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SUMMARY

This research work presents a design of an analog ReRAM-based PIM (processing-in-

memory) architecture for fast and efficient CNN (convolutional neural network) inference.

For the overall architecture, we use the basic hardware hierarchy such as node, tile, core,

and subarray. On the top of that, we design intra-layer pipelining, inter-layer pipelining,

and batch pipelining to further exploit parallelism in the architecture and increase overall

throughput for the inference of an input image stream. Our simulator also optimizes the

performance of the NoC (network-on-chip) using SMART (single-cycle multi-hop asyn-

chronous repeated traversal) flow control. Finally, we experiment with weight replications

for different CNN layers and report throughput, energy efficiency, and speedup of VGG

(A-E) for large-scale data set ImageNet.
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CHAPTER 1

BACKGROUND AND INTRODUCTION

This chapter gives the detailed background knowledge needed to understand the design in

the thesis.

1.1 Convolutional Neural Network Algorithm

In this section, we present the exact convolutional neural network (CNN) algorithm imple-

mented in our design. A CNN has two phases: training and inference. The weights in a

CNN are initialized with random values. Then the training process will update and refine

the weights to a specific data set. Finally, a well-trained a CNN can be used for inference of

new images. Typically, the training process has much more power and time consumption

than the inference process because training requires forward propagation, back propaga-

tion, and weight update while inference only requires forward propagation. However, a

CNN needs to be trained only once, and then it can be used for inference for numerous

times. For the training process of a CNN, please refer to [1] for the detailed mathematical

deduction. Typically, a CNN can be successfully trained on a GPU within several days.

For the inference process of a CNN, it consists of multiple layers with three basic types:

convolution layers, pooling layers, and fully-connected layers, as shown in Fig. 1.1. The

following subsections focus on explaining the details of each layer in a CNN.

1.1.1 Convolution Layers

The convolution layer is the signature of a CNN. It catches the edges of an image in order

to achieve high accuracy of image classification. However, it consumes the largest portion

of time and power for the whole inference process.
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Common 2D convolution algorithms include single kernel single channel (SKSC), sin-

gle kernel multiple channel (SKMC), and multiple kernel multiple channel (MKMC). MKMC

is widely used in most CNNs. In order to present how MKMC without batching works, we

define input feature map (IFM) to be I , kernel to be K, and output feature map (OFM)

to be O. I is a 3D matrix with dimensions c(channel) × h(height) × w(width). K is a

4D matrix with dimensions n(kernel) × c(channel) × l(length) × l(length). O is a 3D

matrix with dimensions c(kernel)×h(height)×w(width). Note that we have to pad l−1

columns of zeros to the right of I and l − 1 rows of zeros to the bottom of I in order to

get the correct dimensions of O. SKSC is a simple dot product between one channel of the

image and one channel of one kernel, which is defined as

SKSC(Ii, Kj,i)[a, b] = conv(Ii, Kj,i) =
l−1∑
m=0

l−1∑
n=0

Ii,a+m,b+n ×Kj,i,m,n (1.1)

where i ∈ [0, c), j ∈ [0, n), a ∈ [0, h), and b ∈ [0, w). SKMC is calculated by summing

the result of SKSC of every corresponding channel of the image and one kernel, which is

defined as

SKMC(I,Kj) =
c−1∑
i=0

conv(Ii, Kj,i) (1.2)

where j ∈ [0, n). MKMC is computed by concatenating the result of SKMC of the image

Figure 1.1: Convolutional Neural Network.
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Figure 1.2: Convolution Layer Unroll to Matrix Multiplication [2].

and every kernel, which is defined as

O = MKMC(I,K) = SKMC(I,K0)| · · · |SKMC(I,Kn−1) (1.3)

where | represents concatenation.

Typically, MKMC is calculated by unrolling each kernel into a row vector in the kernel

matrix and corresponding image pixels to a column vector in the image matrix, as shown

in Fig. 1.2, which is redacted from [2]. Then multiplying the two matrices gives the result.

Note that it takes h× w logical cycles to pass in the entire image and get the full results.

1.1.2 Pooling Layer

The pooling layer is used to reduce the feature map by using one pixel to represent a

relatively small grid (usually 2 × 2). In this way, it alleviates the amount of computations

for the following layer. Max pooling (MP) is used most often with great performance.
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Using the terms from 1.1.1, MP of size 2× 2 is defined as

MP (Ii)[a, b] = max(Ii,a,b, Ii,a+1,b, Ii,a,b+1, Ii,a+1,b+1) (1.4)

where i ∈ [0, c), a ∈ [0, h), and b ∈ [0, w).

From a hardware perspective, pooling layers effectively reduces the amount of on-chip

storage required for the inference of a CNN. However, pooling layers degrade the perfor-

mance of inter-layer pipelining because the next layer has to wait for the pooled result

which comes from different columns of the current feature map, which introduces extra

pipeline bubbles, increases latency, and decreases throughput. More hardware implemen-

tation details will be described in Chapter 2.

1.1.3 Fully-Connected Layer

After all convolution layers and pooling layers are finished, the final OFM will reshaped

into a vector and fed into a series of full-connected layers (FC) , also named as multi-layer

perceptron (MLP). The series of FCs can reduce the large initial vector into the final small

vector. After normalization, each number in the final vector represents the probability of

an input image belonging to that particular class. For example, a CNN for handwritten

digits classification task would have 10 classes, so the final vector is of size 10. In order to

explain how FC works, we define input vector to be I , weight matrix to be W , and ouput

vector to be O. I is a 1D matrix with dimensions n. W is a 2D matrix with dimensions

m× n. O is a 1D matrix with dimensions m. FC is defined as

Oa = FC(I)[a] =
n−1∑
i=0

Ii ×Wa,i (1.5)

where a ∈ [0,m).
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1.1.4 Sigmoid Function

At the end of each convolution layer and fully connected layer, we need to pass the output

through a sigmoid function (SIG), which is defined as

SIG(x) =
1

1 + e−x
(1.6)

SIG functions like a lubricant for a CNN because it maps the output to the range be-

tween 0 and 1. It is also differentiable so it’s compatible with the training process.

1.2 Digital Accelerators

Since CNNs are generally computation intensive and power hungry, the current research

community focuses on building efficient hardware platforms to accelerate deep neural net-

works. In this section, we discuss some digital accelerators in both cloud and edge for

CNNs.

1.2.1 Digital Accelerators in Cloud

Typically, CNNs are trained in the cloud with high accuracy. Some companies use a cluster

of CPUs and GPUs to do distributed training efficiently. For example, Google Cat uses

16000 CPU cores. Microsoft ResNet uses 8 GPU cores. In general, GPU can achieve

around 0.1 TOPS/W power efficiency and dominates the market for AI hardware. More

recently, Google invented TPU with 256× 256 systolic array of MAC units, clocked at 700

MHz [3]. Its peak throughput can reach 700M × 256× 256× 2 = 92 TOPS.

1.2.2 Digital Accelerators in Edge

After CNNs are trained in the cloud, the weights are sent back to the edge devices for real-

time inference. Although inference is less computation intensive and power hungry than

training, it still requires tons of MAC computations. For a conventional digital inference
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engine, both weights and feature maps need to be stored in the global buffer SRAM or

even off-chip DRAM. The processing engine (PE) needs to constantly access the SRAM or

even DRAM to read and write the data. Therefore, the system-level performance is limited

by the I/O bandwidth. More recently, some processing-in-memory (PIM) architectures are

proposed. They fix the weights in each PE and only move feature maps around, unlike

the conventional architectures which move both weights and feature maps around. Since

moving data costs time and energy, these PIM architectures has higher throughput and

power efficiency. The on-chip memory used to be SRAM. But now with the emerging

memory technologies, resistance-based non-volatile memories can also be used to do on-

chip analog PIM. More details will be discussed in Section 1.3 and 1.4.

1.3 ReRAM Device and Circuit

In this section, we present ReRAM from device and circuit perspectives.

1.3.1 ReRAM Device

From the device perspective, resistance-based emerging non-volatile memories (eNVM)

have become more and more mature and manufacturable. Memories such as resistive ran-

dom access memory (ReRAM) [4], phase change memory (PCM) [5], and spin-transfer

torque magnetic random access memory (STT-MRAM) [6] start to gain more and more

popularity. These eNVMs have much smaller cell size than SRAM. They can achieve mul-

tiple bits per cell (MLC). Therefore, they can map the entire weights on-chip at once and

eliminate off-chip access. They are also non-volatile and CMOS-process compatible. Their

access speed is within 10 ns, which is in the same magnitude as SRAM.

1.3.2 ReRAM Circuit

From the circuit perspective, 2D ReRAM is a grid structure consisting of ReRAM cells, as

shown in Fig. 1.3. Such design can exploit the analog characteristics of ReRAM to per-
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form fast and energy-efficient matrix multiplication and convolution. Vector-matrix multi-

plication can be easily calculated using ReRAM, because of two basic electrical theorems,

Ohm’s law and Kirchhoff’s current law. Ohm’s law states that the current through a resistor

is equal to the voltage across the resistor divided by the resistance of the resistor (I = V/R),

which is also equal to the voltage across the resistor multiplied by the conductance of the

resistor (I = V G). This law makes performing analog floating-point multiplication pos-

sible. Kirchhoff’s current law states that the total current output is equal to the sum of all

input current for a node in the circuit. This law makes performing analog floating-point

addition possible. Vector-matrix multiplication can be mapped to ReRAM in the following

three steps, as shown in Fig. 1.3. First, the digital input is converted to analog signals

by digital-to-analog converters (DACs) and then mapped to the voltage on horizontal bit

lines (WLs); Second, the weight matrix is quantized and then mapped to the conductance

Figure 1.3: ReRAM Array with Peripheral Circuits.
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of ReRAM cells; Third, the analog output signals are read from the current on the vertical

bit lines (BLs), stored in sample hold units, converted to digital output by analog-to-digital

converters (ADCs), and some columns are shifted and added together to produce the final

results.

1.4 Analog Processing-In-Memory Accelerators

Recently, several ReRAM-based PIM architectures have been presented for CNN infer-

ence, such as PUMA [7], ISAAC [8], and PRIME [9].

PUMA creates its own compiler and domain-specific instruction set architecture (ISA)

to make the architecture more general-purpose, programmable, and reconfigurable. It’s a

spatial architecture in which each tile is executing its own ISAs simultaneously with all

other tiles. It uses a state machine to synchronize among different cores, it has a large syn-

chronization overhead. In addition, the penalty of ISA, instruction decoder, and instruction

memory is also large if the workloads are only CNNs.

Unlike PUMA, ISAAC and PRIME are ASICs specifically for CNN inference. PRIME

is slightly different from ISAAC in the sense that PRIME stores positive and negative

weights in separate subarrays while ISAAC stores them in the same subarray and uses a

small trick to differentiate based on the MSB of a positive 2’s complementary number is

0 while the MSB of a negative 2’s complementary number is 1. Therefore, PRIME comes

with more area and power penalty, which leads to less area and power efficiency.

In addition, there are also proposed architectures for CNN training such as PipeLayer

[10] and TIME [11]. These architectures usually use an mixed-signal approach to combine

ReRAM analog in-memory computing and conventional digital logic for the computation

intensive backpropagation and weight update, which is sometimes inefficient for fast and

efficient inference.

8



CHAPTER 2

OVERALL ARCHITECTURE, PIPELINING, AND NOC

This research work presents a design of an analog ReRAM-based PIM (processing-in-

memory) architecture for fast and efficient CNN (convolutional neural network) inference.

For the overall architecture, we use the basic hardware hierarchy such as node, tile, core,

and subarray. On the top of that, we design intra-layer pipelining, inter-layer pipelining,

and batch pipelining to further exploit parallelism in the architecture and increase overall

throughput for the inference of an input image stream. Our simulator also optimizes the

performance of the NoC (network-on-chip) using SMART (single-cycle multi-hop asyn-

chronous repeated traversal) flow control. Finally, we experiment with weight replications

for different CNN layers and report throughput, energy efficiency, and speedup of VGG

(A-E) for large-scale data set ImageNet.

2.1 Overall Architecture

The overall chip, also called a node, as shown in Fig. 2.1. The node is composed of

16 × 20 = 320 tiles. Each tile has a outer associated with it. The routers form a mesh

structure. Within each tile, there are 12 cores, a local memory of 64KB eDRAM, a shift

and add unit, an output register of 2KB eDRAM, two sigmoid units, and a max pooling

unit. Within each core, there are eight ReRAM subarrays of size 128× 128, 128× 8 1-bit

DACs, 128× 8 sample hold units, eight ADCs with 8-bit resolution, four shift add units,

an input register of 2KB eDRAM, and an output register of 2KB eDRAM. There are buses

within each tile and each core. The number of each component is designed so that there

is no structural hazard during run time. For our design, the weights and feature maps are

both fixed 16 bits. Lots of previous research has shown that 16 bits are accurate enough for

CNN inference. We conservatively assume 2-bit MLC for each ReRAM cell. Therefore,
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Figure 2.1: Overall Architecture of a Node.

we need eight cells across eight different columns to encode all of them. In addition, our

DAC is of 1-bit resolution, which is trivial. Since 16-bit DAC has too much noise and takes

too much area and power, we choose to pass in the 16-bit IFM bit by bit sequentially in

16 cycles. Therefore, we only need 1-bit DACs. Note that since we partition the weight

spatially across different columns and we also partition the input temporally within the

same column, the shift and add unit after the ADC will be necessary to produce the correct

final results.

Fig. 2.2 shows the power and area of each individual component, we gather the data

from PUMA [7] and ISAAC [8], both of which are in 32 nm CMOS technology node. Note

that this table shows the power consumption when the component is functioning. The node

10



Figure 2.2: Power and Area of Each Component.

has a total area of 124.848 mm2. The total power is 108.26944 W, which is the peak power

consumption assuming every component on the chip is functioning in every cycle. We’ll

have a more detailed analysis of power consumption during run time, which depends on

the workloads.

2.2 Intra-layer Pipelining

The kernel of a specific CNN layer may be mapped to one or more tiles depending the size

of the kernel. If the kernel is mapped to more than one tile, it need some extra cycles in

its intra-layer pipeline to synchronize the OFM. Note that no matter how large the kernel is

and how many tiles the kernel needs to be mapped to, we only need one tile to synchronize

the OFM for all mapped tiles. The tile is called a collector. This is because all tiles are

designed large enough to contain at least one row of the kernel. Fig. 2.3 to Fig. 2.6
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Figure 2.3: Intra-layer Pipelining of Single-Mapped Tile with no Pooling.

show the intra-layer pipeline for four different scenarios depending on whether the layer

is mapped to a single tile or multiple tiles and whether the layer has pooling operations at

the end. Specifically, Fig. 2.3 shows the intra-layer pipeline for single-mapped tile with no

pooling. Fig. 2.4 shows the intra-layer pipeline for single-mapped tile with pooling. Fig.

2.5 shows the intra-layer pipeline for multi-mapped tiles and no pooling. Fig. 2.6 shows

the intra-layer pipeline for multi-mapped tiles with pooling. All pipelines process one set

of inputs (one pixel from all channels). Assume the IFM is a 3D matrix with dimensions

c(channel)× h(height)× w(width). It takes h× w logical cycles to pass the entire IFM

into this pipeline.

For Fig. 2.3, in the first cycle, the IFMs are read from tile memory, passed through the

bus from the tile to each core, and written to the input register in each core. For each cycle

in the next 16 cycles, 1 bit from the 16-bit input will be read from the input register, passed

through the DAC into the subarray, starting from least significant bit first (LSBF). Then

12



Figure 2.4: Intra-layer Pipelining of Single-Mapped Tile with Pooling.

the output value will be stored in the sample and hold unit in the same cycle. In cycle 18,

the ADC will convert the output to digital value. In cycle 19, digital values from different

columns will be shifted and added, and then written to the output register in the core. In

cycle 20, the results will be read from the core output register, passed through the bus from

each core to the tile, shifted and added with results from other cores in the tile, and finally

written to the tile output register. In cycle 21, the results will be read from the tile output

register and passed to the sigmoid unit, which is required at the end of every convolution

and full-connected layer. In cycle 22, the results will be written to the tile memory. In

cycle 23, the results are read from the tile memory and put on the NoC by the router. In

cycle 24, after the results arrive at the tiles for the next layer, they are written to their tile

13



Figure 2.5: Intra-layer Pipelining of Multi-Mapped Tiles with no Pooling.

memory. Note that in cycles from 3 to 17, we can efficiently pipeline ADC stage and SA,

Core OR write stage in the same cycle as IR read, DAC, SUB, SH stage. In this way, we

can maximize parallelism and throughput of the intra-layer pipeline. However, the setup

time for ADC stage and SA, Core OR write is 1 cycle, so we need cycle 18 and 19 to do

them separately in order to finish processing the 16-bit input before the start of cycle 19.

Sometimes after the convolution layer, there is a pooling layer. We focus on 2 × 2

pooling in this thesis. Therefore, as shown in Fig. 2.4, we need 4 cycles to read the

IFMs from tile memory to the max pooling unit before putting the results on the router and

sending them to other tiles. In cycle 27, the results will be written back to the tile memory.

Note that we can also pipeline the MP stage in the same cycle as the MEM read stage to

hide some latency. Therefore, it takes 24 cycles to process a set of inputs without pooling

and 29 cycles with pooling for single-mapped tile.
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Figure 2.6: Intra-layer Pipelining of Multi-Mapped Tiles with Pooling.

In addition, when a layer is mapped to multiply tiles, we need two extra cycles to send

the partial results to the collector tile and sum them to produce the correct final results.

In cycles 21 and 22 in Fig. 2.5 and Fig. 2.6, partial results in the tile output register are

read and put on the NoC by the router. After the results arrive at the collector tile, they

will be shifted and added together and written to the tile output register. Therefore, it

takes 26 cycles to process a set of inputs without pooling and 31 cycles with pooling for

multi-mapped tiles.

Fig. 2.7 shows the energy consumption of each pipeline stage. Based on the compo-
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Figure 2.7: Energy Consumption of Each Stage.

nents functioning in each cycle, we estimate the total energy consumption in that cycle. It’s

easy to notice that the stages that involve ADC and DAC consume the most energy. Fig.

2.8 shows the total energy consumption of the 24-stage, 29-stage, 26-stage, and 31-stage

pipeline. We observe that energy consumption doesn’t change much but latency varies

much due to the pooling layers and synchronization. In addition, pooling layers can further

degrade the performance of inter-layer pipelining because the next layer has to wait for the

pooled result which comes from different columns of the current feature map, which intro-

duces extra pipeline bubbles, increases latency, and decreases throughput. We will discuss

more about inter-layer pipelining in Section 2.3.

2.3 Inter-layer Pipelining

After figuring out the intra-layer pipeline, we focus on designing an efficient pipeline that

maximizes intra-layer parallelism for CNN inference. We observe that we don’t need to

wait for the previous layer to produce the entire OFM in order to start the current layer. We

Figure 2.8: Energy Consumption of Each Pipeline.
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only need to wait for enough information from the previous layer that is able to start the

first convolution of the current layer. To better illustrate this concept, we define the IFM

of the previous layer to be I , the kernel of the previous layer to be K, and the OFM of the

previous layer (also IFM of the current layer) to be O. I is a 3D matrix with dimensions

c(channel) × h(height) × w(width). K is a 4D matrix with dimensions n(kernel) ×

c(channel) × l(length) × l(length). O is a 3D matrix with dimensions c(kernel) ×

h(height) × w(width). The number of values in O that the current layer needs to wait is

shown in Eq. 2.1. In addition, the number of cycles the current layer needs to wait is shown

in Eq 2.2. Note that we assume the kernel strides in the row-majored fashion.

valuesWait = (w × (l − 1) + l)× n (2.1)

cyclesWait = w × (l − 1) + l (2.2)

Figure 2.9: # of Values Needed to Start the Current Layer.
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Fig. 2.7 shows an example of a IFM for the current layer with h = 8, w = 8, and

n = 1. The kernel is 3 × 3. The number of values we need to wait is 8 × (3 − 1) + 3 =

19. It’s easy to see that as long as the top 3 × 3 grid is ready, the current layer can start

its convolution operation. In the same cycle the convolution operation is performed, the

previous layer will generate another value in the OFM, which is another value for in the

IFM for the current layer. Therefore, in the next cycle, the current layer can perform another

convolution operation. Then we have a good pipeline which overlaps the operations of the

current layer and previous layer in parallel. However, there are still pipeline bubbles for the

current layer if there is a pooling layer between the previous layer and the current layer. In

general, a pooling size of 2 × 2 will slow down the current layer pipeline by a factor of 4,

because in average the previous layer has to produce four output values in order to generate

only one more value in the IFM for the current layer to move on. A good hardware solution

for this problem is to replicate weights for the previous layer to speed up the processing

speed of the previous layer pipeline and reduce the pipeline bubbles for the current layer

pipeline. We will discuss more about weight replication in Chapter 3.

2.4 Batch Pipelining

After designing the intra-layer pipeline and inter-layer pipeline, we consider the input to

the chip as a stream of images. In order to achieve real-time inference, we need to reach a

certain frame rate (FPS). Therefore, it’s important to figure out another pipeline for a batch

of input images. We assume that a batch (B) of input images come per second. In order to

increase B, we design a pipeline that overlaps the latency among input images that come

consecutively to each other.

We follow two design principles to design the batch pipeline. First, there should be no

structural hazard, which means in the same cycle, the pipeline cannot process a specific

layer (say layer 1) from two or more different images. In other words, a specific layer

in a specific cycle can only process one single image. Second, dependencies between
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Figure 2.10: Batch Pipeline.

consecutive layer (say layer 1 and layer 2) should be strictly followed for all images. In

other ways, if layer 2 has to wait for 2 cycles after layer 1 starts, all layer 2 from all images

have to wait for 2 cycles after the corresponding layer 1 starts.

Fig. 2.8 shows an example of batch pipeline with two input images and each image

has three layers. The setup is the following: layer 1 has six cycles, layer 2 has four cycles,

layer 3 has seven cycles. In addition, layer 2 has to wait for 3 cycles after layer 1 starts and

layer 3 has to wait for 1 cycle after layer 2 starts.

For image 1, layer 1 starts from cycle 1 and ends at cycle 6, layer 2 starts cycle 4 and

ends at cycle 7, and layer 3 starts at cycle 5 and ends at cycle 11, which satisfy principle

1 and principle 2. For image 2, since layer 1 is always independent of each other, it can

directly starts from cycle 7 and ends at cycle 12. For layer 2, it cannot simply start at

cycle 8 since layer 2 needs to wait for 3 cycles after layer 1 starts to satisfy principle 1.

Therefore, layer 2 of image 2 has to start at cycle 10. For layer 3, it cannot directly starts
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at cycle 11, since layer 3 of image 1 is still in the pipeline. To satisfy principle 1, layer

3 of image 2 has to start at cycle 12. As a result, Fig. 2.8 shows the pipeline with the

lowest latency to process the two image inputs with three layers for each image. It takes a

total of 18 cycles. If we don’t do batch pipeline and only starts processing the next image

when he first image completely finishes, then the total cycle count is 2 × 11 = 22 cycles.

In our simulator, we take advantage of the batch pipeline to maximize the performance of

the overall architecture. More details about the performance-related results will be given in

Chapter 3.

2.5 NoC Model

The topology of a NoC describes the connection between routers via links/channels. NoC

topologies include bus, ring, mesh, torus, flattened butterfly, fully connected and so on. The

most common topology is a 2D mesh because it can be laid out easily. In our design, the

NoC uses a 16× 20 2D mesh topology.

The routing of a NoC describes the links that a flit takes from the source router to

the destination router. Dimension-ordered routing (DOR) such as XY and YX routing

is typically used. XY routing means when choosing the routing path from the source to

the destination, the flit always goes horizontal (X direction) and then vertical direction (Y

direction). In addition, a turn model such as north-last model or east-first model can be

used. It disallows some turns to get rid of deadlocks in the NoC. In our design, we use

XY/YX routing to provide the maximum path diversity to the NoC for better throughput.

Path diversity describes the number of paths available from the source to the destination.

In addition, we set the link width to be 64 bits, which is the flit size. A packet has 8 flits,

which is 64× 8 = 512 bits.

The flow control of a NoC describes when a flit can traverse to the downstream router

or it has to stay at the upstream router if there is traffic in the NoC. The most common

algorithm is the wormhole flow control. In wormhole, The link is allocated at the packet
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Figure 2.11: Fully Connected Topology.

level and the buffer is allocated at the flit level. It significantly improves the performance

of virtual cut-through flow control because its buffer can have flits from different pack-

ets. However, wormhole still suffers from poor link utilization and results in head-of-line

blocking (HoL). HoL blocking means if the first flit in the buffer cannot move, all of the

rest flits in the buffer cannot move either. In our design, we use wormhole as one baseline.

In order to present the total latency in cycles to send a packet from the source to the

destination, we define the wire delay for one link to be tw, the hop count to be H , the

contention delay to be tc, and the serialization delay to be ts. A typical formula for latency

in cycles is defined as

T = tw ×H + tc + ts (2.3)

where the bottleneck is the term H . The ideal solution to reduce H down to 1 is to use the

fully connected topology, as shown in Fig. 2.11. However, since it’s nearly impossible to

lay out a topology like this, we will never achieve this ideal performance. Instead, SMART

flow control algorithm can make the NoC behave closely to an ideal fully connected topol-

ogy.

According to Prof. Tushar Krishna’s PhD thesis at MIT [12], and two other papers

about SMART (single-cycle multi-hop asynchronous repeated traversal) flow control [13,

14], our NoC model uses a similar approach to reduce NoC latency and increase the overall

throughput. According to [13], place-and-route repeated wires can go up to 16 mm in 1 ns
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Figure 2.12: Router Bypass in SMART.

Figure 2.13: Two Cases in SMART.

in 45 nm technology node. It can go further in projected 32 nm technology node because

wire delay remains constant or decreases slightly due to technology scaling [13]. Therefore,

on-chip wires can go fast enough to transfer across the chip within 1 clock cycle. The high

level idea to achieve SMART flow control is to use multiplexers to bypass the routers on

the path from the source to the destination. Fig. 2.12 shows that in order to bypass the

middle router, we use a mux to choose the input directly (red path) instead of pass it to the

router (blue path). Fig. 2.13 shows two possible cases for SMART flow control. The left

case takes only 1 cycle because the two flits don’t have a shared link in their individual

route. However, the right case takes 2 cycles because the two flits have a overlap in their

individual routes. Therefore, we need to enforce a certain order for the two paths. It turns

out the right case is the bottleneck for the SMART flow control. More details about the

detailed control signal setup in SMART flow control can be found in [13]. We simulate the

performance of wormhole and SMART flow control in garnet2.0 using trace-based input.

More details about the experiment and results will be discussed in Chapter 3.
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CHAPTER 3

SIMULATION AND EXPERIMENT RESULTS

This chapter first presents the workloads used in our simulation and the weight mapping

for each individual workload. Then we explore the effect of weight replication of different

CNN layers on the performance. Our simulation is cycle-accurate and catches the exact

cycle count of each layer in each workload. Finally, we report the throughput and energy

efficiency for each workload.

3.1 Workloads

We use VGG (A-E) [15] for the large-scale data set ImageNet [16] as our workloads. VGG

makes a thorough evaluation of networks of increasing depth using an architecture with

Figure 3.1: VGG Configuration [12].
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very small (3× 3) convolution filters [15]. Compared to previous work like AlexNet [17],

VGG improves the accuracy of computer vision and pattern recognition tasks by a wide

margin, which is achieved by pushing the CNN depth from a few layers to tens of layers

[15]. Fig. 3.1 shows the configuration of each layer for each VGG network, which is

redacted from [15]. The configuration shows the kernel size of each layer, and then it’s

easy to figure out the size of IFM and OFM for each layer.

3.2 Weight Mapping

Fig. 3.2 to Fig. 3.6 shows the exact size of IFM, kernel, and OFM for each CNN layer

in each VGG. After unrolling the kernel into a large 2D matrix of ReRAM cells, we can

calculate the total number of rows and columns needed in the hardware. Suppose the kernel

is a 4D tensor with dimensions l(length)× l(length)× c(channel)× n(kernel), then the

number of rows is l × l × c and the number of columns is n × 8. Since each cell is 2-bit,

Figure 3.2: vggA.
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Figure 3.3: vggB.

Figure 3.4: vggC.
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Figure 3.5: vggD.

Figure 3.6: vggE.
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we need eight columns to encode one weight. More details about mapping can be found in

Chapter 2.

3.3 Weight Replication

Pooling layers degrade the performance of inter-layer pipelining because the next layer has

to wait for the pooled results which come from different columns of the current feature

map. This introduces extra pipeline bubbles, increases latency, and decreases throughput.

In order to have a more balanced pipeline design, we replicate more weights for the first

few layers while replicate less weights for the deep layers. Specifically, all five VGGs are

down-sampled five times: 224×224, 112×112, 56×56, 28×28, 14×14, 7×7. Each time

a grid of 2× 2 is applied to the whole OFM. In order to satisfy this trend, we also replicate

the weights 16 times, 8 times, 4 times, 2 times, and 1 time. Fig. 3.7 shows the number

of times the weights are replicated in each layer for each VGG. Fig. 3.8 shows the total

number of tiles required with and without weight replication for each VGG. All schemes

Figure 3.7: Weight Replication of Each VGG.
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Figure 3.8: Total Number of Tiles of Each VGG.

meet the constraint that there are a maximum of 320 tiles available.

3.4 Performance Results

The workloads include 3× 4× 5 = 60 cases. There are five different CNNs: VGG (A-E),

three different NoCs: ideal, SMART, wormhole, and four different pipelining scenarios:

Figure 3.9: Performance of Each VGG using Ideal NoC.
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Figure 3.10: Performance of Each VGG using SMART NoC.

without weight replication and without batch pipelining (1), without weight replication

and with batch pipelining (2), with weight replication and without batch pipelining (3),

with weight replication and with batch pipelining (4). For the processing side, we build a

cycle-accurate simulator from scratch in C++. For the interconnect side, we simulate the

performance of the NoC in the cycle-accurate simulator garnet2.0 using trace-based input.

Fig. 3.9 shows the throughput (TOPS) and frame rate (FPS) of the four scenarios for

each VGG using ideal NoC. Fig. 3.10 shows the throughput (TOPS) and frame rate (FPS)

of the four scenarios for each VGG using SMART NoC. Fig. 3.11 shows the throughput

(TOPS) and frame rate (FPS) of the four scenarios for each VGG using wormhole NoC.

To explore the effect of different pipelining schemes on the performance, we calculate
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Figure 3.11: Performance of Each VGG using Wormhole NoC.

the speedup of each scenario by normalizing the throughput to scenario (1). Fig. 3.12

shows the speedup in all four scenarios for each VGG in all three different NoCs. The

geometric mean of (2) compared to (1) is 1.0309×, (3) compared to (1) is 10.1788×, and

(4) compared to (1) is 13.6903×. Note that for the best pipelining setup in scenario (4), it

achieves a speedup close to 16×. We don’t need to replicate the weights in all layers by

16 times to achieve this speedup. Instead, we replicate weights decreasingly as the layers

become deeper and the size of OFM decreases to make a balanced pipeline design. Note

that the results in Fig. 3.12 are projected results, which are not directly from garnet2.0.

To explore the effect of different NoCs on the performance, we calculate the speedup

of all three NoCs (ideal, SMART, wormhole) by normalizing the throughput to worm-
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Figure 3.12: Speedup of Each VGG due to Different Pipelining.

hole. Fig. 3.13 shows the speedup in all three NoCs for each VGG in all four pipelining

scenarios. The geometric mean of ideal compared to wormhole is 1.0809× and SMART

compared to wormhole is 1.0965×. Note that SMART NoC achieves better speedup for

Figure 3.13: Speedup of Each VGG due to Different NoC.
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Figure 3.14: Energy Efficiency of Each VGG.

more aggressive pipelining because more aggressive pipelining has heavier traffic in the

NoC, so the performance of SMART NoC improves effectively while the performance of

wormhole NoC degrades performance even more. Note that the results in Fig. 3.13 are

projected results, which are not directly from garnet2.0.

In addition, we also report the energy efficiency (TOPS/W) for processing each VGG,

as shown in Fig. 3.14. Note that weight replication, batch pipelining, and different flow

control algorithms don’t affect energy efficiency much because with the total amount of

energy consumed depends mostly on the amount of operations in the workload.
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CHAPTER 4

CONCLUSION

This research work presents a design of an analog ReRAM-based PIM (processing-in-

memory) architecture for fast and efficient CNN (convolutional neural network) inference.

For the overall architecture, we use the basic hardware hierarchy such as node, tile, core,

and subarray. On the top of that, we design intra-layer pipelining, inter-layer pipelining,

and batch pipelining to further exploit parallelism in the architecture and increase overall

throughput for the inference of an input image stream. Our simulator also optimizes the

performance of the NoC (network-on-chip) using SMART (single-cycle multi-hop asyn-

chronous repeated traversal) flow control. Finally, we experiment with weight replications

for different CNN layers and report throughput, energy efficiency, and speedup of VGG

(A-E) for large-scale data set ImageNet.

4.1 Observation

For ASIC designs for AI/ML/NN acceleration, NoC still represents a small portion of bot-

tleneck within PIM because most computations are done within a tile and inter-tile com-

munications are not quite often. Therefore, most speedup is achieved from the processing

side by designing efficient pipelining and leveraging weight replications.

4.2 Future Work

ReRAM-based PIM is a very good architecture for ASIC designs for AI/ML/NN applica-

tions, but how to increase its programmability and reconfigurability can be further explored.

One idea to make ReRAM-based architecture more generate-purpose for all kinds of NNs

is to design domain-specific ISAs for ReRAM-based architectures.
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