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SUMMARY

The increasing size of high performance computing systems and the associated

increase in the volume of generated data, has resulted in an I/O bottleneck for these appli-

cations. This bottleneck is further exacerbated by the imbalance in the growth of processing

capability compared to storage capability, due mainly to the power and cost requirements

of scaling the storage. This thesis introduces data services, a new abstraction which pro-

vides significant benefits for data intensive applications. Data services combine low over-

head data movement with flexible placement of data manipulation operations, to address

the I/O challenges of leadership class scientific applications. The impact of asynchronous

data movement on application runtime is minimized by utilizing novel server side data

movement schedulers to avoid contention related jitter in application communication. Ad-

ditionally, the JITStager component is presented. Utilizing dynamic code generation and

flexible code placement, the JITStager allows data services to be executed as a pipeline

extending from the application to storage. It is shown in this thesis that data services can

add new functionality to the application without having an significant negative impact on

performance.
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CHAPTER I

INTRODUCTION

The last half decade has seen a dramatic increase in both the scale and importance of high

performance computing. With the increase computational capability of leadership class

machines has come a large increase in the data produced and consumed by leadership

applications. Typical data rates for applications have increased from terabytes/day to close

to petabytes/day, with another order of magnitude increase in data size looming on the

horizon. However the increased data sizes have not been accompanied by comparable

performance increase in the storage systems available to the largest machines, with both

available data size and total throughput seeing limited increases over this timeframe.

For high end machines, this imbalance between the I/O subsystems performance and

the load on the I/O system has resulted in a significant bottleneck in fully exploiting the

performance of current generation machines, and it will play an even large role in placing

limits on the efficient utilization of future systems.

1.1 The I/O imbalance

In today’s competitive research environment, high performance computing plays a signif-

icant role in driving innovation in a multitude of fields, including in cutting edge research

for nuclear fusion, combustion modelling, climate prediction, and materials development.

Scalable computing has been a driver for innovation in these fields, but as high performance

computing approaches petascale, the cost of I/O becomes significant. Current generation

applications are already producing data volumes approaching 16 TB/output step, but the

cost of the I/O operation is not the only overhead associated with such large volumes of

data. Analyzing the data to gain scientific understanding, finding features within the data

set and producing meaningful results from these steps are inherent parts of the scientific
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data workflow. Doing so at scale is inordinately difficult, for reasons explained in more

detail next. Before doing so, we note, however, that these issues are not just confined to

extreme scale machines. Businesses are increasingly using larger scale cluster machines to

process the enormous volumes of data they capture about their customers, the goal being to

use the data to improve their products and services. Often, such data mining or exploration

must be done in real-time, as customers interact with web portals or use search engines.

Another class of applications are codes processing sensor data, where it is important to

extract information in real-time from data as it is being generated.

This data deluge has created a visible I/O bottleneck. With the increasing size of data,

new and innovative approaches to storage are required in order to realize the low I/O over-

heads users expect. Parallel file systems like GPFS[66], Lustre[18], PVFS2 [17, 46],

PanFS [55] provide scalable parallel file system solutions for storage. Similarly, on the

enterprise side, vendors like IBM, NetApp, and EMC provide highly concurrent storage

hardware and solutions to continue to increase the aggregate throughput offered to ever

more data intensive end user codes. However, the limitations of these approaches become

evident as systems continue to scale, to hundreds of thousands of cores in high end ma-

chines and/or to tens of thousands of nodes in large-scale datacenter systems. For HPC,

moreover, a particular issue is the potentially bursty nature of I/O, when hundreds of thou-

sands of cores concurrently write output data. Here, semantic properties of files such as

consistent writes, consistent meta data, etc. can limit system scalabilit. Efforts to cope

with these limitations have been studied in the high performance domain with LWFS [58]

but also within the wide area storage domain with OceanStore [43]. Similar problems

have been observed for the metadata services used in distributed file systems, where server

contention leads to partitioning and replication (of metadata and metadata services).

New technologies may alleviate but do not solve the scale issues described above. Solid

state drives [5] and NVRAM [32] will likely extend the memory hierarchy seen in next gen-

eration server systems, causing additional challenges for systems and application software
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to efficiently use ever deeper memory hierarchies. Given cost and capacity constraints,

however, they may narrow the gap between CPU, memory, and storage speeds, but will not

close it, nor will they entirely replace current disk-based storage systems. Instead, they will

provide opportunities for new software methods to cache or temporarily store select data,

in order to improve application or system performance [8, 56, 68].

The technological solutions described above seek to make additional storage bandwidth

available to applications, thereby preventing such codes from blocking on storage opera-

tions and reduce the impact of storage operations on code performance. A more funda-

mental problem is the cost of extracting information from such large blocks of generated

or raw data, as it is this cost that determines the end to end performance seen by data min-

ing applications and by scientific end users trying to understand simulation outputs as part

of the scientific processes being undertaken. Extracting useful information from data and

exploring data to determine certain properties, all such actions require data to be repeat-

edly written and read to/from storage, as routinely done both in scientific and in enterprise

settings [51, 21]. This not only puts yet additional stresses on storage systems, but it also

implies further delays and potential bottlenecks in generating scientific or business insights

from the increasingly large data sets generated by applications.

Alleviating this problem requires a significant shift in how data management and I/O

are performed for high end xmachines. This thesis describes and explores such a shift,

which takes advantage of properties of next-generation HPC codes that are not yet ex-

ploited by current HPC I/O systems. In particular, we leverage the latent asynchrony in

these codes and their tolerance for decoupling ancillary I/O operations (e.g., data trans-

formation, formatting for output, non-critical metadata operations etc.) from the compute

node’s synchronous critical path. Further, by carefully separating and relocating these de-

coupled operations in space and time from the ‘core’ HPC code execution, we shorten the

application’s I/O phases. Finally, we offer flexibility in ’where’ and ’when’ such operations

are performed on I/O data, including:
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• fully coupled: synchronously and on the source node, at potentially high cost to

machines’ compute nodes, but avoiding unnecessary data movement or copying;

• decoupled in space: in-band with the application’s I/O actions, but on other nodes,

such as on additional nodes on the HEC machine where memory for buffering is

less precious and where there are additional CPU resources for operating on data ’in

transit’ or as it is being moved; or

• decoupled in time: out-of-band, after data has been moved away from the HPC

application, thereby permitting it and the application to proceed independently.

This thesis introduces the data services abstraction, a foundation for the development

of technologies that can address increasing data throughput requirements, while allowing

for lower time to extract information from the data set. A data service can be defined as

a pipeline of coupled components operating on the output data to both extract information

and to add metadata which can further aid the analysis of the scientific data. The compo-

nents of data services can be full fledged analysis codes such as pairwise bond computation

codes used in molecular dynamics or smaller utility based operators such as data reduction

and aggregation operators. A key factor that enables the development and deployment of

data services is introduced in this thesis, namely data staging. Data staging is a set of re-

sources allocated “near” the application, usually offering a high throughput, low latency

interconnection to the application nodes. Complementary to staging is the idea of managed

data movement to alleviate the performance impact on the application from the movement

of data by combining server directed I/O with scheduling techniques to reduce interfer-

ence. Finally, this thesis goes beyond simply allocating discrete resources for staging but

introduces the concept of staging on the application nodes or JITStaging. Using dynamic

code generation, the staging area is extended to utilize the application memory and com-

putational resources to open up more functionality for the data service without additional

operational costs within the staging area.
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1.2 Thesis statement

In transit services for data extraction, management, and processing provide a high perfor-

mance path for modern scientific application and workflows. For such ”data services”; the

use of staging coupled with online processing of data creates an inherently scalable ap-

proach to dealing with the increasing mismatch between processing and storage. Service

instances go beyond just simple data store/forward to open up complex processing actions

that enable improved time to solution over traditional approaches performed after data has

been stored. Coupled with novel approaches such as zero overhead transport protocols like

RDMA, the use of structured data serialization, data transport scheduling, and intelligent

file formats, data services can provide significant additional data processing functionality

while also improving application performance.

1.3 Contributions

The contributions of this thesis are two fold. Firstly, a new abstraction is introduced, Data

Services, which enables timely data processing and insitu computation and visualization as

data sizes and data rates scale in the current and next generation of scientific applications.

Secondly, this thesis describes techniques and mechanisms for the efficient movement and

processing of the data generated by large scale data intensive simulations.. These tech-

niques include the use of one sided communication such as RDMA, which allows for low

overhead movement of data without local processing impact; and server side I/O schedul-

ing, which enables the management of asynchronous movement to allow for low overhead

data reordering as well as contention avoidance to reduce the impact of resource contention

on the application. Finally the use of dynamic code generation coupled with easy ”code”

movement in the data pipeline forms the foundation of future research to optimize the

placement of data manipulation functionality to fulfill quality of service (QoS) require-

ments imposed by the user.
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1.4 Impact of future technologies

This thesis provides a software, and more specifically a middleware, solution to the data

management problems as we approach tens of petaflops and gear up towards exascale.

Hardware design solutions have also been proposed in order to achieve similar goals. New

technologies such as Solid State Disks (SSDs) and Non-volatile Memory (NVRAMS) are

seeking to address the challenges to exascale data also, however the approach is orthogo-

nal and complementary to the approach presented in this thesis. In particular the staging

technique presented here can be utilized even more efficiently when combined with fast

persistent storage hardware. This is discussed in more detail in Chapter 7.

1.5 Thesis organization

The thesis is organized as follows. In Chapter 2 we layout the background behind the data

service abstraction, including some of the key applications which have driven this vision.

Additionally we describe the past technological artifacts that have served as the founda-

tional components of the design and implementation of data services. The data service

abstraction and the key points of their design as well as the implementation goals are de-

scribed in Chapter 3. Following chapters describe in detail the key innovations necessary

for the successful development and adoption of data services. In Chapter 4 we introduce

the staging area as well as the key step in realizing low impact asynchronous data move-

ment to the staging area, viz. the perturbation avoidance scheduler. The standard staging

area is further elaborated on with dynamic code generation and code movement in Chap-

ter 5 which utilizes not just the computational capability of the staging area but also the

processing cores in the application to optimize data operations. Here we show how using

the knowledge about the global data view which is available in the staging area and spe-

cializing data operations in the application area can be used to create novel data services

with minimal performance impact on the application runtime. Finally we show the utility

of data services in Chapter 6 in conjunction with two of our key leadership applications,
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CHIMERA and GTC. In Chapter 7 we look at the future directions for research that are

opened up based on the initial contributions of this thesis and we present our conclusions

in Chapter 8.
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CHAPTER II

MOTIVATION AND FOUNDATIONS

This chapter describes the motivation and the background, which has driven the design

and development of the data service abstraction. Data services provides a new paradigm

for outputting, storing and processing scientific data from leadership scale applications.

The design principles have been developed in collaboration with scientific application de-

velopers, and with the scientists using these applications. We will look at some of these

motivating application, and also describe the unique I/O challenges raised by each. The

data service abstraction can be considered to be one way of addressing these challenges.

2.1 Motivating applications

Our research is largely driven by the experiences of computational scientists dealing with

the problem of data management on leadership machines. Concrete sample applications

have been chosen to drive the motivation and design parameters, as well as providing us

with an evaluation platform for our research efforts.

2.1.1 WARP

WARP (and its successor LAMMPS) is a molecular dynamics application utilized by col-

laborators at Georgia Tech conducting research on material deformation and crack pro-

pogation. Molecular dynamics codes aim to replicate atomic-scale motions, using various

representations of the forces involved. These codes are used to study some very large

problems, sometimes involving hundreds of thousands to millions of atoms. The run-time

of such problems can be quite long, even on massively parallel machines, and therefore

the task of visualizing and steering of the codes can be important. Traditional methods of

dealing with such data flows involve complete state logging for later viewing (which does

8



not scale well to large sizes or long runs) or the storage of partially interpreted data such

as auto-correlation functions or time averages (which may fail to preserve data needed in

subsequent interpretation).

2.1.1.1 Description of I/O challenges

We use WARP as an example of a representative application where the output data is pro-

cessed through an extensive pipeline to extract information from the data. In the case of

WARP, this pipeline consumes the molecular data produced by the parallel application in

the Bonds analysis application. Bonds performs a pairwise computation on all of the parti-

cles in the system to calculate a set of “bonds”, two molecules that are within a threshold

R2 < � < R1. Due to the complexity of the computation, the Bonds application can have

a significant slowdown effect on the WARP application’s execution. The WARP molecular

output data is also stored on disk, either before the Bonds step is performed or after.

2.1.2 GTC

GTC, the Gyrokenetic Toroidol Code, is a particle-in-cell simulation of plasma as part of

the fusion process. GTC has very stringent scalability and I/O requirements, running on

more than 150k+ cores on Jaguar XT5 at ORNL. On current generation machines, GTC

generates 100 terrabytes of data per day for analysis [39] with plans for an order magnitude

increase on next generation machines. Due to these requirements, GTC serves as an ideal

platform for the development of new mechanisms for I/O and data management.

2.1.2.1 Description of I/O challenges

GTC is a representative example of a highly scalable application producing data at next

generation data rates. We study both the GTC particle output as well as the restart output,

both outputs fulfilling the requirement of being extremely large output data sets that can

produce a significant impact on application performance. In our experiments, we config-

ured GTC to output 180 MB/process, and utilized weak scaling to test outputs ranging from
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22.4 GB to 360 GB for each output timestep. We also tested the scaling performance for

GTC

2.1.3 CHIMERA

CHIMERA[52] is a multi-dimensional radiation hydrodynamics code designed to study

core-collapse supernovae. We look at the periodic restart output that is used for both check-

pointing and post-processing. The restart data consists of 80 scalar and arrays. Global

arrays are regularly distributed among a 2-D grid of MPI processes. CHIMERA uses the

ADIOS API [50] for I/O allowing multiple methods to be compared by simply modifying a

variable in the configuration file. The data is defined as part of an external XML configura-

tion with both structure and meta information and enabling the use of structured FFS data

for output purposes. We have instrumented the application with specific calls to ADIOS

in order to provide phase information to the underlying transport method, allowing us to

customize the behavior of the data transport.

2.1.3.1 Description of I/O challenges

While the CHIMERA data output is not pushing the boundaries in terms of data volume, a

unique aspect of CHIMERA is the requirement for the data output format to be HDF5 [64].

In our experiments, we evaluate the service to convert the output data to HDF5 format

within the staging area and compare it to the native output method.

2.2 Foundational technologies

While data services are a significant change in the paradigm of data management for high

performance applications, their development has been focused through the use of existing

foundational technologies. Three components in particular have played a significant role

in the motivation for the data service abstraction.
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2.2.1 FFS

The Fast Flexible Serialization (FFS) library is on the primary component of the data ser-

vice stack. FFS is a descendant of the Portable Binary IO (PBIO) [27, 15] that provides an

interface to serialize data into a tightly packed self describing message. FFS uses descrip-

tive data formats to allow remote consumers to query the data format and extract structural

metadata from the message. In this regard, FFS is similar to an XML message that can be

used for data discovery without a priori knowledge of the data formats. While FFS does

not produce data streams in human readable formats, FFS does provide several distinct ad-

vantages over the XML messages such as the compact representation of FFS, ability to be

converted into XML messages and the fast marshalling and unmarshalling of data. These

capabilities make FFS particularly suited for use the HPC environment, and we have uti-

lized FFS as the messaging format for our implementation of the data services abstraction.

2.2.2 EVPath

EVPath is an event delivery middleware developed as a replacement for the publish-subscribe

ECho middleware [26, 28]. A key property of the EVPath middleware is the idea of sep-

arating the control plane which handles the creation of the overlay network of ”stones”,

from the data plane which deals with the efficient movement of data within the network of

stones. EVPath has been extensively used in research on monitoring [45], data aggregation

[44],

2.2.3 ADIOS

The ADatpable I/O System (ADIOS) is a componentized I/O framework developed jointly

at Georgia Tech and Oak Ridge National Laboratory [48]. ADIOS provides a framework

for production applications to utilize both established I/O methods as well as experiment

with new research technologies such as those described in this thesis. Implementing the

data service abstraction within the framework of ADIOS, provides the technology with a
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large number of adopters in the scientific computing domain. In particular, the nuclear

fusion particle-in-cell simulation, GTC has been an early adopter of the data service ab-

straction in order to deal with problems arising from the data output requirements of the

applications.

2.2.4 Evaluation platforms

This thesis utilizes the problems faced by these real applications and builds on the founda-

tions of the aforementioned technologies to describe the data service abstraction, described

in detail in the next chapter, has been implemented on three computing platforms; viz. the

Cray XT4/5 Jaguar, a leadership class supercomputer at Oak Ridge National Laboratory,

and on the Georgia Tech CERCS Rohan cluster, a SDR infiniband based linux cluster of 50

nodes with two cores each and the Georgia Tech CERCS Maquis cluster, a QDR infiniband

based linux cluster of 16 nodes with 8 cores each.

The motivational applications and the foundational technologies enumerated in this

chapter have provided us with the challenges faced by scientific applications today. In

the following chapters we look at the design of data services, the key implementation areas

and how data services, when used with these applications, can overcome these obstacles.
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CHAPTER III

THE DATA SERVICE ABSTRACTION

Current methods for dealing with the previously mentioned data deluge, such as increasing

storage bandwidth, do not scale to petascale and beyond for both cost and performance

metrics. The conventional practice of storing data on disk, moving it off-site, reading it

into a workflow, and analyzing it to produce scientific solutions becomes harder due to

large data volumes and limited backend speeds. In fact, even the time required to move

data to storage can become an obstacle, since if output actions cause an application to

block on I/O, countless numbers of compute cores sit idle waiting on output. In addition,

science is affected if it takes say, 500 seconds to output data, since that makes it hard to

justify writing data more than once per hour, even if the science may benefit from more

frequent output.

Instead, we propose a new abstraction for data management that can satisfy the require-

ments for today’s applications as well provide a scalability path for the next generation of

leadership systems and applications. The Data Service abstraction merges the data output

stage in I/O with the data management process required for performing both pre-analysis

and analysis on the data. Our approach goes beyond simply accelerating output to also

moving select data manipulation tasks traditionally placed in an offline workflow ’into’ the

fast data path on the supercomputer. Suitable tasks include those that reduce data without

loss of scientific validity, generate metadata (e.g., indexing) for easier data access, or per-

form lightweight analysis tasks for online validation of application ‘health’ via dashboards.

While previous work has demonstrated the utility of this approach [73, 1, 10, 31], what re-

mains lacking are system abstractions and the underlying runtime support for efficient I/O

task representation, deployment, execution, and management.
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Data Service is a system-level abstraction that encapsulates methods for data movement

and manipulation on the fast path of data output. Data Services are created and deployed

separately from application codes, thereby separating changes made to application codes

by science users from changes made to I/O actions by developers or administrators. Data

services can be run asynchronously from the large-scale simulations running on supercom-

puters, in order to decouple I/O actions and their performance behavior from the those of

the computations performed by large-scale applications. Thus, science end users can focus

on their codes, and administrators or developers can help create and manage I/O processes.

To make I/O processes manageable, data services are associated with I/O so as to retain

flexibility (1) in the resources they consume, (2) in where services are run (e.g., on compute

nodes and/or on staging nodes), and (3) in how and when they are run, including explicitly

scheduling their execution to avoid perturbing the petascale simulation [3]. Flexibility in

the levels of resources dedicated to I/O ranges from ‘none’, where compute nodes are used

to run output actions, to cases in which a substantial number of ‘fat nodes’ are used for

staging data and manipulating it prior to storing it on disk. Flexibility in service placement

includes placing certain data reduction actions close to the source, even directly on com-

pute nodes via the JITStager abstraction used for capturing output data. Data produced by

JITStager can be fed to storage and/or to additional data services placed on staging nodes,

where data may be buffered, annotated, or reorganized prior to moving it to storage. Flex-

ibility in how services are run is supported by output scheduling methods that take into

account supercomputer interconnects with respect to perturbations of simulations caused

by output activities, and by backend-sensitive methods that adapt to different storage char-

acteristics and behaviors. Examples of the latter are those that avoid using storage targets

already used by other parties or more simply, that use the appropriate number of storage

targets to maximize throughput.

The data service abstraction makes it easier to develop, deploy, and maintain per-site

and per-run optimizations of I/O processes. The abstraction also exploits the facts that there
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exist many non-trivial I/O and data processing tasks that can be done with few additional

computational resources, on compute and/or on staging nodes, and moreover, that perform-

ing such tasks can result in performance gains when writing data and/or in usability gains

by increasing the information content of data through annotation. Toward these ends, data

services are defined to differentiate between (1) data extraction, using the JITStager ab-

straction, (2) data processing via light-weight computations associated with data services,

and (3) data storage using methods that take into account storage system characteristics and

behaviors, and (4) for flexibility, the implementation of data services separates data move-

ment and manipulation – the data plane – from how such actions are managed – the control

plane. Therefore, new scheduling methods for data extraction or new techniques for how

storage targets (or other backends) are used can be deployed easily, without changing data

plane movement and processing actions.

Data services have built on the ideas proposed in previous work on Service Augmenta-

tion [73] and the LIVE Data Workspace [1]. The data service itself can be considered to be

comprised of three distinct parts, the data input, the data manipulation operation, and the

output. By capturing the discrete and separate nature of the data input and output processes,

we can describe data services that bridge between different network architectures as well

as providing the basis for services, which receive data from the network and output data to

storage. The data manipulation operator is a coherent component that can be merged with

differing I/O components allowing for maximum flexibility in the construction of the final

data pipeline.

More formally, a data service can be described as follows

A
input→ f(A) →

output
A�

where A is the input to the data service and A
� is the output from the service. In

addition, we can describe the data pipelines as a combination of the services such that the

input for service, Si is the output from a service Si−1. Defining an entire data pipeline as

a series of connected services carries a distinct advantage towards future efforts to create
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Figure 1: High level view of the Data Service Architecture.

execution models and utilize service placement optimizations.

3.0.5 Architecture and design

A data service is a collection of actions on ‘in transit’ data, carrying out tasks like data

extraction, data staging, formatting, indexing, compression, and storage. A high level de-

piction of the Data Service architecture appears in Figure 9, which shows that conceptually,

running a Data Service has the following phases:

• from bytes to structured data: writing and formatting output into buffers to create

data items of well-defined structure and memory layout;

• controlled data movement: extracting data items to maximize application perfor-

mance;

• online data processing: applying service codes to output data while it is being moved.

In order to support customizable and configurable I/O data movement and processing,

each of these steps are carried out in ways that are defined by control methods associated

with them. Examples include the scheduling of data eviction from compute nodes and the

controlled movement of data to storage subsystems. Each of these steps and their controls

are explained next.
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3.0.6 Structured output data

With the massive quantities of data generated by petascale applications, it is not uncom-

mon that only a fraction of this data is actually required for scientific analysis. Thus,

producing and outputting the entire data set and then later extracting a smaller portion for

post-processing can create an unnecessary performance bottleneck. However, identifying

“useful” data is highly specific to each scientific undertaking, requiring in-depth knowl-

edge from the user as well as application hints that enable this reduction. For example, for

a molecular dynamics application, a user may only be interested in the characteristics of

particles in a small bounding box. Traditionally, this requires the application to provide

the functionality that allows output in a bounded space, thus making it necessary for end

users to change application code. In contrast, data services allow end users to flexibly asso-

ciate such functionality with the data output process itself. Getting access to then utilizing

this meta information is very important for the data service. In addition to creating struc-

tured output, the data service must also ensure that the overhead associated with storing the

metadata is small enough to not hamstring the users.

Alongside the structured self-describing output it is extremely useful for data services to

add data specific annotations that can further facilitate downstream analysis and knowledge

extraction. With massive data sets being generated from an application at high frequency,

it is often impractical for the analysis codes to go through the incoming data with a fine

toothed comb. By using data annotations that are added at the source of data generation

this process can be greatly simplified. Useful examples of annotations include data charac-

teristics such as min/max, statistical properties, bitmap indices, and probability distribution

functions amongst others.

3.0.7 Controlled data movement and the staging area

Once the data has been generated by the application, the next step is to move the data to

available compute cores for processing or to the disk for storage. For both these scenarios,
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the Data Service has to provide a mechanism for moving the data off node. In order to

lower the overhead associated with data movement, we sought to investigate and develop

optimized data movement technologies such as RDMA-utilizing asynchronous I/O, while

also using the unique capabilities of data services for managing the transfers to minimize

application impact.

One concern for creating the data processing pipeline has been variability in the storage

performance of modern scalable disk systems. Due to the variation in the number of users

using a shared machines such as Jaguar at Oak Ridge National Laboratory, a mechanism is

needed to insulate the applications from usage spikes and consequent delays experienced

for their I/O actions. In order to achieve this, we propose the concept of a staging area. The

staging area is an intrinsic companion to the data service model. In short, the staging area

is a collection of resources close to both the application nodes and the output ports serving

as a transit point for data movement. Instead of directly moving data to disk, data services

operate by moving data first to the staging area. Once the data is available on the staging

area, the service can utilize the available compute capability for processing the data in

order to fulfill the service requirement. Once the data has been serviced, it is pushed out to

storage. Intermittent performance problems with the storage area do not cause application

slow down using this method, because the staging area provides a large buffer, similar to

how an inductor works in an electronic circuit.

Moving data to the staging area also yields higher throughput for data movement be-

cause the limitation of disk bandwidths are avoided as long as there is available memory

for buffering. By utilizing asynchronous data movement, the throughput bottleneck is made

insignificant by allowing the application to proceed with computation as data transfers are

initiated. However, this asynchronous data movement can be a cause of jitter within the ap-

plication, especially on scalable network architectures like the SeaStar/SeaStar2/SeaStar2+

on the Cray XT3/4/5 where data movement can directly interfere with intra-application

communication. In fact, even the small levels of jitter in the application communication
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can result in large performance penalties as the application scales up to 100,000+ compu-

tational cores. Addressing the challenges posed by this limitation, has led us to develop

new methods for data movement scheduling that avoid interference by carefully selecting

the time windows when data movement occurs in, or by carefully limiting the rate at which

data is streamed out of the node reducing the likelihood of interference.

3.0.8 Online data processing

As data moves from the generation point to the eventual data consumer (e.g., to disk storage

or to an online data visualization), there is both a necessity and an opportunity for in-

transit processing. Necessary processing services include those that convert data into the

standard forms required by the backend, such as the HDF-5 or NetCDF formats used in

file systems. Performing data formatting in data services ‘offloaded’ to the staging area

can help reduce these overheads. Other examples of online data processing operations

are those that seize opportunities for performance improvements through data reduction,

improve the accessibility of output data through data indexing, or perform tasks meaningful

to applications like generating histograms or validating output data.

The Data Service architecture shown in Figure 9 identifies two points where online

processing can occur. The availability of computational capability within the staging area

allows the service to be scheduled on the staging area. Due to the nature of the staging

area, it also serves as a point of aggregation within the pipeline - many application nodes

transfer data to a single staging node. This aggregation characteristic can be exploited by

the service to perform operations that would, on the application node, require inter-node

communication without the necessity of this communication step. Even global operations

can be scaled better due to the reduction in the size of the staging area compared to the

application.

While the staging area provides a natural location for service execution, it is limited by

the reduced computational capability compared to the application cohort. Thus in terms of
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Figure 2: Heuristics to select where code execution takes place in the I/O pipeline.

raw FLOPS the staging area provides only a small fraction of the capability of the applica-

tion nodes. By utilizing the application nodes for partial service processing we can gain the

benefits of both available platforms. Operations executed within the application node must

be restricted to independent data operations that do not require cross node communication.

Annotation operations where the output data is tagged with characteristics used in down-

stream processing, or data manipulation operations such as those which filter or reorder the

data, can benefit greatly by being executed within the application address space[4].

A final family of operations able to benefit from the data services is post processing

analysis. The availability of multiple timesteps, and even multiple application runs, allows

for a wider range of temporal analysis to be performed. Although we do not consider this

set of operations in this thesis, the upstream data preparatory functions can significantly en-

hance the performance of post processing analysis [75]. Figure 2 shows the basic heuristics

we can use to select the part of the data pipeline to execute different operations in.

The utility of data services hinges greatly on the availability of a data transport that

can provide low overhead, low impact data movement. As mentioned in this chapter, the
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transport must provide a usable asynchronous data movement mechanism using RDMA (or

RDMA-like one-sided APIs) in order to minimize the time spent by the application in the

data movement operation. The next chapter provides a detailed description of the design of

a data transport the fulfills these criteria.
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CHAPTER IV

ASYNCHRONOUS DATA MOVEMENT AND SCHEDULING

Asynchronous methods are known to help in addressing the I/O needs of high performance

applications. In [12], for instance, the authors show that when asynchronous capabilities

are available, synchronous I/O can be outperformed by up to a factor of 2. The studies

performed in this thesis use a novel, high performance data transport layer developed by

our group, termed DataStager. DataStager is comprised of a library called DataTap and

a parallel staging service called DataStager. In order to support easy inclusion of best

practice, scalable I/O in high performance codes, others within our research collaboration

have implemented the ADIOS I/O portability layer [48], which supports both blocking and

asynchronous I/O modules. DataTap interfaces with the ADIOS API in order to keep ap-

plication level code changes to a minimum and to enable the user to determine the transport

of choice at runtime.
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One mechanism that has been used to manage asynchronous communication is server-

directed I/O[58, 59]. This is particularly useful in high performance architectures where

a small partition of I/O nodes service a large number of compute nodes. The disparity in

the sizes of the partitions, coupled with the bursty behavior of most scientific application

I/O [54], can lead to resource exhaustion on the I/O nodes. In server-directed I/O, the

data transfers and hence the resources, are controlled by the I/O nodes, allowing smoother

accesses. Such techniques have been used for both large cluster filesystems [58] and for

disk-directed I/O [42]. When asynchronous communication in an RDMA environment

is added, server control becomes doubly important. Specifically, in addition to managing

the resources, the server control of the data transfer allows the application to progress

without actively pushing the data out. Instead, the server pulls the data whenever sufficient

resources are available. Under ideal conditions, the rate at which the server pulls the data –

the ingress throughput – is equal to the rate at which the server retires the data – the egress

throughput. The ability of the server to satisfy bursty ingress requests will naturally be

bound by the interconnect bandwidth between the I/O node and the compute partition.

We address the problems of scaling application I/O to petascale and of the need for

runtime understanding and analysis of data by utilizing managed asynchronous data move-

ment. The asynchronous operation reduces the impact on the application from ”blocking”,

i.e. the time spent waiting for the completion of the data transfer. The potential jitter

introduced is minimized by managing the timing for the data movement operations, care-

fully scheduling them to not overlap with collective communication requests issued by the

application.

The DataStager-DataTap architecture integrates into data services by utilizing the self-

describing binary format, FFS [15, 29]. This makes it possible for binary data to be in-

spected and modified in transit [72], and it enables the association of graph-structured data

processing overlays, termed I/OGraphs [1]. With such overlays, I/O can be customized for

a rich set of backend uses, including online data visualization, data storage, and transfer
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to remote sites, including with standard methods like GridFTP [16]. DataTap is also inte-

grated with the ADIOS interface as a custom data output method. This both encourages

adoption and provides an easy to use interface to DataTap for a large variety of applications.

The DataStager-DataTap system was initially developed on the Cray XT class of ma-

chines using the Portals programming interface [14, 13]. We have also implemented a

version using the Infiniband uverbs interface; performance evaluation of the infiniband ver-

sion is included in [1]. It is noteworthy to mention that like all asynchronous I/O efforts, the

DataStager can only service applications that have sufficient local memory space to buffer

the output data.

4.1 Previous work

There has been significant prior research into studying improvements to the I/O perfor-

mance for scientific applications. Highly scalable file systems like PVFS [17, 46], Lus-

tre [18], and GPFS [66] are examples of efforts to improve I/O performance for a wide

range of applications. Although file systems such as GPFS do offer asynchronous primi-

tives, there has been no effort to study and eliminate interference of asynchronous I/O and

intra-application communications in these file systems. LWFS [58, 59] is a high perfor-

mance lightweight file system designed to eliminate metadata bottlenecks from traditional

cluster file systems. The current implementation of LWFS is very close to that of the

DataStager, offering an asynchronous RPC and a server-directed data transfer protocol.

The scheduling mechanisms described in this chapter are orthogonal to the functionality of

LWFS and can be used in order to further improve application performance.

Recently, there has been an effort to consider data staging in the compute partition in

order to improve performance. [57] is an effort to improve I/O performance by using the

additional nodes as a global cache. Since I/O delegates are implemented as part of MPI-

IO the advantage of this approach is generality. However, the performance impact of this

approach is limited for large data outputs where the I/O delegates exhaust the available
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caching space.

PDIO [69] and DART [23] provide a bridge between the compute partition and a WAN.

Similar in design to our data staging services, both platforms would potentially suffer from

similar problems with interference. The idea behind managed data transfers in DataStager

could be utilized by both projects to reduce the impact of asynchronous I/O on application

performance. As part of our future work, we are also addressing the connection to WANs

through the EVPath [26] messaging middleware.

Hot spot detection and avoidance in packet switched interconnects [37, 34] and in

shared memory multiprocessors [20, 11] are related to our efforts to reduce interference

with communication in scientific application. Solutions to the problems in those domains

are still significant on the highly scalable MPP hardware, we are targeting, where state-

aware scheduling provides a software-only solution to the problem of contention.

In [12] the authors evaluate MPI non-blocking I/O performance on several leading HEC

platforms. They found only two machines actually support non-blocking I/O and bench-

mark results showed substantial benefit by overlapping I/O and computation. The charac-

teristics of the benchmark used, however, does not allow the authors to study the impact

of the overlap of I/O and computation for asynchronous I/O. In our work we have discov-

ered that the real performance penalties for asynchronous I/O are from interference with

communication.

[61] studies the impact of different overlapping strategies for MPI-IO. The authors

consider different strategies for the overlap of I/O with computation and communication

showing the performance benefits of asynchronous I/O. However, the results are limited to

a small number of processors, and as we show, there is limited interference at these sizes.

The innovative benchmarking tool used can be an aid to our own effort in developing better

strategies for data extraction.

Overlapping I/O with application processing has been shown to dramatically improve

performance. SEMPLAR [7, 9], built on the SDSC Storage Resource Broker, supports
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asynchronous primitives allowing asynchronous remote I/O in the Grid environment. Be-

cause SEMPLAR uses a separate thread to implement a push-based model, there is a

smaller likelihood of interference with application communication. However, the authors

observed a performance decrease in some scenarios where resource contention penalized

performance. Due to their push based model, the solution involved a reorganization of

the application code to remove overlap between I/O and MPI. The DataStager provides a

server-based mechanism for accomplishing the same task, while keeping application mod-

ifications to a minimum.

4.2 Design

DataStager has two different elements: the ‘DataTap’ client library and the ‘DataStager’

processes. The DataTap client library is co-located with the compute application. It pro-

vides the basic methods required for creating data objects and transporting them, and it

may be integrated into higher level I/O interfaces such as the new ADIOS interface used

by an increasing number of HPC codes[48]. The DataStager processes are additional com-

pute nodes that provide the data staging service to the application. The actual data output

to disk, data aggregation, etc. are performed by the DataStagers. The combined libraries

work as a request-read service, allowing the DataStagers to control the scheduling of actual

data transfers.

Figure 3 describes the DataStager architecture. Upon application request, the compute

node marks up the data in FFS format (see [27] for a detailed description of PBIO, an earlier

version of FFS) and issues a request for a data transfer to the server. The server queues the

request until sufficient receive buffer space is available. The major costs associated with

setting up the transfer are those of allocating the data buffer and copying the data; they

are small enough to have little impact on overall application runtime. When the server has

sufficient buffer space, an RDMA read request is issued to the client to read the remote

data into a local buffer. This data is queued in the DataStager for processing or directly for
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output.

4.3 Managing data transfers

DataStager’s scheduling service, implements server directed I/O. Use of server-side I/O

allows us to explore novel methods of scheduling data transfers as part of the service. We

have designed four schedulers in order to evaluate their ability to enhance functionality, to

provide improved performance, and to reduce perturbation for the application:

1. a constant drain scheduler,

2. a state-aware congestion avoidance scheduler,

3. an attribute-aware in-order scheduler, and

4. a rate limiting scheduler.

Node(R) is the originating node for request R;
Size(R) is the size of the I/O request;
if Node(R) is waiting for completion then

return TRUE;
else

tnstart, tnend are the start and end time for compute phase n;
tcurrent is the current time;
titer is the estimated width of a single iteration for Node(R);
trequest is the time at which the request was issued;
∆t = tcurrent - trequest ;
∆iter = floor( ∆t

titer
) ;

foreach compute phase, i in Node(R) do
if tcurrent is between tistart AND tiend then

return TRUE;
end

end
return FALSE;

end
Algorithm 1: The Phase aware scheduler determines whether the application is in the
compute phase for the DataStager to start the transfer.

DataStager uses resource aware schedulers to select requests for the RDMA service.

Selection of a request from the transfer queue is based on the following discrete steps.
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• Memory check. A check is performed to determine whether there is sufficient buffer

space available to service the request. This check ensures that the DataStager does

not issue unbuffered reads and suffer from resource exhaustion.

• Waiting check. A node may issue an asynchronous I/O request and then block for

completion after a period of computation. If a node is currently blocked waiting for

a request to complete, the request should be serviced as soon as possible to minimize

the performance penalty.

• Scheduler Check. A schedule request is made to the scheduling module for each

transfer request. The transfer is only initiated if all the scheduler modules indicate

viability. This enables the DataStager to stack schedulers in order to fulfill multiple

resource allocation policies while also simplifying the development of new sched-

ulers.

Once all schedulers have agreed to issue a transfer request, it is serviced in two parts.

First, an RDMA read request is issued to the originating node. Due to the latency of request

completion and because available buffer space is usually larger than a single request size,

multiple requests may be serviced simultaneously. This overlapping enables DataStager to

complete all requests faster. Once the RDMA read is completed, an upcall is made to the

staging handler. The handler will then process the message according to the configured

policy – direct write to disk, network forwarding, further processing, and so on. The in-

coming data is in FFS format allowing the use of FFS’s reflection interface to query the

data block and perform operations such as aggregation and filtering in the data processing

area without making a copy. The data can also be published with the EVPath [26] event

transport for further processing as part of an application specific I/O pipeline [72].

4.3.1 Continuous drain scheduler

The Continuous Drain (CD) scheduler is designed to provide maximal usage of the buffer-

ing available to the staging area. As soon as buffer space is available, an RDMA read call is
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issued. The throughput for this scheduler is limited by the ingress and egress throughputs,

the rate at which the staging area processes data and the amount of buffer space available

in the DataStager. However, it also creates a large impact on the performance of the ap-

plication (and hence also secondary effects on the ingress throughput). For large cohort

sizes (i.e., a large number of clients), the strategy of draining the data as fast as possible

can substantially perturb the time taken to complete intra-application communication, par-

ticularly large collective calls like MPI ALLTOALL. In fact, the resulting overhead has

an impact on performance that dwarfs the time spent waiting for synchronous data trans-

fers to complete. Interestingly, despite that level of perturbation, the CD scheduler can

yield good performance in cases where an application does not rely on collective global

communication or uses asynchronous MPI communication.

4.3.2 Phase-aware congestion avoidance scheduler

As stated earlier, the use of asynchronous methods for data transfer can reduce or eliminate

the blocking time experienced by HPC codes using synchronous methods for I/O. A result-

ing new problem is one of potential perturbation in communication times experienced by

tightly coupled and finely tuned parallel application. This is because of the overlap of intra-

application communication (e.g., MPI collectives) with the background transfer of output

data that uses the same interconnect. Interestingly, this phenomenon is not generally ob-

served for smaller scale parallel codes (e.g., up to a hundred nodes), but as the application

scales to larger machines such as the Cray XTs (i.e., to multiple hundreds of nodes and

above), it can significantly impact the performance of intra-application communications

and thus, of the application itself.

The contention caused by multiple nodes using the interconnect can significantly de-

crease communication performance. Although the increase in perturbation is not surpris-

ing, as we scale to more than 512 nodes, we observe that the total perturbation cost is far

greater than the that of simply blocking for I/O. Moreover we find that the perturbation
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caused by the background transfer of data is not limited to the asynchronous DataTap-

DataStager method. As can be seen from Figure 7, the function smooth1 has an overhead

with both POSIX and MPI-IO synchronous methods.

In order to prevent application perturbation, the phase-aware scheduling mechanism

attempts to predict when each process is involved in either a local computation (compute

phase) or in an MPI communication (communicate phase). Such phase information is

provided to the DataStager through a ‘performance buffer’ that is maintained for each node

communicating with the DataStager (see Figure 3). On the compute nodes, the DataTap

library updates its local performance statistics at the end of each iteration. If the client

detects a significant change (e.g. the current iteration run time exceeds the previously

reported one by more than 10%), the client updates a remote performance buffer on the

DataStager.

A key requirement for phase-aware scheduling is to accurately estimate the duration of

computational and/or communication phases of parallel codes. Specifically, the scheduler

must estimate when the application transitions to a compute only state, where such a state

is defined as an application state with which is associated no more than some small amount

of communication (i.e., only isolated send/receives). This is because simple point to point

and sub-communicator broadcast communications (or pure computation) are not likely to

be perturbed by asynchronous I/O as opposed to global MPI collective operations.

One way to estimate the duration of computational application phases is to solicit input

from developers, by asking them to mark the portions of the application code that are

suitable vs. not suitable for background I/O. ADIOS provides a uniform API for these

types of hints. For simplicity, we currently use this approach, but this can be generalized

and automated using known methods for phase detection, including the techniques reported

in [22].

An application enters a compute state at time tstart and computes for a time ∆t, exiting

the compute state at time tend. In some scientific applications, the period ∆t is regular,

30



i.e., once the application reaches steady state there is very little variation in the time spent

in each compute state. For applications where the computational loop is irregular (e.g.,

optimization applications), a different mechanism needs to be studied for implementing

the predictor. For regular applications (such as our motivating application, GTC [60]), a

perfect phase-aware scheduler would always start a data transfer after tstart and finish the

data transfer before tend. Given sufficient iterations between successive I/O calls, such an

ideal scheduler would induce no interconnect perturbation and have a minimal performance

impact.

In our current implementation, explicitly installed instrumentation is used to inform

the I/O library each time the application has entered a computation state, at time tstart,

and at time tend, the I/O library is informed that the application has left the computation

state. Because all of the I/O requests will not be serviced within a single application iter-

ation, the I/O library also tracks the time taken to complete one application iteration (the

main loop), titer. The performance tuple for n compute phases in one application iteration,

{titer, [{tstart, tend}]n}, is lazily mirrored on the DataStager, as described previously.

Experimental results attained with this scheduler and shown in Section 4.4 show that the

phase aware scheduler can reduce the performance impact of background I/O from more

than 10% with POSIX data output to about 2% even as the application scales to more than

1024 nodes.

4.3.3 Attribute-aware in-order scheduler

One disadvantage of using a state-aware scheduler is the burden placed on the data staging

buffer space in order to create an ordered stream of output data for those applications that

require one. This can result in reduced performance due to the additional time that data

blocks are held in buffer instead of being processed and transmitted (or written to disk).

One example of where such a problem arises is writing a snapshot to a shared file. To

complete the write of block bi, we need to know the sizes of blocks bj|j < i. Instead of
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letting the compute application synchronize itself and exchange sizes, we propose that the

data staging service can more simply perform this operation with less overhead.

We address this problem with an attribute-aware in-order scheduler. When a data

block is processed for output, an attribute is added to the block defining its order in the

application-defined attribute space. When the DataStager services its request it guarantees

that request i will not be processed before request j if i > j. Thus, when a request is

processed, the DataStager already knows the sizes of all previous requests and can write a

shared file without any additional synchronization. In the case of multiple DataStagers ad-

dressing a group of requests, the sizes can be exchanged within this small group of nodes,

or multiple shared files can be created and merged in an additional processing step.
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Figure 5: GTC run time with multiple data extraction strategies.
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Figure 6: Percentage overhead of data extraction on application runtime.

4.3.4 Rate limiting scheduler

Phase aware scheduling provides solutions for applications that follow regular predictable

patterns for data output. Using these predictable patterns we can, with a degree of con-

fidence, avoid the resource usage conflict between DataStager and intra-application com-

munication. In the case of applications with irregular patterns, however, such as AMR ap-

plications [67], the state-aware scheduler cannot predict the phases of the application with

any reasonable degree of accuracy. In such cases, a different strategy must be employed.

A rate limiting strategy for extracting data from a large cohort of application nodes

can be considered if the periodicity of data output is sufficiently large and if the data is
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not required to be processed immediately. By managing the number of concurrent requests

made to the application nodes, the DataStager can greatly reduce the impact of perturbation

on intra-application communication. Limiting the rate can have performance implications

in terms of reduced ingress throughput and slower time to completion for the requests. This

impact can be avoided by appropriately varying the level of concurrency to achieve a proper

balance of throughput and perturbation.

Consider an application that writes out data of size 200 GB every 5 minutes from 1024

cores. In order to reduce perturbation and maintain a consistent drain rate from the applica-

tion, we need to manage the level of concurrency of requests. As seen in Section 4.4.1, by

varying the number of staging nodes, we can control the ingress throughput from the appli-

cation. Using 128 compute processes per DataStager nodes, we see ingress throughput of

approximately 8GB/s. Thus, draining at the best possible speed we can complete the data

transfer in 25 seconds. However, this may result in an unacceptable level of perturbation on

the source application. By reducing the number of concurrent data transfer requests being

serviced to 1 per DataStager, we would increase the time to completely move the data from

the compute nodes to the DataStager, but we also could reduce the impact on performance

caused by background I/O.

One aspect of the rate limiting scheduler is the determination of an appropriate con-

currency rate for each type of data output by an application. Currently, we do not modify

the rate autonomically, but we are investigating policies that will enable the DataStager to

determine the optimal rate at which data is extracted.

4.4 Evaluation

We developed and evaluated the DataStager on National Center for Computational Sci-

ences (NCCS) Jaguar Cray XT at ORNL. At the time of this experiment a single Jaguar

node was a 2.1 GHz quad-core AMD Opteron processor and 8 GB of memory, connected

to the Cray SeaStar2 interconnect. The interconnection topology is a 3-D torus with each
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SeaStar2 link enabling a maximum sustained throughput of 6.5GB/s. The compute node

operating system is Compute Node Linux (CNL), and all applications were compiled with

the pre-installed PGI compilers. Cray uses the low level Portals API for network program-

ming and provides high level interfaces for MPI and Shmem.

As mentioned before, we used the Gyrokinteic Turbulence Code, GTC [60] as an exper-

imental testbed for DataStager. GTC is a particle-in-cell code for simulating fusion within

tokamaks, and it is able to scale to multiple thousands of processors. In its default I/O pat-

tern, the dominant I/O cost is each processor’s output of the local particle array into a file.

Asynchronous I/O potentially reduces this cost to just a local memory copy, thereby reduc-

ing the overhead of I/O in the application. No effort was made to optimize the location in

the interconnect mesh of the compute processes with regards to the DataStagers.

We also performed micro-benchmarks to evaluate the maximum throughput for data

extraction. For all tests we used the NCCS Jaguar platform with the number of client nodes

varying from 64 to 2048. The DataStager nodes used the entire physical node - 4 cores and

8 GB of memory.

We evaluated 6 different data extraction scenarios:

• CD is the continuous drain method for data extraction.

• PA is the phase aware method to manage the timing of data extraction.

• Con X. is the rate limiting scheduler which limits the number of outstanding con-

current requests to X . We explored two values for X , 1 and 4.

• PA Con X. is a stacked combination of the rate limiting scheduler and the phase

aware scheduler. In this scenario the number of concurrent requests are limited to X

and a new request is only issued if the application is the compute phase. As above

we explored two values for X , 1 and 4.

For the remainder of this chapter, we use the above notation to reference the data ex-

traction strategies.
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4.4.1 Ingress throughput evaluation

To measure the ingress throughput we use a parallel test application writing out 128 MB

per node per output. Each client process issues an output request and waits for completion

immediately. The time taken to complete the data transfer for all client processes is used

as the measure for maximum ingress throughput to the DataStagers. In order to maximize

the ingress throughput, we only utilize the continuous drain scheduler and retire the data

buffers from the DataStager staging area immediately.

As can be seen Figure 4, the ingress throughput increases as we increase the number

of staging nodes. For a single staging node, we see an ingress throughput of 1.2GB/s. As

we increase the number of staging nodes the available data extraction throughput increases

to more than 55GB/s for 128 DataStager nodes with 2048 client processes. Note that the

ingress throughput does not scale arbitrarily with addition of more DataStagers for a small

compute partition size. The experiments here show that as we increase the total count of

the clients moving data to the DataStager, the aggregate ingress throughput increases until

limited by the interconnect capacity.

4.4.2 GTC benchmarks

We have extended I/O in the Gyrokinetic Turbulence Code GTC [60] using the ADIOS

application interface. The flexibility of the ADIOS interface allows us to run experiments

using blocking binary I/O, DataTap with multiple scheduling strategies, and even no I/O

without modifying the application binary. For all of the runs, the total configuration size

was adjusted so that the amount of data per compute node was a consistent 6,471,800

ions/core. GTC is used for evaluation due to the size of the data output as well as the

ability for the code to scale to more than 30,000 cores. We have used a version of the

GTC source tree with support added for ADIOS as its I/O library. Using ADIOS has

provided us with the opportunity to perform exact comparison tests with the application

by simply switching a parameter in the config.xml file. To allow better understanding of
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the performance of different scheduling parameters, we disabled all outputs from GTC

except the particle output. Also, to keep the comparison to multiple run sizes as close as

possible, we used weak scaling (i.e., maintain a fixed per process problem size) instead of

strong scaling (i.e., maintain a fixed global problem size and only change the number of

processes) to maintain a consistent size for the output data per core. Thus, the total size

of the problem increases but the size per core remains constant. The data size from each

output is 188MB/core. The total data volume varies with the number of parallel cores from

12 GB/output to 3.8 TB/output. The output had a periodicity of 10 iterations (approx. 3

minutes wall clock time) and the application ran for 100 iterations. In order to avoid the

variations at startup we only measure the time from the 20th iteration onwards.

4.4.2.1 Runtime impact from background staged I/O

We compare the GTC run time for each of the different data extraction methods described

earlier. In order to get an accurate understanding of the cost associated with I/O, we also

evaluate the default POSIX data output (through the POSIX transport method in ADIOS)

as well as a no-op transport method, NO-IO. When required, we also use the default im-

plementation of the MPI-IO transport method as a second example of synchronous I/O.

Consider Figure 5(a), which shows how application run time is impacted by different

DataStaging schedulers. For a small number of compute cores (e.g. 64), there is very little

impact on the overall performance from I/O. Con 1 is the only strategy that shows ap-

preciable overhead and even then it is less than 5%. At 512 compute cores, the different

schedulers start to differentiate. 512 is the minimum size at which we see significant impact

from perturbation. Below 512 compute cores, the runtime difference between synchronous

and asynchronous I/O is minor. As we move to 512 and 1024 cores, we see statistically sig-

nificant differences in run times. PA, PA Con 1 and PA Con 4 continue to show very little

overhead from I/O extraction. Con 1 and Con 4 perform at the same level as synchronous

output with POSIX. The low impact of all asynchronous strategies is also evident with 2048
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application cores. The performance impact of POSIX increases to over 20%. Con 4 and

PA Con 4 maintain an acceptable level of performance impact even at this scale. The same

pattern is observed with 16 staging nodes, but the performance impact of background I/O

using continuous drain increase greatly.

In Figure 6, we quantify the percentage cost of using the DataStager for performing

non-blocking I/O for 4 and 16 staging nodes. For a small number of client cores (64), the

synchronous POSIX method offers superior performance. However as we scale and the

total size of the data increases, the time spent in synchronous I/O increases more than the

overhead of the DataStager method. The percent impact of the POSIX method increases

from less than 2% with 64 cores to 10% with 1024 cores, increasing to over 25% with 2048

cores. In contrast, the impact of the DataStager depends greatly on the type of schedul-

ing mechanism used, as well the number of staging nodes used stacking the rate limiting

scheduler with the Phase aware scheduler PA Con 4 and PA Con 1 provides the best per-

formance as we scale the number of compute cores. The number of staging nodes also has

an impact on the perturbation of the compute application, with 4 staging nodes showing

lower perturbation in general than 16 staging nodes.

4.4.2.2 Breakdown of impacted subroutines in GTC

To further our understanding of the performance characteristics for the DataStager, we

analyzed the runtime for the smooth subroutine in the GTC code path. For clarity, we are

not displaying the impact on the rest of the subroutines. The function smooth immediately

follows the data output and hence, in cases of improperly managed data transfers, shows

the greatest level of perturbation. Consider Figure 7, which shows the runtime for the

smooth and restart function with 1024 cores for all schedulers as well the synchronous

methods. For both POSIX and MPI-IO, we see a large increase in the time for restart,

signifying the I/O blocking time. We also see a significant increase in smooth due to the

partial buffering of output data by the Lustre client and subsequent background evacuation
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cores.

of the buffer to OSTs. In contrast, the DataStager shows very low runtime overhead for

the restart subroutine. However, the performance of smooth is negatively impacted by non

phase aware data extraction strategies. such as CD, Con 1 and Con 4.

4.4.2.3 Time to complete data extraction to DataStager

One important factor to consider for asynchronous I/O is the total time taken to service

all of the application’s I/O requests. This time determines how often an application can

issue an asynchronous I/O request without requiring additional buffer space. We compared

the completion time for the I/O phase at 1024 application cores (total data size of 180

GB) and the results are shown in Figure 8. As CD tries to extract the data as fast as

possible, it is not surprising that the time taken by CD is the lowest for 4 staging nodes,

and next to lowest for 16 staging nodes. However, both Con 1 and Con 4 also show very
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low completion time. This is because by limiting the concurrency of the inflight requests

the ingress throughput for a single request is maximized. The phase aware strategies show

much higher completion time with PA and PA Con 1 performing almost the same. This is

because phase aware strategies can only initiate a transfer during a small window in order

to avoid interfering with the application.

4.5 Discussion

The performance characteristics of the DataStager-DataTap transport serves as the basis

of our implementation of data services. The ability to utilize the scheduling framework,

which not only reduces the impact of asynchronous I/O in large scale environment, but

also provides a framework for performing data attribute based scheduling.
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However, data services also require the execution of application and user specific func-

tions. As mentioned previously, the set of functions supported by data services can reap

significant benefits from optimizing the location at which these functions are executed. In

Figure 2 we provide the heuristics which can be used to select the right placement of these

functions. The dynamic movement of these functions and the flexibility in selecting their

placement, has been enabled by the mechanism of the JITStager, described in the next

chapter.
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CHAPTER V

JUST IN TIME STAGING

We have previously addressed the I/O bottleneck in high end machines in multiple ways.

We have utilized ADIOS, a componentized I/O framework, which can be used to optimize

I/O on a per-platform and per-application basis, including for shared storage targets[49]. A

complementary solution integrated with ADIOS is data staging [3], where data is moved

to storage in three distinct steps, Figure 9. The first step buffers data in the application’s

address space. This requires a memory copy for data, but its ability to transfer larger data

blocks outweighs these copy costs. The second step sends a request to the staging area,

informing it of the availability of filled output buffers. The staging area itself is comprised

of a set of additional resources designated for data management tasks. It can be seen as

a large, transient memory buffer or cache that provides performance insulation from stor-

age system bottlenecks. In the third step, the staging node uses a remote read operation

to transfer the buffer into staging memory. By switching the control of the transfer from

the compute application, which is only responsible for issuing the availability notification,

to the staging node, asynchronous data movement is achieved. The staging area can in-

dependently carry out its own data scheduling and buffer management actions. The final

step, then, moves data from the staging area to disk and/or to remote machines or storage

facilities.

While data staging has been found to ameliorate the I/O problems of high performance

machines, a further shift is necessary in how I/O is performed. To address the I/O needs

of future high end applications, we have moved from synchronous I/O on compute nodes,

to asynchronous I/O via data staging areas. Next, we must move from the ‘cache’ model
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of data staging to a generalized ‘computational I/O’ model that also leverages the sub-

stantial compute capacities of staging nodes. The slack computational capabilities of the

staging area can be used for data indexing, data sorting, and data reorganization. Given

the data deluge in the current and next-generation hardware environment, this serves to

provide users with quicker insights into the data produced by their applications and/or to

better prepare such data for subsequent deeper analysis or visualization. This can provide a

significant performance boost for analytical workflows operating on stored data, and, more-

over, portions of these workflows can be moved into the staging area for near-time analysis

and monitoring. In fact, with the LIVE system [1], we have already shown how near-time

data processing can be used for application output validation and visualization, and in [75],

we have introduced the notion of PreDatA analytics to characterize and demonstrate useful

near-time data processing actions.

The JITStager software system presented and evaluated in this chapter extends our prior

work by applying computations to I/O actions along the entire I/O pipeline, starting with
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the output actions performed by the application, to staging areas, and beyond. Namely, JIT-

Stager permits the user to execute operations on generated data not just in the staging area,

but also at the points of data generation (i.e., in the compute application). This leverages

the aggregate computational resources of compute nodes to accelerate important I/O pro-

cesses and, more generally, provides increased flexibility (and in some cases performance)

in how data movements and manipulations are carried out. Using dynamically generated

binary code, we avoid the performance pitfalls and potential OS-dependencies normally

associated with moveable code fragments while maintaining the flexibility advantage. This

capability is further extended to include functional specialization using information gath-

ered within the staging area, allowing for an even greater opportunity for performance

optimization. A typical use case is one in which features of interest in data are discovered

while the application is running. These then cause output specializations that make it easier

to capture and understand these features at scale and for any output steps where they occur.

The JITStager system has three distinct parts. The SmartTap is an asynchronous

buffered data transport module that replaces the traditional file output layer. In order to

achieve deeper penetration, we have developed SmartTap as a transport method within

ADIOS [49], thereby simplifying the task of switching to SmartTap as an output method.

SmartTap also serves as the execution engine for data customization operators. A detailed

description of SmartTap can be found in Section 5.4.

The second part of the JITStager system is the DataStager. The DataStager man-

ages the transfer of data from SmartTap, utilizing both in-built and user specified sched-

ulers to minimize the interference from background I/O operation. Similar to SmartTap,

DataStager also serves as an execution engine for data customization operations. Once

the DataStager has completed the transfer and customization, it forwards the data to data

processing pipeline within the staging area. We discuss the DataStager in Section 5.4.

Finally, JITStager includes the PreData functionality for data processing and output

that completes the data processing steps required and produces output in the required data
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format.

JITStager’s technological contribution is a set of software with which end users can,

at runtime and wherever needed, place select computations directly into the output actions

taken by their high performance codes. Stated in terms of the data staging system we

have presented earlier [3], I/O actions can be changed at any time (including in specific

or select compute nodes) using SmartTap computations to apply lightweight and efficient

manipulations to the data being generated. Extending the computations and data acquisition

actions performed by the extremely scalable deployment of SmartTaps within compute

nodes, JITStager then applies subsequent data manipulations in the staging area through

PreData.

JITStager’s novelty lies in the way in which data manipulations are efficiently and dy-

namically associated with I/O actions. Most existing output systems either require end

users to change their applications to output exactly the data they need [19], or they rely

on applications themselves to implement rich output strategies [62]. Also available to end

users are service-oriented approaches to data output in which specifications and software

separate from applications select the actual data to be output by applications [49]. The

former may require end users to re-compile and re-validate their codes when output actions

are changed. The latter assemble data in raw form in some output buffer, then move it to

where additional manipulations can be performed.

JITStager improves on such work by providing I/O methods that (1) preserve the in-

dependence property of service-based data output, (2) can extend I/O actions at any time

and in any place needed, and (3) are sufficiently high performance to go beyond providing

useful new functionality to also potentially substantially improving output performance. In

particular:

1. SmartTap can use CPU cycles on the node performing output to ‘make data right’ im-

mediately, thereby avoiding subsequent and potentially memory- or communication-

intensive steps that re-format or re-organize data. In this fashion, we leverage the
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widening gap in processor vs. memory performance of modern computer architec-

tures. SmartTap can also be used to better annotate and label data, by adding at-

tributes to it, thereby facilitating later steps in the output pipeline. SmartTap actions

can also reorganize data, again to facilitate later data manipulation or storage actions,

including those required for data shared across multiple interacting computational

models[24, 2].

2. SmartTap code is safe, efficient, and easily changed. It is efficient because it is gen-

erated directly into memory as a native binary instruction stream. It is safe because

it is generated in ways that guarantee that SmartTap codes cannot affect applications,

thereby eliminating the need for application re-validation. Such isolation is attained

without the need for hardware support [35], using techniques like those described in

[33, 70]. It is easily changed, because SmartTap actions can be deployed whenever

or wherever users desire them to be used, thus making it easy to change what data is

output and how it is output. These changes can be made whenever needed by later

analysis steps, and/or by end users.

JITStager functionality can be used in many ways. First, because the decisions con-

cerning I/O pipeline customization are made in the staging area, the global information

about output data can be used to dynamically explore or focus on certain data features of

interest to end users. Second, data can be better partitioned to allow for load balancing

(in terms of space and/or computational load) across staging nodes. One example might

be a customized pipeline that breaks up a large, distributed array of atomic locations and

redistributes it to a collection of staging nodes for a multi-viewport visualization (i.e. top,

bottom, left, right) so that each node only has to render the atoms that one could “see” from

that vantage point. Third, data can be specialized not only in terms of structure or organi-

zation, but in addition, it is possible to dynamically change select content of the data being
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output. Examples include data selection, filtering, and transformation. A typical usage ex-

ample is one where a coupled model not only requires data to be organized differently, but

requires data to be summarized or interpolated [38].

5.1 Related work

Scalable I/O performance for HEC platforms has been studied extensively, resulting in

multiple approaches to solving the performance bottlenecks explored. Scalable file systems

[18, 66, 46], I/O middleware [74, 40, 63], and I/O component libraries [49, 47] address the

needs of the scientific application by optimizing specific scenarios or providing optimized

I/O methods. Compared to these methods, JITStager proposes a significantly different,

‘computational’ model for dynamically user-customized I/O.

Staging infrastructures such as I/O delegates [57], I/O forwarding [6, 36], and DataS-

paces [25] are the closest analogues to JITStager. However, JITStager provides additional

resources for computation within SmartTap, and it allows for computation within the stag-

ing area.

MRnet [65], part of the Paradyn[53] project, is a scalable mechanism for performing ag-

gregation within the compute partition. MRnet provides functionality similar to JITStager

by allowing additional computation within the compute partition, but it does not address

the complex computational customizations that JITStager offers.

Map-Reduce [30, 21] posits a model similar to PreData and to some extent, JITStager,

for analytical computations utilizing map and reduce operators, but PreData and JITStager

support both more general models of parallel computation and allows for a more complex

interactions between the reduce operation through function specialization.

5.2 Customizing the data pipeline

We demonstrate the performance and flexibility of JITStager on two commonly used types

of applications. Warp is a molecular dynamics application, a predecessor to LAMMPS [62]

47



that our local collaborators have extended for particular force field calculations. It is con-

figured to use a spatial decomposition of particles and produces a number of outputs for

analysis and snapshots. GTC [41] is a particle-in-cell (pic) code simulating the plasma in

a Tokomak reactor. While both applications are scalable we use the Warp application as a

testbed on our linux cluster, upto 128 cores, while we utilize GTC on ORNL’s Jaguar XT5

for test sizes greater than 8K cores.

To demonstrate the functionality and evaluate the performance of the JITStager cus-

tomization pipeline, we have developed prototype I/O customization operations based on

feedback from the users of these applications. Although these customizations are specific to

the experimental requirements of the user, we find that they show sufficient generalization

to demonstrate the advantages of a dynamic customizable approach to I/O pipelines.

1. Data Filtering. Both GTC and Warp process particle positions and velocities and

likewise the large portion of their output data sets is particle data. For very large

output data sets, scientists will often seek to reduce the raw data to regions of inter-

est. However, due to the evolution of the simulation, the regions of interests vary

throughout the lifetime of the application and furthermore are highly dependent on

the experiment. A simple example of data filtering is a bounding box filter, the

constricts the output data to a specific 3d region. Such a filter is common for visual-

ization of molecular data and we evaluate the bounding box filter with Warp. GTC,

a pic (particle-in-cell) code, requires the data filtering operation to restrict the output

to a specific 2d plane

2. Statistical Tagging. Data output from the application is a collection of variables

pre-determined by the application developer. While the user can discard specific vari-

ables in the final output, or turn off the data output altogether for more applications,

it is usually not possible for the user to enhance the output with new information

such as statistical characterstics. JITStager seeks to alleviate this issue by allowing
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f i l t e r : x :{
f o r ( i = 0 ; i < e l e m e n t \ c o u n t ; i = i +3) {
i f ( i n p u t . x [ i ] > bbx2 && i n p u t . x [ i ] < bbx ) {
i f ( i n p u t . x [ i +1] > bby2 && i n p u t . x [ i +1] < bby ) {
i f ( i n p u t . x [ i +2] > bbz2 && i n p u t . x [ i +2] < bbz ) {

o u t p u t . x [ j ] = i n p u t . x [ i ] ;
o u t p u t . x [ j +1] = i n p u t . x [ i + 1 ] ;
o u t p u t . x [ j +2] = i n p u t . x [ i + 2 ] ;

}}}}
}

Figure 10: Example data filtering operator using the buffered sampling method.

the output data to be preprocessed and annotated by relevant statistical information.

These annotations can be added within the compute node utilizing the SmartTap, or

within the staging area, or added to the output in a post-processing step after the

data has been written to storage. There are distinct advantages and disadvantages

to annotating the data at each of the three stages and we evaluate these tradeoffs in

Section 5.5.2.

3. Statistically Relevant Sampling. In addition to data tagging, data pipeline cus-

tomization enables the use of statistically-relevant sampling for data reduction. For

example, consider a study of the behavior of a fluid near the critical point of freezing.

A statistical analysis of the particle velocities is relevant, but behavior is dominated

by the fluctuations out in the “long tail” of the distribution. Generating output with

a histogram representing the probability distribution in the core, but having the tails

represented by exact counts would be more accurate for most such studies. Not only

is the data volume reduction for this operation significant, thereby providing a strong

use case for the development of intelligent filtering operations, but it also improves

the immediate utility of the data. This example also demonstrates the dynamic spe-

cialization requirement in concert with global feature extraction on the staging area.

Because the customization is performed on global data features, the global features

must be reduced from SmartTap annotations within DataStager and the specialized

C-o-D function pushed back to SmartTap, as shown in Figure 9.
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sample : x :{
f o r ( i = 0 ; i < e l e m e n t \ c o u n t ; i = i +3){
i f ( i n p u t . x [ i ] > bbx2 && i n p u t . x [ i ] < bbx ) {
i f ( i n p u t . x [ i +1] > bby2 && i n p u t . x [ i +1] < bby ) {
i f ( i n p u t . x [ i +2] > bbz2 && i n p u t . x [ i +2] < bbz ) {

FFSMarsha lArrayElement ( i ) ;
FFSMarsha lArrayElement ( i + 1 ) ;
FFSMarsha lArrayElement ( i + 2 ) ;

}}}}
}

Figure 11: Example data filtering operator using the inline sampling method.

5.3 Time to data - TTD

In our previous work with PreData for preparatory data analytics, a specific metric that

appeared is “Time to Data” or TTD. We define “Time to Data” as the time required for the

generation of data by a simulation, the time taken to output data from the simulation, the

time required for the preparation of data for analysis and the final output to storage before

the analysis workflow takes over. Thus, TTD defines the latency from the application to

the point where data is ready for the analysis pipeline.

TTD is an important metric for evaluating the availability of data for users of high

performance applications. Therefore, it is also an important metric in evaluating any I/O

customization pipeline and is highly dependent on the structure of the PreData pipeline.

Alongside TTD we must also consider the consumption of additional resources utilized

by the I/O pipeline. In this chapter, we only consider the number of CPUs and the time

they were occupied as the resource. This formulation satisfies the needs of JITStager,

but resources can also be measured in terms of other factors such as total memory occu-

pied, power consumed, I/O utilization or a combination of these metrics. The optimization

process is determined both by the underlying architecture of the client system as well as

specific user requirements. To illustrate, consider as one extreme example an I/O pipeline

that only generates and outputs data from the application to disk and uses a single process

to read the data from file and prepare it for the analysis workflow. Although the TTD for
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this structure is extremely high, the resource consumption is minimized to a single addi-

tional process. The lesson from this simple example is that in general, there is a balance to

be reached between TTD and resource consumption.

5.3.1 Placing JIT data specializations

An important property of JIT data output specializations is, the importance of performing

these operation at the right location within the output pipeline. An operation such as a

filter based on a bounding box will have greater performance impact when it is performed

‘closer’ to the source of the data, for instance, by reducing data volume at the compute node

and before the data is moved to the staging area. Such filters help obtain several beneficial

performance properties: (1) the network throughput requirements for the I/O operation are

reduced and hence the performance impact on the application can be minimized; (2) the

buffering requirements on the staging area are also reduced, providing better performance

insulation for I/O interference; and (3) since the data is already filtered, the analytical

operator does not need to process irrelevant data blocks.

Performing specialization at the source of the data is not always appropriate, however.

Specifically, while operations that filter the data based on user parameters work well within

the compute area, scalability is questionable for operations that require collective opera-

tions. For example, the statistical sampling operation requires knowledge of the global

properties of the data. In order to optimize this operation, there has to be an intermediate

step for creating the specialization operator that can extract global parameters. The staging

area is ideal for performing this task, since all data is directed through the staging nodes.

Computing the global bounds on the data and then pushing the specialization back to the

compute nodes is the more efficient way of handling this task.

Finally, combining source- and staging area-level operations, an ordered stream can

be obtained by first tagging the stream with attributes, at the sources, and then using a

user-specified attribute scheduler that operates entirely within the staging area. Utilizing

51



such server-side scheduling of the data reduces both communication overheads within the

staging area as well as the latency to disk for data blocks.

Copy operation

Copy operation

Native Data Structure

Native Data Structure

Resulting Message Buffer

Resulting Message Buffer

Specialized Copy

SC

SC

SC

Figure 12: DataTap Marshalling.

1. The global feature extraction module. In order to efficiently and intelligently intro-

duce specialization functions into the data pipeline, we have to recognize the prop-

erties of the extracted data, often within a global scope. For example, consider the

statistically relevant sampling specialization mentioned previously. To successfully

construct a probability density function for the data, we need not only the boundaries

within which to utilize sampling, but also the extent of the size of the bins used for
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the sampling function. Although data is output only from the compute application,

the computation of these global features requires either additional global computa-

tion within the application, or it needs the software offered by JITStager to efficiently

extract global features from the output data. Once these features have been extracted,

we use the specialization management module to create and push back to the com-

pute application the specialized sampling function.

2. The specialization manager. Along with global feature extraction, the JITStager ar-

chitecture requires an external control module that can based on either extracted fea-

tures or on user-specified parameters, creates the specialized functions used for data

processing within the pipeline.

3. SmartTap and DataStager, the specialization processing components. Once the spe-

cialized function code has been generated, JITStager allows the output pipeline to

use the generated functions for in-transit data processing. Data processing in this

case can be performed either within the compute application, using the SmartTap,

or within the staging area, using DataStager. The placement of these functions is a

matter of policy that is handled by the management module.

5.4 Implementing an efficient I/O pipeline

The details of the data processing components, SmartTap and DataStager, have a strong

influence on the capabilities of the JITStager system.

5.4.1 FFS and C-on-Demand

Both SmartTap and DataStager use well-defined binary data formats to represent and orga-

nize the data output by applications, employing an internal file/data format termed FFS, an

extension of our prior PBIO work[15]. During normal operation, FFS uses dynamic code

generation to improve message decode/unmarshal performance. In particular, because the

precise layout of incoming FFS-encoded data depends upon the architecture details of the
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sender, FFS does not assume a priori knowledge of the layout and instead generates a cus-

tomized unmarshalling subroutine for each incoming message layout. These subroutines

are reused for each subsequent message that shares the same layout and are generated us-

ing the Georgia Tech-developed DILL package that provides dynamic code generation via

a virtual RISC instruction set. DILL currently can generate code for x86, x86-64, ia64,

sparc, arm5 and mips architectures. Another part of FFS is C-o-D (C-on-Demand), which

implements a subset of C, is a relatively thin compiler layer built on top of DILL, consist-

ing of a lexer, parser, semantics, and code generation. C-o-D’s design supports extensibility

in that types, structures, external variables, and subroutines can be made available to the

generated code, without C-o-D being aware of those items at compile time.

C-o-D is used in both SmartTap and in DataStager as an efficient mechanism for cus-

tomizing data handling. As described below, C-o-D is used to directly manipulate data in

both SmartTap and DataStager. It is also employed in SmartTap to affect data marshalling

in a novel way.

5.4.2 SmartTap

SmartTap is an extension to the DataTap asynchronous data movement library designed

for low overhead data extraction. Unlike DataTap, SmartTap’s current implementation is

not completely asynchronous. Rather, the C-o-D-based functions associated with Smart-

Taps are executed inline with data output paths. This allows the staging area to push back

C-o-D code fragments that can be used for further specialization of the output data, pro-

ducing outputs that better meets the needs of subsequent processing steps, including those

of consumer workflows written with, for example, Kepler.

SmartTap provides two major technical innovations. First, because SmartTap is built

on C-o-D it allows an external manager/controller to determine – through iterative methods

– the best locations for introducing in-transit data processing. Second, SmartTap extends

the C-o-D paradigm to merge select operations with the action of marshalling into a buffer.
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This method of reducing data can have a significant impact on the performance of large data

output sets and produces targeted data output that can be easily used within further stages

in the data operational pipeline. However, since SmartTap executes within the compute

nodes itself, there are some limitations to the functions that can be executed within the

SmartTap. We discuss those limitations in more detail in our experimental evaluation,

but nonetheless, the specialization of C-o-D functions allows some complex functions to

be simplified and optimized for execution within the SmartTap. For functions that do not

translate to SmartTap characteristics, the specialization manager is responsible for selecting

the specialization target.

As mentioned above, SmartTap uses C-o-D in two specific ways to customize data

staging, each with specific advantages which are evaluated in Section 5.5. First, SmartTap

uses C-o-D to filter/transform/subsample the extracted application data before that data is

passed to FFS for marshalling. This relatively straightforward approach, called filter-then-

marshall, allows C-o-D to operate on the entire extracted application data structure at once.

However, in order to keep memory management complications to a minimum, applications

of filter-then-marshall that involve changing data require a copy to be made of that data.

SmartTap uses FFS to format all data placed into its output buffers, but an additional

novel contribution is its ability to customize such marshalling behaviour using subroutines

generated with C-o-D (C-On-Demand). This SmartTap technique is called customized-

marshalling.

To better explain how customized marshalling can be used to efficiently implement

SmartTap customization functionality, we first considered basic marshalling support sup-

ported by FFS. FFS marshals complex data structures, including pointer-based structures.

A common way to gather data items for transport is to create a base structure which in-

cludes pointers to other data items. During marshalling, FFS packages the entire structure,

including the base structure for transport to the destination host. This marshalling involves

copying the base data structure into the message buffer, calculating the sizes and message
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Figure 13: Cost of marshalling data for transfer for different sampling sizes, data size =
40 MB.

buffer locations of each sub-element, overwriting the pointer values in the copied structure

with the message offset of each subelement, and then recursively applying this marshalling

procedure in order to move the transitive closure of all subelements into the message buffer.

This operation and its result are shown in the upper half of Figure 12.

In order to accomplish the customized marshalling desired by SmartTap, we modified

the procedure described above so that a C-o-D-generated subroutine controls the copying of

particular subelements. In particular, we have modified the FFS marshalling procedure in

order to support the use of a specialized copy routine (show in the lower half of Figure 12.

This copy routine, supplied in textual source form by the specialization policy manager,

and subject to dynamic code generation before use in SmartTap, can examine the data being

marshalled in order to make individual decisions about marshalling particular elements.
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5.4.3 DataStager

The DataStager previously described in [3] and Chapter 4 is the staging mechanism used

in concert with SmartTap. DataStager provides users with server-side scheduling for data

movement, a structured data format which supports reflection, and the infrastructure for

deploying online PreDatA analytical operation.

In JITStager, the DataStager is further extended to include functionality for the deploy-

ment of code from external sources. As described previously, the use of C-o-D allows

the deployment of fast dynamically generated binary code, without suffering from the per-

formance bottlenecks of interpreted code or the lack of flexibility of dynamically loaded

libraries. Furthermore, these functions can be further specialized to the experimental sce-

nario and user’s requirements.

DataStager services the application requests for data extraction in the order determined

by the scheduling mechanism. Once an extraction request has been completed, the resulting

data is queued up within the JITStager server for user-specified processing. In addition to

performing the PreDatA analytical processing, DataStager also passes the data to the global

feature extraction module. This module employs user-specified feature extraction functions

across the entire JITStager cohort. One advantage of this approach is the increased scaling

offered to the application by off-loading these collective operations to the smaller set of

staging area nodes (typically operating at a ratio of 1 staging node per 256 compute nodes).

A functionality argument is the flexibility offered by allowing the specification of these

functions at run-time, instead of tightly coupling them with the application.

Once features have been extracted successfully, they are handed off to the specialization

policy manager. This module generates customized C-o-D functions that are then used to

customize the data pipeline. Specialized code is pushed up the data pipeline to either the

SmartTap or to operate in the staging area.

In addition to computing on the data, DataStager offers the functionality of an attribute

scheduler. The attribute scheduler was originally defined in [3] to be a client-controlled
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mechanism for performing scheduling decisions that conform to the user requirements. A

simple example of the attribute scheduler is extracting a stream of data where all blocks are

in order based on node id. Extending this scheduler is trivial due to JITStager’s capability

of runtime insertion of dynamic C-on-Demand code into the scheduler stack. The use of

the attribute scheduler can bring down average storage latency when writing out contiguous

files as well as reducing the memory required for buffering within the staging area.
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Figure 14: Cost of marshalling data for transfer for different sampling sizes, data size =
200 MB.

5.5 Experimental evaluation

The JITStager system is designed to address both the functionality requirements of mod-

ern science as well as its performance needs. We evaluate JITStager in two parts. In the

first part, we break down the different performance considerations of customizing the data
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pipeline by evaluating the impact on marshalling time for different data retention percent-

ages. We also compare the data customization cost when customization is addressed by the

SmartTap to the cost when it is handled in the DataStager.

Next, we utilize the Warp molecular dynamics application described in Section 5.2 to

evaluate the aforementioned customization scenarios. For the data reduction scenarios,

limiting the output to user specified bounding boxes and for utilizing statistical sampling,

we look at the overall impact on the application running time, the latency to storage, and

the reduction in data size.

Throughout the evaluation for Warp, we refer to the filter-then-marshal technique of

data customization in SmartTap as ST1 and the customized-marshalling technique as ST2.

The No Sampling data set is obtained when we perform no operation, either at the Smart-

Tap or the DataStager, as a control. Finally, the term DataStager refers to the pipeline with

execution of C-o-D functions for data customization within the DataStager.

Finally, we show the scalability impact of JITStager on GTC. We evaluate the data

filtering and data tagging operations under four different scenarios,

1. In GTC. We add the operations to the output function in GTC. This is the least

flexible of the options available and requires modification of application itself as

well as the associated steps such as revalidation.

2. SmartTap. We perform the operation within SmartTap on the compute node. This

allows the data filtering to be performed close to the data generation and has the

largest impact on the total data size being transferred.

3. Staging. We place the specialization operators within the staging area. Although this

is a costly operation given the limited computational resources available, compared

to the large application cohort, the impact on the application runtime is minimal

because the computation is offloaded.

4. Post I/O. Finally, we evaluate the time taken to perform the filtering and tagging
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operation after the data has been written to disk. This step does not produce any

impact on the application runtime, but does have a large latency to completion as

well as placing additional stress on the I/O backend.

5.5.1 Understanding the performance of JITStager

Due to the flexibility of the customization engine in JITStager, the policy manager must be

aware of the tradeoffs associated with moving computation to the staging area. Data size

reduction, time to complete data transfer, and the reduction in resident time on the staging

area are the performance benefits of moving computation closer to data generation. How-

ever, the additional processing on the compute node can introduce some small overhead

in the time required to create the output buffer. The decision to place the customization

operation is up to the specialization manager and depends on user specifications.

Figure 13 and Figure 14 show the impact of using a single compute node to perform a

data sampling operation. As can be seen, the time required to create the output buffer is

increased when we utilize the SmartTap as the sampling engine. This increase in time to

marshall is accompanied by a subsequent reduction in data size. One interesting feature

of the graphs is the decrease in marshalling time for ST1 as the data retention percentage

increases above 50%. This is caused by the increasing effectiveness of the cache due to

denser memory references as the data retention percentage increases.

The negative impact on marshalling time is offset by the significant savings within the

staging area. To better understand this trade-off, we compare the data residency within

the staging area. Data residency is an important metric to consider due to the increase

pressure on staging area memory as application node to staging node ratio increases. As

can be seen in Figure 15, moving operations to SmartTap results in significant savings

in the residency time. Performing data reduction within DataStager also shows I/O time

savings (DataStager (only I/O) in the Figure 15), but results in greater residency due to the

additional computation time required for data reduction. This reduction time is significantly
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Figure 15: I/O in JITStager: Number of clients = 32, data size = 200 MB.

higher due to the staging area performing the operation on the entire data set compared to

the SmartTap computing on an individual message.

This evaluation shows that the user must have the means to specify policy guidelines

that control the mechanism for marshalling, as well as the placement of the sampling code.

Additionally, these decisions have to be enforced dynamically to successfully adapt to

changing data conditions.

5.5.2 Application scenarios

We evaluate the performance of JITStager with Warp using three of the customizations

mentioned in Section 5.2: Bounding Box, Tagged Data Output and the Statistical subsam-

ple. We compare these with an extraction operation without any data customization, Only

Data Output.

The application runs for 1000 iterations with 25 data outputs, every 10 timesteps from
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Figure 16: Impact of I/O on the application run of 1000 iterations. Without any I/O, the
application runtime was 697s.

0 to 50 and every 50 iterations thereafter. The data output is stored on local disks within

the staging area. The experimental platform is a quad-core dual-socket Naehalem cluster

with 12 GB of DDR3 ram, using QDR Infiniband as the cluster interconnect. The data size

for each output step is 2.4 GB from 32 application processes. The total generated data size

is 60 GB for all 25 output steps.

5.5.2.1 Impact on application runtime

Figure 16 shows the overhead on the execution time of the application when utilizing the

JITStager I/O transport within ADIOS. The overhead is compared to the NULL transport,

a special ADIOS transport that produces no data output. The application run takes 697s

with the NULL transport. Data output results in an overhead of 0.94%, with the statistical

sampling operation creating the largest overhead of 15.4s. The Tagged Data Output also
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Figure 17: I/O and compute time within the Staging Area.

shows a higher overhead due to the additional computation and the lack of a data reduction.

Despite the complexity of these two operations, the overhead is less than 2.5%.

The bounding box operation demonstrates the performance impact of customization

placement. Using the C-o-D filter, we see an overhead of only 1.3%, which drops to 1.1%

when using the custom marshalling operator. Moving the customization to the staging area

results in zero overhead since no additional computation is performed in the SmartTap.

It is important to remember that the overhead from the SmartTap is exaggerated due

to the asynchronous data transfer mechanism. With synchronous data output, the I/O time

savings through data reduction will dominate the computational cost.

5.5.2.2 Staging area time

In Figure 17, we show the I/O and compute times within the staging area. As shown, the

time taken to perform I/O operations within the staging area is substantial compared to the
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impact on the application runtime. The total time spent during the 25 output operations is

almost 120s without any data reduction. When we switch to the bounding box operators,

we see the I/O time drop down 17s. Statistical subsampling produces slightly larger data

(see Figure 18) and results in a marginally larger I/O time.

Placing the bounding box operator in DataStager results in similarly reduced I/O time

but requires much greater computational time within the staging area. This computational

time has no impact on the application runtime, but additional compute time on the staging

area reduces the maximum frequency of data output. Moving computation to the staging

area eliminates the overhead from SmartTap computation, but has a large impact on time

in the staging area. The selection of the placement strategy, therefore, has to be made with

client requirements for acceptable application overhead as well I/O overhead requirements

for the staging area.

The statistical subsampling operator uses the compute capacity of the staging area to

calculate global parameters, resulting in an increased computational time in the staging

area. This operation showcases the functionality obtained by combining low overhead

annotations in SmartTap, with global feature extraction and functional specialization within

DataStager. Computing global features in the application requires global communication

operations which impact application scalability.

5.5.2.3 Latency to storage

Storage latency is another important consideration for scientists because it places a limit on

how quickly the analytical pipeline can process the extracted data. In Figure 18, we show

the reduction in storage latency obtained by using the JITStager customization operations.

The latency reduction is highest when the data is reduced and the customization is per-

formed entirely within the SmartTap. Moving the customization to DataStager increases

the latency to storage, but the impact is small when compared to writing out the entire un-

customized data set. Statistical sampling shows a higher storage latency due to the time
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Figure 18: Average latency to storage. With data reductions the data size output to disk
is dramatically reduced.

required to compute global features.

5.6 Discussion

The JITStager approach to customizing the I/O pipeline offers both performance and func-

tionality enhancements over previously reported work. The combination of specialization

and marshalling on the client side (SmartTap) and of scheduled transfers and transforma-

tion on the staging side (DataStager) allows for both a substantial increase in performance

flexibility and in extensibility of the I/O pipeline. In contrast to approaches that require

fixed, precompiled functions or depend on operating system support, JITStager utilizes on-

demand compilation and specialization of the user functions to achieve substantial potential

performance gains, such as reducing transfer times from 120s to 17s using user-specified

restrictions.
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The JITStager, described in this chapter, and the DataTap transport, described in Chap-

ter 4, are the cornerstones of the data services implementation, based on the design detailed

in Chapter 3. In the next chapter, we describe how our implementation of data services has

addressed some of the challenges described in Chapter 2.
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CHAPTER VI

UTILITY OF DATA SERVICES

In this chapter, we describe the use of data services in two of the applications which mo-

tivated the development of the data service abstraction. The two applications, CHIMERA

and GTC, are commonly used in leadership computing facilities such as the one at Oak

Ridge National Laboratory. In particular, this section will concentrate on two major data

processing functions that have meaningful implications on real world usage. For CHIMERA,

we look at the performance characteristics of extracting data in the native FFS format and

converting it to the HDF5 data format more commonly used for analysis tools. Understand-

ing the performance impact of this operation is particularly important, because it allows us

to alleviate the concerns of using an intermediate format. In fact we discovered that the

performance of data output with FFS format to the staging area and HDF5 conversion

within the staging area provided a significant performance benefit. The second common

data task we look at is the performance impact of checkpointing for GTC. With large scale

simulations, the probability of failure is a significant concern addressed by checkpointing

the simulation at regular intervals. Due to the limitations of storage performance, as well

as the variability of storage operations, the checkpointing interval is often increased in or-

der to reduce the overall impact on application runtime. By utilizing the data staging and

scheduling techniques described previously, we can increase the frequency of checkpoint-

ing allowing for less wasted time in case of failures, without greatly impacting the overall

application runtime.
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Figure 19: Total Execution Time for CHIMERA.

6.1 Applications

6.1.1 CHIMERA

CHIMERA[52] is a multi-dimensional radiation hydrodynamics code designed to study

core-collapse supernovae. We look at the periodic restart output that is used for both check-

pointing and post-processing. The restart data consists of 80 scalar and arrays. Global ar-

rays are regularly distributed among a 2-D grid of MPI processes. In our experiments, each

MPI process writes out approximately 930KB of data in each I/O phase.CHIMERA uses

the ADIOS API [50] for I/O allowing multiple methods to be compared by simply modi-

fying a variable in the configuration file. The data is defined as part of an external XML

configuration with both structure and meta information and enabling the use of structured

FFS data for output purposes. We have instrumented the application with specific calls to

ADIOS in order to provide phase information to the underlying transport method, allowing

us to customize the behavior of the data transport.

We evaluate two aspects of the data service for CHIMERA, viz. the extraction of data

to the staging area and the conversion of the intermediate FFS format data to the HDF-5

format. Evaluation is performed at application sizes ranging from 512 to 8192 cores. We

use five test runs at each of the sizes, with additional compute nodes serving as the data
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staging area. In all experiments with the Datatap, we have kept the ratio of compute nodes

to staging nodes at 512 to 1. The application runs for 400 iterations and a restart output is

produced every 50 application iterations.

The CHIMERA evaluations are performed on the Oak Ridge National Laboratory Cray

XT, Jaguar. At the time of these experiments each Jaguar node was a single socket, quad-

core AMD Opteron running at 2.1 GHz with 8 GB of memory (2 GB/core). The network

interconnect is the Cray Seastar2 with low level access provided through the Portals API,

and the compute nodes operating system is Compute Node Linux (CNL).

(a) Total Execution Time Breakdown with Datatap (b) Total Execution Time Breakdown with pHDF5

Figure 20: Comparisons of execution time for CHIMERA.

6.1.2 GTC

Gyrokinetic Toroidal Code (GTC) [71] is a 3-dimensional particle-in-cell code used to

study micro-turbulence in magnetic confinement fusion from first principles plasma the-

ory. GTC is highly scalable and our evaluations utilize application sizes from 16k to 112k

application cores.

In order to study the largest I/O element, we perform the evaluation on the GTC restart

data output only. The GTC restart output is approximately 10% of the overall problem

sizes and provides a look at the extremes of I/O performance. Similar to CHIMERA, we

use the ADIOS [50] library to perform I/O, providing us with a unique opportunity to study

the implications of different methods for data extraction without modifying the application

code. The restart output is produced every 10 iterations, and the application runs for a
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total of 100 timesteps. The performance of data extraction service is compared to a special

ADIOS method, NULL. The NULL method does not perform any data output and provides

the base case for application runtime.

As described in [3], we instrument GTC with programmatic hints to inform the data

service controller about transitions to a compute phase. GTC evaluations utilize the NCCS

Cray XT5 Jaguarpf. Each node is configured with two quad-core AMD Opterons at 2.6

GHz with 16 GB of memory (2GB/core). Like the Cray XT4 used for CHIMERA, the

Cray XT5 also uses the SeaStar2+ network interconnect programmed through the Portals

API.

As an example of managed data extraction, we use the PA Con 1 scheduler described

in [3]. The scheduler uses phase knowledge from the instrumented application in order

to reduce potential interference with intra-application communication and additionally re-

stricts the number of concurrent data transfers. In our past evaluations, we had discovered

that the PA Con 1 scheduler has the least impact on the application runtime.

6.2 Data extraction performance

To examine the impact on CHIMERA performance caused by background data movement,

we compare the total execution time of the CHIMERA simulation with Datatap I/O and

pHDF5. For Datatap, the visible I/O overhead is the total I/O blocking time in restart dumps

plus the time of one-time finalization (during which all compute nodes block waiting for

servers to fetch the data).

As shown in Figure 19, data extraction with the Datatap outperforms those with pHDF5.

The time breakdown (shown in Figure 20) reveals that the improvement of total execution

time is due to reduction of blocking I/O time and that the computation (main loop time) is

not affected.

In terms of cost/effectiveness, Table 1 shows that at the scale of 8192 cores, the I/O

overhead with pHDF5 is 37.84%. By using 16 additional compute nodes (64 cores in total)
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for staging, the I/O overhead is reduced to 0.14%. The additional Datatap servers only cost

64/8192=0.78% additional resources.

Table 1: Visible I/O Overhead
Overhead(%) 512 1024 2048 4096 8192
Datatap 0.0221 0.0248 0.0741 0.142 0.144
pHDF5 7.123 8.925 13.941 22.551 37.837
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Figure 21: Data Extraction overhead for GTC on the Cray XT5

In Chapter 4, we presented data extraction performance with up to 2k processing cores

showing significant performance benefits compared to traditional POSIX output especially

when using managed I/O.

In Figure 21, we look at the percentage performance overhead compared to a NULL

data transport as we scale from 16,384 to 114,688 processing cores. As the number of pro-

cessing cores increases from 16k to 65k, the performance overhead increases from 15.5%
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to 42.5%. For data extraction using the Datatap using a combination scheduling policy,

using the congestion avoidance scheduler (PA) and the concurrency limiting scheduler, we

find that the performance overhead was as low as below 1% at 16k cores to only 18.1% at

112k cores.

Figure 22 shows the distribution of blocking times for one representative I/O output

over all the nodes in the system.
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Figure 22: Cumulative distribution of blocking time for a representative I/O phase with
112k processing cores.

Although data extraction to the Datatap server provides a significant performance bene-

fit compared to traditional POSIX I/O, the importance of providing a control infrastructure

can be seen from the distribution of blocking time. The unmanaged data stream completes

all transfers before the start of the next I/O phase, thus almost 100% of the nodes show a

blocking time of less than 2 seconds. However, the managed data transfer limits the time
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periods in which data can be moved out of the compute nodes. This results in a small

number of nodes (about 10%) taking longer than 10 seconds blocking for the transfer to

complete. A tiny fraction, about 1% block waiting for transfer completion for longer than

90 seconds. So, despite the greatly reduced perturbation impact from the managed stream,

the overall performance improvement is not as significant. This is an example of a sce-

nario where an independent control plane that optimizes the data movement management

for individual application runs can be used for large gains in performance.

Figure 23: Data Formatting Time.

6.3 Data processing performance

We evaluated the benefits of online data processing using data formatting is for CHIMERA

as an example. The data formatting service produces HDF5 formatted data output by uti-

lizing the computational resources of the staging area used for data extraction. Writing data

into HDF5 requires first decoding FFS serialized data, combining local arrays into larger

chunks, and then writing data to HDF5 file. Figure 23 shows the time breakdown of data

formatting. Note that the FFS decoding time shown in Figure 23 is the total time of de-

coding 512 data chunks. Decoding one message (930KB) takes 0.091 seconds on average.

The time of combining data chunks is about 0.25 seconds in total within one dump. These
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Figure 24: Aggregate ingress and egress bandwidth for HDF5 conversion.

two parts are constant among all tests since the data size is kept unchanged.

However, the time spent in pHDF5 API increases linearly with the total size of the

output data. As shown in Figure 24, the egress bandwidth increases only slightly as we

increase the number of Datatap servers. This is due to the increase in nodes resulting in an

equivalent increase in the coordination and synchronization costs associated with writing

a HDF5 file as observed in our previous work [50]. The ingress bandwidth, however,

increases more rapidly as we scale the overall application size. The less than linear increase

is due to the increased network contention as more nodes are added into the cohort.

Another metric of interest is the total data processing time, which is the time period

from getting the first request till finishing writing all data to HDF5 file. The total data

processing time at different scales is shown in Figure 25. At the scale of 8192 compute

cores, background processing on Datatap servers can be done in less than 20 seconds,

while the restart interval is about 400 seconds. This suggests that there is sufficient time

for background processing without blocking computation.
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Figure 25: Total Data Processing Time.

6.4 Discussion

Data services have been presented as a useful and usable abstraction for allowing end users

to address the problems that come from I/O at extreme scale. By decoupling the man-

agement of the I/O transport and storage from the application interface, portability and

robustness can be improved for most end users.

In particular, this chapter demonstrates that the separation of extraction, data manipu-

lation, and management of the data fast path can offer significant performance and func-

tionality improvements. Scale measurements over 100k processes show that, as expected,

management issues change as the scale of the problem increases. Here we demonstrate

that using a combination of management techniques, including asynchronous transport, in-

transit filtering of the data, and distributed synchronization, our implementations of data

services can perform at or substantially better than the corresponding POSIX-based imple-

mentation.

In the next chapter we provide an outlook on the areas where the data services abstrac-

tion needs to evolve to address the challenges imposed by the next generation of systems

and applications.
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CHAPTER VII

LOOKING TO THE FUTURE

The data service abstraction provides a significant improvement over the traditional design

of I/O methods for high performance applications. However, there are many directions in

which the work in this thesis can be further extended and refined. In particular the ongo-

ing development of the data service architecture requires additional efforts in addressing

a wider array of platforms such as the Blue Gene and next generation GPU based HPC

systems. Moreover the inclusion of GPUs, and other accelerators, into the next generation

of high performance system, raises both new challenges, and also new opportunities for

data services research. Additional effort must also be made to investigate the significance

of new storage technologies such as NVRAM and SSDs. Finally widescale adoption of

new technologies is highly dependent on the development of usable development models

and reliable and easy to use deployment techniques.

7.1 Expanding the available platforms

Data Services have been developed given the architecture and platform characteristics of

the Cray XT series of high performance systems as well the infiniband based clusters at

Georgia Tech. As we move towards multi-petascale and eventually exascale, the architec-

ture will undergo major evolution. In order for data services to gain acceptance for scien-

tific applications, the breadth of the supported platforms must be increased to include the

other major architecture commonly used in high performance computing facilities such as

Blue Gene class of machines. The increasing penetration of GPUs and other computational

accelerators, as well as many-core computational platforms envisioned for exascale archi-

tectures must be addressed in extensions to the data service abstraction. The data transport
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to the staging area must also be extended to support data movement for non uniform mem-

ory access (NUMA) architectures as well as heterogeneous cores, both on node and within

the staging area. Addressing these issues will require further investigations of the schedul-

ing techniques already demonstrated for asynchronous data movement to the staging area,

and also provisioning and scheduling of operations on application nodes utilizing idle or

low power cores.

7.2 Utilizing new NVRAM technologies

The current design of data services makes a few strong assumptions about the nature of

the data manipulation operations that are performed in the data pipelines. For instance,

the data pipeline is assumed to operate as a data stream where the access to output from

previous timesteps is not possible. These assumptions are valud for both current and next

generation systems, but will not necessarily hold as we scale out systems to exascale. The

introduction of non-volatile memory into the system as well the more general availability

of fast solid state storage will allow data services to be designed with access to multiple

timesteps. This will require the addition of capabilities for temporary storage and retrieval

of data objects from these fast random access based persistent stores. Additionally, data

services can be extended to combine data objects not just from previous timesteps of a

single simulation, but also from previous executions of the simulation. While this adds a

large cadre of operations for data services there are significant challenges to be overcome,

including discovery of past data, the programming model for the development of these

services and the performance considerations from the greater access to storage.

7.3 Programmability and usability

The scope of this thesis did not include an in-depth investigation of the programming model

for the development of data services and the control infrastructure required for the deploy-

ment of complex I/O pipelines. Ongoing work in the area of parallel global address space
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(PGAS) model for development is an important technique to consider for data service de-

velopment. By describing data in terms of its global characteristics the data services can

be easily programmed as parallel services while maintaining scalability. The deployment

of data services requires more effort into integration with existing I/O frameworks such

as MPI-IO and ADIOS. ADIOS in particular provides significant advantages to utilizing

data services by supporting launch time selection of output methods and increasing sup-

port in the scientific community. The deployment of dynamic services also requires future

work on developing provisioning models for the services, either through user annotations

or historical performance data obtained through a monitoring service. The flexibility of the

data pipeline can be further exploited by utilizing system level support for fast dynamic

allocation of staging resources. Likewise, failure detection and recovery requires further

study.
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CHAPTER VIII

CONCLUSIONS

The data deluge which has become a significant performance bottleneck for high perfor-

mance scientific application, requires a paradigm shift in both data output and also data

processing. In this thesis we detail our vision of this new paradigm, the data service ab-

straction. Data services combine low overhead data movement, utilizing the DataStager-

DataTap transport, with flexible just in time placement of data processing operations, using

the JITStager framework, to address the challenges of these leadership class applications.

The use of the scheduling framework in DataStager has been shown to be critical in pro-

viding low overhead I/O operations as applications scale to thousand of cores.

The software infrastructure described in this thesis has also been integrated with the

ADIOS I/O component framework, allowing the large number of users of ADIOS easy

access to this new technology. Implementing the data service abstraction within the frame-

work of ADIOS, provides the technology with a large number of adopters in the scientific

computing domain. For example, the particle-in-cell simulation, GTC has addressed many

of its I/O challenges by utilizing the techniques described in this thesis. Data services is

also being targeted for inclusion in the official release of ADIOS in November 2011, al-

lowing any user of ADIOS to utilize the data services framework, with a minimal level of

source code modification.

The use of staging to enable high performance I/O, described in this thesis, is quickly

becoming the accepted method of addressing the I/O challenges arising from scaling peak

system performance towards exascale. This thesis also presented the first published through

evaluation of the performance characteristics of the staging area. The problem of asyn-

chronous I/O causing interference with intra-application collective communication was
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initially identified in this thesis. And the proposed solution to this problem, the use of

scheduling to avoid contention, is now being considered for inclusion into the development

plan for the exascale I/O frameworks.

Data services leverage latent asynchrony present in many scientific workflows, periods

of time where the application computes without generating data, and utilizes the novel

technique of data staging, described in detail in the thesis, to move data using asynchronous

operation to the staging area. The staging area provides a platform for both storing the

data temporarily before moving it to persistent storage, and to process the data in order

to aid future analysis or visualization operations. This form of preparation for analysis is

described as PreDatA, and is one of the use cases for data services and has been shown to

have significant benefits for data analysis operations.

The development of meaningful data services has been shown to benefit from the use

of self describing binary formats such as FFS. The reflection capability, which forms an

integral part of the data description of FFS messages, is used by downstream data services

to identify incoming data and operate on it. FFS has also been extended to include in-

line sampling to further optimize the marshalling performance by combining the filtering

operation with the memory copy to the output buffer.

The use of JITStager extends the locations where data service operations can be exe-

cuted. In this thesis we have described the use of the dynamic code generation framework,

C-on-Demand, to add flexibility to data services in selecting the execution location. JIT-

Stager has been shown to provide innovative new functionality, such as statistical filtering

of data, without significant impact on application performance. Furthermore, by reducing

the data at the source, JITStager has also been shown to reduce the latency to storage and

the time to data. The reduction in time to data is especially significant; by providing data

faster to the analysis workflow the time taken in creating new scientific knowledge can be

reduced. This reduction is coupled with the ability of data services to output only portions

of the data set, further reducing the I/O bottlenecks for the scientific workflow.
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In summary, data services have been demonstrated to be part of the solution towards

scalable data management techniques for the next generation of I/O frameworks. The com-

bination of managed data movement, use of additional resources as the staging area, self

describing data formats and dynamic code generation are all combined in providing new

functionality to the I/O pipeline. This functionality has been shown to extend beyond sim-

ple storage or store-and-forward operations, encompassing a large cadre of scientifically

relevant data manipulation operations. This research has already gained extensive adoption

in the scientific domain and has opened up new venues for I/O research in the upcoming

exascale environments.
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