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SUMMARY

Due to the human effort required for obtaining annotations for visual data (i.e. images), this

research is focused on making use of unlabeled data. Under this setting, neural networks

are currently trained using unsupervised and semi-supervised learning mechanisms. How-

ever, unsupervised learning methods involve no hint about the underlying structure of input

data while semi-supervised learning methods provide information about the relationship

between data points. In this thesis, we specifically look at constrained clustering-based

semi-supervised learning where some limited additional information is provided as 1/-1

labels where 1 (must-link) indicates that images in given image pair belong to the same

class and -1 (cannot-link) otherwise. Such labels can be obatined from category labels,

though it is a weaker form of supervision and can also be obtained in various other ways

as well (e.g. users comparing images of unknown labels, temporal tracking in videos to

generate positive constraints, etc.). Currently, Semantic Clustering by Adopting Nearest

neighbors (SCAN) [1] is the state-of-the-art algorithm in the area of unsupervised learning.

This thesis investigates methods to improve the performance of the SCAN [1] algorithm

using the additional constraints. Specifically, the SCAN algorithm consists of three steps:

1) representation learning through pretext tasks, 2) mining of positive pairs through nearest

neighbor search, and 3) self-labelling. This thesis integrates semi-supervised learning in

the second step of the algorithm, both by proposing to add the additional constraints to the

nearest-neighbor based ones, but also proposing to use several additional constraint-based

loss functions useful during clustering. Unlike the original SCAN algorithm, we propose

these additional losses to fully utilize both the must-link and cannot-link constraints effec-
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tively. The performance of the new setup was therefore analyzed by varying the number

of must-link constraints (mls) and cannot-link constraints (cls) provided. Additionally, the

clustering loss in step 2 was combined with Kullback–Leibler divergence based contrastive

loss (KCL) Loss and Meta Classification Likelihood (MCL) Loss. All of the experiments

outperformed the baseline performance of SCAN [1], and we show that the addition of the

new loss functions further improves performance. Providing must-links proved to be more

useful than compared to cannot-links. Very high accuracy is obtained in three cases: when

clustering loss is combined with MCL Loss, secondly, when KCL Loss is combined with

clustering loss in presence of supervision from both must-links (mls) and cannot-links (cls)

and lastly, when a large number of mls are integrated into the second step of SCAN [1].
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Motivation

An immense amount of study is present in the Machine Learning, and specifically Com-

puter Vision, literature for image classification and clustering tasks using a supervised

learning paradigm. Supervised learning is the learning method in which the model is pro-

vided with images along with their annotations for training and at test time the model is

asked to predict a cluster or label for the provided test image. A major drawback of this

type of learning is the tremendous amount of labeled data required for the model’s training.

The availability of data annotations for a large dataset is not always possible as it requires

much human effort to manually label each image. Therefore, in order to tackle a real-world

problem where data is provided without any labels and the model can cover a wide range

of classes, recent research has been directed towards self-supervised, semi-supervised, and

unsupervised learning frameworks.

In the self-supervised learning technique, first, the model learns from unlabelled data

via pretext tasks for which labels can be derived, and then it is transformed for a down-

stream task like clustering or regression using a small amount of labeled data in less amount

of time. Since we have a large amount of unlabelled data at hand and it is increasing ex-

ponentially, the training of the model in a self-supervised way is not a problem. Besides,

labels for model training on the pretext task are produced from the data itself and a range

of such tasks are possible. For example, we have a significant number of text sentences.

Similarly, in computer vision one can rotate the images and perform a pretext rotation pre-

diction task [2]. We can mask some words of a sentence and train the model to predict the

masked words. In this scenario, the masked words will act as a label for the model.
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Semi-supervised learning refers to the type of training in which the model is provided

with a combination of labelled and unlabelled data. Usually, the amount of unlabelled

data is much higher as compared to labelled data. The model learns from labelled data

and makes predictions on the unlabelled data; confident predictions can then be used to

augment the original training labels. This learning technique is highly useful in scenarios

where obtaining labelled data is much more costly. Combining a small amount of labelled

data with a large amount of unlabelled data has shown significant improvement in the per-

formance of a model as compared to the setting where only labelled or only unlabelled data

is provided.

In an unsupervised learning setting, the model is trained with only unlabelled data. Here

the model has to find underlying structures in different images and group them by learning

the differences and patterns in the given input images. This learning framework is not less

accurate due to many limitations, such as requiring a good feature space to cluster.

If we review the literature of the last few years, different algorithms in self-supervised,

semi-supervised and unsupervised domains have been developed with assumptions that the

model has information about the number of clusters, class names etc. whereas in real-world

scenarios it is not always possible to have such information as a prior. Therefore, the SCAN

[1] algorithm was presented which can perform clustering tasks using only unlabelled data

when no prior information is provided.

1.2 Problem Statement

Images can be clustered using Representation learning where the steps of feature learning

and clustering are decoupled. First, the model learns the features from images which are

provided without annotations by performing a pretext task. A number of pretext tasks have

been proposed like patch context prediction [3, 4], predicting noisy version of image [5],

instance discrimination task [6, 7, 8, 9, 10], image colourization [11, 12], assigning the task

of solving a puzzle to the network [13, 14], finding a rotated version of the given image [2],
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generating a similar image for the given image [15] and many others.

The model weights are learned by minimizing the loss function of a given pretext task.

After the model’s training is finished, clustering is performed. This method of image clus-

tering is not optimal and the generated clusters may not align with actual class groups.

Methods which combine feature learning and clustering have also been explored and

are known as end-to-end learning. Complex convolutional neural network (CNN) trained

on a large dataset is used as a prior. The weights of CNN are then refined by performing a

clustering task on the target dataset. This technique showed performance improvement but

there were some downsides. Using a trained network as a prior makes this method sensitive

to initialization and hence it learns low-level features which are not suitable for clustering

tasks.

SCAN [1] utilizes the positive points of representation learning and end-to-end learn-

ing and overcome their shortcomings. SCAN [1] performs feature learning and clustering

as a two-step approach like representation learning. Firstly, it learns meaningful features

from given input images by performing a pretext task. Then, unlike representation learning

which performs k-means clustering, SCAN [1] finds the top 20 nearest neighbours for each

image using the k-nearest neighbors (KNN) algorithm. Later, the image and each of its

neighbours is assigned to the same cluster by maximizing the dot product between each

image and its neighbour. In contrast to end-to-end learning, SCAN [1] relies on neigh-

bours obtained by utilizing high-level feature similarity knowledge and not the network

architecture.

In upcoming sections, we explain the details of the SCAN [1] algorithm in detail. The

first step of the algorithm is pretext task-based learning. Due to the absence of labels,

SCAN [1] requires some idea about which images are similar and which are not. For this

purpose, the network is assigned a pretext task. The network learns its weights by reducing

the objective function of the assigned task. After the completion of the network’s training,

the knowledge is utilized to obtain the top 20 neighbours for each image. Most of these
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neighbours belong to the same category as the image but there are some false neighbours

too. This image-neighbour information is utilized in step 2 of SCAN [1]. In the second

step, the network is trained to assign the image and its neighbour to the same cluster.

Degradation of performance due to incorrect neighbours obtained in step 1 is removed in

step 3. During step 3, highly confident data points serve as a prototype for clusters and

labels for less confident images are obtained.

1.2.1 Pretext Task

In the Supervised learning scenario, we have a ground truth label for each data point but in

the current situation of unsupervised learning, we don’t have access to labels. There should

be some way that the network can learn to group the images. One of the popular methods

to give prior information to the network in case of an unsupervised learning situation is

assigning the network a pretext task. Various pretext tasks including image colorization

[11, 12], rotation prediction [2], noise prediction [5], instance discrimination [6, 7, 8, 9, 10]

have been explored. By minimizing the loss function of a given pretext task, the network

learns weights which gives the network idea to distinguish similar and dissimilar images.

End-to-end Learning utilizes CNN as a prior. The convolutional neural network is given

a large labelled dataset and tasked to perform clustering on given input images. The dataset

given to the CNN for initial training is different from the dataset on which we need to

perform clustering; in essense the goal is to transfer the learned clustering network from

the auxiliary labelled dataset to the unlabelled dataset. After completion of training, the

network learns to group the target dataset. Another way of training a similarity-based CNN

is to train it such that the network assigns the image and its augmented image to the same

cluster. Both of these approaches share a downside in that the network used for the target

dataset is sensitive to initialization. Moreover, when the network starts learning from the

target dataset, it first learns low-level features like colour and pattern. Before the training

reaches the point where the network extracts high level features, it uses information like
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contrast, texture and colour for grouping images into different clusters which results in

improper image classification.

Representation Learning overcomes the downside of end-to-end learning and, there-

fore, it is used as the first step in SCAN [1]. The network learns weights θ by minimizing

the objective function of a given pretext task in a self-supervised manner. Hence, it maps

given input images to feature learning function Φθ. As there has been an emphasis on un-

supervised and semi-supervised learning for a while different methods have been explored

for network training in a scenario of data without labels. The pretext task is one of the

successful methods through which a network can learn about a given unlabelled dataset

itself. Different options for pretext tasks are image generation, predicting rotated image for

the input image, predicting noisy image for the input image, and training the network by

assigning the task to solve a given jigsaw puzzle. Any pretext task that does not depend on

the specific transformation of the image can be chosen because we want the feature learning

function to be independent of certain image transformations. For example different affine

transformation of the same image results in a different output from the feature learning

function. Although Φθ should predict the same cluster for different transformations of an

image but it can be transformation dependent if the pretext task used to learn Φθ relies on

specific transformation. To mitigate this problem, the objective function is designed in a

way that assigns the same cluster to the image and its augmented images. It can be shown

mathematically as:

min
θ

d(Φθ(Xi),Φθ(T [Xi])) (1.1)

In the above equation, Xi is an image and T [Xi] represents a transformed image.

To illustrate, instance discrimination task and predicting rotated image for a given im-

age both can be used as pretext tasks but the instance discrimination task satisfies Equa-

tion 1.1 and reduces the distance between the image and its transformed version. On the

other hand, the rotation prediction task does not consider the relation between the image
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and the augmented images. Therefore, the accuracy of 83.5% and 87.6% is obtained using

two different variants of instance discrimination task [6, 8]. On the contrary, an accuracy

of 74.3% is obtained when the rotation prediction task is used as a pretext task. The results

demonstrates that the pretext task which classifies the image and the respective augmented

image in one cluster is likely better suited for the SCAN [1] algorithm.

To understand why Φθ can classify the image and the transformed image into one clus-

ter, we need to understand two points. First is that Φθ learns features from a given input

image. Secondly, it is impossible for Φθ to understand similarities between image and

transformed image if it only relies on low-level features like colour or texture. Hence, it is

clear that Φθ learns high-level features which helps it to assign the same group to the image

and its transformed images.

The knowledge learned through pretext task helps the network to gain insights about

the given dataset but accuracy obtained at this stage is not good enough. Therefore, the

pretext task is only used as an initial step in the pipeline of algorithm. Now, the obtained

knowledge will be used as prior for the next step which will improve the performance of

network. Figure 1.1 shows overall working of this step.

1.2.2 Clustering

This step consists of two sub-steps. The first step is to mine positive pairs (pseudo-

constraints) via the nearest neighbours for each data point and the second step is to cluster

the image and the respective neighbours in the same group. Working of this step is illus-

trated in Figure 1.2.

Mining top nearest neighbors: Through different experimental setups, it has been shown

that the pretext task is a good option to extract image features but simply applying k-means

for clustering on the extracted features results in imperfect clustering, e.g. fewer number

of clusters than there are actual classes. Therefore, to avoid this problem SCAN [1] mines
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Pretext
Model

Unlabeled 
dataset

...
car
img

car
img

car
img

car
img

car
img

Step 1: Mine top 20 nearest neighbors

Figure 1.1: Working of first step of SCAN i.e. pretext task

positive pairs based on nearest neighbours for each image, utilizing the learned features to

determine the neighbors. These are called pseudo-constraints.

Given unlabeled dataset D, first, the network learns image features by performing a

pretext task. The network’s weights are updated by minimizing the objective function of

the given pretext task. Then for each image Xi in dataset D, we mine top K neighbours

represented by NXi
in the learned embedding space Φθ using the KNN algorithm. SCAN

[1] finds top 20 nearest neighbors for each image. This information about the image and its

neighbours is integrated into the next step where we actually group the images.

Clustering Loss: Next, a new network Φη with parameters denoted by η is trained given

the samples and mined neighbours. The network learns by assigning the same cluster to the

image and its neighbour. One of the neighbors from 20 neighbours is selected randomly.

The last layer of the network is Softmax which produces the probability for the image

belonging to each possible cluster represented by C = 1, ..., C. Mathematically, the loss

function is represented as:
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Λ = − 1

|D|
∑
X∈D

∑
k∈NX

log
〈
Φη(X),Φη(k)

〉
+ λ

∑
c∈C

Φ
′c
η logΦ

′c
η (1.2)

〈
.
〉

denotes the dot product in the above equation. The probability that image Xi be-

longs to some cluster c is indicated by Φc
η(Xi). The mathematical definition for Φ′c

η is:

Φ
′c
η =

1

|D|
∑
X∈D

Φc
η (1.3)

There are two terms in Equation 1.2. The first half of the equation calculates the dot

product between the image and its neighbours to assign same group to both. The second

term is about entropy and its purpose is to avoid assigning all images to the same cluster.

SCAN [1] assumes that the number of clusters is known and hence it is set equal to the

actual number of classes. This is done to make performance evaluation possible. Other-

wise, it is also possible to make a rough assumption about a possible number of groups and

do over-clustering.

Clustering
Model

Step 2: Predict labels for given images

image+neighbors

pseudo constraints

Figure 1.2: Working of second step of SCAN i.e. clustering
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1.2.3 Self-labeling

In the previous step, the network learned by assigning the same cluster to the image and

its neighbour. This neighbouring image is selected randomly from 20 mined neighbours.

However, all of these 20 neighbours may not be true positive pairs. Due to false posi-

tives, the performance of the network is not as good as it should be. On investigating the

probability for each image made by the network, it was observed that cluster assignment

is correct for the images for which the network is highly confident. Therefore, SCAN [1]

uses highly confident samples as prototypes for clusters and finds correct cluster prediction

for low-confident samples. Figure 1.3 demonstrates the working of self-labeling step.

In the self-labelling step, SCAN [1] discards the predictions for samples for which the

network is not highly confident while the rest are used as representatives of their respective

clusters. During this step, the network re-calculates probabilities for the low-confident

samples again to correct its previous mistakes. The threshold value used by SCAN [1] is

0.99. Cross-entropy loss is used on strongly transformed versions of confident samples to

circumvent over-fitting. As the network finds correct predictions for less confident samples,

it adds them to the prototype group. Hence, the network becomes more precise and hence

the overall accuracy improves.

1.3 Thesis Structure

In this thesis, we adapt the SCAN algorithm to utilize a small number of ground truth

constraints, investigating how to incorporate them into a semi-supervised version. The

following is the flow of the thesis: Chapter 2 reviews relevant work about clustering and

unsupervised learning. Chapter 3 explains how pseudo constraints were extracted from

unlabeled dataset, hyper-parameter values, and the type of settings in which SCAN was

tested. Finally, in Chapter 4 we present the results obtained through various variations of

SCAN algorithm. The last Chapter 5 concludes the whole research.
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Self-labeling 
Model

Step 3: Predict labels 
for less confident 
images

prob. of correct 
predictions >= 0.99

image serve as 
prototype for cluster

obtained 
labels otherwise

labels

Figure 1.3: Working of third step of SCAN i.e. self-labeling
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CHAPTER 2

RELATED WORK

2.1 Clustering

Caron et al. [16] proposed a clustering approach based on contrastive instance learning.

Like our method, this technique is a pure unsupervised or self-supervised learning approach

but the difference is that it is an online clustering algorithm and does not require going

through the dataset multiple times.

The unsupervised learning method proposed by Yuki Asano [17] uses Representation

Learning for clustering similar to SCAN [1]. To obtain a prior about labels for the given

unlabelled dataset, it uses a self-labelling algorithm which yields labels for input images.

Yan et al. [18] introduced an algorithm called ClusterFit. In this technique, first, a

pre-trained network extracts features which are clustered using k-means. Then a new net-

work is trained from scratch on the same dataset using clustering labels obtained from the

previous step as pseudo labels. ClusterFit uses a pre-trained network to extract features

while SCAN [1] uses pretext tasks to achieve the same goal. Both of the methods use in-

formation obtained from the first step as prior in the second step. ClusterFit uses clustering

assignment information obtained in the initial step while SCAN [1] finds the top nearest

neighbours and integrate the obtained information in the second step.

An unsupervised clustering approach DeepCluster [19] works in a two-step. In the

initial step, the network extract features from the input dataset and produces pseudo labels

by grouping the features using the k-means algorithm. In the second step, the network

updates its parameters by making a prediction for the labels produced in the first step.

Unlike SCAN [1], both label generation and clustering are performed simultaneously. Also

based on extracted features, DeepCluster groups input images in clusters using the K-means

11



algorithm while SCAN [1] utilizes KNN to find neighbouring images for each given image.

Due to the availability of a large amount of non-curated data, Caron et al. [20] empha-

sized making use of such data as it is easily available and therefore, proposed a method

known as DeeperCluster. DeeperCluster combines clustering and self-supervision to im-

prove the performance of the previously proposed algorithm called DeepCluster. Deeper-

Cluster first trains the network to extract features of the image dataset and then produces

target labels by clustering the extracted features. To obtain image features, DeeperCluster

uses pretext task just like SCAN [1] but the main difference is the pretext task being used

by it. DeeperCluster uses Image Rotation as a pretext task while SCAN [1] does not give

good performance on the image rotation prediction task.

Joint Unsupervised Learning (JULE) [21] algorithm combines feature learning and

clustering into one process unlike SCAN [1] which performs the mentioned tasks in two

separate steps. The model performs clustering in the forward pass while learning features

in the backward pass. Hence image groups and learned features both are updated in each

epoch. Image clusters help the model to learn image features while improved image repre-

sentation guides the model to group the images more correctly.

Xie et al. [22] proposed Deep Embedded Clustering (DEC) which transforms input

data points to image features which are low dimensional as compared to the given input.

The transformation of input data to low-dimensional space and clustering is performed

simultaneously by the network. Similar to SCAN [1], this algorithm uses highly confident

data points as prototypes for clusters to make a correct prediction for the rest. Ultimately

SCAN has been able to obtain better performance than these prior methods, achieving state

of art results across a number of datasets.

2.2 Unsupervised Learning

K-means has proved to be an effective algorithm for feature learning if applied properly.

Therefore, Coates and Ng [23] proposed a method to learn features from unlabelled images
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by training a network where layers are trained sequentially.

Bojanowski and Joulin [5] introduced a method to train networks for representation

learning without any supervision. Here, the target representation is fixed and then the net-

work is trained in a manner that features learned by the network align with target represen-

tation. SCAN [1] on the other hand, has no target representation and learns by performing

pretext tasks.

Unlike SCAN [1], [24] performs feature learning and clustering jointly. Surrogate

classes are formed by applying transformations to image patches. The network is trained

to differentiate between the surrogate classes.

The method proposed by Liao et al. [25] learns from unlabeled data by optimizing

objective functions based on k-means. As opposed to SCAN [1], it combines clustering

and representation learning in a single step.
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CHAPTER 3

PROPOSED METHOD

3.1 Adding positive and negative constraints

The neighbours of images obtained through the pretext task in step 1 of SCAN [1] can

be called positive constraints. The goal of this thesis was to adapt the SCAN method to

semi-supervised learning, where additional constraints are available from labelled data.

Specifically, we tried to analyze the performance of SCAN [1] by supplying it with more

positive constraints from the constrained dataset in addition to the ones obtained through

the pretext task. The rows in a constrained dataset with value 1 in column ”constraint” as

positive constraints. We also analyzed the performance by varying the number of positive

constraints.

We also tested the impact of negative constraints on the performance of SCAN [1] to

check if the algorithm learns anything from negative constraints. The images with different

labels in the constrained dataset are referred to as negative constraints.

A key question is how such constraints can be incorporated into the SCAN algorithm.

Below, we describe our proposal to integrate two loss functions, based on KL-divergence,

that utilize these additional constraints. In the experimental section we show that this ad-

dition can significantly improve performance, beyond just naively adding the constraints

alongside the mined nearest-neighbor based constraints in the original algorithm.

3.2 Integrating KCL Loss Function

Hsu et al. [26, 27] proposed a loss function called KCL to utilize learned weights for dif-

ferent domains and different tasks. To achieve this purpose, this objective function utilizes

pseudo pairwise constraints which are called must-link or similar pairs if the two images
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belong to the same class/category. If the paired images belong to different classes then the

constraint is called a cannot-link or dissimilar pair. We have used the notation of 1 and -1

for must-link and cannot-link constraints respectively.

We therefore propose to utilize this loss function in order to leverage the additional

supervised constraints. This loss function is easy to integrate with any neural network and

is independent of the number of pairwise constraints. The probability distribution of both

images from a pair is obtained from the neural network by applying the Softmax layer at

the end. The probability distribution of the images in a pair is similar if the images forming

a pair belong to the same cluster otherwise different. KL-divergence is used to calculate

the distance between obtained distributions.

If we consider xp, xq are the two images from a pair and P = f(xp), Q = f(xq) are the

respective probabilistic output, the following equation is used for the must-link pair.

L(xp, xq)
+ = DKL(P

∗||Q) +DKL(Q
∗||P ) (3.1)

Here, DKL is defined as

DKL(P
∗||Q) =

k∑
c=1

pc log(
pc
qc
) (3.2)

Hinge Loss Lh is used in the case if the images in a pair are from different classes. The

objective function in this case is defined as the following:

L(xp, xq)
− = Lh(DKL(P

∗||Q), σ) + Lh(DKL(Q
∗||P ), σ) (3.3)

The mathematical definition for Hinge Loss is:

Lh(e, σ) = max(0, σ − e) (3.4)

If G(xp, xq) defines pairwise similarity in binary fashion i.e. 1 for similar pair and 0 for
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an otherwise then the overall mathematical definition of KCL Loss is defined as:

L(xp, xq) = G(xp, xq)L(xp, xq)
+ + (1−G(xp, xq))L(xp, xq)

− (3.5)

As we are giving information about pseudo constraints in addition to image-neighbour

pairs, we carried out experiments in which we integrated the KCL loss function in addition

to the loss function of SCAN [1] algorithm. We also studied the usefulness of similar and

dissimilar pair information and which one is more important for the learning purpose of

neural networks.

3.3 Integrating MCL Loss Function

Later Hsu et al. [28] introduced a new loss function for multi-class classification known

as MCL Loss. To train a neural network using MCL Loss, no labels are required instead

pairwise similarity information Sij is needed. Such pairwise similarity information can be

collected through various ways like using cross-transfer tasks or in a supervised or semi-

supervised fashion.

If two samples xi and xj have the same labels Yi and Yj then Sij is equal to 1 otherwise

0. First, a network is trained for binary classification. Given the pairwise similarity, the

network learns to differentiate between similar and dissimilar images. The binary classifier

is present only during the training of the network and is helpful to train the network for

multi-class classification tasks. MCL Loss is represented as follows:

Lmeta = −
∑
i,j

sij log ŝij + (1− sij) log (1− ŝij). (3.6)

In the above equation, sij indicates actual similarity information between two samples

while ŝij is the one predicted by the network.
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CHAPTER 4

RESULT AND ANALYSIS

4.1 Dataset

For all of the experiments, the unlabeled CIFAR10 [29] dataset is used for performing

pretext tasks which consist of images from 10 different classes. For integrating semi-

supervised learning into the second step of SCAN [1], we extract a set of constraints from

a subset of the labelled data. These pseudo constraints were extracted from the CIFAR10

dataset. Table 4.1 shows the resulting constraints for data shown in Figure 4.1

ID = 9 ID = 10 ID = 12ID = 11

ID = 5 ID = 6 ID = 8ID = 7

ID = 1 ID = 2 ID = 4ID = 3

Figure 4.1: Random figures from CIFAR10 dataset

For each image in the dataset, a pairing image is picked randomly. If the label of both

images is the same then such an image pair is assigned a constraint value of 1 otherwise
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Table 4.1: Pseudo constraints extracted from CIFAR10 dataset to be used for semi-
supervision in second step of SCAN [1]

image id1 image id2 label1 label2 constraint
1 2 dog dog 1
2 5 dog horse -1
1 6 dog ship -1
10 12 cat cat 1
4 5 horse horse 1
5 8 horse car -1
6 5 ship horse -1
4 7 horse truck -1

-1. As the second image is selected randomly therefore it is highly likely that the selected

image belongs to a different class. Therefore, the produced constrained dataset contains

only 10% data with a constraint value of 1. 90% of data comprises image pairs in which

paired images belong to different classes. The network in step 2 of SCAN [1] algorithm

is supplied with the produced constrained dataset in addition to image-neighbour pairs

produced through the pretext task.

4.2 Experimental Setup

All of the hyper-parameter values including the number of epochs and learning rate are kept

the same as used in the original SCAN [1] experiment setting for fair comparison except

the threshold value used in step 3. The SCAN [1] algorithm uses threshold value of 0.99

for all datasets. We have fine-tuned this parameter for each experiment.

Another major difference is in the split of the train/validation/test set. SCAN [1] uses

a test set for validation and a training set for training the neural network. This could result

in over-fitting to the test set during development and model selection. To use the test set

solely for testing purposes, we have divided the training set into 90:10 ratios i.e. 90% of

data will be used for training while 10% for validation.
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4.3 Experimental Results

In this section, we discuss different modifications we made to the basic SCAN [1] algo-

rithm including integrating constrained dataset in step 2, integrating KCL/MCL loss with

clustering loss, and division of dataset into train/test/validation. We discuss the perfor-

mance of each case concerning accuracy in comparison with basic SCAN [1]. All of the

settings performed better compared to SCAN [1]. Table 4.2, Table 4.3 and Table 4.4 shows

performance for step 2 of SCAN [1] in terms of accuracy, Adjusted Rand Index (ARI)

and Normalized Mutual Information (NMI) respectively while Table 4.5, Table 4.6 and Ta-

ble 4.7 represents performance for step 3 of SCAN [1] in terms of accuracy, ARI and NMI

respectively .

Table 4.2: Result table showing accuracy for test set and validation set for step 2 of SCAN

Setup constraints clust. loss add. loss Val. Accuracy Test Accuracy
SCAN - - - 76.06 75.21

SCAN+DL 10k ml ml - 86.36 86.13
SCAN+DL 10k ml+cl ml - 80.48 79.57
SCAN+DL 10k ml+cl ml+cl - 81.88 81.4

SCAN+DL+KCL 10k ml+cl ml ml 82.39 82.63
SCAN+DL+KCL 10k ml+cl ml ml+cl 83.06 82.41
SCAN+DL+MCL 10k ml+cl ml ml+cl 83.5 82.72

Table 4.3: Result table showing ARI for test set and validation set for step 2 of SCAN

Setup constraints clust. loss add. loss Val. ARI Test ARI
SCAN - - - 0.5775 0.5625

SCAN+DL 10k ml ml - 0.7331 0.7282
SCAN+DL 10k ml+cl ml - 0.6434 0.6252
SCAN+DL 10k ml+cl ml+cl - 0.6663 0.6542

SCAN+DL+KCL 10k ml+cl ml ml 0.6725 0.6744
SCAN+DL+KCL 10k ml+cl ml ml+cl 0.6839 0.6706
SCAN+DL+MCL 10k ml+cl ml ml+cl 0.6908 0.6752

19



Table 4.4: Result table showing NMI for test set and validation set for step 2 of SCAN

Setup constraints clust. loss add. loss Val. NMI Test NMI
SCAN - - - 0.6423 0.6261

SCAN+DL 10k ml ml - 0.7592 0.7479
SCAN+DL 10k ml+cl ml - 0.6912 0.6714
SCAN+DL 10k ml+cl ml+cl - 0.6922 0.7058

SCAN+DL+KCL 10k ml+cl ml ml 0.7083 0.7063
SCAN+DL+KCL 10k ml+cl ml ml+cl 0.7202 0.7035
SCAN+DL+MCL 10k ml+cl ml ml+cl 0.7252 0.7076

Table 4.5: Result table showing accuracy for test set and validation set for step 3 of SCAN

Setup constraints clust. loss add. loss Val. Accuracy Test Accuracy
SCAN - - - 86.66 86.03

SCAN+DL 10k ml ml - 91.6 90.93
SCAN+DL 10k ml+cl ml - 87.28 86.63
SCAN+DL 10k ml+cl ml+cl - 88.28 88.42

SCAN+DL+KCL 10k ml+cl ml ml 88.68 88.38
SCAN+DL+KCL 10k ml+cl ml ml+cl 89.16 88.89
SCAN+DL+MCL 10k ml+cl ml ml+cl 90.08 90.08

4.4 Performance of SCAN with new division of dataset

As mentioned in Section 4.1, the split of the dataset for training, validation and testing

purpose was changed as used by SCAN [1] algorithm. Previously, training data was used

for training and part of the dataset for testing was utilized for validation by the SCAN [1]

algorithm. this could potentially lead to over-fitting on the test set if significant model

selection is done. To get a pure test set, we changed the dataset split. Now, the test set is

used for testing while 90% of training data is used for training of neural network while the

rest of 10% is being used for validating the network’s performance.

For a fair comparison of SCAN [1]’s performance with different settings, we calculated

its performance on the new division of the dataset. We used the same threshold value of

0.99 as used by SCAN [1] algorithm. Hence, we got a test accuracy of 75.21% for step 2

which increased up to an accuracy of 86.03% in step 3.
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Table 4.6: Result table showing ARI for test set and validation set for step 3 of SCAN

Setup constraints clust. loss add. loss Val. ARI Test ARI
SCAN - - - 0.7448 0.7315

SCAN+DL 10k ml ml - 0.8271 0.8158
SCAN+DL 10k ml+cl ml - 0.7558 0.7412
SCAN+DL 10k ml+cl ml+cl - 0.7687 0.7703

SCAN+DL+KCL 10k ml+cl ml ml 0.7771 0.7700
SCAN+DL+KCL 10k ml+cl ml ml+cl 0.7861 0.7780
SCAN+DL+MCL 10k ml+cl ml ml+cl 0.8008 0.8009

Table 4.7: Result table showing NMI for test set and validation set for step 3 of SCAN

Setup constraints clust. loss add. loss Val. NMI Test NMI
SCAN - - - 0.7742 0.7601

SCAN+DL 10k ml ml - 0.8324 0.8179
SCAN+DL 10k ml+cl ml - 0.7829 0.7676
SCAN+DL 10k ml+cl ml+cl - 0.7860 0.7824

SCAN+DL+KCL 10k ml+cl ml ml 0.7927 0.7843
SCAN+DL+KCL 10k ml+cl ml ml+cl 0.8037 0.7917
SCAN+DL+MCL 10k ml+cl ml ml+cl 0.8108 0.8050

4.5 Performance of SCAN with 10k mls from 10k ml constrained dataset

For this scenario, we integrated the constrained dataset obtained from a small amount of

labelled data (leading to a semi-supervised setting) in step 2 of SCAN [1]. Now, SCAN [1]

gets additional information from the constrained dataset in addition to image-neighbour

pairs obtained from step 1. Here, the constrained dataset consists of 10k must-links and

no cannot-links. The information of neighbours obtained from step 1 has some errors but

the neighbouring information provided by the constrained dataset consists of only true and

correct neighbours. So, the network was trained using neighbouring information from step

1 and constrained dataset together. Therefore, the loss function of SCAN [1] was calculated

on both data sources. The optimal value of the threshold was found to be 0.99.

The addition of 10k correct pairwise constraints improved the performance of SCAN

[1] from 75.21% to 86.13% for step 2 while accuracy for step 3 increased from 86.03% to
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90.93%. This proves that SCAN [1] algorithm requires more pairwise information for the

training of the neural network and can benefit from more reliable constraints.

4.6 Performance of SCAN with mls from 10k ml+cl constrained dataset

The constrained dataset was integrated into step 2 of SCAN [1] algorithm. This additional

dataset consists of 10k pairwise constraints out of which 90% pairs are cannot-links and

10% are must-links. This represents a more realistic case, as in reality ground truth in-

formation will be imbalanced and therefore the mls that we use in the algorithm will be

fewer. Note that we are providing only must-links for the training of the network and for

the calculation of loss. We are not using cannot-links at all in this setup. A threshold value

of 0.97 was used in step 3.

Accuracy for step 2 and step 3 turned out to be 79.57% and 86.63% respectively. We can

observe that both of the obtained accuracy values are low as compared to the ones obtained

in Section 4.5. It proves that the number of must-link information provided to SCAN [1]

has a big impact on its performance. SCAN [1] performs better when provided with more

pairwise information. As we used 10k additional must-link pairs in Section 4.5 as compared

to 1k in this case, therefore, we got improved accuracy in the former experiment.

4.7 Performance of SCAN with mls+cls from 10k ml+cl constrained dataset

Here, the the clustering loss in step 2 of SCAN [1] is calculated on images and mined

neighbours along with a constrained dataset which consists of both must-links and cannot-

links. Originally, the objective function in step 2 only accepts similar images either in form

of an image-neighbour pair or must-link but we modified it to accept cannot-links too. 0.99

was used as a threshold value.

In terms of performance, in this setting, we obtained a test accuracy of 81.4% for step

2 which is 6% improved accuracy as compared to basic SCAN [1]’s performance. For step

3, we got an accuracy of 88.42% which is a 2% improvement.
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4.8 Performance of SCAN with KCL Loss utilizing mls from 10k ml+cl constrained

dataset

Here, we integrated the constrained dataset to step 2 of SCAN [1]. This dataset includes

90% of dissimilar pairs while 10% similar pairs which we have used.

Besides, we integrated KCL loss to SCAN [1] so total loss now is the summation of

clustering loss and KCL loss. Loss function in this case is the summation of Equation 1.2

and Equation 3.5:

Loss = Λ+ λ ∗ L(xp, xq) (4.1)

In the above equation, the optimal value of λ in this setting was found to be 1.

Semantic clustering loss is calculated using the network’s output for pairwise data from

step 1 and must-link pairs’ output while KCL Loss is calculated for the network’s output

for similar pairs from the constrained dataset. The optimal value for the threshold was

found to be 0.97.

Integrating KCL loss and 1k must-links proved to be useful and accuracy increased

from 75.21% to 82.63% for step 2. The accuracy enhanced from 86.03% to 88.38% for

step 3. The performance is low as compared to the accuracy obtained by integrating 10k

must-links (which is 10x more labelled constraint data) but much improved if compared

with base SCAN [1] performance.

4.9 Performance of SCAN with KCL Loss utilizing mls+cls from 10k ml+cl con-

strained dataset

For the current experiment, the network in step 2 of SCAN [1] learns from image-neighbour

pairs and from the constrained dataset which consists of 10k similar and dissimilar image

pairs. 10% of these images are must-links while the rest are cannot-links. Here, the net-

work learns by minimizing not only clustering loss but also KCL loss. Clustering loss is
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calculated on image-neighbour pairs and must-links from a constrained dataset while KCL

loss is evaluated on similar and dissimilar images from a constrained dataset. Equation 4.2

is used here for calculating loss in step 2.

After fine-tuning, an optimal value of lambda was found to be 1 while the threshold

value was set to 0.99. In terms of performance, the accuracy improved by much margin

in comparison to the base SCAN [1] algorithm. For step 2, we obtained an accuracy of

82.41% while an accuracy of 88.89% was obtained for step 3.

4.10 Performance of SCAN with MCL Loss utilizing mls+cls from 10k ml+cl con-

strained dataset

In this case, loss in step 2 is the summation of MCL loss and clustering loss where the

former is calculated using similar and dissimilar images from 10k must-link and cannot-

link images while the latter is evaluated on image-neighbour pairs and must-links from the

constrained dataset.

Here, loss function is the summation of Equation 1.2 and Equation 3.6:

Loss = Λ+ λ ∗ Lmeta (4.2)

We found the fine-tuned value of lambda to be 1.5 and the threshold to be 0.97. The

performance, in this case, is again further improved over the previous experiment using

KCL loss evaluated on both must-links and cannot-links. We found an accuracy of 82.72%

on the test set for step 2 and an accuracy of 90.08% for step 3. This is the best performance

that we obtained across comparable conditions (with about 1k labelled mls), demonstrating

that our proposed method is effective.
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CHAPTER 5

CONCLUSION

Since the past few years research has been directed towards the training of neural networks

using unlabeled data or pairwise pseudo constraints known as unsupervised learning and

semi-supervised learning respectively. In this thesis, we explored several methods to im-

prove the performance of the current state-of-the-art algorithm for unsupervised learning

called SCAN [1] using semi-supervision from pairwise pseudo constraints. The overall

working of the SCAN [1] algorithm can be broken down into three steps: the first step

is a pre-text task, the second is clustering and the third is self-labelling. We proposed to

integrate semi-supervision in the second step of SCAN [1]. Experiments were carried out

to evaluate performance by providing must-links and cannot-links. The more we increase

the number of must-links, the more accuracy of the algorithm improves. One downside

of adding the small amount of labelled constraints into SCAN is that this does not effec-

tively utilize both must-link and cannot-link constraints into an integrated loss function. We

therefore also proposed to utilize the additional labelled constraints by combining the clus-

tering loss with the KCL Loss and MCL loss functions. The results show that KCL Loss

performs better than the original SCAN algorithm in presence of both mls and cls. Working

of SCAN [1] was evaluated by combining KCL and MCL Losses and the accuracy shows

that MCL is better suited for SCAN [1]. Overall, the best accuracy was obtained when a

large number of mls were provided to step 2 of SCAN [1] with our proposed usage of the

MCL loss.
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