φ̃52ρ̃1

ρ̃1ρ̃2−ρ̃3ρ̃4

κ21 = ν̃51ρ̃2−φ̃51ρ̃3

ρ̃3ρ̃4−ρ̃1ρ̃2
, κ22 = ν̃52ρ̃2−φ̃52ρ̃3

ρ̃3ρ̃4−ρ̃1ρ̃2

ν11 = ν̃53ρ̃4−φ̃53ρ̃1

ρ̃1ρ̃2−ρ̃3ρ̃4
, ν12 = ν̃54ρ̃4−φ̃54ρ̃1

ρ̃1ρ̃2−ρ̃3ρ̃4

ν21 = ν̃53ρ̃2−φ̃53ρ̃3

ρ̃3ρ̃4−ρ̃1ρ̃2
, ν22 = ν̃54ρ̃2−φ̃54ρ̃3

ρ̃3ρ̃4−ρ̃1ρ̃2

ϑ11 = λ̃51ρ̃8−θ̃51ρ̃5

ρ̃5ρ̃6−ρ̃7ρ̃8
, ϑ12 = λ̃52ρ̃8−θ̃52ρ̃5

ρ̃5ρ̃6−ρ̃7ρ̃8

ϑ21 = ξ̃51ρ̃12−ϕ̃51ρ̃9

ρ̃9ρ̃10−ρ̃11ρ̃12
, ϑ22 = ξ̃52ρ̃12−ϕ̃52ρ̃9

ρ̃9ρ̃10−ρ̃11ρ̃12

ς11 = λ̃53ρ̃8−θ̃53ρ̃5

ρ̃5ρ̃6−ρ̃7ρ̃8
, ς12 = λ̃54ρ̃8−θ̃52ρ̃5

ρ̃5ρ̃6−ρ̃7ρ̃8

ς21 = ξ̃53ρ̃12−ϕ̃53ρ̃9

ρ̃9ρ̃10−ρ̃11ρ̃12
, ς22 = ξ̃54ρ̃12−ϕ̃54ρ̃9

ρ̃9ρ̃10−ρ̃11ρ̃12

where,

ν̃51 = (δ̃51α̃1 − δ̃1α̃51)(β̃2α̃1 − β̃1α̃2)− (δ̃2α̃1 − δ̃1α̃2)(β̃51α̃1 − β̃1α̃51)

ν̃52 = (δ̃52α̃1 − δ̃1α̃52)(β̃2α̃1 − β̃1α̃2)− (δ̃2α̃1 − δ̃1α̃2)(β̃52α̃1 − β̃1α̃52)

ν̃53 = (δ̃53α̃1 − δ̃1α̃53)(β̃2α̃1 − β̃1α̃2)− (δ̃2α̃1 − δ̃1α̃2)(β̃53α̃1 − β̃1α̃53)

ν̃54 = (δ̃54α̃1 − δ̃1α̃54)(β̃2α̃1 − β̃1α̃2)− (δ̃2α̃1 − δ̃1α̃2)(β̃54α̃1 − β̃1α̃54)

φ̃51 = (γ̃51α̃1 − γ̃1α̃51)(β̃2α̃1 − β̃1α̃2)− (γ̃2α̃1 − γ̃1α̃2)(β̃51α̃1 − β̃1α̃51)

φ̃52 = (γ̃52α̃1 − γ̃1α̃52)(β̃2α̃1 − β̃1α̃2)− (γ̃2α̃1 − γ̃1α̃2)(β̃52α̃1 − β̃1α̃52)

φ̃53 = (γ̃53α̃1 − γ̃1α̃53)(β̃2α̃1 − β̃1α̃2)− (γ̃2α̃1 − γ̃1α̃2)(β̃53α̃1 − β̃1α̃53)

φ̃54 = (γ̃54α̃1 − γ̃1α̃54)(β̃2α̃1 − β̃1α̃2)− (γ̃2α̃1 − γ̃1α̃2)(β̃54α̃1 − β̃1α̃54)

ξ̃51 = (δ̃51α̃4 − δ̃4α̃51)(β̃2α̃4 − β̃4α̃2)− (δ̃2α̃4 − δ̃4α̃2)(β̃51α̃4 − β̃4α̃51)

ξ̃52 = (δ̃52α̃4 − δ̃4α̃52)(β̃2α̃4 − β̃4α̃2)− (δ̃2α̃4 − δ̃4α̃2)(β̃52α̃4 − β̃4α̃52)

ξ̃53 = (δ̃53α̃4 − δ̃4α̃53)(β̃2α̃4 − β̃4α̃2)− (δ̃2α̃4 − δ̃4α̃2)(β̃53α̃4 − β̃4α̃53)

ξ̃54 = (δ̃54α̃4 − δ̃4α̃54)(β̃2α̃4 − β̃4α̃2)− (δ̃2α̃4 − δ̃4α̃2)(β̃54α̃4 − β̃4α̃54)
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ϕ̃51 = (γ̃51α̃4 − γ̃4α̃51)(β̃2α̃4 − β̃4α̃2)− (γ̃2α̃4 − γ̃4α̃2)(β̃51α̃4 − β̃4α̃51)

ϕ̃52 = (γ̃52α̃4 − γ̃4α̃52)(β̃2α̃4 − β̃4α̃2)− (γ̃2α̃4 − γ̃4α̃2)(β̃52α̃4 − β̃4α̃52)

ϕ̃53 = (γ̃53α̃4 − γ̃4α̃53)(β̃2α̃4 − β̃4α̃2)− (γ̃2α̃4 − γ̃4α̃2)(β̃53α̃4 − β̃4α̃53)

ϕ̃54 = (γ̃54α̃4 − γ̃4α̃54)(β̃2α̃4 − β̃4α̃2)− (γ̃2α̃4 − γ̃4α̃2)(β̃54α̃4 − β̃4α̃54)

λ̃51 = (δ̃51α̃1 − δ̃1α̃51)(β̃4α̃1 − β̃1α̃4)− (δ̃4α̃1 − δ̃1α̃4)(β̃51α̃1 − β̃1α̃51)

λ̃52 = (δ̃52α̃1 − δ̃1α̃52)(β̃4α̃1 − β̃1α̃4)− (δ̃4α̃1 − δ̃1α̃4)(β̃52α̃1 − β̃1α̃52)

λ̃53 = (δ̃53α̃1 − δ̃1α̃53)(β̃4α̃1 − β̃1α̃4)− (δ̃4α̃1 − δ̃1α̃4)(β̃53α̃1 − β̃1α̃53)

λ̃54 = (δ̃54α̃1 − δ̃1α̃54)(β̃4α̃1 − β̃1α̃4)− (δ̃4α̃1 − δ̃1α̃4)(β̃54α̃1 − β̃1α̃54)

θ̃51 = (γ̃51α̃1 − γ̃1α̃51)(β̃4α̃1 − β̃1α̃4)− (γ̃4α̃1 − γ̃1α̃4)(β̃51α̃1 − β̃1α̃51)

θ̃52 = (γ̃52α̃1 − γ̃1α̃52)(β̃4α̃1 − β̃1α̃4)− (γ̃4α̃1 − γ̃1α̃4)(β̃52α̃1 − β̃1α̃52)

θ̃53 = (γ̃53α̃1 − γ̃1α̃53)(β̃4α̃1 − β̃1α̃4)− (γ̃4α̃1 − γ̃1α̃4)(β̃53α̃1 − β̃1α̃53)

θ̃54 = (γ̃54α̃1 − γ̃1α̃54)(β̃4α̃1 − β̃1α̃4)− (γ̃4α̃1 − γ̃1α̃4)(β̃54α̃1 − β̃1α̃54)

ρ̃1 = (δ̃4α̃1 − δ̃1α̃4)(β̃2α̃1 − β̃1α̃2)− (δ̃2α̃1 − δ̃1α̃2)(β̃4α̃1 − β̃1α̃4)

ρ̃2 = (γ̃3α̃1 − γ̃1α̃3)(β̃2α̃1 − β̃1α̃2)− (γ̃2α̃1 − γ̃1α̃2)(β̃3α̃1 − β̃1α̃3)

ρ̃3 = (δ̃3α̃1 − δ̃1α̃3)(β̃2α̃1 − β̃1α̃2)− (δ̃2α̃1 − δ̃1α̃2)(β̃3α̃1 − β̃1α̃3)

ρ̃4 = (γ̃4α̃1 − γ̃1α̃4)(β̃2α̃1 − β̃1α̃2)− (γ̃2α̃1 − γ̃1α̃2)(β̃4α̃1 − β̃1α̃4)

ρ̃5 = (δ̃3α̃1 − δ̃1α̃3)(β̃4α̃1 − β̃1α̃4)− (δ̃4α̃1 − δ̃1α̃4)(β̃3α̃1 − β̃1α̃3)

ρ̃6 = (γ̃2α̃1 − γ̃1α̃2)(β̃4α̃1 − β̃1α̃4)− (γ̃4α̃1 − γ̃1α̃4)(β̃2α̃1 − β̃1α̃2)

ρ̃7 = (δ̃2α̃1 − δ̃1α̃2)(β̃4α̃1 − β̃1α̃4)− (δ̃4α̃1 − δ̃1α̃4)(β̃2α̃1 − β̃1α̃2)

ρ̃8 = (γ̃3α̃1 − γ̃1α̃3)(β̃4α̃1 − β̃1α̃4)− (γ̃4α̃1 − γ̃1α̃4)(β̃3α̃1 − β̃1α̃3)

ρ̃9 = (δ̃3α̃4 − δ̃4α̃3)(β̃2α̃4 − β̃4α̃2)− (δ̃2α̃4 − δ̃4α̃2)(β̃3α̃4 − β̃4α̃3)

ρ̃10 = (γ̃1α̃4 − γ̃4α̃1)(β̃2α̃4 − β̃4α̃2)− (γ̃2α̃4 − γ̃4α̃2)(β̃1α̃4 − β̃4α̃1)

ρ̃11 = (δ̃1α̃4 − δ̃4α̃1)(β̃2α̃4 − β̃4α̃2)− (δ̃2α̃4 − δ̃4α̃2)(β̃1α̃4 − β̃4α̃1)

ρ̃12 = (γ̃3α̃4 − γ̃4α̃3)(β̃4α̃4 − β̃4α̃2)− (γ̃2α̃4 − γ̃4α̃2)(β̃3α̃4 − β̃4α̃3)

174



α̃1 = η̃11 + κ̃11τ̃11 + ψ̃11[µ̃11 − (κ̃11/4η1)(bs + θs)
2]− 2(δ12 − δ11)

2(γϑ̃1 − σ)γ%̃1

α̃2 = η̃12 + κ̃11τ̃12 + ψ̃12[µ̃11 − (κ̃11/4η1)(bs + θs)
2]− 2(δ12 − δ11)

2(γϑ̃2 − σ)γ%̃1

α̃3 = 2π̃11 + κ̃11µ̃11 + κ̃11[µ̃11 − (κ̃11/4η1)(bs + θs)
2]− 2(δ12 − δ11)

2γ2%̃1
2

α̃4 = π̃12 + κ̃11µ̃12 + κ̃12[µ̃11 − (κ̃11/4η1)(bs + θs)
2]− 2(δ12 − δ11)

2γ2%̃1%̃2

α̃51 = υ̃11 + κ̃11σ̂11 + α̂11[µ̃11 − (κ̃11/4η1)(bs + θs)
2]

α̃52 = υ̃12 + κ̃11σ̂12 + α̂12[µ̃11 − (κ̃11/4η1)(bs + θs)
2]

α̃53 = ω̃11 − π̂11 + κ̃11θ̂11 + (ω̂11 − 1)[µ̃11 − (κ̃11/4η1)(bs + θs)
2]

α̃54 = ω̃12 + κ̃11θ̂12 + ω̂12[µ̃11 − (κ̃11/4η1)(bs + θs)
2]

β̃1 = −η1 + ψ̃11τ̃11 + ψ̃11[τ̃11 − (ψ̃11/4η1)(bs + θs)
2]− 2(δ12 − δ11)

2(γϑ̃1 − σ)2

β̃2 = ψ̃11τ̃12 + ψ̃12[τ̃11 − (ψ̃11/4η1)(bs + θs)
2]− 2(δ12 − δ11)

2(γϑ̃1 − σ)(γϑ̃2 − σ)

β̃3 = η̃11 + ψ̃11µ̃11 + κ̃11[τ̃11 − (ψ̃11/4η1)(bs + θs)
2]− 2(δ12 − δ11)

2(γϑ̃1 − σ)γ%̃1

β̃4 = ψ̃11µ̃12 + κ̃12[τ̃11 − (ψ̃11/4η1)(bs + θs)
2]− 2(δ12 − δ11)

2(γϑ̃1 − σ)γ%̃2

β̃51 = ψ̃11σ̂11 + α̂11[τ̃11− (ψ̃11/4η1)(bs + θs)
2]

β̃52 = ψ̃11σ̂12 + α̂12[τ̃11 − (ψ̃11/4η1)(bs + θs)
2]

β̃53 = −η̂11 + ψ̃11θ̂11 + (ω̂11 − 1)[τ̃11 − (ψ̃11/4η1)(bs + θs)
2]

β̃54 = ψ̃11θ̂12 + ω̂12[τ̃11 − (ψ̃11/4η1)(bs + θs)
2]

γ̃1 = η̃21 + κ̃22τ̃21 + ψ̃21[µ̃22 − (κ̃22/4η2)(bs + θs)
2]− 2(δ22 − δ21)

2(γϑ̃1 − σ)γ%̃2

γ̃2 = η̃22 + κ̃22τ̃22 + ψ̃22[µ̃22 − (κ̃22/4η2)(bs + θs)
2]− 2(δ22 − δ21)

2(γϑ̃2 − σ)γ%̃2

γ̃3 = π̃21 + κ̃22µ̃21 + κ̃21[µ̃22 − (κ̃22/4η2)(bs + θs)
2]− 2(δ22 − δ21)

2γ2%̃1%̃2

γ̃4 = 2π̃22 + κ̃22µ̃22 + κ̃22[µ̃22 − (κ̃22/4η2)(bs + θs)
2]− 2(δ22 − δ21)

2γ2%̃2
2

γ̃51 = υ̃21 + κ̃22σ̂21 + α̂21[µ̃22 − (κ̃22/4η2)(bs + θs)
2]

γ̃52 = υ̃22 + κ̃22σ̂22 + α̂22[µ̃22 − (κ̃22/4η2)(bs + θs)
2]

γ̃53 = ω̃21 + κ̃22θ̂21 + ω̂21[µ̃22 − (κ̃22/4η2)(bs + θs)
2]

γ̃54 = ω̃22 − π̂22 + κ̃22θ̂22 + (ω̂22 − 1)[µ̃22 − (κ̃22/4η2)(bs + θs)
2]

175



δ̃1 = ψ̃22τ̃21 + ψ̃21[τ̃22 − (κ̃22/4η2)(bs + θs)
2]− 2(δ22 − δ21)

2(γϑ̃1 − σ)(γϑ̃2 − σ)

δ̃2 = −η1 + ψ̃22τ̃22 + ψ̃22[τ̃22 − (κ̃22/4η2)(bs + θs)
2]− 2(δ22 − δ21)

2(γϑ̃2 − σ)2

δ̃3 = ψ̃22µ̃21 + κ̃21[τ̃22 − (κ̃22/4η2)(bs + θs)
2]− 2(δ22 − δ21)

2(γϑ̃2 + σ)γ%̃1

δ̃4 = η̃22 + ψ̃22µ̃22 + κ̃22[τ̃22 − (κ̃22/4η2)(bs + θs)
2]− 2(δ22 − δ21)

2(γϑ̃2 + σ)γ%̃2

δ̃51 = ψ̃22σ̂21 + α̂21[τ̃22− (ψ̃22/4η2)(bs + θs)
2]

δ̃52 = ψ̃22σ̂22 + α̂22[τ̃22 − (ψ̃22/4η2)(bs + θs)
2]

δ̃53 = ψ̃22θ̂21 + ω̂21[τ̃22 − (ψ̃22/4η2)(bs + θs)
2]

δ̃54 = −η̂22 + ψ̃22θ̂22 + (ω̂22 − 1)[τ̃22 − (ψ̃22/4η2)(bs + θs)
2]

η̃11 = −(bp + θp)ν̂(ϑ̂3ν̂2 − ϑ̂2ν̂3)− θpν̂(ϑ̂3ν̂1 − ϑ̂1ν̂3) + (bs + θs)

η̃12 = −(bp + θp)ν̂(ϑ̂4ν̂2 − ϑ̂2ν̂4)− θpν̂(ϑ̂4ν̂1 − ϑ̂1ν̂4)− θs

η̃21 = θpν̂(ϑ̂3ν̂2 − ϑ̂2ν̂3) + (bp + θp)ν̂(ϑ̂3ν̂1 − ϑ̂1ν̂3)− θs

η̃22 = θpν̂(ϑ̂4ν̂2 − ϑ̂2ν̂4) + (bp + θp)ν̂(ϑ̂4ν̂1 − ϑ̂1ν̂4) + (bs + θs)

π̃11 = (bp + θp)ν̂(θpν̂2 + ϑ̂2(bp + θp)) + θpν̂(θpν̂1 + ϑ̂1(bp + θp))

π̃12 = −(bp + θp)ν̂((bp + θp)ν̂2 + ϑ̂2θp)− θpν̂((bp + θp)ν̂1 + ϑ̂1θp)

π̃21 = −θpν̂(θpν̂2 + ϑ̂2(bp + θp))− (bp + θp)ν̂(θpν̂1 + ϑ̂1(bp + θp))

π̃22 = θpν̂((bp + θp)ν̂2 + ϑ̂2θp) + (bp + θp)ν̂((bp + θp)ν̂1 + ϑ̂1θp)

χ̃11 = ϕ1γ(α̂1 +D2α̂2) = −χ̃12

χ̃21 = ϕ2γ(D1α̂1 + α̂2) = −χ̃22

$̃11 = ϕ1σ(α̂1 +D2α̂2) = −$̃12

$̃21 = ϕ2σ(D1α̂1 + α̂2) = −$̃22

ψ̃11 = χ̃11ν̂(ϑ̂3ν̂2 − ϑ̂2ν̂3)− χ̃12ν̂(ϑ̂3ν̂1 − ϑ̂1ν̂3) + $̃11

ψ̃12 = χ̃11ν̂(ϑ̂4ν̂2 − ϑ̂2ν̂4)− χ̃12ν̂(ϑ̂4ν̂1 − ϑ̂1ν̂4) + $̃12

ψ̃21 = χ̃21ν̂(ϑ̂3ν̂2 − ϑ̂2ν̂3)− χ̃22ν̂(ϑ̂3ν̂1 − ϑ̂1ν̂3) + $̃21

ψ̃22 = χ̃21ν̂(ϑ̂4ν̂2 − ϑ̂2ν̂4)− χ̃22ν̂(ϑ̂4ν̂1 − ϑ̂1ν̂4) + $̃22
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κ̃11 = −χ̃11ν̂(θpν̂2 + ϑ̂2(bp + θp)) + χ̃12ν̂(θpν̂1 + ϑ̂1(bp + θp))

κ̃12 = χ̃11ν̂((bp + θp)ν̂2 + ϑ̂2θp)− χ̃12ν̂((bp + θp)ν̂1 + ϑ̂1θp)

κ̃21 = −χ̃21ν̂(θpν̂2 + ϑ̂2(bp + θp))− χ̃22ν̂(θpν̂1 + ϑ̂1(bp + θp))

κ̃22 = χ̃21ν̂((bp + θp)ν̂2 + ϑ̂2θp) + χ̃22ν̂((bp + θp)ν̂1 + ϑ̂1θp)

τ̃11 = κ̂3ν̂(ϑ̂3ν̂2 − ϑ̂2ν̂3) + κ̂3ν̂(ϑ̂3ν̂1 − ϑ̂1ν̂3) + µ̂3

τ̃12 = κ̂3ν̂(ϑ̂4ν̂2 − ϑ̂2ν̂4) + κ̂3ν̂(ϑ̂4ν̂1 − ϑ̂1ν̂4)− µ̂3

τ̃21 = κ̂6ν̂(ϑ̂3ν̂2 − ϑ̂2ν̂3) + κ̂6ν̂(ϑ̂3ν̂1 − ϑ̂1ν̂3) + µ̂6

τ̃22 = κ̂6ν̂(ϑ̂4ν̂2 − ϑ̂2ν̂4) + κ̂6ν̂(ϑ̂4ν̂1 − ϑ̂1ν̂4)− µ̂6

µ̃11 = −κ̂3ν̂(θpν̂2 + ϑ̂2(bp + θp)) + κ̂3ν̂(θpν̂1 + ϑ̂1(bp + θp))

µ̃12 = κ̂3ν̂((bp + θp)ν̂2 + ϑ̂2θp)− κ̂3ν̂((bp + θp)ν̂1 + ϑ̂1θp)

µ̃21 = −κ̂6ν̂(θpν̂2 + ϑ̂2(bp + θp))− κ̂6ν̂(θpν̂1 + ϑ̂1(bp + θp))

µ̃22 = κ̂6ν̂((bp + θp)ν̂2 + ϑ̂2θp) + κ̂6ν̂((bp + θp)ν̂1 + ϑ̂1θp)

ϑ̃1 = 2bpν̂(ν̂3 − ϑ̂3), ϑ̃2 = 2bpν̂(ν̂4 − ϑ̂4)

ϑ̃3 = 2bpν̂(ν̂5 − ϑ̂5), %̃1 = −%̃2 = 2bpν̂(bp + 2θp)
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B.5 Proof to Theorem 4.2

The system given in Equation 59 is

Φ(t) = MΦ(t− 1). (121)

Let P be the modal matrix of M. That is, P is the 4x4 matrix whose 4 columns are the

eigenvectors of M. For a given Φ(t), we define a vector z(t) by

Φ(t) = Pz(t). (122)

This transformation follows from the fact that any vector Φ(t) can be written as a linear

combination of its eigenvectors. That is Φ(t) can be expressed as

Φ(t) = z1(t)e1 + z2(t)e2 + z3(t)e3 + z4(t)e4. (123)

where zi(t), i ∈ 1, 2, 3, 4 are scalars. Using the fact that Mei = λiei (where λi is an

eigenvalue of M), multiplying the equation above by matrix M yields

Φ(t + 1) = MΦ(t) (124)

= λ1z1(t)e1 + λ2z2(t)e2 + λ3z3(t)e3 + λ4z4(t)e4. (125)

In this new transformation, the original system in Equation 59 can be represented as

Pz(t + 1) = MPz(t). (126)

or, equivalently,

z(t + 1) = P−1MPz(t). (127)
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This defines a new system that is related to the original system by a change of variable.

The new system matrix P−1MP is equal to Λ, where Λ is the diagonal matrix with the

eigenvalues of M on the diagonal. Thus, when written out in detail, Equation 127 becomes

z1(t+ 1)

z2(t+ 1)

z3(t+ 1)

z4(t+ 1)


=



λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4





z1(t)

z2(t)

z3(t)

z4(t)


(128)

which explicitly displays the diagonal form obtained by the change of variable.

The state-transition matrix of a constant coefficient discrete-time system at period k is

Mk. The system matrix can be calculated by first converting M to diagonal form as

M = PΛP−1. (129)

which provides a representation of M in terms of its eigenvalues and eigenvectors. It then

follows that for any k ≥ 0

Mk = PΛkP−1. (130)

Therefore, calculation of Mk is transferred to the calculation of Λk. Since Λ is diagonal,

one finds immediately that

Λk =



λk
1 0 0 0

0 λk
2 0 0

0 0 λk
3 0

0 0 0 λk
4


(131)
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One can see immediately that if the magnitude of dominant eigenvalue is less than 1 (i.e.,

|λi| < 1 for all i), as k increases, Λk tends toward zero. This corresponds to the system

converging over time. On the other hand, if there is at least one eigenvalue with magnitude

greater than one (|λj| > 1 for some j), the system of market bases evolution will increases

geometrically towards infinity. This corresponds to a divergent system.
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B.6 Proof to Theorem 4.3

Let λ be the dominant eigenvalue of a discrete time system. It is possible to express λ in

the form

λ = reiθ = r(cos θ + i sin θ). (132)

The characteristic response due to this eigenvalue is

λk = rkeikθ = rk(cos kθ + i sin kθ). (133)

The coefficient that multiplies the associated eigenvector varies according to this charac-

teristic pattern. From the above equation, one can see that if λ is real and positive, the

response pattern is the geometric sequence rk, which increases if r > 1 and decreases if

r < 1. No oscillation will occur with positive eigenvalue since rk remains positive for any

k. However, if λ is negative, the response will be an alternating geometric sequence since

rk switches sign for every step.

If λ is complex, it will appear with its complex conjugate. The real response due to

both eigenvalues is of the form rk(A cos kθ+ iB sin kθ). If θ 6= 0, the expression within the

parentheses will change sign a k changes. However, the exact pattern of variation will not

be perfectly regular. In our problem, we assume that λ is not complex. Therefore, this

irregular oscillation case is excluded from our analysis.
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B.7 Range of Parameters Used in Numerical

Studies

Parameter Range

bp {0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5}

θp {0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5}

bs {0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5}

θs {0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5}

ai {40, 60, 80, 100, 120}

ci {2, 4, 6, 8, 10}

ηi {2, 4, 6, 8, 10}

γ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}

σ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}

β {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}

The range of these parameters are based on related literature such as Tsay and Agrawal

(2000) [90] and Vilcassin et al. (1999) [91] (see Chapter 2 for the review of these papers).
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APPENDIX C: APPENDIX FOR
CHAPTER 5

C.1 Proof to Lemma 5.1

For each i in (87), adding and subtracting
∫ Bi

zi
pixifi(xi)dxi to get:

E[Πi(z,p)] =

∫ zi

Ai

pi[µi(p1, p2) + xi]fi(xi)dxi + giΘi(zi) +

∫ Bi

zi

pi[µi(p1, p2) + zi]

−biΘi(zi)− wi[µi(p1, p2) + zi] +

∫ Bi

zi

pixifi(xi)dxi −
∫ Bi

zi

pixifi(xi)dxi

=

∫ Bi

Ai

pi[µi(p1, p2) + xi]fi(xi)dxi +

∫ Bi

zi

[zi − xi]fi(xi)dxi

−giΘi(zi)− biΘi(zi)− wi[µi(p1, p2) + zi]

= piµi(p1, p2)− piΘi(zi) + giΘi(zi)− biΘi(zi)− wiµi(p1, p2)− wizi

= (pi − wi)µi(p1, p2) + giΘi(zi)− (pi + bi)Θi(zi)− wizi

Now, the last term, −wizi, can be expressed as:

−wizi = wi(0− zi) =

∫ Bi

Ai

wi(xi − zi)fi(xi)dxi

= wi

∫ zi

Ai

(xi − zi)fi(xi)dxi + wi

∫ Bi

zi

(xi − zi)fi(xi)dxi

= −wiΘi(zi) + wiΘi(zi)

Therefore, for each i in (87)

E[Πi(z,p)] = (pi − wi)µi(p1, p2)− (wi − gi)Θi(zi)− (pi + bi − wi)Θi(zi)

�
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C.2 Proof to Proposition 5.1

To solve for p1 and p2 in terms of z1 and z2, we set the first order derivatives in (92) and

(93) to zero:

0 = a1 − 2(bp + θp)p1 + 2θpp2 + (bp + θp)w1 − θpw2 −Θ1(z1)

= ξ1 − 2(bp + θp)p1 + 2θpp2 −Θ1(z1)

p1
∗(p2) =

ξ1 + 2θpp2 −Θ1(z1)

2(bp + θp)

where ξi = ai + (bp + θp)wi − θpwj. Set (93) to zero and substitute the above expression of

p1
∗ into it.

0 = a2 − 2(bp + θp)p2 + 2θpp1 + (bp + θp)w2 − θpw1 −Θ2(z2)

= ξ2 − 2(bp + θp)p2 −Θ2(z2) +
2θp

[
ξ1 + 2θpp2 −Θ1(z1)

]
2(bp + θp)[

2[(bp + θp)
2 − θ2

p]
]
p2 = θp(ξ1 −Θ1(z1)) + (bp + θp)(ξ2 −Θ2(z2))

p2
∗ =

θp(ξ1 −Θ1(z1)) + (bp + θp)(ξ2 −Θ2(z2))

2[(bp + θp)2 − θ2
p]

Substituting the expression of p2
∗ into the optimal p1

∗(p2). We get

p1
∗ =

ξ1 −Θ1(z1) + 2θp

[
θp(ξ1−Θ1(z1))+(bp+θp)(ξ2−Θ2(z2))

2[(bp+θp)2−θ2
p]

]
2(bp + θp)

(134)

With some algebra rearrangement, we finally get

p1
∗ =

(bp + θp)(ξ1 −Θ1(z1)) + θp(ξ2 −Θ2(z2))

2[(bp + θp)2 − θ2
p]

�
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C.3 Proof to Proposition 5.2

The proof provided here is a more generalized version of the one given in Petruzzi and

Dada (1999)[68]. In their work, they assume that the newsvendor carries only one item.

Our model assume that the newsvendor carries two competitive products with a demand

function defined differently from the one assumed in their work. To prove proposition 5.2,

we note that from (90), (91) and proposition 5.1 we can get the following equations:

∂E[Π(z,p(z))]

∂z1

=

{
(bp + θp)(ξ1 −Θ1(z1)) + θp(ξ2 −Θ2(z2))

2[(bp + θp)2 − θ2
p]

+ b1 − g1

}
(1− F1(z1))

−(w1 − g1) (135)

and

∂E[Π(z,p(z))]

∂z2

=

{
θp(ξ1 −Θ1(z1)) + (bp + θp)(ξ2 −Θ2(z2))

2[(bp + θp)2 − θ2
p]

+ b2 − g2

}
(1− F2(z2))

−(w2 − g2) (136)

We need to find the values of z1 and z2 such that the first order optimality conditions

above are satisfied. If we let Γi(z) =
∂E[Π(z,p(z))]

∂zi
, we then need to find the zeros of Γi(z).

We first approach this task by checking dΓi(z)/dzj,

dΓi(z)

dzj

=
θp(1− F1(z1))(1− F2(z2))

2bp(bp + 2θp)
(137)

From (137), you can see that dΓi(z)
dzj

is monotone and non-negative with its value equal zero

when z1 = B1 or z2 = B2. Therefore, there exists only one value of zj for each value of zi

that Γi(z) is zero. Thus, we only need to worry about the value(s) of zi that generate(s)

zero(s) of Γi(z).

dΓi(z)

dzi

=
(bp + θp)ξi + θpξj + 2(bi − gi)[(bp + θp)

2 − θ2
p]

2[(bp + θp)2 − θ2
p]

(−fi(zi))
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− (bp + θp)Θi(zi)

2[(bp + θp)2 − θ2
p]

(−fi(zi)) +
(bp + θp)(1− Fi(zi))

2

2[(bp + θp)2 − θ2
p]

− θpΘj(zj)

2[(bp + θp)2 − θ2
p]

(−fi(zi)) (138)

With some rearrangement,

dΓi(z)

dzi

= − fi(zi)

2[(bp + θp)2 − θ2
p]

{
(bp + θp)ξi + θpξj + 2(bi − gi)[(bp + θp)

2 − θ2
p]

−(bp + θp)Θi(zi)− θpΘj(zj)−
(bp + θp)(1− Fi(zi))

φi(zi)

}
(139)

where φi(x) = f(.)
1−F (.)

denotes the hazard rate.

d2Γi(z)

dzi
2 = − fi(zi)

2[(bp + θp)2 − θ2
p]

{
(bp + θp)(1− Fi(zi)) +

(bp + θp)

φi(zi)
fi(zi)

+
(bp + θp)(1− Fi(zi))[dφi(zi)/dzi]

φi(zi)
2

}
+

[
dΓi(z)/dzi

fi(zi)

]
dfi(zi)

dzi

(140)

By letting dΓi(z)
dzi

= 0, we have:

d2Γi(z)

dzi
2

∣∣∣∣
dΓi(z)

dzi
=0

= − (bp + θp)fi(zi)

2[(bp + θp)2 − θ2
p](φi(zi))2

∗{
(1− Fi(zi))(φi(zi))

2 + fi(zi)φi(zi) + (1− Fi(zi))
dφi(zi)

dzi

}
= −(bp + θp)fi(zi)(1− Fi(zi))

2[(bp + θp)2 − θ2
p](φi(zi))2

{
2(φi(zi))

2 +
dφi(zi)

dzi

}
(141)

Therefore, if Fi(.) is a distribution satisfying the condition 2(φi(zi))
2 + dφi(zi)

dzi
> 0, it follows

that Γi(z) is either monotone or unimodal in zi. In either case, it implies that Γi(z) =

∂E[Π(z,p(z))]

∂zi
has at most two roots. Furthermore, we can see that Γ1(B1, .) = −(w1−g1) < 0

and Γ2(., B2) = −(w2 − g2) < 0. Therefore, if Γi(z) has only one root, there is a change

of sign for Γi(z) from positive to negative. This corresponds to a local maximum for

E[Π(z,p(z))]. On the other hand, if it has two roots, the larger of the two corresponds to a

local maximum and the smaller of the two corresponds to a local minimum of E[Π(z,p(z))].
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In either case, E[Π(z,p(z))] has only one local maximum, identified either as the unique

value of z1 and z2 that satisfy Γi(z) = 0 for i = 1, 2, or as the largest value of zi that

satisfies Γi(z) = 0 for i = 1, 2.

Now, since E[Π(z,p(z))] is unimodal if Γi(z) has only one root for i = 1, 2, a sufficient

condition for unimodality of E[Π(z,p(z))] is Γ1(A1, .) > 0 and Γ2(., A2) > 0 or, equiva-

lently, 2[(bp + θp)
2 − θ2

p]Γ1(A1, z2) > 0 and 2[(bp + θp)
2 − θ2

p]Γ2(z1, A2) > 0. For example,

Γ1(A1, z2) =

{
(bp + θp)(ξ1 −Θ1(A1)) + θp(ξ2 −Θ2(z2))

2[(bp + θp)2 − θ2
p]

+ b1 − g1

}
(1− F1(A1))

−(w1 − g1)

Using the fact that F (Ai) = 0, we get the following:

2[(bp + θp)
2 − θ2

p]Γ1(A1, z2) = (bp + θp)(ξ1 −Θ1(A1)) + θp(ξ2 −Θ2(z2))

+2[(bp + θp)
2 − θ2

p](b1 − g1)− 2[(bp + θp)
2 − θ2

p](w1 − g1)

= (bp + θp)(ξ1 −Θ1(A1)) + θp(ξ2 −Θ2(z2))

+2[(bp + θp)
2 − θ2

p](b1 − w1)

= (bp + θp)(ξ1 + A1) + θp(ξ2 −Θ2(z2))

+2bp(bp + 2θp)(b1 − w1)

where Θ1(A1) = µε − A1 = −A1. The same demonstration can be done to prove the

condition 2[(bp + θp)
2 − θ2

p]Γ2(z1, A2) > 0.

Now, assuming that the condition (iii) in the Proposition 5.2 is satisfied, the optimal z1

and z2 can be found by substituting the value of pi
∗ given in Proposition 5.1 into (90), (91)
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(This gives the same results as re-optimizing E[Π(z,p(z))]. We then get the following:

(w1 − g1) =

{
(bp + θp)(ξ1 −Θ1(z1)) + θp(ξ2 −Θ2(z2))

2[(bp + θp)2 − θ2
p]

+ b1 − g1

}
(1− F1(z1))

and

(w2 − g2) =

{
θp(ξ1 −Θ1(z1)) + (bp + θp)(ξ2 −Θ2(z2))

2[(bp + θp)2 − θ2
p]

+ b2 − g2

}
(1− F2(z2))

Since we assume that condition (iii) of Proposition 5.2 is satisfied, there is one unique

solution (z1
∗, z2

∗) in the space [A1, B1]× [A2, B2], which can be expressed as a function of

ξ1 and ξ2. It is now straightforward to find the values of z1 and z2 such that the first order

optimality conditions above are satisfied.

�

188



C.4 Proof to Equation (100)

Θi(zi)) =

∫ Bi

zi

(u− zi)f(u)du

=
1

Bi − Ai

[∫ Bi

zi

udu−
∫ Bi

zi

zidu

]
=

1

Bi +Bi

[
B2

i − zi
2

2
− (Bizi − zi

2)

]
=

(Bi − zi)
2

4Bi

(142)

�

C.5 Proof to Lemma (5.2)

We know from equation (100) that

Θi(zi)) =
(Bi − zi)

2

4Bi

.

Since demand is uniformly distributed, therefore Fi(zi) = zi+Bi

2Bi
and 1− Fi(zi) = Bi−zi

2Bi
.

From condition (iv) in Proposition 5.2, we have

(wi − gi) =

{
(bp + θp)(ξi −Θi(zi)) + θp(ξj −Θj(zj))

2[(bp + θp)2 − θ2
p]

+ bi − gi

}
(1− Fi(zi)).

Plugging in Θi(zi)) and 1 − Fi(zi) into condition (iv) above, we get the expression for

Lemma (5.2).

�
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