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Summary 

Noise degrades the performance of any image compression algorithm. The effect of 

different noise types, e.g., Gaussian, Poisson, and film grain, on lossy image compres

sion is discussed. 

To reduce the effect of noise on compression, the distortion of the coder should 

be measured with respect to the original noise-free image, not to the noisy image 

input to the coder. The results of noisy source coding theory are used to design the 

optimal coder. In the minimum mean square error (MMSE) sense, the noisy coder 

consists of an MMSE estimator followed by an MMSE coder. The image is modeled as 

a Markov random field. Mean field theory and a saddle point approximation are used 

to derive the MMSE estimates. The coders for the Poisson noise and film grain noise 

cases are derived and their performance is studied. The effect of this preprocessing 

step is also studied using standard coders, e.g., JPEG. As will be demonstrated, the 

preprocessing step achieves higher quality at lower bit rates. 

This approach is applied to noisy SPECT cardiac images and a segmented cod

ing algorithm is proposed. The proposed coder is a region-based coder that quantizes 

the different regions according to their importance for diagnosis. The performance of 

the proposed coder is studied with and without the preprocessing step. 

Finally, a postprocessing approach that combines the restoration of the decom

pressed image from both the artifacts introduced by the coder and the degradation 

noise is presented. The postprocessing filters for the noise-free, Poisson noise, and 

film grain noise cases are derived. 
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CHAPTER 1 

INTRODUCTION 

Image compression is concerned with minimizing the number of bits required to rep

resent an image at a given level of fidelity [28]. Any image compression algorithm 

attempts to answer two fundamental questions: what information should be stored or 

transmitted, and how should the chosen information be compressed [8]. The answers 

to both questions are related to the properties of the image and the requirements of 

the application. Nevertheless, the answer to both questions usually involves eliminat

ing the redundancies in the image. 

In image compression, three basic data redundancies can be identified: inter-

pixel redundancy, psychovisual or data-relevance redundancy, and coding redundancy 

[23]. Interpixel redundancy is directly related to the correlation between neighboring 

pixels. To reduce interpixel redundancy, the image is transformed to another format 

or domain such that the energy of the new image is concentrated in a few components 

and these components are independent of each other. Examples of these decompo

sitions include discrete Fourier transform (DFT), discrete cosine transform (DCT), 

and multiresolution representations. Psychovisual or data-relevance redundancy is 

reduced by quantizing the image values according to their visual importance or their 

importance to the application. Reducing psychovisual or data-relevance redundancy 

involves loss of information. Thus, it is nonlinear and noninvertible. Coding redun

dancy is eliminated by minimizing the average number of bits per symbol. This is 

achieved by giving fewer bits to more frequent symbols and more bits to less frequent 



symbols. Huffman or arithmetic coding schemes are usually used for this purpose. 

Images are, in many cases, degraded even before they are encoded. For ex

ample, emission and transmission tomography images are usually corrupted by data-

dependent noise that can be modeled as quantum noise or Poisson noise [41]. Gen

erally, images formed at low light levels are also corrupted by this kind of noise [49]. 

Another example of noisy images occurs when scanning images recorded on photo

graphic films for storage and transmission. The resulting image is proportional to the 

film density [61] and is corrupted by data-dependent noise widely known as film-grain 

noise. 

Cosman et al. [15] notice in their evaluation of the quality of compressed med

ical images that slightly vector-quantized images are often superior to the originals 

because noise is suppressed by a clustering algorithm. The superiority is evident in 

both visual clarity and diagnostic accuracy. This can also be seen in the reported 

results of Aberle et al. [1], where compressed images gave better diagnostic accuracy 

than noisy originals in terms of receiver-operating-characteristic (ROC) analysis for 

11 out of 15 reported experiments. Lo et al. [39] discuss the effect of noise on loss

less medical image compression. They conclude that noise decreases the compression 

ratio. This is because the noise reduces interpixel correlation. Melnychuck et al. [44] 

discuss the effect of film-grain noise on DPCM coders. They conclude that the en

tropy of the noisy images is almost twice that of noise-free images. As a remedy, 

they suggest ideal filtering of the noise; they did not base this suggestion on noisy 

source coding theory. Moreover, filtering of noise is not the optimal solution for any 

quantization. 

Another example of noisy image coding is coding of single photon computer

ized emission tomography (SPECT) cardiac image sequences, shown in Figure 1.1. 

Although, when first looking at these projection sequences, the frames look similar 

and thus should be efficiently predicted from each other, the presence of noise, which 

is effectively Poisson, degrades the performance of such predictors and coders [3]. 
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Fi gure 1.1; A 32 x 64 x 64 SPECT cardiac image sequence. 

To illustrate the effect of noise further, let us consider an image sequence that 

consists of replicas of the same image. Coding this sequence is done trivially by coding 

the first sequence and sending the number of frames in the sequence. However, if this 

sequence is corrupted by zero-mean-independent noise and if each frame is predicted 

from the previous one, the residual error will not be zero and its energy will be 

twice that of the noise. Moreover, as in most sequence coders, if the residual error 

is quantized and coded, the coder will be spending bits coding noise, which does not 

carry any information. 

This thesis will discuss the effect of noise on compression. The effect of noise 

will be explained in terms of its effect on the basic redundancies discussed in this 

chapter. To understand and reduce the effect of noise on compression, the distortion 

of the coder is measured with respect to the original noise-free image, not with respect 

to the noisy image input to the coder. The results of noisy source coding theory are 

used to design the optimal coder. 

Two approaches to enhance the quality of decompressed noisy images are dis

cussed. The first approach is a preprocessing approach where a minimum-mean-

square-error (MMSE) restoration algorithm is developed to restore images corrupted 

by data-dependent Poisson noise and data-dependent film-grain noise. If the MMSE 

3 



estimator is followed by an MMSE coder, the overall system will be an MMSE noisy 

image coder. As will be demonstrated in Chapter 5, preprocessing noisy images will 

enhance and improve the performance of conventional coders, e.g., JPEG. It is im

portant to note that the objective is to enhance the quality of the image so that it 

can be coded more efficiently when compressed using any coder. 

The second approach is a postprocessing one. The noisy image is compressed 

using conventional coders, then at the decoder end the decompressed noisy image 

is restored from degradation noise, quantization noise, and coding artifacts. Mathe

matically, both approaches are similar, however, the noise model of the preprocessing 

approach includes only the degradation noise, while the noise model of the postpro

cessing approach is a more complicated model that includes degradation noise, quan

tization noise, and coding artifacts. The first approach is optimal when an MMSE 

coder is used and it gives better results because it prepares the image for compression 

by smoothing the noise. The second approach can be used in cases where there is not 

control over the encoder and a better image quality is desired. 

As an application, both approaches are applied to cardiac SPECT sequences, 

which are usually corrupted by data dependent Poisson noise, to improve the per

formance of compression algorithms. Since it is desired to preserve the diagnostic 

information in medical images, a content-based coder is developed. This coder pre

serves the diagnostic information in the image by segmenting the image into different 

regions, filtering these regions with different image models according to the detail in 

each region, and coding these regions with different coders. The regions that contain 

the diagnostic information are compressed without coding distortion, while the other 

regions are compressed lossily. 
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1.1 Outline 

This thesis is organized as follows: Chapter 2 briefly reviews the basic blocks of a 

generic image compression system. Chapter 3 discusses the effect of three kinds of 

noise that frequently corrupt images. Chapter 3 also states the problem of coding 

noisy images and describes the optimum coder that minimizes the distortion between 

the original, noise-free image and the coded noisy image. If the distortion measure is 

the MSE, the optimum coder can be decomposed into an MMSE estimator followed 

by an MMSE coder. 

Chapter 4 develops MMSE restoration algorithms to estimate images corrupted 

by Poisson noise and film-grain noise by modeling the image as a Markov random 

field and approximating the estimate using mean field theory and a saddle point 

approximation. Chapter 5 builds the optimum noisy-image coder and studies its 

performance. Chapter 5 also studies the effect of the preprocessing step on different 

conventional coders. Chapter 6 develops MMSE restoration algorithms to restore 

noise-free and noisy images that are lossy compressed using a block-transform-based 

coder. 

Chapter 7 applies the results of the thesis to compress cardiac image sequences, 

which are corrupted by Poisson noise. Chapter 7 develops region-based coders that 

preserve the diagnostic information in cardiac sequences, and evaluates their perfor

mance using objective measures and diagnostic accuracy measures. Finally, Chapter 

8 concludes the thesis. 

5 
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CHAPTER 2 

IMAGE COMPRESSION 

2.1 Introduction 

The goal of image compression algorithms is to achieve the best fidelity for a given 

storage bit rate [15]. This is achieved by eliminating the redundancies in the image. 

In image compression, three basic data redundancies can be identified: interpixel 

redundancy, psychovisual or data-relevance redundancy, and coding redundancy [23]. 

To eliminate these redundancies, an image compression system usually consists 

of an image decomposition block, a quantizer, and a coder, as shown in Figure 2.1. 

The image decomposition block transforms the image to another format or domain. 

The energy of the transformed image is concentrated in a few components and these 

components are independent of each other, thus eliminating the interpixel redundancy. 

The quantizer reduces the psychovisual or data-relevance redundancy by throwing 

away information that is not relevant psychovisually or to the application. This step 

is nonlinear and noninvertable. The entropy coder minimizes the average number of 

bits per symbol by giving fewer bits to more frequent symbols and more bits to less 

frequent symbols. 

Image compression can be either lossless (reversible) or lossy (irreversible). An 

image compression algorithm is lossless if the image can be exactly reconstructed 

from the compressed information, otherwise it is lossy. Most lossless compression 

algorithms do not include the quantization step. 



Image Image 

Decomposition 
Quantization 

Entropy 

Coding 

Coded 
- • -

Image 

Figure 2 .1: Image compression system. 

The performance of lossy compression algorithms is usually described by the 

distortion introduced at a given bit rate. The optimal performance of ideal digi

tal communication systems [25] is studied and described by source coding or rate-

distortion theory. 

This chapter is organized as follows: Section 2.2 briefly discusses source coding 

theory. Sections 2.3, 2.4, and 2.5 describe the blocks of the generic image compression 

system shown in Figure 2.1. 

2.2 Source Coding Theory 

Source coding theory, or rate-distortion theory, addresses the problem of determining 

the lowest rate at which information about the source is conveyed to the user in order 

to achieve a prescribed fidelity [8]. In the communications system depicted in Figure 

2.2, let the information source produce a random signal that can be collected in the 

form of a vector f £ T. The encoder, #(•), maps f into u for transmission over the 

channel. Afterwards, the received signal v is mapped by the decoder, h(-), to y, which 

is delivered to the information receiver. Let d(f, y) be a distortion measure defined 

to tell how well y approximates f. The encoder, #(•), and the decoder, h(-), seek to 

minimize the distortion measure, d(f, y), for a given bit rate. The average distortion 

associated with the codec (coder-decoder pair), Q, is 

d(Q) = Y,p(^yW^y)' (2.1) 

7 
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Figure 2.2: The block diagram of a communications system. 

A codec is D-admissible if d(Q) < D. The rate-distortion function R(D) is the 

infimum of the rates such that the codec is D-admissible [8]. The rate-distortion 

function is non-negative, continuous, convex, and strictly decreasing [8]. Moreover, 

0 < R(D) < log M, where M is the size of the alphabet. 

The source Coding Theorem states that for a given average distortion D, there 

exists a coder and a decoder pair, g and h, such that R(D) bits per symbol are 

sufficient to reconstruct the source with an average distortion that is arbitrarily close 

to D [8]. The converse to the source coding theorem states that no D-admissible code 

has a rate less than R(D) [8]. 

2.3 Entropy coding 

The marginal entropy of a source is defined as the average information generated by 

it: 

tf = £--p(a,) logp(a,) , (2.2) 
i 

where {a*} is the set of symbols generated by the source and {p(a^)} are the prob

abilities of their occurrence. The entropy of a source of independent symbols is the 

minimum number of information units required to encode the source [28]. 

Huffman coding [26] and arithmetic coding [34, 53] are one of the most common 
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coding methods used. Huffman coding achieves optimum coding if the probabilities of 

the source symbols are in the form 2~J, where j is an integer. Arithmetic coding can 

theoretically achieve the optimal code, without any restrictions on the probabilities. 

When the source outputs (pixel values) are dependent, run-length coding [28] and 

Lempel-Ziv coding [74] sometimes replace Huffman and arithmetic coding. 

2.4 Quantization 

Quantization, in a general sense, is the mapping of vectors (or scalars) of an informa

tion source into a finite collection of codewords for storage or transmission [24]. This 

involves two processes: encoding and decoding. The encoder blocks the source {xi} 

into vectors of length n, and maps each vector Xn G Xn into a codeword c taken from 

a finite set of codewords C. The decoder maps the codeword c into a reproduction 

vector Yn G yn where y is a reproduction alphabet. If n = 1, it is called scalar 

quantization. Otherwise, it is called vector quantization. 

The problem of optimum mean squared scalar quantization for a given repro

duction alphabet size was independently solved by Lloyd [38] and Max [43]. They 

found that if x is a real scalar random variable with continuous probability density 

function px(x), then the quantization thresholds are 

k = r-*±P=±, (2.3) 

which is the geometric mean of the interval (rfc_1,r/c], where 

^.t+i 

/

Cfc+i 
xpx(x)dx 

-kn (2-4) 
px(x)dx % 

are the reconstruction levels. Iterative numerical methods are required to solve for 

the reconstruction and the quantization levels. Memory can be incorporated into 

scalar quantization by predicting the input from the previous samples and quantizing 

the residual error, e.g., linear predictive coding. 
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A fundamental result of Shannon's rate distortion theory is that better per

formance can be achieved by coding vectors instead of scalars, even if the source is 

memoryless [24, 45]. Linde, Buzo, and Gray [37] generalized the Lloyd-Max algorithm 

to vector quantization. If the vector quantizer (VQ) quantizes each vector indepen

dent of all other vectors, it is called a memoryless VQ. Otherwise, it is a memory VQ. 

Memoryless and memory VQ design is briefly discussed next. 

2.4.1 Memoryless vector quantization 

Linde, Buzo, and Gray found that given a training sequence of the information source 

and a fixed number of reproduction vectors, there are two necessary conditions to 

achieve optimal vector quantization [37]. First, given the goal to minimize a distortion 

measure and given a decoder, no memoryless encoder can do better than to select 

the codeword that will yield the minimum distortion at the output [24]. Thus, a 

full search is usually conducted on all codewords to find the one that has minimum 

distortion. Second, given that goal and the encoder, the best codeword is the centroid 

based on a distance measure (For the MSE it is the geometric mean) of the source 

vectors encoded as that codeword. Following that, they developed a procedure for 

designing the VQ known as the generalized Lloyd algorithm. This is also popularly 

called the LBG algorithm, and is depicted in Figure 2.3. 

The design of the encoder is very expensive. To solve this, less expensive algo

rithms have been developed, e.g., tree-searched vector quantization (TSVQ), pruned 

tree-structured vector quantization (PSTVQ), multistage vector quantizer, product 

codes, and others [24]. 

The length of the codewords designed by these algorithms (except for the 

PSTVQ) is constant. Thus, if the resulting probability distribution of the quan

tized vectors is nonuniform, additional compression can be achieved by entropy cod

ing. However, if the VQ is designed with an entropy constraint instead of the fixed 

number of quantization levels constraint, then the performance of the VQ can be 

10 



Given a training sequence 

and 

an initial encoder 

Encode the training sequence 
(Assign code-vectors to 

minimize the distortion) 

No 

Replace each code-vector with 

the centroid of the symbols 

coded to it 

Yes 

Figure 2.3: LBG vector quantizer design algorithm. 
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X 2 X3 

X , Y 

Figure 2.4: Linear prediction with 2 x 2 vector quantization. Pixel Y is linearly predicted from 
pixels Xi,X2, and X3. The residual error defined as the difference between Y and its predicted 
value is then vector quantized. 

expected to improve. Different algorithms have been developed with this constraint, 

e.g., entropy-pruned tree-structured VQ (EPTSVQ) [40] and entropy constrained VQ 

(ECVQ)[12]. 

2.4.2 Memory vector quantization 

The performance of entropy-constrained VQ or other VQs followed by an entropy 

coder depends on the probability distribution of the quantized vectors. If their prob

ability distribution is highly skewed, low bit rates can be achieved. Image decom

position algorithms decorrelate the input vectors and concentrate the energy of the 

image in a few components. Memory can be incorporated into vector quantization 

by predicting the input from the previous samples and quantizing the residual error, 

e.g., linear prediction and unitary transforms. Different compression algorithms that 

combined vector quantization with transform coding [45], subband coding [45, 56], 

and pyramid coding [65] have been developed. Other algorithms use linear predic

tion, which is discussed in Section 2.5.1, of vectors from neighboring previous vectors 

[12, 24, 40, 52], as shown in Figure 2.4. Afterwards, the residual error is vector 

quantized. 
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Figure 2.5: Linear prediction and residual error calculation in a linear predictive coder. 

2.5 Image Decomposit ion 

The function of the image decomposition block shown in Figure 2.1 is to transform 

the image to another format or domain such that the energy of the new image is 

concentrated in a few components and these components are uncorrelated, thus elim

inating the interpixel redundancy. This section discusses linear prediction, unitary 

transforms, and subband decomposition. 

2.5.1 Linear predictive coding (LPC) 

Linear predictive coding is based on eliminating the interpixel redundancy by pre

dicting the pixel from its neighbors and then encoding the residual error, as shown 

in Figure 2.5. This corresponds to modeling the image as a two-dimensional autore-

gressive process driven by zero-mean white noise [42]: 

x(m, n) — ^T 2J o>(k, l)x(m — k, n — /) + ao + u(m, n), (2.5) 
k I 

(k,i) e * 

where x(m, n) is the pixel value, a(k, I) are the prediction coefficients, CLQ is the locally 

constant bias added because of the assumed zero-mean model, u(m, n) is zero-mean 

white noise, and \& is the region of support of the predictor (the prediction mask). 

The bias and the prediction coefficients are chosen to minimize the mean-

13 



squared prediction error (MSE) defined as 

£ = EEe2(™.™)> (2-6) 
m n 

where 

e(ra, n) = x(m, n) — ]P ^jT a(fc, l)x{m — k,n — I) — a0 (2.7) 
it; / 

(A'.O G * 

is the residual error. 

Differential pulse code modulation (DPCM) is a special case of LPC where the 

region of support of the predictor is simply the previous pixel and the prediction 

coefficient is unity [28]. Another special case assumes a separable first-order Markov 

model for which the autocorrelation function is (j>(k,l\i,j) = a2p\k-l\+U-i\^ where 

0 < p < 1 is the correlation coefficient and a2 is the image variance [54]. For this 

model, the optimal predictor is 

x(m, n) = px(m, n — 1) + px(m - 1, n) — plx{m — 1, n — 1). (2.8) 

2.5.2 Transform coding 

Transform-based coding reduces the interpixel redundancy by performing a unitary 

transformation on the image. There are two properties desirable in a unitary trans

form for image compression: the energy should be packed into a few transform co

efficients, and the coefficients should be as uncorrelated as possible. The optimum 

transform under these two constraints is the Karhunen-Loeve transform (KLT) where 

the eigenvectors of the covariance matrix of the image are the vectors of the transform 

[28]. Although the KLT is optimal under these two constraints, it is data-dependent 

and it is very expensive to compute. 

Other transforms have also been used for compression, e.g., the discrete Fourier 

transform (DFT), the discrete cosine transform (DCT), the discrete sine transform 

(DST), and others [28]. In the one-dimensional case and for a first-order Markov 

sequence with a high correlation coefficient, the DCT performs very close to the KLT. 
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It also performs very close to the KLT in the two-dimensional case for a separable 

Markov sequence. Often, the image is modeled as a separable Markov process with 

high correlation between the pixels, e.g., the DPCM model [28]. Thus, it is reasonable 

to use the DCT for image compression. This is also confirmed by comparing the 

performance of different transforms |23, 28]. 

Calculating the transform of an image involves an expensive matrix multipli

cation operation. To reduce the number of computations in order to make the DCT 

practical for image compression, small blocks of the image are transformed and then 

the transformation coefficients are quantized. Quantizing the transform coefficients 

spreads the quantization error over the whole block. So, it affects groups of pixels, not 

just a single pixel. However, block-transform-based compression usually introduces 

blocking distortion at low bit rates. 

The DCT proved to be very effective for natural images. Thus, JPEG opted 

to use it in the joint ISO and CCITT still image lossy compression standard [64]. 

2.5.3 Subband coding 

The basic idea of subband coding is to split the frequency spectrum of the image into 

(disjoint) subbands and then to code the subband signals. This can be efficient when 

the image spectrum is not flat. The image can be decomposed into subbands either 

by means of a filter bank structure or a pyramid structure. Each of these structures 

can be described in terms of the other. However, since they appear separately in the 

literature, they will be discussed separately. 

Filter bank structure 

The image is decomposed into subbands and reconstructed from the subbands us

ing a filter bank (FB) system [70]. The analysis section decomposes the signal into 

subbands using low-pass and high-pass filters and downsamplers. The synthesis part 

reconstructs the signal from the subbands using low-pass and high-pass filters and 
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Figure 2.6: A frequency tiling and its corresponding separable filter bank structure. H0 and Hi 
are 1-D low-pass and high-pass filters, respectively. The stages labeled horizontal act on the rows of 
the images; those labeled vertical operate on the columns. 

upsamplers. If the signal can be reconstructed with no error, the FB is a "perfect 

reconstruction" FB. Quadrature mirror filter banks (QMFB) are very popular. For 

1-D signals, the QMFB decomposes the signal into low-pass and high-pass subbands 

that are of equal frequency bandwidth. The resulting two signals are then down-

sampled by two so that the total sampling rate is equal to the original one (critical 

downsampling) [62]. Multidimensional FBs decompose the signal into bands usually 

using separable filters. For perfect reconstruction and critical downsampling, the FB 

passbands should form a tiling in the frequency domain. Figure 2.6 shows a tiling 

and its corresponding FB. 

Pyramid structure 

The image is decomposed into a sequence of reduced size images by predicting every 

other pixel from some neighborhood [50]. That is, in terms of filter banks, the image 

is filtered using an FIR filter and then downsampled by two in each direction. This 

is continued until a single point remains as shown in Figure 2.7. 

Different pyramids were developed by changing the predictor and the way these 

images are stored. For example, in the Gaussian pyramid, pixels are predicted using 

a Gaussian-like filter and then the resulting images are stored [9]. The Laplacian 
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Figure 2.7: A Pyramid structure. 

pyramid stores the difference of two consecutive images of the Gaussian pyramid 

[9]. Other examples include mean, reduced sum, difference, reduced difference, and 

(Haar) S-transform pyramids [66]. 

17 



18 

CHAPTER 3 

NOISE AND ITS EFFECT ON 

COMPRESSION 

3.1 Introduction 

The effect on compression of three noise types, which are Gaussian noise, Poisson 

noise and film-grain noise, is studied. These noise types are chosen because they are 

common models for different kinds of noise that frequently corrupt images, as will be 

discussed in the following sections. The effect of noise will be studied using Lloyd-Max 

scalar and Generalized Lloyd vector quantizers, and the JPEG compression standard. 

When using scalar quantizers, noise affects the psychovisual and data-relevance re

dundancy and the coding redundancy in the image, thus affecting the performance of 

such quantizers. However, when using vector quantizers and transform-based coders 

such as JPEG, the noise also reduces the interpixel redundancy in the noisy image, 

thus limiting the capabilities of such coders. 

The design of the coder that minimizes the distortion measured between the 

original noise-free image and the decompressed noisy image is then discussed. The 

results of noisy source coding states that the MMSE noisy coder is an MMSE esti

mator followed by an MMSE coder. These results are used in Chapter 5 to design 

the MMSE coder for the Poisson noise and the film-grain noise cases. Moreover, 

Chapter 5 will demonstrate the effectiveness of this preprocessing step in improving 

the performance of conventional coders. 



(a) (b) 

F igure 3.1: The 256 x 256 (a) original LENNA image and (b) LENNA image corrupted by iid 
Gaussian noise with PSNR = 28.157 dB. 

This Chapter is organized as follows: Sections 3.2, 3.3, and 3.4 discuss the effect 

on compression of Gaussian noise, Poisson noise, and film-grain noise, respectively. 

Section 3.5 formulates the problem in terms of noisy source coding and reviews some 

of the noisy source coding results. 

3.2 Gaussian Noise 

The Gaussian noise model is the most commonly used noise model. Quantiza

tion noise is usually modeled as zero-mean white, Gaussian noise that is independent 

of the image [47, 57]. Other examples of Gaussian noise models include measure

ment noise and thermal noise. Due to the analytical tractability of Gaussian noise 

models, other noise models are often modeled as data-dependent Gaussian noise. For 

example, Poisson noise is often modeled as data-dependent Gaussian noise with vari

ance and mean equal to the original signal [6]. Film grain noise is also modeled as 

data-dependent Gaussian noise [33]. 

For images corrupted by independent, identically distributed (iid) Gaussian 

noise, the conditional probability of the noisy image, x, given the original image, f is 
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given by 

p(x|f)=!}~^r-' (3J) 

where f(i,j) and x(i,j) are the values of f and x at pixel (i,j), respectively, and o\ 

is the variance of the noise. 

To illustrate the effect of noise on compression, the 256 x 256 LENNA image, 

shown in Figure 3.1(a), is corrupted by data-independent, additive, Gaussian noise 

with PSNR = 28.157 dB and is shown in Figure 3.1(b). The curves of peak-signal-

to-noise-ratio (PSNR) versus bit rate for the original and the noisy images when 

quantized using Lloyd-Max scalar and Generalized Lloyd vector quantizers, and when 

compressed using the lossy JPEG standard, are studied and shown in Figures 3.2(a), 

(b), and (c), respectively. 

The PSNR curves of the noisy images when the distortion is measured with 

respect to the original image are particularly interesting. At high bit rates, the quality 

of the images as measured by the PSNR does not significantly improve because the 

error is dominated by the additive noise. Thus, we could code the image using a 

lower bit rate while maintaining the same PSNR quality. More interestingly, with the 

JPEG coder at medium and low bit rates the quality of the image degrades as the 

bit rate is increased. This is because the coder removes more noise than it introduces 

as coding artifacts. We also notice that at low bit rates, the lossy compressed image 

is closer to the original image than to the noisy input to the coder. This has been 

used as the basis of a nonlinear filtering method by Natarajan [46], who called the 

resulting filters Occam filters, which filter the noise by compressing the noisy image. 

When the PSNR is computed with respect to the input of the coder not the 

noise-free image, the performance of the scalar quantizer is not affected. The perfor

mance of the vector quantizer and JPEG, however, degrades. This is because scalar 

quantization does not exploit the spatial redundancy in the image and because the 

dynamic range of the gray levels of the image and the histogram of the image do not 

change significantly after adding the noise. The performance of vector quantization 
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Entropy (bpp) Entropy (bpp) Bit rate (bpp) 

(a) Scalar Lloyd-Max (b) 2 x 2 VQ (c) JPEG 

Figure 3.2: The effect of Gaussian noise, where the PSNR of the noisy image is 28.157 dB, on Lloyd-
Max quantizers and JPEG: (a) PSNR versus entropy when using Lloyd-Max scalar quantization, 
(b) PSNR versus entropy when using 2 x 2 Generalized Lloyd vector quantization, and (c) PSNR 
versus bit rate when using JPEG. (The solid lines give the rate-distortion tradeoff for the original 
image, the dashed lines give the rate-distortion tradeoff for the noisy image when the distortion is 
computed with respect to the noisy image, and the dash-dotted lines give the rate-distortion tradeoff 
for the noisy image when the distortion is computed with respect to the original image.) 
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Entropy (bpp) Enttoiiy (bop) Bit rale (bpp) 

(a) Scalar Lloyd-Max (b) 2 x 2 VQ (c) JPEG 

Figure 3.3: The effect of Gaussian noise power level when using (a) Lloyd-Max scalar quantizers, 
(b) Generalized Lloyd vector quantizers, and (b) JPEG. (The solid lines are for the noise-free case. 
The PSNRs are: 34.099 dB for the dashed lines, 28.157 dB for the dash-dotted lines, 20.421 dB for 
the dotted lines, and 14.860 dB for the "+" lines.) 

and JPEG degrades because they try to exploit the spatial correlation in the image, 

which is reduced by the presence of the noise. 

Figure 3.3 plots the PSNR versus the bit rate as the noise power is varied. 

Changing the noise level does not change the general characteristics of the curves; 

they all display an almost constant PSNR for high and medium bit rates. 

3.3 Poisson Noise 

Emission and transmission tomography images are usually corrupted by data-dependent 

noise that can be modeled as Poisson noise [7]. Generally, images formed at low light 

levels are corrupted by this kind of noise [49]. Examples of such images include com

puter tomography (CT) scans, SPECT scans, positron emission tomography (PET) 

scans, and nondestructive testing images. 

The conditional probability of the noisy image, x, given the original image, f 
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(a) (b) 

F igure 3.4: The 256 x 256 (a) original LENNA image and (b) LENNA image corrupted by data-
dependent Poisson noise with PSNR = 28.159 dB. 

is given by 

P(x | f )=n e-x^^[\f(i,j)]x{h3) 

(3.2) 
x(i:j)\ 

where f(i,j) and x(i,j) are the values off and x at pixel (i,j), respectively, and A is 

the proportionality factor relating the gray level value to the number of counts [32]. 

To illustrate the effect of Poisson noise on compression, the 256 x 256 LENNA 

image, shown in Figure 3.4(a), is corrupted by data-dependent Poisson noise with 

PSNR = 28.159 dB and shown in Figure 3.4(b). The curves of PSNR versus bit rate 

for the original and the noisy images when quantized using Lloyd-Max scalar and 

Generalized Lloyd vector quantizers, and when compressed using the lossy JPEG 

standard, are shown in Figures 3.5(a), (b), and (c), respectively. Although Poisson 

noise is data-dependent noise, its effect is similar to that of Gaussian noise. 

3.4 Film Grain Noise 

If an image recorded on photographic film is scanned for electronic storage or 

transmission, the scanned image will be proportional to the film density. The scanned 
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Entropy (bpp) Enlrojy (bpp) Bit rats (bpp) 

(a) Scalar Lloyd-Max (b) 2 x 2 VQ (c) JPEG 

Figure 3.5: The effect of Poisson noise, where the PSNR of the noisy image is 28.159 dB, on Lloyd-
Max quantizers and JPEG: (a) PSNR versus entropy when using Lloyd-Max scalar quantization, 
(b) PSNR versus entropy when using 2 x 2 Generalized Lloyd vector quantization, and (c) PSNR 
versus bit rate when using JPEG. (The line types are the same as those of Figure 3.2.) 

image, x(i,j), which is corrupted by film-grain noise, can be modeled by [33] 

x(ij) ='- f(i,j) + a[f(i,j}]7n(i,j), (3.3) 

where f(i,j) is the density of the original image, a is a proportionality constant, 7 is 

a constant with a value between 1/3 and 1/2, and n(i,j) is white Gaussian noise with 

zero-mean and unit-variance. Thus, the conditional probability of the noisy image, 

x, given the original image, f, is 

r „ D - { * ( * , J ) - / ( M ) } 2 

n*if)=n^-2T^; • (3-4> 
ij V2ira[f{i,j)p 

where f(i,j) and x(i,j) are the values off and x at pixel (i,jf), respectively. 

In order to study the effect of noise on compression, the 256 x 256 LENNA 

image, shown in Figure 3.6(a), is corrupted by film-grain noise with 7 = 0.5 and a 

peak-signal-to-noise-ratio (PSNR) of 28.174 dB, as shown in Figure 3.6(b). Figure 

3.7 shows curves of PSNR versus bit rate for the noise-free and the noisy images 

when using Lloyd-Max scalar and Generalized Lloyd vector quantization and JPEG, 
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(a) (b) 

F igure 3.6: The 256 x 256 (a) original LENNA image and (b) LENNA image corrupted by data-
dependent film-grain noise with PSNR = 28.174 dB. 

respectively. The PSNR versus bit rate curves for the noisy images when the PSNR is 

computed with respect to the original image, i.e., when the distortion of the coder is 

computed with respect to the original (free of noise) image, are again very interesting. 

At high bit rates, the quality of the images when measured in terms of the PSNR 

does not change. More interestingly, it sometimes even degrades when using JPEG. 

Figure 3.8 shows the effect of increasing the noise level on compression. The same 

trend exists at all noise levels. Figure 3.9 shows the effect of 7 on compression. The 

same trend also exists for all different values of 7. 
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0 0.5 1 1.5 2 2.5 3 3.5 4 
Entropy (bpp) 

(a) Scalar Lloyd-Max (b) 2 x 2 VQ (c) JPEG 

Figure 3.7: The effect of film-grain noise, where the PSNR of the noisy image is 28.174 dB and 
7 = 0.5, on Lloyd-Max quantizers and JPEG: (a) PSNR versus entropy when using Lloyd-Max scalar 
quantization, (b) PSNR versus entropy when using 2 x 2 Generalized Lloyd vector quantization, and 
(c) PSNR versus bit rate when using JPEG. (The line types are the same as those of Figure 3.2.) 
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(a) Scalar Lloyd-Max (b) 2 x 2 VQ (c) JPEG 

Figure 3.8: PSNR versus bit rate for the data-dependent film-grain noise when using (a) Lloyd-
Max scalar quantizers, (b) Generalized Lloyd vector quantizers, and (b) JPEG. (The solid lines are 
for the noise-free case. The PSNRs are: 31.169 dB for the dashed lines, 28.174 dB for the dash-
dotted lines, 21.244 dB for the dotted lines, 18.354 dB for the "o" lines, and 15.599 dB for the "*" 
lines.) 
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Entropy (bpp) Entropy (bpp) Bit rale (bpp) 

(a) (b) (c) 

F igure 3.9: The effect of 7, where a — %/20, when using: (a) Lloyd-Max scalar quantization, (b) 

Generalized Lloyd vector quantization, and (c) JPEG (The solid lines are for the noise-free case. 

7 = 1/3 for the dashed lines, 0.5 for the dash-dotted lines, and 0.8 for the dotted lines.) 

3.5 Coding Noisy Images 

This chapter studied the effect of noise on compression of images. As demonstrated, 

noise severely affects the performance of scalar quantizers when the distortion is mea

sured with respect to the original noise-free image. Moreover, if the coder exploits the 

inherent spatial redundancy in noise free images, e.g., VQ and JPEG, the distortion 

with respect to the input of the coder will also degrade when the images are noisy. 

Moreover, at medium and low bit rates the quality of the image sometimes improves 

if it is coded at a lower bit rate. 

At very low bit rates, the quality of the compressed noisy image is close to that 

of the compressed noise-free image; however, both are of bad quality. Usually, such 

images are postprocessed in order to enhance their quality and remove the coding 

artifacts. Joint removal of both degradation noise and coding artifact will improve 

these images even more. Chapter 6 discusses postprocesssing of compressed images. 

27 



Information 
Source 

X Encoder Information 
Source 

f 

g(-) 

f 

u 1 

f 

Channel 

f 

V 

Information 
R;ceiver 

f Decoder Information 
R;ceiver h(.) 

Information 
Source 

X Encoder Information 
Source g(.) 

i. ' 

Channel 

v 

Information r Decoder 
Receiver h(.) 

(a) (b) 

Fi gure 3.10: The block diagram of a communication system assuming: (a) no degradation, and 
(b) degradation. 

In order to code noisy images more efficiently, the codec should minimize the 

distortion between the original noise-free image and the output of the codec. This is 

different than the classical coding problem where the distortion is measured between 

the input of the codec and the output of the codec. The reminder of this section will 

discuss this problem. 

The conventional problem of source coding or optimal quantization of a random 

signal assumes that the signal will not be corrupted before encoding or after decoding 

as implied by the communication channel given in Figure 3.10(a). Thus, the coder-

decoder pair simply tries to minimize the distortion between its input and its output. 

In contrast, the problem of noisy source coding assumes that the signal may be 

corrupted before encoding or after decoding, as shown in Figure 3.10(b). Thus, the 

codec should minimize the distortion between the output of the information source, f, 

and the input of the information receiver, y. This is because minimizing the distortion 

of the input of the codec involves preserving the noise introduced by the degradation 

process, which degrades the overall performance of the codec. 

The problem of lossy compression of noisy images is a special case of the prob

lem of noisy source coding, as described in Figure 3.10(b) [18, 69], in that there is no 

receiver degradation block. Thus, the transformation R(y, w) is the identity operator, 
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i.e., y = w. 

Let the information source produce a random signal that can be collected in 

the form of a vector f G *F. This signal is corrupted by a degradation process that can 

be characterized by Q(x, f), which is a mapping that can be viewed probabilistically 

as the conditional probability of the corrupted signal, x G X, given the original 

one, f G T, i.e., p(x|f) . The encoder. </(•), maps x into u for transmission over the 

channel. Afterwards, the received signal v is mapped by the decoder, /i(-), to w, 

which equals to y because R(y, w) is the identity operator.Afterwards y is delivered 

to the information receiver. Let d(f, y) be a distortion measure defined to tell how 

well y approximates f. The encoder, #(•), and the decoder, h(-), seek to minimize the 

distortion measure, d( f ,y) , for a given bit rate. 

Dobrushin and Tsybakov have shown that this problem is equivalent to the 

classical source coding problem. However, the distortion measure is modified to de

pend only on the input of the encoder and the output of the decoder [18]. Berger 

[8] noticed that the modified distortion measure, d (x ,y) , which is the conditional 

average of the original distortion measure 

d(x,y) = - ^ £ p ( f ) p ( x | f ) d ( f , y ) = 5>(f|x)d(f,y), (3.5) 

where 

p(x)-5>(fjp(x|f). (3.6) 
f 

When the distortion is measured in terms of the mean-squared-error (MSE), 

d(f, y) = E{\\f — y | | 2 } , the problem can be decomposed into an optimum estimator 

followed by an optimum coder [69]. Thus, the minimum distortion d* is given by 

d* = m i n £ { | | f - y | ] 2 ) 
9 i * V ' " ; 

= ^ { | | E { f | x } - x | | 2 } + m i n £ ; { | | £ ; { f | x } - y | | 2 } . (3.7) 

This means that the distortion can never be less than J5?{||J£l{f|x} — x | | 2 } . Although 

this result was derived for the MSE, it holds for any Hilbert space. 
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Fischer et al. extended the previous results to the alphabet-constrained for

mulation [19]. At time step n, the encoder selects a transmission vector u(n) based 

on its information set $e(n) and the decoder produces an output y(n) based on its 

information set \&d(n) where 

\&e(n) = {x(n + k}rx(n 4- & - 1), • • • ,x(n), 

x ( n - l ) , - - - ; 

u ( n - l ) , u ( n - 2 ) , - - - } , (3.8) 

where u is the output of the encoder as shown in Figure 3.10, and 

®d(n) = {y(n + m),y(n + m - l ) , - - - } . (3.9) 

Thus, the minimum distortion is given by 

d> = £ ? { | | J B { f | * ^ - x | | « } + n j i £ { | | S { f | » < J - y | | : ! } . (3.10) 

The previous results state that if the distortion measure is MSE (or equivalently 

SNR or PSNR) the optimal coder can be decomposed into an optimal MSE estimator 

followed by a conventional coder. Thus, the noisy image coding problem is reduced 

to an image restoration problem. 

Chapter 4 develops MMSE image restoration algorithms to restore images cor

rupted by Poisson noise and film-grain noise. Chapter 5 uses these MMSE restoration 

algorithms to design MMSE noisy image coders for the Poisson noise case and for 

the film-grain noise case. Chapter 5 also studies the effect of this preprocessing step 

when using coders that are designed to compress noise-free images, e.g., JPEG and 

subband-based coders, to code noisy images. 
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CHAPTER 4 

IMAGE RESTORATION 

4.1 Introduction 

Noisy source coding theory as discussed in Section 3.5 states that if the distortion 

measure is MSE (or equivalently SNR or PSNR) the optimal coder can be decomposed 

into an optimal MSE estimator followed by a conventional coder. Thus, the optimal 

MSE coder problem requires solving the optimal MSE restoration problem. This 

chapter presents a Markov random field (MRF) based approach to develop optimal 

MSE algorithms to restore images corrupted by data-dependent Poisson noise and 

data-dependent film-grain noise. 

4.2 MMSE Restoration of Noisy Images 

The objective is to use the noisy source coding results, which state that if the distor

tion is measured in terms of the MSE, d(f, y) = E{\\f — y| |2}, where f is the original 

image and y is the quantized image, the problem will be equivalent to quantizing 

Z?{f|x} = y^fp(f |x) where x is the noisy image. The a posteriori probability, p(f|x), 
f 

can be found from Bayes' formula 

p(f|x) = « p , (4.1) 

where p{x) is constant for one realization of the random field x. The a priori prob

ability distribution, p(x|f), is known from the assumptions made about the noise. 
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Figure 4 .1 : A first-order neighborhood and first-order clique types for a 3-D lattice. 

Hence the only part left is the probability distribution of the image. 

Markov random fields (MRFs) have been successfully used to model images. 

Their generality for modeling and capacity to incorporate different constraints and 

characteristics of images, e.g., smooth regions, edges, and local dependence between 

neighboring pixels, have made them popular [36, 68]. They have been used to develop 

algorithms to deconvolve blur and to filter white noise [21]. The next section will 

briefly discuss MRFs. 

4.3 Markov Random Fields 

Let SM = {(hj) '• 1 <h3 < M} be an integer lattice with a neighborhood system 

defined on it. Let c be a subset of SM- Then c will be called a clique if it is a 

single site (pixel) or a set of sites (group of pixels) such that each site is a neighbor 

of all the other sites in the set. Figure 4.1 shows some examples of cliques. Let 

f = {f(i,j) : (i,j) G SM} be a collection of random variables defined on SM- Then, 

x will be a Markov random field if all of its realizations have non-zero probabilities 

and its conditional probability distribution satisfies the Markov property 

P ( / ( U ) I / ( M M M ) e sM/(i,j)) = P(f{i,j)\f(k,i),(k,i) € %,-,), (4.2) 

where 5 M / ( « , j) is the set SM excluding the point (i,j) and N^j) is the set of neigh

bors of (i,j) [21, 73]. The joint probability distribution of f is given by the Gibbs 

distribution [21] 

p(f) = Z-x exp \-W(S)\. (4-3) 
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where Z is a normalization constant, also called the partition function 

Z = X>PR3!7(f)], (4.4) 
f 

and f/(f) is the energy function defined as 

C/(f)=5>£(f), (4.5) 
C 

where Vc(.) are the clique potentials, which assign penalties for amplitude separations. 

The choice of the clique potentials and the neighborhood system determines the joint 

probability distribution, p(f). 

The choice of the energy function affects the quality of the restoration, since 

it will govern the probabilistic interaction between neighboring pixels. The energy 

function can be changed by changing the neighborhood system and the clique po

tentials. Larger connected neighborhoods will usually result in smoother regions. 

However, they require more computations. Different clique potentials will result in 

either smoother or sharper images. A popular clique potential is the compound 

Gauss-Markov (CGM) MRF [73], which is defined as 

Ve(x(m,n)) = ^ f e ^ r (4-6) 
2az{m, n) 

Vc(x(m,n),x(k,l)) = - ^ - ^ " ) « for (M) € iV(m,n). (4.7) 
a2(m,n) y ' 

Geman and McClure [22] used the following energy function 

(x(m,n) — x(k, I)) 

52 + (x(m, n) — x(k, I))' Vc (x(m, n), x(k, 0) = ^ T : ~ ' ^ - ( 4 8 ) 

The CGM clique potential increasingly penalizes the amplitude separation be

tween neighboring pixels by increasing their energy and lowering their probabilities. 

However, the clique potential proposed by Geman and McClure [22] penalizes large 

separations equally, which results in sharper edges at the expense of less smoothness. 

The following clique potential is a compromise between the characteristics of these 
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F i g u r e 4 .2 : Clique potentials normalized to one as a function of pixel separation (a2 = S2 = 10). 
CGM clique potential increasingly penalizes pixel separation. Geman's clique potential thresholds 
the penalty while the third clique potential lies in between. 

two clique potentials: 

Vc(x(m,n),x(k,l)) = log 52 + (x(m,n) — x(k, I)) — logd2 

1 1 
(4.9) 

82 + {x{m,n) -x(k,l)f S2' 

Figure 4.2 plots these three clique potentials normalized to one for comparison pur

poses. 

4.4 Computing the MMSE Estimate 

Computing the conditional mean of the MRF f|x (the random field f given x), as 

required for the optimal filter, requires evaluating a summation over all possible re

alizations of the MRF, i.e., 

E{/(M)|x} = £/(i,j)p(f|x). (4.10) 

As a result, computing ,E{f|x} is computationally complex and nonfeasible [72]. 

Zhang [72] used mean field theory to approximate the summation. Mean-field the-
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ory approximates this summation by assuming that the influence of /(A;,/), where 

(k,l) / (i,j), can be approximated by E{f(k,l)\x}. For a Markov random filed this 

gives 

rmf-1 

E{f(i,j)\x] » Z%£ £ / ( i i ) e x p [-/?£/$) (/(*, j)|x)J, (4.11) 

where E/,™£ (/(&> J*)lx)> t n e mean-field local energy, is the part of U(f |x) that depends 

on f(i,j) while the influence of other pixels is approximated by their means. 

Although the complexity of the problem is reduced, it still involves evaluating 

a summation over all possible realizations of f(i,j). Geiger and Girosi [20] proposed 

using the saddle point approximation. This method is based on neglecting the statis

tical fluctuations of the field and considering only the contribution of the maximum 

term of the partition function. Then, the problem reduces to solving 

d 

rfl^w = 0. (4.12) 
/ ( M > £ { / ( * j ) | x } 

If the energy function, U^L (f(i,j)\x), is symmetric and unimodal, the saddle point 

approximation is the exact solution. This is because the MMSE estimate and the 

maximum a posteriori (MAP) estimate of a unimodal and symmetric conditional 

probability function are equal [63]. Although the clique potentials used are symmetric 

and unimodal (Vc is unimodal for 52 < 1), the effect of the Poisson noise, film-grain 

noise, and the variations in the neighboring pixels makes UJ^L (f(i,j)\x) slightly non-

symmetric. However, as will be demonstrated, the approximation error is very small. 

Sections 4.5 and 4.6 approximate the MMSE estimate for the Poisson noise and 

film-grain noise cases, respectively. 

4.5 Poisson Noise Case 

For images limited by counting statistics, the number of photons counted for each pixel 

is statistically independent of the counts for other pixels [10]. Thus, the conditional 
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probability distribution of the observed image given the original image is 

p(x|f)=n (4.13) 
x(i,j)l 

where f(i,j) and x(i,j) are the values of f and x at pixel (i,j), respectively, and A is 

the proportionality factor relating the gray level value to the number of counts [32]. 

We have assumed that A = 1. 

Substituting back into Bayes' formula results in 

exp 

p(f|x) = 
\-mm{^^§§^ 

Zp(x) 

= Z-lexp[-PU(f\x)}, 

where 

[7(f|x) = f/(f) + £ - \f(i,j) - x(i,j) lnf(i,j)]. 

Applying the mean-field theory approximation results in 

rmf - Tfl»t 1 
W / ( M ) M = V%S}V(i,J)) + p\f(i,J)-x(i,3)tof(i,3)] 

£/(*,i)«*p[-o^,(/(i,j)w] 
f»f<i j) = IM 

£exp [-££>(/(«, j)|x)] ' 
H'J) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

rmf Un]){•)•> the mean-field local energy, is the part of U(.) that depends on f(i,j) while 

the influence of other pixels is approximated by their means, fm^(i,j) is the mean-field 

theory approximation of E {f(i, j ) |x}. These equations are iterated until convergence 

or almost convergence. 

Applying the saddle point approximation and using the gradient descent algo

rithm to solve the resulting set of equations results in the following set of iterative 

equations 

/m(i,j) = / ' ( U ) - J ± 1 -
x{i,j) 

7*(U)J 

+ £ 
(M)eJV(ij) 

'dVt{f(i,j),f{k,l)) 

as (hi) 
(4.18) 
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where / (m, n) is the estimate of the mean-value of / (m, n) at iteration t, f3 = 1 for 

all examples discussed, and w is the step size, which is fixed to 0.1 for all examples 

discussed. From (4.9) the partial derivative that appears in (4.18) is seen to be 

dVt(f(i,j),mi)) = (2g - 2) (f(i,j)-f(k, I)) + 2 (/(., j)-f(k,l)f 
dfbi) [S*+(f(i,j)-t{k,i))2]2 

A detailed derivation of these equation is in Appendix A. 

This set of iterative equations is the same as the one derived by Hebert and 

Leahy [27], but the routes taken were different. Their objective was to develop the 

maximum a posteriori (MAP) image estimate using Gibbs priors. They used the 

expectation-maximization (EM) method to develop a deterministic MAP estimate. 

They defined their M-step as a coordinate gradient ascent. Our objective was to 

find the MMSE image estimate, which is the preprocessing part of the MMSE coder. 

Mean field theory was used to approximate the MMSE estimate. 

The proposed approach is studied on the two Shepp-Logan phantoms shown in 

Figures 4.3(a) and 4.4(a). The ellipses are as described in [58]. The intensities of the 

small ellipses of the phantom shown in Figure 4.3(a) are in 25% and 75% increments 

instead of the 1% and 2% as described in [58]. This phantom will be referred to as 

"the modified phantom" in the rest of the thesis. The phantom shown in Figure 4.4(a) 

is the same as that described in [58] (with the original 1% and 2% increments) and 

will be referred to as "the original phantom" in the rest of the thesis. The restoration 

algorithm was also studied on the LENNA image, shown in Figure 4.5. 

These three images are then corrupted by data-dependent Poisson noise, as 

shown in Figures 4.3(b), 4.4(b), and 4.5(b). The PSNR values for the noisy modified 

phantom, noisy original phantom, and the noisy LENNA image are 30.544 dB, 30.055 

dB, and 28.159 dB, respectively. Afterwards, these three images are restored using 

only MFT. The restored images are shown in Figures 4.3(c), 4.4(c), and 4.5(c). The 

PSNR of the restored modified and original phantoms when using only MFT are 

42.376 dB and 43.583 dB, respectively, corresponding to gains of 11.832 dB and 
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13.528 dB, respectively. Both phantoms were restored with S2 = 10 and the pixels 

were updated after each iteration, i.e., the latest estimates of the neighboring pixels 

are used in each iteration. The number of iterations used was 7 and 8, respectively. 

If the pixels are updated after each pass over the image, i.e., all the pixels in the 

image are updated together, the PSNRs are less by almost 0.4 dB. The PSNR of the 

filtered noisy LENNA image is 32.764 dB corresponding to a gain of 4.605 dB. The 

LENNA image was restored with 52 -• 250. The value of 5 reflects the detail in the 

image. The smaller 5 is the smoother the image. The Shepp-Logan phantoms consist 

of ellipses with constant gray levels while the LENNA image consists of more detailed 

areas, i.e., the hair, the hat, etc.. Section 4.7 discusses the effect of 6 on restoration. 

The restored images using both MFT and the saddle point approximation are 

shown in Figures 4.3(d), 4.4(d), and 4.5(d). The PSNR values of the filtered noisy 

modified phantom, the filtered noisy original phantom, and the filtered noisy LENNA 

image are 41.482 dB, 42.513 dB, and 32.671 dB, respectively, corresponding to restora

tion gains of 10.938 dB, 12.458 dB, and 4.512 dB. Using only the MFT approximation 

involves computing the energy function and the exponential of the energy function 

at all possible gray levels. Using both approximations involves only computing the 

derivative of the energy function which is less expensive. 

Figure 4.5(e) shows the LENNA image using adaptive Wiener filtering. The 

PSNR of the restored image is 31.737 dB, which is almost 1 dB less than that of the 

proposed algorithm. 

4.6 Film Grain Noise Case 

Another example of signal-dependent noise occurs when scanning images recorded on 

photographic films for storage and transmission. The resulting image is proportional 

to the film density [61]. If the film is processed in the linear region of the D-logE 

curve and the blurring effect of the model is ignored, the observed image, x(i,j), can 
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:*) (b) 

(c) (d) 

F igure 4.3: (a) The modified Shepp-Logan phantom, (b) a noisy version of the phantom (the noise 
is data-dependent Poisson noise with PSNR = 30.544 dB), (c) the restored phantom using only MFT 
(PSNR = 42.376 dB), and (d) the restored phantom using MFT and the saddle point approximation 
(PSNR = 41.482 dB). (The phantoms are histogram equalized for display by mapping [31,223] to 
[0,255].) 
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(a) (b) 

(c) (d) 

F igure 4.4: (a) The original Shepp-Logan phantom, (b) a noisy version of the phantom (the noise 
is data-dependent Poisson noise with PSNR = 30.055 dB), (c) the restored phantom using only MFT 
(PSNR = 43.583 dB), and (d) the restored phantom using MFT and the saddle point approximation 
(PSNR = 42.513 dB). (The phantoms are histogram equalized for display by mapping [126,136] to 
[0,255]. This exaggerates the appearance of the noise.) 
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(a) (b) 

(c) (d) (e) 

Figure 4.5: (a) The original 256 x 256 LENNA, (b) a noisy version of LENNA (The noise is data-
dependent Poisson noise with PSNR = 28.159 dB), (c) restored LENNA image using only MFT (PSNR 
= 32.764 dB), (d) the restored LENNA image using MFT and the saddle point approximation (PSNR 
= 32.671 dB), and (e) the restored LENNA image using Wiener filtering (PSNR = 31.737 dB). 
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be modeled by [33] 

x(ij) = f(h.i) + a[f(i,jWn(iJ), (4.20) 

where f(i,j) is the original image density, a is a proportionality constant, 7 is a 

constant with a value between 1/3 and 1/2, and n(i,j) is white Gaussian noise with 

zero-mean and unit-variance. This model captures the data-dependent nature of 

film-grain noise. 

Using this model, the conditional probability distribution of the observed image 

given the original image is 

e x r j zfe&tfzZfczll! 

v(x\f) - TT — ggBMl!! 

Substituting back into Bayes' formula results in 

exp 

p(f|x) = 

f 0 . D - W J ) - / ( i J ) ) ' 1 
.pumm g* *.'i/w)i* 

Zp(x) 

= Z^exp[-/3C/(f |x)], 

(4.21) 

(4.22) 

where 

u(t\x) = u(t) + £ ar(**i) - / ( « , i ) ' | 2
 + 7ln/(z,j) 

Lv®r*[/fci)l7J 0 
Applying the mean-field theory approximation results in 

rm/ ^ ^ - „-M,/\ _ rrm / 

£/(U)exp[-^(/(*,i) |x)] 
(̂/fti)w = ^(/(^^[^y^]^-7111^^ /? 

/ m / ^ , j ) = 
/ (M ) 

Eexp[-^)(/(*.j)W] 
/ ( M ) 

(4.23) 

(4.24) 

U7?L(.), the mean-field local energy, is the part of U(.) that depends on f(i,j) while 

the influence of other pixels is approximated by their means, / m / (« , j) is the mean-field 

theory approximation of E {/(«, j ) |x}. These equations are iterated until convergence 

or almost convergence. 
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Applying the saddle point approximation and using the gradient descent algo

rithm to solve the resulting set of equations results in the following set of iterative 

equations 

1 - 7 + $ ^ ' x{i,j) - f\ij) 
ft+\i,j) = fXhJ) - u \ Q-2(. -

\0f(h3) PWU^j)?1 

+ ^ —dfiij)—r (4-25) 

where / (m, n) is the estimate of the mean value of f(m, n) at iteration t, f3 = 1 for 

all examples discussed, and u is the step size, which is fixed to 0.1 for all examples 

discussed. The required partial derivative is given in (4.19). A detailed derivation of 

these equation is in Appendix A. 

The LENNA image is used to study the proposed approach. First, the image is 

corrupted by film-grain noise with 7 == 0.5, as shown in Figure 4.6(b). The PSNR of 

the noisy image is 28.174 dB. Afterwards, it is restored using the proposed MMSE 

restoration algorithm, resulting in the image shown in Figure 4.6(c). The PSNR of the 

filtered image is 32.518 dB. When restoring the noisy image using adaptive Wiener 

filtering, the PSNR of the restored image is 31.707 dB. 

Figure 4.7(a) shows the LENNA image corrupted by film-grain noise with 7 = 

1/3 and a = \/20. The PSNR of the noisy image is 22.007 dB. Figure 4.7(b) shows 

the filtered image. The PSNR of the filtered image is 27.768 dB, i.e., a gain of 5.761 

dB. 

4.7 Parameter Estimation and its Effect on Restora

tion 

There is one free parameter, 5, in the proposed energy function. The value of S 

determines the energy function and the model of the image. It controls the smoothness 
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(a) (b) (c) 

F igure 4.6: (a) The original 256 x 256 LENNA, (b) a noisy version of LENNA (The noise is film-
grain with a = 1, 7 = 0.5, and PSNR = 28.174 dB), and (c) filtered LENNA image using both 
approximations (PSNR = 32.518 dB). 

and the detail in the image. The small value for 8 results in more penalties for larger 

separations, thus a smoother image, as shown in Figure 4.8. So, for smooth images, 

8 should be small while for more detailed images, 8 should have a larger value. For 

example, we used 82 = 250, for the LENNA image and 82 = 10 for the Shepp-Logan 

phantoms. The values of 8 for these images were estimated experimentally by trial 

and error. 

In order to study the effect of 8 on the restoration of noisy images, the LENNA 

image example used in the Poisson noise case is restored with different values for 8 

while fixing the number of iterations. Figure 4.9 shows the PSNR versus 8 for 2000 

iterations. The value of 82 varied between 10 and 400. The best PSNR was 32.844 dB 

corresponding to 82 = 150. Figure 4.10 shows the restored LENNA for 82 = 10,150, 

and 400. The restored LENNA image using 82 — 10 is very smooth; however, it has 

sharp edges. This is because when o is small, small and medium separations will 

be penalized, resulting in smooth areas. However, the penalty for large separations 

corresponding to edges between high contrast neighbors saturates resulting in edges 
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(a) (b) 

Figure 4.7: (a) A noisy version of LENNA (The noise is film-grain with a = A/20, 7 = 1/3, and 
PSNR = 22.007 dB), and (b) filtered LENNA image using both approximations (PSNR = 27.768 
dB). 

that are not blurred. 

Assuming a constant 8 for the whole image implicitly means a stationary model 

for the image, which is not a correct model for images. However, such an assumption 

reduces the computations and the complexity of the restoration algorithm. Moreover, 

as demonstrated in this chapter, the noise was smoothed in the restored images with

out blurring the edges. Nevertheless, especially for images that have different regions 

that significantly vary in smoothness and detail, e.g., SPECT cardiac images, differ

ent values for 8 for the different regions improves the performance of the restoration 

algorithm. Chapter 7 implements a restoration algorithm similar to the one devel

oped in this chapter, with different 8 values for the different regions in the SPECT 

cardiac sequences. 

In the film-grain noise case, there are two parameters, a and 7, needed to model 

the noise. The value of a determines the power of the added noise while the value of 7 

reflects the data-dependent nature of the noise. As the value of 7 increases, the noise 

depends more heavily on the signal and the greater the power of the noise. However, 
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Figure 4.8: The effect of 6 on the energy function. 
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Figure 4.9: The effect of S on restoring the LENNA image shown in Figure 4.5(b). 
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(a) 82 = 10 (b) S2 ---- 150 (c) S2 = 400 

Figure 4.10: The LENNA image shown in Figure 4.5(b) restored using: (a) 52 = 10 (PSNR 
30.494 dB), (b) S2 = 150 (PSNR == 32.844 dB), and (c) d2 = 400 (PSNR = 32.346 dB). 
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Figure 4.11: The effect of varying the value of 7 on the level of the noise (f(x) = ar7). 

for very small 7, the effect of the noise is very small. The effect of 7 is depicted 

in Figure 4.11, which plots x versus xy for different values for 7. For a constant 7, 

the value of a linearly increases the power of the added noise. The value of 7 is 

estimated for the device used to record the images. An error in the value of 7 results 

in removing more noise (oversmoothing) when it's underestimated and removing less 

noise when it's overestimated. Figure 4.12 shows the LENNA image shown in Figure 

4.6(b) restored using 7 = 0.3, 0.5, and 0.7. The correct value of 7 is 0.5. The image 

restored using 7 = 0.7 is oversmoothed, while the image restored using 7 = 0.3 is 

more noisy. Both have lower PSNRs than the one restored using the correct 7 value. 

However, all have a higher PSNR than the noisy image. 

If the film-grain noise is identified as Poisson noise or vice versa, the restoration 

algorithm will still effectively remove part of the noise. This is because Poisson noise 

can be approximated as film-grain noise with a = 1 and 7 = 0.5 [41]. Thus, if the 

correct noise model is Poisson noise and the image is restored using a film-grain noise 

restoration algorithm, the restoration algorithm will be successful in removing the 

noise within the limitations discussed in this section. For example if the modified 

Shepp-Logan phantom shown in Figure 4.3(b), the original Shepp-Logan phantom 
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(a) 7 = 0.3 (b) 7 --= 0.5 (c) 7 = 0.7 

Figure 4.12: The LENNA image shown in Figure 4.6(b) restored using: (a) 7 = 0.3 (PSNR 
28.562 dB), (b) 7 = 0.5 (PSNR = 32.517 dB), and (c) 7 = 0.7 (PSNR = 30.599 dB). 

(b) (c) 

Figure 4.13: (a) Modified Shepp-Logan phantom shown in Figure 4.3(b) (PSNR = 35.731 dB), 
(b) original Shepp-Logan phantom shown in Figure 4.4(b) (PSNR - 35.665 dB), and (c) LENNA 
image shown in Figure 4.5(b) (PSNR = 31.942 dB) restored using the film-grain noise restoration 
algorithm with a = 1 and 7 — 0.5. 
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shown in Figure 4.4(b), and the LENNA image shown in Figure 4.5(b) are restored 

using the film-grain restoration algorithm with a = 1 and 7 = 0.5, the PSNR values 

are 35.731 dB, 35.665 dB, and 31.942 dB, respectively. The restored images are 

shown in Figure 4.13. They all have higher PSNRs than the noisy images, however 

less PSNRs than the restored images using the correct model. 
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C H A P T E R 5 

COMPRESSION OF NOISY IMAGES 

5.1 Introduction 

Based on the performance of JPEG and Lloyd-Max quantization on noisy images, 

this chapter applies the results of noisy source coding theory to code noisy images at 

high and medium bit rates. If the quality is measured by the PSNR, the noisy image 

should be optimally filtered in the mean square sense and then encoded as depicted 

in Figure 5.1. 

This chapter discusses the performance of the MMSE noisy source coder, i.e., 

an MMSE estimator followed by a scalar or a vector Lloyd-Max quantizer, for images 

corrupted by data-dependent Poisson, and film-grain noise. It also discusses the 

effect of the preprocessing step on the performance of JPEG and EPIC [2], which is a 

pyramid coder. As will be demonstrated, although the estimator-coder configuration 

is not optimal in these cases, the preprocessing step improves the performance of 

Noise 

\ x > 
MMSE 

Estimator 

E{f|x} MMSE 

Coder 

u 
/ 

MMSE 

Estimator 

MMSE 
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Figure 5.1: A block diagram describing the configuration for optimally compressing noisy images. 



these coders. 

5.2 Optimal Noisy Coders 

If the quality is measured by the PSNR, the noisy image should be optimally filtered 

in the mean square sense and then encoded as depicted in Figure 5.1. This section 

discusses the performance of the optimal coder for images corrupted by Poisson noise 

and film-grain noise. 

5.2.1 Poisson noise case 

The proposed approach is studied on the two Shepp-Logan phantoms shown in Figures 

4.3(a) and 4.4(a) and on the LENNA image shown in Figure 4.5. 

The three original, three noisy, and three filtered images are scalar quantized 

using a Lloyd-Max quantizer, which is an MMSE scalar quantizer [38, 43]. The prob

ability distribution of the quantized values is then estimated and the entropy of that 

distribution computed. The rate distortion curves of the noise-free, noisy, and re

stored modified phantoms are shown in Figure 5.2(a); the corresponding curves for 

the original phantom and the LENNA image are shown in Figures 5.2(b) and 5.3(a), 

respectively. As seen in these figures, at high and medium bit rates, the rate dis

tortion curves of the restored phantoms are about 10 clB higher than for the noisy 

phantoms. However, they are limited by the PSNR of the restored phantoms. The 

same observation can be seen for the LENNA image. However, here the gain is ap

proximately 5 dB. The performance of the Lloyd-Max quantizer, when quantizing 

the three versions of the modified phantom into one, two, or three levels and when 

quantizing the three versions of the original phantoms into one or two levels, is the 

same. This is because the quantizer successfully filters the noise out. When the orig

inal phantom is quantized to three levels, the PSNR of the quantized noisy phantom 

is slightly better than that of the restored phantom. This is because the quantizer 
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got stuck in a local minimum in which gray level 255 was quantized to 246 for the 

restored phantom and to 248 for the noisy one. 

The optimal noisy vector-quantizer was also studied. Figure 5.3(b) shows the 

rate distortion curves of the noise-free, noisy, and restored LENNA image. The results 

are similar to those of the scalar quantization case. 

5.2.2 Fi lm grain noise case 

The original, noisy, and filtered images are scalar-quantized using a Lloyd-Max quan

tizer. The rate distortion curves of the noise-free, noisy, and restored images, when 

a = 1.0, 7 = 0.5, and PSNR = 28.174 dB, are shown in Figure 5.4(a). These images 

are also vector quantized and the corresponding rate distortion curves are shown in 

Figure 5.4(b). Figure 5.5 shows these curves for a = \/20, 7 = 1/3 and PSNR = 

22.007 dB. The same observations as in the Poisson case can be made about the 

optimal solution. 

5.3 The Effect of Preprocessing on Conventional 

Coders 

The previous section studied the performance of the optimal MMSE coder, which 

consists of an optimal MMSE estimator followed by an MMSE coder. This section 

studies the effect of replacing the MMSE coder by a conventional coder. Although, 

this is not the optimal coder, some gains are expected when preprocessing the image 

before coding it since removing the noise will increase the correlation between neigh

boring pixels. Two coders will be studied. The first coder is JPEG [64], which is a 

transform-based coder. The second coder is the EPIC [2], which is a pyramid coder. 

The effect of prefiltering Poisson noise and film-grain noise will be discussed. 
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Figure 5.2: The PSNR versus entropy curves when using the scalar Lloyd-Max quantizer for: (a) 
the modified Shepp-Logan phantom shown in Figure 4.3, and (b) the original Shepp-Logan phantom 
shown in Figure 4.4. 
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Figure 5.3: The PSNR versus entropy curves for the LENNA image shown in Figure 4.5 when 
using: (a) the scalar Lloyd-Max quantizer and (b) the vector Lloyd-Max quantizer. 
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Figure 5.4: The PSNR versus entropy curves for the LENNA image shown in Figure 4.6 when 
using: (a) the scalar Lloyd-Max quantizer and (b) the vector Lloyd-Max quantizer. 
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Figure 5.5: The PSNR versus entropy curves for the LENNA image shown in Figure 4.7 when 
using: (a) the scalar Lloyd-Max quantizer and (b) the vector Lloyd-Max quantizer. 
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5.3.1 Poisson noise case 

The effect of restoration on compression using the JPEG compression standard is 

studied. Figure 5.6 shows the PSNR versus bit rate curves for the three versions of 

the modified phantom shown in Figure 4.3 and the original phantom shown in Figure 

4.4. Figure 5.8(a) shows the curves for the LENNA image shown in Figure 4.5. At 

bit rates higher than 0.7 bpp the curves for the restored phantoms are around 12 dB 

higher than those of the noisy phantoms. The gain is about 5 dB for the LENNA 

image. Although, the gain is the same as that for the Lloyd-Max quantizer case, 

this procedure is not optimal for the JPEG coder. This is because JPEG uses a 

uniform quantizer. Figure 5.7 shows the PSNR versus bit rate curves when using 

EPIC for the phantoms and Figure 5.8(b) shows them for the LENNA image. The 

same observations as in the JPEG case are made. 

An interesting observation can be made about the curves in the medium bit rate 

region. As has already been noted, in this region, the quality of the compressed noisy 

image improves in the PSNR sense by decreasing the bit rate. This is because the 

coder is removing more noise than is introduced as quantization artifacts. However, 

when the image is filtered, the PSNR decreases by decreasing the bit rate, which is 

what we would expect. 

5.3.2 Fi lm grain noise case 

Figure 5.9 shows the effect of restoration on the compression of the LENNA image 

shown in Figure 4.6 using the JPEG compression standard and using the EPIC coder. 

Figure 5.10 shows this effect when coding the LENNA image shown in Figure 4.7. The 

same observations as in the Poisson case are made. 
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Figure 5.6: The PSNR versus bit rate curves when using JPEG for: (a) the modified Shepp-Logan 
phantom shown in Figure 4.3, and (b) the original Shepp-Logan phantom shown in Figure 4.4. 
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Figure 5.7: The PSNR versus bit rate curves when using EPIC for: (a) the modified Shepp-Logan 
phantom shown in Figure 4.3, and (b) the original Shepp-Logan phantom shown in Figure 4.4. 
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Figure 5.8: The PSNR versus bit rate curves for the LENNA image shown in Figure 4.5 when 
using: (a) JPEG and (b) EPIC. 
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Figure 5.9: The PSNR versus bit rate curves for the LENNA image shown in Figure 4.6 when 
using: (a) JPEG and (b) EPIC. 
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Figure 5.10: The PSNR versus bit rate curves for the LENNA image shown in Figure 4.7 when 
using (a) JPEG and (b) EPIC. 
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CHAPTER 6 

POSTPROCESSING OF LOSSY 

COMPRESSED IMAGES 

6.1 Introduction 

Chapter 3 studied the effect of noise on image compression. Chapters 3 and 5 devel

oped and studied the performance of the optimal coder that minimizes the distortion 

measured between the output of the codec and the noise-free image. Chapter 3 ob

served that at low bit rates, the noisy image when compressed using JPEG or VQ 

is closer to the original image than the noisy one is. Moreover, the lossy compressed 

noisy image is close to the lossy compressed noise-free image. This is because the 

quantization for these coders has a low-pass filtering effect on the image, hence it 

removes noise, which has higher frequency components. This was not observed with 

scalar quantization, which can not filter the noise because the quantized values are 

independent of the value of neighboring pixels. 

At very low bit rates, the quality of the compressed image is limited and very 

distinctive artifacts occur. For example, using a block-transform-based coder, block

ing artifacts are a major problem. These artifacts depend on the size of the block 

used relative to the size of the image, the frequency content of the image, and the 

quantizer. One way to enhance the quality of the decompressed image is to use the 

available information about the image., the quantizer, and the artifacts to develop a 

restoration algorithm [47]. 



This chapter describes a minimum mean squared error (MMSE) restoration al

gorithm for estimating noise-free images, images corrupted by data-dependent Poisson 

noise or by film-grain noise, that have been compressed using a block-transform coder. 

This chapter is organized as follows: Section 6.2 describes the general prob

lem of postprocessing images compressed using a block-transform coder. Section 6.3 

models the blocking artifacts. Section 6.4 develops the restoration algorithm for the 

noise-free case. Sections 6.5 and 6.6 develop and apply the restoration algorithm for 

the Poisson noise case and for the film-grain noise case, respectively. 

6.2 Postprocessing of Lossy Compressed Images 

The objective is to minimize the mean-squared-error (MSE) between the original 

image, f, and the filtered image, fe(y), as depicted in Figure 6.1. Thus, the restored 

image is 

k(y)=MgmmE\\f-k(y)\\?; (6.1) 
My) 

where arg is k(y) that minimizes the expected value. For this problem, as for the 

optimum preprocessing problem, the solution to this minimization problem is the 

Wiener (MMSE) solution [48] given by 

*(y) = £(f |y) = X > ( f | y ) . (6.2) 
f 

Using Bayes' formula 

Moreover, the quantization noise introduced by the codec and the noise at the input 

to the codec are independent [29]. Thus, the conditional probability p(y|f) can be 

computed by 

P(y|f) = / p ( y , x | f ) d x = /p(y|x)p(x|f)dx. (6.4) 
Jx -/x 

For the special case of coding noise-free images using a transform-based coder, p(y|f) 

is related to the pdf of the quantization noise by p(y|f) = pn(y — f). 

61 



Noise 

\ x » Codec 
y MMSE 

Estimator 

*(y) 
/ Codec 

MMSE 

Estimator 

Figure 6.1: MMSE postprocessing of lossy compressed noisy images. 

The observed image y is a noisy version of the input of the coder, x. The noise 

added is quantization noise which is modeled as an iid generalized Gaussian noise 

with zero mean. This is justified because the quantization noise is usually symmetric, 

unimodal, and has zero mean. Later, the quantization noise will be modeled as an iid 

Gaussian noise with zero mean and variance o2
q. This will be experimentally justified 

by optimizing the shape factor of the generalized Gaussian model to achieve the best 

estimated image in terms of PSNR. This can also be justified by the central limit 

theorem applied to uniformly quantized transform coefficients. 

6.3 Modeling Blocking Artifacts 

The next step is to penalize for the blocking artifacts produced by block-transform 

coders. Two approaches are proposed. In the first approach, a penalty is introduced 

by multiplying the clique potential with a constant whenever a block boundary occurs. 

That is, 

V^k(f(m, n),f(k, I)) = VtUim, a), f(k, l))(\ + nb(m, n)), (6.5) 

where fi indicates the penalty associated with the blocking artifact and 6(m, n) is a 

binary field that indicates the presence of a horizontal or a vertical block boundary. 

In the second approach, the image is modeled by two MRFs: one that represents 

the smooth regions in the image, and the other that represents the edge information 

62 



[21]. That is, 

p(f, 1) = Z~l exp [-,3 {Ut{f) + (7,(1, f)}], (6.6) 

where p(f, 1) is the joint probability distribution of the intensity field, f, and the line 

field, 1, C/f(f) is the energy function of the intensity field, and E/i(l, f) is the energy 

function describing the line field. The following line field energy function, which is 

similar to the one in [47], is used 

C/,(l,f) - ^ [ y f ( / ( m , n ) , / ( m , n - l ) ) ( l - / i ( m , n ) ) 
m,n 

+o;/l/i(m, ra)(L — eDh(m, n))(l + jj,bh(m, n)) 

+ V r ( / ( m , n ) , / ( m - l ,n))(l -*;(m,n)) 

+awv(m, n)(l — tDv(m, n))(l + fibv(m, ri))], (6.7) 

where h(m,n) is a binary variable that indicates the presence of a horizontal edge 

between pixels (m, n) and (m, n — I), i>(m, n) indicates the presence of a vertical 

edge between pixels (m,n) and (m — 1, »), D/i = 0.5J7i(m,n — 1) + h(m,n + 1)], 

Dv = 0.5[i>(m — 1, n) +v(m + 1, n)]} bh(m, n) and bv(m, n) are binary parameters that 

indicate the presence of a block boundary, a^ and aw represent the cost of introducing 

a horizontal edge and a vertical edge, and p. indicates the penalty associated with the 

blocking artifact. If there are no edges in the neighborhood of the pixel, only the 

smoothness penalty represented by Vf is added. However, if an edge occurs, the 

penalty introduced by Vf will be eliminated and a smaller cost is added to prevent 

the introduction of false edges. Moreover, if the edge is thick, i.e., D is larger than 

zero, the cost of introducing a new edge will be reduced by scaling it by (1 — eD) < 1. 

However, if the edge occurs at the block boundary, the cost will be increased by 

scaling it by (1 + fib) > 1. 

The next three sections derive the equations for the noise-free case, which is 

similar to the Gaussian noise case, for the Poisson noise case, and for the film-grain 

noise case. 
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6.4 Noise Free Case 

For the noise-free case, the probability of the observed image, y, given the original 

image, f, is given by the probability distribution of the quantization noise. The 

quantization noise is modeled as an iid generalized Gaussian noise. 

If z is a generalized-Gaussian distributed random variable with zero mean and 

variance a2, then the probability density function of z is [60, 31] 

p(z) - a e x p H M c ] , (6-8) 

where 

a = gfej. (6.9) 

b 

c 

1 

a \ 

m m (6.10) 

c is the shape factor, and F(a) is the Gamma function defined as 

f°° i 
T(a)= za~1exp(-z)dz. (6.11) 

Assuming a generalized Gaussian distribution for the quantization noise defined 

as the difference between the input of the coder and the output of the decoder, the 

conditional probability of the observed image, y, given the original image, f, is 

p(y\f) = Y[aexp[-\b(y(tjj) - f(i,j))n (6.12) 
ij 

There are different methods to estimate the parameters of the quantization noise pdf. 

These methods include the Kolmogorov-Smirnov test [13], the Chi-square test [13], 

the maximum likelihood fit [59], and the ratio of moments method [60]. The ratio 

of moments is the most popular method since it is the simplest and results in fits 

comparable to the others [31]. Thus, it will be used to estimate the shape factor, c. 

A zero mean assumption is made while the variance is estimated by 
i N-l 

°\ = Jr H (y{mtn) - / (m,n)) 2 , (6.13) 
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where y(m,n) and f(m,n) are the values of the observed and noise-free images at 

pixel (ra, n), respectively. We shall also look for the shape factor that results in the 

best image quality measured in PSNR. 

After estimating p(y\f), the problem is equivalent to the optimum preprocess

ing problem described and solved in Chapter 4, which approximated the optimum 

estimate using mean field theory and a saddle point approximation. Applying these 

approximations and using the gradient descent algorithm to solve the resulting set 

of equations results in the following set of iterative equations for both penalty ap

proaches: 

• First approach (image modeled only by an intensity field): 

yt+i, v -ft, , f ^ \dVfCf\m,n)j\k,l)) 

t(fc,0€iV(rn,n) |_ OJ [171,71) 

sgn(y(m,n) - / * ( m , n ) ) l 
+ bc- (6.14) 

\y(m,n) - f (m, n)|(1_c) J ' 

where / (TO, n) is the estimate of the mean value of f(m,n) at iteration t, and 

uj is the step size, which is fixed to 0.1 for all examples discussed. 

Second approach (image modeled by an intensity field and a line field): 

-Ft+l 
f (m,n) = f(m,n)-uji J2 

((k,,l)£N(m,n) 

~rt -Ft, 
dVr(f\m,n)J\k,l)) 

df(m, n) 

+bc\y(m, n) — / (m, n)|^c_1^sgnf?/(m, n) — f (m, n)J 

dVf(f (m, n + i), / (m, n + z — 1)) 
+B-1)1 

i=0 

(1 — h(m,n -f i)) 
df(m, n) 

,-tt 

+ (1 — v(m + i,n)-) 
dVf(f (m + $, n), / (m -M — 1, n)) 

,(6.15) 
df(m,n) 

where / (m, n) is the estimate of the mean value of / (m, n) at iteration £, u; is 

the step size, which is fixed to 0.1 for all examples discussed, 

1 
h(m,n) 1 -+• exp (Lh(m, n))' 

(6.16) 
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v{m,ri) = — — ~, (6.17) 
l+exp(Lv(m,n)) 

Lh{m,n) = ah(-eDh(m,n))(l+iibh(m,ri)) 

-V f ( / (m,n) , / ( ro ,7 i - l ) ) , and (6.18) 

Lv(m,n) — av(-eDv(m)n))(l-\-fibv(7n1n)) 

-Vf(f(m-l,n)J{m,n)). (6.19) 

The averages of the line fields, h and v, are derived by Geiger and Girosi in [20] 

and by Ozcelik et at in [47]. 

To study the effect of the quantization noise model, the original 256 x 256 

LENNA image, shown in Figure 6.2(a), is compressed using JPEG. The PSNR of the 

compressed LENNA image is 31.528 dB at a bit rate of 0.705 bpp, shown in Figure 

6.2(b). The histogram of the quantization noise is shown in Figure 6.3. Using the 

ratio of moments method described in Appendix B, the shape factor c = 0.8086 and 

a2
q = 45.738. Figure 6.3 shows the best fit for the histogram of the quantization noise 

using the ratio of moments method (c = 0.8086) and also the result obtained by using 

a Gaussian fit, i.e., c = 2. Visually, the ratio of moments fit is better than just using 

a Gaussian distribution fit. However, the shape factor that maximizes the PSNR of 

the restored image when using the first restoration approach is c = 2, i.e., a Gaussian 

fit. The PSNR of the restored image versus the shape factor is shown in Figure 6.4. 

JPEG quantizes the transform coefficients uniformly in the coding stage. In 

the decoding stage, JPEG first performs an inverse discrete cosine transform, which is 

basically a weighted summation of the transform coefficients. Thus, the quantization 

errors, which were initially independent, are linearly combined. This, according to the 

central limit theory, justifies modeling the quantization noise as an iid Gaussian noise 

[48]. For the remainder of this chapter, we shall assume an iid Gaussian model for the 

quantization noise. Figures 6.2(c) and (d) show the results of restoring the LENNA 

image using the no-line-field approach and the line-field approach, respectively. The 

PSNR of the restored image using the no-line-field approach is 32.134 dB, i.e., a gain 
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(a) (b) 

(c) (d) 

F igure 6.2: (a) The original 256 x 256 LENNA image, (b) The LENNA image compressed using 
JPEG (PSNR = 31.528 dB at bit rate = 0.705 bpp). (c) The decompressed LENNA image restored 
using the no-line-field approach (PSNR = 32.134 dB). (d) The decompressed LENNA image restored 
using the line-field approach (PSNR = 31.717 dB). 
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Figure 6.3: The histogram of the quantization noise that resulted from coding LENNA image at 
a bit rate of 0.705 bpp (solid line), generalized Gaussian fit (dotted line), and Gaussian fit (dashed 
line). 

of 0.606 dB. The PSNR of the restored image using the line-field approach is 31.717 

dB, i.e., a gain of 0.189 dB. 

The noise-free case is also studied on the modified and original Shepp-Logan 

phantoms, shown in Figures 6.5(a) and 6.6(a). The original phantoms are compressed 

using JPEG, as shown in Figures 6.5(b) and 6.6(b). The PSNRs of the compressed 

modified and original phantoms are 28.070 dB at a bit rate of 0.260 bpp and 37.152 

dB at a bit rate of 0.508 bpp, respectively. Figures 6.5(c) and 6.6(c) show the re

sult of restoring the modified and original phantoms using the no-line-field approach. 

The resulting PSNRs are 29.287 dB and 40.071 dB, respectively, corresponding to 

restoration gains of 1.217 dB and 2.919 dB. Figures 6.5(d) and 6.6(d) show the re

sult of restoring the modified and original phantoms using the line-field approach. 

The resulting PSNRs are 28.626 dB and 39.701 dB. respectively, corresponding to 

restoration gains of 0.556 dB and 2.549 dB. 

Both approaches resulted in higher PSNRs and better image quality. Both 

eliminated the blocking artifacts while preserving the edges in the images, however, 

some areas of the image were smoothed and some texture is lost. The PSNR of the 

images restored using the no-line field approach were higher than the restored images 
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Figure 6.4: The effect of the shape factor on the PSNR of the restored image. 

using the line-field approach. However, the perceptual quality is almost the same. 

Moreover, the no-line field approach is simpler and faster. This is mainly due to the 

energy function used. It balances the smoothing penalty at the edges and for noisy 

pixels. 

If the image is corrupted by additive iid Gaussian noise before coding, the 

decoded image can be restored using the same procedure presented in this section. 

The variance, however, is the sum of the variance of the degradation noise and the 

variance of the quantization noise. 

6.5 Poisson Noise Case 

As we have already seen, for images limited by counting statistics, the number of 

photons counted for each pixel is statistically independent of the number of counts 

for other pixels [10]. Thus, the conditional probability distribution of the observed 

image given the original image is 

--/(8j,)[/(*,i)r(*j) 

P(xif)=n x(i,j)\ 
(6.20) 
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BBBfc'ĵ ^ î̂ g 

(c) (d) 

F igure 6.5: (a) The modified phantom, (b) The modified phantom compressed using JPEG (PSNR 
= 28.070 dB at bit rate = 0.260 bpp). (c) The decompressed modified phantom restored using the 
no-line-field approach (PSNR = 29.287 dB). (d) The decompressed modified phantom restored using 
the line-field approach (PSNR = 28.626 dB). (The phantoms are histogram equalized by mapping 
[31,223] to [0,255].) 
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[a) (b) 

(c) (d) 

F igure 6.6: (a) The original phantom, (b) The original phantom compressed using JPEG (PSNR 
= 37.152 dB at bit rate = 0.508 bpp). (c) The decompressed phantom restored using the no-line-
field approach (PSNR = 40.071 dB). (d) The decompressed phantom restored using the line-field 
approach (PSNR = 39.701 dB). (The phantoms are histogram equalized by mapping [126,136] to 
[0,255].) 
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where f(i,j) and x(i,j) are the values of f and x at pixel (i,j), respectively. To 

get a simple closed form for the conditional probability p(x|f), the Poisson noise is 

approximated by additive Gaussian noise [41], i.e., 

e x p i - ^ ^ - f e ^ - } 
p(s(m,n) | /(m,n)) = ~ J L 2f{m'n\ \ 

s/2wf(m,n) 

where x(m, n) is the value of the random vector X at pixel (m, n). 

Substituting into Equation (6.4) results in 

p(y{m,n)\f{rn,n)} = 

-\y(m,n)-f(m,n)}2 

e X ^ \ 2(ff2+/(m,n)) 

(6.21) 

(6.22) 
^/27r((j2 + / ( m , n ) ) 

Finally, applying mean field theory and the saddle point approximation and 

using the gradient descent algorithm to solve the resulting set of equations results in 

the following set of iterative equations for both penalty approaches: 

First approach (image modeled only by an intensity field): 

,-at, 
-rt+if s -rt( . J 2( / (m,n) -y(m,n)) + l) 
f (ra,n) = f{m,n)-u){-

+ £ 

[ 2(orJ + / ' (m,n) ) 

W(/*(m,n),/*(*:, 0) 
df(m,ri) 

(1 + nb(m,n)) 

,-dt 
{f(m,n) -y{m,n))' 

2(a* + 7Xm,n)y 
(6.23) 

where / (m, n) is the estimate of the mean value of / (m, n) at iteration £, and 

CJ is the step size, which is fixed w 0.1 for all examples discussed. 

Second approach (image modeled by an intensity field and a line field): 

ft+ (m, n) = f\m, n) - UJ 
(k,l)eN(m,7i) 

dVc(f\m,n)j\k,l)) 

2(<7f + 7(m,n)) -zt 
2(a? + f (m.n)) 2 
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+E(-i)' 
i=0 

- a^ f ( / (m ,n + z ) , / (m,n + 2 - l ) ) 
(1 - /i(m,n + zj) ^77 : 

df(m,n) 

,(6.24) 
, (A __, . . u aVf ( / (m + z, n), / (m + z - 1, n ) 

+ (1 -v(m + i,n)) —— 
df(m,n) 

where / (m, n) is the estimate of the mean value of /(TO, n) at iteration t, uo is 

the step size, which is fixed to 0.1 for all examples discussed, and h and v are 

given in 6.17 and 6.18, respectively. 

The three images used to study the noisy coding approach in the Poisson noise 

case are shown in Figures 6.7(a), 6.8(a). and 6.9(a). These three images are corrupted 

by data-dependent Poisson noise, as shown in Figures 6.7(b), 6.8(b), and 6.9(b). The 

PSNR values of the noisy modified phantom, noisy original phantom, and the noisy 

LENNA image are 30.544 dB, 30.055 dB, and 28.159 dB, respectively. 

The noisy images are then compressed using JPEG, as shown in Figures 6.7(c), 

6.8(c), and 6.9(c). The PSNRs of the compressed noisy modified phantom, noisy 

original phantom, and noisy LENNA image are 27.374 dB at a bit rate of 0.267 bpp, 

29.537 dB at a bit rate of 0.503 bpp, and 27.745 dB at a bit rate of 0.395 bpp, 

respectively. 

Figures 6.7(d), 6.8(d), and 6.9(d) show the result of restoring the decompressed 

noisy modified phantom, original phantom, and the LENNA image using the no-

line-field approach. The resulting PSNRs are 28.786 dB, 32.814 dB, and 28.714 

dB, respectively. Figures 6.7(e), 6.8(e), and 6.9(e) show the result of restoring the 

decompressed noisy modified phantom, original phantom, and the LENNA image using 

the line-field approach. The resulting PSNRs are 28.093 dB, 32.377 dB, and 28.169 

dB, respectively. 

As shown, the visual quality of the restored images is better than the com

pressed ones. The restoration process removed the blocking artifacts while preserving 

the edges in the image, however, some areas of the restored images were smoothed 

and some texture is lost. Moreover, the PSNR of the restored images is higher than 
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(a) (b) (c) 

(d) (e) 

F igure 6.7: (a) The modified phantom, (b) The noisy modified phantom (The noise is data-
dependent Poisson noise with PSNR = 30.544 dB). (c) The noisy modified phantom compressed 
using JPEG (PSNR = 27.374 dB at bit rate; = 0.267 bpp). (d) The compressed noisy modified 
phantom restored using the no-line-field approach (PSNR = 28.786 dB). (e) The noisy compressed 
modified phantom restored using the line-field approach (PSNR — 28.093 dB). (The phantoms are 
histogram equalized by mapping [31,223] to [0,255].) 
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(a) (b) (c) 

(d) (e) 

Figure 6.8: (a) The original phantom, (b) The noisy phantom (The noise is data-dependent 
Poisson noise with PSNR = 30.055 dB). (c) The noisy phantom compressed using JPEG (PSNR = 
29.537 dB at bit rate = 0.503 bpp). (d) The compressed noisy phantom restored using the no-line-
field approach (PSNR = 32.814 dB). (e) The noisy compressed phantom restored using the line-field 
approach (PSNR = 32.377 dB). (The phantoms are histogram equalized by mapping [126,136] to 
[0, 255]. This exaggerates the appearance of the noise.) 
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(a) (b) (c) 

(d) 

F igure 6.9: (a) The original LENNA image, (b) The noisy LENNA image (The noise is data-
dependent Poisson noise with PSNR = 28.159 dB). (c) The noisy LENNA image compressed using 
JPEG (PSNR = 27.745 dB at bit rate = 0.395 bpp). (d) The compressed noisy image restored using 
the no-line-field approach (PSNR = 28.714 dB). (e) The noisy compressed image restored using the 
line-field approach (PSNR = 28.169 dB). 
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F igure 6.10: (a) The original noisy image, (b) The output of the codec, with compression 
ratio=8.982. (c) The restored image using the no-line-field approach, (d) The restored image 
using the line-field approach. (Gray levels are reversed for display.) 

that of the compressed ones by 1.0 — 3.3 dB using the no-line-field approach and by 

0.4 — 2.8 dB using the line-field approach. The quality and the PSNR of the images 

restored using the no-line-field approach are better than those of the images restored 

using the line-field approach. 

The proposed approach is used to restore a 64 x 64 cardiac SPECT projection 

image compressed using JPEG, as shown in Figure 6.10. The compression ratio is 

8.982:1. 

6.6 Film Grain Noise Case 

Using the model of 3.3, the conditional probability distribution of the observed image 

given the original image is 

where f(i,j) and x(i,j) are the values off and x at pixel (i,j), respectively. 

Substituting in Equation (6.4) results in 

(6.25) 

p(y(m:n)\f(m,n}) = 

-\y(m,n)-f(m,n)}2 1 t XP\2( (r2+ Q2 [ / ( m ; n ) ] 2 7 ) J 

^27r(a2 + a ^ ( m , n ) p ) 
(6.26) 
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Finally, applying mean field theory and the saddle point approximation and 

using the gradient descent algorithm to solve the resulting set of equations results in 

the following set of iterative equations for both penalty approaches: 

• First approach (image modeled only by an intensity field): 

Y-7t, ,-at, 

r\m,n) = /V,n]-J^- (m," ) |M + ( / ( m ' n ) - 9 ( m ' n ) ) 
r-yt (rf + a2[r(ro,n)]*r) 

+ z., 
(k,l)eN(m,n) 

-at, dV{(f\m,n)J\k,l)) 

df(m,n) 

a^(f\m, n) - y(m, n))2[/*(m, n)]^ 

(1 + (2b(m,n)) 

r-att 

r-at, (6.27) 

-Ft where fl(m,n) is the estimate of the mean value of / (ra ,n) at iteration £, and 

u is the step size, which is fixed to 0.1 for all examples discussed. 

Second approach (image modeled by an intensity field and a line field): 

jt+i, s -Ik \ j \r \dVf(f(m,n)j\kJ)) 

f im'n) = fim'n)-"L£m,A-^i^)—. 
ja2[f\m,n)}^'^ + (f(m,n) - y(m,n)) 

{al + a>{fXm,n)Y-') 

a2
7(7'(m,») " y(m,n)y{7Xm,n)}^ (rf + ^l/Vn)]27)2 

+E(-i)' 
j = 0 

,-Ft, 
- dVf(fXm,n + i)J(m,n + i-l)) 

(1 - h(m, n + %)) —— 

+ (1 - v(m + i,n) 

df{m,n) 

dVf(f\m + i, n)J\m + i - 1, n)) 
, (6.28) 

-at 

df(m,n) 

where fL(m, n) is the estimate of the mean value of / (m, n) at iteration t, u is 

the step size, which is fixed to 0.1 for all examples discussed, and h and v are 

given in 6.17 and 6.18, respectively. 

A point worth mentioning is that if a = 0, the equations derived in this section will 

be equivalent to the noise-free case. 
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(b) (c) 

(d) (e) 

Figure 6.11: (a) The original LENNA image, (b) The noisy LENNA image (The noise is data-
dependent with PSNR = 28.174 dB). (c) The noisy LENNA image compressed using JPEG (PSNR 
= 28.527 dB at bit rate = 0.701 bpp). (d) The compressed noisy image restored using the no-line-
field approach (PSNR = 29.982 dB). (e) The noisy compressed image restored using the line-field 
approach (PSNR = 29.495 dB). 
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Figure 6.12: PSNR versus o2
q when restoring the LENNA image shown in Figure 6.2(b) using the 

no-line-field approach. 

The LENNA image, as shown in Figure 6.11(a) is used to study the performance 

of the restoration algorithm in the film-grain noise case. First, the LENNA image is 

corrupted by film-grain noise with 7 = 0.5 and a = 1.0, as shown in Figure 6.11(b). 

The PSNR of the noisy image is 28.174 dB. Afterwards, the noisy image is compressed 

using JPEG. The bit rate of the compressed noisy image is 0.701 bpp. The PSNR 

of the decompressed image is 28.527 dB, as shown in Figure 6.11(c). The resulting 

image is then restored using the no-line-field and the line-field approaches, as shown 

in Figures 6.11(d) and (e). The PSNR of the restored images are 29.982 dB and 

29.495 dB, respectively, corresponding to restoration gains of 1.455 dB and 0.968 dB. 

6.7 Estimation of Restoration Parameters 

The parameter estimation of the image and the degradation noise models and its 

effect on restoration was discussed in Section 4.7. The problem of restoring lossy 

compressed images requires estimating the variance of the quantization noise. The 
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variance of the quantization noise was estimated using 

I M 
av = TH HMU)-y(h3'))*, (6.29) 

m h3=0 

where M x M i s the size of the image. 

The variance of the input noise and the quantization noise can be sent by the 

coder or estimated from the rate distortion curve of the coder [46]. The variance 

of the quantization noise can be estimated locally by assuming that gray levels are 

constant for small regions, thus the local variance in small regions is an estimate of 

the variance of the quantization noise [23, 57]. 

To study the effect of not estimating the variance of the quantization noise 

correctly, the LENNA image shown in Figure 6.2 will be restored using different values 

for o2
q. The PSNR of the compressed LENNA image is 31.528 dB at 0.705 bpp. The 

estimated quantization noise variance is 45.738. Figure 6.12 shows the PSNR versus 

a* curve. As expected, the best PSNR is when o2
q — 45.738 and it decays almost 

symmetrically. 
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CHAPTER 7 

APPLICATION: COMPRESSION OF 

CARDIAC SEQUENCES 

7.1 Introduction 

As an application, the results of Chapters 3 and 5 are applied to medical images 

and in particular to cardiac SPECT sequences. Data-dependent Poisson noise cor

rupts cardiac SPECT sequences. Thus, degrading the performance of compression 

algorithms. 

Since medical images are different than other classes of images, Section 7.2 

briefly discusses medical image compression. Section 7.3 discusses the evaluation of 

lossy compressed medical images. 

Since it is desired to preserve the diagnostic information in medical images, a 

content-based coder is developed in Section 7.4. This coder preserves the diagnostic 

information in the image by segmenting the image into different regions, filtering 

these regions with different image models according to the detail in each region, and 

coding these regions with different coders. The regions that contain the diagnostic 

information are compressed without coding distortion, while the other regions are 

compressed lossily. 

Section 7.5 applies the results of Chapters 4 and 5 to this problem. Section 7.6 

studies the performance of the proposed algorithms on a SPECT cardiac sequence. 

Appendix C discusses two more examples. 



7.2 Medical Image Compression 

Digitization of medical images has forced interest in picture archiving and communi

cation systems (PACS). Digitization allows easy retrieval, efficient storage, and rapid 

transmission of medical images [15]. Moreover, it makes digital signal processing 

algorithms, e.g., filtering, enhancement, and classification, accessible to the field of 

medical imaging. 

When applying existing image compression algorithms to medical images, one 

should take into account the differences between medical images and the images for 

which these algorithms were developed. Medical images are different from other 

classes of images. They are different in the way they are taken, the variations of gray 

levels and colors, the dynamic range, the size, and the type of noise that corrupts 

them. Moreover, the way medical image compression algorithms are evaluated differs 

from the evaluation of compression algorithms for other classes of images. By way of 

explanation, when compressing images of natural scenes, compression algorithms are 

concerned with the visual perception of the resulting image. However, medical image 

compression algorithms should be concerned with preserving the diagnostic informa

tion in the image. Although lossless image compression preserves all the information 

in the image, including the diagnostic information, it fails to reduce significantly the 

number of bits representing the image. Thus, to achieve high compression ratios, 

we must look at lossy image compression algorithms that preserve the diagnostic 

information. 

Many medical imaging systems are based on three techniques: transmission 

tomography, reflection tomography, and emission tomography [41]. Transmission to

mography is based on measuring the attenuation of X-rays when transmitted into the 

body [28]. Reflection tomography is based on measuring the reflection of ultrasound 

waves transmitted through the body [41]. Emission tomography is based on measur

ing gamma rays emitted from pharmaceuticals that have been deposited in the body 

[41]. Three types of imaging systems are regularly used in emission tomography. 
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Figure 7.1: The first 20 slices of a 32 x 64 x 64 SPECT cardiac image sequence. 

These are SPECT (Single Photon Emission Computerized Tomography) and PET 

(Positron Emission Tomography) [28]. Medical images can be still images, video im

ages, projection sequences (two-dimensional projections taken around the body), or 

three-dimensional video. This chapter applies the results of the previous chapters to 

compress SPECT cardiac images, which are slices of projection sequences and whole 

projection sequences. 

The size of medical images can be as small as 64 x 64 for SPECT projections or 

as large as 4096 x 4096 for mammograms and for whole body scans. Medical images 

are most commonly represented with 8, 12, 16, 32, or 64 bits per pixel. Although a 

few projection images are stored as floating point numbers, most are stored as integer 

values. 

The general structure of many medical images consists of an approximately 

circular or flat region containing almost all the energy of the image. A typical SPECT 

cardiac projection image consists of a dark background with a light body region and 

bright small spots corresponding to organs as shown in Figures 1.1 and 7.1 (in which 

the intensities have been reversed). 

Transmission and emission tomography images are usually corrupted by mea-
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surement and quantum noises [7, 41]. The measurement noise is effectively modeled 

as additive Gaussian noise [41]. The quantum noise is caused by the quantization of 

energy into photons, which are individually counted. It is Poisson distributed and 

independent of the measurement noise. In practice, the Poisson noise dominates the 

measurement noise [41], which is often ignored. 

7.3 Evaluating the Quality of Lossy Compressed 

Medical Images 

In many countries, it is required to store medical images without distortion in order to 

preserve all diagnostic information. However, lossless image compression algorithms 

fail to reduce the storage bit-rate significantly. For example, Table 7.3 compares the 

marginal entropy of the sequence, Lempel-Ziv coding, LPC coding, coding of projec

tion differences, and JPEG lossless mode 2 coding. These compression algorithms 

were applied to 16-bit 32 x 64 x 64 cardiac SPECT projection sequences. The linear 

prediction mask used in the LPC coding is the same as in Equation 2.8, but the pre

diction parameters are estimated optimally by minimizing the mean squared error. 

The projection difference coding is done by re-addressing the image pixels to display 

all the projections of one slice in each image, resulting in a set of 64 32 x 64 images. 

Afterwards, the difference between successive images is encoded. As seen in Table 7.3, 

all algorithms did not perform particularly well. To achieve higher compression ratios, 

we must look at lossy compression algorithms that preserve diagnostic information. 

Evaluating the quality of a compressed image is a major difference between 

medical images and other classes of images. Medical image quality is usually defined 

in terms of how well an expert can perform some task of diagnostic interest [5], whereas 

the quality of images of natural scenes is defined in terms of their visual perception. 

Evaluating the quality of medical images is very important for both scientific and 

legal reasons. 
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Table 7.1: Comparison between various lossless coding methods. The comparison was performed on 
32 x 64 x 64 cardiac projection sequences of patients from Crawford Long Hospital. The comparison 
is in terms of the average number of bits per pixel (bpp). the original sequences were represented 
with 16 bits. 

II Patient Marginal 
entropy 

LPC Projection 
difference 

Lempel-
Ziv 

JPEG 
mode 2 

547 5.66 4.32 4.56 5.98 4.56 
552 5.52 4.29 4.54 5.74 4.53 
590 5.76 4.48 4.73 6.10 4.70 
611 5.40 4.28 4.52 5.73 4.50 
616 5.30 4.21 4.46 5.57 4.39 
640 5.07 4.16 4.42 5.42 4.38 
644 4.92 4.15 4.41 5.32 4.39 
712 6.28 4.74 495 6.64 4.95 
720 6.05 4.64 4.85 6.38 4.85 

I 814 6.12 4.76 5.02 6.82 4.94 1 

The quality of lossy compressed medical images is usually evaluated using dis

tortion measures, subjective ratings, diagnostic accuracy measures, or a combination 

of these measures [15, 16]. 

7.3.1 Distortion measures 

Distortion measures such as mean-squared error (MSE), signal-to-noise ratio (SNR), 

and peak-signal-to-noise ratio (PSNR) are easy to compute and are tractable in anal

ysis. However, they rarely reflect the degradation in perceptual quality or loss in 

diagnostic accuracy of the image. Unfortunately, a distortion measure that combines 

all three of these characteristics together has yet to be developed. Thus, it is common 

to design compression algorithms using distortion measures such as MSE, and then 

to use other subjective ratings and/or diagnostic accuracy measures to evaluate these 

algorithms [15]. This is the approach that we have used. 
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7.3.2 Subjective ratings 

A randomized set of original and processed images is presented to a group of experts 

and typical users to be evaluated subjectively. The presentation to the evaluators can 

be done in different ways. One way is to show one image at a time and to ask the 

evaluator to rate the perceptual quality of the image, the quality of the abnormality 

that he/she usually looks for, or the quality of the image in terms of detecting these 

abnormalities. The evaluation is usually done either by giving a rating on a continuous 

scale or by choosing a distinctive descriptive phrase from a limited number of phrases 

provided by the test [16]. 

Another approach is to show two or more images in each presentation and to 

ask the evaluator to compare their quality. The comparison could be in terms of the 

perceptual quality of the image [35], the quality of the image for clinical purposes 

[67], or the preservation of a diagnostic feature, e.g., preserving abnormalities [11]. 

Researchers have attempted to link these subjective measures to objective dis

tortion measures like SNR in order to incorporate them into the design of compression 

algorithms [15]. 

7.3.3 Diagnostic accuracy 

Diagnostic accuracy is the most important measure discussed here because it is di

rectly related to medical features in the image that are significant for clinical analysis. 

Measuring diagnostic accuracy depends on the diagnostic task. If the diagnostic task 

involves binary detection, e.g., detection of tumors or lung nodules, the most common 

method used is the receiver operating characteristic (ROC) analysis [1, 14, 55]. 

The ROC originated in signal detection theory [30]. The ROC curve plots the 

probability of detection (probability of detecting the signal when it is there) versus 

the probability of a false alarm (erroneously detecting a signal that is not there) as a 

threshold is varied. The degree by which the ROC curve departs from the equality line 

measures the distinctiveness between the two hypothesized models for generating the 
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Figure 7.2: Receiver operating characteristic of a perfect detector, a detector based on random 
guessing, and a typical detector. 

observat ions. A perfect detect ion technique is one t h a t has a probabi l i ty of detec t ion 

of 1 for any false alarm rate including zero. The area under the ROC curve provides 

a scalar measure of the quality of the detection algorithm. A typical medical image 

quality test involves plotting the probability of detecting an abnormality versus the 

probability of false alarm while varying a threshold determined by the confidence 

of the reader in the reading according to a specified manner. Figure 7.2 shows the 

probability of detection versus the probability of false alarm for a perfect detector, 

typical detector, and a detector based on random guessing. 

Cosman et al. [15, 16] describe an approach based on ROC analysis that applies 

to non-binary decisions. They defined sensitivity as the probability that something is 

detected given that it is present in a "gold standard" (defined by either the consensus 

of all evaluators, the evaluator's evaluation of the original image, the agreement of 

an independent panel, or the actual result of the diagnosis). To penalize judges who 

label abnormalities everywhere, they defined the predictive value positive (PVP) as 

the chance that an abnormality is present given it is marked. They used the Behrens-

Fisher t-statistic to evaluate the performance of different algorithms. 

If the diagnostic task involves measuring a specific feature or attribute, such 

as the left ventricle ejection fraction for a gated blood study [51] or the size of blood 

88 



vessels [16], the diagnostic accuracy measure must reflect the difference between the 

measurement based on the original image and the measurement based on the com

pressed image. 

SPECT cardiac scans are usually compared against normal patients' scans when 

read by physicians. SPECT cardiac sequences are used to reconstruct an image of the 

heart. The reconstructed heart slices are used to generate a bull's-eye display, which 

is then used for making the comparisons [17]. The bull's-eye is a two-dimensional 

polar representation of the three-dimensional volume data from the reconstructed 

heart slices. It is generated by recording the maximum value encountered by rays 

originating from the center of the heart in each slice as a function of angle. After

wards, the maximum count circumferential profiles for each slice are mapped onto a 

two-dimensional polar map. The distance from the center corresponds to the slice 

number, and the angular position to the angular position in the profile. The center 

of the bull's-eye corresponds to the apical slice and the periphery to the basal slice. 

Figure 7.3 shows the reconstructed slices of the sequence shown in Figure 7.1 and the 

corresponding bull's-eye. For example Figure 7.3 shows a maximum count profile for 

slice 3. The points of the profile are then mapped to the third circle of the bull's-eye 

display. Afterwards and for all slices, the points are interpolated to get the bull's-eye 

image shown in figure 7.3(d). 

The different regions of the heart; apex, anterior, septal, inferior, and lateral, 

are then analyzed. This is done by dividing the bull's-eye into different regions, as 

shown in Figure 7.3(d). The apex corresponds to area 1, the anterior to areas 2 and 

6, the septal to areas 3 and 7, the inferior to areas 4 and 8, and the lateral to areas 

5 and 9. The average and the standard deviation of each region is computed. The 

ratios of the averages of the different regions are also computed. 

Section 7.4 discusses segmented coding of SPECT cardiac sequences and presents 

two compression algorithms. The quality of the compressed sequences will be dis

cussed using distortion measures, SNR, and diagnostic accuracy measures using the 
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(a) 

(c) (d) 

F igure 7.3: (a) The transaxial slices reconstructed for the sequence shown in Figure 7.1 and the 
corresponding bull's-eye. (b) The bull's-eye polar map. (c) The center of the bull's-eye is from 
the left-most (apical) slice. The periphery of the bull's-eye is from the right-most (basal) slice [17]. 
(d)The different regions in the bull's-eye. The apex corresponds to area 1, the anterior to areas 2 
and 6, the septal to areas 3 and 7, the inferior to areas 4 and 8, and the lateral to areas 5 and 9. 
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bull's-eye approach. 

7.4 Segmented Coding of SPECT Images 

SPECT cardiac image sequences are projection images of the heart region taken 

at different angles, as shown in Figures 1.1 and 7.1. Since it is desired to preserve 

the diagnostic information in medical images and while compressing them to low bit 

rates, it is important to control the effect of quantization on the different regions of 

the image. For example, in cardiac SPECT image sequences, the heart, the blood 

vessels, and the other organs are very important for diagnosis. However, the body 

region is of much less importance while the background is of little importance. Taking 

this into account, we propose segmenting the cardiac images into these three different 

areas. Then, these areas will be quantized differently according to their importance. 

Since the region containing the organs is very important for medical diagnosis, it 

is not quantized at all, i.e., it is compressed without distortion. The body and the 

background regions are not important for diagnosis. Thus, they are quantized. The 

proposed approach is depicted in Figure 7.4. 

An adaptive histogram-based algorithm is proposed to segment the cardiac 

SPECT image sequences. Morphological closing and opening is performed on the 

segmented regions to insure connectivity of the areas and to remove isolated small 

regions which usually correspond to noise. The segmentation procedure is summarized 

as follows: 

1. The histogram of the sequence is computed and smoothed in order to compute 

initial gray-level thresholds (a, 6, and max) for the three different areas, as 

shown in Figure 7.5(a). Initially, 6 = 2* max — a. 

2. The threshold of the background region is fixed and is set equal to a. The 

threshold for the heart region of each frame is initialized with the value 6, i.e., 

Tk = b. 
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Figure 7.4: Content-based compression of SPECT cardiac sequences. 
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F igure 7.5: (a) The histogram of the sequence and the gray level regions corresponding to the 
different regions in the sequence of Figure 7.1. (b) The segmented regions of the sequence. 
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3. The heart region is segmented in each frame and its center of mass is found. 

The horizontal component of the center of mass is modeled by 

mx(i) = a + /?cos(0)+7sin(0), (7.1) 

where mx(i) is the center of mavss of the heart of frame i in the x direction and 

0 is the projection angle. The center of mass of the heart in the y direction is 

assumed to be constant, since the patient is not moving. These assumptions 

are consistent with the data gathering process. The centers are then changed 

to the values generated by this model. 

4. For i = 1 • • • N, where N is number of frames in the sequence, the following 

operations are done: 

(a) The average, T^ , of the pixel values in frame k contained in a small window 

centered about the center of mass of the heart of frame i is computed. This 

is done for all i < k < N. 

(b) If Tijk < Tjt, then 7* = max (T^, max). Otherwise Tk is not changed. 

5. Each frame is segmented according to the adjusted thresholds, Tk. 

6. Morphological opening and closing is performed on the segmented regions to 

ensure connectivity and to remove isolated pixels. A 3 x 3 square structuring 

element is used. 

The inner loop involving the computing of averages in step 4, is added to ensure 

that the heart is segmented properly in the frames where the images are severely 

attenuated. This occurs in the frames taken from the sides of the body where the 

attenuation is high and the liver counts are very high. These frames are the last 

frames in the sequence in our protocol. 

Figure 7.1 shows the first 20 images of a 32 x 64 x 64 16-bit SPECT projection 

sequence. Figure 7.5(b) shows the result of segmenting this sequence into the different 
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regions. This simple segmentation algorithm was tested on thirty different SPECT 

sequences with different gray level contrasts and it performed sufficiently well on all 

these sequences. 

The proposed coder is an information-progressive coder, i.e., the information 

can be sent progressively according to its importance for diagnosis. Moreover, each 

part of the sequence or piece of information can be coded using a resolution progressive 

coder. Thus, this approach can be progressive in both content and detail. The 

next section will use two different quantization schemes to code the background and 

body regions. Different compression algorithms can be developed by replacing the 

quantization step by a different coder. 

7.4.1 Region-based scalar quantization of cardiac sequences 

The first coder segments the sequence into the three different regions as shown in 

Figure 7.4. Afterwards, the background is replaced by zero gray level and the body 

region is quantized using a Lloyd-Max quantizer. The region containing the organs 

is not quantized. Afterwards, the resulting sequence is entropy coded. 

7.4.2 Region-based vector quantization of cardiac sequences 

Scalar quantization does not exploit the correlation between neighboring pixels. In 

order to incorporate this, the scalar quantizer is replaced by a vector quantizer. How

ever, this involves rearranging the body region into n x n blocks, where n is the size 

of the vector. In order to reconstruct the image correctly at the decoder, we need to 

send the segmentation map along with the codewords. This is an extra burden but 

it is not that significant at medium bit rates, as will be demonstrated. The modified 

coder is depicted in Figure 7.6. 
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Figure 7.6: Region-based vector quantization of cardiac sequences. 
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7.5 Preprocessing of SPECT Cardiac Sequences 

Since cardiac SPECT sequences are usually corrupted by data dependent Poisson 

noise, the results of Chapters 4 and 5 are used to improve the performance of the 

proposed coders. A three-dimensional neighborhood system along with the proposed 

clique potentials is used in the Markov random field model. These cardiac sequences 

consist of three regions that vary in detail; the organ region is very detailed, the body 

region contains less detail, and the background is constant. In order to incorporate 

this in the filtering, the image is segmented first. Afterwards, the background is set 

to zero gray level while the other two regions are filtered with two different £'s. As 

shown in Chapter 4, a smaller 8 results in more penalties for larger separations, thus 

a smoother image. Thus, for the organ region, which is more detailed, 52 = 250, while 

for the body region, which is a smooth region, d = 1.0. 

7.6 Example 

Figure 7.7(c) shows the sequence shown in Figure 7.1 compressed using the region-

based scalar quantization algorithm. The body region is quantized to eight gray levels 

and the entropy of the entire quantized sequence is 4.922 bpp. The percentages of 

the number of pixels of the different areas and the (zeroth-order) entropies of these 

areas are shown in Table 7.2 for the original sequence and four quantized versions of 

it. The four versions correspond to quantizing the gray levels of the body region into 

two, four, eight, and sixteen levels while quantizing the gray levels of the background 

region to zero, and not quantizing the region containing the organs at all. 

Figure 7.7(e) shows the original sequence compressed using the region-based 

vector quantization algorithm, i.e., by replacing the background by zero gray level, 

vector quantizing 2 x 2 blocks of the body region with a codebook size of 8 vectors, 

and lossless DPCM coding of the organ region. Table 7.3 shows the bit rates of each 

region, the overall bit rate, and the SNR of the quantized sequence. 
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Table 7.2: The percentages of the pixels in the background, body, and organ regions of the 
original sequence and the quantized original sequence shown in Figure 7.7(a), respectively, and their 
corresponding entropies when using the SCALAR coder (The number of levels in the table is the 
number of levels quantizing the body region. The background is quantized to zero gray level). 

II Region Area 

(%) 

Zeroth-order entropy (bpp) ~~[ II Region Area 

(%) Original 16 levels 8 levels 4 levels 2 levels | 
1 Background 13.5% 2.479 0.000 0.000 0.000 0.000 

Body 67.0% 5.574 3.947 2.975 1.943 0.878 
Organs 19.5% 5.722 5.722 5.722 5.722 5.722 
Overall 100.0% 6.124 4.922 4.285 3.610 2.896 1 

SNR (dB) || 
oo 20.177 19.111 | 15.387 9.387 | 

Table 7.3: The bit rates of the background, body, and organ regions of the original sequence and 
the quantized original sequence shown in Figure 7.7(a) and their corresponding SNRs when using 
the VECTOR coder (The codebook size in the table is the number of vectors used to quantize the 
body region. The background is quantized to zero gray level). 

Codebook 
Size 

Bit Rate (bpp) 
SNR (dB) Codebook 

Size 
Region 
Information 

Organs Body 
Region 

Overall SNR (dB) 

256 0.288 1.747 1.472 3.507 16.923 
128 0.288 1.747 1.298 3.333 15.541 
64 0.288 1.747 1.103 3.138 14.208 
32 0.288 1.747 0.915 2.950 12.893 
16 0.288 1.747 0.729 2.764 11.483 

I 8 0.288 1.747 0.534 2.569 9.960 _ [ 
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When comparing the vector coder with the scalar one, at around 2.9 bpp, the 

vector quantized sequence is 3.5 dB better than the scalar quantized sequence. Figure 

7.8 shows the SNR versus bit rate curves when using the scalar and vector coders. 

The vector coder produces sequences with higher SNR than the ones produced by the 

scalar coder at the same bit rate. However, diagnostic accuracy measures should be 

used to measure how well the coders preserve the diagnostic information. 

Studying the performance of these compression algorithms using the bull's-eye 

of the compressed sequences reflects the difference in diagnostic information between 

the compressed sequences and the original one. Figure 7.9 shows the bull's-eyes of the 

original sequence and three compressed versions of it using the scalar coder. Figure 

7.10 shows the bull's-eyes of the original sequence and seven compressed versions of 

it using the vector coder. 

Tables 7.4 and 7.5 show the average count of the 10 different regions of the 

bull's-eye shown in Figure 7.3(d) when using scalar and vector quantization, respec

tively. The mean percentage difference ratios, —8——L-.—E * 100%, between 

the averages of the original sequence and the compressed sequence are 0.60%, 1.03%, 

1.52%, and 1.97% when quantizing the body region to 16, 8, 4, and 2 levels, respec

tively. The mean percentage difference ratios are 0.55%, 0.64%, 1.10%, 0.87%, 2.35%, 

and 2.59% when vector quantizing the body region using 256, 128, 64, 32, 16, and 8 

codebook sizes. 

Tables 7.6 and 7.7 show the standard deviation of the counts of the 10 different 

regions of the bull's-eye when using the scalar and vector coders, respectively. The 

mean percentage difference ratios between the standard deviations of the original 

sequence and the compressed sequence are 8.25%, 7.09%, 9.32%, and 25.94% when 

quantizing the body region to 16, 8, 4, and 2 levels, respectively. The mean percentage 

difference ratios are 5.70%, 3.81%, 25.82%, 8.26%, 15.78%, and 15.78% when vector 

quantizing the body region using 256, 128, 64, 32, 16, and 8 codebook sizes. 

Tables 7.8 and 7.9 show the averages of the septal, lateral, anterior, and inferior 
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Figure 7.7: (a) The original first 20 x 64 x 64 projection SPECT slices of a 32 slice sequence of 
a heart patient, (b) The filtered sequence using mean field theory and Markov models, (c) 8-level 
SCALAR quantized original sequence, (d) 8-level SCALAR quantized filtered sequence, (e) 8-vector 
codebook VECTOR quantized original sequence, (f) 8-vector codebook VECTOR quantized filtered 
sequence. (Gray levels are reversed for display.) 
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Table 7.4: The averages of the 10 regions of the original sequence when using the SCALAR coder. 

Sequence REGION Sequence 

1 2 3 4 5 6 7 8 9 10 
Original 83 103 99 115 112 125 125 118 123 112 
16 levels 83 104 99 114 113 125 123 117 123 111 
8 levels 83 104 100 114 113 124 122 116 122 111 

4 levels 80 105 101 114 114 124 123 116 123 111 
2 levels 84 98 98 115 107 124 120 115 122 112 

Table 7.5: The averages of the 10 regions of the original sequence when using the VECTOR coder. 

Sequence REGION Sequence 

1 2 3 \4 5 6 7 8 9 10 
Original 83 103 99 115 112 125 125 118 123 112 
256 84 102 99 114 112 125 124 117 122 112 
128 82 103 98 114 112 125 124 117 124 113 
64 81 102 100 115 111 124 123 116 121 112 
32 85 104 100 115 114 125 124 117 123 113 
16 89 106 102 114 117 124 124 118 121 110 
8 _j 82 108 104 112 120 124 1̂24 117 122 110 
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Table 7.6: The standard deviations of the 10 regions of the original sequence when using the 
SCALAR coder. 

II Sequence REGION II Sequence 
1 2 3 J 4 5 6 7 8 9 10 | 

Original 22.01 13.69 17.22 6.93 3.01 16.87 18.26 21.04 18.68 14.22 
| 16 levels 21.75 14.70 18.06 1T60 3.90 17.77 20.47 23.45 19.38 13.97 
|| 8 levels 21.05 14.53 17.63 6.03 3.43 17.47 20.40 23.43 19.20 13.97 
|| 4 levels 22.82 13.65 16.22 6.55 2.57 18.94 21.52 24.86 20.80 13.68 
|| 2 levels 22.68 13.07 13.86 9.27 6.69 12.54 21.27 J 1 . 9 6 13.47 13.98 J 

Table 7.7: The standard deviations of the 10 regions of the original sequence when using the 
VECTOR coder. 

|| Sequence REGION ~f || Sequence 
1 2 3 4 5 6 L7 8 9 10 _ [ 

Original 22.01 13.69 17.22 6.93 3.01 16.87 18.26 21.04 18.69 14.22 1 
256 20.37 14.32 16.43 6.61 3.68 17.14 19.02 21.83 19.14 14.02 
128 22.45 13.92 17.34 7.05 3.22 16.96 20.03 23.47 18.11 14.23 
64 24.51 17.26 18.85 8.22 7.42 14.40 16.31 19.29 16.87 13.82 
32 22.47 14.57 17.44 9.23 3.80 17.13 18.47 21.47 18.50 13.15 

1 6 21.14 15.03 17.08 6.89 1.38 13.88 14.53 17.14 15.65 12.01 

I 8 25.23 9.62 10.73 9.49 5.96 14.64 17.13 19.45 16.80 11.65] 
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Figure 7.8: Comparing region-based SCALAR and VECTOR quantization approaches. The solid and 
dotted lines are for the original sequence when using the SCALAR and VECTOR coders, respectively. 
The dashed and dash-dotted lines are for the filtered sequence when using the SCALAR and VECTOR 

coders, respectively. 

regions. It also shows the ratios between these different regions. The percentage of 

the difference ratios of the averages is less than 4% while it is less than 5% for the 

region ratios. 

7.6.1 Effect of preprocessing 

Preprocessing is expected to improve the performance of the proposed approaches. 

Figure 7.7(b) shows the result of the restoration. Figure 7.7(d) shows the filtered 

sequence compressed using the scalar coder. The body region is quantized to eight 

gray levels and the entropy of the entire quantized sequence is 4.104 bpp. Table 7.10 

shows the entropies of the filtered sequences and four quantized versions of it. It is 

important to note that the SNR is measured with respect to the filtered sequence. At 

around 2.9 bpp, the quantized filtered sequence was 1.8 d.B better than the quantized 

original sequence. 

Figure 7.7(f) shows the filtered sequence compressed using the region-based 

vector quantization algorithm, i.e., by replacing the background by zero gray level 

and vector quantizing the body region with a codebook size of 8 vectors. Table 7.11 
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Figure 7.9: The bull's-eyes when using SCALAR quantization. The top row shows from left to right 
the bull's-eyes for the original sequence, the original sequence with the body region quantized to 
4, 8, 16 levels, respectively. The bottom row shows from left to right the bull's-eyes for the filtered 
sequence, the filtered sequence with the body region quantized to 4, 8, 16 levels, respectively. 

F igure 7.10: The bull's-eyes when using the VECTOR coder. The bull's-eyes are from top to bottom 
left to right for the original sequence and the original sequence with the body region quantized using 
1, 4, 16, 32, 64, 128, and 256 codebook sizes. 
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Table 7.8: The averages of the septal (S), lateral (L), anterior (A), and inferior (I) regions and the 
corresponding ratios of the original sequence when using the SCALAR coder. 

|| Sequence ~ S ~ L ~ A " T~ S/L A/L [W pvrn 
|| Original 224 235 228 233 0.953 0.970 0.991 0.979 
|| 16 levels 222 236 229 231 0.941 0.970 0.979 0.991 

8 levels 222 235 228 230 0.945 0.970 0.979 0.991 
4 levels 224 237 229 230 0.945 0.966 0.970 0.996 

|| 2 levels 218 229 222 230 0.952 0.969 1.004 0.965J 

Table 7.9: The averages of the septal (S), lateral (L), anterior (A), and inferior (I) regions and the 
corresponding ratios of the original sequence when using the VECTOR coder. 

[Sequence ~S ~L "A I S/L A/L I/L ^VO 
Original 224 235 228 233 0.953 0.970 0.991 0.979 
256 223 234 227 231 0.953 0.970 0.987 0.983 
128 222 236 ^228 231 0.941 0.966 0.979 0.987 
64 223 232 226 231 0.961 0.974 0.996 0.978 

3 2 224 237 229 232 0.945 0.966 0.979 0.987 
16 226 238 230 232 0.950 0.966 0.975 0.991 
8 228 242 232 229 0.942 0.959 0.946 1.013 J 
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Table 7.10: The percentages of the pixels in the background, body, and organ regions of the 
filtered sequence and the quantized filtered sequence shown in Figure 7.7(c), respectively, and their 
corresponding entropies when using the SCALAR coder (The number of levels in the table is the 
number of levels quantizing the body region. The background is quantized to zero gray level). 

1 Region Area 

(%) 

Entropy (bp P) 1 Region Area 

(%) Original 16 levels 8 levels 4 levels 2 levels 1 
1 Background 13.7% 0.905 0.000 0.000 0.000 0.000 

Body 68.9% 5.404 3.775 2.847 1.931 0.994 
| Organs 17.4% 5.559 5.559 5.559 5.559 5.559 

Overall 100.0% 5.843 4.708 4.104 3.487 2.852 

SNR (dB) | 
oo 23.585 20.320 | 16.094 11.198 | 
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Table 7.11: The bit rates of the background, body, and organ regions of the filtered sequence and 
the quantized filtered sequence shown in Figure 7.7(b) and their corresponding SNRs when using 
the VECTOR coder (The codebook size in the table is the number of vectors used to quantize the 
body region. The background is quantized to zero gray level). 

Codebook 
Size 

Bit Rate (bpp) 
SNR (dB) Codebook 

Size 
Region 
Information 

Organs Body 
Region 

Overall SNR (dB) 

256 0.284 1.539 1.441 2.942 21.241 
128 0.284 1.539 1.238 2.732 19.511 
64 0.284 1.539 1.052 2.557 17.943 
32 0.284 1.539 0.878 2.381 16.400 
16 0.284 1.539 0.G99 2.191 14.806 
8 0.284 1.539 0.540 2.059 12.830 

shows the bit rates of each region, the overall bit rate, and the SNR of the quantized 

sequence. 

When comparing the compression of the original sequence and the filtered se

quence, at around 2.9 bpp the quantized filtered sequence is 8.3 dB better than the 

quantized original sequence. Moreover, when comparing the vector coder with the 

scalar one, at around 2.9 bpp, the vector quantized filtered sequence is 10.1 dB better 

than the scalar quantized filtered sequence and 11.9 dB better than the scalar quan

tized original sequence. Figure 7.8 shows the SNR versus bit rate curves when using 

the scalar and vector coders for both the scalar and vector coders. The vector coder 

outperforms the scalar one and the filtered sequence has better SNR versus bit rate 

curves than the original one. 

Figure 7.9 shows the bull's-eyes of the filtered sequence and four compressed 

versions of it using the scalar coder. Figure 7.11 shows the bull's-eyes of the filtered 

sequence and seven compressed versions of it using the vector coder. 

Tables 7.12 and 7.13 show the average count of the 10 different regions of 

the bull's-eye when using scalar and vector quantization, respectively. The mean 

percentage difference ratio between the averages of the original and those of the 
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Figure 7.11: The bull's-eyes when using the VECTOR coder. The bull's-eyes are from top to bottom 
left to right for the filtered sequence and the filtered sequence with the body region quantized using 
1, 4, 16, 32, 64, 128, and 256 codebook sizes. 
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filtered sequence is 0.56%, which is very small. Tables 7.14 and 7.15 show the standard 

deviations of the 10 different regions for the filtered sequence. The mean percentage 

difference ratio between the standard deviations of the original and the filtered is 

9.45%. Table 7.16 and 7.17 show the averages of the four main areas and the ratios 

of their averages for the filtered sequence. The difference between the original and 

filtered sequence is small. The percentage difference ratio is less than 0.5% for the 

averages and the ratios. 

The mean percentage difference ratios between the averages of the filtered se

quence and the compressed filtered sequence are 1.94%, 1.51%, 2.06%, and 1.99% 

when quantizing the body region to 16, 8, 4, and 2 levels, respectively. The mean 

percentage difference ratios are 2.64%, 2.15%, 2.64%, 2.24%, 2.83%, 1.27%, and 2.10% 

when vector quantizing the body region using 256, 128, 64, 32, 16, and 8 codebook 

sizes. The mean percentage difference ratios between the standard deviations of the 

filtered sequence and the compressed filtered sequence are 6.48%, 8.83%, 26.19%, 

and 31.52% when quantizing the body region to 16, 8, 4, and 2 levels, respectively. 

The mean percentage difference ratios are 7.01%, 22.98%, 18.77%, 13.57%, 11.75%, 

11.84%, and 12.37% when vector quantizing the body region using 256, 128, 64, 32, 

16, and 8 codebook sizes. The percentage of the difference ratios of the area ratios is 

less than 3%. 

The preservation of the diagnostic information was measured using the bull's-

eye display approach. Although, the image has been segmented, filtered with different 

£'s for the different regions, and compressed, the averages of the different regions and 

the ratios between the different regions remained within almost 5% of the averages 

of the original image. The standard deviations of the decompressed sequences re

mained close to those of the original sequence. This suggests that the system did 

not lose the diagnostic information in the sequence. A better test is a complete ROC 

analysis, which involves a large number of doctors who will subjectively evaluate the 

performance of the system. 
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Table 7.12: The averages of the 10 regions of the filtered sequence when using the SCALAR coder. 

II Sequence ~ REGION ~f II Sequence 

1 2 3 4 5 6 7 8 9 10 | 
Filtered 84 102 99 116 112 126 125 118 124 "m [ 
16 levels 80 101 97 113 111 123 123 117 121 110 
8 levels 82 101 98 113 111 123 123 117 121 111 

|| 4 levels 77 104 100 114 113 124 124 117 122 109 
1 2 levels 86 105 105 117 115 125 127 119 123 112 J, 

Table 7.13: The averages of the 10 regions of the filtered sequence when using the VECTOR coder. 

|| Sequence REGION || Sequence 

1 2 3 r4 5 6 7 8 _j 9 10 J 
Filtered 84 102 99 116 112 126 125 118 124 HI [ 
256 80 101 98 114 110 123 122 116 121 109 
128 81 102 99 114 111 124 124 117 121 110 
64 79 98 95 113 107 123 124 117 121 110 
32 80 104 102 113 115 123 125 118 120 109 
16 79 103 101 109 114 121 123 117 120 111 
8 78 102 j 100 113 112 122 124 117 120 108 
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Table 7.14: The standard deviations of the 10 regions of the filtered sequence when using the 
SCALAR coder. 

II Sequence ~ REGION ~7 II Sequence 
1 2 3 4 5 | 6 7 8 9 10 | 

Filtered 21.50 14.34 16.67 6.93 3.37 17.13 18.87 21.74 18.50 13.16 
16 levels 21.31 15.55 18.06 6.69 4.26 16.40 18.07 20.40 18.08 12.88 

| 8 levels 21.04 15.20 17.22 6.28 4.98 16.60 17.45 20.13 18.23 12.83 
|| 4 levels 21.90 18.93 21.57 9.10 8.64 17.40 19.26 23.08 18.72 12.17 
|| 2 levels 20.42 20.38 19.79 8.52 10.43 17.82 17.77 21.74 19.52 11.73 J 

Table 7.15: The standard deviations of the 10 regions of the filtered sequence when using the 
VECTOR coder. 

1 Sequence REGION 1 Sequence 
1 2 3 J 4 | 5 6 7 8 9 10 | 

Filtered 21.50 14.34 16.67 6.93 3.37 17.13 18.87 21.74 18.50 13.16 
256 23.08 15.26 17.05 7.78 4.99 15.06 16.04 19.28 16.87 11.23 
128 21.97 14.88 16.63 7.52 5.26 15.34 15.84 18.86 17.05 12.73 
64 22.82 13.81 15.44 5.24 3.51 14.51 14.53 17.55 15.88 12.21 
32 21.57 16.38 18.22 7.52 6.13 16.80 17.22 19.98 19.00 11.92 
16 22.68 15.55 17.28 11.40 4.32 13.70 16.04 17.22 14.50 12.19 

J 8 23.10 17.26 18.56 9.04 7.16 14.61 17.20 18.75 16.60 10.96] 
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Table 7.16: The averages of the septal (S), lateral (L), anterior (A), and inferior (I) regions and 
the corresponding ratios of the filtered sequence when using the SCALAR coder. 

II Sequence ~ S ~ L A "I S/L " A/L ^W P V T 1 
Filtered 224 236 228 234 0.949 0.966 0.992 0.974 

|| 16 levels 220 232 224 230 0.948 0.966 0.991 0.974 
|| 8 levels 221 232 224 230 0.953 0.966 0.991 0.974 
|| 4 levels 224 235 228 231 0.953 0.970 0.983 0.987 
|| 2 levels 232 238 230 236 0.975 0.966^ 0.992 0.975 J 

Table 7.17: The averages of the septal (S), lateral (L), anterior (A), and inferior (I) regions and 
the corresponding ratios of the filtered sequence when using the VECTOR coder. 

|| Sequence S L A I "s/TT A/L [W^ ^ 7 ^ 
Filtered 1 224 236 228 ~ 234 0.949 0.966 0.992 0.974 
256 220 231 224 230 0.952 0.970 0.996 0.974 
128 223 232 226 231 0.961 0.974 0.996 0.978 
64 219 228 221 230 0.961 0.969 1.009 0.961 
32 227 235 227 231 0.966 0.966 0.983 0.983 
16 224 234 224 226 0.957 0.957 0.966 0.991 

1 8 224 232 224 230 0.966 0.966 0.991 0.974 
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CHAPTER 8 

SUMMARY AND SUGGESTIONS FOR 

FURTHER RESEARCH 

8.1 Summary 

The effect of noise on image compression was studied using the JPEG lossy image 

compression standard and Lloyd-Max quantization. Noise severely degrades the per

formance of these compression algorithms. It was noticed that at high and medium-

high bit rates the quality of the compressed image did not change by increasing the 

bit rate. Moreover, at medium to low bit rates, the quality of the compressed image, 

in most examples used, improved by increasing the degree of quantization. At low bit 

rates, the coders filtered much of the noise and the quality of the compressed noisy 

images was closer to that of the noise-free images, than to the noisy inputs to the 

coder. 

The results of noisy source coding theory were used to compress images that 

were corrupted by data-dependent Poisson noise and by film-grain noise. The distor

tion was measured in terms of the MSE]. The restoration-then-compression approach, 

which is optimal in the MSE sense, resulted in large gains at high and high-medium 

bit rates. This approach was also used with the lossy JPEG image compression 

standard and with EPIC, which is a pyramid coder. Although the restoration-then-

compression approach is not optimal for the case of JPEG and EPIC, the results 

were similar to those of the Lloyd-Max quantizer. Moreover, at medium bit rates, 



the quality of the compressed noisy images using JPEG, EPIC, or VQ improves in 

the PSNR sense by decreasing the bit rate. This is because the coder is removing 

more noise than is introduced as quantization artifacts. When the image is filtered, 

the PSNR is monotonic in the bit rate, which is what we would expect. 

A restoration algorithm for images that are corrupted by noise and compressed 

using a block-transform coder was also developed. The postprocessing algorithm 

results in an approximation to the MMSE solution. Two types of noise images were 

considered: images that are corrupted by data-dependent Poisson noise and images 

that are corrupted by film-grain noise. The noise-free case was also considered. Two 

approaches, which are based on modeling the image as a Markov random field, have 

been developed. The first models the image by an intensity field while the second 

models it as an intensity field and a line field. Both approaches improved the quality of 

the compressed noisy images in terms of both perceptual quality and PSNR. However, 

the first approach was faster and it gave better results. Using a line field increases 

the number of computations of each iteration. In addition, the clique potential used 

in the thesis balances the penalty for sharp edges and the reward for smoothness at 

the edges; thus the line field is an extra burden. Moreover, for the noise-free case, the 

gain in the PSNR of the first approach is slightly higher than the gains presented in 

[47] at almost the same bit rate. In [47], at a compression ratio of 30:1, the reduction 

in the MSE is 0.65 while using the first approach at a compression ratio of 30.05:1, 

the reduction in the MSE is 0.98. 

The restoration-then-compression approach was then applied to code SPECT 

cardiac sequences. This involved developing a content-based image compression al

gorithm in order to preserve the diagnostic information in the sequence. The per

formance of the proposed algorithms was measured using objective measures, MSE, 

and a diagnostic accuracy measure based on the bull's-eye display. The proposed 

algorithms preserved the diagnostic information in the sequences while compressing 

them significantly. 
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8.2 Novel Accomplishments of the Thesis 

• The effect of noise on compression was studied. Noisy source coding theory was 

extended to data-dependent Poisson noise and film-grain noise. This involved 

developing a MMSE restoration algorithm as a preprocessing stage in the coder. 

• A preprocessing algorithm to be used for encoding images corrupted by data 

dependent Poisson noise was developed and was applied to synthetic and real 

images. 

• A preprocessing algorithm for estimating images corrupted by data dependent 

film-grain noise was developed and was applied to synthetic and real images. 

• A postprocessing algorithm for estimating noise-free and noisy images com

pressed using block-transform coders was developed. The postprocessing ap

proach was implemented for the noise-free case, the Poisson noise case, and the 

film-grain noise case. 

• Since medical images are usually corrupted by Poisson noise, the preprocessing 

approach was applied to cardiac SPECT sequences to improve the performance 

of different coders. 

• A content-based coder was developed to compress cardiac SPECT sequences. 

The quality of the compressed sequences was measured using MSE and a diag

nostic accuracy measure based on the bull's-eye display. 

8.3 Suggestions for Further Research 

Images are often blurred and corrupted by noise. The effect of degradations upon 

the formation of images on compression should be studied. If the effect of such 

degradations severely degrades the performance of image compression algorithms, the 
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results of the thesis can be applied to enhance the performance of the compression 

algorithms. 

Postprocessing of lossy compressed images was effective in improving both the 

PSNR and the visual quality of the image. The same approach can be extended 

to postprocess images compressed using subband coders, which at low bit rates add 

ringing artifacts to the image. 

The proposed algorithms to compress SPECT cardiac sequences are content 

progressive, i.e., the information can be sent according to its content. It can also 

be modified to be resolution progressive as well. This can be done by changing the 

quantization to be a resolution progressive coder. 
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APPENDIX A 

DEVELOPMENT OF THE 

RESTORATION ALGORITHMS 

The conditional probability of the observed image given the original image is an 

independent identically distributed pdf, i.e., 

p(xif) = n > « i , j ) | f ) , (A.1) 
y 

where x(i,j) is the value of x at pixel (i, j). The conditional probability of the original 

image given the observed image, p(f |x), can be derived using Bayes' formula 

ex P [ - /3 l / ( f ) ]n>MM)| f ) 

p(f|x) = hj 

Zp(x) 

= 2-ltsp[-0U(fa)], (A.2) 

where 

e/(f|x) = t/(f) + i ; | l n p ( i ( i > j ) | f ) . (A.3) 

Applying the mean-field theory approximation results in 

uv{i,m) = tHf{i,j)) + ^bip(x(i,m, (A.4) 
where U (f(i,j)) = U(---,E{f(m,n)},---J(i,j),---,E{f(k, I)},---) such that (k,l) ± 

(i,j) =£ (m,n). The MMSE estimate becomes 

£ / ( * , J ) e x p [-/Je> (/(i,j) |x)] 

r'(i,3) = E{f{i,m = 3 * 2 = r - , • (A.5) 
2^ exp[-/3!7(/(i , j) |x)j 



Since both summations are over all possible values of f(i,j), only the part of U(.) 

that includes f(i,j) remains inside both summations and the other parts cancel each 

other resulting in 

E / M « P [ - ^ ) ( / ( M ) M ] 
(A.6) /m/(U) = !{',i) 

»*p[-£^)( / (» . iW] 
l(ij 

where U™^.), the mean-field local energy, is the part of U(.) that depends on f(i,j) 

while the influence of other pixels is approximated by their means. For a first-order 

2-dimensional neighborhood system 

£>W) (/('.J')) = 2{Vc(f(t,j),E{f(i - l,j))) + Vc(ni,j),E{f(i + l,j)})+ 

Vc(f(iJ),E{f(i,j - 1)}) + Vc{f(i,j),E{f(i,j + 1)})}. (A.7) 

The saddle point approximation implies solving for the minimum of the energy func

tion. Using the gradient descent algorithm to solve for the minimum of the energy 

function results in the following set of iterative equations 

t (i,3) = f(hj)-u- (A.8) 

~rt where fl(m,n) is the estimate of the mean-value of f(m,n) at iteration t, and UJ is 

the step size. For the Poisson noise case, these equations are 

f+1(i,j) = f'(t,j)-wlj 1 -
x(i,j) 

}%i)\ 

+ E 
[k,l)£N(i,j) I 

dVt(f(iJ),f(kJ)) 

For the film-grain noise case, the iterative equations are 

(A.9) 

pflhJ) 

i _ 7 + igi 
f(i,3) J 

[x{hj) ~ fXhj)] 

P-Y<*[f\i,j)]*i 

i-«t, • -=*/ 

+ E 
{k,l)£N(i,j) 

dVr(f(i,j)J{k,l)) (A.10) 
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From (4.9) the partial derivative is seen to be 

dVt(f(i,j),f(k,l)) . (262-2)(f(i,j)-f(k,l)) + 2(f(i,j)-f(k,l)y 

df{i,j) S2 + (f(i,j)-f(k,l)f 
(A.ll) 
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APPENDIX B 

GENERALIZED GAUSSIAN 

DISTRIBUTION 

The probability density function of a generalized-Gaussian distributed random vari

able x with mean m and variance a2 is [60, 31] 

p(x) — aexp [— \b(x — m)|c], (B.l) 

where 

h = * 
(J 

r(a) 
(B.3) 

c is the shape factor, and T(a) is the Gamma function defined as 

T(a)= xa-1exp{-x)dx. (B.4) 
JQ 

In the rest of the appendix, we'll assume, without loss of generality, that m = 0. 

The r order moment in the interval [t\, £2] is 

•ta 

where 

rt2 

= I xrp(x)dx — /i(^27r,CjCr) — n(ti,r,c,a), (B-5) 
Ai 

/i(i, r, c, cr) = / x'p{x)dx. (B.6) 
•/o 



The r order absolute moment in the interval [t\, £2] is 

fj.'r= \x\T(x)dx = \n(t2,r,c,a)\-\iJ,(tur,c,(T)\. (B.7) 
J ti 

The "complete" absolute r moment of the generalized Gaussian is [31] 

m, /

oo 
\x\rp{x)dx — fi(oo, r, c, o) — ;i(—00, r, c, a) (B.8) 

-00 

r ( £ ± i ) 

r& 
If we define "J/ as 

• r r . (B.9) 

* = 7 ^ (B.10) 
(mi)2 

mm (B.ll) 
(r(|))2 

and noting that ^ is independent of the data, hence it can be computed and stored, 

^ can be used to estimate the shape factor c after estimating the second and second 

absolute moments. The first absolute moment for an N point data vector can be 

estimated by 
1 N-l 

™1 = *r = : Z \Xnl (B.12) 
i V n=0 

and the second absolute moment can be estimated by 

™2 = T? = I > » ) 2 = ^ . (B-13) 

where a2 is an estimate of the variance. Equation B.3 is then used to estimate 6, 

afterwards, Equation B.3 is used to estimate a. 
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APPENDIX C 

EXAMPLES OF CODING CARDIAC 

SEQUENCES 

Myocardial perfusion imaging is usually performed in conjunction with physical ex

ercise [71]. The images obtained shortly after exercise arc compared with the images 

taken at rest. Such comparison shows the change in blood flow due to coronary 

stenosis. This appendix studies the performance of the cardiac SPECT compression 

algorithms proposed in Chapter 7 on a complete rest and stress study. Section C.l 

discusses the rest case and Section C.2 studies the stress case. These studies are 

organized the same as the study discussed in Section 7.6. 



C.l Rest Example 
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(a) Original 

b 

(b) Filtered 

(c) SCALAR quantized original 

• . . < . ! * 

(d) SCALAR quantized filtered 

Wmmv WBm 

i/iMiM^Mm . . I ^ S K I ; rfll|l|flpi;?: SM®M$0m 
mmmmmmmm 

Wm 

(e) VECTOR quantized original (f) VECTOR quantized filtered 

Figure C . l : R E S T EXAMPLE: (a) The original sequence, (b) The filtered sequence, (c) 8-level 
SCALAR quantized original sequence, (d) 8-level SCALAR quantized filtered sequence, (e) 8-vector 
VECTOR quantized original sequence, (f) 8-vector VECTOR quantized filtered sequence. 
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3 3.5 t 
Bit rate (bpp 

Figure C.2: R E S T EXAMPLE: Comparing Region-based SCALAR and VECTOR quantization ap
proaches. The solid and dotted lines are for the original sequence when using the SCALAR and 
VECTOR coders, respectively. The dashed and dash-dotted lines are for the filtered sequence when 
using the SCALAR and VECTOR coders, respectively. 

F igure C.3: R E S T EXAMPLE: The bull's-eyes when using SCALAR quantization. The top row 
shows from left to right the bull's-eyes for the original sequence, the original sequence with the 
body region quantized to 4, 8, 16 levels, respectively. The bottom row shows from left to right the 
bull's-eyes for the filtered sequence, the filtered sequence with the body region quantized to 4, 8, 16 
levels, respectively. 
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• ' - • : ; : • . : . 

Figure C.4: R E S T EXAMPLE: The bull's-eyes when using the VECTOR coder. The bull's-eyes are 
from top to bottom left to right for the filtered sequence and the filtered sequence with the body 
region quantized using 1, 4, 16, 32, 64, 128, and 256 codebook sizes. 

F igure C.5: R E S T EXAMPLE: The bull's-eyes when using the VECTOR coder. The bull's-eyes are 
from top to bottom left to right for the original sequence and the original sequence with the body 
region quantized using 1, 4, 16, 32, 64, 128, and 256 codebook sizes. 
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Table C . l : R E S T EXAMPLE: The averages of the 10 regions of the original sequence when using 
the SCALAR coder. 

Sequence REGION Sequence 

1 2 1 3 4 5 6 7 8 9 10 

Original 58 59 65 51 56 54 61 35 46 47 
16 levels 60 60 66 51 57 54 62 35 47 47 
8 levels 60 61 67 52 57 54 63 36 47 48 
4 levels 62 61 68 53 58 55 63 36 48 48 
2 levels 64 62 69 53 59 57 65 37 49 49 

Table C.2: R E S T EXAMPLE: The averages of the 10 regions of the original sequence when using 
the VECTOR coder. 

Sequence REGION Sequence 
1 2 3 4 5 6 7 8 9 10 

Original 58 59 65 51 56 54 61 35 46 47 
256 60 58 66 51 56 54 61 35 46 47 
128 59 58 65 51 56 54 61 35 46 47 
64 58 58 66 51 56 54 61 35 46 47 
32 57 59 66 51 56 53 61 35 47 47 
16 59 60 66 51 56 54 62 35 47 47 
8 59 59 65 50 56 54 62 36 47 48 



Table C.3: R E S T EXAMPLE: The averages of the 10 regions of the filtered sequence when using the 
SCALAR coder. 

| Sequence ~ REGION ~f | Sequence 

1 2 3 4 5 6 7 8 9 10 | 

Filtered 56 59 64 49 55 52 60 33 45 ~45 [ 
16 levels 54 58 63 48 54 51 60 33 45 45 
8 levels 55 59 63 48 54 52 59 33 45 45 

| 4 levels 55 59 63 48 53 51 59 33 45 45 
| 2 levels 54 59 63 50 53 51 60 34 45 46 J 

Table C.4: R E S T EXAMPLE: The averages of the 10 regions of the filtered sequence when using the 
VECTOR coder. 

1 Sequence " REGION 1 Sequence 

1 2 3 4 5 6 7 8 9 10 

Filtered 56 59 64 49 55 52 60 33 45 45 
256 53 58 63 48 54 51 59 33 45 45 
128 55 59 63 49 54 51 59 33 45 45 
64 54 59 63 49 53 51 59 33 45 45 
32 55 59 63 49 54 51 59 33 45 45 
16 55 59 63 49 F54 51 59 33 45 45 

I 8 54 59 63 49 54 51 59 33 45 45 \ 



Table C.5: R E S T EXAMPLE: The standard deviations of the 10 regions of the original sequence 
when using the SCALAR coder. 

1 Sequence " REGION ~f 1 Sequence 

1 2 3 4 5 6 7 8 9 10 J 
Original 16.71 9.75 8.91 6.88 5.40 9.58 10.42 9.90 6.87 1 11.72 

| 16 levels 16.91 9.84 9.21 7.05 5.59 9.98 10.48 10.31 7.11 11.66 

8 levels 16.52 10.08 9.34 7.17 5.31 10.09 10.44 10.51 7.34 11.91 

|| 4 levels 16.57 10.34 9.64 7.36 5.18 10.30 10.54 10.80 7.57 12.00 

2 levels 18.51 10.58 10.33 8.10 5.55 10.91 10.70 10.98 7.29 12.12 | 

Table C.6: R E S T EXAMPLE: The standard deviations of the 10 regions of the original sequence 
when using the VECTOR coder. 

1 Sequence REGION " j 1 Sequence 

1 2 1 3 4 [ 5 6 [7 8 9 10 _ [ 

| Original 16.71 9.75 8.91 6.88 5.40 9.58 10.42 9.90 6.87 11.72 

256 16.67 9.35 9.48 7.00 5.75 9.60 10.16 10.13 6.91 11.94 i 

128 15.15 10.08 9.53 7.11 5.45 9.56 10.38 10.19 7.01 11.68 1 
64 14.48 9.84 9.22 6.80 5.64 9.48 10.24 9.25 7.02 11.60 i 

32 17.33 9.57 8.58 6.67 5.76 9.60 10.14 9.79 6.93 11.49 

16 15.57 9.49 8.82 7.18 5.37 9.60 10.33 10.14 7.25 12.06 

L8 18.08 9.18 8.89 7.60 5.42 9.92 10.47 10.76 7.11 11 .84 J 
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Table C.7: R E S T EXAMPLE: The standard deviations of the 10 regions of the filtered sequence 
when using the SCALAR coder. 

Sequence REGION Sequence 

1 2 3 4 5 6 7 8 9 10 

Filtered 16.11 7.69 6.40 6.28 5.29 8.70 9.27 9.93 6.16 11.05 

16 levels 16.54 7.54 6.49 6.06 5.23 8.48 9.17 9.82 6.14 11.02 

8 levels 15.72 7.74 6.36 6.06 5.18 8.71 9.21 9.88 6.24 11.02 

4 levels 15.12 8.26 6.21 6.09 5.28 8.72 9.09 9.87 6.38 10.95 

2 levels 16.35 7.98 6.35 6.27 5.90 8.82 9.13 9.98 6.61 11.08 

Table C.8: R E S T EXAMPLE: The standard deviations of the 10 regions of the filtered sequence 
when using the VECTOR coder. 

Sequence REGION Sequence 

1 2 3 4 5 6 7 8 9 10 

Filtered 16.11 7.69 6.40 6.28 5.29 8.70 9.27 9.93 6.16 11.05 

256 18.17 7.60 6.34 6.24 5.22 8.38 9.10 9.68 6.07 10.99 

128 15.96 7.64 6.32 6.34 5.20 8.77 9.29 9.93 6.17 10.99 

64 15.66 7.65 6.41 6.19 5.30 8.74 9.20 9.88 6.26 11.01 

32 15.99 7.73 6.57 16.35 5.29 8.67 9.21 9.92 6.22 10.97 

16 16.04 7.37 6.22 6.25 5,09 8.74 9.28 9.82 6.30 11.00 

8 16.20 7.93 6.35 6.46 4.72 8.60 9.30 9.76 6.07 10.97 
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Table C.9: R E S T EXAMPLE: The averages of the septal (S), lateral (L), anterior (A), and inferior 
(I) regions and the corresponding ratios of the original sequence when using the SCALAR coder. 

Sequence S L A rI S/L A/L I/L A/I 
Original 126 102 11.3 86 1.235 1.108 0.843 1.314 

16 levels 128 104 114 86 1.231 1.096 0.827 1.326 

8 levels 130 104 115 88 1.250 1.106 0.846 1.307 

4 levels 131 106 116 89 1.236 1.094 0.840 1.303 

2 levels 134 108 119 90 1.241 1.102 0.833 1.322 

Table C.10: R E S T EXAMPLE: The averages of the septal (S), lateral (L), anterior (A), and inferior 
(I) regions and the corresponding ratios of the original sequence when using the VECTOR coder. 

Sequence S L A I S/L A/L I/L A/I 
Original 126 102 113 86 1.235 1.108 0.843 1.314 

256 127 102 112 36 1.245 1.098 0.843 1.302 

128 126 102 112 86 1.235 1.098 0.843 1.302 

64 127 102 h112 86 1.245 1.098 0.843 1.302 

32 127 103 112 86 1.233 1.087 0.835 1.302 

16 128 103 h114 86 1.243 1.107 0.835 1.326 

8 127 103 113 86 1.233 1.097 0.835 1.314 
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Table C . l l : R E S T EXAMPLE: The averages of the septal (S), lateral (L), anterior (A), and inferior 
(I) regions and the corresponding ratios of the filtered sequence when using the SCALAR coder. 

Sequence S L A I S/L A/L I/L A/I 

Filtered 124 100 111 82 1.240 1.110 0.820 1.354 

16 levels 123 99 109 81 1.242 1.101 0.818 1.346 

8 levels 122 99 111 81 1.232 1.121 0.818 1.370 

4 levels 122 98 110 81 1.245 1.122 0.827 1.358 

2 levels 123 98 110 84 1.255 1.122 0.857 1.310 

Table C.12: R E S T EXAMPLE: The averages of the septal (S), lateral (L), anterior (A), and inferior 
(I) regions and the corresponding ratios of the filtered sequence when using the VECTOR coder. 

Sequence S L A I S/L A/L I/L A/I 

Filtered 124 100 111 82 1.240 1.110 0.820 1.354 

256 122 99 109 81 1.232 1.101 0.818 1.346 

128 122 99 110 82 1.232 1.111 0.828 1.341 

64 122 98 110 82 1.245 1.122 0.837 1.341 

32 122 99 110 82 1.232 1.111 0.828 1.341 

16 122 99 110 82 1.232 1.111 0.828 1.341 

8 122 99 110 82 1.232 1.111 0.828 1.341 
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C.2 Stress Example 
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* 

' 

(a) Original (b) Filtered 

(c) SCALAR quantized original (d) SCALAR quantized filtered 

* 
: > • • ; : : 

(e) VECTOR quantized original (f) VECTOR quantized filtered 

Figure C.6: STRESS EXAMPLE: (a) The original sequence, (b) The filtered sequence, (c) 8-level 
SCALAR quantized original sequence, (d) 8-level SCALAR quantized filtered sequence, (e) 8-vector 
VECTOR quantized original sequence, (f) 8-vector VECTOR quantized filtered sequence. 
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Figure C.7: STRESS EXAMPLE: Comparing Region-based SCALAR and VECTOR quantization ap
proaches. The solid and dotted lines are for the original sequence when using the SCALAR and 
VECTOR coders, respectively. The dashed and dash-dotted lines are for the filtered sequence when 
using the SCALAR and VECTOR coders, respectively. 

F igure C.8: STRESS EXAMPLE: The bull's-eyes when using SCALAR quantization. The top row 
shows from left to right the bull's-eyes for the original sequence, the original sequence with the 
body region quantized to 4, 8, 16 levels, respectively. The bottom row shows from left to right the 
bull's-eyes for the filtered sequence, the filtered sequence with the body region quantized to 4, 8, 16 
levels, respectively. 
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Figure C.9: STRESS EXAMPLE: The bull's-eyes when using the VECTOR coder. The bull's-eyes 
are from top to bottom left to right for the filtered sequence and the filtered sequence with the body 
region quantized using 1, 4, 16, 32, 64, 128, and 256 codebook sizes. 

F igure C.IO: STRESS EXAMPLE: The bull's-eyes when using the VECTOR coder. The bull's-eyes 
are from top to bottom left to right for the original sequence and the original sequence with the 
body region quantized using 1, 4, 16, 32, 64, 128, and 256 codebook sizes. 
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Table C.13: STRESS EXAMPLE: The averages of the 10 regions of the original sequence when using 
the SCALAR coder. 

1 Sequence REGION "~[ 1 Sequence 

1 2 3 | 4 _ 5 6 7 8 9 10 _[ 

| Original 41 52 57 60 53 47 67 29 25 ~37 f 
|| 16 levels 42 53 58 61 54 47 67 29 25 37 
|| 8 levels 42 54 59 62 55 47 68 30 25 38 
|| 4 levels 42 54 58 62 55 47 68 29 25 38 
2 levels 43 54 59 62 55 47 68 30 _j 25 38 J, 

Table C.14: STRESS EXAMPLE: The averages of the 10 regions of the original sequence when using 
the VECTOR coder. 

I| Sequence REGION I| Sequence 

1 2 3 4 "1 5 6 7 8 9 10 _[ 

Original 41 52 57 60 53 47 67 29 25 37 
256 41 52 57 60 53 46 [66 29 25 37 
128 41 52 57 60 53 46 67 29 25 37 
64 41 52 57 60 53 46 67 29 25 37 
32 40 52 57 60 53 46 66 ~" 29 25 37 
16 41 52 57 61 53 46 67 29 25 37 

I 8 42 52 57 61 53 46 66 29 25 37 
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Table C.15: STRESS EXAMPLE: The averages of the 10 regions of the filtered sequence when using 
the SCALAR coder. 

Sequence REGION Sequence 

1 2 3 4 5 6 7 8 9 10 

Filtered 39 51 54 56 51 44 63 29 25 34 
16 levels 38 51 54 56 51 44 63 28 24 34 
8 levels 39 51 53 56 51 44 63 28 24 34 
4 levels 39 51 55 57 51 45 65 29 24 34 
2 levels 39 53 57 L60 53 47 [68 30 24 35 

Table C.16: STRESS EXAMPLE: The averages of the 10 regions of the filtered sequence when using 
the VECTOR coder. 

Sequence REGION Sequence 

1 2 3 J 4 5 r6 n 7 8 9 10 

Filtered 39 51 54 56 51 44 63 29 25 34 
256 38 50 53 56 50 43 63 29 24 34 
128 35 51 54 56 51 44 63 29 24 34 
64 37 52 54 56 52 44 63 28 24 34 
32 36 50 53 55 50 44 63 28 23 33 
16 35 50 53 57 50 43 63 28 23 34 
8 38 51 54 56 51 44 64 28 23 34 



Table C.17: STRESS EXAMPLE: The standard deviations of the 10 regions of the original sequence 
when using the SCALAR coder. 

Sequence REGION Sequence 

1 2 3 4 5 6 7 8 9 10 

Original 10.04 11.75 8.19 4.74 11.26 17.49 8.01 13.18 7.77 21.28 

16 levels 10.58 11.77 8.14 4.76 11.32 17.66 8.02 13.26 7.71 21.49 
8 levels 10.49 11.77 8.28 4.76 11.32 17.77 8.18 13.30 7.63 21.91 

4 levels 10.46 11.77 8.35 4.78 11.37 17.86 8.26 13.39 7.68 21.80 

2 levels 10.55 11.77 8.17 4.71 11.32 17.78 8.25 13.28 7.57 21.82 

Table C.18: STRESS EXAMPLE: The standard deviations of the 10 regions of the original sequence 
when using the VECTOR coder. 

Sequence REGION Sequence 

1 2 _j 3 r 4 5 6 7 8 9 10 

Original 10.04 11.75 8.19 4.74 11.26 17.49 8.01 13.18 7.77 21.28 

256 10.08 11.70 8.09 4.74 11.29 17.39 7.95 12.97 7.38 21.26 

128 9.75 11.72 8.24 4.68 11.29 17.33 7.96 12.99 7.37 21.14 

64 9.76 11.36 8.10 4.74 10.89 17.56 8.00 13.17 7.39 21.31 

32 10.27 11.78 8.04 4.65 ^11.29 17.37 7.89 12.96 7.37 21.20 

16 9.77 12.24 8.67 5.07 11.77 17.49 7.99 13.08 7.37 21.14 

8 ^ 0 . 5 3 12.26 8.66 5.07 11.82 17.46 8.04 13.02 7.38 21.24 
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Table C.19: STRESS EXAMPLE: The standard deviations of the 10 regions of the filtered sequence 
when using the SCALAR coder. 

II Sequence ' REGION "7 II Sequence 
1 2 3 4 5 6 7 8 9 10 J 

Filtered 8.55 8.03 6.92 3.56 7.77 15.85 6.92 11.54 7.83 19.86 
| 16 levels 8.80 8.00 7.31 3.75 7.80 16.27 7.17 11.29 7.19 20.09 
|| 8 levels 8.54 8.00 7.09 3.89 7.82 16.30 7.36 11.26 7.05 19.71 
|| 4 levels 9.66 7.53 7.43 3.63 7.30 16.72 7.37 12.15 7.54 21.02 
|| 2 levels 11.08 9.31 8.03 3.89 ^9.26 17.30 7.17 12.62 6.70 22.52J 

Table C.20: STRESS EXAMPLE: The standard deviations of the 10 regions of the filtered sequence 
when using the VECTOR coder. 

| Sequence REGION - ~~[ | Sequence 
1 2 3 4 5 6 7 8 9 10 J 

Filtered 8.55 8.03 6.92 3.56 7.77 15.85 6.92 11.54 7.83 19.86 
256 9.56 8.50 7.68 4.02 8.27 15.77 7.05 11.35 7.18 19.50 
128 11.48 8.50 7.44 4.46 8.29 16.23 7.36 11.06 7.15 19.60 
64 9.96 8.00 6.93 4.64 7.83 15.71 7.00 11.35 7.30 19.63 
32 9.51 7.57 7.41 4.24 7.34 15.42 7.29 11.65 7.05 19.71 
16 10.17 9.47 7.93 4.20 9.25 16.04 7.18 11.49 7.36 20.03 
8 _^ 9.29 8.50 7.84 5.10 8.37 16.14 7.75 11.37 7.09 19.91 [ 
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Table C.21: STRESS EXAMPLE: The averages of the septal (S), lateral (L), anterior (A), and 
inferior (I) regions and the corresponding ratios of the original sequence when using the SCALAR 
coder. 

| Sequence | S L A "I S/L LA/L rw ̂ /ni Original 124 78 99 89 1.590 1.269 1.141 1.112 1' 
16 levels 125 79 Pm 90 1.582 1.266 1.139 1.111 
8 levels 127 80 101 92 1.587 1.262 1.150 1.098 
4 levels 126 80 101 91 1.575 1.262 1.137 1.110 

j 2 levels J 127 80 101 92 1.587 1.262 1.150 1.098 J 

Table C.22: STRESS EXAMPLE: The averages of the septal (S), lateral (L), anterior (A), and 
inferior (I) regions and the corresponding ratios of the original sequence when using the VECTOR 

coder. 

|| Sequence IT L A rT~ "syir A/L rT/L | A / I _ [ 
|| Original 124 "78 "99 '"89" 1.590 1.269 1.141 1.112 | 

256 123 78 98 89 1.577 1.256 1.141 1.101 
128 124 78 98 89 1.590 1.256 1.141 1.101 
64 124 78 98 89 1.590 1.256 1.141 1.101 
32 123 78 98 89 1.577 1.256 1.141 1.101 
16 124 78 98 90 1.590 1.256 1.154 1.089 
8 123 78 98 90 1.577 1.256 1.154 1.089J 
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Table C.23: STRESS EXAMPLE: The averages of the septal (S), lateral (L), anterior (A), and 
inferior (I) regions and the corresponding ratios of the filtered sequence when using the SCALAR 
coder. 

[Sequence rs~ L A " ~r S/L A/L rw "v̂ n 
Filtered 117 76 95 85 T .539" 1.250 1.118 1 1.118 1 

II 16 levels 117 75 95 84 1.560 1.267 1.120 1.131 
|| 8 levels 116 75 95 84 1.547 1.267 1.120 1.131 
|| 4 levels 120 75 96 86 1.600 1.280 1.147 1.116 
1 2 levels 125 77 j 100 90 1.623 1.299 1.169 1.111 J 

Table C.24: STRESS EXAMPLE: The averages of the septal (S), lateral (L), anterior (A), and 
inferior (I) regions and the corresponding ratios of the filtered sequence when using the VECTOR 
coder. 

1 Sequence ~S~ L ~A~ T~ ~S7L A/L I/L ~A7r~l 
Filtered 117 76 95 85 1.539 1.250 1.118 1 1.118 
256 116 74 93 85 1.568 1.257 1.149 1.094 
128 117 75 95 85 1.560 1.267 1.133 1.118 
64 117 76 96 84 1.539 1.263 1.105 1.143 
32 116 73 94 83 1.589 1.288 1.137 1.133 
16 116 73 93 85 1.589 1.274 1.164 1.094 

J 8 118 74 95 84 1.595 1.284 1.135 1.131 
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