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SUMMARY 

Bipeds and quadrupeds are inherently unstable and their bodies sway during quiet 

stance and require complex patterns of muscle activation to produce direction-specific 

forces to control the body’s center of mass. The relative strength of length and force 

feedback within and across muscles collectively regulates the mechanical properties of 

the limb as a whole during standing and locomotion (Bonasera and Nichols 1994; Ross 

and Nichols 2009). Loss of posture control following spinal cord injury (SCI) is a major 

clinical challenge. While much is known about intermuscular force feedback during 

crossed extension reflex (XER) and locomotion in decerebrate cats, these have not been 

well characterized in animals with spinal cord injury.  

In this study, we mapped the distribution of heterogenic force feedback in 

hindlimb ankle extensor muscles using muscle stretch (natural stimulation) in 

intercollicular, non-locomoting, decerebrate cats with chronic lateral spinal hemisection 

(LSH). We also, determined the time of onset of redistribution of heterogenic force 

feedback following LSH by collecting force feedback data from cats with acute sci. In 

addition we revisited heterogenic force feedback between ankle extensors in decerebrate 

non-locomoting cats during mid-stance to ascertain whether these cats with intact spinal 

cord depict a certain pattern of force feedback. The goal was to ascertain whether the 

patterns and strength of feedback was different between the two states (cats with intact 

spinal cord and cats with SCI). We found that heterogenic feedback pathways remained 

inhibitory in non-locomoting decerebrate cats in two states. The latencies of inhibition 

also corresponded to those observed for force feedback from Golgi tendon organs. We 
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observed variable patterns of force feedback between ankle extensors in 

decerebrate/control cats. On the other hand we observed consistent results in cats with 

chronic LSH exhibiting very strong distal to proximal pattern of inhibition from 2 weeks 

to 20 weeks following chronic LSH. The same results were obtained in acute LSH cats 

suggest that the change in neuromuscular system appears immediately after SCI and 

persists even after the animal start walking following SCI. The observed altered pattern 

of force feedback after spinal cord injury suggests either presence of a pattern intrinsic to 

the spinal cord or a unique pattern exhibited by the damaged spinal cord. The results are 

important clinically because even with vigorous rehabilitation attempts patients do not 

regain posture control after SCI even though they regain ability to walk. Therefore, to 

effectively administer treatment and therapy for patients with compromised posture 

control, a complete understanding of the circuitry is required. 
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CHAPTER 1 

Introduction 

Balance is vital to normal everyday life activities such as standing, sitting, getting 

out of a chair, walking, bending over to put your shoes on, washing your hair, driving a 

car or going grocery shopping. Ability to maintain balance is a complex process that 

depends on neuromuscular complex integrating systems. This ability is highly impaired 

after neurological diseases and injury to central nervous system thus affecting the quality 

of life in millions of people across the globe.  

            Sensory motor interactions such as spinal reflexes occur within the spinal cord. 

They can be modified following spinal cord injury (SCI), due to the loss of excitatory 

inputs from supraspinal structures and changes within the spinal cord (Frigon and 

Rossignol 2006; Rossignol and Frigon 2011). Despite extensive research work to date on 

spinal reflex changes after SCI, understanding of the role played by various sensory 

inputs interacting with intrinsic spinal circuits and their role in the recovery of motor 

functions especially balance control after SCI is still limited.  

It is well known that animals as well as humans can step on a treadmill after SCI 

although they are lacking good lateral balance control (Barbeau and Rossignol 1987; 

Carter and Smith 1986; Grillner 1975; Rossignol et al. 1996). Some weight-bearing 

capacity may remain following SCI and improve with rehabilitation in both humans and 

animals (De Leon et al. 1998; Edgerton et al. 2001; Nooijen et al. 2009), however the 

ability to maintain postural equilibrium and balance does not completely recover 
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(Barbeau and Rossignol 1987; Lyalka et al. 2009), suggesting that these behaviors are 

mediated by distinct neural mechanisms requiring integration at many levels of 

neuromuscular integrated control system. 

 Loss of postural equilibrium on the other hand starts with spinal cord injury and 

stays there even after partial or complete locomotor recovery. Therefore, there is a debate 

about the capacity of spinal cord circuitry for balance control as coordinated postural 

responses may require supraspinal input considering they are not recovered even after 

rehabilitation efforts. One group of neuroscientists strongly believes that brain stem input 

to spinal cord is more important than cortical input to maintain balance control. We know 

that brainstem neurons are active during balance control (Schepens et al. 2008; Stapley 

and Drew 2009) and disrupting the connectivity between the brainstem and spinal cord 

impairs balance control and responses to perturbations (Deliagina et al. 2008; Honeycutt 

et al. 2009). However, it remains unclear whether these responses reflect an attenuated 

postural response using the appropriate muscular coordination patterns for balance, or are 

due to fundamentally different neural mechanisms. In humans despite of locomotive 

recovery SCI patients are often challenged by an environment that requires alterations in 

basic movement patterns (Amatachaya et al. 2010) and increased potential for falls 

(Musselman and Yang 2007; Musselman et al. 2011).  

           Most of the existing data about postural and motor control is from studies which 

were conducted using training, drugs (Cote et al. 2003; Cote and Gassard 2004; Ichiyama 

et al. 2011; Lyalka et al. 2008) and electrical stimulation (Musienko et al. 2010). They 

have demonstrated improvement of reflex activity and locomotion behavior. However, 



 3 

there is still little information about load responses using natural/physiological stimuli 

that can provide comparable data to in vivo behavior of neuromuscular system. 

Therefore, in order to understand the physiological changes in spinal circuits following 

SCI by using muscle stretch (natural stimulus) in spinal hemisection animal model in our 

study should answer some of these questions. The main objective of this study is to 

understand the role of spinal cord in posture maintenance by understanding the altered 

intermuscular interactions following SCI. We propose that a detailed understanding of the 

distribution and functional utility of proprioceptive networks, and how they are 

modulated by spinal injury both immediately and in long term is necessary to exploit the 

full potential of sensorimotor training and effectively manage SCI in clinical set up.  

1.1 Properties of The Muscular System 

Posture control is dependent on coordination between muscular and nervous 

system. The first response of the body to any outside perturbation comes from the 

intrinsic musculoskeletal properties. These properties are due to the viscoelasticty of the 

soft connective tissue component of skeletal muscle tissue that changes in response to 

change in environment and the mechanical properties of actively contracting motor units 

(Nichols and Hock 1976). As a result of this change in viscoelasticity of skeletal muscles 

force is applied on the skeleton to which they are attached. The reflextive properties are 

due to the presence of specialized sensory components of muscle tissue consisted of 

muscle spindles, Golgi tendon organs, and cutaneous receptors. These organs sense 

perturbations and relay that information to spinal cord. The spinal cord in turn is 

connected by a feedback loop through motor neurons activate muscles throughout the 

body, further contributing to the response of the body to perturbations.  
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 Muscle spindles are located within skeletal muscle in parallel with muscle fibers. 

Projections from muscle spindles are mainly excitatory, with some pathways distributed 

primarily to muscles of similar actions (Eccles et al. 1957; Nichols 1999) and regulate 

muscular stiffness (Nichols and Houk 1976), even across varying background tension 

(Hoffer and Andreassen 1981). Muscle spindles provide information related to the length 

and contraction velocity of muscle fibers (Crowe and Matthews 1964; Edin and Vallbo 

1990; Prochazka 1981; Prochazka and Gorassini 1998b). It has been shown that direct 

negative feedback of spindle afferents enhances the stiffness of muscle and as such helps 

to stabilize posture and movement (Hogan 1985; Nichols and Houk 1976). Furthermore, 

several theories of motor control propose that muscle spindle information is used by the 

CNS to generate muscle activation patterns in a predictive manner (Wolpert et al. 1995; 

Wolpert et al. 1998).  

The most direct and quick spinal reflex pathway is the monosynaptic stretch 

reflex (Eccles and Lundberg 1958; Liddell and Sherrington 1924) where group Ia 

afferents from muscle spindle make monosynaptic connections in the spinal cord with 

alpha motoneurons of the same muscle. 1a afferents respond to the rate of change in 

muscle length, as well to change in velocity of stretch. They fire when the muscle is 

stretching, as soon as the muscle stops changing length, the firing rate slows and adapts 

to the new length. The group II afferents also make mono-synaptic connections to the 

alpha motoneurons (Kirkwood and Sears 1975). They provide position sense of a static 

muscle, fire when muscle is static (Michael-Titus and Adina 2007). In addition to the 

stretch reflex, sensory receptors from a given muscle provide excitatory feedback to 

synergistic muscles, those of similar action, and inhibitory feedback to antagonist 

http://jn.physiology.org/content/109/4/1126#ref-17
http://jn.physiology.org/content/109/4/1126#ref-29
http://jn.physiology.org/content/109/4/1126#ref-29
http://jn.physiology.org/content/109/4/1126#ref-94
http://jn.physiology.org/content/109/4/1126#ref-98
http://jn.physiology.org/content/109/4/1126#ref-42
http://jn.physiology.org/content/109/4/1126#ref-87
http://jn.physiology.org/content/109/4/1126#ref-115
http://jn.physiology.org/content/109/4/1126#ref-115
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muscles, those of opposing action (Liddell and Sherrington 1924; Lloyd 1946a; Lloyd 

1946b) through interneurons in spinal cord. 

Golgi tendon organs (GTO’s) are located in muscle tendon in series with muscle 

fibers and senses changes in muscle tension/ loading. It has been shown that influence the 

dynamic reaction of a muscle to external perturbations (Houk 1979; Kistemaker and 

Rozendaal 2011; van Soest and Bobbert 1993). Due to its elastic structure the tendon 

greatly enhances the mechanical efficiency of movements by storing and releasing energy 

(Alexander 1984; Alexander and Bennet-Clark 1977). Also, without tendons, the 

maximal shortening speed of the muscle tendon complex (MTC) would be limited by the 

maximal shortening velocity of the muscle fibers. With tendons, the maximal shortening 

velocity of the MTC can well exceed that of the muscle fibers and as such allow 

mechanical work even at high velocities as in throwing a ball (Joris et al. 1985). Tendons 

also play a role in very fast muscle stretches (Alexander 2002; Cook and McDonagh 

1996; Hof 1998) that occur, for example parajumping.  

When the muscle generates force by activation or by stretch it stimulates Ib 

afferent axon from GTO’s caries this information to the spinal cord generating spinal 

reflexes and supraspinal responses which control muscle contraction. The autogenic 

inhibition reflex assists in regulating muscle contraction force. GTO’s have been 

classified as providing inhibitory feedback to extensor (antigravity) muscles, particularly 

across joints and axes of rotation, with very few connections to the muscle of origin 

(Eccles et al. 1957; Nichols 1989). Their distribution across a limb and joints (Bonasera 

and Nichols 1994; Eccles et al. 1957; Jankowska 1992; Nichols 1989) maintains whole 

http://jn.physiology.org/content/109/4/1126#ref-43
http://jn.physiology.org/content/109/4/1126#ref-57
http://jn.physiology.org/content/109/4/1126#ref-57
http://jn.physiology.org/content/109/4/1126#ref-110
http://jn.physiology.org/content/109/4/1126#ref-2
http://jn.physiology.org/content/109/4/1126#ref-4
http://jn.physiology.org/content/109/4/1126#ref-49
http://jn.physiology.org/content/109/4/1126#ref-3
http://jn.physiology.org/content/109/4/1126#ref-16
http://jn.physiology.org/content/109/4/1126#ref-16
http://jn.physiology.org/content/109/4/1126#ref-41
http://en.wikipedia.org/wiki/Spinal_cord
http://en.wikipedia.org/wiki/Spinal_reflex
http://en.wikipedia.org/wiki/Spinal_reflex
http://en.wikipedia.org/wiki/Autogenic_inhibition_reflex
http://en.wikipedia.org/wiki/Autogenic_inhibition_reflex
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limb stiffness and interjoint coordination (Nichols et al. 1999). Therefore they play an 

important role in maintaining the right amount of muscle contraction across joints 

required for maintenance of balance. Both length and force feedback can be non-uniform, 

favoring force generation by one muscle of a pair or at one joint over another (Bonasera 

and Nichols 1994; Eccles and Lundberg 1958; Nichols et al. 1999; Pratt 1995). 

Therefore, study of these reflexes in SCI can give us an insight into the underlying 

physiological changes within these pathways that might be responsible for disturbed 

balance control.                                     

1.2 Hind Limb Ankle Extensors 

 The cat hind limb muscles exert torques about different joints and axes of 

rotation. We have used ankle extensors in this study because they are extensively linked 

by force feedback and they have been previously studied in our laboratory using 

decerebrate cats. We have used three multiiarticular muscles including the flexor hallucis 

longus muscle (FHL), the Gastrocnemius muscle (GA) and the Plantaris muscle (PLT), 

and the uniarticular Soleus muscle (SOL).  

FHL is a strong ankle extensor. It also contributes to, ankle planterflexion, 

adduction, toe flexion and claw protrusion (Goslow et al. 1972). Its moment arm is one 

third that of SOL (Young et al. 1992) still its large surface area makes it a major extensor 

of ankle. This muscle produces more force than SOL and TA (Sacks and Roy 1982) and 

up to two thirds of the torque of SOL (Lawrence and Nichols 1999). It originates from 

upper part of fibular shaft and inserts into Flexor digitorum longus (FDL) tendon in foot 

through a long tendon that passes behind the medial malleolus. 
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GA originates via two heads from medial and lateral sesamoid bones lateral to 

medial and lateral epicondyles of femur, respectively, and insert via the Achilles tendon 

into calcaneus. It therefore spans the knee and ankle joints and therefore provides 

mechanical coupling between these two joints. It is a large muscle with 55 muscle 

spindles (Chin et al. 1965) and similar numbers of GTO’s (Eldred et al.1962) that is more 

than any other muscle used in our study. Therefore, its role in producing force to 

maintain balance and interactions with other muscles in hind limb is vital for 

understanding the changes in neuromuscular interactions after SCI. SOL originates from 

Fibula and inserts in calcaneus through a long tendon. It is composed of all slow twitch 

fibers. It is the only uniarticular muscle used in this study. 

PLT originates from lateral part of patella and forms a long tendon that passes 

between GA and SOL finally inserted into tendon of flexor digitorum brevis (Crouch 

1969). Interestingly its size is much bigger in cats in comparison to humans probably due 

to the fact that cats are toe walkers and need this muscle more frequently. Its big size 

could also be related to more hopping and jumping in quadrupeds. PLT is a toe flexor as 

well as ankle extensor, plantarflexor and abductor. This muscle yet contributes very little 

to the off-sagittal movement of the ankle (Lawrence and Nichols 1999).  

1.3 Brain, Brain Stem and Reticular Formation Role in Balance Control and 

Intermuscular Force Feedback Gradient 

 Our distal joints such as our fingers can perform more skillful movements than 

our shoulder. On the other hand it’s equally true that our hand and finger muscles are 

much smaller and less strong in terms of force production than shoulder muscles 
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(Hamilton et al.2004; Tan et al. 1994). These biomechanical differences between limb 

segments are not only task related but also have the distinct neuromuscular control of 

proximal versus distal joints (Kandel et al. 2000; Kurata and Tanji 1986). The 

corticospinal system has stronger influence over distal than that over proximal muscles 

(Brouwer and Ashby 1990; Lemon and Griffiths 2005; McKiernan et al. 1998; Palmer 

and Ashby 1992; Turton and Lemon 1999). This could explain distal joints and muscle 

control loss after stroke and upper motor neurons insult patients like in SCI (Turton and 

Lemon 1999; Colebatch and Gandevia 1989). Reticular formation and brain stem affects 

proximal muscles more potently than distal muscles (Davidson and Buford 2006; Riddle 

et al. 2009; De Domenico and McCloskey 1987; Tan et al. 1994; Hall and Mc-Closkey 

1983; Refshauge et al. 1995). These could also be related to the reported gradient in 

muscle spindle density (Banks 2006; Buxton and Peck 1990). Reticulospinal tract is 

important in control of posture (Deliagina et al. 2008; Schepens et al. 2008) in cat. 

Physiologically, muscles are also classified into proximal and distal categories on 

the basis of their relative anatomical origin and insertion (Delay et al. 2007). Grossly, 

muscles acting at more proximal joints (hip and knee) in hindlimb are referred to as 

proximal muscles while those acting at comparatively distal joints (ankle, tarsometatarso-

phalangeal joints) are classified as distal muscles. Therefore, Quadriceps muscle group 

acting at hip and knee joints is a proximal group of muscle, while Triceps surae acting at 

ankle is a distal group of muscle. The same principle can be applied to the muscles acting 

at the same joint, for example; GA is a proximal muscle in comparison to FHL at ankle 

joint. GA originates from medial and lateral sesamoid bones lateral to medial and lateral 

epicondyles of femur bone, respectively, and inserts into calcaneus. FHL originates from 
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upper part of fibular shaft and inserts via long tendon into sole of foot at FDL tendon. 

This proximodistal gradient was observed in the control of avian running (Daley et al. 

2007), in reflex responses of squirrel monkey (Lenz et al. 1983), and in human motor 

performance and perception (DE Domenico and McCloskey 1987; Gandevia and 

Kilbreath 1990; Hall and McCloskey 1983; Tan et al. 1994). Daley proposed a proximo-

distal gradient in joint control that is vital for maintaining whole limb mechanics for 

postural control. Long fibered proximal muscles modulate limb and body work, whereas 

short-fibered distal muscles with long tendons favor more economical force generation 

and elastic energy savings (Biewener and Roberts 2000). Since the distal joints are the 

most directly affected by interaction with the ground, regulation of compliance of distal 

muscles is critical to determining how the limb will react to the ensuing disturbance.  

Since we have postulated that inhibitory force feedback contributes to the 

regulation of joint and limb compliance, it has been of interest to investigate the strength 

and distribution of these proprioceptive pathways. Previous published data from our 

laboratory suggested bidirectional inhibition among ankle extensors. In some decerebrate 

animals a proximal to distal pattern/directionality of inhibition is seen between ankle 

extensors whereas in others distal to proximal inhibition is noticed (Wilmink and Nichols 

2003; Bonasera and Nichols 1994). However, previous studies did not quantitatively 

analyze the data to see which directionality of inhibition or pattern of intermuscular 

interaction is statistically more significant than the other. This idea of proximal to distil 

gradient is consistently noticed in locomotor animals (Ross and Nichols 2009).  Our 

current study presented in chapter 2, however showed proximal to distal, distal to 

proximal and bi-directional intermuscular inhibitory force feedback between ankle 
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extensors in control animals. However, the most common pattern of inhibitory force 

feedback in decerebrate animals is a balanced bidirectional pattern between ankle 

extensors as explained in detail in chapter 2.   

1.4 Spinal Cord Role in Maintenance of Posture 

 Human as well as cat interneurons in the spinal cord are involved in mediating 

both simple reflex responses and complex movements. This function is crucial for 

maintenance of balance and weight support because it is task dependent. These neurons 

integrate information from the musculoskeletal system and from the brain (Rossignol and 

Dubuc1994; Grillner 1975; Dimitrijevic et al. 1998). Therefore, they are not a simple 

connecting system but powerful processing units like computers. When an animal or 

human starts to develop the ability to walk independently, the added demands of postural 

control alter the muscle activation. Infants exhibit a stepping response at birth (Peiper 

1961), and even in utero (De Vries et al. 1984). This stepping behavior appears to be 

controlled largely by the spinal and brainstem circuitry, since anencephalic infants exhibit 

similar responses (Peiper 1961). However, infants can not maintain balance or weight 

support suggesting that posture control involves input from higher centers.  

1.5 Spinal Cord Injury 

 Traumatic SCI accounts for an estimated annual incidence of approximately 40 

cases per million populations (Bernhard et al. 2005). This number excludes those who 

died at the scene of an accident. Currently, 183,000-230,000 patients with SCI are alive 

in the United States. The male-to-female ratio in the United States is 4:1 (NSCISC 2014) 

and the average age is 31.7 years (Burke et.al 2001). Total direct costs for patients with 

https://www.nscisc.uab.edu/
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SCI in the United States exceed $7 billion per year (Sekhon et al. 2003). The cost to 

society, in terms of health care costs, disability payments, and lost income, is 

disproportionately high compared to other medical conditions. Therefore, SCI is a major 

health issue that needs immediate attention since its affecting our young work force. The 

most common cause of SCI is traumatic injury (car accident, gunshot, falls, sports 

injuries, etc.). The spinal cord does not have to be severed in order for a loss of function 

to occur sometimes damage to its blood supply or compression from surrounding 

structures can also result in injury. Spinal cord injuries are described as either 

incomplete", which can vary from having no effect on the patient to a "complete" injury 

which means a total loss of function (Fulk et al. 2007). 

In roadside accidents the initial mechanical trauma is secondary to traction and 

compression forces. Direct compression of neural elements by surrounding anatomical 

structures (bone fragments, disc material, and ligaments) damages both the central and 

peripheral nervous system (Tator 1995). Blood vessel damage also leads to ischemia, 

rupture of axons and neural cell membranes. Micro hemorrhages occur within minutes in 

the central gray matter and progress over the next few hours. Massive cord swelling 

happens within minutes that lead to further secondary ischemia. Loss of auto regulation 

and spinal shock cause (Ditunno et.al 2004) systemic hypotension and exacerbate 

ischemia. Ischemia, toxic metabolic compounds, and electrolyte changes cause a 

secondary injury cascade. Hypo perfusion of gray matter extends to the surrounding 

white matter and alters the propagation of action potentials along the axons, contributing 

to spinal shock. Glutamate is a key element in the excitotoxicity. Massive release of 

glutamate leads to overstimulation of neighbor neurons and production of free radicals, 

http://www.uptodate.com/contents/acute-traumatic-spinal-cord-injury/abstract/16
http://www.uptodate.com/contents/acute-traumatic-spinal-cord-injury/abstract/21
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which kill healthy neurons. Excitotoxic mechanisms kill neurons and oligodendrocytes, 

leading to demyelination. AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole 

propionic acid) glutamate receptors play a major role in oligodendrocyte damage. 

Below the level of SCI motor function, pain sensation, and temperature sensation 

are lost, while touch, proprioception (sense of position in space), and sense of vibration 

remain intact in anterior SCI.  Posterior cord syndrome can also occur, but is very rare. 

Damage to the posterior portion of the spinal cord and/or interruption to the posterior 

spinal artery causes the loss of proprioception and epicritic sensation (e.g.: stereognosis, 

graphesthesia) below the level of injury. Motor function, sense of pain, and sensitivity to 

light touch remain intact. This kind of injury is not common in road side accidents. 

Brown-Séquard syndrome usually occurs when the spinal cord is hemisectioned or 

injured on the lateral side. True hemisections of the spinal cord are rare, but partial 

lesions due to penetrating wounds (e.g.: gunshot wounds or knife penetrations) are more 

common. On the ipsilateral side of the injury there is a loss of motor function, 

proprioception, vibration, and light touch. Contralaterally there is a loss of pain, 

temperature, and crude touch sensation. 

The work presented in this thesis has been done in collaboration with Dr. Dena 

Howland. This model of partial spinal cord injury has already been used by her using cats 

(Doperalski et al. 2011; Jefferson et al. 2011) and human subjects (Fox et al. 2010; 

Behrman et al. 2008). Her research focuses on understanding the response of the spinal 

cord to injury and identifying approaches to enhance repair, plasticity and motor 

recovery. Therefore, we have used spinal hemisection model in our experiments due to 

http://en.wikipedia.org/wiki/Proprioception
http://en.wikipedia.org/wiki/Posterior_cord_syndrome
http://en.wikipedia.org/wiki/Epicritic_sensation
http://en.wikipedia.org/wiki/Brown-S%C3%A9quard_syndrome
http://www.ncbi.nlm.nih.gov/pubmed/?term=Doperalski%20AE%5Bauth%5D
https://www.researchgate.net/researcher/15844261_Stephanie_C_Jefferson
https://www.researchgate.net/researcher/29393065_Emily_J_Fox
https://www.researchgate.net/researcher/38589526_Andrea_L_Behrman
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ease of managing cats post injury (no respiratory, cardiac or bowl control complications) 

quick recovery and expertise provided by our collaborator to perform the surgeries in 

animals used in our studies. In addition, this asymmetrical, incomplete surgically precise 

injury gives us an opportunity to preserve both ascending and descending tracts in one 

half of the spinal cord. Therefore, we can understand the anatomical and physiological 

basis of any observed motor deficit observed in cats with chronic LSH.  

1.6 Aims, Objectives and Hypothesis 

The main Aim of our study is to evaluate any changes or reorganization of 

inhibitory force feedback patterns between hind limb ankle extensors in decerebrate cat 

following chronic SCI. This aim is proposed to further validate the use of force feedback 

measurements from muscles after partial SCI for obtaining insight into alterations of 

proprioceptive network in spinal cord. Our data indicate that in chronic lateral spinal 

hemisection inhibitory force feedback appears to be enhanced and 

repatterned/redistributed in comparison to control data from decerebrate animals without 

SCI. We therefore hypothesize that reduced weight support and balance control following 

chronic LSH is due in part to enhanced and redistributed inhibitory force feedback. 

Understanding how the inhibition is redistributed following SCI will help us understand 

how the mechanical properties of the limb are changed in the injured state. We 

hypothesize that heterogenic force feedback pathways remain inhibitory following SCI 

however; their strength and directionality or pattern may alter as a result of SCI. we will 

verify that inhibitory responses observed are indeed due to force feedback from Golgi 

tendon organs by evaluating the latency of the inhibition.  Since clasp-knife inhibition has 
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a much longer latency than force feedback, the two sources of inhibition should be 

distinguishable. 

The second aim of our study is to determine the time of onset of possible altered 

neuromuscular interaction following SCI and their relationship to posture control. After 

chronic partial spinal cord injury (SCI), various sensorimotor functions can recover, 

ranging from simple spinal reflexes to more elaborate motor patterns, such as locomotion 

requiring posture control. However, complete posture control is never regained in 

animals. We propose that in acute animals when the spinal networks are not yet subjected 

to plastic changes (Ditunno et al. 2004; Valero-Cabre et al. 2004), we might get different 

results than in chronic animals. Comparing neuromuscular interactions in chronic and 

acute SCI between hind limb extensors can help us determine the time of onset of any 

intermuscular interactions and their relationship to poor posture control in SCI. If we get 

different results in acute and chronically spinalized animals it will prove that the neural 

control of posture and balance control as well as weight support during locomotion 

involve different mechanisms and different neural structures. We are interested to see if 

any redistribution or change in strength is the result of an adaptive process following 

LSH. We propose that any alteration in intermuscular force feedback interactions can 

affect inter joint coordination required for posture control following SCI. We hypothesize 

that different pathways may be involved in posture control during locomotion and quiet 

standing. This is because cats with chronic LSH can walk, exhibit good weight support 

and maintain balance control during locomotion. On the other hand they fail to maintain 

posture when exposed to certain perturbation. If we get different results in chronically 

spinalized static animals used in our study from earlier studies in decerebrate locomoting 
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cats (Ross and Nichols 2009), it will prove that the neural control of posture and balance 

control during locomotion involve different mechanisms and different neural structures. 

The third aim of our study is to determine the directionality or gradient of 

distribution of force feedback between extensor muscles in the hind limb of decerebrate 

cat. The main purpose of this aim is to understand and establish the intermuscular 

interactions that have either not been studied or quantitatively analyzed earlier or have 

limited data. We are interested to revisit Daley’s hypothesis (Daley and Biewener 2007) 

to ascertain whether force feedback could provide the substrate for regulating the 

stiffness of the distal limb, and in order to broaden our understanding about the amount 

and direction of inhibitory force feedback between muscles of the hind limb in animals 

(decerebrate) under static condition. We are particularly interested to study interactions of 

flexor hallucis longus (FHL) with gastrocnemius (GA), soleus (SOL), plantaris (PLT) to 

obtain a complete picture of inter- muscular interactions for muscles crossing the ankle. 

We have used this as control data in addition to the control data from earlier work in our 

laboratory to compare with our data from cats with spinal injury. We hypothesize that the 

ability of the neuromuscular system to maintain a pattern or directionality of inhibitory 

force feedback is task dependent and important to maintain posture in response to 

perturbations. This ability is lost in LSH. In chapter two we have described our 

observations regarding intermuscular inhibitory heterogenic force feedback in 

decerebrate animals. 

The fourth aim of our study is to determine which possible descending pathways 

might be involved in altered intermuscular interactions following SCI. In chapter three 
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and four we have described our observations regarding these intermuscular force 

feedback interactions in a comparative manner in chronic LSH, acute LSH and dorsal 

LSH (preliminary data). We propose that ventral or ventromedial spinal pathways may be 

involved in regulating the pattern and strength of force feedback, as also suggested by 

recent findings that the strength of force feedback is regulated through signals deriving 

from neck and vestibular afferents (Gottschall and Nichols 2007) in decerebrate cats. We 

also propose that pontine reticulo- spinal and vestibulospinal pathways are important to 

maintain postural control. To test this hypothesis we have compared force feedback 

interactionsour between FHL and GA in LSH data with dorsal hemisection (DSH) data in 

chapter 3. However, we have limited evidence of existence of this mechanism between 

other muscle combinations.  

The automatic postural response control mechanism appears to exist in the spinal 

cord. This system is insufficient following SCI and can affect the animal’s ability to 

maintain balance control stability in the absence of central drive. Cats that have been 

chronically spinalized can be trained to stand and step with full weight support (Barbeau 

and Rossignol 1987; Carter and Smith 1986) however these chronic cats have poor 

balance control if exposed to postural perturbations. Since interlimb coordination is 

required during locomotion, we propose that interlimb coordination is preserved after 

SCI. We hypothesize that following LSH whatever neuromuscular alterations appear in 

spinal cord should be seen bilaterally (both on injured and uninjured side). This is due to 

the bilateral distribution of pathways and interconnections of neurons at the level of the 

spinal cord/ CPG. To test our hypothesis we have compared data in both hindlimbs of 

each cat in our study in chapter 2, 3 and 4.  
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The results of these experiments are clinically significant, especially for the 

rehabilitation of spinal cord injured patients. To effectively administer treatment and 

therapy for patients with compromised spinal reflexes, a complete understanding of the 

spinal circuitry is required.  

Chapter 2 explains in detail the patterns of heterogenic force feedback between 

ankle extensors in decerebrate non-locomoting cats with intact spinal cord. This chapter 

details control data for our study. Chapter 3 describes detailed analysis of intermuscular 

force feedback patterns between GA and FHL. This chapter explains in detail all the 

characteristics of intermuscular force feedback interactions between ankle extensors that 

have already been observed in cats with intact spinal cord. The main purpose of this 

chapter is to determine any change in force feedback patterns following LSH (both acute 

and chronic SCI). This chapter also compares injured side limb with intact side limb 

force feedback patterns. In addition analysis of force feedback is done across animals. 

Chapter 4 represents force feedback interactions between SOL, PLT and FHL following 

both chronic and acute SCI. The data is analyzed in a comparative manner to observe 

force feedback patterns across hind limbs in each cat and across animals. Chapter 5 

explains the possible anatomical, mechanical and physiological explanations of force 

feedback patterns in decerebrate cats (non-locomoting and locomoting) both with intact 

spinal cord as well as in cats following SCI.   
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CHAPTER 2 

PATTERNS OF HETEROGENIC FORCE FEEDBACK BETWEEN 

ANKLE EXTENSORS IN DECEREBRATE CATS 

2.1 Introduction 

During upright stance while animals are suspending their body above the ground 

by means of legs, the controlling neuromuscular system must maintain posture against 

de-stabilizing internal (Breathing, heartbeat, neural noise, muscle tremor) and external 

(gravity, changes in support, pushes to the body, sudden obstacles) perturbations. In order 

to preserve equilibrium, the CNS must take these actions quickly and in a precisely 

calibrated manner. Therefore the brunt of the active muscle work has to be carried by the 

physiological limb extensor (‘anti-gravity’) muscles, which once active also provide most 

of the stiffness. Sensory feedback from muscles to spinal cord plays an integral role in 

standing and locomotion (Pearson 1995; Prochazka 1996; Duysens et al. 2000; Sinkjaer 

et al. 2000; Stein et al. 2000). Given the substantial role of Proprioreceptive feedback to 

the generation of ankle extensor activity, it is important to identify the individual 

contributions from each intermuscular interaction in maintaining ankle stability.  

The cat hindlimb muscles have been traditionally classified into extensors and 

flexors muscles that act outside the sagittal plane. Physiologically, muscles are also 

classified into proximal and distal categories on the basis of their relative anatomical 

origin and insertion (Delay et al. 2007). Grossly, muscles acting at more proximal joints 

(hip and knee) in hindlimb are referred to as proximal muscles while those acting at 
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comparatively distal joints (ankle, tarsometatarso-phalangeal joints) are classified as 

distal muscles. This proximo-distal gradient was observed in the control of avian running 

(Daley et al. 2007), in reflex responses of squirrel monkey (Lenz et al. 1983), and in 

human motor performance and perception (DE Domenico and McCloskey 1987; 

Gandevia and Kilbreath 1990; Hall and McCloskey 1983; Tan et al. 1994). Daley 

proposed a proximo-distal gradient in joint control that is vital for maintaining whole 

limb mechanics for postural control. Long fibered proximal muscles modulate limb and 

body work, whereas short-fibered distal muscles with long tendons favor more 

economical force generation and elastic energy savings (Biewener and Roberts 2000). 

Since the distal joints are the most directly affected by interaction with the ground, 

regulation of compliance of distal muscles is critical to determining how the limb will 

react to the ensuing disturbance.  

Since ankle extensors play an important role in posture maintenance, they have 

been extensively studied in our laboratory in decerebrate cats over a wide range of 

background forces (Nichols 1989; Bonasera and Nichols 1994) and locomotion (Ross and 

Nichols 2009). The strength of this feedback was found to be force dependent, providing 

strong evidence that the feedback arises from Golgi tendon organs (Nichols 1999). We 

have learned from these studies that FHL, GA, SOL and PLT exchange predominately 

force dependent inhibitory intermuscular force feedback in decerebrate cats. This 

feedback has a well defined consistent pattern in locomoting cats with predominantly 

proximal to distal in gradient/strength of inhibition between GA and FHL, distal to 

proximal between FHL and PLT and bidirectional between FHL and SOL across 

preparations. Similarly as described in chapter 3 and 4 we indeed found evidence for a 
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well defined uniform pattern of inhibitory force feedback in cats with SCI. We have 

observed a strong distal to proximal gradient of inhibitory force feedback between FHL, 

GA, SOL and PLT. However, we don’t know the direction of inhibition between these 

muscle combinations in non-locomoting decerebrate cats.  

Our main goal for the study presented in this chapter was to quantitatively analyze 

intermuscular inhibitory force feedback in decerebrate non-locomoting cats to determine 

if there is a well define gradient/ pattern of heterogenic force feedback among GA, PLT, 

SOL and FHL in decerebrate cats. Our aim was to obtain a complete pattern of feedback 

in each animal. Since these patterns can be variable, it is not sufficient to pool data from 

different animals. Proximal and distal ankle extensor is a relative term used in our study. 

We have classified proximal and distal muscles on the basis of their relative anatomical 

origin in hindlimb. We propose that the loss of ability of an animal to alter heterogenic 

inhibitory connections in response to perturbations could be responsible for poor posture 

control in SCI. We further propose that the inhibitory intermuscular force feedback 

connections could have variable patterns across animals with an intact spinal cord 

representing different motor states.  

2.2 Methods 

2.2.1 Preparation 

We used the mechanographic technique to evaluate the distribution of force 

feedback from muscle receptors, which has been previously described (Nichols 1987), 

thus only a brief description will be presented here. All protocols are in complete 
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accordance with the guidelines of both the Federal and Institutional Animal Care and Use 

Committee of Georgia Institute of Technology.  

Briefly, ten cats ranging from 4 to 4.5 kilograms were used that were housed in 

the same environment in animal house at Georgia Institute of Technology. They were not 

given any locomotor or behavioral training prior to the terminal experiments. Each cat 

was deeply anesthetized using isoflurane gas. A tracheotomy was performed, loosened 

sutures were placed around the carotid arteries, and a cannula was inserted into the 

external jugular vein to administer intravenous fluids during the experimental procedure. 

Withdrawal responses were monitored, and the level of anesthetic was adjusted 

accordingly.  

Both hindlimbs were shaved and bone pins were inserted in the femur and tibia 

respectively. The animal was placed in the stereotaxic frame, supported above a static 

frame. Then both hindlimb were immobilized by clamping to the static trademill frame, 

while maintaining the knee at a 110o angle and ankle at 90o angle (mid-stance). The 

muscles were dissected, carefully removing associated connective tissue to minimize 

mechanical coupling, yet preserving the blood supply and nerve innervation. The 

muscles, namely GA (with a fragment of calcaneus), SOL (with a fragment of calcaneus), 

PLT, and FHL of both hindlimbs were dissected. Both PLT and FHL were cut near their 

insertion onto FDB and FDL respectively. Each muscle was attached via its tendon to 

individual clamps. These tendon clamps were placed in series with myographs using 

strain gauges in a half bridge configuration, and four linear motors (attaching two 

muscles in each limb at one time to the motors). Normal sailne was used to ensure that 
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the muscles stayed moist. Hook or cuff electrode was placed around tibial nerve in each 

limb. Figure 2.1 depicts this experimental setup. 

An intercollicular decerebration was performed in each animal after the muscle 

dissection was complete as depicted in figure 2.2. All brain tissue rostral to the 

transection. Gelfoam and cotton were placed on the base of the cranium to minimize 

bleeding. Anesthesia was then titrated down slowly and withdrawn.  

Data collection was started once good muscle tone was returned in forelimbs. 

Data were acquired while the muscles were quiescent as well as when they were activated 

by the crossed-extension reflex (XER). The stretches were of 2 mm with a rise period of 

50 ms and a hold phase of 100 milliseconds (ms). Amplitude of 2 mm was chosen to fall 

generally in the range of active lengthening during locomotion. The rise time of 50 ms 

was rapid enough to provide a sufficiently large prereflex force for reliable measurement 

of the intrinsic mechanical response of the muscle. This measurement was useful to 

detect the presence of mechanical artifacts. The trials with mechanical artifact were not 

included in data analysis. At the end of each experiment, the animal was euthanized with 

an overdose of Nembutal followed by a pneumothorax. 
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Figure 2.1 Experimental setup for GA (Pink) and FHL (Red) muscle puller 
experiment. Each muscle is attached to a myograph and linear motor in 
series. Tibial nerve (yellow) is stimulated with an electrode for XER. 

 

 

 Figure 2.2 Diagrammatic representation of an intercollicular decerebration 
in cat. All brain rostral to transaction (grey line) removed. 
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2.2.2 Data Acquisition 

The motors used in these experiments were Parker 406LXR linear motors with an 

encoder resolution of 0.1 microns, maximum acceleration of approximately 50 m/s2, and 

maximum load capacity of 180 Kgf. Each of the 4 linear motors were mounted on a 

custom-built aluminum frame and could be adjusted in the horizontal, vertical, and 

diagonal directions to achieve proper alignment with the appropriate muscle in different 

cats with different heights. The four individual frames were mounted on a rigid, outer 

frame. 

The motors were controlled using a 6000 series Gemini servo drive and dSPACE 

board, and Simulink program. Data was acquired digitally through the dSPACE board at 

a sampling rate of 1000 Hz. The typical paradigm was a 2 mm stretch at a velocity of 

0.04 m/s, 100 ms hold period, and 2 mm release. In each trial stretches of the recipient 

were performed alone (state 1) in alternation with stretches of both donor and recipient 

muscle (state 2). Two groups of records resulted from this protocol, namely, one with 

stretch of the recipient only and one with stretch of both muscles. Heterogenic reflex 

effects were detected by changes in the magnitude of the reflexes in the recipient muscle 

from state 1 to state 2. Force responses in state 1 were purely autogenic, and responses in 

the state 2 consisted of autogenic and heterogenic components (compound responses). 

Finally, calculating the voltage outputs with no load and with a 1 kg load completed a 

two-point calibration of the strain gauges (both at the start and end of an experiment).  
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2.2.3 Data Analysis 

Force measurements were used to determine intermuscular heterogenic feedback 

pathways when muscles were alternatively stretched. Measured forces of the recipient 

muscle in state 1 and state were divided in three time points namely, mechanical (10 ms 

following the beginning of the stretch), dynamic (50 ms following the beginning of the 

stretch) and static (100 ms following the beginning of the stretch). Each file contained 

data for a particular muscle combination (i.e. GA and FHL or PLT and FHL or SOL and 

FHL), consisted of 40 to 60 stretches, where half of the stretches occurred in state one 

and half in state two. Force output and length input of muscles in each trial was recorded. 

Software in Matlab version 7.01 was then used to analyze the data. A baseline was then 

fit to the 10 ms prior to stretch and the 10 ms following the return to the initial position to 

account for a shifting baseline. The baseline was constructed by performing a linear 

interpolation from the mean force response just prior to the stretch to the mean force after 

the end of the release. The entire baseline was then subtracted from the overall force 

response and the resulting baseline subtracted force data was used for further data 

analysis.  

To evaluate the strength and sign of heterogenic force feedback between muscles 

during a trial, force responses of recipient muscle for a specific time point are plotted as a 

function of its background force. Each data point represents a response of the recipient 

muscle obtained when the muscle was either stretched alone (filled squares in Figure 2.1) 

or response of the recipient muscle when it was stretched with another muscle (circles in 

Figure 2.1), and individual responses represent an individual stretch at a given time point. 
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Polynomial fits and 95% confidence intervals were fit to each population of data for a 

given time point (mechanical, dynamic, static). 

 Additionally, the amount of heterogenic inhibition in Newton (N) was calculated 

by subtracting the individual force responses in state 1 from state 2 at a given time point 

with approximately matching background forces. Polynomial were fit to each population 

of data for a given time point (mechanical, dynamic, static). Additionally, this inhibition 

in N was converted into percent inhibition and Polynomial were fit to each population of 

data for a given time point. Statistics were performed using Statistica 6.0 and Excel to 

test the separation of the data populations. Multiple regression analysis was used to 

statistically prove that the two populations were distinctly different only if the P value of 

≤ 0.01 was obtained. We chose P ≤ 0.01 in accordance to the previous research work in 

our laboratory (Nichols 1989; Bonasera and Nichols 1994; Bonasera and Nichols 1999; 

Ross and Nichols 2009). The P value of ≤ 0.01 means that the likelihood that the 

phenomena tested occurred by chance alone is less than 1%. The lower the P value, the 

less likely the finding would occur by chance alone.  

To understand the mechanisms underlying force dependent inhibition between 

FHL and other antigravity muscles in our study latency of recipient force response was 

calculated for each muscle combination. According to previous studies the reflex latency 

of the force dependent inhibition between FHL, GA, SOL and PLT occurred at 28 ± 4 ms 

(Bonasera and Nichols 1994).  
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2.3 Results 

Previous data from our laboratory determined that the heterogenic feedback 

pathways among GA, SOL, PLT and FHL are predominately force dependent and 

inhibitory under conditions of constant force production (Bonasera and Nichols 1994; 

Nichols 1999). The purpose of these studies was to analyze the relative distribution of the 

force feedback patterns among ankle extensor muscles in the hindlimb in each cat. This 

chapter details results from ten experiments.  

The main observation from these studies was that the heterogenic inhibition 

between GA, SOL, PLT and FHL is symmetric across limbs in each animal. However, 

the pattern/directionality of inhibition within each limb was variable across animals. We 

observed variable patterns of inhibitory force feedback among ankle extensors (proximal 

to distal, distal to proximal and symmetric). Specifically, the heterogenic inhibition 

between GA and FHL showed the most variable results. We concluded that the most 

common pattern of inhibitory force feedback between GA and FHL is a balanced 

bidirectional inhibition, however we also observed proximal to distal and distal to 

proximal pattern between these two muscles. We also observed modest bidirectional 

symmetric force feedback between FHL and SOL during XER (Nichols 1994). The 

heterogenic inhibitory force feedback between PLT and FHL was generally stronger from 

FHL (distal muscle) on to PLT (proximal muscle) across animals. 
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2.3.1 Force feedback inhibition between GA and FHL  

The heterogenic force feedback between GA onto FHL was examined in ten total 

experiments using decerebrate non-locomoting cats. Of these experiments evaluating the 

interaction between GA and FHL, five demonstrated symmetric inhibition between GA 

and FHL (P value ≤ 0.01). Three preparations exhibited predominantly stronger 

inhibition of GA by FHL at P value < 0.01 in comparison to weaker inhibition from GA 

onto FHL with P value ≥ 0.01 as seen in SCI cats in chapter 3. However, the amount of 

inhibition of GA by FHL was smaller in amount in decerebrate cats with intact spinal 

cord in comparison to cats with SCI. The remaining 2 preparations demonstrated strong 

inhibition of FHL by GA at P value ≤ 0.01 and FHL inhibiting GA weakly at P value ≥ 

0.01, as previously shown in both decerebrate locomoting and non-locomoting cats 

(Bonasera 1994; Ross and Nichols 2009). The directionality of inhibition was variable 

across cats however it stayed symmetric across limbs in each animal. 

All ten experiments presented in this study exhibited heterogenic inhibition 

between GA and FHL. We observed 5/10 cats (50%) exhibiting balanced/ symmetric 

inhibitory feedback (5 to 10 observations per cat). We observed that the inhibition was 

either bilaterally significant at P value ≤ 0.01 (clearly separate confidence intervals) or 

bilaterally insignificant at P value ≥ 0.01 (overlapping confidence intervals) between GA 

and FHL. Our criterion for balanced inhibition between muscles was that we considered 

it symmetrical if the difference between the two directions of inhibition was less than 5%, 

considering it could be due to mechanical artifacts. The second type of heterogenic 

inhibitory interaction between GA and FHL was from proximal muscle/GA onto distal 

muscle/FHL. This type of inhibition was observed in 2/10 cats (20%) usually 5 to 10 



 29 

observations per cat. The third type of heterogenic inhibitory force feedback pattern of 

predominantly distal to proximal inhibition was observed in 3/10 cats (30%).  

Figures 2.3 and 2.4 depict representative raw data from part of a single trial in 

each figure, consisting of alternating state one and state two stretches in a decerebrate 

non-locomoting cat. Figures 2.3a and 2.4a depict the force output of GA while Figures 

2.3b and 2.4b represent length input respectively of GA (proximal muscle) in a trial. 

Figures 2.3c and 2.4.c depict the force output of FHL while Figures 2.3d and 2.4d 

represent length input of the FHL muscle (distal muscle) respectively in the same trials. 

Additionally, the blue dashed lines indicate state 2 where recipient muscle was stretched 

along with donor muscle during XER. State one response in Figures 2.3 and 2.4 is shown 

without the dashed blue lines. In this particular example we observed balanced pattern of 

inhibition between GA and FHL. 

 Figure 2.5 through Figure 2.7 depict representative examples of three 

patterns/directionality of heterogenic inhibition observed between GA and FHL in a 

decerebrate non-locomoting cat in individual trials consisted of 40 to 60 stretches each. 

The left half of each figure  (Figure 2.5, Figure 2.6, Figure 2.7) represents the inhibition 

of FHL by GA while right half of each figure (Figure 2.5, Figure 2.6, Figure 2.7) 

represent inhibition of GA by FHL at mechanical, dynamic  and static  time points from 

above downwards respectively. Heterogenic inhibition is not due to a purely mechanical 

event (Figures 2.5a, 2.5d, 2.6a, 2.6d, 2.7a, 2.7d) and increases with increasing 

background force for the dynamic and static responses, as indicated by the divergence in 

the polynomial fits in Figure 2.5, Figure 2.6 and Figure 2.7.  
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The traces inset in each Figure 2.5 through Figure 2.7 are force responses of the 

recipient muscle in state one (solid black line) and state two (dashed grey line). The 

background force for both conditions was matched at the mean background force for each 

muscle combination in a given trial. Baselines were subtracted from both traces to better 

illustrate the magnitude and time course of the inhibition between GA and FHL. As 

shown by these traces, the magnitude of inhibition remains relatively equal during the 

stretch and hold period between GA and FHL in Figure 2.5. In this representative trial we 

observed 3.6N inhibition (25%) from GA onto FHL and 3.8N (26%) from FHL onto GA 

(averaged across trials) at P < 0.01. 

 Figure 2.6 depicts a representative example of stronger heterogenic inhibition 

from GA to FHL in a decerebrate non-locomoting cat. The magnitude of inhibition is 

relatively stronger from GA onto FHL (Figure 2.6e, Figure 2.6f) in comparison to 

inhibition from FHL onto GA (Figure 2.6b, Figure 2.6c). In this representative trial we 

observed 5.2N inhibition (44%) from GA onto FHL at P value < 0.01 and 2N (18%) from 

FHL onto GA (averaged across trials) at P value > 0.01. The third pattern of 

intermuscular inhibitory force feedback between GA and FHL is demonstrated in Figure 

2.7. The magnitude of inhibition from FHL onto GA is stronger (Figure 2.7b, Figure 

2.7c) in comparison to inhibition from GA onto FHL (Figure 2.7e, Figure 2.7f). In this 

case we observed 5.8N (48%) inhibition of GA by FHL at P value < 0.01 and 2.7N (13%) 

inhibition of FHL by GA at P value > 0.01.  
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Figure 2.3 (a) Donor muscle (GA) stretch-evoked force response during 
XER. (c) Recipient muscle stretch-evoked force response during XER. 
Dashed blue lines on stretches indicate responses obtained when the 
donor muscle is stretched with recipient muscle at the same time in state 2. 
The y-axis is showing force response in N and x-axis is showing time in 
ms. Force responses without dashed blue lines indicate state 1, where 
recipient muscle was stretched alone. (b) Donor muscle (GA) length input 
to two-state stretch, where y-axis represent GA length in mm and x-axis 
represents time in milliseconds. (d) Recipient muscle (FHL) length input for 
two-state stretch. A two-state stretch is performed to ascertain strength 
and sign of feedback between recipient muscle (FHL) and donor muscle 
(GA). There is clearly some inhibition from GA onto FHL in state 2 (c). XER 
is done by stimulating tibial nerve in the left hindlimb  in this example at 2T 
that evokes an increase in the background force of the recipient and donor 
muscles on the right hindlimb, GA and FHL respectively (a, c). 
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Figure 2.4 (a) Recipient muscle (GA) stretch-evoked force response during 
XER. (c) Donor muscle stretch-evoked force response during XER. Dashed 
blue lines on stretches indicate responses obtained when the donor 
muscle is stretched with recipient muscle at the same time in state 2. The 
y-axis is showing force response in N and x-axis is showing time in ms. 
Force responses without dashed blue lines indicate state 1, where recipient 
muscle was stretched alone. (b) Recipient muscle (GA) length input to two-
state stretch, where y-axis represent GA length in mm and x-axis 
represents time in milliseconds. (d) Donor muscle (FHL) length input for 
two-state stretch. A two-state stretch is performed to ascertain strength 
and sign of feedback between recipient muscle (GA) and donor muscle 
(FHL). There is clearly some inhibition from FHL onto GA in state 2 (c). XER 
is done by stimulating tibial nerve in the left hindlimb  in this example at 2T 
that evokes an increase in the background force of the recipient and donor 
muscles on the right hindlimb, GA and FHL respectively (a, c). 



 33 

5 10 15 20
0

10

20

30

40

50

GA Background Force (N)

G
A

 F
or

ce
 R

es
po

ns
e 

(N
)

 

 

5 10 15 20
0

10

20

30

40

50

GA Background Force (N)

G
A

 F
or

ce
 R

es
po

ns
e 

(N
)

 

 
   

G
A

 F
 R

 (N
)

 

 

5 10 15 20 25 30
0

10

20

30

40

50

FHL Background Force (N)

FH
L 

Fo
rc

e 
R

es
po

ns
e 

(N
)

 

 

5 10 15 20 25 30
0

10

20

30

40

50

FHL Background Force (N)

FH
L 

Fo
rc

e 
R

es
po

ns
e 

(N
)

 

 

   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

GA (state 1)
GA + FHL (state 2)

FHL (state 1)
FHL + GA (state 2)

  
    

GA (state 1)
GA + FHL (state 2)

FHL (state 1)
FHL + GA (state 2)

  
    

 

 

t = Mechanical

100ms

100ms 100ms

100ms

10N

10N 10N

10N

t = Mechanical   

  t = Dynamict = Dynamic e

d

b

a

 

   

 
 

 

 

 

   

 
 

 

 

 

5 10 15 20
0

10

20

30

40

50

GA Background Force (N)

G
A

 F
or

ce
 R

es
po

ns
e 

(N
)

 

 

   

 
 

 

 

 

   

 
 

 

 

 

   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
    

  
    

GA (state 1)
GA + FHL (state 2)

  
    

  
    

  
    

 

 

  

100ms

10N

  t = Static

      

c

   

 
 

 

 

 

   

 
 

 

 

 
 g   ( )

 
 

 

 

 

   

 
 

 

 

 

   

 
 

 

 

 

5 10 15 20 25 30
0

10

20

30

40

50

FHL Background Force (N)

FH
L 

Fo
rc

e 
R

es
po

ns
e 

(N
)

 

 

 

 

 

 

 

 

 

 

 

 

  
    

  
    

  
    

  
    

  
    

FHL (state 1)
FHL + GA (state 2)

 

 

  

100ms

10N

    

t = Static    f

 
Figure 2.5 Symmetrical/bidirectional pattern of heterogenic inhibition 
between GA and FHL during XER for (a, d) mechanical phase, (b, e) 
dynamic phase, and (c, f) static phase. Black squares represent force 
responses of recipient muscle from stretches occurring in state one and 
grey circles in state two, respectively. Polynomials and 95% confidence 
intervals are fit to each population of data. The inserts in  (a), (b), (c), (d), (e) 
and (f)  shows two traces (state 1 black solid line, state 2 grey dashed line) 
matched at approximately mean background force of recipient muscle, 
superimposed to illustrate the magnitude of inhibition between GA and 
FHL, the vertical line indicates the sample time in each trace.  
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Figure 2.6 Proximal to distal pattern of heterogenic inhibition between GA and 
FHL during quiet stance with XER in a decerebrate cat in (a, d) mechanical 
phase, (b, e) dynamic phase, and (c, f) static phase. The same conventions as 
Figure 2.1 apply. GA is strongly inhibiting FHL at P < 0.01 (c, d, e, f). 
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Figure 2.7 Distal to proximal pattern of heterogenic force feedback 
inhibition between GA and FHL during XER in a decerebrate cat for (a, d) 
mechanical phase, (b, e) dynamic phase, and (c, f) static phase. The same 
conventions as Figure 2.1 apply. FHL is strongly inhibiting GA at P < 0.01 
(a, b, c). 
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2.3.2 Weak Inhibition is exchanged between FHL and SOL  

The heterogenic feedback between SOL and FHL was examined in 5 decerebrate 

cats in both hindlimbs (10 limbs), 4 to 6 observations per cat. It has been previousely 

reported to exchange inhibitory force feedback with FHL during the cross extension 

reflex in non-locomoting cats (Bonasera and Nichols 1994; Nichols 1989). We observed 

bidirectional mutually symmetric inhibition between SOL and FHL in 5/5 cats (100%) at 

P value < 0.01. In most, but not all cases, this also corresponds to non-overlapping 

confidence intervals (data not significantly different). The inhibition in both directions 

(SOL onto FHL and FHL onto SOL) was weak though statistically significant at P value 

≤ 0.01 in 70% of trials across animals. The range of inhibition was 3% to 21% (1-4 N) 

across animals.  

Figure 2.8 illustrates a representative example of the heterogenic inhibitory force 

feedback that exists between FHL and SOL. The left half of figure 2.8 (a,b,c) depict 

inhibition of SOL by FHL and right half (d,e,f) inhibition of FHL by SO. In this example, 

the confidence intervals are separate for the two populations of data, confirming that 

there is significant heterogenic inhibition between SOL and FHL.  Additionally, multiple 

regression analysis yielded P value < 0.01 in both directions (SOL onto FHL and FHL 

onto SOL), thus statistically proving that these populations are distinctly different. The 

inhibition is less than 2N in both directions.  
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Figure 2.8 Symmetric/ bidirectional pattern of heterogenic inhibition between 
SOL and FHL during XER in a decerebrate cat in (a, d) mechanical phase, (b, 
e) dynamic phase, and (c, f) static phase. Black squares represent force 
responses of recipient muscle from stretches occurring in state one and 
grey circles in state two, respectively. Polynomials and 95% confidence 
intervals are fit to each population of data. The inserts in  (a), (b), (c), (d), (e) 
and (f)  shows two traces (state 1 black solid line, state 2 grey dashed line) 
matched at approximately mean background force of recipient muscle, 
superimposed to illustrate the magnitude of inhibition between SOL and 
FHL, the vertical line indicates the sample time in each trace.  
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2.3.3 FHL contributes inhibition to PLT  

The heterogenic feedback between PLT and FHL was examined in four total 

experiments, three of which exhibited good XER. Of these experiments evaluating the 

interaction between PLT and FHL during quiet stance, three demonstrated stronger 

inhibition from FHL onto PLT than in the opposite direction. Our results are consistent 

with those reported earlier in both static as well as locomoting cats (Bonasera and 

Nichols 1994; Ross and Nichols 2009). While we observed a slight overlap in the 

confidence intervals at the lower background forces indicating small inhibition of PLT by 

FHL, a P value < 0.01 indicates that these populations are distinctly different. Also, the 

inhibition increases at higher background force of PLT.  

Figure 2.9 illustrates the representative example of stronger inhibition of PLT by 

FHL (Figure 2.9a, b, c) and a comparatively weaker inhibition in the opposite direction 

(Figure 2.9d, e, f). Force traces inserts in the figure from state one (solid black line) and 

state two (dashed grey line) are matched at recipient muscle mean background force for 

each muscle combination in the given trial. It is evident that the magnitude of inhibition 

in case of PLT is increasing with increasing background force. There is slight overlap in 

the confidence intervals at the lower background forces in case of PLT inhibition by FHL 

(Figure 2.9 b, c) however at higher background force of PLT the two populations are 

distinctly different as shown by clear separation of confidence intervals.  

 

 



 39 

5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

PLT Background Force (N)

PL
T 

Fo
rc

e 
Re

sp
on

se
 (N

)

 

 

5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

PLT Background Force (N)

PL
T 

Fo
rc

e 
Re

sp
on

se
 (N

)

 

 

   

 
 

 

 

 

5 10 15 20 25 30
0

5

10

15

20

25

30

35

FHL Background Force (N)

FH
L 

Fo
rc

e 
Re

sp
on

se
 (N

)

 

 

5 10 15 20 25 30
0

5

10

15

20

25

30

35

FHL Background Force (N)

FH
L 

Fo
rc

e 
Re

sp
on

se
 (N

)

 

 

   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PLT (state 1)
PLT + FHL (state 2)

FHL (state 1)
FHL + PLT (state 2)

PLT (state 1)
PLT + FHL (state 2)

FHL (state 1)
FHL + PLT (state 2)

  
    

  
    

  t = Dynamic

t = Mechanical   

10N

10N

10N

100ms

100ms

t = Mechanical

t = Dynamic

100ms

a

b

d

e

100ms

10N

   

 
 

 

 

 

   

 
 

 

 

 

5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

PLT Background Force (N)

PL
T 

Fo
rc

e 
Re

sp
on

se
 (N

)

 

 

   

 
 

 

 

 

   

 
 

 

 

 

   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
    

  
    

  
    

  
    

  
    

PLT (state 1)
PLT + FHL (state 2)

t = Static  

    

10N

100ms

  

  c

   

 
 

 

 

 

   

 
 

 

 

 

   

 
 

 

 

 

   

 
 

 

 

 

   

 
 

 

 

 

5 10 15 20 25 30
0

5

10

15

20

25

30

35

FHL Background Force (N)

FH
L 

Fo
rc

e 
Re

sp
on

se
 (N

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
    

  
    

  
    

  
    

FHL (state 1)
FHL + PLT (state 2)

  
    

    

  t = Static

10N

  

  

100ms

f

 

Figure 2.9 Distal to proximal pattern of heterogenic inhibition between PLT 
and FHL during XER for (a, d) mechanical phase, (b, e) dynamic phase, and 
(c, f) static phase. The same conventions as Figure 2.1 apply. The inserts in  
(a), (b), (c), (d), (e) and (f)  shows two traces (state 1 black solid line, state 2 
grey dashed line) matched at approximately mean background force of 
recipient muscle, superimposed to illustrate the magnitude of inhibition 
between PLT and FHL, the vertical line indicates the sample time in each 
trace. The left half of Figure (a, b, c) represents stronger inhibition of PLT 
by FHL, while right half (d, e, f) represents comparatively weak inhibition of 
FHL by PLT. 
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2.3.4 Latency of Reflex interactions 

Reflex interactions between FHL/GA, FHL/PLT and FHL/SOL occurred at a 

latency of 28 ± 4 ms consistent with earlier reports (Bonasera and Nichols 1994). 

Therefore the Ib afferents from GTO’s are likely to be responsible for carrying the 

information to spinal cord to produce the force dependent heterogenic inhibition observed 

in this study (Nichols 1989, Nichols 1992). An example of latency of reflex between FHL 

and GA is demonstrated in Figure 2.10. 
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Figure 2.10 Reflex latency for the FHL/GA interaction was calculated at 28 ± 
4 ms. Distance between the two blue dashed lines indicates latency of 
reflex. 
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2.4 DISCUSSION 

In this study, we have attempted to address the organization of heterogenic force 

feedback between ankle extensors, namely FHL, GA, SOL and PLT in the intercollicular 

decerebrate cat (non-locomoting) for a wide range of background forces. We found that 

inhibitory heterogenic feedback linking ankle extensor muscles does not exhibit a 

uniform pattern across cats/subjects. Specifically, the most variable directionality of 

force-dependent inhibition was observed between GA and FHL. Furthermore, the 

patterns for force feedback linking FHL to SOL and FHL to PLT showed most consistent 

results. Specifically, we observed week inhibitory feedback bilaterally between FHL and 

SOL and a predominantly distal to proximal direction of inhibition between FHL and 

PLT, across cats and limbs. Despite the variability of inhibitory force feedback 

interactions among ankle extensors in our current data across animals, the results remain 

consistent for each muscle combination across limbs in each cat. The following 

discussion addresses these results from neural, anatomical and functional perspective, and 

evaluates the possible functions of heterogenic inhibition during posture maintenance. 

There are several physiological and anatomical explanations at muscular level for 

our current results. First, GA is a two joint muscle, primarily composed of fast, high-

threshold, fatigable motor units (Burke et al. 1973). It has short muscle fibers (Sacks and 

Roy 1982), a longer tendon than SOL (Walmsley and Proske 1981) and a high maximum 

isometric force and maximum velocity of shortening (Spector et al. 1980). It is mainly 

extensor and a weak abductor of ankle. FHL is predominantly a fast twitch muscle that 

inserts into tendon of FDL and can cause flexion of metatarsophalangeal joints. It is an 
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extensor and an adductor of ankle. A consistent pattern of strong inhibition of FHL by 

GA and a week inhibitory interaction in the opposite direction has already been reported 

in locomoting decerebrate cats (Ross and Nichols 2009). GA, specifically the MG, 

generates the greatest non-sagittal moment as a large abduction torque about the joint. 

This non-sagittal component could play an important role in stability during locomotion 

and induce stability by increasing the base of Support during locomotion.  

Now the question arises why we have a variable pattern of inhibitory force 

feedback inhibition between these two muscles (FHL and GA) in non-locomoting cats? 

Basically both muscles are extensors yet the correct placement of foot requires the right 

amount of force production by appropriate muscles in appropriate direction during any 

motor task. During quiet stance a balance between adduction and abduction at ankle is 

required to prevent sway too. Therefore, we can have a variable intermuscular interaction 

between FHL and GA during quiet stance. We propose that the architecture of GA and 

FHL makes it possible for them to quickly respond to any perturbation during quiet 

stance. GA and FHL interactions therefore, show variable patterns of inhibitiory force 

feedback interaction during animal’s attempt to maintain balance in response to both 

internal and external perturbations that needs quick adjustment. It could be task and state 

dependent too (Nichols et al. 2014).  

We observed consistent results for force feedback interactions between SOL and 

FHL in this study across cats. One possible explanation for this consistent result could be 

the anatomical attributes of the muscle. SOL is a single joint muscle, primarily composed 

of slow, low-threshold, fatigue-resistant motor units (Burke et al. 1974) and has relatively 
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long muscle fibres (Sacks and Roy 1982), a relatively short tendon (Walmsley and Proske 

1981) and a low maximum isometric force and maximum shortening velocity (Spector et 

al. 1980). These properties might be linked to the consistent pattern of weak 

intermuscular force feedback interactions with FHL during both quiet stance and 

locomotion. Also, it is the only uniarticular muscle used in our study therefore, we 

propose that the variability of force feedback patterns might be physiologically linked to 

multiarticular fast twitch muscles (GA, PLT) that might be required for quick 

maintenance of interjoint co-ordination and posture control during any motor task (quiet 

stance, locomotion). SOL is functionally a strong non fatigable muscle that needs to be 

contracted constantly during quiet stance to maintain weight support and balance. 

Therefore, even though the state of the animal constantly changes during mid-stance due 

to internal and external perturbations, the SOL muscle force feedback interaction pattern 

with FHL stays the same throughout mid stance. 

 PLT has properties that appear to be intermediate between those of SOL and GA. 

PLT has about the same percentage of fast motor units as GA (Baldwin et al. 1984; West 

et al. 1986). Its physiological cross-sectional area, mass and the maximum isometric 

force are larger than those of SOL and smaller than those of GA (Herzog et al. 1992; 

Sacks and Roy 1982). PLT spans the knee and ankle. Also, PLT is partly attached to the 

tendon of the flexor digitorum brevis (FDB) and, therefore, can cause flexion in the 

metatarsophalangeal joints. FHL also inserts into tendon of FDL and can cause flexion of 

metatarsophalangeal joints and is predominantly fast twitch muscle. We have observed 

stronger inhibition of PLT by FHL than in the opposite direction. The Same pattern of 

inhibition with stronger inhibition from FHL onto PLT has already been reported in 



 44 

locomoting cats (Ross and Nichols 2009). Functionally, PLT is a weak ankle abductor 

and FHL is an ankle adductor. Considering that the direction/gradient of inhibition is 

consistent across different states (locomotion, quiet stance), we propose that inhibition of 

PLT by FHL maintains balance between adduction and abduction at ankle and foot and 

hence maintain torque at ankle. 

The observation of different patterns of force feedback in stepping premammillary 

animals (Ross and Nichols 2009) and our intercollicular decerebrate animals adds to the 

evidence that the upper brainstem can regulate proprioceptive circuits in the spinal cord. 

This notion is corroborated by reports demonstrating that simultaneous stimulation of 

upper and lower brainstem regions enhance the lower brainstem effects on postural tone 

(Mori 1987). Therefore, most probably the neuromuscular interaction is state dependent 

and therefore it is different in locomotion than in static animals where the animal is trying 

to prevent any sway constantly. Based upon these observations and earlier suggestions 

(Ross and Nichols 2009), we propose that the spinal cord and brain stem house the 

appropriate circuitry to produce some of the key elements of postural control including 

directionally appropriate muscle activation. 
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Figure 2.11 Summary diagrams of the three models of heterogenic 
inhibition observed among ankle extensors in the non-locomoting cats 
during XER. (Model-1) shows the most common type of interactions among 
ankle extensors. There is similar strength of Heterogenic inhibition 
between GA and FHL as well as between SOL and FHL. The inhibition 
between SOL and FHL is much weaker though in comparison to the 
balanced inhibition between GA and FHL. Inhibition between PLT and FHL 
shows distal to proximal pattern. (Model-2) represents proximal to distal 
pattern of inhibition between GA and FHL, bidirectional/ mutually equal 
amount of inhibition between SOL and FHL and a distal to proximal pattern 
between PLT and FHL. (Model-3) represents distal to proximal pattern of 
inhibition between FHL and GA as well as PLT and FHL, while the pattern of 
inhibition between SOL and FHL is bidirectional/mutually equal.  
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Over the years, the spinal reflex effects of group Ib afferents from Golgi tendon 

organs have turned out to be much more complex than originally thought. These effects 

are state dependent, that is, dependent on the context and task of motor acts. This task 

dependence is reflected in different group Ib reflex effects during both quiescent states 

and the locomotor stance. Ib afferents from ankle extensors in normal walking cats shows 

that these afferents have a high level of activity during the stance phase and a strong 

covariation with ongoing muscle activity (Prochazka and Gorassini 1998). Ib afferents 

connect GTO’s to α-motoneurons neurons (Hultborn 2006; Jami 1992; Jankowska 1992; 

Marchand-Pauvert et al. 2005), Ib interneurons (mutual inhibition), group II interneurons, 

ventral spinocerebellar tract, dorsal spinocerebellar tract, primary sensory afferents (Jami 

1992; Jankowska 1992; Schomburg 1990). Length feedback from muscle spindles on the 

other hand projects mainly to parent motoneurons and close synergists and is thought to 

regulate muscular stiffness (Nichols and Houk 1976) and enhance force output during 

stance (Stein et al. 2000; Mazzaro et al. 2006). Additionally, length feedback depends on 

background force independently of task. We therefore, propose that due to complicated 

connections of Ib afferents from GTO’s at multiple levels in spinal cord different 

intermuscular interactions are possible according to task and postural requirements of the 

animal (Nichols et al. 2014). 
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CHAPTER 3 

ALTERED PATTERNS OF INTERMUSCULAR FEEDBACK 

BETWEEN HINDLIMB ANKLE EXTENSORS FOLLOWING 

CHRONIC SPINAL CORD INJURY IN THE CAT 

I. GASTROCANEMIUS AND FLEXOR HELLUCIS LONGUS 

3.1 Introduction 

 Excitatory length feedback from muscle spindle is known to regulate stiffness of 

synergist muscles acting at the same joint, whereas inhibitory force feedback from Golgi 

tendon organs links muscles across different joints to promote interjoint coordination 

(Nichols 1994). This interjoint coordination is vital to maintain posture and balance 

during any motor act. Thus, the relative strength of length and force feedback within and 

across muscles collectively regulates the mechanical properties of the limb as a whole 

(Ross and Nichols 2009). This has been established earlier in our laboratory that 

inhibitory force feedback exists between extensor muscles of hind limb in cat (Bonasera 

and Nichols 1994; Wilmink and Nichols 2003). In decerebrate non-locomoting animals 

the symmetry of the force feedback distribution was not quantitatively established earlier. 

Therefore in chapter 2 we evaluated the strength and distribution of heterogenic force 

feedback among hindlimb ankle extensors in each of the ten decerebrate preparations. In 

order to understand the influence of SCI on proprioceptive pathways we then sought to 

compare the organization of intermuscular force feedback in control animals with those 

with SCI/LSH.  
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We expected the SCI to influence force feedback interactions between ankle 

extensors because SCI influence inhibition (Eccles and Lundberg 1959). We hypothesize 

that following SCI there is reorganization of the postural limb reflexes driven by stretch 

and load receptors (muscle spindle and GTO’s), due to changes within the spinal cord 

(Rossignol and Frigon 2006; Rossignol and Frigon 2011). These changes are due to 

abnormal descending input produced by spinal cord injury or supraspinal disorders that 

gradually changes the spinal cord. Normal descending influence guides development of 

spinal cord reflexes early in life and throughout later life produces spinal cord plasticity 

that contributes to skill acquisition and maintenance. The spinal cord plasticity produced 

by peripheral and descending inputs affects input connections, interneuronal pathways, 

and motoneurons. Thus loss of its effect on spinal circuitry can alter intermuscular 

interactions post SCI.   

Previous research work and our current data from control animals has proved that 

control decerebrate non-locomoting animals exhibit  inhibitory force feedback among the 

hind limb extensor muscles. However, we observed that there is no set 

pattern/directionality of this inhibition and it differ from animal to animal. It could 

exhibit three different types of patterns across animals. There could be proximal to distal 

pattern consistent with Dailey’s hypothesis (Daley et al. 2007), distal to proximal pattern 

consistent with Ross and Nichols (Ross and Nichols 2009) or balanced in the strength of 

inhibitory force feedback among the hind limb muscles consistent with previous studies 

in decerebrate locomoting cats (Ross and Nichols 2009; Daley et al. 2007). We propose 

that a predominantly proximal to distal distribution of force feedback promote 

maintenance of balance by reducing stiffness of the distal joints. The reduced distal joint 
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stiffness in turn mediates interface with the ground and therefore regulates distal limb 

compliance during any motor task. We hypothesize that the spinal cord loses its ability to 

maintain this task dependent neuromuscular response following SCI that could be one of 

the contributing factor for poor balance and weight support required for any motor task. 

Since SCI results in loss of balance and weight support, we propose that pathways 

mediating the inhibitory force feedback may remain inhibitory after SCI but their strength 

and directional predominance may change resulting in a loss of posture control. To test 

our hypothesis muscles exchanging predominately force-dependent inhibition (Eccles et 

al. 1957; Nichols 1989), extensively studied in our laboratory previously in both static 

and locomoting cats were chosen for these experiments, namely GA (Gastrocnemius) and 

FHL (Flexor hallucis longus). We have observed a consistent pattern of strong 

statistically significant distal to proximal inhibition in chronic SCI both across limbs and 

across animals for these two muscles. To strengthen our claim we have conducted 

comparative studies in this muscle group on cats with acute LSH (chapter 5) and chronic 

LSH (chapter 3) as well as without LSH (chapter 2).  

The purpose of these studies was to determine the distribution of the force 

feedback among ankle extensor muscles in the hindlimb of the cat following SCI. We 

also conducted these studies to determine how and when these intermuscular interactions 

changes after SCI. We choose spinal hemisection paradigm because post-operative care is 

easier in these animals during recovery period with less chance of muscle atrophy, 

ulcers/wound infection, better bowl and bladder control. Also, due to a clean surgical 
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hemisection it is possible to study the effect of SCI on different spinal tracts and their 

possible association with the poor weight support, posture control and locomotion. 

Previous studies using SCI were conducted using training, drugs (Cote and 

Gassard 2003; Cote and Gassard 2004; Ichiyama et al. 2011; Lyalka et al. 2008) and 

electrical stimulation (Musienko et al. 2010), have shown improvement of reflex activity 

and locomotion behavior. There is still little information about load responses using 

natural/physiological stimuli mimicking clinical/natural environment. Therefore, studies 

using muscle stretch (natural stimulus) should answer some of these questions.  

The main objective of this study was to understand the role of spinal cord in 

posture maintenance by understanding the altered intermuscular interactions following 

SCI. Preliminary accounts of these results have been published (Niazi et al. 2012; Niazi, 

Nichols and Howland 2012; Lyle et al. 2014; Niazi et al. 2014). We propose that a 

detailed understanding of the distribution and functional utility of proprioceptive 

networks, and how they are modulated by spinal injury both immediately and in long 

term requisite to exploit the full potential of sensorimotor training and effective 

management of  SCI in clinical set up.  

3.2 Methods 

3.2.1 Preparation 

The results depicted in this study were drawn from experiments on six healthy 

adult female cats weighing 4–4.5 kg to evaluate intermuscular reflex pathways. The 

studies were conducted on both legs so each muscle is represented twice per preparation 
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(12 legs from 6 chronic LSH cats). This approach also gave us an opportunity to compare 

the intact side leg with injured side leg in LSH in the same animal. 

Animal
s

2 week 
n = 1 

44

Cats with chronic  LSH
n = 6

4 week
n = 3

8 week
n = 1

20 week
n = 1

Figure 3.1 Division of cats with chronic LSH according to time of terminal 
surgery post SCI. Total number of animals used in our study were 6. 
Terminal experiments performed at 2, 8 and 20 weeks post SCI using one 
animal at each time point and at three animals at 4 weeks post SCI. 

A versatile and physiologically robust method is essential for comprehensively 

mapping proprioceptive neural networks and examining neuromodulatory factors 

including spinal injury. Therefore, we have used mechanographic technique (Bonasera 

and Nichols 1994; Wilmink and Nichols 2003; Nichols 1987), which involves recording 

muscle force responses while stretching cat hindlimb muscles in isolation (autogenic/state 

1) and in pair-wise combinations (Heterogenic + Autogenic/ state 2). This preparation has 

been used extensively as a model system for studying vertebrate motor control in our 

laboratory (Nichols 1987) thus only a brief description will be presented here. This 

approach uses decerebrate cats which exhibit similar reflex responses and walking 

patterns as intact cats and negates the need for anesthesia that can potentially influence 
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reflexes. Importantly, the decerebrate cats respond to postural perturbations (Honeycutt et 

al. 2009; Honeycutt and Nichols 2010; Gottschall and Nichols 2007) and exhibits 

naturalistic walking (Musienko et al. 2012; Ross and Nichols 2009) similar to intact cats. 

All protocols are in complete accordance with the guidelines of both the Federal and 

Institutional Animal Care and Use Committee of Georgia Institute of Technology.    

 Chronic Spinal hemisection was performed in the 6 cats by Dena R. Howland at 

university of Florida and University of Louisville, under general anesthesia and aseptic 

conditions described earlier (Jefferson et al. 2011) thus only a brief description will be 

presented here. The LSH was performed in each cat at T10 spinal level (Figure 3.2) after 

carefully performing laminectomy and opening up the dura matter covering spinal cord 

using iridectomy scissors. Penicillin G procaine (40,000U/kg body weight, i.m.) was 

given starting a day before to a day following SCI to prevent any infections. All animals 

were regularly monitored by a registered veterinarian at university of Florida. Cats were 

housed in large individual cages with food and water. Foam mattresses in the cages were 

used to prevent peripheral nerve compression, pressure sores, and skin breakdown. 

Behavioral studies were performed on these animals both before and after chronic LSH 

while histological studies were done after terminal experiments (Georgia Institute of 

Technology) at university of Florida. Terminal experiment with decerebration at 2, 4×3, 8 

and 20 week post surgery were performed at Georgia Institute of Technology in Nichol’s 

lab after they resumed walking following LSH. At the end of each experiment, the animal 

was euthanized with an over dose of Nembutal followed by pneumothorax. 
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We used the same procedure to perform acute LSH in three animals in our 

laboratory to obtain data to compare with chronic LSH data. This was done before 

muscle dissection in each animal to give appropriate time to animal for recovery from 

spinal shock. The acute animals were used to investigate the time of onset of any change 

in intermuscular interactions that is expected to appear in chronic SCI. In addition we 

performed an experiment using acute dorsal hemisection (DSH). In acute dorsal spinal 

hemisection we followed the methods of Cleland and Rymer (Cleland and Rymer 1990). 

Following lamanectomy and opening up the dura matter covering spinal cord DSH was 

performed in each cat at T10 spinal level by teasing apart dorsal columns and both 

dorsolateral funiculi with Dumont forceps, to the approximate level of the denticulate 

ligaments. In acute animals we performed terminal experiment immediately following 

injury (acute LSH or acute DSH).  

At the end of each experiment, the animal was euthanized with an overdose of 

Nembutal followed by a pneumothorax. Dr Howland dissected and preserved spinal cord 

for histological study at the end of each experiment. First of all Heparin (1cc;1000U/i.v.) 

was administered followed by 1cc of 1% sodium nitrite IV after 20 minutes. Then 

immediately each cat was transcardially perfused with 0.9% saline, followed by 4% 

paraformaldehyde in 0.1M phosphate buffer (pH 7.4). The spinal cords were dissected, 

blocked, and post fixed in 30% sucrose and 4% paraformaldehyde (pH 7.4). Each 

dissected cord was transported back by Dr. Howland to her laboratory for detailed 

histological study to confirm spinal hemisection/ lesion magnitude in each cat.  
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Figure 3.2 Diagrammatic representation of spinal cord LSH at T10 in a cat. 
FHL muscle is shown in orange color in left hindlimb and GA in red color. 

Each cat was deeply anesthetized for our terminal experiment using isoflurane gas 

while the animal was kept on heating pad regulated at 370C to maintain body temperature 

homeostasis during data collection. A tracheotomy was performed, loosened sutures were 

placed around the carotid arteries and an intravenous flexible catheter was inserted into 

the external jugular vein to administer intravenous fluids during the experimental 

procedure and allow for the administration of concentrated pentobarbital upon the 

termination of the experiment. Later both legs and head were carefully shaved in each 

animal and bone pins were inserted in femur and tibia in each leg, hemostasis maintained 

by using bone wax. In acute SCI experiments we performed SCI before inserting bone 

pins.  
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After placement into a sterotaxic device supported over a table, limb fixation was 

accomplished with bone pins into femur and tibia being clamped to a static table frame. 

This was done to maintain the position of the limb as it is in natural posture at end of 

stance by keeping knee at 1100 and ankle at 900 angles respectively. Figure 2.1 in chapter 

2 depicts this experimental setup, whereby the dissected muscles of both immobilized 

hindlimbs were attached in series with myographs and linear motors. The position of each 

motor was adjusted according to the height of animal in each experiment. 

The crossed extension reflex was used to activate the test limb muscles by 

stimulating the contralateral posterior tibial nerve at 2 times threshold (2T) and 40 HZ for 

its threshold for stimulation. Following each trial using XER the nerve was given at least 

2-5 minutes rest before starting a new trial with XER to prevent nerve fatigue. We used 

cuff or hook electrodes for nerve stimulation. The tibial nerve was kept moist by using 

normal saline solution. 

The FHL, GA and tibial nerves were carefully dissected and separated from 

surrounding connective tissue and muscles in both limbs. FHL muscle was carefully 

separated from surrounding connective tissue and followed behind the medial malleolus 

until its tendon was cut near its insertion into Flexor digitorum longus tendon. The GA 

tendon was secured with a small piece of calcanium Figure 3.3 shows the anatomy of the 

two muscles used in this study. Each muscle was attached via its tendon to individual 

clamps. These tendon clamps were placed in series with myographs using strain gauges 

in a half bridge configuration, and four linear motors.  Either hook or cuff electrodes 

were placed around tibial nerve for the cross extension reflex (XER).  
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Figure 3.3 Anatomical representation of GA (green, proximal muscle) and 
FHL (red, distal muscle) in cat left hindlimb.  

 
The strength and distribution of intermuscular pathways were determined from 

the force magnitude profile after 2 mm ramp and hold stretches (50 ms ramp stretch with 

velocity of 0.04 m/s, 100 ms hold, and 50 ms release). Intermuscular feedback  effects 

were recorded across background forces by stretching a muscle denoted the “recipient” in 

isolation (state 1 or autogenic response) and then in combination with another muscle 

denoted the “donor” on alternate stretches (state 2 or heterogenic + autogenic response)  

with/without crossed extensor reflex (i.e. 45-60 stretch repetitions). The relative increase 

or decrease in the recipient force response when stretched in combination with the donor 

was reflected as intermuscular (heterogenic) feedback.  
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An intercollicular decerebration was performed in each cat, removing all brain 

matter rostral to the transaction and the anesthesia withdrawn slowly. Data collection was 

started after appropriate withdrawal responses and muscle tone assessment. Homeostasis 

after decerebration was maintained by packing the skull base with cotton balls and gel 

foam figure 2.2 in chapter 2 depicts the typical decerebration. In acute SCI experiments 

data collection was started after the animal was out of spinal shock indicated by good 

muscle tone in limbs, good XER reflex and background force as well as force response of 

muscles in hind limb. 

3.2.2 Data Analysis 

           Force measurements were used to distinguish autogenic (intrinsic response to 

stretch0 and  heterogenic (intermuscular reflex response) feedback pathways while 

muscles were alternatively stretched (state 1 and state 2) as described earlier in chapter 2. 

Data acquired during the experiments were organized by state, whereby state one 

corresponded to data obtained when the recipient muscle was stretched alone (black 

circles and lines in Figure 3.7), while state two represented those from stretching the 

donor and recipient muscles together (colored circles and lines Figure 3.7). Comparing 

recipient muscle force responses during state one with those during state two reveals the 

intermuscular force feedback contribution. Each trial contained data for GA and FHL 

muscle combination (45-60 stretches), where half of the stretches occurred in state one 

and half in state two (recipient muscle). Force output and length input of FHL and GA 

was recorded for each stretch (Figure 3.5).  
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The baseline was constructed by performing a linear interpolation from the mean 

force response just prior to the stretch to the mean force after the end of the release (Ross 

and  Nichols 2009). The entire baseline was then subtracted from the overall force 

response. Figure 3.4a represent a sample force trace, the baseline calculation described 

above and the resulting baseline subtracted force data (Figure 3.4b and 3.4c). The 

baseline background force was subtracted from the total force profile of the given muscle 

to account for potential load dependent feedback gain (Ross and Nichols 2009). Force 

changes were plotted against the background force for each recipient muscle to check for 

load dependence. 

 Each force response was divided into three time points for data analysis as shown 

in Figure 3.4b and 3.4c. To characterize the strength and time course of intermuscular 

interactions, the force-time profile was analyzed taking into consideration the time course 

of applied stretch and intermuscular reflex latencies known to range between 16 to 24 ms 

(Bonasera and Nichols 1994; Wilmink and Nichols 2003). Specifically, the force value 

measured 10 ms following stretch onset was used to detect passive mechanical artifacts 

that could occur from incomplete separation of muscles during dissection that  precedes 

reflex (Bonasera and Nichols 1994; Wilmink and Nichols 2003). If muscle force at this 

time point deviated during stretch of another muscle (state 2), these trials were discarded. 

Force responses that occurred 50 ms following the beginning of the stretch represented 

the dynamic phase of force feedback (Figure 3.4b and 3.4c). A similar analysis was done 

for the end of the hold period, corresponding to 100 ms following the beginning of the 

stretch, the static phase, as shown in Figure 3.4 similar to previous reports (Knikou et al. 

2009; Grey et al. 2001; Wilmink and Nichols 2003; Ross and Nichols 2009).  



 59 

Software in Matlab version 7.01 was used to analyze the data collected during 

these experiments. The raw data was further represented as stick figures to further 

demonstrate interemuscular interactions demonstrating both state 1 and state 2 for each 

time point for each trial for recipient muscle as shown in figure 3.6. This was done to 

visually recognize any intermuscular inhibition at three different time points across a trial 

before further analysis of our data. The force data analysis was then done using software 

in Matlab and statistical analysis was performed using Statistica 6.0 and Excel, within 

each time point (mechanical, dynamic and static) for both state1 and state 2, either with 

or without XER.  

Populations of integrated values from the respective time points were plotted 

separately as a function of the background force of the recipient muscle obtained from the 

original force trace. Quadratic regression analysis was performed to test the overall 

separation of the populations of force responses (Ross and Nichols 2009). Figure 3.9 

depicts the typical analysis, whereby force responses of recipient muscle in Newton (y 

axis) for a specific time point (mechanical, dynamic, static) are plotted as a function of 

the background force of the recipient muscle in Newton (x axis). Each data point (each 

circle) represents an individual force response of the recipient muscle from the recorded 

raw data when the muscle was either stretched alone (black circles) or response of the 

recipient muscle when it was stretched with another muscle (colored circles). Polynomial 

fits and 95% confidence intervals were fit to each population of data for a given time 

point at P value < 0.01. P calculated using the following equation described earlier 

(McGraw-Hill Irwin: Boston; 2005). [F= ((SSE(Reduced) – SSE(Full)/ (DF(Full) – 
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DF(Reduced))/MSE(Full)]. Two regression models were fit to the data namely full model 

and reduced model as described earlier (Ross KT, Nichols TR. 2009, Kutner et al. 1996).  
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Figure 3.4 (a) Representative figure showing Recipient muscle (GA) stretch 
evoked force response during XER. The green line indicates the baseline 
that is calculated for each individual stretch by performing a linear 
interpolation between the first 10ms and last 10ms of data. (b) State 1 
(black) and state 2 (blue) force responses in two consecutive stretches 
superimposed to show inhibition. The broken grey lines represent 
mechanical time point at 60ms, dynamic time point at 100ms and static 
time point at 200ms respectively. (c) Baseline subtracted force responses 
obtained after subtracting baseline from each individual stretch shown in 
Figure 3.6b.  
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Additionally, differences for both the dynamic and static time point force 

responses in the recipient muscle were calculated by calculating difference between state 

2 and  state 1 force responses and curve fits generated to determine the amount of 

inhibition at different time points during ramp and hold period of each individual trial, as 

shown in Figure 3.7d. This analysis enabled us to demonstrate weather the inhibitory 

intermuscular force feedback between GA and FHL changes over time during muscle 

stretch and hold in decerebrate cats or is different in chronic SCI.  

The percent heterogenic inhibition is calculated by converting the amount of 

inhibition in Newton obtained by subtracting individual state 2 force responses from state 

1 force response at each time point to percent change. The significance of this calculation 

is that we can compare data across limbs and animals if we normalize it to percent 

change. The amount of force response in Newton (N) varies across each trial and animal 

therefore it is more relevant to describe the change in terms of the percent change. Each 

consecutive pair wise combination (state 1 and state 2) has been normalized to the 

isolated muscle stretch response (recipient) so that the relative strength can be expressed 

as a percentage change from the autogenic response. Comparisons were made to 

determine the influence of SCI on the strength and distribution of intermuscular 

proprioceptive feedback.  

A detailed statistical analysis was conducted to calculate the mean change in force 

response of recipient muscle, the standard deviation, range (maximum and minimum 

change) and percent change between autogenic and heterogenic states were also 

calculated. If P< 0.01 it is considered significant and documented as box plots for each 



 62 

time point for every individual trial as demonstrated in figure 3.8. Data was compared 

across state, limbs and cats to determine the effect of SCI on force feedback. 

Data published by Nichols in 1989 using decerebrate cats indicate that the amount 

of inhibition in recipient muscle depends on the force of both the donor and recipient 

muscle (Bonasera and Nichols 1994). For this reason we further analyzed the recipient 

force response points against the donor background force to study the effect of SCI on the 

amount of inhibition in relation to the donor background force. We also plotted recipient 

muscle background force as a dependent variable against the donor muscle background 

force as an independent variable in the form of a simple scattered graph as shown in 

figures 3.16 and 3.17. The two distinct time points showing change in force response of 

the recipient muscle from state 1 to state 2 were used for further analysis of the data. 

They were identified at the end of the ramp (dynamic time point) and at the end of hold 

phase of muscle stretch (static time point). The populations of integrated values from the 

respective time points plotted separately as a function of background force of the donor 

muscle obtained from the original force trace. Multiple regression analysis was 

performed to test the overall separation of the populations of force responses (Wilmink 

and Nichol 2003).   

To understand the mechanisms underlying force dependent inhibition between 

FHL and other antigravity muscles in our study latency of recipient force response was 

calculated for each muscle combination. According to previous studies the reflex latency 

of the force dependent inhibition between FHL, GA, SOL and PLT occurred at 28 ± 4 ms 

(Bonasera and Nichols 1994). This analysis helped us determine if the clasp knife 
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inhibition appeared after SCI in our data. The reflex latency in clasp knife inhibition is ≥ 

80 ms (Nichols and cope 2001). 

3.3 RESULTS 

The main target of our studies was to determine the distribution of the force 

feedback between ankle extensor muscles in the hindlimb of the cat following chronic 

SCI. Our goal was to determine any possible connection between disturbed weight 

support/ balance support and intermuscular force feedback. According to our existing 

data feedback pathways among GA and FHL are predominately force dependent and 

inhibitory in non-locomoting (Bonasera and Nichols 1994; Nichols 1999; Wilmink and 

Nichols 2003) and locomoting cats (Ross and Nichols 2009). We choose FHL and GA 

muscles which have already been extensively studied in our laboratory in decerebrate cats 

in both static and locomotion based studies. We hypothesize that task dependent 

modulation of the relative patterns of intermuscular force feedback is a rapid spinal 

mediated neural mechanism that requires supraspinal input.  

We used six cats with chronic spinal cord injury at different time points. This was 

done to determine the time of onset and any time related changes in intermuscular 

interactions following SCI as the animal recovers from injury. These cats did not receive 

any therapeutic management or training post SCI. We randomly selected cats at two, 

four, eight and twenty week post LSH periods. These cats were able to stand up and walk 

within a week following SCI (Jefferson et al. 2011).  However, their ability to maintain 
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full body weight support with lateral stability/balance control remained compromised at 

least until 20 week post spinal cord injury in our study.  

Uniformity of lesion magnitudes across cats was confirmed by Dr. Dena Howland 

laboratory. She used Cresyl violet and myelin stained sections through the lesion 

epicenters of each animal to determine the extent of tissue sparing and damage. 

Typically, complete disruption of the ipsilateral gray and white matter was seen in all six 

animals with chronic LSH. Contralateral gray and white matter was completely spared 

with the exception of some dorsal contusion in one out of six cats (one of the 4 weeks 

post SCI cats). Thus, lesion variability was minimal across animals.  

We observed a consistent pattern of intermuscular inhibition between FHL and 

GA in all the cats with chronic SCI in contrast to variable pattern in control animals. The 

inhibition was always predominantly stronger from FHL (distal muscle) onto GA 

(proximal muscle) and weaker from GA onto FHL. Six out of six cats (100%) with 

chronic LHS showed this pattern with and without XER on both injured and uningured 

side limb (12/12 limbs, 100%). This is in contrast to variable results in control data as 

explained in chapter two where we observed three different patterns (predominantly 

proximal to distal inhibition, distal to proximal inhibition and a balanced inhibition) 

between GA and FHL in control static/non-locomoting animals. 

The results presented in this chapter are divided in six main sections. The first 

Section (3.3.1) addresses in detail the inhibitory force feedback from GA on to FHL 

following chronic LSH. The second section (3.3.2) depicts data analysis in a chronic LSH 
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cat explaining detailed analysis of inhibitory force feedback from FHL on to GA. Section 

3 (3.3.3) explains comparison of heterogenic inhibitory force feedback both across limbs 

(each animal) and cats used in this study with chronic LSH. Our experiments used partial 

SCI therefore this is an important section to demonstrate the effect of partial SCI on force 

feedback across limbs and its possible connection to the poor balance control in chronic 

LSH. This section reviews the comparative analysis of data from chronic LSH cats. 

Section four (3.3.4) addresses the recipient force response dependence on donor muscle 

background force and its significance. Section five (3.3.5) explains intermuscular force 

feedback between ankle extensors following acute SCI. This section is important to 

determine the time of onset of neuromuscular changes that might be responsible for the 

altered intermuscular force feedback interactions following SCI. Section six (3.3.6) 

explains clasp knife inhibition and the evidence of its presence or absence following LSH 

in our study.  

3.3.1 GA weakly inhibits FHL following Chronic LSH 

The intermuscular feedback interaction from GA onto FHL was examined in all 

six cats with chronic LSH. Our goal was to compare these results with results from 

control cats (without SCI) and determine if the LSH had any effect on reflexes.  Six out 

of six cats (100%) with chronic LSH exhibited very week inhibition from GA onto FHL 

in all 12 limbs (6 of each injured and uninjured limbs) with P < 0.01 that was highly 

statistically insignificant. 

 Figure 3.5 depicts representative raw data from part of a single trial consisting of 

alternating state one and state two stretches, showing intermuscular interaction where GA 
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is inhibiting FHL in an animal 4 weeks following chronic LSH during XER. Figures 3.5a 

and 3.5b depict the force output and length input respectively of the donor muscle 

(proximal muscle) GA in a trial. Figures 3.5c and 3.5d depict the force output and length 

input respectively of the recipient muscle (distal muscle) FHL in the same trial. 

Additionally, the blue dashed lines indicate state 2 where recipient muscle FHL was 

stretched along with donor muscle GA during XER. State one response is shown in 

Figures 3.5a and 3.5c without the dashed blue lines. Figure 3.5 shows a small amount of 

inhibitory force feedback from GA onto FHL in state two. This pattern is observed in all 

six cats with chronic LSH. Clearly, the inhibitory force feedback from Ga on to FHL 

remains inhibitory even following SCI and it persists up to 20 weeks following SCI. 

Figure 3.5a also demonstrate small amounts of inhibition of GA (donor muscle) by FHL 

even when it is not stretched  ( isometric) during state 1. In addition we can see that at the 

end of stretch and hold period in each muscle stretch the muscle shows a drop in force 

before coming back to the baseline force value. This is because of the strong inhibitory 

feedback between FHL and GA that the time taken by the cross bridges in muscle to 

come back to the resting state.  

 Figure 3.6 further explains the inhibition of FHL by GA in the same trial shown 

in Figure 3.5. The data were divided into three time points to determine the part of the 

stretch where inhibitory force feedback appeared. Therefore all the stretches in this case 

each of the 42 stretches were divided into three time points explained earlier. Figure 3.6a 

shows the mechanical time point where no observable inhibition of FHL by GA is noted 

indicating a good surgical preparation in the given experiment. Figure 3.6b and 3.6c 

shows state 1 and state response of FHL in dynamic and static time point respectively. 
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We can see that the inhibition can be observed in both dynamic and static time point. 

Each circle represents a muscle stretch where, blue circles stand for state 2 and black 

circles for state one response. This trend of small inhibition of FHL by GA is seen in 6/6 

cats (100%). 

Figure 3.7 depicts a representative example of the intermuscular inhibition from 

GA onto FHL in chronic LSH. The data were analyzed at three different time points (t 

=mechanical, t=dynamic and t=static) during stretch and hold of the muscles. To evaluate 

the strength and sign of heterogenic feedback during XER, individual force responses at 

specific time points were obtained from the baseline subtracted force data, and 

background force was obtained from the original force trace shown in Figure 3.5. Figure 

3.7 depicts the typical analysis, whereby force responses for a specific time point are 

plotted as a function of background force. Polynomial fits and 95% confidence intervals 

were fit to each population of data for a given time point.  

There was no difference observed in mechanical time point between state 1 and 

state 2 demonstrating no mechanical artifact. Inhibition from GA onto FHL increases and 

then decreases with increasing background force for the dynamic as well as static 

responses consistent with data from decerebrate static and control cats. We therefore, 

concluded that following SCI the inhibition was force dependent as indicated by the 

divergence in the polynomial fits in Figure 3.7b and 3.7c. Each circle represents an 

individual stretch (colored circles for FHL force response in state 2 and black circles for 

FHL response in state 1). This increasing inhibition from dynamic to static stage is 

observed in all 6 cats (100%) both on injured side as well as uninjured side limbs of each 
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cat. Multiple regression yielded P value ≥ 0.01, thus statistically proving that the two 

populations (force responses of recipient muscle in dynamic and static time points) are 

not distinctly different.  

Inserts in Figure 3.7a, Figure 3.7b and Figure 3.7c are force responses for state 

one (black lines and circles) and state two (blue lines and circles) for GA muscle. The 

background force for both conditions was matched at the average background force of 

approximately 11 N. Baselines were subtracted from both traces to better illustrate the 

magnitude and time course of the inhibition from GA onto FHL.  

Figure 3.7d demonstrates the amount of heterogenic inhibition of FHL by GA in 

N at dynamic and static time points for comparison purposes. Each circle is obtained by 

subtracting state 2 force responses from state I force responses at approximate matched 

background force in Figure 3.7b and Figure 3.7c for dynamic and static time points 

respectively. We observed the polynomial fits for the static and dynamic time points had 

a lot of overlap suggesting that the two populations are not significantly different. The 

small inhibition trend was seen in 6/6 cats. The inhibition increased from dynamic to 

static time point, however it was always much weaker in comparison to inhibition of GA 

by FHL in each cat. 

The detailed statistical analysis of data from also showed more inhibition in static 

as compared to dynamic state comparable to control data. Figure 3.8 provides a summary 

of the statistical analysis of a representative trial to calculate inhibition between GA and 

FHL at dynamic and static time point. Each black and blue box represents state 1 and 2 
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respectively. The whiskers of the box plot represent range of force response in each state 

including maximum and minimum values. The body of each box plot splits the data set 

into three quartiles 25th, 50th, and 75th percentiles of the force responses in the same trial 

shown in Figure 3.7 through Figure 3.9. Within the box, the red line is drawn at the 

second quartile/ Q2/ 50th percentile that stands for the median of the data set (state 1 or 

state 2). The mean change/inhibition is calculated by subtracting mean of force responses 

of state 1 from state 2. The amount of force response obtained in Newton is then 

converted into percent change. P value is calculated for evaluating the significance of 

percent change from state 1 to state 2 and it is considered statistically significant only if 

its value is p ≤ 0.01. We observed weak inhibition of 10 % to 28%  at t= static on injured 

side and 7.5%  to 25% on uninjured side limb in chronic LSH across 6 cats as depicted in 

table 3.1. Therefore inhibition is observed bilaterally even after partial SCI. Also, this 

inhibition is not influenced by the time after SCI and is always a little less on the 

uninjured side in all 6 cats. 

 

 

 

http://stattrek.com/Help/Glossary.aspx?Target=Quartile
http://www.stat.sfu.ca/~cschwarz/Stat-301/Handouts/node31.html#percentiles
http://stattrek.com/Help/Glossary.aspx?Target=Median
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Figure 3.5 (a) Donor muscle (GA) stretch-evoked force response during 
XER. (c) Recipient muscle stretch-evoked force response during XER. 
Dashed blue lines on stretches indicate responses obtained when the 
donor muscle is stretched with recipient muscle at the same time in state 2. 
The y-axis is showing force response in N and x-axis is showing time in 
ms. Force responses without dashed blue lines indicate state 1, where 
recipient muscle was stretched alone. (b) Donor muscle (GA) length input 
to two-state stretch, where y-axis represent GA length in mm and x-axis 
represents time in milliseconds. (d) Recipient muscle (FHL) length input for 
two-state stretch. A two-state stretch is performed to ascertain strength 
and sign of feedback between recipient muscle (FHL) and donor muscle 
(GA). There is clearly some inhibition from GA onto FHL in state 2 (c). XER 
is done by stimulating tibial nerve in the left hindlimb in this example (the 
side without LSH) at 2T that evokes an increase in the background force of 
the recipient and donor muscles on the right hindlimb (injured side), GA 
and FHL respectively (a, c).  
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Figure 3.6 Recipient muscle (FHL) stretch-evoked force response during 
XER in (a) mechanical phase, (b) dynamic phase, and (c) static phase. Each 
individual circle represents FHL muscle stretch response where, blue 
circles indicate state 2 and black circles indicate state 1.  Y-axis represent 
force response of recipient muscle (FHL) in N and X-axis represent state of 
the muscle during a muscle stretch. There is a small amount of inhibition of 
FHL by GA at dynamic and static time points during state 2 indicated by 
difference of heights of black and blue circles. 
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Figure 3.7 (continued) 
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Figure 3.7 (continued) 
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Figure 3.7 Heterogenic inhibition from GA (donor) onto FHL (recipient) 
during XER in a cat four weeks following chronic LSH at (a) mechanical 
phase, (b) dynamic phase, and (c) static phase. Black circles represent FHL 
force responses from stretches occurring in state one and blue circles in 
state two, respectively. Polynomials and 95% confidence intervals are fit to 
each population of data, and statistical tests reveal that the populations for 
the dynamic and static phases are not distinctly separated (p≥0.01). The 
inserts in (a), (b) and (c) shows two traces (state 1 black, state 2 blue) 
matched at approximately mean background force of 11 N for FHL, 
superimposed to illustrate the magnitude of inhibition from GA onto FHL 
during XER, and the vertical line indicates the sample time. The magnitude 
of force responses in FHL is higher during the static versus the dynamic 
time point. (d) Amount of inhibition of FHL by GA calculated in N for both 
dynamic (black lines and circles) and static time (blue lines and circles). 
Each circle represents force response of FHL as a result of single stretch. 
Difference is calculated by subtracting state 1 and state 2 force responses 
at an approximate matched background force and time. X-axis shows 
background force of FHL in N and y axis represent inhibition in N where – 
stand for inhibition and + for excitation. Polynomial fit is generated to each 
population of data for dynamic and static time point respectively. 

 

 

 



 74 

state 1 state 2
5

10

15

20

25

FH
L 

Fo
rc

e 
(N

)

P = 0.032
Mean Change: -1.6 (8.6%)

  

 
 

  
   

  t = dynamica

  

 
 

  
   

state 1 state 2
5

10

15

20

25

FH
L 

Fo
rc

e 
(N

)

P = 0.059
Mean Change: -1.5 (8.8%)

b t = Static  

 
Figure 3.8 (a) Box plot representing statistical analysis of a representative 
trial showing inhibition of FHL by GA in (a) dynamic time point (b) static 
time point. State one is shown in black and state 2 in blue. Y-axis shows 
FHL force in a given trial for both state 1 and 2. The median force response 
is shown in red color across all FHL stretches in a trial at a given time 
point. The whiskers of the box plot represent range of force response in 
each state including maximum and minimum values. The P value, mean 
change, range of inhibition with SD and percent change is calculated for 
each time point to demonstrate the amount of inhibition. 

3.3.2 FHL strongly inhibits GA following chronic SCI 

The intermuscular force feedback interaction from FHL onto GA was examined 

in all six cats with chronic LSH. Our goal was to compare these results with results of 

intermuscular force feedback data from GA onto FHL to determine the predominant 

direction of inhibition between the two muscles post SCI at different time points. Our 

current data from these experiments has shown that there is predominantly strong 

inhibition from FHL to GA. Six out of six cats (100%) with chronic LSH exhibited very 

strong inhibition from FHL onto GA in all 12 limbs (6 of each injured and uninjured side) 

with P< 0.001 that was highly statistically significant across limbs and cats. We propose 
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that since GA is a strong force producing muscle therefore its strong inhibition could be 

one of the contributing factors for poor balance control and weight support post SCI.  

 Figure 3.9 depicts representative raw data from a trial showing intermuscular 

interaction between GA (recipient) and FHL (donor) from an animal four weeks following 

chronic LSH during XER. The representative trial consists of 46 stretches in recipient 

muscle (GA). Half of the stretches were done during state 1 alternating with the other half 

at state 2. The selection of the trial was done carefully by taking a trial with GA as a 

recipient muscle with the comparable range of background force with the trial shown in 

Figure 3.5 (FHL as recipient muscle) from the same animal. The force response in a 

muscle depends on background force therefore for comparing data it is important to 

choose the trials with comparable range of background force (Nichols 1989). 

Figures 3.9a and 3.9b depict the force output and length input respectively of the 

recipient muscle (proximal muscle) GA while figures 3.9c and 3.9d depict the force output 

and length input respectively of the donor muscle FHL. Additionally, the blue vertical 

dashed lines indicate state 2 where the recipient muscle GA was stretched along with 

donor muscle FHL. State one is shown in Figures 3.9a and 3.9c without the dashed blue 

lines. Figure 3.9 clearly shows strong inhibitory force feedback from FHL onto GA in 

state two. This inhibition appears more pronounced at the end of stretch and hold (static 

time point). This trend was observed in all six animals on injured as well as uninjured side 

limb. The inhibition was smaller for the dynamic time point and larger for the static time 

point in all six animals (100%) irrespective of data collection time after LSH. If we 

compare figure 3.9 to figure 3.5, we can see a clear trend of predominantly strong 



 76 

inhibition of GA by FHL and weak inhibition of FHL by GA. Therefore, as we proposed 

the inhibitory force feedback between the two muscles remain inhibitory after LSH, 

however its amount and directionality or gradient is altered. In our data it is a consistent 

distal to proximal directionality of inhibition in animals with chronic LSH. 

Figure 3.10 shows the relative amount of GA inhibition by FHL at mechanical, 

dynamic and static time point in state 1 and state 2. Each individual stretch is divided into 

three time points to generate the figure. The inhibition is clearly seen in state two and is 

most strong at static time point consistent with data from control animals.  We generated 

this plot to confirm the time of appearance of inhibition before proceeding on with further 

data analysis. 

We further analyzed the data to look at this inhibition statistically by doing a 

multiple regression analysis as described earlier in the chapter in detail. Figure 3.11 depict 

the mechanical, dynamic and static phase of the force feedback from FHL onto GA during 

XER. While there is slight overlap in the confidence intervals at the lowest background 

force, approximately 5N, the two populations are clearly separated at higher background 

forces. Multiple regression yielded P<<0.01, thus statistically proving that these 

populations are distinctly different. Force responses in the recipient muscle, GA, for state 

one (black circles and lines) and state two (red circles and lines) are shown in Figure 3.11.  

The insert in Figure 3.11 is generated by matching background force for both 

conditions (state 1 and 2) at average background force of approximately 11N across all the 

stretches in a representative trial. Baselines were subtracted from both traces to better 
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illustrate the magnitude and time course of the inhibition from FHL onto GA, grey dashed 

lines on trace represent time point of data analysis.  

Figure 3.11a through Figure 3.11d to illustrate the magnitude and timing of 

inhibition from FHL onto GA. There was no observable separation of data during 

mechanical time point suggesting a good preparation with good muscle separation not 

shown here in all six cats across trials. Heterogenic inhibition increases with increasing 

background force as indicated by the divergence in the polynomial fits. Figure 3.11d 

shows the amount of inhibition in Newton comparing inhibition in dynamic and static time 

point across the whole trial at each individual stretch. Polynomial fit to each population of 

data for dynamic and static time point respectively done. We observed highly statistically 

significant inhibition of GA by FHL at p<<0.01. 

 Figure 3.12 represents the detailed summary of statistical analysis for the same 

trial shown in figure 3.13. The inhibition of GA is 59% in static state and 18% in dynamic 

time point. Same pattern/directionality and strength of force dependent GA inhibition by 

FHL was observed in 6/6 cats.  
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Figure 3.9 (a) Recipient muscle (GA) stretch-evoked force response during 
XER in a cat 4 weeks following chronic LSH. (c) Donor muscle (FHL) 
stretch-evoked force response during XER. (b) Recipient muscle (GA) 
length input to two-state stretch (d) Donor muscle (FHL) length input for 
two-state stretch. The same conventions as Figure 3.7 apply. A two-state 
stretch is performed to ascertain strength and sign of feedback between a 
recipient (GA) and donor muscle (FHL). There is clearly strong inhibition 
from FHL onto GA in state 2. XER is done by stimulating tibial nerve in the 
contralateral hindlimb (the side without LSH) at 2T evokes an increase in 
the background force of the recipient and donor muscles on the injured 
side hindlimb, GA and FHL respectively (a, c).  
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Figure 3.10 Recipient muscle (GA) stretch-evoked force response during 
XER in (a) mechanical phase, (b) dynamic phase, and (c) static phase. Each 
individual circle represents FHL muscle stretch response where, blue 
circles indicate state 2 and black circles indicate state 1. The same 
conventions as Figure 3.8 apply. There is a large amount of inhibition of GA 
by FHL at dynamic and static time points during state 2 shown by 
difference of heights of black and red circles. The inhibition of GA at static 
time point is larger than at dynamic time point. 
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Figure 3.11 (continued) 
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Figure 3.11 (continued) 
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Figure 3.11 Heterogenic inhibition from FHL (donor) onto GA (recipient), 
during XER in a cat 4 weeks following chronic LSH for (a) mechanical 
phase, (b) dynamic phase, and (c) static phase. The same conventions as 
Figure 3.9 apply. Polynomials and 95% confidence intervals are fit to each 
population of data, and statistical tests reveal that the populations for the 
dynamic and static phases are distinctly separated (p≤0.01). The inserts in  
(a), (b) and (c) shows two traces matched at  approximately 11N average 
background force in GA from state one (black line) and state two (red line) 
superimposed to illustrate the magnitude of inhibition from FHL onto GA 
during XER, and the vertical line indicates the sample time. The magnitude 
of force responses in GA is higher during the static versus the dynamic 
time point. (d) Amount of inhibition of GA by FHL calculated in N for both 
dynamic (black lines and circles) and static time (red lines and circles). 
Each circle represents force response of FHL as a result of single stretch. 
The same conventions as Figure 3.9d apply.  Polynomial fit is generated to 
each population of data for dynamic and static time point respectively. 
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Figure 3.12 Box plots representing statistical analysis of a representative 
trial showing strong inhibition of GA by FHL following chronic LSH in (a) 
dynamic time point (b) static time point. State one is shown in black and 
state 2 in red. The median is shown in red color across stretches in a trial 
at a given time point. The P value, mean change and percent change are 
calculated for each time point to demonstrate the amount of inhibition 
across state and time point. The comparison clearly shows increase in 
inhibition from dynamic to static time point so, inhibitory interactions 
stayed inhibitory after LSH/SCI but their strength stayed strong from distal 
to proximal muscle. 

3.3.3 The pattern of inhibitory force feedback across limbs and animals between GA 

and FHL following chronic LSH 

We evaluated the strength and sign of feedback between GA and FHL across 

animals in both hindlimbs, to determine the relative contribution of inhibition between 

proximal and distal muscles in cats with chronic LSH. The force feedback between the 

GA muscle and FHL muscle was mainly inhibitory in all six cats. This was examined in 

all 6 experiments both with and without XER. Of these experiments, 6/6 exhibited strong 

inhibition from FHL onto GA across cats and limbs. Therefore, there is a definitive 

consistent pattern of inhibition between the two muscles following SCI. We therefore 



 83 

conducted comparative quantitative analysis across limbs and cats. We observed very 

strong inhibition of 26.7% to 79%  at t= static on injured side and 18%  to 60% on 

uninjured side limb in chronic LSH across 6 cats as depicted in table 3.1. Therefore 

inhibition is observed bilaterally even after partial SCI (LSH). Although the inhibition is 

stronger in injured side limb in comparison to intact/uninjured side limb but preferred 

direction from FHL to GA is the same across limbs and animals. This inhibition was force 

dependent across limbs (12/12 limbs) and animals (6/6 cats). It increased with increasing 

background force over the time of stretch and hold (each stretch). The P value is <<0.01 

for both dynamic and static time point.  

 

An example of the inhibition between GA and FHL is shown in Fig. 3.13 from a 

cat with chronic LSH (4 week following LSH) comparing the two legs in the same animal. 

The data from injured side limb has been described earlier in detail in Figure 3.5 through 

Figure 3.12. Figure 3.13a shows the amount of inhibition in four representative trials, two 

for each limb representing inhibition between GA and FHL. When both muscles were 

stretched for state two, strong inhibition of GA by FHL was observed in both injured side 

limb and uninjured side limb. Each circle represents force response obtained by 

subtracting state 1 force responses from state 2 force responses at approximate matched 

background force for each muscle separately in Figure 3.13a. We then normalized the data 

by converting change in N to percent change for both limbs in each animal shown in 

Figure 3.13b. The polynomial fits for the injured and uninjured side for GA and FHL 

showed strong inhibition of GA by FHL. Since, the amount of force production by a 

muscle and its background force varies from one trial to the next the inhibition amount is 
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normalized to percent change to make comparisons across trials, limbs and animals more 

meaningful. The strong inhibition of GA by FHL was seen in 6/6 cats (100%).  

 

The statistical results of the analyses across limbs and cats over different time 

points after the LSH are summarized in Table 3.1 and Table 3.2. Both tables include 

measurements for both limbs in each animal. The tables contain the range of maximum 

background force, range of inhibition, mean inhibition, SD and P value range in each limb 

observed across each of the six animals. Figure 3.14 demonstrate comparison across cats 

and limbs in all six animals. We selected trials with comparable background forces. It is 

obvious from the figure that inhibition from FHL onto GA is strong in all six animals 

irrespective of the time following LSH. Therefore we propose that this altered heterogenic 

inhibition between these two muscles appear in chronic LSH animals after injury and 

possibly stay there up to at least 20 week following  LSH. It does not change with 

improvement in locomotor activity of the animal. Figure 3.15 represent the suggested 

model for intermuscular inhibition between FHL and GA following chronic LSH. 
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Figure 3.13 Comparison of inhibition between FHL and GA in a cat 4 weeks 
following chronic LSH across both hindlimbs (a) inhibition in N (b) percent 
change/inhibition. The trials were selected with comparable background 
forces of recipient muscles in a given animal. The FHL inhibition by GA is 
shown on injured side (blue circles) and uninjured side (black circles), 
while GA inhibition by FHL is shown on injured side (red circles) and 
uninjured side (grey circles). Each circle is calculated by subtracting state 
one force response from state 2 force response at static time point at a 
given time and background force of recipient muscle. Polynomials are fit to 
each population of data. The directionality of force feedback between GA 
and FHL is distal to proximal in both limbs post LSH with greater amount of 
inhibition on the injured side limb. 
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Table 3.1 Magnitudes of inhibition of recipient muscle FHL by donor 
muscle GA during XER in percentage change, range, SD and P values for 
each limb in cats following chronic LSH at 2, 4, 8 and 20 weeks. Inhibition 
is statistically significant if P<0.01. The data shown includes 3 to 6 
observations in each limb in every cat each trial consisted of 42-60 
stretches each. 
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DONOR (GA) 

Cats/weeks 

 post LSH 

Recipient   
Muscle 
Max 
Background    
force  Range 

Injured side limb Uninjured side limb 

%Δ (-)  

Range 

% Δ (-)  

Mean ± 

SD 

P 

value 

% Δ (-) 

Range 

%Δ (-)  

Mean ± 

SD 

P 

value 

Cat1 = 2W 8 ~  22 8~17 11.7 ± 3 ≤ 0.01  14 ~16  14.8 ± 1 ≤ 0.01 

Cat2 = 4W 20 ~  30 12 ~ 16 14.0 ± 3 ≤ 0.05 13 ~25 19 ± 8 ≤ 0.01 

Cat3 = 4W 24 ~  32 10 ~ 13 11.6 ± 2  ≤ 0.01 6 ~ 11 7.9 ± 3 ≤ 0.04 

Cat4 = 4W 15 ~  25 7 ~ 16 11.2 ± 5 ≤ 0.01 5 ~ 7 6.5 ± 1 ≤ 0.05 

Cat5 = 8W 12 ~  20 10 ~ 12 10.9 ± 1 ≤ 0.05 9 ~ 14 11.6 ± 4 ≤ 0.05 

Cat6 = 20W 9 ~  30 17~25 20.7 ±  4  ≤ 0.01 21 ~ 28 24.5 ± 5 ≤ 0.01 

 
Table 3.2 Magnitudes of inhibition of recipient muscle GA during XER 
between in percentage change, range, SD and P values for each limb in 
cats following chronic LSH at 2, 4, 8 and 20 weeks. Inhibition is statistically 
significant if P<0.01. The data shown includes 3 to 6 observations in each 
limb in every cat each trial consisted of 42-60 stretches each. 
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                                                    DONOR (FHL) 

Cats/weeks 

 post LSH 

Recipient   
Muscle 
Max 
Backgrou-
nd    force  
Range 

Injured side limb Uninjured side limb 

%Δ (-)  

Range 

% Δ (-)  

Mean ± 

SD 

P  

value 

% Δ (-) 

Range 

%Δ (-)  

Mean ± 

SD 

P  

Value 

Cat1 = 2W 20 ~ 32 38 ~ 67 52.3 ± 15 < 0.001  25 ~ 29  27.3 ± 2 < 0.001 

Cat2 = 4W 7 ~ 30 41 ~ 57 49 ± 11 < 0.001 11 ~ 18 14.5 ± 5 < 0.001 

Cat3 = 4W 10 ~ 32 42 ~ 62 54.8 ± 9  < 0.001 36 ~ 60 48.3 ± 11 < 0.001 

Cat4 = 4W 18 ~ 42 41 ~ 44 42.5 ± 2 < 0.001 25 ~ 28 26.5 ± 2 < 0.001 

Cat5 = 8W 18 ~ 28 36 ~ 55 45.7 ± 13 < 0.001 30 ~ 37 33.5 ± 5 < 0.001 

Cat6 = 20W 6 ~ 9 41 ~ 45 42 ± 3  < 0.001 25 ~ 41 35.3 ± 11 < 0.001 
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Figure 3.14 Comparison of heterogenic inhibition across limbs and cats in 
all six animals (chronic LSH) to show the trend or pattern of inhibition. X-
axis represent cats numbered from 1 to 6(cat-1 is two weeks, cat-2 four 
weeks, cat-3 four weeks, cat-5 eight weeks and cat-6 twenty weeks post 
SCI). Y-axis represents inhibition in term of percent change. Each bar 
represents one trial in a given animal. Trials selected with comparable 
background forces and optimal inhibition for comparison across animals 
and limbs. 
 
 
 

 
Figure 3.15 Summary diagram/proposed model of the heterogenic 
inhibition between ankle extensors FHL and GA following chronic LSH.  
Inhibition between GA and FHL has a greater strength in distal to proximal 
direction (red) in comparison to proximal to distal direction (blue).  
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3.3.4 Recipient muscle force response is correlated with the background force of the 

donor muscle across limbs and animals between GA and FHL following chronic 

LSH 

Data published by Nichols in 1989 using decerebrate cats indicate that the amount 

of inhibition in recipient muscle depends on the force of the donor muscle. For this 

reason we further analyzed the recipient force responses against the donor background 

force to study the effect of SCI on the amount of inhibition in relation to the donor 

background force. We also plotted recipient muscle background force as a dependent 

variable against the donor muscle background force as an independent variable in the 

form of a simple scattered graph as shown in Figure 3.16a and 3.17a.  R2 values were 

calculated to determine the correlation between the two background forces. This was 

done to demonstrate that the two muscles compared for inhibition amount exhibited 

increasing background force increase over time in a comparable manner.  

 

The stretches were divided into three distinct time points showing change in force 

response of the recipient muscle from state 1 to state 2 were used for further analysis of 

the data. The populations of integrated values from the respective time points plotted 

separately as a function of background force of the donor muscle obtained from the 

original force traces shown in Figure 3.5 and 3.9. Multiple regression analysis was 

performed to test the overall separation of the populations of force responses (Wilmink 

and Nichols 2003).  

Figure 3.16 and Figure 3.17depict the typical analysis, whereby force responses of 

recipient muscle for a specific time point (mechanical, dynamic and static) are plotted as 
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a function of the background force of the donor muscle. Each data point (each circle) 

represents individual force response of the recipient muscle from the recorded raw data 

when the muscle was either stretched alone (black circles) or response of the recipient 

muscle when it was stretched with another muscle (colored circles). Polynomial fits and 

95% confidence intervals were fit to each population of data for a given time point at P 

value < 0.01.  

 

We observed increase in force response of the recipient muscle along with 

increase in background force of the donor muscle consistent with the data from 

decerebrate animals.  

 

 

 

 

 

 

 

 



 90 

0 5 10 15 20 25
0

5

10

15

20

25

30

FHL (donor) Background Force (N)

G
A

 F
or

ce
 R

es
po

ns
e 

(N
)

 

 

    

 
 

 

 

 

0 5 10 15 20
0

5

10

15

20

25

FH
L 

(d
on

or
) B

ac
kg

ro
un

d 
Fo

rc
e 

(N
)

GA (recipient) Background Force (N)

 R2 = 0.79

    

 
 

 

 

 

GA (state 1)
GA + FHL (state 2)

  
    

  
    

 

t = Mechanical

    

ba

 

 

 
    

 
 

 

 

 

0 5 10 15 20 25
0

5

10

15

20

25

30

FHL (donor) Background Force (N)

G
A

 F
or

ce
 R

es
po

ns
e 

(N
)

 

 

 
 

 
 

    

   

0 5 10 15 20 25
0

5

10

15

20

25

30

FHL (donor) Background Force (N)

G
A

 F
or

ce
 R

es
po

ns
e 

(N
)

 

 

  
    

GA (state 1)
GA + FHL (state 2)

GA (state 1)
GA + FHL (state 2)

 

  

t = Statict = Dynamic dc

 

Figure 3.16 Heterogenic inhibition of GA (recipient) by FHL (donor) 
following chronic LSH. (a) Background forces of FHL and GA depicting the 
comparable increase in both muscles background force as a result of 2mm 
stretch at a highly statistically  R2 value of 0.79 (significant correlation). The 
state 1 force response of GA (black circles and lines) and state 2 response 
(grey circles and lines) demonstrated with donor background force on x-
axis as an independent variable at (b) Mechanical time point. (c) Dynamic 
time point (d) static time point. Each set of force responses were fitted with 
quadratic polynomials and 95% confidence limits.  
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Figure 3.17 Heterogenic inhibition of FHL (recipient) by GA (donor) 
following chronic LSH. (a) Background forces of FHL and GA depicting the 
comparable increase in both muscles background force as a result of 2mm 
stretch at a highly statistically  R2 value of 0.69 (significant correlation). The 
state 1 force response of FHL (black circles and lines) and state 2 response 
(grey circles and lines) demonstrated with donor background force on x-
axis as an independent variable at (b) Mechanical time point. (c) Dynamic 
time point. (d) Static time point. Each set of force responses were fitted 
with quadratic polynomials and 95% confidence limits. 
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3.3.5 Intermuscular force feedback interactions between FHL and GA in acute 

spinal cord injury in cat. 

We studied intermuscular force feedback interaction between GA and FHL in 

acute SCI to determine the time of onset of altered intermuscular interactions observed in 

our study using chronic LSH. We used two types of acute SCI namely acute LSH and 

acute DSH. In this section I will describe the results from three cats with acute LSH and a 

brief summary of results from one cat with acute DSH. Our secondary purpose of this 

study was to determine which part of spinal cord might be involved in balance control 

(ventral half or dorsal half). We hypothesize that if the results from acute LSH and acute 

DSH are not similar then it means ventral half or vestibulospinal tract might be involved 

in posture control.  

Figure 3.18 and Figure 3.19 depict representative examples of force feedback 

interaction between GA and FHL in cats with acute LSH. Figure 3.18 shows weak 

inhibition of FHL by GA comparable to our results in chronic LSH in Figure 3.7. The 

analysis was done at three time points (mechanical, dynamic, static) as shown in Figure 

3.18 (a, b, c). The inhibition of FHL by GA increased from dynamic (figure 3.18b) to 

static (Figure 3.18 c) time point. The force responses of FHL was force dependent in all 

three animals and increased with increasing background force of FHL and donor muscle 

GA. The small separation of confidence intervals indicates weak inhibition of FHL by 

GA using XER in acute LSH. Figure 3.19 shows strong inhibition of GA by FHL 

consistent with our results shown in Figure 3.11 in chronic LSH. The wide separation of 

confidence intervals indicates strong inhibition of GA by FHL.  
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The inhibition between the two muscles is further explained in terms of percent 

change in Figure 3.20a. The detailed statistical analysis of the two trials representing 

inhibition of GA by FHL (72% inhibition) and FHL by GA (8% inhibition) at P value > 

0.01 is explained in Figure 3.20b and Figure 3.20c respectively. We observed that the 

inhibition was stronger from FHL onto GA in 3/3 (100%) cats with acute LSH. We were 

not able to demonstrate this altered pattern in a cat with acute DSH instead we observed 

bidirectional/equal amount of inhibition between GA and FHL in acute DSH not shown 

here. However, we propose further detailed studies in acute DSH to confirm our findings.  
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Figure 3.18 Heterogenic inhibition from GA (donor) onto FHL (recipient), 
during XER in a cat following acute LSH for (a) mechanical phase, (b) 
dynamic phase, and (c) static phase. The same conventions as Figure 3.11 
apply. Polynomials and 95% confidence intervals are fit to each population 
of data. Each circle (blue for state 2 and black for state 1) represents force 
response of FHL as a result of a single stretch.  
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Figure 3.19 Heterogenic inhibition from FHL (donor) onto GA (recipient), 
during XER for (a) mechanical phase, (b) dynamic phase, and (c) static 
phase in a cat following acute LSH. The same conventions as Figure 3.11 
apply. Polynomials and 95% confidence intervals are fit to each population 
of data. Each circle represents force response of GA as a result of single 
stretch. The clear separation of confidence intervals indicates strong 
inhibition of GA by FHL at P value > 0.01. 
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Figure 3.20 (a) Amount of inhibition of FHL by GA and GA by FHL is 
calculated in N (blue circles for FHL and red circles for GA) at static time 
point. Each circle represents force response of recipient muscle as a result 
of a single stretch. Difference is calculated by subtracting state 1 and state 
2 force responses at an approximate matched background force and time 
and then converting the difference in N to %change/inhibition. X-axis 
shows background force of recipient muscle in N and y-axis represent 
inhibition in % where – stand for inhibition and + for excitation. Polynomial 
fit is generated to each population of data (each recipient muscle). (b and  
c) Box plots representing statistical analysis of a representative trial at 
static time point explaining force feedback inhibitory interactions between 
GA and FHL following acute LSH. State one is shown in black and state 2 in 
red for GA and blue for FHL. The median is shown in red color across 
stretches in a trial at a given time point. The P value, mean change and 
percent change are calculated to demonstrate the amount of inhibition 
between GA and FHL. The comparison of (b) and (c) clearly shows stronger 
inhibition from FHL onto GA. 
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3.3.6 Clasp knife inhibition 
 

The hallmark of clasp knife inhibition after complete transaction of spinal cord 

has been described as a profound autogenic and heterogenic inhibition that occurs with 

the latency of more than 80 ms (Nichols and Cope 2001). The heterogenic inhibition is 

observed even at very low background forces of the recipient muscle. 

 In our study we did not observe any autogenic inhibition between GA and FHL 

following LSH. Figure 3.21 depicts a representative example of absence of clasp knife 

inhibition in animals with chronic LSH. There is no autogenic inhibition in state one 

(black line). The latency of reflex response is comparable to decerebrate cats with intact 

spinal cord described earlier in chapter 2, Figure 2.10 (28 ±4 ms). This latency is much 

smaller than the clasp knife inhibition reflex latency of more than 80 ms. Clasp knife 

inhibition between GA and FHL was also not observed in acute LSH. The sum of 

autogenic and heterogenic inhibition in state 2 was not strong enough to drop the force 

response of the recipient muscle to almost zero (Nichols and cope 2001). The absence of 

clasp knife inhibition was observed in 6/6 cats with chronic LSH (100%) and 3/3 (100%) 

cats with acute LSH in both hindlimbs. 
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Figure 3.21 Reflex latency for the FHL/GA interaction was calculated at 28 ± 
4 ms. Distance between the two blue dashed lines indicates latency of 
reflex. There was no evidence of autogenic inhibition in state 1 and the 
force of recipient muscle did not drop. 
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3.4 Discussion 

In the present study, we describe changes in intermuscular reflexes over time 

using the chronic partial spinal lesion paradigm with a focus on comparison between 

hindlimb muscles using GA and FHL. We also compared our results to control animals 

and animals with acute LSH. The main motivation of this study was to understand the 

intermuscular interactions following incomplete SCI that is comparable to human 

contusion injury of spinal cord. The most common types of spinal cord injury in humans 

are contusions and compressions. Spinal contusion occur when the spinal cord is bruised, 

often causing inflammation and bleeding from blood vessels near the injury site. Spinal 

compressions occur when pressure is applied to the spinal cord by an outside source, such 

as bones, from a vertebral fracture, or blood, from an adjacent hematoma. Hence, 

clinically most spinal cord injuries in humans are incomplete in nature and consequently, 

studying the reorganization of reflex pathways after an incomplete SCI in cats could 

provide important clues as to their intrinsic organization, reorganization following partial 

SCI, and possible involvement in locomotor recovery and poor weight support. 

Our results indeed showed that the intermuscular pathways are modified after a 

partial spinal lesion. Although, all the animals with chronic LSH were able to walk again 

within a week following SCI they all had poor balance control ability. The most likely 

explanation is that the spared pathways from supraspinal structures are most probably 

involved in reorganizing the spinal CPG during locomotor recovery in animals with 

chronic SCI. Since our experimental animals were able to walk it is possible that the 

spinal CPG in chronic SCI could have reached a stage where it could function more or 

less independently from descending supraspinal inputs at the time of terminal 
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experiments involving decerebration either due to sprouting of neurons in spinal cord or 

reorganization of CPG in response to altered central and sensory/proprioceptive input. It 

is unlikely that the locomotive recoveries in hindlimbs despite of altered intermuscular 

interactions that occur over multiple weeks are dependent only upon the descending 

contralateral spared corticospinal pathways. More likely, plasticity of descending and/or 

spinal circuitry, in combination with spared pathways, plays a significant role in the 

changes seen. In addition following incomplete SCIs in rodents, substantial increases in 

collateral sprouting of the corticospinal tract have been reported during the first 2 months 

post-injury (Bareyre et al. 2004; Li et al. 1994). This is supported by study in cats 

showing direct anatomical evidence of interneuronal sprouting in the cat (Fenrich and 

Rose 2009). We propose that the sprouting and new connection formation in spinal cord 

is not a perfect phenomena and may involve many new circuits formation that are not 

perfect resulting in incomplete or faulty recovery of balance control following SCI.  

We propose that balance control and weight support appear to be more complex 

motor task that could not be totally controlled at spinal level and instead need perfect 

supraspinal input. We observed strong inhibition emanated exclusively from FHL onto 

GA and weak inhibitory interactions were found in the opposing direction in all six 

animals irrespective of the time past SCI. It was observed from 2 to 20 week post chronic 

SCI. The results remained consistent across animals and limbs. We were able to see the 

same results in acute LSH. Thus, proving that the intermuscular interactions are altered 

immediately following LSH and the changed are maintained up to 20 weeks. During this 

period locomotion is recovered however, balance control is never fully recovered. The 
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changes are therefore at spinal level independent of any repair process in decending 

pathways. 

Another explanation for altered intermuscular interactions following LSH is that 

there could be a central mechanism for deciding the relative strengths of these force-

dependent feedback pathways that are possibly disturbed in SCI. There are functional 

consequences of altered inhibition, namely poor interjoint coordination. While GA and 

FHL both have mechanical actions at the ankle, GA generates the greater non-sagittal 

moment due to large abduction torque about the ankle joint. This could play an important 

role in stability by increasing the base of support during any motor task requiring 

stabilizing effect. Therefore, strong inhibition of GA may interfere with ankle stability 

and balance control. FHL on the other hand has a smaller ankle torque; it also produces 

an adduction torque and acts on the MTP and distal interphalangeal (IP) joints (Goslow et 

al. 1972; Lawrence and Nichols 1999).  Strong inhibition of GA reduces stability at ankle 

by increased planterflexion and abduction. Previous studies in locomoting animals also 

indicated a persistent pattern of force feedback gradient during locomotion between GA 

and FHL (Ross and Nichols 2009). Therefore, we propose that the interactions between 

GA and FHL are vital in maintaining normal motor activity in cat. Since, animals have 

shown three different intermuscular interactions between GA and FHL in decerebrate 

cats we propose that the animal loses its ability to change the appropriate task dependent 

muscular interactions between these two muscles following LSH needed for different 

task performance.    
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Since we have observed strong inhibition of GA by FHL in our experiments we 

propose that the weak inhibition of FHL by GA disturbs the net torque and interjoint as 

well as cross-axis coupling that, in some cases, parallels the mechanical coupling of 

biarticular muscles (Nichols 1994) required for stability at ankle joint. We propose that 

an imbalance between adduction and abduction at ankle resulting from altered 

interactions between GA and FHL could be one of the reasons for poor stability during 

standing and walking in SCI. Additionally, inhibition, in combination with excitatory 

muscle length feedback, contributes to the regulation of whole-limb stiffness (Nichols 

and Houk 1976; Nichols et al. 1999). Therefore net result of this strong distal to proximal 

gradient between GA and FHL not only effects stability at ankle joint but will also result 

in poor whole limb stiffness. In addition, GA is a major force producing muscle in hind 

limb and its strong inhibition could result in failure to maintain posture against gravity 

and other perturbations.  

 Partial spinal lesion (LSH in our study) primarily disrupts the anatomical 

organization of spinal cord on one side. Therefore, one might expect to observe changes 

on the damaged side only. However, there is crossing over of spinal tracts (medial 

vestibulospinal tract, pontine reticulospinal tract and ventral corticospinal tract) therefore 

we see some changes on the uninjured side limb too. Our data showed increased 

inhibition of a major force producing hind limb muscle GA from FHL bilaterally in each 

animal. This pattern was seen in all animals in both limb but it was asymmetric in amount 

across limbs in each animal. There was stronger inhibition of GA by FHL on injured side 

that might be there to offer more compensatory inputs on the damaged side. Conversely 

intermuscular force feedback rearrangement from the undamaged side could have 
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emerged to offset losses on the damaged side. Previous studies (Bonasera and Nichols 

1994) suggested that inhibition increases from dynamic to static time point in decerebrate 

animals. We have observed the same trend in our study. Therefore, even after SCI the 

heterogenic inhibition stayed time dependent. We have also observed increase in force 

response of recipient muscle as a result of increase in background force of donor muscle. 

 It is an interesting fact that there is a variable pattern of inhibition between GA 

and FHL across animals in non-locomoting decerebrate cats however, in locomoting 

premamillary cats GA always strongly inhibits FHL (Ross and Nichols 2009). Therefore, 

there is a well defined pattern of inhibition in locomotion and SCI. Physiologically, 

muscles can also be classified into proximal and distal categories on the basis of their 

relative anatomical origin and insertion (Delay et al. 2007). Grossly, muscles acting at 

more proximal joints (hip and knee) in hindlimb are referred to as proximal muscles 

while those acting at comparatively distal joints (ankle, tarsometatarso-phalangeal joints) 

are classified as distal muscles. The same principle can be applied to the muscles acting 

at the same joint, for example; GA is a proximal muscle in comparison to FHL at ankle 

joint.  

The animals in our study were able to walk a week following SCI without any 

training or other medical intervention. They however, exhibited poor lateral stability and 

balance control when exposed to any perturbation. Inhibition converging on the distal 

musculature (Delay et al. 2007) may be useful in some motor tasks like stabilizing from a 

fall but overall this could disrupt posture by inhibiting large force producing muscles in 

the hindlimb. Following LSH we observed only distal to proximal pattern of inhibition 
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between proximal and distal ankle muscles. We propose that the poor balance control in 

our cats following LSH could be attributed to the loss of proximal to distal 

pattern/directionality of inhibition proposed by Delay et al. However, we did not study 

proximal joint muscles therefore further experiments are required to support the idea of 

gradient of inhibition between hind limb musculature. We were not able to observe this 

altered pattern of force feedback between GA and FHL in cats following dorsal LSH. 

However, it was reported in only one experiment therefore requires further studies to 

prove the difference in the two types of SCI.  

Clasp knife inhibition is the most common clinical sign observed in patients 

following SCI. We did not observe any clasp knife inhibition in our study in animals with 

LSH (Figure 3.21). However, clasp knife inhibition has already been reported in 

complete transaction of spinal cord in cat (Nichols and Cope 2001) and in cats with DSH 

(Cleland and Rymer 1990). We therefore, propose that the dorsal column damage might 

be responsible for clasp knife inhibition. In our study the dorsal column was intact on one 

side of the spinal cord therefore the cats with LSH did not exhibited clasp knife 

inhibition. Clinically we observe it more often due to the fact that most of the SCI in 

humans is a contusion injury that can compress or affect multiple tracts in spinal cord. 

Our results suggest that clasp knife inhibition can be present in some SCI cases 

depending upon the parts of spinal cord affected by the injury. This is clinically a very 

important observation that can help clinicians to identify the parts of the spinal cord 

affected by injury or accident. Thus they can plan treatment and rehabilitation 

accordingly.  
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CHAPTER 4 

ALTERED PATTERNS OF INTERMUSCULAR FORCE FEEDBACK 

BETWEEN HINDLIMB EXTENSORS FOLLOWING CHRONIC 

SPINAL CORD INJURY IN THE CAT 

II. SOLEUS, PLANTARIS AND FLEXOR HELLUCIS LONGUS 

4.1 Introduction 

Antigravity muscles, usually the extensors, provide support by generating the 

force against the ground that keeps the limb extended and the center of mass at the 

appropriate height. A cat stands with its limbs in a semi-flexed posture and extensor 

muscles are tonically activated to prevent the joints from collapsing into flexion. 

However, bipeds and quadrupeds are inherently unstable and their bodies sway during 

quiet stance and require complex patterns of muscle activation produce direction-specific 

forces to control the body’s center of mass. We propose that there is a widespread 

reorganization of intermuscular force feedback following SCI between ankle extensors 

that ultimately affect animal ability to maintain posture and wait support. 

The purpose of the results from experiments reported here in this chapter was to 

obtain further insights into the intermuscular force feedback mechanisms among the 

ankle extensors in the chronic LSH cat. To meet this objective, we extended our study to 

Soleus (SOL) and Plantaris (PLT) muscles that allowed us to develop a model of 

intermuscular force feedback in cats with SCI. We asked whether the reorganization of 

force feedback following SCI is limited only to FHL and GA or it extends to other ankle 

extensors too. We also wanted to know if the redistribution of inhibitory heterogenic 
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force feedback is limited to multiarticular muscles or it can affect uniarticular muscles 

like SOL too. To test our hypotheses, we analyzed data from cats with chronic SCI at 

different time points using PLT, SOL and FHL muscles.  

Numerous investigations in our laboratory have already demonstrated that 

inhibitory force feedback exists between SOL and FHL as well as between PLT and FHL 

during walking (Ross and Nichols 2009) and quiet stance (Bonasera and Nichols 1994). 

Our most recent data has proved that this inhibitory force feedback has no specific 

directionality in decerebrate cats (chapter 2) particularly between GA and FHL. It varies 

from one animal to the other and therefore we propose that it could be state dependent 

(chapter 2). An important issue, therefore is to establish the contribution of each of these 

muscles in intermuscular and interjoint co-ordination following SCI.  

We observed a consistent pattern and amplification of intermuscular force 

feedback between PLT, SOL and FHL following SCI in cats with chronic LSH (2week to 

20 week post SCI). We propose that following SCI the animal loses its ability to adjust to 

different perturbations in its environment and hence exhibits only one kind of 

intermuscular interaction between muscles. We also propose that following SCI the 

strong force producing muscles like SOL, GA and PLT are strongly inhibited by more 

distal muscles like FHL thus ankle compliance is lost. 

 



 107 

4.2 Methods 

4.2.1 Preparation 

The methods used to determine the strength and sign of intermuscular force 

feedback in chronic LSH cats have been described previously (see chapter 3). The results 

depicted in this chapter are drawn from experiments on six healthy adult female cats 

weighing 4–4.5 kg to evaluate intermuscular reflex pathways using FHL, SOL and PLT 

muscles from hindlimb of cats. The studies were conducted on both legs so each muscle 

is represented twice per preparation (12 legs from 6 chronic LSH cats). Comparative 

studies were performed across legs and animals to determine the effect of SCI on these 

intermuscular interactions. All protocols were in complete accordance with the guidelines 

of both the Federal and Institutional Animal Care and Use Committee.  

 

Chronic Spinal hemisection was performed at the T9-T10 level (Figure 3.2) using 

iridectomy scissors in 6 cats at university of Florida under general anesthesia and aseptic 

conditions described earlier (Jefferson et al. 2011) as explained earlier in chapter 3. 

Behavioral studies were performed on these animals both before and after chronic SCI 

while histological studies were done post terminal experiments (Georgia Instute of 

Technology) at university of Florida. Terminal experiment With decerebration at 2, 4, 8 

and 20 weeks post surgery done at Georgia Institute of Technology in Nichol’s lab after 

they resumed walking following SCI. At the end of each experiment, the animal was 

euthanized with an overdose of Nembutal followed by a pneumothorax. Acute LSH was 

performed in Nichol’s laboratory at Georgia Institute of Technology. 
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The mechanographic technique was used to evaluate the pattern, distribution and 

contribution of intermuscular force feedback from muscle receptors (Nichols 1987). Each 

animal was surgically prepared by performing a tracheotomy following anaesthesia with 

isoflourine, preparing carotid arteries for ligation, and cannulating the external jugular 

vein for fluid replacement. Withdrawal responses were monitored, and the level of 

anesthetic was adjusted accordingly. Both hindlimbs were immobilized using bone pins 

insertion into the femur and tibia bones, and the legs were clamped to maintain the knee 

at 110o angle (mid stance position). The animal was placed in the stereotaxic frame, 

supported above a table/ rigid frame while maintaining the core temperature at 37oC.  

 
Figure 4.1 Anatomical/diagrammatic representation of ankle extensor 
muscles in cat hindlimb.  GA (green), PLT (light green), SOL (blue) and FHL 
(blue).  
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The PLT, SOL, and FHL muscles of both right and left hind limbs were dissected 

after being immobilized. Both Plantaris (PLT) and Soleus (SOL) were cut near their 

insertion after careful separation from GA and surrounding connective tissue. As PLT 

tendon passes through Achilles tendon, special care was taken to separate it and was cut 

near its connection with flexor digitorum brevis in sole of foot where it broadens opposite 

the distal end of calcaneous. The soleus tendon was secured with a small piece of 

calcanium.  FHL muscle was carefully separated from surrounding connective tissue and 

followed behind the medial malleolus until its tendon was cut near its insertion into 

Flexor digitorum longus tendon. All three muscles were attached via their respective 

tendon to myographs and linear motors.  

An intercollicular decerebration was performed in each cat, removing all brain 

matter rostral to the transaction as explained earlier (chapter 2, 3). Anesthesia withdrawn 

slowly and data collection is started after appropriate withdrawal responses and muscle 

tone assessment. Once baseline data without any nerve stimulation were obtained, XER 

was elicited with electrical stimulation of the contralateral (muscles of one limb and 

nerve stimulation of the other limb) posterior tibial nerve at 2 times threshold to collect 

further data.  

4.2.2 Data Acquisition and Analysis 

The Parker 406LXR linear motors used in this study that were mounted on a 

custom built aluminum frame and could be adjusted in the horizontal, vertical, and 

diagonal directions so that the motors could be properly aligned with the appropriate 

muscle. Data was acquired digitally through the dSPACE board at a sampling rate of 
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1000 Hz described in detail earlier (Bonasera and Nichols 1994, Wilmink and Nichols 

2003, Nichols 1987). As described earlier (chapter 2 and 3) the typical paradigm was a 2 

mm stretch at a velocity of 0.04 m/s, 100 ms hold period, and 2 mm release. 

Intermuscular effects were recorded across background forces by stretching a muscle 

denoted the “recipient” in state one and two as described in chapter 2 and 3 both 

with/without crossed extensor reflex (i.e. 40-60 stretch repetitions).  

 

Software in Matlab version 7.01 was used to analyze the data. Briefly, the 

background force of the muscle was calculated as an average of the force 10 ms prior to 

the beginning of the stretch, during the isometric hold period. A baseline was constructed 

by performing a linear interpolation from the mean force response just prior to the stretch 

to the mean force after the end of the release. The entire baseline was then subtracted 

from the overall force response. To evaluate the strength and sign of  feedback individual 

force responses at three specific time points described in chapter 2 and 3 (mechanical, 

dynamic, static) were obtained from the baseline subtracted force data, and background 

force was obtained from the original force trace.  The polynomial fits (95% confidence 

interval) for force responses obtained at each time points were plotted as a function of 

recipient background force.  

 

Additionally, differences for the recipient muscle force response were calculated 

by subtracting the force responses at each background force and polynomial fits were 

calculated using matlab. Statistics were performed using Statistica 6.0 and Excel to test 

the separation of the data populations at each time point across limbs and cats. The 95% 
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confidence intervals represent the validity of the polynomial fit to the data points; a P 

value < 0.01 from the statistical test statistically proves that the two populations of data 

are distinctly different. 

Additionally, differences for both the dynamic and static phases force response in 

the recipient muscle were calculated as the difference between state 2 and state 1  force 

responses and curve fits generated to determine the amount of inhibition at different time 

points during ramp and hold period of each individual trial. Percent difference was also 

calculated on the basis of this calculation between state 2 and state 1 force response of 

recipient muscle for each time point. Each pair wise combination has been normalized to 

the isolated muscle stretch response (recipient) so that the relative strength can be 

expressed as a percentage change from autogenic to autogenic plus heterogenic response. 

Comparisons were made to determine the influence of SCI on the strength and 

distribution of intermuscular proprioceptive feedback. Mean change in force response of 

recipient muscle, standard deviation, range (maximum and minimum change in force 

response of recipient muscle) and percent change between state 1 and state 2 was 

calculated. If P value < 0.01 it is considered significant and documented as box plots for 

each time point for every individual trial as demonstrated in figure 4.7.  

To understand the mechanisms underlying force dependent inhibition between 

FHL and other antigravity muscles in our study latency of recipient force response was 

calculated for each muscle combination. According to previous studies the reflex latency 

of the force dependent inhibition between FHL, GA, SOL and PLT occurred at 28 ± 4 ms 

(Bonasera and Nichols 1994). This analysis helped us determine if the clasp knife 
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inhibition appeared after SCI in our data. The reflex latency in clasp knife inhibition is ≥ 

80 ms (Nichols and cope 2001). We did not observe any clasp knife inhibition between 

GA and FHL described earlier in chapter 3 in animals following LSH. 

4.3 Results 

The purpose of studying force feedback interactions between SOL, PLT and FHL 

was to further determine the distribution of the feedback interactions among ankle 

extensor muscles in the hindlimb of the cat with chronic LSH. Force feedback pathways 

between these muscles are inhibitory under conditions of quiet stance (Bonasera and 

Nichols 1994; Nichols 1999; Wilmink and Nichols 2003) that has already been studied 

extensively in our laboratory. Our main goal was to determine how SCI effects these 

interactions in these animals with poor balance control. We also wanted to confirm that 

the reorganization of intermuscular interactions in LSH is not limited to GA and FHL as 

described in detail in chapter 3.  

We hypothesize that if the reorganization of intermuscular interactions is 

widespread among ankle extensors as a result of SCI that could be one of the contributing 

factors for a poor support capability in SCI. This chapter details results from six cats with 

chronic LSH at different time points (2 to 20 weeks post SCI). The results were compared 

with control static animal data (chapter 2) and locomoting animal data (Ross and Nichols 

2009) to develop a model of force feedback in cats with partial SCI (LSH). 
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Uniformity of lesion magnitudes across cats was confirmed by Dr. Dena Howland 

laboratory. She used Cresyl violet and myelin stained sections through the lesion 

epicenters of each animal to determine the extent of tissue sparing and damage. 

Typically, complete disruption of the ipsilateral gray and white matter was seen in all six 

animals with chronic LSH. Contralateral gray and white matter was completely spared 

with the exception of some dorsal contusion in one out of six cats (one of the 4 weeks 

post SCI cats). Thus, lesion variability was minimal across animals.  

The results presented in this chapter are divided in seven main sections. The first 

Section (4.3.1) addresses in detail the inhibitory force feedback between SOL and FHL 

following chronic LSH. The second section (4.3.2) depicts data analysis in a chronic LSH 

cat explaining detailed analysis of inhibitory force feedback between FHL and SOL limbs 

in each cat. Section 3 (4.3.3) explains comparison of heterogenic inhibitory force 

feedback across cats used in this study with chronic LSH. Section four (4.3.4) addresses 

the inhibitory force feedback between PLT and FHL following chronic LSH. Section five 

(4.3.5) explains intermuscular force feedback between ankle extensors PLT and FHL 

across limbs. Section six (4.3.6) describes force feedback interaction patterns between 

FHL and PLT across cats. Section seven (4.3.7) explains clasp knife inhibition and the 

evidence of its presence or absence following LSH in our study among FHL, PLT and 

SOL. 
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4.3.1 FHL strongly inhibits SOL, while SOL very weakly inhibits FHL following 

chronic SCI 

The strength of the increase in inhibition of SOL by FHL during SCI was 

examined in three out of total six experiments. All of the animals used in these 

experiments exhibited stepping behavior within a week following SCI and poor balance 

control/weight support irrespective of the time post SCI. We did not collect data from 

SOL muscle in the initial two experiments of the project while the third one was rejected 

due to broken/damaged soleus tendon and poor XER activation. Of the three remaining 

experiments evaluating the force responses in SOL and FHL during XER, 3/3 (100%) 

demonstrated strong inhibition in 6/6 legs (100%) from FHL onto SOL (distal to 

proximal pattern/directionality of inhibition).  

Figure 4.2 and Figure 4.3 each shows raw data from a single trial. Figure 4.2 

depicts a representative example of the strong inhibition of SOL by FHL in a chronically 

injured cat with LSH.  Figure 4.3 is a representative example of weak inhibition of FHL 

by SOL in the same animal with chronic LSH. Figures 4.2a and 4.3a depict force output 

while 4.2b and 4.3b depict length input of SOL respectively. Figures 4.2c and 4.3c depict 

the force output of FHL. Figure 4.2d and Figure 4.3d represent length input of the distal 

muscle FHL respectively. Additionally, Figure 4.2a, 4.3a, 4.2c and 4.3c contain blue 

broken lines on force responses indicating state 2 when the recipient muscle was 

stretched along with the donor muscle in each case. Both figure 4.2 and 4.3 represent raw 

data obtained in a single trial consisted of 45 to 60 muscle stretches. Bidirectional force 

feedback between FHL and SOL is observed in decerebrate cats during XER ((Bonasera 

and Nichols 1994). Figure 4.2a also demonstrates strong isometric inhibition of SOL by 
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FHL even when it is acting as a donor and not being stretched (isometric response of 

donor) in state 1.  

 

Figure 4.4 further elaborate the comparative amount and direction of  inhibition 

between SOL and FHL. Each stretch is broken down into three time points here namely; 

mechanical, dynamic and static time point. Each black circle represents individual stretch 

of recipient muscle in state one at mechanical (a, d), dynamic (b, e) and (c, f) static time 

point. Each colored circle (red for SOL and blue for FHL) represents an individual stretch 

in state 2 at the three time points. The difference in heights of the black and colored 

circles depicts change in force response of recipient muscle from state 1 to state 2. 

To evaluate the strength and sign of feedback during a trial with XER, individual 

force responses at specific time points were obtained from the baseline subtracted force 

data and background force was obtained from the original force trace from raw data 

(Figure 4.2, Figure 4.3). Figure 4.5 and Figure 4.6 depicts the typical analysis, whereby 

force responses for a specific time point in this case (a) mechanical (b) dynamic and (c) 

static time point are plotted as a function of background force for each recipient muscle. 

Each data point/circle in figure 4.5 and 4.6 represents a response of the recipient muscle 

obtained when the muscle was either stretched alone in state 1 (black circles) or response 

of the recipient muscle when it was stretched with another muscle in state 2 (blue circles 

for FHL and red circles for SOL). Polynomial fits and 95% confidence intervals were fit 

to each population of data at each time point for each muscle as shown in figure 4.5 (a, b, 

c) and 4.6 (a, b, c). The wide separation of two populations of data (state 1 and 2) in 

figure 4.5 clearly demonstrates very strong inhibition of SOL by FHL. Figure 4.6 on the 
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other hand shows a very narrow separation of the two populations of data suggesting a 

weak inhibition of FHL by SOL.  

Figure 4.7 represents the amount of inhibition calculated in (a) Newton (N) and 

(b) % inhibition at static time point (4.5c and 4.6c) for SOL and FHL force response 

respectively. Each circle represent inhibition calculated for the given time point by 

subtracting actual stretches in state two from state 1 (shown in Figure 4.5c, Figure 4.6c). 

Polynomial fits were applied to each population of data at static time point for each 

muscle as shown in figure 4.7a and 4.7b. The inhibition between SOL and FHL was 

highly force dependent and increased from dynamic time point to static time point across 

limbs and cats. Therefore even after SCI muscle response properties were preserved and 

there were increases in force responses of each recipient muscle from dynamic to static 

time point.  

Figure 4.8a and 4.8b shows statistical analysis of the (same two trials) trials from 

SOL and FHL respectively in the same animal. The P value for SOL inhibition by FHL is 

<< 0.01 in Figure 4.8a that is highly statistically significant in contrast to P value of > 

0.01 for FHL inhibition by SOL in Figure 4.8b. Also, % inhibition, mean change, range 

and SD are all higher for SOL in comparison to FHL. The same calculations were 

performed for mechanical and dynamic time point too not shown here. We observed 

increases in inhibition from dynamic to static time point in each case. SOL is a major 

antigravity muscle in hindlimb hence its strong inhibition by FHL is an evidence of 

rearrangement of intermuscular force feedback after SCI that made the animal incapable 

to response to change in state or any perturbation and probably poor stability too. 
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Figure 4.2 Representative trial depicting force feedback interactions between 
SOL and FHL in a cat following chronic LSH. (a) Donor muscle (SOL) stretch-
evoked force response during XER. (b) Donor muscle (SOL) length input to 
two-state stretch (c) Recipient muscle (FHL) stretch-evoked force response 
during XER. Dashed blue lines on stretches indicate state 2. (d) Recipient 
muscle length input for two-state stretch. There is clearly little inhibition 
from SOL onto FHL in state 2 (c). XER is done by stimulating tibial nerve in 
the hindlimb on the side without LSH at 2T evokes an increase in the 
background force of the recipient and donor muscles on the right hindlimb 
(injured side in this example), SOL and FHL respectively (a, c). The same 
conventions as Figure 3.7 apply. 
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Figure 4.3 (a) Recipient muscle SOL (b) donor muscle FHL stretch-evoked 
force response during XER in a cat 4 weeks following chronic LSH. Dashed 
blue lines on stretches indicate state 2.  (b) Recipient muscle (SOL) length 
input to two-state stretch (d) Donor muscle length input for two-state 
stretch. There is significant inhibition from FHL onto SOL in state 2. XER is 
done by stimulating tibial nerve in the hindlimb on the side without LSH in 
this example at 2T that causes an increase in the background force of the 
recipient and donor muscles on the hindlimb of injured side, SOL and FHL 
respectively (a, c). The same conventions as Figure 3.5 apply. 
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Figure 4.4 (a, b, c) Inhibition of SOL by FHL (d, e, f) Inhibition of FHL by 
SOL at mechanical, dynamic and  static time point respectively. Each circle 
represents individual stretch response of recipient muscle in state 1 (black) 
and state 2 (red for SOL and blue for FHL). The difference of heights of the 
colored circles and black circles depict relative inhibition in state 2 and 1.  
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Figure 4.5 Inhibition from FHL (donor) onto SOL (recipient) during XER in a 
cat 4 weeks following chronic LSH at the (a) mechanical (b) dynamic (c) 
static time point. Force responses are shown in circles (black state 1 and 
red state 2). Polynomial and 95% confidence intervals are fit to each 
population of data. Inhibition of SOL by FHL increases from dynamic to 
static time point. The maximum inhibition is shown by clear separation of 
confidence intervals at P≤0.001 at static time point. The inserts in (a), (b) 
and (c) shows two traces matched at  mean background force of the 
recipient muscle in state 1 (black line) and state 2 (red line) superimposed 
to illustrate the magnitude of inhibition from FHL onto SOL during XER, 
and the vertical line indicates the sample time. 
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 Figure 4.6 Inhibition from SOL (donor) onto FHL (recipient) during XER in a 
cat 4 weeks following chronic LSH for (a) mechanical (b) dynamic (c) static 
time point. Force responses are shown in circles (black state 1 and blue 
state 2). The same conventions as Figure 4.5 apply. The overlapping of 
confidence intervals depict weak inhibition of FHL by SOL at P>0.01. 
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Figure 4.7 (a) Shows comparative amount of inhibition of SOL (red) and FHL 
(blue) in Newton at static time point. Each circle represents the difference of 
state 1 and state 2 force responses/stretches of each muscle at matched 
background force and time. (b) Amount of inhibition is converted to percent 
change for both SOL (red) and FHL (blue). There is strong inhibition of SOL 
and week inhibition of FHL. Polynomials are fit to each population of data. 
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Figure 4.8 Box plots representing statistical analysis of the representative 
trials at static time point for (a) SOL (b) FHL in a cat following chronic LSH. 
State one is shown in black and state 2 in red (SOL), Blue (FHL). The 
median is shown in red color across stretches in a trial at a given time 
point. The P value, mean change and percent change are calculated for to 
demonstrate the amount of inhibition across state and time point. The 
comparison clearly shows stronger inhibition of SOL by FHL in chronic 
LSH.  
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4.3.2 Inhibitory feedback between SOL and FHL reorganizes across limbs in cats 

following chronic LSH 

Previous studies have mapped the organization of feedback in the intercollicular 

decerebrate cat under conditions of XER (Bonasera and Nichols 1994; Nichols 1999). In 

our experiments there was partial lesion involving one half of spinal cord therefore; one 

might expect to see different force feedback in two limbs of the cat. However, as 

described in chapter 3 the same kind of inhibitory pattern was observed across limbs in 

each cat for force feedback interactions between GA and FHL. We therefore, compared 

the data for two lhind limbs in each animal to determine the force feedback across limbs 

for interaction between SOL and FHL. We hypothesize that if the same pattern of 

intermuscular force feedback inhibition exists across limb between SOL and FHL like 

GA and FHL it will prove that the reorganization of force feedback is similar in two 

limbs for all hindlimb ankle extensors and is not affected by the muscle type (slow/fast 

twitch or multiarticular/single joint muscle). 

 

Figure 4.9 depicts the comparative summary of force feedback between SOL and 

FHL across the two limbs of an animal with chronic LSH. The pattern of inhibition was 

similar in both legs (distal to proximal). The amount of inhibition was calculated as % 

inhibition for both SOL and FHL response respectively as described earlier for Figure 

4.7. Each circle represent inhibition calculated for the given time point by subtracting 

actual stretches in state two from state 1 and normalizing the difference by converting it 

to % change in each limb for the static time point. A quadratic polynomial was fit to each 

population of data at the static time point for each muscle. These same calculations were 

performed for dynamic time point too not shown here. The results were similar for both 
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limbs at each time point with the exception of more inhibition at static than at the 

dynamic time point for each limb for SOL and FHL. The amount of inhibition was 

always greater on the injured side limb in comparison to the uninjured side limb. We also 

observed very little inhibition of FHL by SOL bilaterally. 

Table 4.1 and 4.2 summarize the intermuscular interactions in two limbs of each 

animal used in our study. The results clearly indicated that the change occurred bilaterally 

irrespective of the side of hemisection and time post chronic LSH.  
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Figure 4.9 Comparison of force feedback between two limbs of the same 
cat with chronic partial SCI (LSH). Amount of inhibition shown in terms of 
percent change for both SOL and FHL. Strong inhibition of SOL (red) and 
week inhibition of FHL (blue) observed bilaterally. Each circle represents 
difference of recipient force response in state one and two at static time 
point at a given background force. Polynomial was fit to each population of 
data for static time point for each limb and muscle. 
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4.3.3 Patterns of inhibition between SOL and FHL is similar across cats irrespective 

of time post chronic SCI 

We compared data across animals to determine the possibility of existence of a 

pattern of inhibition across animal characteristic of SCI. We observed the same pattern 

between SOL and FHL across cats in chronic LSH. We observed strong inhibition of 

SOL by FHL in 100% of animals. Figure 4.10 and Figure 4.11 summarize the pattern of 

intermuscular interactions between SOL and FHL across limbs and animals. We selected 

trials with comparable background forces. It is obvious from the figure that inhibition 

from FHL onto SOL is strong in all three animals irrespective of the time post LSH (4 

weeks to 20 weeks).  

The statistical results of the analyses across limbs and cats over different time 

points post LSH are summarized in Table 4.1 and Table 4.2. Both tables include 

measurements for both hindlimbs in each animal. The tables contain the range of 

inhibition, range of background force of recipient muscle, mean inhibition, SD and P 

values in each limb observed across each of the three animals. Therefore we propose that 

this altered heterogenic inhibition between ankle extensors appears in chronic LSH 

animals after injury and possibly stay there up to at least 20 week post LSH. It does not 

change with improvement in locomotor activity of the animal and is not limited to a 

single muscle instead it is widespread among ankle extensors. Figure 4.11 represent the 

suggested model for intermuscular inhibition between FHL and SOL following chronic 

LSH. 
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Figure 4.10 Comparative analysis of force feedback interaction between 
SOL and FHL across animals post chronic LSH. (1= 4weeks, 2= 4weeks, 3= 
20weeks) 
 
 
 
 
 

 
Figure 4.11 Summary diagram/Proposed model of the inhibition between 
ankle knee extensors FHL and SOL following chronic LSH in the 
intercollicular decerebrate cat. Inhibition between SOL and FHL has a 
greater strength in distal to proximal direction (red) in comparison to 
proximal to distal direction (blue). The net effect of the modulation was to 
produce a distal to proximal directionality/pattern of inhibition. 
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Table 4.1 Magnitudes of inhibition with XER between SOL (recipient) and 
FHL (Donor) muscles with range of maximum background force of recipient 
muscle in percentage change, range, SD and P values for each limb in 
three cats with chronic LSH at, 4, 4 and 20 weeks post LSH. Inhibition is 
statistically significant if P≤0.01 on both injured and uninjured side limb in 
each cat. The data shown includes 4 to 6 observations in each limb in every 
cat each trial consisted of 45-60 stretches each. 

R
EC

IP
IE

N
T 

 (S
O

L)
 

DONOR (FHL) 

Cats/Week

s post LSH 

Recipient   
Muscle 
Max 
Backgrou
-nd    
force  
Range 

Injured side limb         Uninjured side limb 

%Δ (-)  

Range 

% Δ (-)  

Mean ± SD 

P  

value 

% Δ (-) 

Range 

%Δ (-)  

Mean ± SD 

P  

value 

Cat1 = 2W  ___ ___ ___ ___ ___ ___ 

Cat2 = 4W  ___ ___ ___ ___ ___ ___ 

Cat3 = 4W 9 ~ 17 57 ~ 82 72.7 ± 13.7  < 0.001 44 ~ 75 60.7 ± 15.6 < 0.001 

Cat4 = 4W 15 ~ 18 42 ~ 55 49.7 ± 6.8 < 0.001 23 ~ 51 36.7 ± 14 < 0.001 

Cat5 = 8W  ___ ___ ___ ___ ___ ___ 

Cat6 = 20W 6 ~ 12 55 ~ 73 62.3 ± 9.5  < 0.001 28 ~ 33 35.3 ± 11 < 0.001 

 
Table 4.2 Magnitudes of  inhibition with XER between SOL (donor) and FHL 
(recipient) muscles. Same conventions as Table 4.1 apply. Inhibition is 
statistically significant if P<0.01 on both injured and uninjured side limb in 
each cat. The data shown includes 4 to 6 observations in each limb in every 
cat each trial consisted of 45-60 stretches each. 
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  Cats/ Weeks 

post LSH 

 

 

Recipient   
Muscle 
Max 
Backgrou
-nd    
force  
Range 

Injured side limb Uninjured side limb 

%Δ (-)  

Range 

% Δ (-)  

Mean ± SD 

P  

value 

% Δ (-) 

Range 

%Δ (-)  

Mean ± SD 

P  

value 

Cat1 = 2W  ___ ___ ___ ___ ___ ___ 

Cat2 = 4W  ___ ___ ___ ___ ___ ___ 

Cat3 = 4W 20 ~ 35 2.6 ~ 3.1 2.9 ± 0.4  ≤ 0.1 0.6 ~ 3.2 2.1 ± 1.3 ≤ 0.6 

Cat4 = 4W 24 ~ 30 1.8 ~ 3.3 2.4 ±  ≤ 0.4 0.4 ~ 1 0.6 ±  ≤ 0.6 

Cat5 = 8W  ___ ___ ___ ___ ___ ___ 

Cat6 = 20W 16 ~ 20 11 ~ 19 15 ± 5.7 ≤ 0.01 17 ~ 19 18 ± 1.4  ≤ 0.01 
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4.3.4 FHL strongly inhibits PLT, while PLT very weakly inhibits FHL following 

chronic SCI 

PLT and FHL both are mainly classified as ankle extensors, however due to their 

insertions into the Flexor digitorum brevis muscle (FDB) and Flexoe digitorum longus 

muscle (FDL) respectively they also exhibit toe flexion function. PLT muscle also act as 

abductor around ankle like GA and SOL while FHL is a strong adductor. Therefore it is 

important for these two muscles to have proper force feedback state dependent 

interactions during motor activity in order to maintain balance around ankle.  

According to previous studies in our laboratory PLT muscle exchanges 

predominately force-dependent inhibition with the FHL during quiet stance (Bonasera 

and Nichols 1994) and locomotion (Ross and Nichols 2009). While stronger inhibition 

from FHL onto PLT was found during locomotion in some animals (4/11), little to no 

inhibition was found from PLT onto FHL during either locomotion or XER in the 

premammillary decerebrate preparation (Ross and Nichols 2009).  

The strength and distribution/pattern of inhibition between PLT and FHL muscles 

during SCI was examined in five out of total six experiments. All of the animals used in 

these experiments were able to walk within a week following SCI and exhibited poor 

balance control/weight support irrespective of the time post SCI. Out of the five 

experiments evaluating the force feedback between PLT and FHL during XER, 5/5 

(100%) demonstrated statistically very strong inhibition from FHL on to PLT (distal to 

proximal pattern/directionality of inhibition).  
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The raw data in Figure 4.12 and 4.13 depict a representative example of patterns 

of force feedback between PLT and FHL following LSH. Figure 4.12 represents strong 

inhibition of PLT by FHL and Figure 4.12 shows weak inhibition of FHL by PLT. Each 

muscle was stretched to 2mm length as shown in Figure 4.11 b, 4.11d, 4.12b and 4.12d. 

This  pattern was seen in all five animals post chronic LSH at 2 week to 20 week post 

SCI. Figure 4.12a also shows strong inhibition of PLT by FHL even when PLT was not 

stretched (isometric). Our results showed strong inhibition of PLT by FHL in non-

locomoting 5/5 (100%) animals in contrast to the inhibition of PLT by FHL in 

locomoting animals 4/11(36%) reported earlier (Ross and Nichols 2009) and a 

bidirectional inhibition trend in decerebrate animals during quiet stance (chapter 2) also 

reported earlier (Bonasera and Nichols 1994, Nichols 1999). 

Figure 4.14 represents the same trials shown in Figure 4.12 and Figure 4.13. Here, 

each stretch is divided into three time points (a, d) mechanical (b, e) dynamic and (c,f) 

static. The difference of heights of the colored circles (state 2) and black circles (state 1) 

depict inhibition from state one to state two. 

Figure 4.15 and Figure 4.16 represent the same data shown in Figure 4.12 and 

Figure 4.13. We have presented here the force response of the recipient muscle PLT and 

FHL at (a) mechanical (b) dynamic and (c) static time point for each muscle combination 

to observe the inhibition developing between the two muscles. We observed stronger 

inhibition of PLT by FHL for the static time point in comparison to that for the dynamic 

time point in 100% of animals with four to six observations per combination per animal. 

The strong inhibition of PLT by FHL was observed both with and without XER in all 
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animals with chronic LSH during quiet stance. Each data point in figure 4.15 and 4.16 

represent a response of the recipient muscle obtained when the muscle was either 

stretched alone in state 1 (black circles) or response of the recipient muscle when it was 

stretched with another muscle in state 2 (blue circles for FHL and red circles for PLT). 

Polynomial fits and 95% confidence intervals were fit to each population of data at static 

time point for each muscle. The wide separation of confidence intervals for the two 

populations of data (state 1 and state 2) in Figure 4.15 clearly demonstrates very strong 

inhibition of PLT by FHL. Figure 4.16 on the other hand shows a very narrow separation 

of the two populations of data suggesting a weak inhibition of FHL by PLT.  

Figure 4.17 documents the amount of inhibition between PLT and FHL. The 

calculations were made by subtracting the force response of recipient muscle in state two 

from its force response in state one at static time point. Same calculations were done for 

dynamic and mechanical time point too not shown here. The inhibition was expressed in 

relative terms by converting the inhibition into percent change in Figure 4.17b.  

Further detailed statistical analysis shown in Figure 4.18a and 4.18b for PLT and 

FHL to calculate P value, mean inhibition in a trial at a given time point, standard 

deviation, range of inhibition across 45-60 stretches and percent change. Summarized 

statistical analysis demonstrates strong inhibition of PLT by FHL with p value << 0.01 

and percent inhibition of 65% in the representative trial. However the range of inhibition 

across cats as shown in table 4.3 and table 4.4 shows much higher percentage of 

inhibition in other trials.  
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Figure 4.12 Raw data from a trial in a cat following chronic LSH using XER. 
(a) Donor muscle (PLT) stretch-evoked force response during XER. (b) PLT 
length input to two-state stretch (c) Recipient muscle (FHL) stretch-evoked 
force response during XER. (d) Recipient muscle length input for two-state 
stretch. Dashed blue lines on stretches indicate state 2. XER is done by 
stimulating tibial nerve in the hindlimb on the side without LSH at 2T 
evokes an increase in the background force of the recipient and donor 
muscles on the injured side hindlimb. The same conventions as Figure 3.7 
apply. 
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Figure 4.13 Raw data from a trial in chronic LSH using XER. (a) Recipient 
muscle (PLT) stretch-evoked force response during XER. (b) PLT length 
input to two-state stretch (c) Donor muscle (FHL) stretch-evoked force 
response. (d) Recipient muscle length input for two-state stretch. Dashed 
blue lines on stretches indicate state 2. The same conventions as Figure 
3.7 apply. 
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Figure 4.14 (a, b, c) Inhibition of SOL by FHL (d, e, f) Inhibition of FHL by 
SOL at mechanical, dynamic and  static time point respectively. Each circle 
represents individual stretch response of recipient muscle in state 1 (black) 
and state 2 (red for SOL and blue for FHL). The difference of heights of the 
colored circles and black circles depict relative inhibition in state 2 and 1. 



 134 

   

 
 

 

 

 

2 4 6 8 10 12 14 16
0

5

10

15

20

25

PLT Background Force (N)

PL
T 

Fo
rc

e 
R

es
po

ns
e 

(N
)

 

 

2 4 6 8 10 12 14 16
0

5

10

15

20

25

PLT Background Force (N)

PL
T 

Fo
rc

e 
R

es
po

ns
e 

(N
)

 

 

 

 

 

 

 

 

PLT (state 1)
PLT + FHL (state 2)

PLT (state 1)
PLT + FHL (state 2)

  
    

t = Mechanical

t = Dynamic

100ms

100ms

5N

5N

  

b

a

 

2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

PLT Background Force (N)

PL
T 

Fo
rc

e 
R

es
po

ns
e 

(N
)

 

 

   

 
 

 

 

 

   

 
 

 

 

 

 

 

 

 

 

 

  
    

  
    

PLT (state 1)
PLT + FHL (state 2)

  

  

100ms

5N

t = Staticc

 
Figure 4.15 (a) Inhibition of PLT (recipient) by FHL (donor) at (a) mechanical 
(b) dynamic (c) static time point during XER following chronic LSH. Each 
circle represents individual stretch response of recipient muscle PLT (blue 
circles/state 2 and black circles/state 1). Same conventions as Figure 4.5 
apply. The overlapping of confidence intervals here depicts very weak 
inhibition of FHL by PLT. 
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Figure 4.16 (a) Inhibition from PLT (donor) onto FHL (recipient) during 
XER in (a) mechanical (b) dynamic (c) static time point. Force responses 
are shown in black circles for state 1 and blue circles for state 2 for 
recipient muscle (FHL). The same conventions as Figure 4.15 apply. The 
overlap of confidence intervals depicts weak inhibition of FHL by PLT 
following chronic LSH. 
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Figure 4.17 (a) Shows comparative analysis of heterogenic inhibition 
between PLT (red) and FHL (blue) in Newton. Each circle represents the 
difference of state 1 and state 2 force response of each muscle as shown in 
figure 4.15 and Figure 4.16. (b) Amount of inhibition normalized to percent 
change for both PLT and FHL. The same conventions as Figure 4.7 apply.  
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Figure 4.18 Statistical analysis, summaries for (a) PLT and (b) FHL. 
Horizontal axis represent state 1 (autogenic) and state 2 (autogenic + 
Heterogenic) of recipient muscle at static time point, while vertical axis 
shows force response in Newton for recipient muscle. The same 
conventions as Figure 4.8 apply. There is statistically significant strong 
inhibition of PLT by FHL following chronic LSH. 
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4.3.5 Altered pattern of inhibitory force feedback between PLT and FHL is bilateral 

following chronic LSH irrespective of the side of lesion 

We collected data from all cats using both hindlimbs to compare the results in two 

limbs and demonstrate the effect of partial spinal cord injury on neuromuscular 

interactions on both the injured side of spinal cord and the uninjured side of spinal cord 

limb in all five cats. As observed in case of interactions between GA, SOL and FHL, we 

observed same pattern of intermuscular force feedback interactions in both limbs of each 

cat with strong inhibition of PLT and very weak inhibition of FHL.  

Figure 4.19 depicts the comparison of hetrogenic inhibition between PLT and 

FHL in two limbs in a cat with chronic LSH at static time point. The same analysis was 

performed at dynamic time point too not shown here. We observed increase in inhibition 

from dynamic to static time point in each cat. 

 The results comparing the two limbs in all five animals are summarized in table 

4.3 and 4.4 for PLT and FHL as recipient muscle respectively. The inhibition was always 

comparatively greater on the injured side limb in than on the uninjured side limb 

however, it was always highly statistically significant in both limbs in each animal with P 

value << 0.01.  
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Figure 4.19 Comparison of force feedback between two hindlimbs of the 
same cat with chronic partial SCI (LSH). Amount of inhibition shown in 
terms of percent change for both PLT and FHL. Strong inhibition of PLT 
and week inhibition of FHL observed bilaterally. The same conventions as 
Figure 4.7 apply.  

4.3.6 Inhibition between PLT and FHL is similar across cats following chronic LSH 

irrespective of the time post SCI 

We observed a well defined uniform pattern of inhibition between PLT and FHL 

across cats. The results are summarized in Figure 4.20 and the pattern/directionality of 

inhibitory force feedback between PLT and FHL is demonstrated in Figure 4.21. The 

detailed statistical analysis is summarized in table 4.3 and table 4.4 to further validate the 

statistically strong inhibition of PLT by FHL across cats at different time points post SCI. 

We expected to see some change over time as the animal capability to walk improved but 

that was not demonstrated by any animal thus proving that the change in spinal cord is 

same across animals and not affected by the time following LSH.  
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Figure 4.20 : Comparative analysis of force feedback interaction between 
PLT and FHL across animals post chronic LSH (1= 2weeks, 2= 4weeks, 3= 
4weeks, 4= 4 weeks, 5= 20weeks). 

 

 
 
Figure 4.21 Summary diagram/Proposed model of the inhibition between 
ankle knee extensors FHL and PLT during chronic LSH in the intercollicular 
decerebrate cat.  Inhibition between PLT and FHL has a greater strength in 
distal to proximal direction (red) in comparison to proximal to distal 
direction (blue). The net effect of the modulation was to produce a distal to 
proximal pattern of inhibition. 
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Table 4.3 Magnitudes of heterogenic inhibition with XER between PLT 
(recipient) and FHL (Donor) muscles in percentage change, range, SD and 
P values for each limb in cats with chronic LSH between 2 and 20 weeks 
post LSH. Inhibition is statistically significant if P< 0.01 on both injured and 
uninjured side limb in each cat. The data shown includes 4 to 6 
observations in each limb in every cat each trial consisted of 45-60 
stretches each. 
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DONOR (FHL) 

     Cats/Weeks 

   post LSH 

Recipient 
Muscle 
Max 
Backgrou
-nd    
force  
Range 

Injured side limb  Uninjured side limb 

%Δ (-)  

Range 

% Δ (-)  

Mean ± SD 

P  

Value 

% Δ (-) 

Range 

%Δ (-)  

Mean ± SD 

P  

value 

       Cat1 = 2W 5 ~ 20 68 ~ 71 69.5 ± 2 < 0.001 60 ~ 62 61 ± 1.4  < 0.001 

       Cat2 = 4W 6 ~ 12 80 ~ 82 81 ± 1.4 < 0.001 68 ~ 69 68.5 ± 0.7  < 0.001 

       Cat3 = 4W 5 ~ 10 57 ~ 80 68.5 ± 16.2  < 0.001 31 ~ 40 35.5 ± 6.4 < 0.001 

       Cat4 = 4W 15 ~ 20 60 ~ 65 62.5 ± 3.5 < 0.001 36 ~ 39 37.5 ± 2 < 0.001 

       Cat5 = 8W ___ ___ ___ ___ ___ ___ ___ 

       Cat6 = 20W 5 ~ 15 54 ~ 64 59 ± 7  < 0.001 20 ~ 29 24.5 ± 6.3 < 0.01 

Table 4.4 Magnitudes of heterogenic inhibition with XER between FHL 
(recipient) and PLT (Donor) muscles in percentage change, range, SD and 
P values for each limb in cats with following chronic LSH between 2 and 20 
weeks post LSH. The data shown includes 4 to 6 observations in each limb 
in every cat each trial consisted of 45-60 stretches each. 
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%Δ (-)  
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% Δ (-) 
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% Δ (-) 

Range 

%Δ (-)  

Mean ± SD 

P  

value 

Cat1 = 2W 5 ~ 30 1.6 ~ 7 3.6 ± 2.9 ≤ 0.8 8 ~ 8.7 8.4 ± 0.5 ≤ 0.5 

Cat2 = 4W 25 ~ 30 8.5 ~ 9 8.8 ± 0.4 ≤ 0.8 7 ~ 7.4 7.2 ± 0.3  ≤ 0.3 

Cat3 = 4W 25 ~ 30 2.1 ~ 4.5 3.1 ± 1.3  ≤ 0.2 0.5 ~ 4 2.2  ± 2.5  ≤ 0.2 

Cat4 = 4W 25 ~ 35 1.3 ~ 2 1.7 ± 0.5 ≤ 0.6 1 ~ 1.6 1.3 ± 0.4 ≤ 0.3 

Cat5 = 8W      ___ ___ ___ ___ ___ ___ ___ 

Cat6 = 20W 5 ~ 15 11 ~ 12 11.5 ± 0.7  ≤ 0.03 4.4 ~ 14 9.2  ± 6.8 ≤ 0.9 
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4.3.7 Clasp knife inhibition 

No evidence of clasp knife inhibition was expressed among SOL, PLT and FHL 

in cats following chronic LSH in contrast to its presence documented earlier in complete 

spinal transaction (Nichole and Cope 2001). The hallmark of clasp knife inhibition after 

complete transaction of spinal cord has been described as a profound autogenic and 

heterogenic inhibition that occurs with the latency of more than 80 ms (Nichols and Cope 

2001). The heterogenic inhibition in state 1 and 2 was observed even at very low 

background forces of the recipient muscle. 

Figure 4.22 depicts a representative example of the absence of any autogenic 

inhibition both between SOL and FHL (4.22a) as well as between PLT and FHL (4.22b) 

following LSH. There is no autogenic inhibition in state one depicted by the absence of 

force drop in state 1 during the muscle stretch (black line). The latency of reflex response 

is comparable to decerebrate cats ( Bonasera and Nichols 1994) with intact spinal cord 

described earlier in chapter 2, Figure 2.10 (28 ± 4 ms). This latency is much smaller than 

the clasp knife inhibition reflex latency of more than 80 ms (Nichols and Cope 2001). 

The sum of autogenic and heterogenic inhibition in state 2 was not strong enough to drop 

the force response of the recipient muscle to almost zero (Nichols and Cope 2001). We 

also did not find any evidence of the clasp knife inhibition in acute LSH. The absence of 

clasp knife inhibition was observed in 6/6 cats with chronic LSH (100%) and 3/3 (100%) 

cats with acute LSH in both hindlimbs. The large isometric responses (without stretch) 

observed in the donor muscle in state 1(Figure 4.12 for PLT and 4.2 for SOL) are short 

latency, but they are prolonged. They indicate the strong inhibition of PLT and SOL 
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respectively by FHL even when they are acting as donor muscles and not been stretched 

in state 1. 
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Figure 4.22 (continued) 
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Figure 4.22 (continued) 
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Figure 4.22 Reflex latency for the (a) FHL/SOL and (b) FHL/PLT interactions 
were calculated at 28 ± 4 ms. Distance between the two blue dashed lines 
indicates latency of reflex. There was no autogenic inhibition in state 1 (black 
line). 
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DISCUSSION 

In this study, we have attempted to address the implications of chronic partial spinal 

cord injury on the organization of force feedback among ankle extensors, namely SOL, PLT 

and FHL in decerebrate cats with chronic LSH. Our most recent data from decerebrate 

animals (chapter 2) has shown bidirectional weak inhibition between SOL and FHL. In 

addition we observed stronger inhibition from FHL onto PLT in decerebrate cats with intact 

spinal cord. Our study presented in this chapter has shown that the force feedback linking 

PLT, SOL and FHL remained inhibitory following SCI with a uniform pattern and consistent 

results across animals. The pattern of inhibition was always a strong inhibition from FHL 

muscle onto SOL and PLT muscles. In essence the largest magnitude of force-dependent 

inhibition emanated from FHL onto either SOL or PLT. Weak inhibitory interactions were 

found in the opposing direction from PLT and SOL onto FHL with or without XER. Our data 

showed no evidence of clasp knife inhibition among FHL, SOL and PLT at both high and low 

background forces of muscles. There was no evidence of autogenic inhibition among FHL, 

PLT and SOL, but we cannot exclude it entirely. Also the force of recipient muscle never fell 

below zero in state two in any trial, indicating absence of clasp knife inhibition.  

Postural control is a fundamental requirement during quiet standing as well as for a 

variety of other critical motor tasks. The animals used in this study regained locomotion 

within one week of SCI. They were able to maintain weight support and posture during 

walking, however as described earlier none of them had complete recovery of posture control 

and showed poor postural response to any perturbation. We propose that the altered pattern of 

neuromuscular interactions following chronic LSH could be due to the spared pathways from 
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supraspinal structures that are most probably involved in reorganizing the spinal CPG during 

recovery after the partial spinal lesion. In addition peripheral sensory inputs are probably also 

critical in ensuring that the spinal CPG functions more effectively post SCI. Reflex changes 

seen bilaterally in a partial lesion in our study using lateral spinal hemisection is probably due 

to the attempt of spinal circuitry to compensate for the loss of inputs on the damaged side. If 

reflex actions from group Ib afferents are to change depending on condition and motor task, 

the involved interneurons in CPG must be amenable to modulating influences. In fact, Ib 

interneurons receive a variety of convergent inputs from sensory afferents and descending 

tracts (Hultborn 2000; Hultborn 2006; Jami 1992; Jankowska 1992; Schomburg 1990). 

Therefore, loss of some of these inputs on Ib interneurons might result in altered 

intermuscular interactions resulting in poor inter-joint coordination and imperfect posture 

control 

Activity-dependent plasticity occurs in the spinal cord throughout life. Driven by input 

from the periphery and the brain, this plasticity plays an important role in the acquisition and 

maintenance of motor skills and in the effects of spinal cord injury. The early development of 

adult spinal cord reflex patterns is driven by descending activity; disorders that disrupt 

descending activity later in life gradually change spinal cord reflexes. One possible 

explanation of the results in our study could be the fact that after SCI in adults, the infantile 

pattern may reappear due to the loss of descending inputs. 

A proximo-distal gradient theory in muscle function is suggested by studies of limb 

muscle architecture and in vivo muscle performance during steady and incline running 

(Roberts et al. 1997; Biewener 1998b; Gillis and Biewener 2002; Daley and Biewener 2003, 
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Daley et al. 2007). The Proximal muscles at the hip and knee joints are believed to exhibit 

load-insensitive mechanical performance, whereas function of distal muscles at the ankle and 

tarsometatarso-phalangeal (TMP) joints is highly load dependent due to intrinsic mechanical 

effects and rapid, higher gain proprioceptive feedback (Daley et al 2007). This idea of 

proximal to distal gradient can be applied at ankle joint by dividing ankle extensors into 

proximal and distal group. The ankle extensor muscles acting at TMP can be classified as 

distal ankle extensors. As the angle at TMP at the start of ground contact is not altered in 

response to the perturbation suggesting that the activation of TMP extensors like FHL is 

highly load dependent (Daley et al. 2007). As the most distal muscle FHL is likely to be the 

first muscles to sense a change in the interaction between the limb and ground. Consequently 

it might respond rapidly to proprioceptive feedback in comparison to other ankle extensors. 

As observed in decerebrate locomoting cats the proximo-distal gradient of inhibition exists 

between GA and FHL (Ross and Nichols 2009). This gradient is however lost following SCI 

in our data suggesting that the loss of posture control could be linked to the loss of proximo-

distal gradient at ankle joint.  

We propose that a state dependent pattern/directionality of inhibition/gradient of force 

feedback is important to maintain limb compliance at joints while allowing proximal muscles 

to produce force necessary for locomotion and balance/posture control. Inhibitory force 

feedback is an important system for regulating limb dynamics for independent mobility and 

balance control. The alteration of its distribution after spinal cord injury limits recovery of 

function. In chronic spinal cats stretching FHL muscle strongly inhibited GA, PLT and SOL 

which reduced the reflex contribution of these, major force producing muscle in hindlimb. 

Therefore our results demonstrate that altered FHL, SOL and PLT intermuscular pathways 
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could be one of the factors that have important implications for the control of movement and 

posture after SCI. The altered patterns of force feedback could be due to the interruption of 

pathways responsible for the strength and distribution of force feedback in the spinal cord.  

The altered pattern could represent the unmasking of a pattern intrinsic to the spinal cord, or 

could be a unique pattern exhibited in the damaged spinal cord. 

Adult spinal cats used in our study were able to generate weight supporting extensor 

activities despite of lacking appropriately timed postural responses to stance perturbations. 

Therefore we propose that the two functions of weight support and balance maintenance 

appeared to be controlled by different mechanisms and by different regions of the CNS. 

 It is interesting to note here that SOL, a major antigravity muscle that stays tonically 

contracted during quiet stance is strongly inhibited by FHL in chronic LSH. In addition PLT 

and SOL are ankle abductors and FHL is an ankle adductor. We propose that the 

redistribution of intermuscular feedback between SOL, PLT and FHL in SCI results in loss of 

stability at ankle due to poor maintenance of ankle torque that might affect proper foot 

placement required for posture control. 
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CHAPTER 5 

DISCUSSION 

Our results suggest that the ability to maintain balance/posture and resist small 

perturbations to balance control requires integration in the neuromuscular system that is 

lost following SCI. In this section, I discuss the results of our study in comparison to 

control data and the importance of our results for balance and weight support control 

from a neural, functional and biomechanical perspective. The main focus of this study 

has been on mapping the distribution of heterogenic force feedback among ankle 

extensors, including GA, PLT, SOL and FHL during mid-stance in chronic SCI (LSH). 

The main target of this study was to understand the mechanisms underlying the 

neuromuscular organization for balance and weight support. Stretch-evoked force 

responses were compared between control (decerebrate), chronic SCI and acute SCI both 

with and without XER to ascertain whether force feedback was reorganized during 

different spinal states. 

In chapter two, we observed different patterns of inhibitory force feedback 

inhibition among ankle extensors in decerebrate non-locomoting cats. The most variable 

force feedback interactions were seen between GA and FHL. The results in chapter 2 

suggest existence of a neuromuscular control system for maintenance of limb stiffness in 

animals with intact spinal cord. 

 In chapter three, we observed only one pattern of inhibitory force feedback for 

GA and FHL across cats following LSH (acute and chronic). The results in chapter three 
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reflect lack of modulation of force feedback interactions by the animals due to damaged 

spinal cord. Our data did not demonstrate any clasp knife inhibition between GA and 

FHL following both chronic and acute LSH. The latency of reflex was found consistent 

with previous observations (28 ± 4 ms) in decerebrate non-locomoting cats with intact 

spinal cord (Bonasera and Nichols 1994). The absence of clasp knife inhibition (CKI) 

clearly indicates that the mechanism might not be present clinically in all patients with 

spinal cord injury. 

In chapter four, we extended our study to SOL and PLT muscles. In this chapter 

we observed strong inhibition of SOL and PLT by FHL in cats following LSH (acute and 

chronic). The main observation in chapter 4 was the generalized inhibition of ankle 

extensors by FHL muscle, suggesting a consistent pattern characteristic of SCI. There 

was no evidence of clasp knife inhibition in chapter 4 suggesting, LSH could not produce 

CKI, a hallmark of SCI in complete spinal cord transaction (Nichols and Cope 2001) and 

dorsal spinal hemisection (Cleland and Rymer 1990).  

We found that the heterogenic feedback between hindlimb extensors, particularly 

that emanating from distal muscles specifically FHL, onto proximal muscles GA, SOL 

and PLT remained inhibitory following LSH, irrespective of the terminal study time 

following SCI. However, this inhibitory intermuscular force feedback turns into a very 

strong inhibition in chronic LSH in both hind limbs in comparison to control animals 

irrespective of the side of partial spinal injury. Inhibition from proximal muscles GA, 

SOL and PLT onto distal muscle FHL was much weaker and mostly statistically 

insignificant at P value > 0.01. We did, indeed, find evidence for a consistent pattern of 
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intermuscular force feedback interactions in SCI that is not observed in control 

decerebrate animals. Our results reflect imbalanced input on spinal circuits by the 

descending as well as ascending pathways. Figure 5.1 represents the summary of 

intermuscular force feedback interactions between ankle extensors (GA, SOL, PLT, 

FHL) following chronic LSH. Cats with acute LSH also exhibited strong inhibition of 

GA by FHL consistent with our results from chronic LSH animals.  

Quantitative analysis of the data in control animals in our study has provided us 

with three different kinds of force feedback patterns between FHL and a proximal ankle 

extensor muscle GA (Figure 2.11). We found proximal to distal, distal to proximal and 

bi-directional intermuscular inhibitory force feedback between these muscles (GA and 

FHL) in control animals. The interaction between SOL, PLT and FHL stayed consistent 

across limbs and cats in control cats. We observed a bidirectional pattern of inhibition 

between SOL and FHL. The inhibitory force feedback between FHL and PLT was weak 

and distal to proximal in direction. Therefore, there is no characteristic pattern of 

intermuscular force feedback interaction between ankle extensors in control decerebrate 

animals. These results indicate capability of spinal cord to modulate intermuscular force 

feedback according to the state of animal. 

Decerebrate non-locomoting cats exhibit a consistent definitive pattern of 

intermuscular force feedback between ankle extensor muscles as shown in figure 5.2. 

During locomotion there is strong inhibition of FHL by GA, balanced bidirectional weak 

inhibition between FHL and SOL and a strong inhibition of PLT by FHL across animals.  
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Figure 5.1 Summary diagram/Proposed model of Force feedback between 
ankle extensors FHL, GA, SOL and PLT following chronic LSH in the 
intercollicular decerebrate/non-locomoting cat. The net effect of the 
modulation of force feedback was to produce a consistent distal to 
proximal pattern/directionality of inhibition characteristic of only SCI. 

  
Figure 5.2 Summary diagram/model of Force feedback between ankle 
extensors FHL, GA, SOL and PLT in the locomoting decerebrate cat.  
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Cats with SCI can be trained to stand independently (De Leon et al. 1998) and 

withstand small perturbations to balance (Macpherson and Fung 1999); however, their 

intermuscular interactions are much different than cats with intact spinal cord and they 

fail to regain full control of balance and weight support. According to our current data we 

can say with confidence that the intermuscular interactions used for postural control are 

not accessible via spinal circuits alone, at least when these circuits do not receive normal 

supraspinal input. However, basic locomotion patterns may be produced by spinal CPGs 

(McCrea and Rybak 2008; Rossignol et al 2006), which are modulated by sensory 

feedback pathways within the spinal cord (Forssberg et al. 1980; Rossignol et al. 2008), 

even in the absence of descending input in SCI. We propose that balance control requires 

multisensory integration and interlimb coordination that is not evident in spinalized 

animals (Macpherson and Fung 1999) or animals lacking connectivity to the brain stem 

(Deliagina et al. 2008; Lyalka et al. 2009) and likely requires brain stem processing 

(Stapley and Drew 2009).  

One possible explanation for altered yet consistent intermuscular inhibitory force 

feedback between ankle extensors in LSH could be the loss of input from one or more 

supraspinal pathway. There is also loss of sensory input from sensory organs (visual, 

proprioception, skin). In decerebrate animals with intact decending pathways from 

midbrain, cerebellum, reticular formation and vestibulospinal tract it is possible for the 

animal to adjust task dependent intermuscular interaction at spinal level (Nichols et al. 

2014). Since, heterogenic inhibition is thought to play an important role in coordinating 

and stabilizing the limb during movement, it would make sense; from a design standpoint 

that one would want to maintain that stability quickly as the body posture is challenged 
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by environmental perturbations during quiet standing. We propose that the heterogenic 

intermuscular force feedback interactions are task dependent and are different from one 

animal to the other because the intact animal is capable to correct its posture by adapting 

different intermuscular interactions driven by proprioreseptor feedback and other sensory 

input to spinal circuitary (visual, sensory, memory). There is a strong evidence of a 

consistent intermuscular heterogenic force feedback inhibition pattern in locomoting 

animals from previous studies conducted in our laboratory (Ross and Nichols 2009) 

demonstrating proximal to distal pattern of inhibition between FHL and GA, strong distal 

to proximal pattern/directionality of inhibition between FHL and PLT (not as strong 

inhibition as seen in our data from SCI). This is probably due to the supraspinal signals 

generated in conjunction with the commands for locomotion. These results suggest that 

the limb stiffness is regulated by a proprioceptive network in the spinal cord and the site 

of the regulation is the musculature of the distal limb specifically FHL in our study, 

which are directly responsible for the mechanical interaction of the body with the 

environment. The patterns of activity of the hind limb muscles and their regulation 

through proprioceptive feed back are appropriately regulated according to their specific 

functions in these motor tasks.  

Now the question arises that why the chronic LSH cats are unable to maintain 

balance during perturbation/posture control challenging situations while they exhibit 

better control of posture during locomotion? On the basis of our results presented in this 

study we can give three plausible explanations. Firstly, the generation of appropriate 

muscle activation patterns in the hind limbs certainly requires complex hierarchical 

neural framework integration, where each higher unit is responsible for increasingly 
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complex integration of sensory and environmental information. We propose that the 

sensory feedback required for appropriate muscle activation patterns needed to maintain 

balance during locomotion after SCI is located within the lowest level of this neural 

hierarchy, the spinal cord and therefore preserved or regained following SCI. However, 

complex posture and weight support needs input from higher centers (Lyalka et al. 2005; 

Nichols et al. 2002). Lyalka and coworkers note that spinal cord hemi-sectioned animals 

show a significant recovery of postural responses when supra-spinal support is present. 

We know that brainstem regions such as the ventral and dorsal tegmental fields can adjust 

postural tone through excitatory or inhibitory influences on the spinal cord (Mori 1987; 

Mori et al. 1989).  

Secondly, the cortex has the capacity to dynamically control posture by 

integration of information about global parameters, limb position, and environmental 

conditions (Dietz et al. 1984). This is possible because of the pyramidal tract excited by 

contralateral limb movements (Beloozerova et al. 2005; Beloozerova et al. 2003a). Since, 

in lateral spinal hemisection only half of the spinal cord is damaged it is possible that the 

contralateral cortex (from intact side) still influence the balance control on ipsilateral/ 

LSH side via uncrossed pyramidal fibers that are making connections on the injured side 

through the interneurons in chronic LSH. These left over neuronal connections can help 

correct the balance during a learned behavior like walking.  

The corticospinal system that is unilaterally damaged in LSH has stronger 

influence over distal than that over proximal muscles (Brouwer and Ashby 1990; Lemon 

and Griffiths 2005; McKiernan et al. 1998; Palmer and Ashby 1992; Turton and Lemon 



 155 

1999). This could explain distal joints and muscle control loss after stroke and upper 

motor neurons insult patients (Turton and Lemon 1999; Colebatch and Gandevia 1989). 

Reticular formation and brain stem affects proximal muscles more potently than distal 

muscles (Davidson and Buford 2006; Riddle et al. 2009; De Domenico and McCloskey 

1987; Tan et al. 1994; Hall and Mc-Closkey 1983; Refshauge et al. 1995) and are 

comparatively less damaged in LSH. The reorganization of heterogenic intermuscular 

force feedback following SCI could be attributed to this differential control of proximal 

and distal muscles in hind limb.  

In addition reticulospinal tracts are a major alternative to the corticospinal tract, 

some fibers of the medullary reticulospinal tract cross the midline and exits at all spinal 

levels. It contains circuitry for many complex actions, such as orienting, stretching, and 

maintaining a complex posture. Commands that initiate locomotor circuits in the spinal 

cord are also thought to be transmitted through the medullary reticulospinal tract. Thus, 

we propose that this tract could be responsible for some balance control related to 

locomotion in chronic LSH cats. The loss of balance control for complicated tasks other 

than walking could be due to loss of influence from cortex. Our data supports our 

hypothesis that the control of balance requires inputs from higher brain centers. Therefore 

after SCI the animal loses its ability to maintain full balance control. 

Any quick adjustment of posture requires vestibulospinal tract. This tract is 

damaged in LSH. Vestibulospinal tracts mediate postural adjustments and head 

movements. This tract detects small movements of the body by the vestibular sensory 

neurons, and sends motor commands to counteract these movements to appropriate 
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muscle groups throughout the body. The lateral vestibulospinal tract excites antigravity 

muscles in order to exert control over postural changes necessary to compensate for tilts 

and movements of the body. The medial vestibulospinal tract effect spinal circuits 

bilaterally, it innervates neck muscles in order to stabilize head position as one moves 

around the world. It is also important for the coordination of head and eye movements. 

Loss of vestibular feedback causes subjects to generate hypermetric responses 

(Macpherson and Inglis 1993), indicating that vestibular influences the scale of muscle 

responses. This tract’s input on spinal circuitary may be responsible for rearrangement of 

spinal networks involved in somatosensory integration. We therefore suggest that one of 

the possible reasons for comparatively better balance control during locomotion in 

chronic LSH is the partly intact medial vestibulospinal tracton the injured side of spinal 

cord. The poor response of animal to sudden perturbation or change of terrain could be 

due to the damaged lateral vestibulospinal tract on injured side in LSH. The altered 

patterns of force feedback are observed bilaterally in our study using cats with LSH. We 

suggest that this could be due to the interneurons connecting the two halves of the spinal 

cord. Following LSH the descending information from lateral vestibulospinal tract on the 

uninjured side of the spinal cord reaches the injured half through the interneurons, 

however the information is altered or incomplete due to damaged spinal cord. However 

the inhibitory muscular interactions though altered in pattern and amount remain 

inhibitory following SCI that could be due to alteration of input on spinal circuitry by the 

left over medial vestibulospinal tract.  

To address this question we collected data from an animal with dorsal spinal 

hemisection (DSH). Our data from this experiment using acute DSH showed no distal to 
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proximal pattern of intermuscular inhibition between FHL and GA that we have observed 

in our LSH animals. However, this single observation does not statistically prove the 

association of altered intermuscular interactions observed in our data in SCI with 

damaged vestibulospinal tract and may need more investigation in future studies.  

Following unilateral SCI (hemisection), compensation by remaining descending 

inputs could be involved in reshaping the CPG to compensate for the loss of damaged 

pathways. To deal with partial loss of brain inputs and to produce locomotor behavior 

after hemisection, the spinal cord could have been imprinted by new descending 

commands and therefore “memorized” a new mode of functioning (Chen et al. 2002; 

Chen and Wolpaw 2002). It has been argued that isolated spinal circuits with intact 

musculoskeletal systems are responsible for quiet sophisticated motor tasks (Edgerton et 

al. 2001; Stein and Daniels-McQueen 2004; Timoszyk et al. 2002) and sensorimotor 

transformations (Bosco and Poppele 2001; Poppele and Bosco 2003). In contrast, the 

poor postural responses of spinalized cats (Fung and Macpherson 1999; Macpherson and 

Fung 1999a; Pratt et al. 1994) have been interpreted to indicate that spinal pathways are 

not adequate for appropriate muscle activation. Increases in inhibitory neurotransmitters, 

and re-organization of spinal synapses (Edgerton et al. 2001); all likely influence spinal 

cord functionality. More recent studies suggest that spinal circuits can support postural 

control as long as supraspinal influences remain intact (Deliagina et al. 2008; Deliagina et 

al. 2006; Lyalka et al. 2005; Musienko et al. 2008). A reduction in supraspinal drive may 

reduce activation of some neurons while facilitating activation of others (Ettema 1997; 

Venugopal et al. 2011).  
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Following incomplete SCIs in rodents, substantial increases in collateral sprouting 

of the corticospinal tract have been reported during the first 2 months post-injury 

(Bareyre et al., 2004; Li et al., 1994). Direct anatomical evidence of interneuronal 

sprouting in the cat (Fenrich and Rose 2009) has also been reported. We propose that this 

collateral imperfect growth could lead to altered intermuscular pathways following SCI. 

We hypothesize that a central circuit, located within the spinal cord, makes up the 

foundation from which most postural corrections are made following SCI. This 

foundational circuit utilizes feedback from muscle, Golgi tendon organ and remaining 

decending pathways to generate appropriate intermuscular activation patterns to maintain 

balance. Therefore, intermuscular force feedback pathways changes following SCI. These 

altered pathways are different from intact animals and are not perfect enough to meet the 

challenges of balance control in a challenged environment. We further propose that CPG 

is  also modulated by other sources of feedback such as cutaneous, vestibular, visual, and 

joint along with feedback from other limbs and supra-spinal sources. Therefore its output 

is a complex mechanism. Since some of these inputs are lost in LSH while others still 

exist we can say that an imbalance of the neural input to spinal circuits could be 

responsible for altered force feedback responses and poor balance control.  

The ascending pathways on the other hand are damaged extensively on the 

damaged side in LSH. Therefore, we propose that information from muscle receptors 

reach the spinal cord but cannot reach cortex and other higher centers and therefore, 

neuromuscular interactions are strongly effected as shown in our study. However, further 

experimental data is required to support the role of ascending pathways in posture 

control. 
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Figure 5.2 Diagrammatic representation of descending spinal pathways.  
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Figure 5.3 Ascending pathways in spinal cord (The central nervous system 
classes.midlandstech.edu) 

http://classes.midlandstech.edu/carterp/Courses/bio210/Chap12/lecture1.htm


 161 

The influence of length (i.e. Ia, II) and force (i.e. Ib) feedback acting on the same 

muscle, its synergists and antagonists has been extensively studied ((Eccles et al. 1957; 

Bonasera and Nichols 1994; Wilmink and Nichols 2003). Importantly, the effects of 

group Ia, Ib, and II afferents on the muscle of origin, synergists, and antagonists are 

thought to regulate stiffness of individual joints in response to unexpected perturbations 

(Honeycutt et al. 2009) and on an ongoing basis during walking in cats and humans 

(Mazzaro et al. 2005, Mazzaro et al. 2006). Group Ib and group II afferents are widely 

distributed to other muscles in the limbs (Nichols 1999; Bras et al. 1990). Inhibitory force 

feedback, by virtue of its distribution, has been proposed as a neuromechanical link 

promoting interjoint coordination (Nichols 1999). Therefore, greater relative inhibitory 

force feedback from some proximal muscles to distal muscles could facilitate compliance 

of distal joints when impacting the ground (especially during locomotion), whereas 

greater relative inhibition from distal to some of the proximal muscles could be beneficial 

in specific motor tasks like landing after a jump. Therefore, we suggest that the motor 

deficits such as instability at knee and ankle resulting in poor balance control as observed 

in our study in cats with LSH could be the result of a widespread inhibition of all the 

major extensors of ankle by FHL which is the most distal extensor of ankle. The pattern 

of distal to proximal inhibition is one of the patterns observed in non-locomoting cats as 

described in chapter 2. However, we must remember that widespread distal to proximal 

inhibition pattern is never observed in decerebrate cats with intact spinal cord.  

Over the years, the spinal reflex effects exerted by group Ib afferents from Golgi 

tendon organs have turned out to be much more complex than originally thought. These 

effects are state dependent, that is, dependent on the context and task of motor acts. This 
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task dependence is reflected in different group Ib reflex effects during quiescent states on 

the one hand versus upright stance and the locomotor stance phase on the other hand. Ib 

interneurons affect α- motoneurons, γ Motoneurons,  Ib interneurons (mutual inhibition), 

Group II interneurons, ventral spinocerebellar tract (VSCT), dorsal spinocerebellar tract, 

Primary sensory afferents probably exerting presynaptic inhibition as GABAergic, 

neurons (Jami 1992, Jankowska 1992, Schomburg 1990). 

The reorganization of force feedback is seen bilaterally in LSH, we propose that 

spinal circuits responsible for inter limb co-ordination remain functional after LSH and 

could contribute to compensatory changes in both hind limbs. We also, propose that in 

chronic LSH cats due to altered intermuscular force feedback activity at ankle the 

animals are not able to maintain proper posture. Additionally, our data suggests that there 

is a well defined and consistent pattern of distal to proximal intermuscular force feedback 

inhibition following LSH at ankle joint. However, we need more data from muscles 

acting at hip and knee joints to prove the idea of gradient of force feedback between 

proximal and distal joint muscles. We propose that this altered pattern of force feedback 

between ankle extensors is characteristic of SCI. Therefore, if there is any reorganization 

of neuromuscular interaction at spinal level in these animals following SCI that stays 

consistent across animals. Since, we performed decerebration before collecting terminal 

data in LSH cats that we did in all control animals without SCI too with different 

outcome. We propose that the changes in intermuscular inhibitory pathways at the ankle 

are probably due to the effect of loss of connections with these structures or formation of 

new connections that are not seen in intact animals.  
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Our data shows strong inhibition of GA, SOL and PLT by FHL in LSH. In 

addition PLT that is inhibited very strongly by FHL in chronic LSH exhibits the same 

kind of force feedback interaction in locomoting animals (Ross and Nichols 2009) with 

intact spinal cord. The difference is however the fact that in LSH, FHL is not inhibited by 

any of the ankle extensor in contrast to locomoting animals where it is inhibited by GA 

and SOL. Therefore, it is important to look at our results from biomechanical and 

anatomical  point of view. FHL act as an extensor, planterflexor and adductor at ankle 

and toe flexor at foot joints and contributes to claw protrusion (Goslow et al. 1972; 

Lawrence et al. 1993; Lawrence and Nichols 1999).  The origin of FHL is on the upper 

portion of the fibula and inserts into the flexor digitorum longus (FDL). 

PLT is an ankle extensor, plantarflexor and abductor of ankle. PLT originates on 

the lateral side of the patella with a large, broad tendon that wraps around the tendons of 

GA and SOL, lays atop the calcaneus and inserts onto the tendon of flexor digitorum 

brevis (Crouch 1969). Both the FHL and PLT act indirectly on toes through their 

insertion into FDL and FDB respectively. However, due to difference of their action at 

ankle they can effect foot placement and clearance. Proper foot placement is an important 

part of balance control. Accordingly, if there is stronger adduction/inversion by FHL at 

ankle coupled by weaker abduction/eversion and extension by SOL, GA and PLT in SCI 

then the net result is ankle spraining and poor foot clearance. Since all the major force 

producing antigravity muscles are strongly inhibited after SCI loss of weight support and 

balance control is a major outcome. Poor obstacle clearance has already been reported in 

chronic LSH cats by Dena Howland laboratory (Adele et.al 2011). Also, GA and PLT are 

both multi-joint muscles and their strong inhibition naturally disturb interjoint co-
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ordination following LSH. SOL on the other hand is a uniarticular muscle acting at ankle 

so its strong inhibition by FHL in our study suggests that the redistribution of inhibitory 

force feedback at ankle is not limited to multiarticular muscles. Also, SOL is a major 

antigravity muscle that stays active throughout the stance therefore; its inhibition could 

result in loss of posture control under the influence of gravity. 

Cats with SCI can be trained to stand independently (De Leon et al. 1998) and 

withstand small perturbations to balance (Macpherson and Fung 1999); however, their 

intermuscular interactions are much different than cats with intact spinal cord and they 

fail to regain full control of balance and weight support. According to our current data we 

can say with confidence that the intermuscular interactions used for postural control are 

not accessible via spinal circuits alone, at least when these circuits do not receive normal 

supraspinal input. However, basic locomotion patterns may be produced by spinal CPGs 

(McCrea and Rybak 2008; Rossignol et al 2006), which are modulated by sensory 

feedback pathways within the spinal cord (Forssberg et al. 1980; Rossignol et al. 2008), 

even in the absence of descending input in SCI. We propose that balance control requires 

multisensory integration and interlimb coordination that is not evident in spinalized 

animals (Macpherson and Fung 1999) or animals lacking connectivity to the brain stem 

(Deliagina et al. 2008; Lyalka et al. 2009) and likely requires brain stem processing 

(Stapley and Drew 2009).  

The clasp-knife reflex, which consists of brief excitation followed by powerful, 

long-lasting inhibition in homonymous and synergistic muscles, has been extensively 

investigated in reduced animal preparations (Burke et al. 1972; Cleland and Rymer 1990; 
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Rymer et al. 1979; Sherrington 1909), chronically spinalized animals (Nichols and Cope 

1989; Sherrington 1909), and spastic human patients (Burke et al. 1971; Rademaker 

1947). It is distributed within and between antigravity muscles in complete transaction of 

spinal cord (Nichols and Cope 2001) and DSH ((Burke et al., 1972). Our data did not 

show any evidence of clasp knife inhibition in chronic LSH cats. We observed absence of 

autogenic inhibition in state 1, lack of prolongation of reflex latency and absence of 

profound inhibition of PLT, SOL, GA and FHL in state 2. We propose that as shown by 

Cleland and Rymer (Cleland and Rymer 1990) dorsal half of spinal cord might be 

responsible for clasp knife inhibition. In our study partial spinal injury (LSH) preserved 

half of the spinal cord (uninjured half with intact dorsal spinal cord) and therefore we 

were not able to witness this phenomenon.  

Methodological considerations 

 We strongly believe that our method of recording reflexes using different animals 

for control, acute LSH and chronic LSH data is the best approach to study changes 

incurred after injury. First it minimizes the variance in a group because same 

environment was provided to each group of animals. Also, chronic LSH, pre and post 

surgical care was provided by the same person (Dena Hawland) to avoid variability in 

surgical procedure across animals. We believe that this approach helped us reduce the 

number of experimental animals used. We didn’t use the same animal to collect control 

and post LSH data because our experiments requires decerebration to avoid any effect of 

brain and other special senses on intermuscualr interactions/reflex pathways.  
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Reflexes can be highly variable from one cat (Loeb 1993) or human (Zehr et al. 

1997) to another, which probably extends to most species, including rats and mice. Our 

data shows asymmetrical pattern (distal to proximal) of the amount of inhibitory force 

feedback between proximal and distal muscles following chronic LSH.  We propose that 

it could be because of asymmetric descending influences from structures rostral to the 

partial spinal lesion. With the present approach, changes in reflex pathways after a partial 

spinal lesion cannot be attributed to specific structures, and more work is required to 

elucidate the relative contribution of different structures in the observed changes. 
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