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SUMMARY

This dissertation presents a novel convolutional dictionary learning algorithm for sig-

nals with a large number of channels. This algorithm uses low-rank updates for the dic-

tionary, so that a matrix decomposition necessary for pursuit can be updated efficiently. In

later chapters, this algorithm is applied to multi-layer dictionary models with multi-channel

dictionaries and single-channel coefficients, where the number of filters in one layer is the

number of channels in the subsequent dictionary layer. This architecture is demonstrated

on the task of JPEG compression artifact removal.

xvii



CHAPTER 1

INTRODUCTION

1.1 Dictionaries and Dictionary Learning

Dictionary models are powerful and versatile tools, useful in denoising [1], classification

[2], anomaly detection [3], super-resolution [4][5], inpainting [6], trajectory-basis non-rigid

structure from motion [7][8], and more. Dictionaries are interpretable, and their models

are well-suited for incorporating model assumptions using prior knowledge of the data. In

some applications, well-performing dictionaries can be learned from very limited data.

The dictionary model decomposes the signal s into the dictionary D and coefficients

x.

s ≈Dx (1.1)

When the dictionary is known, solving for x using D and s is a pursuit algorithm. When

the dictionary is unknown, learning the dictionary from s is called dictionary learning. In

this dissertation, I present a novel dictionary learning algorithm specifically for convolu-

tional dictionaries.

1.1.1 Convolutional Dictionaries

The convolutional dictionary model is a dictionary model which imposes a convolutional

structure on the dictionary. This structure is shown in Figure 1.1. Note that while the ex-

ample uses 1-dimensional convolution, it is straightforward to extend to multi-dimensional

convolution through vectorization. The convolutional dictionary model equation can be

notated as signals convolved with filters:

s ≈
∑
m

fm ∗ xm (1.2)

1



Figure 1.1: This is a 1-dimensional dictionary with convolutional structure. The columns
of the dictionary are shifted versions of the dictionary filters.

where fm is the mth filter of the dictionary, xm is the coefficients for the mth filter, and

∗ indicates convolution. This structure is useful for signals where shift-invariance is a

desirable characteristic and/or when dealing with variable-length data. Convolutional ap-

proaches often outperform patch-based methods. For the rest of this dissertation, I will

notate
∑

m fm ∗xm asDx. The matrixD consists of M circulant blocksDm, each block

corresponding to a particular filter fm of the M dictionary filters.

1.2 Multi-Layer Dictionaries

A multi-layer dictionary treats the coefficients as the signal of a subsequent dictionary

model. That is,

s ≈D1x1

x1 ≈D2x2

...

xL−1 ≈DLxL

(1.3)

where L is the number of layers. Pursuit for a multi-layer dictionary model seeks to find

the coefficients for all layers x1,x2, . . . ,xL. Multi-layer dictionary models have been used

2



in applications such as feature extraction for classification [9][10][11] and trajectory-basis

non-rigid structure from motion [8]. Dictionary models can often be easily extended to

allow the researcher or practitioner to inject prior knowledge into the model architecture

through the use of convex constraints or known linear operator Φ. For convolutional dic-

tionaries, the projection operator Φ need not have convolutional structure.

s ≈ ΦDx

fi(x) ≤ bi ∀i
(1.4)

In the context of multi-layer dictionary models, these types of dictionary model modi-

fications have been shown to be useful for applications such as interpolation of LIDAR

measurements using RGB imagery [12][13] and compression-artifact removal [8].

Some researchers have noted that convolutional neural networks resemble multi-layer

dictionaries [6]: thresholding is a type of pursuit algorithm, and rectified linear unit activa-

tions perform the same operation. A convolutional neural network is a composite function

of convolutionals, pooling functions, and activation functions. Over the last decade, con-

volutional neural networks have reached state-of-the-art performance on a wide variety of

tasks. In a way, multi-layer dictionary models can be thought of as a blend of dictionary

models and convolutional neural networks, since multi-layer dictionary models mimic the

layered structure of convolutional neural networks, while maintaining the interpretability

of dictionary models.

1.3 Organization of Dissertation

In chapter 2, I derive a novel dictionary learning method for multi-channel signals. In

chapter 3, I show how that approach can be adapted to multi-layer dictionary models. Fi-

nally, in chapter 4, I apply the multi-layer dictionary approach to JPEG compression artifact

removal. Chapter 5 features some practical considerations when implementing these algo-

rithms.

3



CHAPTER 2

LEARNING DICTIONARIES FOR MULTI-CHANNEL SIGNALS

2.1 Introduction

Much of the literature on using convolutional dictionaries is tailored to applications with

signals that only have a small number of channels (like RGB or grayscale imagery). Many

of the methods designed with a small number of channels in mind do not transfer well to

applications like hyperspectral imagery [14] with signal measurements containing a large

number of channels.

Signal measurements are not the only way to end up with a large number of channels.

In a multi-layer dictionary model, the coefficients corresponding to a dictionary from one

layer become the signal for the subsequent layer. The number of channels for this signal

is the number of dictionary filters from the previous layer, so if the number of filters in a

layer is large, the number of channels for the subsequent layer will also be large.

This chapter presents a novel method to learn convolutional dictionaries for multi-

channel signals.

2.2 Dictionary Types

There are many ways to construct a convolutional sparse representation of a multi-channel

signal. One way models can differ is if and how signal channels share dictionaries and

coefficients.

For example, models with single-channel dictionaries represent the channels in the co-

efficients:1

S ≈DX (2.1)
1In this case, bothX and S still refer to a single sample. They are capitalized because they are matrices.

4



S =

[
s1 . . . sC

]
(2.2)

D =

[
D1 . . . DM

]
(2.3)

X =


x1,1 . . . x1,C

... . . . ...

xM,1 . . . xM,C

 (2.4)

where sc ∈ RK̂ , Dm ∈ RK̂×K̂ , and xm,c ∈ RK̂ , using K̂ as the number of elements in a

single channel of the signal.

Alternatively, each signal channel could be given its own dictionary model.

sc ≈Dcxc (2.5)

where sc ∈ RK̂ ,Dc ∈ RK̂×MK̂ , and xc ∈ RMK̂ .

In both the above-mentioned cases, the models use multi-channel coefficients. For

multi-layer models, this poses a problem: with each subsequent layer, the number of co-

efficients grows by a factor of the number of filters. Thus, the number of coefficients

increases exponentially in respect to the number of layers.

This exponential growth could be dampened (though not eliminated) through the use of

product dictionaries [15]. In product dictionary models, correlations between channels are

captured in a separate matrix ßßß.

S ≈DXßßß (2.6)

S =

[
s1 . . . sC

]
(2.7)

5



D =

[
D1 . . . DM

]
(2.8)

X =


x1,1 . . . x1,B

... . . . ...

xM,1 . . . xM,B

 (2.9)

where sc ∈ RK̂ , Dm ∈ RK̂×K̂ , xm,b ∈ RK̂ , and ßßß ∈ RB×C . Pursuit algorithms for product

dictionaries still seek to estimate X for fixed S, D, and ßßß. For dictionary learning, ßßß is

updated withD.

For this work, I will instead focus on multi-channel dictionaries with shared coeffi-

cients.

s ≈Dx (2.10)

s =


s1

. . .

sC

 (2.11)

D =


D1,1 . . . D1,M

... . . . ...

DC,1 . . . DC,M

 (2.12)

x =


x1

...

xM

 (2.13)

where sc ∈ RK̂ , Dc,m ∈ RK̂×K̂ , and xm ∈ RK̂ , again using K̂ to represent the number

of elements in one channel of the signal. When extended to multi-layer dictionaries, this

structure closely aligns with that of convolutional neural networks, and the number of chan-

6



nels for a subsequent dictionary is the number of filters for the dictionary from the previous

layer. The number of coefficients does not grow exponentially with the number of layers,

but the number of channels can be large.

2.3 Pursuit and Sparse Coding

The dictionary model decomposes the signal sn into a dictionary D (which generalizes to

other signals) and the coefficients xn (which are specific to the signal sn):

sn ≈Dxn (2.14)

(Here the subscript n specifies a particular signal and its corresponding coefficients.) A pur-

suit algorithm finds the coefficients xn corresponding to a particular signal sn for known

dictionary D. If the number of dictionary atoms (columns) is larger than the dimension of

the signal, then the number of unknowns is larger than the number of equations, and many

solutions for xn represent sn equally well (at least in an L2 sense). Researchers and practi-

tioners commonly either impose a sparsity constraint on the coefficients or add a coefficient

L1 penalty to the objective function, which removes this ambiguity from the problem con-

struction. When such a penalty or constraint is used, pursuit is sometimes called sparse

coding. With the added coefficient L1 penalty, the pursuit optimization problem looks like

this:

xn = arg min
x

1

2
‖sn −Dx‖2

2 + λ‖x‖1 (2.15)

where λ is a nonnegative hyperparameter controlling how much the L1 norm of the coef-

ficients is penalized. Researchers have proposed many ways to solve this problem. If the

dictionary is convolutional and the number of channels is low, a standard approach is to use

the Alternating Direction Method of Multipliers (ADMM) algorithm.
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2.4 ADMM

ADMM is a convex-optimization algorithm used to solve the optimization problem:

minimize
x,y

f(x) + g(y)

subject toAx+By + c = 0

(2.16)

where f and g are convex functions [16]. (I will address how to put the sparse coding

problem in this form in the next section.)

The ADMM algorithm makes use of the augmented Lagrangian, a particular expression

that has a saddle point at the solution to the constrained optimization problem:

Lρ(x,y,u) = f(x) + g(y) + uH(Ax+By + c) +
ρ

2
‖Ax+By + c‖2

2 (2.17)

where ρ is a hyperparameter greater than zero and u is the dual variable for the constraints.

At the saddle-point solution, the augmented Lagrangian is at a minimum in respect to

x and y, but at a maximum in respect to u.

The ADMM algorithm is an iterative search for the saddle point of the augmented

Lagrangian. Each iteration consists of a primal update for x, a primal update for y, and a

dual update for u:

x(t+1) = arg min
x
Lρ(x,y(t),u(t)) (2.18)

y(t+1) = arg min
y
Lρ(x(t+1),y,u(t)) (2.19)

u(t+1) = u(t) + ρ(Ax(t+1) +By(t+1) + c) (2.20)
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Algorithm 1: ADMM
y = initial guess

u = 0

while Not Converged do
x = arg minx Lρ(x,y,u)

y = arg miny Lρ(x,y,u)

u = u+ ρ(Ax+By + c)

end

The primal updates serve to move towards the minimum of the augmented Lagrangian

in respect to x and y with u fixed, and the dual update fixes x and y, and performs gradient

ascent on u with step size ρ. Under very mild assumptions, this process converges to a

saddle point of the augmented Lagrangian, which matches a solution to the constrained

optimization problem.2 The ADMM algorithm is shown in Algorithm 1.

There are two common variations of the ADMM algorithm that this dissertation will

make use of. The first is the scaled form, which comes from completing the square for the

augmented lagrangian function:

Lρ(x,y,u) = f(x) + g(y) +
ρ

2
‖Ax+By + c+

u

ρ
‖2

2 −
ρ

2
‖u
ρ
‖2

2 (2.21)

The term −ρ
2
‖u
ρ
‖2

2 can be ignored for the primal updates because it has no dependence on

the primal variables. It is sometimes more convenient to keep track of usc = u
ρ

instead

of u, since that is the form that appears in the augmented Lagrangian after completing the

square. The dual update for the scaled form is easily derived from equation 2.20.

u(t+1)

ρ
=
u(t)

ρ
+Ax(t+1) +By(t+1) + c (2.22)

This form is known as scaled ADMM.
2Neither the saddle point nor the corresponding solution to the constrained optimization problem are

guaranteed to be unique, however.
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Another common variation of ADMM updates the dual variable more frequently [17].

x(t+1) = arg min
x
Lρ(x,y(t),u(t)) (2.23)

u(t+ 1
2

) = u(t) + (α− 1)ρ(Ax(t+1) +By(t) + c) (2.24)

y(t+1) = arg min
y
Lρ(x(t+1),y,u(t+ 1

2
)) (2.25)

u(t+1) = u(t+ 1
2

) + ρ(Ax(t+1) +By(t+1) + c) (2.26)

When α > 1, this is known as over-relaxation, and if α < 1, this is known as under-

relaxation.3 α is always chosen to be greater than zero. In some applications, researchers

have found using over-relaxation converges faster than without over-relaxation [17], but

optimal choice of α is problem-dependent [18]. Scaled ADMM with over-relaxation is

3I have elected to notate over/under relaxation differently than standard notation, but the α is the same,
and the notations are mathematically equivalent. The standard notation does not use the first dual update,
and instead includes another variable h(t+1) = Ax(t+1) − (1 − α)(Ax(t+1) +By(t) + c) and substitutes
h(t+1) forAx(t+1) in the dual-update equation and the second primal-update equation. While more familiar
to readers who have dealt with ADMM before, this standard notation complicates ADMM with an extra
variable and obscures how the dual update and second primal update relate to the augmented Lagrangian.
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shown in Algorithm 2.
Algorithm 2: Scaled ADMM With Over or Under-Relaxation
α ∈ (0, 2]

y = initial guess

usc = 0

while Not Converged do
x = arg minx Lρ(x,y, ρusc)

usc = usc + (α− 1)(Ax+By + c)

y = arg miny Lρ(x,y, ρusc)

usc = usc +Ax+By + c

end

2.5 Applying ADMM to the Sparse Coding Problem

Recall from section 2.3, equation 2.15 for sparse coding.

xi = arg min
x

1

2
‖si −Dx‖2

2 + λ‖x‖1 (2.27)

This can be rewritten to match the ADMM form from equation 2.16:

minimize
x,y

1

2
‖si −Dx‖2

2 + λ‖y‖1

subject to y − x = 0

(2.28)

Using his form, the ADMM algorithm can be used to solve the sparse coding problem,

as shown in Algorithm 3. Given sufficient iterations, x and y will both be close to the

optimal, but they may not be equal. Either can be used as an approximate solution to the

sparse coding problem.

Computing the augmented Lagrangian of the convex optimization problem in expres-
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sion 2.28 yields the following equation:

Lρ(x,y,u) =
1

2
‖si −Dx‖2

2 + λ‖y‖1 +
ρ

2
‖y − x+

u

ρ
‖2

2 −
1

2ρ
‖u‖2

2 (2.29)

Starting with the x-update:

x(t+1) = arg min
x
Lρ(x,y(t),u(t)) (2.30)

Since the desired result is the minimizer, setting the gradient to zero and solving for x will

produce the solution.

∇x(t+1)Lρ(x(t+1),y(t),u(t)) = 0 (2.31)

0 = DTDx(t+1) −DTsi + ρx(t+1) − ρ
(
y(t) +

u(t)

ρ

)
(2.32)

(ρI +DTD)x(t+1) = DTsi + ρ

(
y(t) +

u(t)

ρ

)
(2.33)

x(t+1) = (ρI +DTD)−1

(
DTsi + ρ

(
y(t) +

u(t)

ρ

))
(2.34)

In subsection 2.5.1, there is a discussion of the implications of this update equation, how to

compute it for cases in which the signal has a low number of channels, and the challenges

it poses for signals with many channels.

If using over-relaxation4, there is a dual update:

u(t+ 1
2

)

ρ
=
u(t)

ρ
+ (α− 1)(y(t) − x(t+1)) (2.35)

4or under-relaxation
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Moving on to the y-update:

y(t+1) = arg min
y

Lρ(x
(t+1),y,u(t+ 1

2
)) (2.36)

Excluding the terms that don’t include y yields

y(t+1) = arg min
y
λ‖y‖1 +

ρ

2
‖y − x(t+1) +

u(t+ 1
2

)

ρ
‖2

2 (2.37)

This is a well-known problem, whose solution is

y(t+1) = Sλ
ρ
(x(t+1) − u

(t+ 1
2

)

ρ
) (2.38)

where S is the shrinkage operator:

Sb(x) =


x− b x > b

0 −b < x < b

x+ b x < −b

(2.39)

In the case of a vector, matrix, or tensor input, the shrinkage operator is applied element by

element.

Finally, the last update equation for the dual variable:

u(t+1)

ρ
=
u(t+ 1

2
)

ρ
+ y(t+1) − x(t+1) (2.40)
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Algorithm 3: ADMM for Sparse Coding
α ∈ (0, 2]

y = DTs

usc = 0

while Not Converged do
x =

(
ρI +DTD

)−1 (
DTs+ ρ(y + usc)

)
usc = usc + (α− 1)(y − x)

y = Sλ
ρ
(x− usc)

usc = usc + y − x
end

2.5.1 Exploiting Dictionary Structure for the Inverse Problem

Returning to the x update:

x(t+1) =
(
ρI +DTD

)−1
(
DTsi + ρ

(
y(t) +

u(t)

ρ

))
(2.41)

For problems using a dictionary with convolutional structure, this inverse for the convolu-

tional sparse coding problem is very structured. Exploiting this structure is important for

efficient computation, because the matrix ρI +DTD is a large matrix.

WritingD in a block structure, I have

D =


D1,1 . . . D1,M

... . . . ...

DC,1 . . . DC,M

 (2.42)

where Dc,m is a circulant matrix capturing channel c of the mth filter of the dictionary.
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Circulant matrices are diagonalizable with Fourier eigenvectors:

D =


F−1D̂1,1F . . . F−1D̂1,MF

... . . . ...

F−1D̂C,1F . . . F−1D̂C,MF

 (2.43)

where D̂c,m is a diagonal matrix whose elements are the discrete Fourier transform (FFT)

of channel c of the mth dictionary filter.

This sparsely banded structure is a useful form in analyzing the structure of the inverse

problem:

(ρI +DTD)−1 = F−1(ρI + D̂HD̂)−1F (2.44)

where

D̂ =


D̂1,1, . . . , D̂1,M

... . . . ...

D̂C,1, . . . , D̂C,M

 (2.45)

and in a slight abuse of notation, F computes the FFT separately on the coefficients for

each filter. In [19], Bristow et al. observe the matrix ρI + D̂HD̂ is sparsely banded, so

the inverse can be broken down into much smaller inverse problems, and one only needs to

compute the inverse of an M ×M matrix for every element in the signal. (ρI + D̂HD̂) is

an M ×M block matrix, whose blocks are diagonal. Each submatrix collects one element

from the diagonal of each of the blocks.) This inverse can be calculated in O(K̂M3) time.

Furthermore, the maximum rank of these submatrices is C, so if C is small, these

inverses can be computed even more efficiently using the Woodbury matrix identity or

Sherman-Morrison equations [20] [21] [22].

According to the Woodbury matrix identity [23], for any invertible matrix U and any

matrix V :

(U + V HV )−1 = U−1 −U−1V H(I + V U−1V H)−1V U−1 (2.46)
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So,

(ρI + D̂HD̂)−1 =
1

ρ
I− 1

ρ
D̂H(ρI + D̂D̂H)−1D̂ (2.47)

This means that instead of computing inverse of K̂ M × M matrices (where K is the

number of elements in a single channel of the signal), one could instead choose to compute

the inverse of K̂ C×C matrices. Rather than computing an inverse explicitly, it is generally

preferable to calculate a Cholesky or LDLT decomposition instead, and the efficiency gains

due to the Woodbury matrix identity are relevant regardless of the chosen representation.

The inverse or matrix decomposition can be computed in O(K̂C3) time.

2.6 Sparse Coding for Multi-Channel Signals: Alternatives to My Novel Approach

In applying ADMM to the convolutional sparse coding problem, [20] [21] [22] exploit

the low-rank structure of the inverse problem in the x update for efficient computation.

Unfortunately, this relies on the number of channels being small, as the rank corresponds

to the minimum of the number of channels C and the number of filters M . Broadly, there

are two main approaches to avoid or simplify this challenging inverse problem: either

construct a variant of the ADMM algorithm that simplifies the inverse problem, or use a

proximal gradient approach that avoids it altogether.

In [13][12], the authors use the ADMM algorithm for sparse coding. They observe that

if the dictionary is a tight frame, that is, DDT = I, then the inverse can be simplified

without using the frequency representation.

(ρI +DTD)−1 =
1

ρ
I− 1

ρ(ρ+ 1)
DTD (2.48)

This produces the x update equation:

x(t+1) =
1

ρ+ 1
DTs+

(
I− 1

ρ+ 1
DTD

)(
z(t) − γ

(t)

ρ

)
(2.49)
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The above equations can be derived using the Woodbury matrix identity. In their work, they

use the equations built on the assumption that the dictionary is a tight frame, but develop no

mechanism to ensure that their assumption is accurate. Thus, ultimately 1
ρ
I− 1

ρ(ρ+1)
DTD

merely serves as an approximation to (ρI +DTD)−1. Empirically, they observe that the

algorithm converges, but the dictionaries they learn are not tight frames, so the solution

they converge to is not optimal5.

Other works avoid the ADMM algorithm entirely.

The iterative shrinkage thresholding algorithm (ISTA) is an iterative algorithm that min-

imizes the sum of two convex functions f and g. f is required to be smooth. It is helpful

for f to be easily differentiable and g to have a simple proximal operator.

proxg(µ) = arg min
ν

1

2
‖ν − µ‖2

2 + g(ν) (2.50)

Then, ISTA has the following update equation, where the constant L controls step size.

x(t+1) = prox g
L

(
x(t) − 1

L
∇xf(x(t))

)
(2.51)

FISTA is similar to ISTA, but adds momentum [24].

z(t+1) = prox g
L

(
x(t) − 1

L
∇xf(x(t))

)
(2.52)

r(t+1) =
1

2

(
1 +

√
1 + 4(r(t))2

)
(2.53)

x(t+1) = z(t+1) +
r(t) − 1

r(t+1)
(z(t+1) − x(t)) (2.54)

Applying FISTA to the sparse coding problem, 1
2
‖s−Dx‖2

2 is straightforward to differen-

5The solution does not minimize the sparse coding objective function.
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tiate and λ‖x‖1 has a simple proximal operator.

∇x
(

1

2
‖s−Dx‖2

2

)
= DTDx−DTs (2.55)

proxλ
L ‖·‖1

(·) = Sλ
L

(2.56)

So, the FISTA equations for convolutional basis pursuit are the following:

z(t+1) = Sλ
L

(
x(t) − 1

L
DT (Dx(t) − s)

)
(2.57)

r(t+1) =
1

2

(
1 +

√
1 + 4(r(t))2

)
(2.58)

x(t+1) = z(t+1) +
r(t) − 1

r(t+1)
(z(t+1) − x(t)) (2.59)

In [22], Wohlberg compares FISTA to ADMM on a sparse coding task and finds FISTA

converges much slower than ADMM. However, the comparison is made on signals with

few channels, so ADMM is able to exploit the structure ofD for efficient x updates.

In a recent work [8], Chodosh and Lucey derive prox-linear updates using convex solver

methods detailed in [25]. The updates come from the formula:

z(t+1) = arg min
z

(
∇f(x(t))

)T
(z − x(t)) +

L
2
‖z − x(t)‖2

2 + λ‖z‖1 (2.60)

where x(t) = z(t) + ω(t)(z(t) − z(t−1)) and ω(t) is a momentum factor. This yields the
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update equation6:

z(t+1) = Sλ
L

(
x(t) − 1

L
DT (Dx(t) − s)

)
(2.61)

x(t+1) = z(t+1) + ω(t)(z(t+1) − z(t)) (2.62)

While neither Chodosh and Lucey, nor the work they cite, mention FISTA, the resemblance

is very close. The only distinction is in the momentum step. Given these similarities, it is

likely the performance between the two methods is similar.

2.7 Dictionary Learning

The last few sections have focused on sparse coding. For sparse coding, the dictionary

is fixed or known. Most dictionary learning algorithms alternate between pursuing co-

efficients and updating dictionary filters, as shown in Algorithms 4 and 5.7 The Coeffi-

cientUpdate in Algorithm 5 may consist of one or more sparse coding update steps. Not

all dictionary learning algorithms perfectly adhere to this structure [26], but the template

covers most approaches.

Algorithm 4: Online Dictionary Learning Algorithm
D = Dinit

i = 0 while Stopping Criteria Not Met do
s = GetData(i)
x = Pursuit(D, s)
D = DictionaryUpdate(D, s,x)
i = i+ 1

end

6In their paper, they add a non-negativity constraint and allow different λ for the coefficients of each
filter (and possibly spatially varied as well). They also are constructing the equations specifically for a multi-
layer network. Those modifications relate to their objective function and constraints, not their minimization
algorithm, so I rewrote their equations without those modifications to illustrate how their approach relates to
the FISTA algorithm.

7The capital S in Algorithm 5 represents the entire collection of signal samples, as opposed to a single
signal s.
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Algorithm 5: Batch Dictionary Learning Algorithm
D = Dinit

X = Xinit

while Stopping Criteria Not Met do
X = CoefficientUpdate(D,X,S)
D = DictionaryUpdate(D,S,X)

end

There are many methods to updating dictionaries: FISTA, ADMM, projected stochastic

gradient descent, et cetera. Good dictionaries tend to have the following characteristics:

1. Good dictionaries are able to represent the data well. That is

s ≈Dx (2.63)

for some sparse coefficients x.

2. Furthermore, it is desirable for the dictionary to be normalized.

C∑
c=1

‖dc,m‖2
2 = 1 (2.64)

where dc,m is the first column ofDc,m, that is, the cth channel of zero-padded dictio-

nary filter fm.

3. Specifically, convolutional dictionary filters are typically spatially or temporally con-

strained.

(I− T )dc,m = 0 (2.65)

(Here, I − T selects the elements of dc,m that must be zero.) Generally, dictionary

updates do not increase the size of the filters.

Dictionary updates tend to improve data representation while maintaining normaliza-

tion and spatial or temporal constraints. If using ADMM for pursuit, every time the dictio-

nary is updated, the inverse representation must be updated as well. The inverse representa-
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tion can be updated more efficiently if the dictionary update is low rank, but approximating

a dictionary update using a truncated singular value decomposition would forfeit charac-

teristic 2. The next section describes a novel means to handle these challenges, with an

explanation of how to efficiently update the inverse representation and a novel sparse cod-

ing method designed to handle dictionary updates that produce unnormalized dictionaries.

2.8 A Novel Approach to Sparse Coding: ADMM with Low-Rank Dictionary Up-

dates

In this section, I present a novel approach to sparse coding for signals with a large number

of channels. The approach uses the ADMM algorithm described in section 2.4 and will

share many similarities to the standard ADMM sparse coding approach described in section

2.5 for signals with few channels.

2.8.1 Updating the Inverse Representation

Under many circumstances, inverse representations can be updated efficiently, provided

the update adheres to a low-rank structure. Recall the frequency representation of the

convolutional dictionary:

D̂ =


D̂1,1 . . . D̂1,M

... . . . ...

D̂C,1 . . . D̂C,M

 (2.66)

where D̂c,m is diagonal for all c and m. Let D̂c,m[k̂] be the k̂th element of the diagonal and

let

D̂[k̂] =


D̂1,1[k̂] . . . D̂1,M [k̂]

... . . . ...

D̂C,1[k̂] . . . D̂C,M [k̂]

 (2.67)

Then D̂[k̂] is a C ×M matrix collecting the k̂th frequency of all channels and filters ofD.

Thus, (ρI+D̂HD̂)−1 really consists of K̂ separate inverse problems: (ρI+D̂H [k̂]D̂[k̂])−1.
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Consider the update equation.

D̂[k̂](n+1) = D̂[k̂](n) + Û V̂ [k̂]H (2.68)

where Û is an orthogonal matrix of size C × Rand V̂ [k̂] is an matrix of size M × R.8

Then,

ρI + (D̂(n+1))H [k̂]D̂(n+1)[k̂] = ρI + (D(n)[k̂] + Û V̂ H [k̂])H(D̂(n)[k̂] + Û V̂ H [k̂]) (2.69)

For brevity and simplicity, I will drop the notation indexing the frequency k̂ and selecting

the iteration n for matrix D̂(n)[k̂] and simply use D̂ instead. However, the reader should

keep in mind the D̂ here is a denseC×M matrix capturing the component of the dictionary

D for implicit frequency k̂, only a submatrix of the sparsely banded D̂ of size K̂C ×M

from earlier in this section.

ρI+(D̂(n+1))HD̂(n+1) = ρI+(D̂(n))HD̂(n) +V̂ ÛHÛ V̂ H +V̂ ÛHD̂(n) +(D̂(n))HÛ V̂ H

(2.70)

Given that Û is an orthogonal matrix, V̂ ÛHÛ V̂ H can easily be broken into Rrank-one

Hermitian updates.

V̂ ÛHÛ V̂ H =
R∑

i=1

uHi uiviv
H
i (2.71)

Similarly, V̂ ÛHD̂ + D̂HÛ V̂ H can be broken into RHermitian, rank-two updates:

V̂ ÛHD̂ + D̂HÛ V̂ H =
R∑

`=1

(
viu

H
i D̂ + D̂Huiv

H
i

)
(2.72)

8Û and V̂ are also iteration specific, but to notate that would over-clutter the equations. For efficient,
low-rank updates to the inverse representation, it is possible for both Û and V̂ to vary in respect to frequency
k̂ (instead of just V ). However, most convolutional models limit spatial or temporal support of the dictionary
(so that the filter size is smaller than the signal), and preventing U from varying across frequency is part of a
means to satisfy that constraint.
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Inverse representations can be efficiently updated if the update is Hermitian and rank one.

The details of such updates are discussed in Appendix A.

The Hermitian rank-two update consists of two rank-one terms, but the terms are not

Hermitian, complicating the update process. However, this can be resolved through eigen-

decomposition.

viu
H
i D̂ + D̂uiv

H
i =

[
vi D̂Hui

] [
D̂Hui vi

]H
(2.73)

While matrix products are not commutative, some of the eigenvalues of matrix products

are commutative. Furthermore, for general matricesA andB the eigenvectors ofAB and

BA are related:

BAω = τω =⇒ ABAω = τAω (2.74)

where τ is the eigenvalue and ω is a vector.9 So, if ω is an eigenvector of BA, Aω is an

eigenvector ofAB.

[
D̂Hui vi

]H [
vi D̂Hui

]
=

uHi D̂vi uHi D̂D̂
Hui

vHi vi vHi D̂
Hui

 (2.75)

The eigenvalues and corresponding eigenvectors of a 2 × 2 matrix can be computed using

the quadratic formula. Assuming that the 2 × 2 matrix has 2 distinct eigenvalues, the

expressions for these are below.10

eigval


a b

c a∗


 = real(a)±

√
bc− (imag(a))2 (2.76)

9In equation 2.74, some variables are repurposed to explain some general eigenvector relationships for
matrix products. The reader should be careful not confuse A and B for the matrices in the ADMM con-
straints.

10It is not guaranteed the 2 × 2 matrix will have 2 distinct eigenvalues. In Appendix B, I consider those
cases.
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eigvec


a b

c a∗


 =

 b

−j imag(a)±
√
bc− (imag(a))2

 (2.77)

For the sake of brevity, I will drop the subscripts for u and v.

Letting ηu = ‖D̂Hu‖2
2, ηv = ‖v‖2

2, and ηu,v = uHD̂v:

eigval


ηu,v ηu

ηv η∗u,v


 = real(ηu,v)±

√
ηvηu − (imag(ηu,v))2 (2.78)

eigvec


ηu,v ηu

ηv η∗u,v


 =

 ηu

−j imag(ηu,v)±
√
ηvηu − (imag(ηu,v))2

 (2.79)

Therefore,

eigvec(vuHD̂ + D̂HuvH) = ηuv +

(
−j imag(ηu,v)±

√
ηvηu − (imag(ηu,v))2

)
D̂Hu

(2.80)

eigval(vuHD̂ + D̂HuvH) = real(ηu,v)±
√
ηvηu − (imag(ηu,v))2 (2.81)

Assuming that the matrix is diagonalizable and that the eigenvectors are orthonormal,11 if

τ+ and τ− are the eigenvalues of vuHD̂+ D̂HuvH and ω+ and ω− are the corresponding

eigenvectors, then

vuHD̂ + D̂HuvH = τ+ω+ω
H
+ + τ−ω−ω

H
− (2.82)

So, the rank-2 updates can be split into 2 rank-1 components that can be used to update the

inverse representation for ρI + D̂H [k̂]D̂[k̂]. Therefore, the update from equation 2.69

ρI + (D̂(n+1))H [k̂]D̂(n+1)[k̂] = ρI + (D(n)[k̂] + Û V̂ H [k̂])H(D̂(n)[k̂] + Û V̂ H [k̂]) (2.83)
11This is not guaranteed. See appendix B for details.
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consists of 3 Rrank-1 Hermitian updates, and the updates must be computed for each fre-

quency k̂. Appendix A explains how to update a Cholesky decomposition with rank-1

Hermitian updates.

Recall once again, the dictionary update under consideration:

D̂(n+1)[k̂] = D̂(n)[k̂] + Û V̂ H [k̂] (2.84)

This update must be of rank Rat every frequency. Furthermore, the dictionary filter is

spatially or temporally limited to its filter size. This second constraint is met if V̂ H [k̂] is

similarly spatially limited.

2.8.2 Computational Cost

Given an updated dictionary G(n+1) from some standard dictionary learning update, di-

rectly computing the Cholesky decomposition of ρI +
(
Ĝ(n+1)

)H
Ĝ(n+1) is of computa-

tional costO(K̂M3).12 The novel approach for the inverse update presented in the previous

section replaces the direct computation with low-rank updates to the Cholesky decomposi-

tion. This involves two steps:

1. Approximate a standard dictionary update with a low-rank approximation: Û V̂ [k̂]H ≈

Ĝ(n+1)[k̂]−RD̂(n)[k̂]

2. Use the low-rank approximation to update the Cholesky decomposition of ρI +

(RD̂)HRD̂.

Since Û does not vary with frequency, the first step can be computed in spatial domain.

Just as in the frequency domain, the bracket indexing indicates G[k] is a C ×M matrix,

12With the use of the Woodbury matrix lemma, this can be instead computed in O(K̂C3).
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corresponding to kth element for each filter and channel.

U ,Σ,Vnormalized = TruncSVD

([
G(n+1)[0]−RD(n)[0] · · · G(n+1)[K]−RD(n)[K]

])
(2.85)

V = VnormalizedΣ (2.86)

In many applications, the filter size K will be much smaller than the signal size K̂. The

computational cost of this operation is O(C2KM) + O(CMK̂ log(K̂)). Estimating the

truncated SVD computation using randomized SVD reduces the computational cost even

further O( RCKM) +O(CMK̂ log(K̂)).

The second step applies 3 Rrank-1 Hermitian updates to the Cholesky decomposition.

Each update can be computed in O(K̂M2) time.13

So, the dictionary update computational cost for this novel approach requiresO( RCKM)+

O(CMK̂ log(K̂)) +O( R̂KM2).14

Using filter size K = 5 and signal size K̂ = 64, I compared the update times of the

full Cholesky decomposition from scratch to the Cholesky update described in the previous

section. For this comparison, I used a rank-1 approximation R= 1 and kept the number of

filters equal to the number of channels M = C. Computations were computed on a CPU

with an Intel i7-4710HQ CPU @ 2.50GHz processor with 16GB of RAM. The results are

shown in Figure 2.1. For a large number of channels and filters, the computation time

for directly computing the Cholesky decomposition from scratch exceeds the computation

time for updating a previous decomposition.

13Similar to in the direct computation case, the Woodbury matrix lemma can be used to replace the M2

with C2 in the computational complexity. However, it is important to account for the fact that V̂ is not an
orthogonal matrix, since it loses its orthogonality in the Fourier transform. (A unitary transform applied to the
columns of a matrix whose rows are orthogonal does not necessarily preserve that orthogonality.) Fortunately,
V̂ H [k̂]V̂ [k̂] can be diagonalized inO(M R2) time using the eigendecomposition, which can subsequently be
used to diagonalize Û V̂ H V̂ Û inO(C R2. Since this must be done for each frequency, these diagonalizations
would require O(M R2K̂) +O(C R2K̂).

14IfC is smaller thanM , this computational complexity can be reduced using the Woodbury matrix lemma.
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Figure 2.1: This plot shows a comparison of computation times for computing the Cholesky
decompostion directly versus updating it instead. In all runs, the number of channels is the
same as the number of filters.

2.8.3 Handling Dictionary Normalization

Consider the optimization problem:

min
x,y

1

2
‖s−Dx‖2

2 + λ‖y‖1

subject toR−1y −R−1x = 0

(2.87)

whereR is a diagonal matrix with scaled identity blocks:

R =



r[1]I 0 . . . 0

0 r[2]I
...

... . . .

0 . . . r[M ]I


(2.88)

andD has normalized dictionary filters.
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This optimization problem has the augmented Lagrangian function:

Lρ(x,y,u) =
1

2
‖s−Dx‖2

2 + λ‖y‖1 + uHR−1(y − x) +
ρ

2
‖R−1(y − x)‖2

2 (2.89)

∇x Lρ(x,y,u) = −R−1u−DHs+DTDx+ ρR−2x− ρR−2y (2.90)

For x,y,u such that∇xLρ(x,y,u) = 0:

(ρR−2 +DTD)x = ρR−2y +R−1u+DTs (2.91)

R−1
(
ρI + (DR)T (DR)

)
R−1x = ρR−2y +R−1u+DTs (2.92)

(
ρI + (DR)T (DR)

)
R−1x = ρR−1y + u+ (DR)Ts (2.93)

R−1x =
(
ρI + (DR)H(DR)

)−1 (
ρR−1y + u+ (DR)Ts

)
(2.94)

So,

arg min
x
Lρ(x,y,u) = R

(
ρI + (DR)T (DR)

)−1 (
ρR−1y + u+ (DR)Ts

)
(2.95)

However, taking a similar approach to that of scaled ADMM, it will be simpler to track

ssc = R−1x instead of x directly.

R−1x(t+1) =
(
ρI + (DR)T (DR)

)−1
(

(DR)Ts+ ρ

(
R−1y(t) +

u(t)

ρ

))
(2.96)
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Moving on to the y update,

arg min
y
Lρ(x,y,u) = SλR2

ρ

(
x− Ru

ρ

)
(2.97)

Like with x, it is simpler to track ysc = R−1y than y itself.

R−1y(t+1) = SλR
ρ

(
R−1x(t+1) − u

(t+ 1
2)

ρ

)
(2.98)

Finally, tracking usc = u
ρ

instead of u, the dual updates are

u(t+ 1
2)

ρ
=
u(t)

ρ
+ (α− 1)(R−1y(t) −R−1x(t+1)) (2.99)

u(t+1)

ρ
=
u(t+ 1

2)

ρ
+R−1y(t+1) −R−1x(t+1) (2.100)

Thus, with this modification to the sparse coding optimization problem, the inverse repre-

sentation used in the x updates can be updated efficiently (given that the dictionary updates

adhere to a particular low-rank structure), and normalization can be handed through a nor-

malization factorR−1. The resulting pursuit algorithm is shown in Algorithm 6. The same

pursuit algorithm in the larger dictionary learning context is shown in Algorithm 7.

2.9 Conclusion

In this chapter, I have derived a novel sparse coding algorithm for signals with a large

number of channels. One of the steps in the iterative algorithm involves solving an inverse

problem, but the optimization is constructed such that the representation of the inverse can

be updated efficiently O( RCKM) +O(CMK̂ log(K̂)) +O( R̂KM2) when used within a

dictionary-learning algorithm. For certain problems with a large number of channels, this

is an improvement to existing methods, whose inverse updates require cubic complexity
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Algorithm 6: ADMM for Sparse Coding, Large Number of Channels
α ∈ (0, 2]
Dsc = DR
ys = R−2DT

scs
us = 0
while Not Converged do
xsc =

(
ρI +DT

scDsc
)−1 (

DT
scs+ ρ (ysc + usc)

)
usc = usc + (α− 1)(ysc − xsc)
ysc = SλR

ρ
(xsc − usc)

usc = usc + ysc − xsc
end
x = Rxsc

y = Rysc

O(K̂M3).
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Algorithm 7: Dictionary Learning, Using ADMM with Large Number of Chan-
nels
// Initialization:
α ∈ (0, 2]
DR = Dinit

for m ∈ {1, . . .M} do
Rm,m = ‖(DR)m‖F

end(
ρI +RDTDR

)
= ComputeDecomp (ρ,DR)

i = 0
while Stopping Criteria Not Met do
s = GetData(i)
i = i+ 1
// Pursuit:
Dsc = DR
ysc = R−2DT

scs
usc = 0
while Not Converged do
xsc =

(
ρI +RDTDR

)−1 (
DT

scs+ ρ (ysc + usc)
)

usc = usc + (α− 1)(ysc − xsc)
ysc = SλR

ρ
(xsc − usc)

usc = usc + ysc − xsc
end
x = Rxsc

y = Rysc

// Updating the Dictionary:

D̃ = StandardDictionaryUpdate(D,S,X)
D̃ = Normalize(D̃)
∆D = LowRankApprox(D̃ −DR)
DR = DR+ ∆D
for m ∈ {1, . . .M} do
Rm,m = ‖(DR)m‖F

end(
ρI +RDTDR

)
= UpdateDecomp

((
ρI +RDTDR

)
, ρ,Dsc,∆D

)
end
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CHAPTER 3

LEARNING MULTI-LAYER DICTIONARIES

3.1 Introduction

A multi-layer dictionary model is composed of multiple dictionaries; the model treats the

dictionary coefficients of a previous layer as the signal for the subsequent layer. This model

dates back to Zeiler’s Deconvolutional Neural Networks [10] and can be thought of as a

deep autoencoder [27, Chapter 14][28]. Some researchers have interpreted convolutional

neural networks as multi-layer dictionary models, the convolution and its corresponding

rectified linear units serving as a crude pursuit algorithm [6]. This chapter presents how

to apply the novel dictionary learning algorithm from the prior chapter to the multi-layer

dictionary learning problem.

3.2 Literature Review

In 2010, Zeiler et al. proposed a multi-layer dictionary model termed a deconvolutional

network [10]. The learning process for dictionary filters is entirely unsupervised, and they

learn their filters layer-by-layer. Their algorithm is greedy in the sense that there is no

feedback from subsequent layers to influence the learning process on the previous layer.

This approach was tested both on the task of removing added Gaussian noise to images,

and also as a feature extraction method for object recognition on the Caltech-101 dataset

[29]. While this research drew a lot of attention at the time, as the success of alternative

models like convolutional neural networks grew [30], the popularity of deconvolutional

networks decreased.

Multi-layer dictionaries also appear in Bayesian models, going by names such as hierar-

chical convolutional factor analysis [31][9] and deep deconvolutional learning [32]. These
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networks use probabilistic models to prune network architecture and provide interpretable

dictionaries. Inference can be slow.

In more recent work, [12] and [13] use ADMM for pursuit on a multi-layer dictionary

model. Their pursuit algorithm attempts to solve the minimization problem:

minimize
x

=
L∑
`=1

µ`
2
‖x`−1 −D`x`‖2

2 + λ`‖x`‖1 (3.1)

where x0 = s is the signal. They convert this to a constrained optimization for the ADMM

algorithm.

min
x,z

L∑
`=1

µ`
2
‖z`−1 −D`x`‖2

2 + λ`‖z`‖1

subject to z` − x` = 0

(3.2)

where z0 = s is the signal. The x updates involve solving an inverse problem. They use a

tight-frame assumption to approximate the inverse.

Finally, in [8], Chodosh and Lucey use a similar model to [12] and [13], but replace the

ADMM approach with FISTA-like linear-proximal iterative steps.

3.3 Multi-Layer ADMM with Low-Rank Updates

This chapter demonstrates how to apply the novel sparse coding method for multi-channel

signals to a multi-layer dictionary pursuit problem.

To start off, it is helpful to write a multi-layer dictionary optimization problem. To keep

things compact, let x0 = s. I use a similar multi-layer dictionary model to the one used in

[12] and [13]:

minimize
x

L∑
`=1

µ`
2
‖x`−1 −D`x`‖2

2 + λ`‖x`‖1 (3.3)

Applying the ADMM algorithm, I add a secondary primal variable z` for each layer ` and

constrain it to be equal to x`. As in the previous chapter, I scale this constraint so that

the inverse representation can be updated efficiently without losing the normalized quality
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of the dictionary. This replaces the tight-frame assumption used in [12] and [13]. Again,

keeping things compact, let z0 = s.

min
x,z

L∑
`=1

µ`
2
‖z`−1 −D`x`‖2

2 + λ`‖z`‖1

subject to
√
µ`R

−1
` z` −

√
µ`R

−1
` x` = 0

(3.4)

where z0 = s is not a primal variable, but instead the signal itself.

This optimization problem has the augmented Lagrangian function:

Lρ(x, z,γ) = f(x, z) +
L∑
`=1

ρ

2
‖√µ`R−1

` (z` − x`) +
γ`
ρ
‖2

2 −
ρ

2
‖γ`
ρ
‖2

2 (3.5)

where

f(x, z) =
L∑
`=1

µ`
2
‖z`−1 −D`x`‖2

2 + λ`‖z`‖1 (3.6)

Recall that the ADMM algorithm (with relaxation) iteratively alternates between primal

and dual updates, using four update equations:

x(t+1) = arg min
x
L(x, z(t),γ(t)) (3.7)

γ(t+ 1
2)

ρ
=
γ(t)

ρ
+ (α− 1)(Ax(t+1) +Bz(t) + c) (3.8)

z(t+1) = arg min
z
L
(
x(t+1), z,γ(t+ 1

2)
)

(3.9)

γ(t+1)

ρ
=
γ(t+ 1

2)

ρ
+Ax(t+1) +Bz(t+1) + c (3.10)

whereAx+Bz + c = 0 are the affine constraints.

The first of these updates is the x update, which updates the coefficients.
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3.3.1 Coefficients Update Equation

The coefficients update comes from equation 3.7, which can be derived through setting the

gradient of the Lagrangian equal to zero and solving for x.

∇x`f(x, z) = µ`D
T
` D`x` − µ`DT

` z`−1 (3.11)

∇x`
1

2
‖√µ`R−1

` (z` − x`) +
γ`
ρ
‖2

2 = µ`R
−2
` x− µ`R

−2
` z` −

√
µ`R

−1
` γ`

ρ
(3.12)

Therefore,

∇x`Lρ(x, z,γ) = µ`D
T
` D`x` − µ`DT

` z`−1 + ρ

(
µ`R

−2
` x− µ`R

−2
` z` −

√
µ`R

−1
` γ`

ρ

)
(3.13)

For x, z, γ, such that∇x`Lρ(x1, . . . ,xL, z1, . . . ,zL,γ1, . . . ,γL) = 0:

µ`(ρR
−2
` +DT

` D`)x` = µ`D
T
` z`−1 + ρµ`R

−2
` z` +

√
µ`R

−1
` γ` (3.14)

(ρR−2
` +DT

` D`)x` = DT
` z`−1 + ρR−2

` z` +
R−1
` γ`√
µ`

(3.15)

x` = (ρR−2
` +DT

` D`)
−1

(
DT

` z`−1 + ρR−2
` z` +

R−1
` γ`√
µ`

)
(3.16)

This solution is the x update for the ADMM algorithm, but a couple extra steps can put it

into a form that is easier to use.

x` = R`

(
ρI + (D`R`)

TD`R`

)−1
R`

(
DT

` z`−1 + ρR−2
` z` +

R−1
` γ`√
µ`

)
(3.17)
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R−1
` x` =

(
ρI + (D`R`)

TD`R`

)−1
(

(D`R`)
Tz`−1 + ρR−1

` z` +
γ`√
µ`

)
(3.18)

So, therefore the update equation forR−1
` x` is the following:

R−1
` x

(t+1)
` =

(
ρI + (D`R`)

TD`R`

)−1

(
(D`R`)

Tz
(t)
`−1 + ρ

(
R−1
` z

(t)
` +

γ
(t)
`

ρ
√
µ`

))
(3.19)

Before moving onto another update equation, there are a few useful things to note here.

The form of the inverse matrix identically matches the form from the last chapter, so the

inverse representation can be updated efficiently if the updates have a low-rank structure.

Furthermore, D`R` is the unnormalized dictionary that is updated through low-rank up-

dates. The normalized dictionary does not need to be explicitly calculated at all. It would

be easy to isolate x`, but it will be simpler to keep track of R−1
` x` instead, similar to how

u
ρ

is tracked instead of u in the scaled ADMM algorithm.

3.3.2 Proximal Updates

The second set of primal updates comes from equation 3.9, repeated here for convenience:

z(t+1) = arg min
z
L
(
x(t+1), z,γ(t+ 1

2)
)

(3.20)

where, as before,

Lρ(x, z,γ) = f(x, z) +
L∑
`=1

ρ

2
‖√µ`R−1

` (z` − x`) +
γ`
ρ
‖2

2 −
1

2ρ
‖γ`‖2

2 (3.21)

and

f(x, z) =
L∑
`=1

µ`
2
‖z`−1 −D`x`‖2

2 + λ`‖z`‖1 (3.22)
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For x, z, γ, such that∇z`Lρ(x1, . . . ,xL, z0, . . . ,zL,γ0, . . . ,γL) = 0:

∇z
µ`+1

2
‖z` −D`+1x`+1‖2

2 + λ`‖z`‖1 +
ρ

2
‖√µ`R−1

` (z` − x`) +
γ`
ρ
‖2

2 = 0 (3.23)

Something important to note here is that each element of z` can be treated independently,

that is:

∇z`[i]
µ`+1

2
(z`[i]−(D`+1x`+1)[i])2+λ`|z`[i]|+

ρ

2
(

√
µ`

R`[i]
(z`[i]−x`[i])+

γ`[i]

ρ
)2 = 0 (3.24)

whereR`[i] is the scalar ith diagonal entry of diagonal matrixR`.

∇z`[i]
µ`+1

2
(z`[i]− (D`+1x`+1)[i])2 + λ`|z`[i]|+

ρµ`
2R2

` [i]
(z`[i]− x`[i] +

R`[i]γ`[i]

ρ
√
µ`

)2 = 0

(3.25)

For the sake of brevity, I will now drop the indexing:

∇z`
µ`+1

2
(z2

` − 2(D`+1x`+1)z`) + λ`|z`|+
ρµ`
2R2

`

(z2
` − 2x`z` +

2R`γ`z`
ρ
√
µ`

) = 0 (3.26)

∇z`
1

2
(µ`+1 + ρµ`R

−2
` )z2

` −µ`+1D`+1x`+1z`− ρµ`R−2
` x`z` +

√
µ`R

−1
` γ`z` + λ`|z`| = 0

(3.27)

∇z`
1

2
z2
`−

µ`+1D`+1x`+1 + ρµ`R
−2
` x` −

√
µ`R

−1
` γ`

µ`+1 + ρµ`R
−2
`

z`+
λ`

µ`+1 + ρµ`R
−2
`

|z`| = 0 (3.28)

z` = S λ`

µ`+1+ρµ`R
−2
`

(
µ`+1D`+1x`+1 + ρµ`R

−2
` (x` − R`γ`

ρ
√
µ`

)

µ`+1 + ρµ`R
−2
`

)
(3.29)
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z` =
1

µ`+1 + ρµ`R
−2
`

Sλ`

(
µ`+1D`+1x`+1 + ρµ`R

−1
`

(
R−1
` x` −

γ`
ρ
√
µ`

))
(3.30)

Putting things back in matrix form,1

z
(t+1)
` = (µ`+1I + ρµ`R

−2
` )−1 Sλ`

(
µ`+1D`+1x

(t+1)
`+1 + ρµ`R

−1
`

(
R−1
` x

(t+1)
` − γ

(t+ 1
2

)

`

ρ
√
µ`

))
(3.31)

Note there is a dependence on R−1
`+1x`+1. The last layer will have to be considered sepa-

rately. Using the same procedure, the update for zL can be derived. Given how similar the

derivations are to those used for the other z layers, I will skip to the result.

zL = R` SλLRL
ρµL

(
R−1
L xL −

γL
ρ
√
µL

)
(3.32)

z
(t+1)
L = R` SλLRL

ρµL

(
R−1
L x

(t+1)
L − γ

(t+ 1
2

)

L

ρ
√
µL

)
(3.33)

3.3.3 Dual Updates

Rather than tracking γ` or γ`
ρ

explicitly, it will be easier to track γ`
ρ
√
µ`

. The update equations

are very straightforward.

γ
(t+ 1

2)
`

ρ
√
µ`

=
γ

(t)
`

ρ
√
µ`

+ (α− 1)(R−1
` z

(t)
` −R

−1x
(t+1)
` ) (3.34)

γ
(t+1)
`

ρ
√
µ`

=
γ

(t+ 1
2)

`

ρ
√
µ`

+R−1
` z

(t+1)
` −R−1x

(t+1)
` (3.35)

1Recall that while indexing was dropped for brevity, equation 3.30 is still implicitly indexed.
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Figure 3.1: This diagram shows interactions between layers across iterations. The double-
sided arrows at the top of the diagram go both directions because x`+1 influences z` during
initialization.

3.4 Pursuit Algorithm Summary

Together, the equations from the sections above produce a pursuit algorithm for a multi-

layer dictionary model, as shown in Algorithm 8. It is important to note that unlike in [10],

there is feedback between layers during pursuit. Figure 3.1 shows the interactions between

layers across iterations. This allows for asymptotic convergence to an optimal solution of

the objective in equation 3.2.

3.5 Dictionary Learning

There are many possible approaches to compute dictionary updates, but the focus here

will be on gradient descent. The pursuit algorithm generates several layers of coefficients

from an input signal, and these coefficients can subsequently be used to generate some

output, for classification, reconstruction, or some other task. With the appropriate choice

of loss function L , backpropagation can be used to update the dictionaries. All of the
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computations in pursuit are almost2 differentiable, so backpropagation is possible all the

way back to the signal. Regardless of whether stochastic gradient descent or momentum

methods such as Nesterov [33] or ADAM [34] is used, the dictionary updates must be

replaced with low-rank substitutes if the number of channels is large, so that the inverse

decomposition can be updated efficiently. At least some of the gradients are computed in

frequency domain. The convolutional filters are either spatially or temporally bound, and

the frequency domain gradients will not respect that constraint, so they will need to be

transformed and truncated.

Backpropagating gradients through most of the operations in the pursuit algorithm is

very straightforward. Some platforms such as PyTorch [35] or TensorFlow [36] will even

do so automatically. However, the x-updates rely on a matrix decomposition to solve an

inverse problem, and this prevents automatic differentiation in respect to the dictionaries.

The equations necessary to compute gradients for the inverse problem in the x-update are

derived in appendix C. Let D̂` be the frequency domain representation of the unnormalized

dictionary corresponding to the `th layer, and letQ` = ρI + D̂H
` D̂`.

∇(b→Q−1
` b)

D̂`
L = −(D̂`Q

−1
` b)(Q

−1
` ∇Q−1

` bL )H − (D̂`Q
−1
` ∇Q−1

` bL )(Q−1
` b)

H (3.36)

where b is the input vector to the computational stepQ−1
` b.3 The superscript of the gradient

specifies which gradient term is being computed. This is necessary because same dictionary

gets reused across multiple computations, and so these gradient terms must be computed

separately and then aggregated to get the actual gradient.

For the Woodbury form4, the decomposition represents a different matrix for efficiently

2Like rectified linear activation functions, there is a discontinuity in the derivative for shrinkage operators.
While such functions are technically not differentiable, this does not pose any issue for backpropagation.
Operations that rely on a complex conjugate of a complex input also are not differentiable, but since the
output is a scalar loss function, gradients can still be computed, which is sufficient for gradient descent. See
appendix C for details.

3b would take on a value like b = F
(
(D`R`)

Tz
(t)
`−1 + ρ

(
R−1` z

(t)
` +

γ
(t)
`

ρ
√
µ`

))
, as seen in the x-update

equation 3.19.
4Useful if the number of filters is larger than the number of channels
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solving the inverse problem, and so the equation for the corresponding gradient term is

different. Let Ξ` = ρI + D̂`D̂
H
` .

∇(b→Ξ−1
` b)

D̂`
L = −(Ξ−1

` ∇Q−1
` bL )(D̂H

` Ξ−1
` b)

H − (Ξ−1
` b)(D̂

H
` Ξ−1

` ∇Q−1
` bL )H (3.37)

where b is the input vector to the computational step Ξ−1
` b.

With these equations it is possible to compute dictionary updates through backprop-

agation. Putting it all together, a dictionary learning algorithm for multi-layer dictionary

models is shown in Algorithm 9.

3.6 Summary

In this chapter, I have applied the novel sparse coding algorithm from the previous chapter

to a multi-layer dictionary model. If the dictionaries are updated with low-rank updates,

the inverse representation necessary for the x updates in the algorithm can be updated

efficiently. This approach offers an alternative to direct proximal methods such as FISTA

or mathematically suspect inverse approximations like the tight-frame assumption.
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Algorithm 8: ADMM for Multi-Layer Pursuit with Unnormalized Dictionary
input : Over-relaxation parameter: α ∈ (0, 2], Number of layers: L, Number of

filters: M , Signal size: N , Signal: s, Unnormalized dictionary for each
layer: D`, Objective function term coefficients: µ` and λ`, Efficient means
to compute (ρI +DT

` D`)
−1b

output: Sparse coding coefficients: either x` or z`
for ` ∈ {1, . . . , L} do
γ` = 0 for m ∈ {1, . . . ,M} do

r`[m] = ‖D`[:,mN ]‖2

end
end
x1 = R−2

1 D
T
1

for ` ∈ {2, . . . , L} do
x` = R−2

` D
T
` R`−1x`−1

end
while Not Converged do

for ` ∈ {1, . . . , L− 1} do
z` = (ρµ`I + µ`+1R

2
`)
−1R2

` Sλ`
(
µ`+1D`+1x`+1 + ρµ`R

−1
` (x` − γ`)

)
end
zL = RL SλLRL

ρµL

(xL − γL)

for ` ∈ {1, . . . , L} do
γ` = γ` +R−1

` z` − x`
end
x1 = (ρI +DT

1D1)−1(DT
1 s+ ρ(R−1

1 z1 + γ1))
for ` ∈ {2, . . . , L} do
x` = (ρI +DT

` D`)
−1(DT

` z`−1 + ρ(R−1
` z` + γ`))

end
for ` ∈ {1, . . . , L} do
γ` = γ` + (α− 1)(R−1

` z` − x`)
end

end
for ` ∈ {1, . . . , L} do
x` = R`x`

end
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Algorithm 9: Multi-Layer Dictionary Learning
input : Over-relaxation parameter: α ∈ (0, 2], Signal: s, Unnormalized initial

dictionary for each layer: D`, Objective function term coefficients for
each layer: µ` and λ`

output: Unnormalized dictionaries for each layer: D`

for ` ∈ {1, . . . , L} do(
ρI +DT

` D`

)
= ComputeDecomp (ρ,D`)

end
i = 0
while Stopping Criteria Not Met do
s = GetData(i)
i = i+ 1
x1, . . . ,xL =
MultiLayerPursuit(s, α,µ,λ,D, (ρI +DT

1D1), . . . , (ρI +DT
LDL))

L = ComputeLoss(x1, . . . ,xL)
∇D̂1

L , . . . ,∇D̂L
L = Backpropagation(L ,D1, . . . ,DL)

∆D̂1, . . . ,∆D̂L = CalculateGradientStep(∇D̂1
L , . . . ,∇D̂L

L )

for ` ∈ {1, . . . , L} do
D̃ = Normalize(D̂` + ∆D̂`)
∆D` = Truncate(F−1 LowRankApprox(D̃ − D̂`))(
ρI +DT

` D`

)
= UpdateDecomp

((
ρI +DT

` D`

)
, ρ,Ds,∆D

)
D` = D + ∆D
D̂` = F(D`)

end
end
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CHAPTER 4

JPEG ARTIFACT REMOVAL

4.1 Introduction

Despite the existence of better compression algorithms, use of the JPEG compression algo-

rithm is ubiquitous: it is the most commonly used image compression algorithm. Overzeal-

ous JPEG compression can produce visible distortions, and image restoration from these

distortions is a challenging problem. There are two aspects of JPEG compression which

make the restoration process more challenging than simpler restoration problems like de-

blurring or removing salt-and-pepper noise: JPEG’s block-based approach is not spatially

invariant, and the quantization is nonlinear. This chapter describes a novel approach to

address the challenges of JPEG image restoration using the ADMM-based convolutional

sparse coding for a multi-layer dictionary model.

4.2 JPEG Algorithm

The JPEG compression process begins with an RGB image input, and consists of five steps.

The first is a color transformation, transitioning from RGB to YUV. Then, the U and V color

channels are downsampled. The DCT for each 8×8 block is computed (separately for each

channel). The DCT coefficients are then quantized using a quantization matrix determined

by a user-chosen JPEG quality factor. Finally, these quantized coefficients are reordered

and encoded using a lossless variable length coding process.

The standard reconstruction process reverses the lossless encoding, computes the IDCT

of the blocks, upsamples the color channels, and reverses the color transform.
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4.3 Modeling Compressed JPEG Images

Some researchers have observed that convolutional dictionary models struggle with large

smooth components of signals [37], likely due to the fact that shifted versions of smooth

filters have high coherence.

For this reason, it is often a good idea to subtract a smoothed version ssmth of the signal,

and only apply the dictionary model to the residual srough.

sclean = ssmth + srough (4.1)

srough ≈D1x1 (4.2)

When restoring an image after JPEG compression, the original image sclean is not known.

Instead, the compressed image s is observed.

s = q(Wsclean) (4.3)

s ≈ q(W (ssmth +D1x1)) (4.4)

whereW maps the signal to 8×8 block frequency coefficients (from the cosine transform),

and q(·) quantizes them.

A means of estimating ssmth from JPEG-compressed image s is discussed in the Prac-

tical Considerations chapter. However, for simplicity the experiments later in this chapter

use a constant for ssmth.
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From this idea, I construct the pursuit problem:

minimize
x

µ1

2
‖s− q(W (D1x1 + ssmth))‖2

2 +
L∑
`=2

µ`
2
‖x`−1 −D`x`‖2

2 +
L∑
`=1

λ`‖x`‖1

(4.5)

with λ` ≥ 0.

With this multi-layer architecture, the first layer will construct small, simple filters, and

subsequent layers superimpose those filters to build more complicated structures.

My approach to solve this problem uses the ADMM algorithm, where x1, . . . ,xL are

the first set of primal variables, v, z1, . . . ,zL are the second set of primal variables, and

γ1, . . . ,γL are the dual variables corresponding to constraints on z1, . . . ,zL. Here is the

corresponding optimization problem:

minimize
x,v,z

µ1

2
‖v −D1x1 − ssmth‖2

2 +
L∑
`=2

µ`
2
‖z`−1 −D`x`‖2

2 +
L∑
`=1

λ`‖z`‖1

subject to
√
µR−1

` (z` − x`) = 0

q(Wv)− s = 0

(4.6)

The constraint q(Wv) − s = 0 is not an affine constraint because of the quantization.

To resolve this, [8] approximate the quantization as a linear operator. However, the con-

straint is convex, so the constraint can be handled without approximation implicitly using

an indicator function [38]. For now, I will focus on the other variable updates.

Setting z0 = v − ssmth, the updates for x, z, and γ are identical to those from the last

chapter.

R−1
` x

(t+1)
` =

(
ρI + (D`R`)

TD`R`

)−1

(
(D`R`)

Tz
(t)
`−1 + ρ

(
R−1
` z

(t)
` +

γ
(t)
`

ρ
√
µ`

))
(4.7)
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z
(t+1)
` = (µ`+1I + ρµ`R

−2
` )−1 Sλ`

(
µ`+1D`+1x

(t+1)
`+1 + ρµ`R

−1
`

(
R−1
` x

(t+1)
` − γ

(t+ 1
2

)

`

ρ
√
µ`

))
(4.8)

z
(t+1)
L = R` SλLRL

ρµL

(
R−1
L x

(t+1)
L − γ

(t+ 1
2

)

L

ρ
√
µL

)
(4.9)

γ
(t+ 1

2)
`

ρ
√
µ`

=
γ

(t)
`

ρ
√
µ`

+ (α− 1)(R−1
` z

(t)
` −R

−1z
(t+1)
` ) (4.10)

γ
(t+1)
`

ρ
√
µ`

=
γ

(t+ 1
2)

`

ρ
√
µ`

+R−1
` z

(t+1)
` −R−1z

(t+1)
` (4.11)

The only remaining update equation is for v. I will present a method for handling the

quantization operator in the constraint in the next section.

4.4 Handling Quantization

Recall the optimization problem:

minimize
x,v,z

µ1

2
‖v −D1x1 − ssmth‖2

2 +
L∑
`=2

µ`
2
‖z`−1 −D`x`‖2

2 +
L∑
`=1

λ`‖z`‖1

subject to
√
µR−1

` (z` − x`) = 0

q(Wv)− s = 0

(4.12)

For the v update, it is helpful to introduce a common convex-optimization trick. Con-

sider the following function:

1{q(Wv)−s=0} =


0 q(Wv)− s = 0

+∞ otherwise
(4.13)
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The function is convex, and when included in an objective function, it implicitly enforces

the constraint q(Wv) − s = 0. This constraint was used in the same manner in [38] for

JPEG artifact removal. This can be rewritten as the following:1

1{q(Wv)−s=0} =


0 s− q

2
≤Wv ≤ s+ q

2

+∞ otherwise
(4.14)

where q is a vector representing the quantization interval for each element of the signal

(in the 8 × 8 DCT domain). Adding the indicator function to the objective produces the

following Lagrangian function:

Lρ(x,v, z,η,γ) =
µ1

2
‖v −D1x1 − ssmth‖2

2 + ψ(x, z,γ) + 1{q(Wv)−s=0} (4.15)

where ψ(x, z,γ) is a collection of terms irrelevant to the updates for v.

Handling the cases in pointwise fashion, define function h as the following clipping

operation:

h(x1) =


s+ q

2
−W (D1x1 + ssmth) W (D1x1 + ssmth) > s+ q

2

s− q
2
−W (D1x1 + ssmth) W (D1x1) + ssmth) < s− q

2

0 otherwise

(4.16)

Then,

v(t+1) = D1x
(t+1)
1 + ssmth +W † h(x

(t+1)
1 ) (4.17)

where W † is the pseudo-inverse of W . Figure 4.1 is a diagram showing how variables

interact across layers and iterations.

1The set {v : q(Wv) − s = 0} does not include all boundary points. Equation 4.14 uses the closure of
the set instead. This ensures that there is a minimizer of the augmented Lagrangian in respect to v.

48



Figure 4.1: This diagram shows interactions between layers across iterations for the
ADMM pursuit algorithm applied to JPEG artifact removal. The double-sided arrows at
the top of the diagram go both directions because x`+1 influences z` during initialization.
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4.5 Backpropagation Approximation

If an iterative sparse coding algorithm converges, after a sufficient number of iterations, the

coefficient updates become very small with each iteration, and so the coefficients change

very little. Backpropagation can be computationally and memory intensive, and so intuition

would suggest backpropagating through steps that are barely even changing the coefficients

may not be an optimal use of computational resources. For single-layer dictionary learning,

it is very common for practitioners and researchers to iteratively decrease the objective

function in respect to the dictionary using gradient methods, treating the coefficients as

fixed (rather than a function of the dictionary). Inspired by those methods, I similarly

compute approximate gradients without backpropagating through the entire sparse coding

algorithm, instead only backpropagating to the last instance of that dictionary’s use:2

∇D1L ≈ ∇
(
x
(T )
1 →D1x

(T )
1

)
D1

L (4.18)

∇D`
L ≈ ∇

(
x
(T−`+1)
` →D`x

(T−`+1)
`

)
D`

L (4.19)

This approximation3 of the gradient for dictionary learning is used in the experiment de-

tailed in the subsequent section.

4.6 Experiment

In this section, I apply this novel multi-layer dictionary approach to other multi-layer dic-

tionary algorithms on the task of removing artifacts from JPEG compression.

2The last use of D`+1 occurs in a z` update, and D1x
(T )
1 approximately reconstructions the original

signal.
3It may help to recall from Equations 4.7 and 4.8 that x(t)

`+1 has no influence on x(t)
` ; instead, it is used to

update z(t)` which subsequently is used in the x(t+1)
` update equation. For this reason, Equation 4.19 depends

on x(T−`+1
` , not x(T )

` . These types of interactions between variables across layers and iterations are shown
in Figure 4.1.
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Table 4.1: Architecture and Hyper-Parameters for Experiment

Algorithm Hyperparameter Num. of Iter. Num. of Filters Filter Size
Layer 1 Layer 2 Layer 1 Layer 2

ADMM ρ = 1, R= 4 16 32 64 5× 5 7× 7
FISTA L = 64 48 32 64 5× 5 7× 7

4.6.1 Experiment Setup

The BSDS500 dataset consists of 200 training images, 100 validation images, and 200 test

images, and was originally designed to test segmentation algorithms. For this experiment,

I compress the images using a quality factor of 25. For training, the algorithms are given

both the compressed and raw images. The images vary in size, so I split the images into

smaller 32 × 32 patches. For validation and testing, the algorithms are assessed on how

well they reconstruct original image patches from the compressed image patches.

4.6.2 Network Architecture

To compare the FISTA and ADMM for multi-layer dictionary learning, both algorithms are

set up with the same basic 2-layer architecture, the details of which are shown in Table 4.1.

For both, coefficients of the last layer are constrained to be non-negative.4 The reason I use

L = 64 for FISTA is because L = 16 diverged during sparse coding. For dictionary learn-

ing, I use stochastic gradient descent for both, using a step-size of 0.01. Backpropagation is

used to learn not just elements of the dictionary, but also the weighting of the penalty terms

µ` and λ`. The loss minimized is the mean-squared error of the reconstruction in respect to

the raw (pre-compression) images. To reduce computation time and memory usage, back-

progagation for the dictionary updates is only computed over the last few computations as

described in section 4.5.
4For ADMM, this is enforced on the z coefficients by adding an indicator function to the objective

1zL≥0(zL).
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(a) ADMM (b) FISTA

Figure 4.2: This is the reconstruction error for the multi-layer dictionary model measured
on the validation set shown as a function of training time. Subfigure 4.2a shows the error
for the ADMM algorithm and Subfigure 4.2b shows the error for the FISTA algorithm.

4.6.3 Results

The decrease in reconstruction error across a validation set for ADMM is shown in Figure

4.2a. ADMM is able to reduce the error, improving the dictionary across many updates.

A similar curve is shown for FISTA in Figure 4.2b trained on the same data for the same

number of dictionary updates. The dictionary updates for FISTA fail to reduce the error.

FISTA’s failure to successfully learn a better dictionary likely stems from its slower conver-

gence in the sparse coding task. Figures 4.3 shows the sparse coding error across multiple

iterations (using ADMM’s z coefficients). ADMM’s faster convergence allows it to im-

prove the dictionary without backpropagating through the entire network. Even with three

times the number of sparse coding iterations, FISTA is still unable to converge fast enough.

To succeed, FISTA would either need to backpropagate further through the network, or add

more sparse coding iterations, both of which would further increase needed computational

resources.

4.7 Conclusion

This chapter showed how to adapt the multi-layer dictionary approach from chapter 3 to the

JPEG artifact removal problem. This involved combining the multi-layer model with the
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Figure 4.3: This plots the objective function from equation 4.5 in respect to iterations, using
z` for the coefficients of the ADMM approach.

convex indicator function from [38] to impose the quantization constraints, subtracting out

the low-frequency components, and approximating the gradients. With my novel approach,

ADMM handled the gradient approximations better than FISTA did, and demonstrated

faster convergence for sparse coding.
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CHAPTER 5

PRACTICAL CONSIDERATIONS

5.1 Boundary Handling

Convolution and circular convolution can produce boundary effects that can impact perfor-

mance. In the JPEG compression artifact removal chapter, W is defined as the function

producing 8× 8 block DCT coefficients from an RGB image. However, to mitigate bound-

ary effects this should in practice also include cropping the image. This allows D1x1 to

reconstruct the signal outside of the measured space (similar to the ”boundary masking”

in [39], but with the constraint and objective term swapped). Initialization is important

however [40]. Reflecting across the boundary is a much better initialization approach than

zeros, but if using patches, actual (compressed image) measurements would provide an

even better initialization. For the experiments in chapter 4, I use these compressed image

measurements.

5.2 Removing Low-Frequency Signal Content

Convolutional dictionary models tend to struggle with low-frequency signal content, so

ideally steps should be taken to avoid representing it with the dictionary model. Tikhonov

regularization is a straight-forward means to remove low-frequency content [37]:

ssmth = arg min
x

1

2
‖s− x‖2

2 + λ‖
∑
i

Gix‖2
2 (5.1)

whereGi computes a discrete gradient in the ith direction. This has a closed form solution

and can be easily solved in frequency domain.
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5.2.1 JPEG Artifact Removal

Tikhonov regularization can struggle with block artifacts from JPEG compression. Rather

than smooth the compressed JPEG image itself, it is better to solve for a smoothed version

of a signal that compresses to the compressed JPEG image. This problem can be solved

using ADMM.

minimize
x,v

1

2
‖v − x‖2

2 + λ‖
∑
i

Gix‖2
2 + 1{Q(Wv)−s=0} (5.2)

There are no constraints, so no dual variables are needed. Just alternate between a

Tikhonov update for x and an update for v that closely resembles the v update from the

last chapter. Handling the cases in pointwise fashion, define function h as the following

clipping operation:

h(x) = W (v − x) =


s+ q

2
−W (x) W (x) > s+ q

2

s− q
2
−W (x) W (x) < s− q

2

0 otherwise

(5.3)

Then,

v = x+W † h(x) (5.4)

In the final update for x, it may help to increase λ. This will make the resulting

smoothed image slightly more smooth, which allows the rough signal component to keep

more information content from the image to compute better coefficients.

5.3 Inverse Representation Drift

Rank-1 Hermitian updates to a Cholesky factorization or other inverse representation can be

computed in quadratic time. However, these algorithms compute the new inverse represen-
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tation from the old one, compounding precision error. Over the course of many iterations,

the inverse representation will become less and less accurate. It is necessary to occasionally

recompute the inverse representation in cubic time, to mitigate the impact of precision er-

rors. One method to determine when to recompute the inverse representation is to measure

the error of the inverse function in reconstructing a random set of vectors û, and recompute

the inverse representation in cubic time when the error ε exceeds a threshold.

ε = max
i
‖(ρI + (D̂R)TD̂R)−1(ρûi + (D̂R)TD̂Rûi‖∞ (5.5)

5.4 Tensorflow and Keras

Most of the computations for my research rely on TensorFlow version 2.3.1 and version

2.4.1 [36], a Python library for machine learning specializing in building models with

differentiable, parameterizable composite functions and learning model parameters using

gradient descent or other gradient-based optimization methods. TensorFlow is a common

platform for researchers and developers working on artificial neural networks, and there

are many tutorials and examples freely available online, so I will not replicate that work

here. This chapter section the reader already has some familiarity with TensorFlow and

Keras [41] (a high-level library inside TensorFlow). The goal of this section is to provide

the reader with the tools and workarounds to be able to replicate my work without resorting

to hacking things together with gradient tape and/or TensorFlow-1-style code.

5.4.1 Why Not Use Gradient Tape and TensorFlow-1-Style Code?

Keras offers a high-level environment. Code written in Keras’s framework is easier to inte-

grate with other work. Gradient tape is great for hacking something together or debugging,

but promotes styles of coding that are less readable, less maintainable, and less portable.

Keras also has a lower learning curve than the broader TensorFlow library.
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5.4.2 Shared Weights Between Layers

Trainable TensorFlow variables declared outside of any Keras layer will not be automati-

cally added to a Keras model’s list of trainable variables. In most cases, this limitation is

not a problem; it is intuitive to declare a layer’s weights inside that layer. However, some-

times the same variable is needed in multiple distinct layers. To include a variable in the

model’s trainable variables, it is sufficient to declare the variable in one layer and pass the

variable (or the layer it was initialized in) as an input argument to the init function of the

other layers that share that variable. This will work even if the Keras model does not use

the layer that declared the variable. Keras users should be careful when combining Keras

classes with non-Keras classes, as certain class structures can prevent Keras from detecting

some trainable variables.1

5.4.3 Custom Partial Gradients

TensorFlow offers a well-documented means of replacing TensorFlow’s gradient computa-

tions of an operation with specified custom gradient computations. However, if the opera-

tion involves multiple tensors that are inputs or trainable variables, the standard approach

replaces all the gradients with custom gradients. If TensorFlow’s gradient computations

are sufficient for some tensors but not others, a workaround is necessary. This workaround

is best explained by example.

Suppose the operation is the following:

z = f(x,y)

for which the standard TensorFlow gradient computations of f are desired in respect

to x, but the custom gradient computations desired in respect to y are specified in function

g(∇zL). This can be rewritten as the following:

1If a Keras layer instantiates a non-Keras class that instantiates a Keras class that creates a trainable
variable, Keras will fail to detect the trainable variable, and the variable will not be updated during training
or saved when the model weights are saved.
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@tf.custom_gradient

def h(z,y):

def grad_fun(grad):

return (tf.identity(grad),g(grad))

return z,grad_fun

z = f(x,tf.stop_gradient(y))

z = h(z,y)

The function h does nothing on the forward pass, but in the backward pass computes

the custom gradient in respect to y as intended.

5.4.4 Updating TensorFlow Variables After Applying Gradients

To update TensorFlow Variables after applying gradients, it is necessary to track which

variables are affected and what their corresponding update functions are. To accomplish

this, I store the update functions in a Python dictionary using variable names as the dic-

tionary keys. This Python dictionary needs to be widely accessible so that layers can add

update functions when they are initialized; a simple way to do this is to make the update

function Python dictionary a class attribute. The keys need to be unique, but TensorFlow

variable names can conflict. It is easy to avoid this problem by checking for conflicts before

adding a new update function.

class PostPrc:

update = {}

def add_update(varName,update_fun):

assert varName not in PostPrc.update

PostPrc.update[varName] = update_fun

In the standard Keras training paradigm, models are trained using the fit function, a

method in the Keras model object. The fit function calls the function train step, where

gradients are applied. To update TensorFlow Variables after gradients are applied in Ten-
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sorflow 2.3.1 on a CPU, train step is the function to modify. The only change that needs to

be made is adding a function call to all update functions that correspond to the model’s list

of trainable variables.

class Model_subclass(tf.keras.Model):

def train_step(self,data):

trainStepOutputs =

tf.keras.Model.train_step(self,data)

update_ops = []

for tv in self.trainable_variables:

if tv.name in PostPrc.update:

PostPrc.update[tv.name]()

return trainStepOutputs

Changes to Tensorflow variables in the update function must use the assign command

(or its variants: assign add, assign sub, ect). Otherwise, TensorFlow will detect that com-

putations lie outside of its computational graph and throw an error. Note that using the

assign command on Python variables that are not TensorFlow variables will produce some

very cryptic error messages, so be sure to use the assign command correctly. If the value

change of one TensorFlow variable depends on the value of another TenorFlow variable

value pre-update, it may be necessary to use the Tensorflow control dependencies com-

mand to get TensorFlow to track that dependency. TensorFlow has a useful tool called

TensorBoard that helps visualize TensorFlow’s dependencies, but a workaround is required

to use TensorBoard on update functions that are called after applying gradients. To use

TensorBoard to visualize dependencies in an update function, temporarily call the update

function in the layer’s call method, use TensorBoard to verify all necessary dependencies

are being tracked, then remove the update function call from the layer’s call method.

However, in Tensorflow 2.4.1 on a GPU, the above method fails. The PostPrc class

is still fine, but the update functions must be instead be called using Keras callbacks.

59



class

PostPrcCallback(keras.callbacks.Callback,PostPrc):

def on_train_begin(self,logs):

logs = logs or {}

self.update = []

for tv in self.model.trainable_variables:

if tv.name in PostPrc.update:

self.update.append(PostPrc.update[tv.name])

def on_batch_end(self, epoch, logs=None):

logs = logs or {}

for an_update in self.update:

an_update()

for k, v in logs.items():

self.history.setdefault(k, []).append(v)

5.4.5 The Perils of Using Built-In Functions for Complex Tensors and Arrays

Complex numbers are not as frequently used by researchers and practitioners, and many

tools and platforms fail on complex cases. Tensorflow’s assign add command can fail

on the GPU, so users should use the assign command instead. It is necessary in some

cases to split complex variables into their real and imaginary components to avoid GPU

errors. The TensorFlow Probability version 0.11.1 [42] is an extension of TensorFlow

mostly used for probabilistic models. The library contains a Cholesky update function, but

the function does not properly handle complex inputs. To compute Cholesky updates for

complex inputs, modifications of this code are necessary. Similarly, the Randomized SVD
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algorithm in the Python scikit-learn library does not properly handle complex inputs.

Errors like these are fairly common, so when dealing with complex data, researchers

and practitioners should carefully verify that the function libraries they rely on are properly

handling complex numbers. It is also important for code to be highly modularized, because

if an error does not occur until computations on the computational graph or saving weights,

platforms may not be able to identify where in the code the error is coming from, and error

messages can be cryptic or even wrong.
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CHAPTER 6

CONCLUSION

This dissertation has presented a novel dictionary learning algorithm for signals with a large

number of channels and its application to multi-layer dictionary models. This algorithm can

be used for JPEG artifact removal, and shows some promise as a competitor to the FISTA

algorithm, given its faster convergence in solving the sparse-coding problem, but does have

larger memory requirements than FISTA. In addition, appendix A generalizes the work of

[43] to handle complex numbers, which to my knowledge has not been done previously.

[43] efficiently computes rank-1 updates for a Cholesky factorization.

In addition to seeking other applications, future expansion on this research might look

to adapt ρ during training. While ρ must remain fixed for efficient updates of the Cholesky

decomposition (or LDLT decomposition), drift over many iterations eventually must be

rectified by recomputing the entire decomposition. At such time, an update to ρ would

require no additional computational cost. While many methods exist to adapt ρ for ADMM

[44][45], these methods are designed to adjust ρ far more frequently. Another potential area

of future research lies in tailoring momentum methods for dictionary updates to this novel

dictionary learning algorithm. While the dictionary learning algorithm is not incompatible

with momentum-based dictionary updates, conventional momentum methods [33][34] will

not take into account the low-rank approximation step, which may hurt performance. Fi-

nally, since the memory requirements promote the use of frames to decrease the signal size,

there may be a need in some applications to combine results across frames. Fortunately,

given the popularity of frame-based dictionary models, there is an existing body of work to

build off of for this task [46][47][48][49].
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APPENDIX A

HERMITIAN RANK-1 UPDATES FOR THE CHOLESKY DECOMPOSITION

These derivations are based on the work of [43], but modified to handle complex numbers.

Let A(n) = LLH be a Hermitian, positive definite matrix of dimension C × C and L

be a lower triangular matrix. Then, the diagonal of L is positive and real.

A(n) =


a1,1 . . . a∗C,1

... . . . ...

aC,1 . . . aC,C

 (A.1)

L =



`1,1 0 . . . 0

`2,1
. . . ...

... . . . 0

`C,1 . . . `C,C


(A.2)

DividingA(n) into blocks:

A(n) =

`1,1 0T

l2,1 L2,2


`∗1,1 lH2,1

0 LH2,2

 (A.3)

A(n) =

 `2
1,1 `1,1l

H
2,1

`1,1l2,1 L2,2L
H
2,2 + l2,1l

H
2,1

 (A.4)

Consider the rank-1 update:1

A(n+1) = A(n) + λvvH (A.5)
1If λ is negative, the result is not guaranteed to be positive definite. In general, updates to inverse repre-

sentations with a negative λ (sometimes called ”downdates”) are less numerically stable, even if the resulting
matrix is still positive definite.
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where

v =

v1

v2

 (A.6)

A(n+1) =

 `2
1,1 + λv1v

∗
1 `1,1l

H
2,1 + λv1v

H
2

`1,1l2,1 + λv∗1v2 L2,2L
H
2,2 + l2,1l

H
2,1 + λv2v

H
2

 (A.7)

Let A(n+1) = MMH , where M is a lower triangular matrix. Then, the diagonal of

M is positive and real.

A(n+1) =

 m2
1,1 m1,1m

H
2,1

m1,1m2,1 M2,2M
H
2,2 +m2,1m

H
2,1

 (A.8)

Therefore,

m2
1,1 = `2

1,1 + λv1v
∗
1 (A.9)

m1,1m2,1 = `1,1l2,1 + λv∗1v2 (A.10)

M2,2M
H
2,2 +m2,1m

H
2,1 = L2,2L

H
2,2 + l2,1l

H
2,1 + λv2v

H
2 (A.11)

Solving for the first column ofM :

m1,1 =
√
`2

1,1 + λv1v∗1 (A.12)

m2,1 =
`1,1l2,1 + λv∗1v2

m1,1

(A.13)

Finally,

M2,2M
H
2,2 = L2,2L

H
2,2 + l2,1l

H
2,1 + λv2v

H
2 −m2,1m

H
2,1 (A.14)
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m2,1m
H
2,1 =

1

m2
1,1

(
`2

1,1l2,1l
H
2,1 + λ`1,1v1l2,1v

H
2 + λ`1,1v

∗
1v2l

H
2,1 + λ2v1v

∗
1v2v

H
2

)
(A.15)

M2,2M
H
2,2 = L2,2L

H
2,2 +

m2
1,1 − `2

1,1

m2
1,1

l2,1l
H
2,1 +

λ(m2
1,1 − λv1v

∗
1)

m2
1,1

v2v
H
2

−
(
λ`1,1v1

m2
1,1

l2,1v
H
2 +

λ`1,1v
∗
1

m1,1

v2l
H
2,1

)
(A.16)

The expressions m2
1,1 − λv1v

∗
1 and m2

1,1 − `2
1,1 can be simplified using equation A.12.

M2,2M
H
2,2 = L2,2L

H
2,2+

λv1v
∗
1

m2
1,1

l2,1l
H
2,1+

λ`2
1,1

m2
1,1

v2v
H
2 −

λ`1,1v1

m1,1

l2,1v
H
2 −

λ`1,1v
∗
1

m2
1,1

v2l
H
2,1 (A.17)

Factoring out λ
m2

1,1
:

M2,2M
H
2,2 = L2,2L

H
2,2 +

λ

m2
1,1

(
v1v
∗
1l2,1l

H
2,1 + `2

1,1v2v
H
2 − `1,1v1l2,1v

H
2 − `1,1v

∗
1v2l

H
2,1

)
(A.18)

Note the factorization:

(`1,1v2−v1l2,1)(`1,1v2−v1l2,1)H = `2
1,1v2v

H
2 −`1,1v

∗
1l
H
2,1−`1,1v1l2,1v2+v1v

∗
1l2,1l

H
2,1 (A.19)

Therefore,

M2,2M
H
2,2 = L2,2L

H
2,2 +

λ

m2
1,1

(`1,1v2 − v1l2,1) (`1,1v2 − v1l2,1)H (A.20)

L2,2L
H
2,2 is a (C − 1) × (C − 1) Hermitian, positive definite matrix and λ

m2
1,1

(`1,1v2 −

v1l2,1)(`1,1v2 − v1l2,1)H is a rank-1 Hermitian update, so the process can be repeated on

subsequent columns of L until the entire Cholesky decomposition has been updated. Each
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column update is computed in linear time, so the entire update can be computed in quadratic

time.

While the order of complexity cannot be further reduced, there are changes that can be

made to decrease precision error. Factoring out `1,1:

M2,2M
H
2,2 = L2,2L

H
2,2 +

λ`2
1,1

m2
1,1

(
v2 −

v1

`1,1

l2,1

)(
v2 −

v1

`1,1

l2,1

)H
(A.21)

Rather than directly updating λ before moving on to the next column, better precision

can be achieved by updating a divisor instead. Looking at the fraction
`21,1
m2

1,1
:

`2
1,1

m2
1,1

=
`2

1,1

`2
1,1 + λv1v∗1

(A.22)

`2
1,1

m2
1,1

=
1

1 +
λv1v∗1
`21,1

(A.23)

Therefore,

M2,2M
H
2,2 = L2,2L

H
2,2 +

λ

1 +
λv1v∗1
`21,1

(v2 −
v1

`1,1

l2,1)(v2 −
v1

`1,1

l2,1)H (A.24)

Let

ω = v2 −
v1

`1,1

l2,1 (A.25)

So,

M2,2M
H
2,2 = L2,2L

H
2,2 +

λ

1 +
λv1v∗1
`21,1

ωωH (A.26)

Previously, m2,1 was written in terms of l2,1 and v. It can instead be written in terms

of l2,1 and ω. Recall that

m2,1 =
`1,1l2,1 + λv∗1v2

m1,1

(A.27)
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Substituting for v2:

m2,1 =
`1,1l2,1 + λv∗1(ω + v1

`1,1
l2,1)

m1,1

(A.28)

Combining the l2,1 terms:

m2,1 =
(`1,1 +

λv1v∗1
`1,1

)l2,1 + λv∗1ω

m1,1

(A.29)

Factoring out 1
`1,1

produces the expression for m2
1,1.

m2,1 =

1
`1,1

(`2
1,1 + λv1v

∗
1)l2,1 + λv∗1ω

m1,1

(A.30)

m2,1 =

m2
1,1

`1,1
l2,1 + λv∗1ω

m1,1

(A.31)

m2,1 =
m1,1

`1,1

l2,1 +
λv∗1
m1,1

ω (A.32)

So, to summarize:

m1,1 =
√
`2

1,1 + λ|v1|2 (A.33)

ω = v2 −
v1

`1,1

l2,1 (A.34)

m2,1 =
m1,1

`1,1

l2,1 +
λv∗1
m1,1

ω (A.35)

M2,2M
H
2,2 = L2,2L

H
2,2 +

λ

1 + λ|v1|2
`21,1

ωωH (A.36)

The rank-1 Hermitian update to a Cholesky decomposition can be computed in quadratic
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time. The algorithm can be rewritten to be computed in place.
Algorithm 10: Cholesky Decomposition Hermitian Rank-One Update
ω ← v

α← 1

for i ∈ {1, . . . , C} do
η ← α`2

i,i + λ|ωi|2

mi,i ←
√
`2
i,i + λ|ωi|2

α

for j ∈ {i+ 1, . . . , C} do
ωj ← ωj − `j,iωi

`i,i

mj,i ← mi,i`j,i
`i,i

+
λmi,iωjω

∗
i

η

end

α← α + λ|ωi|2
τ2

end

Algorithm 11: Cholesky Decomposition Hermitian Rank-One Update (In Place)
ω ← v

α← 1

for i ∈ {1, . . . , C} do
η ← α`2

i,i + λ|ωi|2

τ ← `i,i

`i,i ←
√
`2
i,i + λ|ωi|2

α

for j ∈ {i+ 1, . . . , C} do
ωj ← ωj − `j,iωi

τ

`j,i ← `i,i`j,i
τ

+
λ`i,iωjω

∗
i

η

end

α← α + λ|ωi|2
τ2

end
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APPENDIX B

RANK-2 EIGENDECOMPOSITION EDGE CASES

A =

[
v DHu

]
(B.1)

B =

[
DHu v

]H
(B.2)

B.1 Less than 2 Independent Eigenvectors

The matrixAB is a HermitianM×M matrix, so it hasM real eigenvalues andM indepen-

dent eigenvectors which can be chosen to be orthogonal. Therefore,BA has 2 independent

eigenvectors ifB is rank 2. There are three cases that can causeB to have a rank less than

2.

1.

DHu = 0 (B.3)

2.

v = 0 (B.4)

3.

DHu = αv (B.5)

where α is a scalar.

In the first 2 cases, the matrix BA has one independent eigenvector. The first case

implies that only the Hermitian update is nonzero. The second case implies that the entire

update is zero. (The eigenvalues are zero, so as long as the normalization of eigenvectors

is handled with care, it is not necessary to check for these cases in code.)
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In the third case, the diagonalization of AB can be determined directly without using

the 2× 2 matrixBA.

AB = 2R(α)vvH (B.6)

τ = 2R(α)‖v‖2
2 (B.7)

ω =
v

‖v‖2

(B.8)

The rest of the eigenvalues are zero. (The corresponding 2 × 2 matrix BA shares the

same nonzero eigenvalue. The eigenvector that is lost has an eigenvalue of zero, so like in

the other 2 cases, it is not necessary to check for this case in code.)

B.2 Eigenvalues are Not Distinct

If the pair of eigenvalues are the same, then all nonzero vectors are eigenvectors of BA.

However, it is necessary for a diagonalization expansion with only Hermitian terms that

the eigenvectors of AB are chosen to be orthogonal, which can be found using a Gram-

Schmidt process. This case is not just a theoretical concern; it is necessary to check for this

in code.
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APPENDIX C

DIFFERENTIATING THE INVERSE FUNCTION

Appendix C considers the equation

fD̂(b) =
(
ρI + D̂HD̂

)−1

b (C.1)

and derives the mathematical equations necessary to apply the chain rule to composite

functions containing function fD̂, treating ρ as a real constant.

C.1 Chain Rule

When differentiating composite functions, the chain rule equation is really useful.

∂g(f(x))

∂x
=
∂g(f(x))

∂f(x)

∂f(x)

∂x
(C.2)

If fa(x) and ga(y) both depend on real scalar variable a, then

∂ga(fa(x))

∂a
=
∂ga(y)

∂a
+
∂ga(fa(x))

∂fa(x)

∂fa(x)

∂a
(C.3)

substituting in y = fa(x) after differentiation. Applying this inductively, the partial deriva-

tives of a composite function can be derived using expressions for the partial derivatives of

each of the component functions. So, if fa(x) is a component function, the partial deriva-

tives that need to be calculated are ∂fa(x)
∂a

and ∂fa(x)
∂x

.
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C.1.1 Matrix Calculus

There are competing standards for matrix calculus notation. This dissertation will default

to the numerator layout:

dy

dx
=


dy1
dx1

. . . dy1
dxn

... . . . ...

dym
dx1

. . . dyn
dxn

 (C.4)

The corresponding chain rule equations are

∂g(f(b))

∂b
=
∂g(y)

∂y

∂f(b)

∂b
(C.5)

∂ga(fa(b))

∂a
=
∂ga(y)

∂a
+
∂ga(y)

∂y

∂fa(b)

∂a
(C.6)

So, if fa(b) is a component function, its partial derivatives that need to be calculated are

∂fa(b)
∂a

and ∂fa(b)
∂b

.

Even for functions with branching, the necessary partial derivatives are the same. In the

branching case, derivatives are aggregated just as they were with the shared dependence on

scalar variable a. For example,

∂g(f1(b), f2(b))

∂b
=
∂g(f1(b), f2(b))

∂f1(b)

∂f1(b)

∂b
+
∂g(f1(b), f2(b))

∂f2(b)

∂f2(b)

∂b
(C.7)

If L is a real-valued scalar function that depends on b ∈ RM , then1

∇bL =

(
∂L

∂b

)T
(C.8)

If b affects L through multiple branches, the gradient is the sum of multiple terms. I will

1The transpose is necessary because the derivatives adhere to numerator layout.
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use a superscript to specify one of the terms by its branch:

∇(b→fi(b))
b L =

(
∂L

∂fi(b)

∂fi(b)

∂b

)T
(C.9)

∇bL =
∑
i

∇(b→fi(b))
b L (C.10)

C.1.2 Complex Numbers

The chain rule can be applied for functions of complex variables if the functions are ana-

lytic. However, for a non-analytic function f , the limit lim∆z→0
f(z+∆z)−f(z)

∆z
does not exist.

Since all non-constant functions onto reals are nonanalytic, the lack of derivative is a prob-

lem. Fortunately, for functions onto reals, a chain-rule like property exists for gradients.

For non-analytic function f : ZM → R, the gradient is simply2

∇zf(z) =

(
∂f(z)

∂R(z)
− j ∂f(z)

∂I(z)

)H
(C.11)

If a non-analytic, real-valued function g : ZN → R is paired with analytic function

f : ZM → ZN , then the chain rule can safely be applied for composite function g ◦ f ,

treating the Hermitian transpose of the gradient as a derivative.

(∇zg(f(z)))H =
(
∇f(z)g(f(z))

)H ∂f(z)

∂z
(C.12)

To see that this is true, the key is to split the complex numbers into real and complex

components, and apply the chain rule:

∂g(f(z))

∂R(z)
=

∂g(f(z))

∂R(f(z))

∂R(f(z))

∂R(z)
+
∂g(f(z))

∂I(f(z))

∂I(f(z))

∂R(z)
(C.13)

2The partial derivatives in this definition are not guaranteed to exist. For those cases, this derivative cannot
be calculated. For the rest of this part of the appendix, assume that the non-analytic functions are chosen such
that the partial derivatives exist.
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By definition,
∂g(f(z))

∂R(f(z))
= R

((
∇f(z)g(f(z))

)H) (C.14)

∂g(f(z))

∂I(f(z))
= −I

((
∇f(z)g(f(z))

)H) (C.15)

Using the fact that ∂f(z)
∂z

= lim∆z→0
f(z+∆z)−f(z)

∆z
,

∂R(f(z))

∂R(z)
= R

(
∂f(z)

∂z

)
(C.16)

∂I(f(z))

∂R(z)
= I

(
∂f(z)

∂z

)
(C.17)

Therefore,

∂g(f(z))

∂R(z)
= R

((
∇f(z)g(f(z))

)H)
R

(
∂f(z)

∂z

)
− I

((
∇f(z)g(f(z))

)H)
I

(
∂f(z)

∂z

)
(C.18)

∂g(f(z))

∂R(z)
= R

((
∇f(z)g(f(z))

)H ∂f(z)

∂z

)
(C.19)

Having computed the partial derivative in respect to the real component, it is necessary

to now compute the partial derivative in respect to the imaginary component. Following

the same process using the chain rule,

∂g(f(z))

∂I(z)
=

∂g(f(z))

∂R(f(z))

∂R(f(z))

∂I(z)
+
∂g(f(z))

∂I(f(z))

∂I(f(z))

∂I(z)
(C.20)

Using the fact that ∂f(z)
∂z

= lim∆z→0
f(z+∆z)−f(z)

∆z
,

∂R(f(z))

∂I(z)
= −I

(
∂f(z)

∂z

)
(C.21)
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∂I(f(z))

∂I(z)
= R

(
∂f(z)

∂z

)
(C.22)

Therefore,

∂g(f(z))

∂I(z)
= −R

((
∇f(z)g(f(z))

)H)
I

(
∂f(z)

∂z

)
− I

((
∇f(z)g(f(z))

)H)
R

(
∂f(z)

∂z

)
(C.23)

Finally, combining equations C.19 and C.23 demonstrates that the computations using

the gradient-based chain rule satisfy the definition in equation C.11.

∇zg(f(z)) =

(
∂g(f(z))

∂R(z)
− j ∂g(f(z))

∂I(z)

)H
(C.24)

C.2 Partial Derivatives

C.2.1 Partial Derivatives in Respect to Inputs

The function fD̂(b) is analytic in respect to b, and its partial derivative in respect to b

requires no explanation:
∂fD̂(b)

∂b
=
(
ρI + D̂HD̂

)−1

(C.25)

Using the Woodbury matrix identity, equation C.1 can be rewritten as

fD̂(b) =
1

ρ

(
b− D̂H

(
ρI + D̂D̂H

)−1

D̂b

)
(C.26)

This form contains the function

gD̂(y) =
(
ρI + D̂D̂H

)−1

y (C.27)

The partial derivative of gD̂(y) in respect to y is also straightforward, given its analytic
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nature:
∂gD̂(y)

∂y
=
(
ρI + D̂D̂H

)−1

(C.28)

The function gD̂ from the Woodbury form uses a different inverse:
(
ρI + D̂D̂H

)−1

.

However, the derivations for its derivatives are very similar to that of the previous inverse(
ρI + D̂HD̂

)−1

, so the focus here will remain on the original formulation without the

Woodbury transformation.

C.2.2 Partial Derivatives in Respect to Dictionary

Let

Q = ρI + D̂HD̂ (C.29)

so fD̂(b) = Q−1b.

According to [50],

∂(ρI + D̂HD̂)−1

∂a
= −Q−1∂Q

∂a
Q−1 (C.30)

where a is a real scalar variable.

∂Q

∂a
=
∂ρI

∂a
+
∂D̂HD̂

∂a
(C.31)

(
D̂HD̂

)
m1,m2

=
∑
i

D̂i,m2D̂
∗
i,m1

(C.32)

77



where D̂∗i,m1
is the complex conjugate of D̂i,m1 . For, m1 6= m2:

∂
(
D̂HD̂

)
m1,m2

∂R(D̂i,m1)
= D̂i,m2

∂
(
D̂HD̂

)
m1,m2

∂I(D̂i,m1)
= −jD̂i,m2

∂
(
D̂HD̂

)
m1,m2

∂R(D̂i,m2)
= D̂∗i,m1

∂
(
D̂HD̂

)
m1,m2

∂I(D̂i,m2)
= jD̂∗i,m1

(C.33)

For the case m1 = m2:

∂
(
D̂HD̂

)
m1,m1

∂R(D̂i,m1)
= 2R(D̂i,m1)

∂
(
D̂HD̂

)
m1,m1

∂I(D̂i,m1)
= 2I(D̂i,m1)

(C.34)

Combining equations C.33 and C.34 yields the following equations:

∂
(
D̂HD̂

)
∂R(D̂c,m)

= eme
T
c D̂ + D̂Hece

T
m

∂
(
D̂HD̂

)
∂I(D̂c,m)

= −jemeTc D̂ + jD̂Hece
T
m

(C.35)

where ei is the ith Euclidean basis vector.3

∂ρI

∂D̂c,m

= 0 (C.36)

3That is, the ith element of vector ei is equal to one, and all other elements are zero.
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So,

∂Q

∂R(D̂c,m)
= eme

T
c D̂ + D̂Hece

T
m

∂Q

∂I(D̂c,m)
= −jemeTc D̂ + jD̂Hece

T
m

(C.37)

Finally, this result can be plugged back into equation C.30

∂(ρI + D̂HD̂)−1

∂R(D̂c,m)
= −Q−1(eme

T
c D̂ + D̂Hece

T
m)Q−1

∂(ρI + D̂HD̂)−1

∂I(D̂c,m)
= Q−1(jeme

T
c D̂ − jD̂Hece

T
m)Q−1

(C.38)

∂fD̂(b)

∂R(D̂c,m)
= Q−1(−emeTc D̂ − D̂Hece

T
m)Q−1b

∂fD̂(b)

∂I(D̂c,m)
= Q−1(jeme

T
c D̂ − jD̂Hece

T
m)Q−1b

(C.39)

The derivations for the partial derivatives of

gD̂(y) = (ρI +DDH)−1y (C.40)

are very similar to that of fD̂. Let Qg = ρI + DDH . Given the similarity between the

derivations, the calculations will not be repeated here, though through the same procedure

as before,

∂Qg

∂R(D̂c,m)
= ece

T
mD̂

H + D̂eme
T
c

∂Qg

∂I(D̂c,m)
= jece

T
mD̂

H − jD̂emeTc
(C.41)
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∂(ρI + D̂D̂H)−1

∂R(D̂c,m)
= −Q−1

g (ece
T
mD̂

H + D̂eme
T
c )Q−1

g

∂(ρI + D̂D̂H)−1

∂I(D̂c,m)
= −Q−1

g (jece
T
mD̂

H − jD̂emeTc )Q−1
g

(C.42)

C.3 Backpropagation of Loss Function

To backpropagate the loss function L through component function fD̂(b), the partial

derivative in respect to the input of function fD̂(b) is necessary to reach earlier layers,

as explained in section C.1. If b only influenced L through fD̂, then

∇bL =
(
∇fD̂(b)L

)H ∂fD̂(b)

∂b
(C.43)

If the dictionary D̂ is only used in component function fD̂, then4

∂L

∂R(D̂c,m)
= R

((
∇fD̂(b)L

)H ∂fD̂(b)

∂R(D̂c,m)

)
(C.44)

∂L

∂I(D̂c,m)
= R

((
∇fD̂(b)L

)H ∂fD̂(b)

∂I(D̂c,m)

)
(C.45)

If the dictionary D̂ is used in multiple component functions, the expressions(
∇fD̂(b)L

)H ∂fD̂(b)

∂R(D̂c,m)
and

(
∇fD̂(b)L

)H ∂fD̂(b)

∂I(D̂c,m)
still must be calculated so that the re-

sults can be aggregated later. Similarly, if b affects L through multiple branches,5 the

expression
(
∇fD̂(b)L

)H ∂fD̂(b)

∂b
still must be calculated, and∇bL is just an aggregation of

4These equations can be derived through chain rule. Note that the function of D̂c,m is non-analytic, so to
apply chain rule properly, it is important to work with the real and imaginary components, rather than directly
with complex numbers.

5That is, not just through function fD̂
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the results across all branches.

(
∇fD̂(b)L

)H ∂fD̂(b)

∂b
=
(
∇fD̂(b)L

)H
Q−1 (C.46)

(
∇fD̂(b)L

)H ∂fD̂(b)

∂R(D̂c,m)
=
(
∇fD̂(b)L

)H
Q−1(−emeTc D̂ − D̂Hece

T
m)Q−1b (C.47)

(
∇fD̂(b)L

)H ∂fD̂(b)

∂R(D̂c,m)
= −

((
∇fD̂(b)L

)H
Q−1em

)
(eTc D̂Q

−1b)

−
((
∇fD̂(b)L

)H
Q−1D̂Hec

)
(eTmQ

−1b) (C.48)

Note that
(
∇fD̂(b)L

)H
Q−1D̂Hec and eTmQ

−1b are scalars and Q−1 is Hermitian, so

using the fact that the Hermitian transpose of a scalar is its complex conjugate

(
∇fD̂(b)L

)H
Q−1D̂Hec =

(
eTc D̂Q

−1∇fD̂(b)L
)∗

eTmQ
−1b =(bHQ−1em)∗

(C.49)

Therefore,

(
∇fD̂(b)L

)H ∂fD̂(b)

∂R(D̂c,m)
= −

((
∇fD̂(b)L

)H
Q−1em

)
(eTc D̂Q

−1b)

−
(
eTc D̂Q

−1∇fD̂(b)L
)∗

(bHQ−1em)∗ (C.50)

Scalar multiplication commutes, so

(
∇fD̂(b)L

)H ∂fD̂(b)

∂R(D̂c,m)
= −(eTc D̂Q

−1b)
((
∇fD̂(b)L

)H
Q−1em

)
−
(
eTc D̂Q

−1∇fD̂(b)L
)∗

(bHQ−1em)∗ (C.51)
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(
∇fD̂(b)L

)H ∂fD̂(b)

∂R(D̂c,m)
= eTc (−(D̂Q−1b)

((
∇fD̂(b)L

)H
Q−1

)
−
(
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(bHQ−1)∗)em (C.52)

(
∇fD̂(b)L

)H ∂fD̂(b)

∂R(D̂c,m)
= −

(
(D̂Q−1b)

((
∇fD̂(b)L

)H
Q−1

))
c,m

−
((
D̂Q−1∇fD̂(b)L

)∗
(bHQ−1)∗

)
c,m

(C.53)

(
∇fD̂(b)L

)H ∂fD̂(b)

∂I(D̂c,m)
=
(
∇fD̂(b)L

)H
Q−1(jeme

T
c D̂ − jD̂Hece

T
m)Q−1b (C.54)

(
∇fD̂(b)L

)H ∂fD̂(b)

∂I(D̂c,m)
= j

(
∇fD̂(b)L

)H
Q−1eme

T
c D̂Q

−1b

− j
(
∇fD̂(b)L

)H
Q−1D̂Hece

T
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−1b (C.55)

(
∇fD̂(b)L

)H ∂fD̂(b)

∂I(D̂c,m)
= j

((
∇fD̂(b)L

)H
Q−1em

)
(eTc D̂Q

−1b)

− j
((
∇fD̂(b)L

)H
Q−1D̂Hec

)
(eTmQ

−1b) (C.56)

(
∇fD̂(b)L

)H ∂fD̂(b)

∂I(D̂c,m)
= j(eTc D̂Q

−1b)
((
∇fD̂(b)L

)H
Q−1em

)
− j

(
eTcDQ

−1∇fD̂(b)L
)∗

(bHQ−1em)∗ (C.57)
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(
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∂I(D̂c,m)
= −j

((
DQ−1∇fD̂(b)L

)∗
(bHQ−1)∗

)
c,m
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(

(D̂Q−1b)
((
∇fD̂(b)L

)H
Q−1

))
c,m

(C.58)

Assuming that D̂c,m only affects L through fD(b),

∂L

∂R(D̂c,m)
= −R

((
D̂Q−1∇fD̂(b)L

)
(bHQ−1) + (D̂Q−1b)

((
∇fD̂(b)L

)H
Q−1

))
c,m

(C.59)

∂L

∂I(D̂c,m)
= R

(
j(D̂Q−1b)

((
∇fD̂(b)L

)H
Q−1

)
− j

(
DQ−1∇fD̂(b)L

)∗
(bHQ−1)∗

)
c,m

(C.60)

∂L

∂I(D̂c,m)
= I

(
−
(
DQ−1∇fD̂(b)L

)
(bHQ−1)− (D̂Q−1b)

((
∇fD̂(b)L

)H
Q−1

))
c,m

(C.61)

Therefore,

∂L

∂D̂c,m

=
(
−(D̂Q−1b)∗

((
∇fD̂(b)L

)H
Q−1

)∗
−
(
D̂Q−1∇fD̂(b)L

)∗
(bHQ−1)∗

)
c,m

(C.62)

∇D̂L = −(D̂Q−1b)
((
∇fD̂(b)L

)H
Q−1

)
−
(
D̂Q−1∇fD̂(b)L

)
(bHQ−1) (C.63)
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If D̂ affects L through other functions (rather than just through fD(b)),

∇(b→fD(b))

D̂
L = −(D̂Q−1b)

((
∇fD̂(b)L

)H
Q−1

)
−
(
D̂Q−1∇fD̂(b)L

)
(bHQ−1)

(C.64)

Using similar derivations for the function gD̂(y) yields the following equation for the

gradient term:

∇(y→gD(y))

D̂
L = −

(
Q−1
g ∇gD̂(y)L

)
(yHQ−1

g D̂)− (Q−1
g y)

((
∇gD̂(y)L

)H
Q−1
g D̂

)
(C.65)
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[38] M. Šorel and M. Bartoš, “Efficient jpeg decompression by the alternating direction
method of multipliers,” in 2016 23rd International Conference on Pattern Recogni-
tion (ICPR), IEEE, 2016, pp. 271–276.

[39] B. Wohlberg, “Boundary handling for convolutional sparse representations,” in 2016
IEEE International Conference on Image Processing (ICIP), 2016, pp. 1833–1837.

[40] B. Wohlberg and P. Rodrı́guez, “Convolutional sparse coding: Boundary handling
revisited,” CoRR, vol. abs/1707.06718, 2017. arXiv: 1707.06718.

[41] F. Chollet et al., Keras, https://keras.io, 2015.

[42] J. V. Dillon, I. Langmore, D. Tran, E. Brevdo, S. Vasudevan, D. Moore, B. Patton, A.
Alemi, M. Hoffman, and R. A. Saurous, “Tensorflow distributions,” arXiv preprint
arXiv:1711.10604, 2017.

[43] O. Krause and C. Igel, “A more efficient rank-one covariance matrix update for
evolution strategies,” in Proceedings of the 2015 ACM Conference on Foundations
of Genetic Algorithms XIII, 2015, pp. 129–136.

[44] B. He, H. Yang, and S. Wang, “Alternating direction method with self-adaptive
penalty parameters for monotone variational inequalities,” Journal of Optimization
Theory and applications, vol. 106, no. 2, pp. 337–356, 2000.

[45] Z. Xu, M. Figueiredo, and T. Goldstein, “Adaptive admm with spectral penalty pa-
rameter selection,” in Artificial Intelligence and Statistics, PMLR, 2017, pp. 718–
727.

88

https://arxiv.org/abs/1707.06718
https://keras.io


[46] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations
over learned dictionaries,” IEEE Transactions on Image processing, vol. 15, no. 12,
pp. 3736–3745, 2006.

[47] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse repre-
sentation,” IEEE transactions on image processing, vol. 19, no. 11, pp. 2861–2873,
2010.

[48] P. Turquais, E. G. Asgedom, and W. Söllner, “A method of combining coherence-
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