SUBDIVISIONS OF COMPLETE GRAPHS

A Dissertation
Presented to
The Academic Faculty
By
Yan Wang
In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in
Algorithms, Combinatorics and Optimization

School of Mathematics
Georgia Institute of Technology

August 2017

Copyright © Yan Wang 2017

SUBDIVISIONS OF COMPLETE GRAPHS

Approved by:

Dr. Xingxing Yu, Advisor
School of Mathematics
Georgia Institute of Technology

Dr. Richard Peng
School of Computer Science
Georgia Institute of Technology
Dr. Prasad Tetali
School of Mathematics
Georgia Institute of Technology

Dr. Robin Thomas
School of Mathematics
Georgia Institute of Technology
Dr. Lutz Warnke
School of Mathematics
Georgia Institute of Technology

Date Approved: April 10, 2017

To my parents.

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my advisor, Prof. Xingxing Yu, for the continuous support of my Ph.D. study and related research, for his patience, vision and foresight, and immense knowledge. His guidance helped me overcome the obstacles in the research throughout my Ph.D. study.

Besides my advisor, I would like to thank Prof. Richard Peng, Prof. Robin Thomas, Prof. Prasad Tetali and Prof. Lutz Warnke for serving on my thesis committee, and Prof. Ken-ichi Kawarabayashi for being my thesis reader.

My sincere thanks also goes to the ACO program at Georgia Institute of Technology, especially to the ACO Director, Prof. Robin Thomas, who provided me the opportunity to join this excellent program, to learn and work with top researchers in graph theory and combinatorics in the world, and to attend conferences and workshops.

I would like to thank my co-authors Dawei He and Xingxing Yu. Also, I am fortunate to make many friends who gave me help and support during these years.

Last but not least, I would like to express my heartfelt gratitude to my parents and my girlfriend Yawen Liao. Without their unconditional support, encouragement and understanding, I would not be able to pursue my dream.

TABLE OF CONTENTS

Acknowledgments iv
Summary vi
Chapter 1: Introduction 1
1.1 Graph preliminaries 1
1.2 Main results 4
Chapter 2: K_{5}-subdivisions in 5-connected nonplanar graphs 6
2.1 Introduction 6
2.2 Related Problems 8
2.3 Proof sketch of Theorem 1.2.1 10
2.4 Previous results 11
2.5 Obstruction to three paths 15
2.6 Quadruples and special structure 22
2.7 Interactions between quadruples 47
2.8 Proof of Theorem 1.2.1 59
References 67
Vita 68

SUMMARY

A subdivision of a graph G, also known as a topological G and denoted by $T G$, is a graph obtained from G by replacing certain edges of G with internally vertex-disjoint paths. This dissertation studies a problem in structural graph theory regarding subdivisions of a complete graph in graphs.

In this dissertation, we focus on $T K_{5}$, or subdivisions of K_{5}. A well known theorem of Kuratowski in 1932 states that a graph is planar if, and only if, it does not contain a subdivision of K_{5} or $K_{3,3}$. Wagner proved in 1937 that if a graph other than K_{5} does not contain any subdivision of $K_{3,3}$ then it is planar or it admits a cut of size at most 2. Kelmans and, independently, Seymour conjectured in the 1970s that if a graph does not contain any subdivision of K_{5} then it is planar or it admits a cut of size at most 4. In this dissertation, we give a proof of the Kelmans-Seymour conjecture.

CHAPTER 1

INTRODUCTION

1.1 Graph preliminaries

We begin with some basic notation and terminology for graphs. A (simple) graph G is an ordered pair $(V(G), E(G))$ where $V(G)$ is a set and $E(G)$ is a set of 2-element subsets of $V(G)$. A vertex is an element of $V(G)$ and an edge is an element of $E(G)$. A graph is finite if it contains finite number of vertices. In this dissertation, we only focus on finite graphs.

Given a graph G, an edge $\{u, v\}$ of G can also be written as $u v$. Two vertices u, v of G are adjacent in G if $u v \in E(G)$. A vertex u is a neighbor of a vertex v in G if u is adjacent to v. For any $u \in V(G)$, the neighborhood of u is the set of neighbors of u in G, denoted as $N_{G}(u)$. The degree of a vertex u is the size of its neighborhood, denoted as $\operatorname{deg}_{G}(u)$. When understood, the reference to G may be dropped. The maximum degree $\Delta(G)$ of a graph G is the maximum of degree of a vertex in G. The minimum degree $\delta(G)$ of a graph G is the minimum of degree of a vertex in G. The average degree $d(G)$ of a graph G is the average of degree of a vertex in G. A vertex v of G is incident to an edge e of G if $v \in e$. A complete graph on n vertices, denoted as K_{n} is the graph of n vertices such that every pair of vertices are adjacent. A graph $G=(V, E)$ is called r-partite if V admits a partition into r classes such that every edge is adjacent to two vertices in different classes: vertices in the same partition class must not be adjacent. Instead of " 2 -partite" one usually says bipartite. An r-partite graph in which every two vertices from different partition classes are adjacent is called complete. Moreover, K_{4}^{-}is the graph obtained from K_{4} with a single edge removed and $K_{3,3}$ is the complete bipartite graph with two partitions of size 3 .

Given two graphs S and G, we say S is a subgraph of G if $V(S) \subseteq V(G)$ and $E(S) \subseteq$ $E(G)$, denoted as $S \subseteq G$. We may view $S \subseteq V(G)$ as a subgraph of G with vertex set
S and no edges. For $S \subseteq G$, the subgraph of G induced by $V(S)$, denoted as $G[S]$, is the graph with $V(G[S])=V(S)$ and $E(G[S])=\{u v \in E(G): u, v \in V(S)\}$. For $S \subseteq G$ let $N_{G}(S)=\left\{x \in V(G) \backslash V(S): N_{G}(x) \cap V(S) \neq \emptyset\right\}$. When understood, the reference to G may be dropped.

For $S \subseteq E(G), G-S$ denotes the graph obtained from G by deleting all edges in S; and for $K, L \subseteq G, K-L$ denotes the graph obtained from K by deleting $V(K \cap L)$ and all edges of K incident with $V(K \cap L)$.

A separation in a graph G consists of a pair of subgraphs G_{1}, G_{2} of G, denoted as $\left(G_{1}, G_{2}\right)$, such that $E\left(G_{1}\right) \cup E\left(G_{2}\right)=E(G), E\left(G_{1} \cap G_{2}\right)=\emptyset$, and $E\left(G_{1}\right) \cup\left(V\left(G_{1}\right) \backslash\right.$ $V\left(G_{2}\right) \neq \emptyset \neq E\left(G_{2}\right) \cup\left(V\left(G_{2}\right) \backslash V\left(G_{1}\right)\right)$. The order of this separation is $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right|$, and $\left(G_{1}, G_{2}\right)$ is said to be a k-separation if its order is k. Thus, a set $S \subseteq V(G)$ is a k-cut (or a cut of size k) in G, where k is a positive integer, if $|S|=k$ and G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1}\right) \cap V\left(G_{2}\right)=S$ and $V\left(G_{1}-S\right) \neq \emptyset \neq V\left(G_{2}-S\right)$. If $v \in V(G)$ and $\{v\}$ is a cut of G, then v is said to be a cut vertex of G. For a positive interger k, we say that G is k-connected if G has no cut of size less than k. For $A \subseteq V(G)$ and for a positive integer k, we say that G is (k, A)-connected if, for any cut S with $|S|<k$, every component of $G-S$ contains a vertex from A.

A path is a non-empty graph $P=(V(P), E(P))$ where $V(P)$ consists of distinct vertices $v_{0}, v_{1}, \ldots, v_{n}$ and $E(P)=\left\{v_{0} v_{1}, v_{1} v_{2}, \ldots, v_{n-1} v_{n}\right\}$. The length of a path is the number of edges it contains. Given a path P in a graph and $x, y \in V(P), x P y$ denotes the subpath of P between x and y (inclusive). The ends of the path P are the vertices of the minimum degree in P, and all other vertices of P (if any) are its internal vertices. A path P with ends u and v (or an $u-v$ path) is also said to be from u to v or between u and v. A collection of paths are said to be independent if no vertex of any path in this collection is an internal vertex of any other path in the collection. The distance between two vertices u and v in a graph G is the minimum length of a $u-v$ path in G.

A cycle is a non-empty graph $C=(V(C), E(C))$ where $V(C)$ consists of distinct
vertices $v_{0}, v_{1}, \ldots, v_{n}$ and $E(C)=\left\{v_{0} v_{1}, v_{1} v_{2}, \ldots, v_{n-1} v_{n}, v_{n} v_{0}\right\}$. The length of a cycle is the number of edges it contains. The girth of a graph G, denoted as $g(G)$, is the minimum length of a cycle contained in G.

Let G be a graph. Let $K \subseteq G, S \subseteq V(G)$, and T a collection of 2-element subsets of $V(K) \cup S$. Then $K+(S \cup T)$ denotes the graph with vertex set $V(K) \cup S$ and edge set $E(K) \cup T$, and if $T=\{\{x, y\}\}$ we write $K+x y$ instead of $K+\{\{x, y\}\}$.

For any positive integer k, let $[k]:=\{1, \ldots, k\}$. A 3-planar graph (G, \mathcal{A}) consists of a graph G and a set $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ of pairwise disjoint subsets of $V(G)$ (possibly $\mathcal{A}=\emptyset$ when $k=0$) such that
(a) for distinct $i, j \in[k], N\left(A_{i}\right) \cap A_{j}=\emptyset$,
(b) for $i \in[k],\left|N\left(A_{i}\right)\right| \leq 3$, and
(c) if $p(G, \mathcal{A})$ denotes the graph obtained from G by (for each i) deleting A_{i} and adding edges joining every pair of distinct vertices in $N\left(A_{i}\right)$, then $p(G, \mathcal{A})$ may be drawn in a closed disc D with no pair of edges crossing such that, for each A_{i} with $\left|N\left(A_{i}\right)\right|=3$, $N\left(A_{i}\right)$ induces a facial triangle in $p(G, \mathcal{A})$.

If, in addition, b_{1}, \ldots, b_{n} are vertices of G such that $b_{i} \notin A_{j}$ for any $i \in[n]$ and $j \in[k]$ and b_{1}, \ldots, b_{n} occur on the boundary of the disc D in that cyclic order, then we say that $\left(G, \mathcal{A}, b_{1}, \ldots, b_{n}\right)$ is 3-planar. If there is no need to specify \mathcal{A}, we will simply say that $\left(G, b_{1}, \ldots, b_{n}\right)$ is 3-planar. If there is no need to specify the order of b_{1}, \ldots, b_{n} then we simply say that $\left(G,\left\{b_{1}, \ldots, b_{n}\right\}\right)$ is 3-planar. When $\mathcal{A}=\emptyset$, we say that $\left(G, b_{1}, \ldots, b_{n}\right)$ and $\left(G,\left\{b_{1}, \ldots, b_{n}\right\}\right)$ are planar. An apex graph is a graph that can be made planar by the removal of a single vertex.

Given a graph F, an F-subdivision or a subdivision of F is a graph H obtained from F by replacing edges of F with paths through new vertices of degree 2 , denoted as $T F$. If G contains an F-subdivision as a subgraph, we say F is a topological minor of G and G contains $T F$. Furthermore, the vertices in $T F$ that correspond to the vertices of F are said
to be its branch vertices. In particular, $T K_{5}$ denotes a subdivision of K_{5}, and the vertices in a $T K_{5}$ of degree four are its branch vertices.

A (proper) k-coloring of a graph $G=(V, E)$ is a map $c: V \rightarrow[k]$ such that $c(v) \neq$ $c(w)$ whenever v and w are adjacent. The chromatic number $\chi(G)$ of G is the smallest integer k such that G has a k-coloring.

For additional notations and background on graph theory, the readers are referred to Diestel's text [1].

1.2 Main results

This dissertation studies the structural aspect of subdivisions of complete graphs in graphs. In the next chapter, we focus on $T K_{5}$, or subdivisions of K_{5}. A well known theorem of Kuratowski [2] in 1932 states that a graph is planar if, and only if, it does not contain a subdivision of K_{5} or $K_{3,3}$. Wagner [3] proved in 1937 that if a graph other than K_{5} does not contain any subdivision of $K_{3,3}$ then it is planar or it admits a cut of size at most 2 . Kelmans [4] and, independently, Seymour [5] conjectured in the 1970s that if a graph does not contain any subdivision of K_{5} then it is planar or it admits a cut of size at most 4 .

Kelmans-Seymour conjecture is related to other problems in graph theory. A simple application of Euler's formula for planar graphs shows that, for $n \geq 3$, if an n-vertex graph has at least $3 n-5$ edges then it must be nonplanar and, hence, contains $T K_{5}$ or $T K_{3,3}$. Dirac [6] conjectured that for $n \geq 3$, if an n-vertex graph has at least $3 n-5$ edges then it must contain $T K_{5}$. This conjecture was also reported by Erdős and Hajnal [7]. Kelmans [4] showed that a minimal counterexample to Dirac's conjecture must be 5-connected. Kézdy and McGuiness [8] showed that a minimal counterexample to Dirac's conjecture must be 5-connected and contains K_{4}^{-}(obtained from the complete graph K_{4} by deleting an edge). After some partial results in [9, 10, 11, 12], Dirac's conjecture was proved by Mader [13], where he also showed that every 5 -connected n-vertex graph with at least $3 n-6$ edges contains $T K_{5}$ or K_{4}^{-}. We note that the Kelmans-Seymour conjecture implies Mader's
theorem.
One of the motivations for us to work on the Kelmans-Seymour conjecture was the following conjecture of Hajós (see e.g., [14]) that graphs containing no $T K_{5}$ are 4-colorable. This conjecture, if true, would generalize the Four Color Theorem. It is known that Hajós' conjecture holds for graphs with large girth (see Kühn and Osthus [15]). Let G be a possible counterexample to Hajós' conjecture with $|V(G)|$ minimum. Then the Kelmans-Seymour conjecture implies that G has connectivity at most 4 . By a standard coloring argument, it is easy to show that G must be 3 -connected. It is shown in [16] that G must be 4-connected. It is further shown in [17] that for every 4-cut T of $G, G-T$ has exactly two components. The work in $[16,17]$ suggests that G should be "close" to being 5-connected.

Hajós actually made a more general conjecture in the 1950s: For any positive integer k, every graph containing no $T K_{k+1}$ is k-colorable. This is easy to verify for $k \leq 3$ (see [18]), and disproved in [19] for $k \geq 6$. However, it remains open for $k=4$ and $k=5$. Thomassen [14] pointed out connections between Hajós' conjecture and Ramsey numbers, maximum cuts, and perfect graphs. We refer the reader to [14] for other work and references related to Hajós' conjecture and topological minors.

In fact, Erdős and Fajtlowicz [20] showed that the above general Hajós' conjecture for $k \geq 6$ fails for almost all graphs. Let $H(n):=\max \{\chi(G) / \sigma(G): G$ is a graph with $|V(G)|$ $=n\}$, where $\chi(G)$ denotes the chromatic number of G and $\sigma(G)$ denotes the largest t such that G contains $T K_{t}$. Erdős and Fajtlowicz [20] showed that $H(n)=\Omega(\sqrt{n} / \log n)$, and conjectured that $H(n)=\Theta(\sqrt{n} / \log n)$. This conjecture was verified by Fox, Lee and Sudakov [21], by studying $\sigma(G)$ in terms of independence number $\alpha(G)$.

In Chapter 2, we give a proof of the Kelmans-Seymour conjecture by proving the following

Theorem 1.2.1 Every 5-connected non-planar graph contains $T K_{5}$.
This is joint work with Dawei He and Xingxing Yu. We also discuss several related results and problems.

CHAPTER 2 K_{5}-SUBDIVISIONS IN 5 -CONNECTED NONPLANAR GRAPHS

In this chapter, we study K_{5}-subdivisions in 5-connected nonplanar graphs. A well known theorem of Kuratowski in 1932 states that a graph is planar if, and only if, it does not contain a subdivision of K_{5} or $K_{3,3}$. Wagner proved in 1937 that if a graph other than K_{5} does not contain any subdivision of $K_{3,3}$ then it is planar or it admits a cut of size at most 2. Kelmans and, independently, Seymour conjectured in the 1970s that if a graph does not contain any subdivision of K_{5} then it is planar or it admits a cut of size at most 4. In this chapter, we give a proof of the Kelmans-Seymour conjecture. We also discuss several related results and problems.

This is joint work with Dawei He and Xingxing Yu.

2.1 Introduction

In 1930, Kuratowski [2] prove the following well known result.
Theorem 2.1.1 A graph is planar if, and only if, it does not contain $T K_{5}$ or $T K_{3,3}$.

A simple application of Euler's formula for planar graphs shows that, for $n \geq 3$, if an n-vertex graph has at least $3 n-5$ edges then it must be nonplanar and, hence, contains $T K_{5}$ or $T K_{3,3}$. Dirac [6] conjectured that for $n \geq 3$, if an n-vertex graph has at least $3 n-5$ edges then it must contain $T K_{5}$. This conjecture was also reported by Erdős and Hajnal [7]. Kelmans [4] showed that a minimal counterexample to Dirac's conjecture must be 5-connected. Kézdy and McGuiness [8] showed that a minimal counterexample to Dirac's conjecture must be 5 -connected and contains K_{4}^{-}(obtained from the complete graph K_{4} by deleting an edge). After some partial results in [9, 10, 11, 12], Dirac's conjecture was proved by Mader [13], where he also showed that every 5-connected n-vertex graph with
at least $3 n-6$ edges contains $T K_{5}$ or K_{4}^{-}.
Seymour [5] (also see [13, 12]) and, independently, Kelmans [4] made the following.

Conjecture 2.1.2 Every 5 -connected nonplanar graph contains $T K_{5}$.

Thus, the Kelmans-Seymour conjecture implies Mader's theorem. This conjecture is also related to several interesting problems, which we will discuss later.

He , Wang and $\mathrm{Yu}[22,23,24]$ produced lemmas needed for proving this KelmansSeymour conjecture, and in this dissertation we are now ready to prove the following.

Theorem 1.2.1 Every 5 -connected non-planar graph contains $T K_{5}$.

The starting point of our work is the following result of Ma and Yu [25, 26]: Every 5-connected nonplanar graph containing K_{4}^{-}has a $T K_{5}$. This result, combined with the result of Kézdy and McGuiness [8] on minimal counterexamples to Dirac's conjecture, gives an alternative proof of Mader's theorem. Also using this result, Aigner-Horev [27] proved that every 5 -connected nonplanar apex graph contains $T K_{5}$. A simpler proof of Aigner-Horev's result using discharging argument was obtained by Ma , Thomas and Yu , and, independently, by Kawarabayashi, see [28].

The reminder of this chapter is organized as follows. In the next section, we discuss several related problems. We give a brief sketch of the proof of Theorem 1.2.1 in Section 2.3. We will need a number of results from [22, 23, 24], which are given in Section 2.4. In Section 2.5, we derive a simplified version of a result on disjoint paths from [29, 30, 31], which will be used several times in Section 2.6. For each subgraph T of H with $v \in V(T)$ and $T \cong K_{2}$ or $T \cong K_{3}$, we will associate to it a quadruple $\left(T, S_{T}, A, B\right)$, where, roughly, $A \cap B=\emptyset, H-S_{T}=A \cup B$, and H has no edge between A and B. (A precise definition of a quadruple is given in Section 2.6.) In Section 2.6, we prove some basic properties of quadruples, and take care of two special cases involving quadruples (using disjoint paths results from Section 2.5). In Section 2.7, we take care of other cases involving quadruples. We complete the proof of Theorem 1.2.1 in Section 2.8.

2.2 Related Problems

Theorem 1.2.1 implies that if a graph contains no $T K_{5}$ then it is planar, or admits a cut of size at most 4. This is a step towards a more useful structural description of the class of graphs containing no $T K_{5}$. There is a nice result for graphs containing no $T K_{3,3}$ due to Wagner [3]: Every such graph is planar, or is a K_{5}, or admits a cut of size at most 2.

Mader [13] conjectured that every simple graph with minimum degree at least 5 and no K_{4}^{-}contains $T K_{5}$, and he also asked the following.

Question 2.2.1 Does every simple graph on $n \geq 4$ vertices with more than $12(n-2) / 5$ edges contain $K_{4}^{-}, K_{2,3}$, or $T K_{5}$?

In a recent paper [28], it is shown that an affirmative answer to Question 2.2.1 implies the Kelmans-Seymour conjecture. As an independent approach to resolve the KelmansSeymour conjecture, Kawarabayashi, Ma and Yu planned to find a contractible cycle in a 5-connected nonplanar graph containing no K_{4}^{-}or $K_{2,3}$, and then use such a cycle to find a $T K_{5}$ by applying augmenting path arguments. This plan (if successful), combined with the results in $[26,28]$, would give an alternative (and cleaner) solution to the Kelmans-Seymour conjecture.

One of the motivations for us to work on the Kelmans-Seymour conjecture was the following conjecture of Hajós (see e.g., [14]) which, if true, would generalize the Four Color Theorem.

Conjecture 2.2.2 Graphs containing no $T K_{5}$ are 4-colorable.

It is known that Conjecture 2.2.2 holds for graphs with large girth (see Kühn and Osthus [15]). Let G be a possible counterexample to Conjecture 2.2 .2 with $|V(G)|$ minimum. Then our result on the Kelmans-Seymour conjecture implies that G has connectivity at most 4. By a standard coloring argument, it is easy to show that G must be 3 -connected. It is shown in [16] that G must be 4-connected. It is further shown in [17] that for every 4-cut
T of $G, G-T$ has exactly two components. The work in $[16,17]$ suggests that G should be "close" to being 5-connected.

Hajós actually made a more general conjecture in the 1950s: For any positive integer k, every graph containing no $T K_{k+1}$ is k-colorable. This is easy to verify for $k \leq 3$ (see [18]), and disproved in [19] for $k \geq 6$. However, it remains open for $k=4$ (Conjecture 2.2.2) and $k=5$. Thomassen [14] pointed out connections between Hajós' conjecture and Ramsey numbers, maximum cuts, and perfect graphs. We refer the reader to [14] for other work and references related to Hajós' conjecture and topological minors.

In fact, Erdős and Fajtlowicz [20] showed that the above general Hajós' conjecture for $k \geq 6$ fails for almost all graphs. Let $H(n):=\max \{\chi(G) / \sigma(G): G$ is a graph with $|V(G)|$ $=n\}$, where $\chi(G)$ denotes the chromatic number of G and $\sigma(G)$ denotes the largest t such that G contains $T K_{t}$. Erdős and Fajtlowicz [20] showed that $H(n)=\Omega(\sqrt{n} / \log n)$, and conjectured that $H(n)=\Theta(\sqrt{n} / \log n)$. This conjecture was verified by Fox, Lee and Sudakov [21], by studying $\sigma(G)$ in terms of independence number $\alpha(G)$. The following conjecture of Fox, Lee and Sudakov [21] is interesting.

Conjecture 2.2.3 There is a constant $c>0$ such that every graph G with $\chi(G)=k$ satisfies $\sigma(G) \geq c \sqrt{k \log k}$.

A key idea in $[25,26,22,23,24]$ for finding $T K_{5}$ in graphs containing K_{4}^{-}is to find a nonseparating path in a graph that avoids two given vertices. Let G be a 5-connected nonplanar graph and $x_{1}, x_{2}, y_{1}, y_{2} \in V(G)$ such that $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ induces a K_{4}^{-}in which x_{1}, x_{2} are of degree 3. We used an induced path X in G between x_{1} and x_{2} such that $G-X$ is 2-connected and $\left\{y_{1}, y_{2}\right\} \nsubseteq V(X)$, and in certain cases we need X to contain a special edge at x_{1} (for example, in Section 2.8, $x_{1}=x$ is the special vertex representing the contraction of M). If we could find such X that $G-X$ is 3 -connected then our proofs would have been much simpler. This is related to the following conjecture of Lovász [32].

Conjecture 2.2.4 There exists an integer valued function $f(k)$ such that for any $f(k)$ connected graph G and for any $A \subseteq V(G)$ with $|A|=2$, there exist vertex disjoint sub-
graphs G_{1}, G_{2} of G such that $V\left(G_{1}\right) \cup V\left(G_{2}\right)=V(G), G_{1}$ is a path between the vertices in A, and G_{2} is k-connected.

A classical result of Tutte [33] implies $f(1)=3$. That $f(2)=5$ was proved by Kriesell [34] and, independently, by Chen, Gould and Yu [35]. Despite much effort from the research community, Conjecture 2.2.4 remains open for $k \geq 3$. Variations of Conjecture 2.2.4 for $k=2$ are used in $[25,26,22,23,24]$ to resolve the Kelmans-Seymour conjecture. An edge version of Conjecture 2.2.4 was conjectured by Kriesell and proved by Kawarabayashi et al. [36]. Thomassen [37] conjectured a statement that is more general than Conjecture 2.2.4 by allowing $|A| \geq 2$ and requiring $A \subseteq V\left(G_{1}\right)$ and G_{1} be k-connected.

2.3 Proof sketch of Theorem 1.2.1

We now briefly describe the process for proving Theorem 1.2.1. For a more detailed version, we recommend the reader to read Section 2.8 first, which should also give motivation to some of the technical lemmas listed in Sections 2.4, 2.5, 2.6 and 2.7.

Suppose G is a 5 -connected non-planar graph not containing K_{4}^{-}. We fix a vertex $v \in V(G)$, and let M be a maximal connected subgraph of G such that $v \in V(M), G / M$ (the graph obtained from G by contracting M) is nonplanar, G / M contains no K_{4}^{-}, and G / M is 5 -connected (i.e., M is contractible). Note that $V(M)=\{v\}$ is possible. Let x denote the vertex of $H:=G / M$ resulting from the contraction of M. Then, for each subgraph T of H with $v \in V(T)$ and $T \cong K_{2}$ or $T \cong K_{3}, H / T$ is planar, or H / T contains K_{4}^{-}, or H / T is not 5-connected. If, for some $T, H / T$ is planar or contains K_{4}^{-}then we can find a $T K_{5}$ in G using results from [22, 23, 24]. Thus, in this dissertation, our main work is to deal with the final case: for any $T \subseteq H$ with $x \in V(T)$ and $T \cong K_{2}$ or $T \cong K_{3}, H / T$ is nonplanar, H / T contains no K_{4}^{-}, and H / T is not 5 -connected. In this case, there exists $S_{T} \subseteq V(H)$ such that $V(T) \subseteq S_{T},\left|S_{T}\right|=5$ or $\left|S_{T}\right|=6$, and $H-S_{T}$ is not connected. We will be using such cuts to divide the graph into smaller parts and use them to find a special $T K_{5}$ in H. The reason to also include the case $T \cong K_{3}$ is to avoid the situation
when $T \cong K_{2},\left|S_{T}\right|=5$, and $H-S_{T}$ has exactly two components, one of which is trivial. This does not cause problem when $T \cong K_{3}$, as the graph H would then contain K_{4}^{-}, and we could use results from [22, 23, 24].

2.4 Previous results

In this section, we list a number of previous results which we will use as lemmas in our proof of Theorem 1.2.1. We begin with the main result of [25, 26].

Lemma 2.4.1 Every 5-connected nonplanar graph containing K_{4}^{-}has a $T K_{5}$.

We also need the main result of [23] to take care of the case when the vertex x in $H=G / M$ (see Section 2.3) is a degree 2 vertex in a K_{4}^{-}(which is y_{2} in the lemma below).

Lemma 2.4.2 Let G be a 5-connected nonplanar graph and $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \subseteq V(G)$ such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$with $y_{1} y_{2} \notin E(G)$. Then one of the following holds:
(i) G contains a $T K_{5}$ in which y_{2} is not a branch vertex.
(ii) $G-y_{2}$ contains K_{4}^{-}.
(iii) G has a 5-separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{y_{2}, a_{1}, a_{2}, a_{3}, a_{4}\right\}$, and G_{2} is the graph obtained from the edge-disjoint union of the 8-cycle $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4} a_{1}$ and the 4 -cycle $b_{1} b_{2} b_{3} b_{4} b_{1}$ by adding y_{2} and the edges $y_{2} b_{i}$ for $i \in[4]$.
(iv) For $w_{1}, w_{2}, w_{3} \in N\left(y_{2}\right)-\left\{x_{1}, x_{2}\right\}, G-\left\{y_{2} v: v \notin\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}\right\}$ contains $T K_{5}$.

To deal with conclusion (iii) of Lemma 2.4.2, we need Proposition 1.3 from [22] in which a plays the role of y_{2} in Lemma 2.4.2.

Lemma 2.4.3 Let G be a 5-connected nonplanar graph, $\left(G_{1}, G_{2}\right)$ a 5-separation in G, $V\left(G_{1} \cap G_{2}\right)=\left\{a, a_{1}, a_{2}, a_{3}, a_{4}\right\}$ such that G_{2} is the graph obtained from the edge-disjoint
union of the 8-cycle $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4} a_{1}$ and the 4 -cycle $b_{1} b_{2} b_{3} b_{4} b_{1}$ by adding a and the edges $a b_{i}, i \in[4]$. Suppose $\left|V\left(G_{1}\right)\right| \geq 7$. Then, for any $u_{1}, u_{2} \in N(a)-\left\{b_{1}, b_{2}, b_{3}\right\}$, $G-\left\{a v: v \notin\left\{b_{1}, b_{2}, b_{3}, u_{1}, u_{2}\right\}\right\}$ contains $T K_{5}$.

Next we list a few results from [22, 23, 24]. For convenience, we state their versions from [24]. First, we need Theorem 1.1 in [24] to take care of the case when the vertex x in $H=G / M$ (see Section 2.3) is a degree 3 vertex in a K_{4}^{-}(which is x_{1} in the lemma below).

Lemma 2.4.4 Let G be a 5-connected nonplanar graph and $x_{1}, x_{2}, y_{1}, y_{2} \in V(G)$ be distinct such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$and $y_{1} y_{2} \notin E(G)$. Then one of the following holds:
(i) G contains a $T K_{5}$ in which x_{1} is not a branch vertex.
(ii) $G-x_{1}$ contains K_{4}^{-}, or G contains a K_{4}^{-}in which x_{1} is of degree 2.
(iii) x_{2}, y_{1}, y_{2} may be chosen so that for any distinct $z_{0}, z_{1} \in N\left(x_{1}\right)-\left\{x_{2}, y_{1}, y_{2}\right\}, G-$ $\left\{x_{1} v: v \notin\left\{x_{2}, y_{1}, y_{2}, z_{0}, z_{1}\right\}\right\}$ contains $T K_{5}$.

When applying the next three lemmas, the vertex a will correspond to the vertex x in $H=G / M$ in Section 2.3. The following result is Lemma 2.7 in [24], which deals with 5-separations with an apex side.

Lemma 2.4.5 Let G be a 5-connected nonplanar graph and let $\left(G_{1}, G_{2}\right)$ be a 5-separation in G. Suppose $\left|V\left(G_{i}\right)\right| \geq 7$ for $i \in[2], a \in V\left(G_{1} \cap G_{2}\right)$, and $\left(G_{2}-a, V\left(G_{1} \cap G_{2}\right)-\{a\}\right)$ is planar. Then one of the following holds:
(i) G contains a $T K_{5}$ in which a is not a branch vertex.
(ii) $G-a$ contains K_{4}^{-}, or G contains a K_{4}^{-}in which a is of degree 2 .

The next result is Lemma 2.8 in [24], which will be used to take care of 5-cuts containing the vertices of a triangle.

Lemma 2.4.6 Let G be a 5-connected graph and $\left(G_{1}, G_{2}\right)$ be a 5 -separation in G. Suppose that $\left|V\left(G_{i}\right)\right| \geq 7$ for $i \in[2]$ and $G\left[V\left(G_{1} \cap G_{2}\right)\right]$ contains a triangle a $a_{1} a_{2} a$. Then one of the following holds:
(i) G contains a $T K_{5}$ in which a is not a branch vertex.
(ii) $G-a$ contains K_{4}^{-}, or G contains a K_{4}^{-}in which a is of degree 2.
(iii) For any distinct $u_{1}, u_{2}, u_{3} \in N(a)-\left\{a_{1}, a_{2}\right\}, G-\left\{a v: v \notin\left\{a_{1}, a_{2}, u_{1}, u_{2}, u_{3}\right\}\right\}$ contains $T K_{5}$.

The following is Lemma 2.9 in [24].

Lemma 2.4.7 Let G be a graph, $A \subseteq V(G)$, and $a \in A$ such that $|A|=6,|V(G)| \geq 8$, $(G-a, A-\{a\})$ is planar, and G is $(5, A)$-connected. Then one of the following holds:
(i) $G-a$ contains K_{4}^{-}, or G contains a K_{4}^{-}in which the degree of a is 2 .
(ii) G has a 5-separation $\left(G_{1}, G_{2}\right)$ such that $a \in V\left(G_{1} \cap G_{2}\right),\left|V\left(G_{2}\right)\right| \geq 7, A \subseteq V\left(G_{1}\right)$, and $\left(G_{2}-a, V\left(G_{1} \cap G_{2}\right)-\{a\}\right)$ is planar.

We need Theorem 1.4 in [22]. This will be used to show that, for a quadruple (T, S_{T}, A, B) in $H=G / M$ with $x \in V(T)$ (see Section 2.3), x has a neighbor in A (which corresponds to $G_{1}-G_{2}$ in the statement).

Lemma 2.4.8 Let G be a 5-connected graph and $x \in V(G)$, and let $\left(G_{1}, G_{2}\right)$ be a 6separation in G such that $x \in V\left(G_{1} \cap G_{2}\right), G\left[V\left(G_{1} \cap G_{2}\right)\right]$ contains a triangle $x x_{1} x_{2} x$, $\left|V\left(G_{i}\right)\right| \geq 7$ for $i \in[2]$. Moreover, assume that $\left(G_{1}, G_{2}\right)$ is chosen so that, subject to $\left\{x, x_{1}, x_{2}\right\} \subseteq V\left(G_{1} \cap G_{2}\right)$ and $\left|V\left(G_{i}\right)\right| \geq 7$ for $i \in[2]$, G_{1} is minimal. Let $V\left(G_{1} \cap G_{2}\right)=$ $\left\{x, x_{1}, x_{2}, v_{1}, v_{2}, v_{3}\right\}$. Then $N(x) \cap V\left(G_{1}-G_{2}\right) \neq \emptyset$, or one of the following holds:
(i) G contains a $T K_{5}$ in which x is not a branch vertex.
(ii) G contains K_{4}^{-}.
(iii) There exists $x_{3} \in N(x)$ such that for any distinct $y_{1}, y_{2} \in N(x)-\left\{x_{1}, x_{2}, x_{3}\right\}$, $G-\left\{x v: v \notin\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right\}\right\}$ contains $T K_{5}$.
(iv) For some $i \in[2]$ and some $j \in[3], N\left(x_{i}\right) \subseteq V\left(G_{1}-G_{2}\right) \cup\left\{x, x_{3-i}\right\}$, and any three independent paths in $G_{1}-x$ from $\left\{x_{1}, x_{2}\right\}$ to v_{1}, v_{2}, v_{3}, respectively, with two from x_{i} and one from x_{3-i}, must contain a path from x_{3-i} to v_{j}.

We remark that conclusion (iv) in Lemma 2.4.8 will be dealt with in Section 2.6, using a result on disjoint paths from [29, 30, 31]. We also need Proposition 4.1 from [22] to deal with the case when H / T is planar (see Section 2.3) for some $T \subseteq H$ with $x \in V(T)$ and $T \cong K_{2}$ or $T \cong K_{3}$.

Lemma 2.4.9 Let G be a 5-connected nonplanar graph, $x \in V(G), T \subseteq G$ such that $x \in V(T), T \cong K_{2}$ or $T \cong K_{3}, G / T$ is 5 -connected and planar. Then $G-T$ contains K_{4}^{-}.

We conclude this section with three additional results, first of which is a result of Seymour [38]; equivalent versions are proved in [39, 40, 41].

Lemma 2.4.10 Let G be a graph and let $s_{1}, s_{2}, t_{1}, t_{2} \in V(G)$ be distinct. Then either G contains disjoint paths from s_{1} to t_{1} and from s_{2} to t_{2}, or $\left(G, s_{1}, s_{2}, t_{1}, t_{2}\right)$ is 3-planar.

The second result is due to Perfect [42].

Lemma 2.4.11 Let G be a graph, $u \in V(G)$, and $A \subseteq V(G-u)$. Suppose there exist k independent paths from u to distinct $a_{1}, \ldots, a_{k} \in A$, respectively, and internally disjoint from A. Then for any $n \geq k$, if there exist n independent paths P_{1}, \ldots, P_{n} in G from u to n distinct vertices in A and internally disjoint from A then P_{1}, \ldots, P_{n} may be chosen so that $a_{i} \in V\left(P_{i}\right)$ for $i \in[k]$.

The third result is due to Watkins and Mesner [43].

Lemma 2.4.12 Let G be a 2-connected graph and let y_{1}, y_{2}, y_{3} be three distinct vertices of G. Then G has no cycle containing $\left\{y_{1}, y_{2}, y_{3}\right\}$ if, and only if, one of the following holds:
(i) There exists a 2-cut S in G and there exist pairwise disjoint subgraphs $D_{y_{i}}$ of $G-S$, $i \in[3]$, such that $y_{i} \in V\left(D_{y_{i}}\right)$ and each $D_{y_{i}}$ is a union of components of $G-S$.
(ii) There exist 2-cuts $S_{y_{i}}$ in $G, i \in[3]$, and pairwise disjoint subgraphs $D_{y_{i}}$ of G, such that $y_{i} \in V\left(D_{y_{i}}\right)$, each $D_{y_{i}}$ is a union of components of $G-S_{y_{i}}$, there exists $z \in$ $S_{y_{1}} \cap S_{y_{2}} \cap S_{y_{3}}$, and $S_{y_{1}}-\{z\}, S_{y_{2}}-\{z\}, S_{y_{3}}-\{z\}$ are pairwise disjoint.
(iii) There exist pairwise disjoint 2-cuts $S_{y_{i}}$ in G and pairwise disjoint subgraphs $D_{y_{i}}$ of $G-S_{y_{i}}, i \in[3]$, such that $y_{i} \in V\left(D_{y_{i}}\right), D_{y_{i}}$ is a union of components of $G-S_{y_{i}}$, and $G-V\left(D_{y_{1}} \cup D_{y_{2}} \cup D_{y_{3}}\right)$ has precisely two components, each containing exactly one vertex from $S_{y_{i}}$ for $i \in[3]$.

2.5 Obstruction to three paths

In order to deal with $(i v)$ of Lemma 2.4.8, we need a result of Yu [29, 30, 31], which characterizes graphs G in which any three disjoint paths from $\{a, b, c\} \subseteq V(G)$ to $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \subseteq$ $V(G)$ must contain a path from b to b^{\prime}. The objective of this section is to derive a much simpler version of that characterization by imposing extra conditions on G. This result will be used several times in the proofs of Lemmas 2.6.4 and 2.6.6. To state the result from [29, 30, 31], we need to describe rungs and ladders.

Let G be a graph, $\{a, b, c\} \subseteq V(G)$, and $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \subseteq V(G)$. Suppose $\{a, b, c\} \neq$ $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, and assume that G has no separation $\left(G_{1}, G_{2}\right)$ such that $\left|V\left(G_{1} \cap G_{2}\right)\right| \leq 3$, $\{a, b, c\} \subseteq V\left(G_{1}\right)$, and $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \subseteq V\left(G_{2}\right)$. We say that $\left(G,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ is a rung if one of the following holds:
(1) $b=b^{\prime}$ or $\{a, c\}=\left\{a^{\prime}, c^{\prime}\right\}$.
(2) $a=a^{\prime}$ and $\left(G-a, c, c^{\prime}, b^{\prime}, b\right)$ is 3-planar, or $c=c^{\prime}$ and $\left(G-c, a, a^{\prime}, b^{\prime}, b\right)$ is 3-planar.
(3) $\{a, b, c\} \cap\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}=\emptyset$ and $\left(G, a^{\prime}, b^{\prime}, c^{\prime}, c, b, a\right)$ is 3-planar.
(4) $\{a, b, c\} \cap\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}=\emptyset, G$ has a 1-separation $\left(G_{1}, G_{2}\right)$ such that (i) $\left\{a, a^{\prime}, b, b^{\prime}\right\} \subseteq$ $V\left(G_{1}\right),\left\{c, c^{\prime}\right\} \subseteq V\left(G_{2}\right)$, and $\left(G_{1}, a, a^{\prime}, b^{\prime}, b\right)$ is 3-planar, or (ii) $\left\{c, c^{\prime}, b, b^{\prime}\right\} \subseteq$ $V\left(G_{1}\right),\left\{a, a^{\prime}\right\} \subseteq V\left(G_{2}\right)$, and $\left(G_{1}, c, c^{\prime}, b^{\prime}, b\right)$ is 3-planar.
(5) $\{a, b, c\} \cap\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}=\emptyset$, and G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=$ $\{z, b\}$ (or $V\left(G_{1} \cap G_{2}\right)=\left\{z, b^{\prime}\right\}$), and $(i)\left(G, a, a^{\prime}, b^{\prime}, b\right)$ is 3-planar, $\left\{a, a^{\prime}, b, b^{\prime}\right\} \subseteq$ $V\left(G_{1}\right),\left\{c, c^{\prime}\right\} \subseteq V\left(G_{2}\right)$, and $\left(G_{2}, c, c^{\prime}, z, b\right)$ (or $\left(G_{2}, c, c^{\prime}, b^{\prime}, z\right)$) is 3-planar, or (ii) $\left(G, c, c^{\prime}, b^{\prime}, b\right)$ is 3-planar, $\left\{c, c^{\prime}, b, b^{\prime}\right\} \subseteq V\left(G_{1}\right),\left\{a, a^{\prime}\right\} \subseteq V\left(G_{2}\right)$, and $\left(G_{2}, a, a^{\prime}, z, b\right)$ (or $\left(G_{2}, a, a^{\prime}, b^{\prime}, z\right)$) is 3-planar.
(6) $\{a, b, c\} \cap\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}=\emptyset$, and there are pairwise edge disjoint subgraphs G_{a}, G_{c}, M of G such that $G=G_{a} \cup G_{c} \cup M, V\left(G_{a} \cap M\right)=\{u, w\}, V\left(G_{c} \cap M\right)=\{p, q\}, V\left(G_{a} \cap\right.$ $\left.G_{c}\right)=\emptyset$, and $(i)\left\{a, a^{\prime}, b^{\prime}\right\} \subseteq V\left(G_{a}\right),\left\{c, c^{\prime}, b\right\} \subseteq V\left(G_{c}\right)$, and $\left(G_{a}, a, a^{\prime}, b^{\prime}, w, u\right)$ and $\left(G_{c}, c^{\prime}, c, b, p, q\right)$ are 3-planar, or $(i i)\left\{a, a^{\prime}, b\right\} \subseteq V\left(G_{a}\right),\left\{c, c^{\prime}, b^{\prime}\right\} \subseteq V\left(G_{c}\right)$, $\left(G_{a}, b, a, a^{\prime}, w, u\right)$ and $\left(G_{c}, b^{\prime}, c^{\prime}, c, p, q\right)$ are 3-planar.
(7) $\{a, b, c\} \cap\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}=\emptyset$, and there are pairwise edge disjoint subgraphs G_{a}, G_{c}, M of G such that $G=G_{a} \cup G_{c} \cup M, V\left(G_{a} \cap M\right)=\left\{b, b^{\prime}, w\right\}, V\left(G_{c} \cap M\right)=\left\{b, b^{\prime}, p\right\}$, $V\left(G_{a} \cap G_{c}\right)=\left\{b, b^{\prime}\right\},\left\{a, a^{\prime}\right\} \subseteq V\left(G_{a}\right),\left\{c, c^{\prime}\right\} \subseteq V\left(G_{c}\right)$, and $\left(G_{a}, a, a^{\prime}, b^{\prime}, w, b\right)$ and $\left(G_{c}, c^{\prime}, c, b, p, b^{\prime}\right)$ are 3-planar.

Let L be a graph and let R_{1}, \ldots, R_{m} be edge disjoint subgraphs of L such that
(i) $\left(R_{i},\left(x_{i-1}, v_{i-1}, y_{i-1}\right),\left(x_{i}, v_{i}, y_{i}\right)\right)$ is a rung for each $i \in[m]$,
(ii) $V\left(R_{i} \cap R_{j}\right)=\left\{x_{i}, v_{i}, y_{i}\right\} \cap\left\{x_{j-1}, v_{j-1}, y_{j-1}\right\}$ for $i, j \in[m]$ with $i<j$,
(iii) for any distinct $i, j \in[m]$, if $x_{i}=x_{j}$ then $x_{k}=x_{i}$ for all $i \leq k \leq j$, if $v_{i}=v_{j}$ then $v_{k}=v_{i}$ for all $i \leq k \leq j$, and if $y_{i}=y_{j}$ then $y_{k}=y_{i}$ for all $i \leq k \leq j$, and
(iv) $L=\left(\bigcup_{i=1}^{m} R_{i}\right)+S$, where S consists of those edges of L each of which has both ends in $\left\{x_{i}, v_{i}, y_{i}\right\}$ for some $i \in[m]$.

Then $\left(L,\left(x_{0}, v_{0}, y_{0}\right),\left(x_{m}, v_{m}, y_{m}\right)\right)$ is a ladder with rungs $\left(R_{i},\left(x_{i-1}, v_{i-1}, y_{i-1}\right),\left(x_{i}, v_{i}, y_{i}\right)\right)$, $i \in[m]$, or simply, a ladder along $v_{0} \ldots v_{m}$.

By the definition of a rung, we see that a ladder $\left(L,\left(x_{0}, v_{0}, y_{0}\right),\left(x_{m}, v_{m}, y_{m}\right)\right)$ has three disjoint paths from $\left\{x_{0}, v_{0}, y_{0}\right\}$ to $\left\{x_{m}, v_{m}, y_{m}\right\}$.

For a sequence W, the reduced sequence of W is the sequence obtained from W by removing all but one consecutive identical elements. For example, the reduced sequence of $a a a b c c a$ is $a b c a$. We can now state the main result in [31].

Lemma 2.5.1 Let G be a graph, $\{a, b, c\} \subseteq V(G)$, and $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \subseteq V(G)$ such that $\{a, b, c\} \neq\left\{a^{\prime}, b,{ }^{\prime} c^{\prime}\right\}$. Assume that, for any $T \subseteq V(G)$ with $|T| \leq 3$, every component of $G-T$ contains some element of $\{a, b, c\} \cup\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$. Then any three disjoint paths in G from $\{a, b, c\}$ to $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ must include one from b to b^{\prime} if, and only if, one of the following statements holds:
(i) G has a separation $\left(G_{1}, G_{2}\right)$ of order at most 2 such that $\{a, b, c\} \subseteq V\left(G_{1}\right)$ and $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \subseteq V\left(G_{2}\right)$.
(ii) $\left(G,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ is a ladder.
(iii) G has a separation (J, L) such that $V(J \cap L)=\left\{w_{0}, \ldots, w_{n}\right\},\left(J, w_{0}, \ldots, w_{n}\right)$ is 3-planar, $\{a, b, c\} \cup\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \subseteq V(L),\left(L,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ is a ladder along a sequence $v_{0} \ldots v_{m}$, where $v_{0}=b, v_{m}=b^{\prime}$, and $w_{0} \ldots w_{n}$ is the reduced sequence of $v_{0} \ldots v_{m}$.

We may view $(i i)$ as a special case of $(i i i)$ by letting J be a subgraph of L. In the applications of Lemma 2.5.1 in this paper, we will consider rungs and ladders in a 5connected graph without $T K_{5}$. With such extra conditions, the rungs have much simpler structure, as given in the next two lemmas.

Lemma 2.5.2 Let G be a 5-connected graph and $\left(R, R^{\prime}\right)$ a separation in G such that $\left|V\left(R^{\prime}\right)\right| \geq 8, V\left(R \cap R^{\prime}\right)=\{a, b\} \cup\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}, a \neq b$, and $a^{\prime}, b^{\prime}, c^{\prime}$ are pairwise distinct. Let R^{*} be obtained from R by adding the new vertex c and joining c to each neighbor of a in R with an edge, and assume $\left(R^{*},(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ is a rung. Then $b=b^{\prime}$, $V(R)=\left\{a, b, a^{\prime}, c^{\prime}\right\}$ and $E(R)=\left\{a a^{\prime}, a c^{\prime}\right\}$.

Proof. Since a and c have the same set of neighbors in R^{*} and $\left(R^{*},(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ is a rung, it follows from the definition of a rung that $\left(R^{*},(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ is of type (1) or (2). Then, since G is 5-connected, $V(R)=\{a, b\} \cup\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$.

Suppose $\left(R^{*},(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ is of type (2). By symmetry, we may assume that $c=c^{\prime}$ and $\left(G-c, a, a^{\prime}, b^{\prime}, b\right)$ is 3-planar. Then $a b^{\prime} \notin E(G)$ or $a^{\prime} b \notin E(G)$. Hence, $\left\{a^{\prime}, b, c\right\}$ or $\left\{a, b^{\prime}, c\right\}$ would be a cut in R^{*} separating $\{a, b, c\}$ from $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, a contradiction.

So $\left(R^{*},(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ is of type (1). Then, since R^{*} has no separation of order at most 3 separating $\{a, b, c\}$ from $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, we deduce that $a \neq a^{\prime}, c \neq c^{\prime}$, and $E(R)=$ $\left\{a a^{\prime}, a c^{\prime}\right\}$.

Note that the conclusion of Lemma 2.5.2 is a special case of (i) of the next lemma.

Lemma 2.5.3 Let G be a 5-connected graph and $\left(R, R^{\prime}\right)$ a separation in G such that $\left|V\left(R^{\prime}\right)\right| \geq 8, V\left(R \cap R^{\prime}\right)=\{a, b, c\} \cup\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\},\{a, b, c\} \neq\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, and $(R,(a, b, c)$, $\left.\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ is a rung. Then G contains $T K_{5}$ or K_{4}^{-}, or one of the following holds:
(i) $b=b^{\prime}$.
(ii) $\{a, c\}=\left\{a^{\prime}, c^{\prime}\right\}, V(R)=\left\{a, c, b, b^{\prime}\right\}$, and $E(R)=\left\{b b^{\prime}\right\}$.
(iii) $V(R)-\left(\{a, b, c\} \cup\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}\right)=\{v\}$ and $N(v)=\{a, b, c\} \cup\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, and either $a=a^{\prime}$ and $E(R-v)=\left\{b b^{\prime}, c c^{\prime}\right\}$ or $c=c^{\prime}$ and $E(R-v)=\left\{b b^{\prime}, a a^{\prime}\right\}$.
(iv) $\{a, b, c\} \cap\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}=\emptyset, V(R)-\left\{a, a^{\prime}, b, b^{\prime}, c, c^{\prime}\right\}=\{v\}, N(v)=\left\{a, a^{\prime}, b, b^{\prime}, c, c^{\prime}\right\}$, and $E(R-v)=\left\{a a^{\prime}, b b^{\prime}, c c^{\prime}\right\}$.

Proof. Without loss of generality, let A, B, C be disjoint paths in R from a, b, c to $a^{\prime}, b^{\prime}, c^{\prime}$, respectively. First, we consider the case when $\{a, b, c\} \cap\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \neq \emptyset$. If $b=b^{\prime}$ then (i) holds; so we may assume $b \neq b^{\prime}$. If $a=a^{\prime}$ and $c=c^{\prime}$ then, since G is 5connected, $V(R)=\left\{a, b, b^{\prime}, c\right\}$; so $b b^{\prime} \in E(R)$ (because of the paths A, B, C), and we have (ii). Thus by symmetry between $\left\{a, a^{\prime}\right\}$ and $\left\{c, c^{\prime}\right\}$, we may assume $c \neq c^{\prime}$. Suppose $a=a^{\prime}$. Then by the definition of a rung, $R-a$ has no disjoint paths from b, c to
c^{\prime}, b^{\prime}, respectively. So by Lemma 2.4.10, $\left(R-a, c, c^{\prime}, b^{\prime}, b\right)$ is 3-planar. Since G is 5connected, $\left(R-a, c, c^{\prime}, b^{\prime}, b\right)$ is in fact planar. If $|V(R)| \geq 7$ then G contains $T K_{5}$ or K_{4}^{-}by Lemma 2.4.5, using the separation $\left(R, R^{\prime}\right)$. If $V(R)=\left\{a, b, b^{\prime}, c, c^{\prime}\right\}$ then, since $\left(R-a, c, c^{\prime}, b^{\prime}, b\right)$ is planar, either $\left\{a, b, c^{\prime}\right\}$ or $\left\{a, b^{\prime}, c\right\}$ is a 3 -cut in R separating $\{a, b, c\}$ from $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, contradicting the definition of a rung. Thus, we may assume $|V(R)|=6$ and let $v \in V(R)-\left\{a, b, b^{\prime}, c, c^{\prime}\right\}$. Since G is 5-connected, $N(v)=\left\{a, b, b^{\prime}, c, c^{\prime}\right\}$. Since $\left(R-a, c, c^{\prime}, b^{\prime}, b\right)$ is planar, $b c^{\prime}, c b^{\prime} \notin E(R)$. So $b b^{\prime}, c c^{\prime} \in E(R)$, as otherwise $\{a, v, c\}$ or $\{a, v, b\}$ would be a 3 -cut in R separating $\{a, b, c\}$ from $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, contradicting the definition of a rung. Hence, (iii) holds.

Thus, we may assume that $\{a, b, c\} \cap\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}=\emptyset$. We need to deal with (3) - (7) in the definition of a rung. We deal with (4)-(7) in order, and treat (3) last (which is the most complicated case where we use the discharging technique).

Suppose (4) holds for $\left(R,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$. By symmetry, assume that R has a 1separation $\left(G_{1}, G_{2}\right)$ such that $\left\{a, a^{\prime}, b, b^{\prime}\right\} \subseteq V\left(G_{1}\right),\left\{c, c^{\prime}\right\} \subseteq V\left(G_{2}\right)$, and $\left(G_{1}, a, a^{\prime}, b^{\prime}, b\right)$ is 3-planar. Let $V\left(G_{1} \cap G_{2}\right)=\{v\}$. Since G is 5-connected, $\left(G_{1}, a, a^{\prime}, b^{\prime}, b\right)$ is planar and $V\left(G_{2}\right)=\left\{v, c, c^{\prime}\right\}$. Moreover, $v c, v c^{\prime}, c c^{\prime} \in E(G)$; for otherwise R would have a separation $\left(R_{1}, R_{2}\right)$ such that $\{a, b, c\} \subseteq V\left(R_{1}\right),\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \subseteq V\left(R_{2}\right)$, and $V\left(R_{1} \cap\right.$ $\left.R_{2}\right) \in\left\{\left\{a, b, c^{\prime}\right\},\left\{a^{\prime}, b^{\prime}, c\right\},\{a, b, v\}\right\}$. If $\left|V\left(G_{1}\right)\right| \geq 7$ then the assertion follows from Lemma 2.4.5, using the separation $\left(G_{1}, G_{2} \cup R^{\prime}\right)$. So we may assume $\left|V\left(G_{1}\right)\right| \leq 6$. If $\left|V\left(G_{1}\right)\right|=6$ then let $t \in V\left(G_{1}\right)-\left\{a, a^{\prime}, b, b^{\prime}, v\right\}$; now $N(t)=\left\{a, a^{\prime}, b, b^{\prime}, v\right\}$ and $\left|\left(N(v)-\left\{c, c^{\prime}\right\}\right) \cap N(t)\right| \geq 2$ (since G is 5-connected), and hence R (and therefore G) contains K_{4}^{-}. So we may assume $V\left(G_{1}\right)=\left\{a, a^{\prime}, b, b^{\prime}, v\right\}$. Then $v a^{\prime} \in E(G)$; otherwise $N(v)=\left\{a, b, b^{\prime}, c, c^{\prime}\right\}$ and, hence, $a^{\prime} b \notin E(G)$ (as ($G_{1}, a, a^{\prime}, b^{\prime}, b$) is planar), which implies that $\left\{a, b^{\prime}, c^{\prime}\right\}$ is a cut in R separating $\{a, b, c\}$ from $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, a contradiction. Similarly, $v a, v b, v b^{\prime} \in E(G)$. Then by planarity of $\left(G_{1}, a, a^{\prime}, b^{\prime}, b\right)$, we have $a b^{\prime}, b a^{\prime} \notin E(G)$. So $a a^{\prime}, b b^{\prime} \in E(G)$ as $\left\{c, v, b^{\prime}\right\}$ and $\{a, v, c\}$ are not 3-cuts in R separating $\{a, b, c\}$ from $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$. Thus we have (iv).

Suppose (5) holds for $\left(R,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$, and assume by symmetry that $\left(R, a, a^{\prime}, b^{\prime}, b\right)$ is 3-planar, and R has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\{z, b\},\left\{a, a^{\prime}, b, b^{\prime}\right\} \subseteq$ $V\left(G_{1}\right),\left\{c, c^{\prime}\right\} \subseteq V\left(G_{2}\right)$, and $\left(G_{2}, c, c^{\prime}, z, b\right)$ is 3-planar. Since G is 5-connected, $V\left(G_{2}\right)=$ $\left\{b, z, c, c^{\prime}\right\}$. Then $c z, c c^{\prime} \in E(G)$ as otherwise, $\left\{a, b, c^{\prime}\right\}$ or $\{a, b, z\}$ would be a 3-cut in R separating $\{a, b, c\}$ from $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$. Hence, since $\left(G_{2}, b, z, c^{\prime}, c\right)$ is planar, $b c^{\prime} \notin$ $E(G)$. Since $\left(R, a, a^{\prime}, b^{\prime}, b\right)$ is 3-planar, $\left(G_{1}, a, a^{\prime}, b^{\prime}, b\right)$ is 3-planar. Thus, the separation $\left(G_{1}, G_{2}-b\right)$ shows that $\left(R,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$ is of type (4); so we may assume that (iv) holds by the argument in the previous paragraph.

Now suppose (6) holds for $\left(R,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$, and, by symmetry, assume that there are pairwise edge disjoint subgraphs G_{a}, G_{c}, M of R such that $R=G_{a} \cup G_{c} \cup M, V\left(G_{a} \cap\right.$ $M)=\{u, w\}, V\left(G_{c} \cap M\right)=\{p, q\}, V\left(G_{a} \cap G_{c}\right)=\emptyset,\left\{a, a^{\prime}, b^{\prime}\right\} \subseteq V\left(G_{a}\right),\left\{c, c^{\prime}, b\right\} \subseteq$ $V\left(G_{c}\right)$, and $\left(G_{a}, a, a^{\prime}, b^{\prime}, w, u\right)$ and $\left(G_{c}, c^{\prime}, c, b, p, q\right)$ are 3-planar. Since G is 5-connected, we have $V(M)=\{p, q, u, w\}$, and $\left(G_{a}, a, a^{\prime}, b^{\prime}, w, u\right)$ and $\left(G_{c}, c^{\prime}, c, b, p, q\right)$ are planar. We may assume that $\left|V\left(G_{c}\right)-\left\{b, c, c^{\prime}, p, q\right\}\right| \leq 1$ and $\left|V\left(G_{a}\right)-\left\{a, a^{\prime}, b^{\prime}, u, w\right\}\right| \leq 1$, as otherwise the assertion follows from Lemma 2.4.5 with the separation $\left(G_{c}, G_{a} \cup M \cup R^{\prime}\right)$ or $\left(G_{a}, G_{c} \cup M \cup R^{\prime}\right)$. If there exists $v \in V\left(G_{c}\right)-\left\{b, c, c^{\prime}, p, q\right\}$ then, since G is 5-connected, $N(v)=\left\{b, c, c^{\prime}, p, q\right\}$ and $\left|(N(p)-\{u, w\}) \cap\left\{b, c, c^{\prime}, q\right\}\right| \geq 2$; so R (and hence G) contains K_{4}^{-}. Thus we may assume $V\left(G_{c}\right)=\left\{b, c, c^{\prime}, p, q\right\}$. Since G is 5 -connected, p and q each have at least five neighbors in $G_{c} \cup M$. Hence, since ($G_{c}, b, c, c^{\prime}, q, p$) is planar, $N(p)=\{u, w, b, c, q\}$ and $N(q)=\left\{u, w, c, c^{\prime}, p\right\}$; so $G[\{p, q, u, w\}]$ (and hence G) contains K_{4}^{-}.

Suppose (7) holds for $\left(R,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$. Then there are pairwise edge disjoint subgraphs G_{a}, G_{c}, M of R such that $R=G_{a} \cup G_{c} \cup M, V\left(G_{a} \cap M\right)=\left\{b, b^{\prime}, w\right\}$, $V\left(G_{c} \cap M\right)=\left\{b, b^{\prime}, p\right\}, V\left(G_{a} \cap G_{c}\right)=\left\{b, b^{\prime}\right\},\left\{a, a^{\prime}\right\} \subseteq V\left(G_{a}\right),\left\{c, c^{\prime}\right\} \subseteq V\left(G_{c}\right)$, and $\left(G_{a}, a, a^{\prime}, b^{\prime}, w, b\right)$ and $\left(G_{c}, c^{\prime}, c, b, p, b^{\prime}\right)$ are 3-planar. Since G is 5-connected, we have $V(M)=\left\{b, b^{\prime}, p, w\right\}$, and $\left(G_{a}, a, a^{\prime}, b^{\prime}, w, b\right)$ and $\left(G_{c}, c^{\prime}, c, b, p, b^{\prime}\right)$ are actually planar. If $\left|V\left(G_{c}\right)\right| \geq 7$ then the assertion follows from Lemma 2.4.5 with the separation $\left(G_{c}, G_{a} \cup\right.$
$\left.M \cup R^{\prime}\right)$. So we may assume $\left|V\left(G_{c}\right)\right| \leq 6$. If there exists $q \in V\left(G_{c}\right)-\left\{b, b^{\prime}, c, c^{\prime}, p\right\}$ then $N(q)=\left\{b, b^{\prime}, c, c^{\prime}, p\right\}$ (as G is 5-connected); therefore, since $\left(G_{c}, c^{\prime}, c, b, p, b^{\prime}\right)$ is planar, $N(p) \subseteq\left\{b, b^{\prime}, w, q\right\}$, a contradiction. Thus $V\left(G_{c}\right)=\left\{b, b^{\prime}, c, c^{\prime}, p\right\}$ and, hence, $N(p)=$ $\left\{b, b^{\prime}, c, c^{\prime}, w\right\}$. Similarly, by considering G_{a}, we may assume $N(w)=\left\{a, a^{\prime}, b, b^{\prime}, p\right\}$. Thus $G\left[\left\{b, b^{\prime}, p, w\right\}\right]$ (and hence G) contains K_{4}^{-}.

Finally, assume that (3) holds for $\left(R,(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$. So $\left(R, a^{\prime}, b^{\prime}, c^{\prime}, c, b, a\right)$ is planar (as G is 5 -connected), and we may assume that R is embedded in a closed disc with no edge crossings such that $a, b, c, c^{\prime}, b^{\prime}, a^{\prime}$ occur on the boundary of the disc in clockwise order. We apply the discharging method. For convenience, let $A=\left\{a, b, c, a^{\prime}, b^{\prime}, c^{\prime}\right\}, F(R)$ denote the set of faces of R, and f_{∞} denote the outer face of R (which is incident with all vertices in A). For each $f \in F(R)$, let $d_{R}(f)$ denote the number of incidences of the edges of R with f, and ∂f denote the set of vertices of R incident with f. For $x \in V(R) \cup F(R)$, let $\sigma(x)=d_{R}(x)-4$ be the charge of x. Note that R is connected as in R there is no separation $\left(R_{1}, R_{2}\right)$ of order at most 3 such that $\{a, b, c\} \subseteq V\left(R_{1}\right)$ and $\left\{a^{\prime}, b^{\prime}, b^{\prime}\right\} \subseteq V\left(R_{2}\right)$. Hence, by Euler's formula, $\sum_{x \in V(R) \cup F(R)} \sigma(x)=-8$.

We redistribute charges according to the following rule: For each $v \in V(R)-A, v$ sends $1 / 2$ to each $f \in F(R)$ that is incident with v and has $d_{R}(f)=3$. Let $\tau(x)$ denote the new charge for all $x \in V(R) \cup F(R)$. Then

$$
\sum_{x \in V(R) \cup F(R)} \tau(x)=\sum_{x \in V(R) \cup F(R)} \sigma(x)=-8 .
$$

Note that we may assume $K_{4}^{-} \nsubseteq G$. Thus, each $v \in V(R)-A$ is incident with at most $\left\lfloor d_{R}(v) / 2\right\rfloor$ faces $f \in F(R)$ with $d_{R}(f)=3$; so $\tau(v) \geq 0$ (as $d_{R}(v) \geq 5$). Moreover, for $f \in F(R), \tau(f) \geq 0$ unless $d_{R}(f)=3$ and f is incident with at least two vertices in A.

Since R has no separation $\left(R_{1}, R_{2}\right)$ of order at most 3 such that $\{a, b, c\} \subseteq V\left(R_{1}\right)$ and $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \subseteq V\left(R_{2}\right)$, we see that $\{a, b, c\}$ and $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ are independent in R. Moreover, since $\left(R, a, a^{\prime}, b^{\prime}, c^{\prime}, c, b\right)$ is planar, $a b^{\prime}, a c^{\prime}, b a^{\prime}, b c^{\prime}, c a^{\prime}, c b^{\prime} \notin E(R)$, and $d_{R}(v) \geq 2$ for
$v \in A$. Hence, $b b^{\prime} \notin E(R)$; otherwise, since G is 5-connected, $V(R)=A$ (to avoid 4-cuts $\left\{a, a^{\prime}, b, b^{\prime}\right\}$ and $\left\{b, b^{\prime}, c, c^{\prime}\right\}$), which in turn would force $d_{R}(v) \leq 1$ for some $v \in A$.

Therefore, $d_{R}\left(f_{\infty}\right) \geq 10$, and if $f \in F(R)$ with $d_{R}(f)=3$ and $|\partial f \cap A| \geq 2$ then $\partial f \cap A=\left\{a, a^{\prime}\right\}$ or $\partial f \cap A=\left\{c, c^{\prime}\right\}$. Hence,

$$
\begin{aligned}
\sum_{x \in V(R) \cup F(R)} \tau(x) & \geq \sum_{v \in V(R)} \tau(v)+\sum_{f \in F(R),|\partial f \cap A| \geq 2} \tau(f) \\
& \geq \sum_{v \in A}\left(d_{R}(v)-4\right)+\left(d_{R}\left(f_{\infty}\right)-4\right)+\sum_{d_{R}(f)=3,|\partial f \cap A| \geq 2}\left(d_{R}(f)-4\right) \\
& \geq(-12)+(10-4)+(-1) \times 2 \\
& =-8 .
\end{aligned}
$$

Thus, all the inequalities above hold with equality. In particular, $d_{R}\left(f_{\infty}\right)=10, d(x)=2$ for $x \in A$, and there exist $u, v \in V(R)-A$ such that $u a a^{\prime} u$ and $v c c^{\prime} v$ are triangles and $a a^{\prime} u b^{\prime} v c^{\prime} c v b u a$ is the outer walk of R. Since G is 5-connected and $\left(R, a, b, c, c^{\prime}, b^{\prime}, a^{\prime}\right)$ is planar, $V(R)=A \cup\{u, v\}$ and $u v \in E(R)$. Hence, $G\left[\left\{b, b^{\prime}, u, v\right\}\right] \cong K_{4}^{-}$, a contradiction.

2.6 Quadruples and special structure

As mentioned in Section 2.3, we need to deal with 5-connected graphs in which every edge or triangle at a given vertex is contained in a cut of size 5 or 6 . Thus, for convenience, we introduce the following concept of quadruple.

Let G be a graph. For $x \in V(G)$, let \mathcal{Q}_{x} denote the set of all quadruples $\left(T, S_{T}, A, B\right)$, such that
(1) $T \subseteq G, x \in V(T)$, and $T \cong K_{2}$ or $T \cong K_{3}$,
(2) S_{T} is a cut of G with $V(T) \subseteq S_{T}, A$ is a nonempty union of components of $G-S_{T}$, and $B=G-A-S_{T} \neq \emptyset$,
(3) if $T \cong K_{3}$ then $5 \leq\left|S_{T}\right| \leq 6$, and
(4) if $T \cong K_{2}$ then $\left|S_{T}\right|=5,|V(A)| \geq 2$, and $|V(B)| \geq 2$.

The purpose of this section is to derive useful properties of quadruples, in particular, those $\left(T, S_{T}, A, B\right)$ that minimize $|V(A)|$. We begin with a few simple properties, first of which gives a bound on $|V(A)|$.

Lemma 2.6.1 Let G be a 5 -connected graph, $x \in V(G)$, and $\left(T, S_{T}, A, B\right) \in \mathcal{Q}_{x}$. Then G contains K_{4}^{-}, or $|V(A)| \geq 5 \leq|V(B)|$.

Proof. Suppose there exists $\left(T, S_{T}, A, B\right) \in \mathcal{Q}_{x}$ such that $|V(A)| \leq 4$ or $|V(B)| \leq 4$. We choose such $\left(T, S_{T}, A, B\right) \in \mathcal{Q}_{x}$ with $|V(A)|$ minimum. Then $|V(A)| \leq 4$. Let δ denote the minimum degree of A, and let $u \in V(A)$ such that u has degree δ in A.

We may assume $\delta \geq 1$. For, suppose $\delta=0$. If $T \cong K_{3}$ then, since G is 5 -connected, $\left|N(u) \cap S_{T}\right| \geq 5$; so $G[T+u]$ contains K_{4}^{-}. Hence we may assume $T \cong K_{2}$. Then $|V(A)| \geq 2$. In fact, by the minimality of $|V(A)|,|V(A)|=2$ and A consists of two isolated vertices. Now $G[A \cup T]$ contains K_{4}^{-}.

Case 1. $\delta=1$.
Then $\left|N(u) \cap S_{T}\right| \geq 4$. Let v be the unique neighbor of u in A. Since $|V(A)| \leq 4$ and G is 5-connected, $\left|N(v) \cap S_{T}\right| \geq 2$. We may assume $\left|N(u) \cap N(v) \cap S_{T}\right| \leq 1$; for, otherwise, $G\left[S_{T} \cup\{u, v\}\right]$ contains K_{4}^{-}.

Suppose $\left|N(v) \cap S_{T}\right| \geq 3$ or $N(u) \cap N(v) \cap S_{T}=\emptyset$. Then $\left|S_{T}\right|=6$ and, hence, $T \cong K_{3}$. Therefore, $|N(u) \cap V(T)| \geq 2$ or $|N(v) \cap V(T)| \geq 2$; so $G[T+u]$ or $G[T+v]$ contains K_{4}^{-}.

Hence, we may assume that $\left|N(v) \cap S_{T}\right| \leq 2$ and $\left|N(u) \cap N(v) \cap S_{T}\right|=1$. Then, since $|V(A)| \leq 4$ and G is 5-connected, $\left|N(v) \cap S_{T}\right|=2,|N(v) \cap V(A)|=3$, and $|V(A)|=4$. Let $v_{1}, v_{2} \in V(A)-\{u, v\}$, and let $w \in N(u) \cap N(v) \cap S_{T}$. Since G is 5-connected, $\left|N\left(v_{i}\right) \cap S_{T}\right| \geq 3$ for $i \in[2]$.

We may assume $w \notin V(T)$; for, if $w \in V(T)$ then $|V(T) \cap N(u)| \geq 2$ or $\mid V(T) \cap$ $N(v) \mid \geq 2$, and $G[T+\{u, v\}]$ contains K_{4}^{-}. We may also assume $w \notin N\left(v_{i}\right)$ for $i \in[2]$,
as otherwise $G\left[\left\{u, v, w, v_{i}\right\}\right]$ contains K_{4}^{-}.
If $v_{1} v_{2} \notin E(G)$ then $\left|N\left(v_{i}\right) \cap S_{T}\right| \geq 4$ for $i \in[2]$; so $\left|N\left(v_{i}\right) \cap V(T)\right| \geq 2$ for $i \in[2]$ (since $w \notin N\left(v_{i}\right)$ and $w \notin V(T)$), and hence, $G\left[T+\left\{v_{1}, v_{2}\right\}\right]$ contains K_{4}^{-}. So assume $v_{1} v_{2} \in E(G)$. Since G is 5-connected and $w \notin N\left(v_{i}\right)$ for $i \in[2]$, there exists $w^{\prime} \in N\left(v_{1}\right) \cap N\left(v_{2}\right) \cap S_{T}$. Now $G\left[\left\{v, v_{1}, v_{2}, w^{\prime}\right\}\right]$ contains K_{4}^{-}.

Case 2. $\delta \geq 2$.
If $|V(A)|=3$ then $A \cong K_{3}$ and, since G is 5-connected, $\left|N(a) \cap S_{T}\right| \geq 3$ for all $a \in V(A)$; hence, since $\left|S_{T}\right| \leq 6, G\left[V(A) \cup S_{T}\right]$ contains K_{4}^{-}. So assume $|V(A)|=4$. We may further assume that A is a cycle as otherwise A contains K_{4}^{-}. Moreover, we may assume that for any $s t \in E(A),\left|N(s) \cap N(t) \cap S_{T}\right| \leq 1$; for otherwise $G\left[\{s, t\} \cup S_{T}\right]$ contains K_{4}^{-}. Let $A=$ uvwru.

Suppose $T \cong K_{2}$. Then for any st $\in E(A),(N(s) \cup N(t))-V(A)=S_{T}$ and $\left|N(s) \cap N(t) \cap S_{T}\right|=1$. Let $S_{T}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ and, without loss of generality, let $N(u) \cap A=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $N(v) \cap A=\left\{x_{3}, x_{4}, x_{5}\right\}$. Since $(N(w) \cup N(r))-V(A)=S_{T}$, $w x_{3} \in E(G)$ or $r x_{3} \in E(G)$. Then $G\left[\left\{u, v, w, x_{3}\right\}\right] \cong K_{4}^{-}$or $G\left[\left\{r, u, v, x_{3}\right\}\right] \cong K_{4}^{-}$.

Now assume $T \cong K_{3}$. Let $S_{T}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$ such that $V(T)=\left\{x_{1}, x_{2}, x_{3}\right\}$. We may assume $|N(a) \cap V(T)| \leq 1$ for each $a \in V(A)$, for, otherwise, $G[T+a]$ contains K_{4}^{-}. Hence, let $x_{4}, x_{5} \in N(u), x_{5}, x_{6} \in N(v)$, and $x_{6}, x_{4} \in N(w)$. Note that $N(r) \cap\left\{x_{4}, x_{6}\right\} \neq \emptyset$. If $x_{4} \in N(r)$ then $G\left[\left\{u, w, r, x_{4}\right\}\right] \cong K_{4}^{-}$, and if $x_{6} \in N(r)$ then $G\left[\left\{v, w, r, x_{6}\right\}\right] \cong K_{4}^{-}$.

Next, we show that if a graph G has no contractible edge or triangle at some vertex x then every edge of G at x is associated with a quadruple in \mathcal{Q}_{x}.

Lemma 2.6.2 Let G be a 5-connected graph and $x \in V(G)$. Suppose for any $T \subseteq G$ with $x \in V(T)$ and $T \cong K_{2}$ or $T \cong K_{3}, G / T$ is not 5-connected. Then for any ax $\in E(G)$, there exists $\left(T^{\prime}, S_{T^{\prime}}, C, D\right) \in \mathcal{Q}_{x}$ such that $\{a, x\} \subseteq V\left(T^{\prime}\right)$.

Proof. Let $T_{1}=a x$. By assumption, G / T_{1} is not 5 -connected. So there exists a 5 -cut $S_{T_{1}}$ in
G with $V\left(T_{1}\right) \subseteq S_{T_{1}}$. We may assume that $G-S_{T_{1}}$ has a trivial component; for otherwise, let C be a component of $G-S_{T_{1}}$ and $D=\left(G-S_{T_{1}}\right)-C$. Then $\left(T_{1}, S_{T_{1}}, C, D\right) \in \mathcal{Q}_{x}$ is the desired quadruple.

So let $y \in V(G)$ such that y is a component of $G-S_{T_{1}}$. Let $T_{2}:=G\left[T_{1}+y\right] \cong K_{3}$. By assumption, G / T_{2} is not 5 -connected. So there exists a cut $S_{T_{2}}$ in G such that $V\left(T_{2}\right) \subseteq S_{T_{2}}$ and $\left|S_{T_{2}}\right| \in\{5,6\}$. Let C be a component of $G-S_{T_{2}}$ and $D=\left(G-S_{T_{2}}\right)-C$. Then $\left(T_{2}, S_{T_{2}}, C, D\right) \in \mathcal{Q}_{x}$ is the desired quadruple.

We now show that if $\left(T, S_{T}, A, B\right)$ is chosen to minimize $|V(A)|$ then we may assume $T \cong K_{3}$.

Lemma 2.6.3 Let G be a 5-connected graph and $x \in V(G)$. Suppose for any $T \subseteq G$ with $x \in V(T)$ and $T \cong K_{2}$ or $T \cong K_{3}, G / T$ is not 5 -connected. Then G contains K_{4}^{-}, or for any $\left(T, S_{T}, A, B\right) \in \mathcal{Q}_{x}$ with $|V(A)|$ minimum, $T \cong K_{3}$.

Proof. Let $\left(T, S_{T}, A, B\right) \in \mathcal{Q}_{x}$ with $|V(A)|$ minimum, and assume $T \cong K_{2}$. Then $\left|S_{T}\right|=$ 5. Let $a \in N(x) \cap V(A)$. By Lemma 2.6.2, there exists $\left(T^{\prime}, S_{T^{\prime}}, C, D\right) \in \mathcal{Q}_{x}$ such that $\{a, x\} \subseteq V\left(T^{\prime}\right)$. Note that $T^{\prime} \cong K_{2}$ and $\left|S_{T^{\prime}}\right|=5$, or $T^{\prime} \cong K_{3}$ and $\left|S_{T^{\prime}}\right| \in\{5,6\}$. We may assume $|V(A)| \geq 5$; for, if not, then G contains K_{4}^{-}by Lemma 2.6.1.

We may assume that if $A \cap C \neq \emptyset$ then $\left|\left(S_{T^{\prime}} \cup S_{T}\right)-V(B \cup D)\right| \geq\left|S_{T^{\prime}}\right|+1$. For, suppose $A \cap C \neq \emptyset$ and $\left|\left(S_{T^{\prime}} \cup S_{T}\right)-V(B \cup D)\right| \leq\left|S_{T^{\prime}}\right|$. If $|V(A \cap C)| \geq 2$ or $T^{\prime} \cong K_{3}$ then $\left(T^{\prime},\left(S_{T^{\prime}} \cup S_{T}\right)-V(B \cup D), A \cap C, B \cup D\right) \in \mathcal{Q}_{x}$ and $|V(A \cap C)| \leq|V(A)-\{a\}|<|V(A)|$, contradicting the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum. So assume $|V(A \cap C)|=$ 1 and $T^{\prime} \cong K_{2}$. Then $\left|\left(S_{T^{\prime}} \cup S_{T}\right)-V(B \cup D)\right|=\left|S_{T^{\prime}}\right|=5$ and $|V(C)| \geq 2 \leq|V(D)|$. Assume for the moment $A \cap D=\emptyset$. By Lemma 2.6.1, we may assume $\left|S_{T^{\prime}} \cap V(A)\right|=4$ (as $\left|S_{T^{\prime}}\right|=5$ and $|V(A)| \geq 5$); so $\left|S_{T^{\prime}} \cap V(B)\right|=0,\left|S_{T} \cap V(C)\right|=0$, and $\left|S_{T^{\prime}} \cap S_{T}\right|=1$. Since $|V(C)| \geq 2, B \cap C \neq \emptyset$. So $S_{T} \cap S_{T}^{\prime}$ is a 1-cut in G, contradicting the assumption that G is 5-connected. Hence, $A \cap D \neq \emptyset$. We may assume $|V(A \cap D)| \geq 2$; as otherwise, since G is 5-connected, $G[(A \cap C) \cup(A \cap D) \cup\{a, x\}] \cong K_{4}^{-}$. Then $\mid\left(S_{T^{\prime}} \cup S_{T}\right)-$
$V(B \cup C)\left|\geq\left|S_{T^{\prime}}\right|+1\right.$; otherwise, $\left(T^{\prime},\left(S_{T^{\prime}} \cup S_{T}\right)-V(B \cup C), A \cap D, B \cup C\right) \in \mathcal{Q}_{x}$ and $2 \leq|V(A \cap D)|<|V(A)|$, contradicting the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum. Hence, $\left|\left(S_{T^{\prime}} \cup S_{T}\right)-V(A \cup D)\right|=\left|S_{T}\right|+\left|S_{T^{\prime}}\right|-\left|\left(S_{T^{\prime}} \cup S_{T}\right)-V(B \cup C)\right| \leq 4$. Since G is 5-connected, $B \cap C=\emptyset$. Since $\left|\left(S_{T^{\prime}} \cup S_{T}\right)-V(B \cup D)\right|=5,\left|S_{T} \cap V(C)\right| \leq 3$. Therefore, $|V(C)| \leq 4<|V(A)|$, a contradiction.

Similarly, we may assume that if $A \cap D \neq \emptyset$ then $\left|\left(S_{T^{\prime}} \cup S_{T}\right)-V(B \cup C)\right| \geq\left|S_{T^{\prime}}\right|+1$.
Suppose $A \cap C=A \cap D=\emptyset$. Then, since $|V(A)| \geq 5$ and $\left|S_{T^{\prime}}\right| \leq 6,\left|S_{T^{\prime}} \cap V(A)\right|=$ $|V(A)|=5,\left|S_{T} \cap S_{T^{\prime}}\right|=1$, and $\left|S_{T^{\prime}} \cap V(B)\right|=0$. Since $\left|S_{T}\right|=5$ and G is 5-connected, we see that $B \cap C=\emptyset$ or $B \cap D=\emptyset$. However, this implies $|V(C)| \leq 4$ or $|V(D)| \leq 4$, contradicting the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum.

We may thus assume $A \cap C \neq \emptyset$. Then $\left|\left(S_{T^{\prime}} \cup S_{T}\right)-V(B \cup D)\right| \geq\left|S_{T^{\prime}}\right|+1$. So $\mid\left(S_{T^{\prime}} \cup\right.$ $\left.S_{T}\right)-V(A \cup C)\left|=\left|S_{T}\right|+\left|S_{T^{\prime}}\right|-\left|\left(S_{T^{\prime}} \cup S_{T}\right)-V(B \cup D)\right| \leq 4\right.$. Since G is 5-connected, $B \cap D=\emptyset$. In addition, $A \cap D \neq \emptyset$; as otherwise, $|V(D)| \leq 4<|V(A)|$, contradicting the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum. Therefore, $\left|\left(S_{T^{\prime}} \cup S_{T}\right)-V(B \cup C)\right| \geq$ $\left|S_{T^{\prime}}\right|+1$. Hence, $\left|\left(S_{T^{\prime}} \cup S_{T}\right)-V(A \cup D)\right|=\left|S_{T}\right|+\left|S_{T^{\prime}}\right|-\left|\left(S_{T^{\prime}} \cup S_{T}\right)-V(B \cup C)\right| \leq 4$. Since G is 5-connected, $B \cap C=\emptyset$. Thus, $|V(B)| \leq\left|S_{T^{\prime}}-V\left(T^{\prime}\right)\right|=4$, contradicting the fact $|V(A)| \geq 5$ and $|V(A)|$ is minimum.

The next lemma will allow us to assume that if $\left(T, S_{T}, A, B\right) \in \mathcal{Q}_{x}$ with $|V(A)|$ minimum and $\left(T^{\prime}, S_{T^{\prime}}, C, D\right) \in \mathcal{Q}_{x}$ with $T^{\prime} \cap A \neq \emptyset$ then $T \cong K_{3}$ and $T^{\prime} \cong K_{3}$.

Lemma 2.6.4 Let G be a 5-connected graph and $x \in V(G)$. Suppose for any $T \subseteq G$ with $x \in V(T)$ and $T \cong K_{2}$ or $T \cong K_{3}, G / T$ is not 5 -connected. Let $\left(T, S_{T}, A, B\right) \in \mathcal{Q}_{x}$ with $|V(A)|$ minimum and $\left(T^{\prime}, S_{T^{\prime}}, C, D\right) \in \mathcal{Q}_{x}$ with $T^{\prime} \cap A \neq \emptyset$. Suppose $T^{\prime} \cong K_{2}$. Then one of the following holds:
(i) G contains a $T K_{5}$ in which x is not a branch vertex.
(ii) G contains K_{4}^{-}.
(iii) There exist distinct $x_{1}, x_{2}, x_{3} \in N(x)$ such that for any distinct $y_{1}, y_{2} \in N(x)-$ $\left\{x_{1}, x_{2}, x_{3}\right\}, G^{\prime}:=G-\left\{x v: v \notin\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right\}\right\}$ contains $T K_{5}$.

Proof. By Lemma 2.6.3, we may assume $T \cong K_{3}$. By Lemma 2.4.6, we may further assume $\left|S_{T}\right|=6$. Note the symmetry between C and D, and assume that $V(T) \subseteq S_{T}-$ $V(D)$. Since $\left|V\left(T^{\prime}\right)\right|=2,\left|S_{T^{\prime}}\right|=5$.

Suppose $A \cap C \neq \emptyset$. Then $\left|\left(S_{T^{\prime}} \cup S_{T}\right)-V(B \cup D)\right| \geq 7$; otherwise, $\left(T,\left(S_{T^{\prime}} \cup\right.\right.$ $\left.\left.S_{T}\right)-V(B \cup D), A \cap C, B \cup D\right) \in \mathcal{Q}_{x}$ and $0<|V(A \cap C)|<|V(A)|$, contradicting the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum. Hence, $\left|\left(S_{T^{\prime}} \cup S_{T}\right)-V(A \cup C)\right|=$ $\left|S_{T}\right|+\left|S_{T^{\prime}}\right|-\left|\left(S_{T^{\prime}} \cup S_{T}\right)-V(B \cup D)\right| \leq 4$. Since G is 5 -connected, $B \cap D=\emptyset$. We may assume $A \cap D \neq \emptyset$; otherwise, $|V(D)| \leq 4$ and, by Lemma 2.6.1, (ii) holds. We may also assume $|V(D)|>|V(A)| ;$ otherwise, $\left(T^{\prime}, S_{T^{\prime}}, D, C\right) \in \mathcal{Q}_{x}$ and, by Lemma 2.6.3, G contains K_{4}^{-}. Hence, $\left|V(D) \cap S_{T}\right|>|V(A \cap C)|+\left|V(A) \cap S_{T^{\prime}}\right| \geq\left|V(A) \cap S_{T^{\prime}}\right|+1$. Then, since $\left|S_{T}\right|=6$ and $V(T) \subseteq S_{T}-V(D),\left|V(D) \cap S_{T}\right|=3$ and $\left|V(A) \cap S_{T^{\prime}}\right|=1$. Hence, $\left|\left(S_{T^{\prime}} \cup S_{T}\right)-V(B \cup D)\right| \leq 4$, a contradiction as G is 5-connected.

Now assume $A \cap C=\emptyset$. Then, since $\left|S_{T^{\prime}} \cap V(A)\right| \leq 4$, we may assume $A \cap D \neq \emptyset$ by Lemma 2.6.1.

Suppose $\left|\left(S_{T^{\prime}} \cup S_{T}\right)-V(B \cup C)\right|=5$. Then, since $|V(A \cap D)|<|V(A)|, \mid V(A \cap$ $D) \mid=1$; otherwise, $\left(T^{\prime},\left(S_{T^{\prime}} \cup S_{T}\right)-V(B \cup C), A \cap D, B \cup C\right)$ contradicts the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum. Hence by Lemma 2.6.1, we may assume $\mid V(A) \cap$ $S_{T^{\prime}}=4$; so $V(B) \cap S_{T^{\prime}}=V(D) \cap S_{T}=\emptyset$. Since G is 5-connected, $B \cap D=\emptyset$. So $|V(D)|=1$, a contradiction .

Hence, we may assume $\left|\left(S_{T^{\prime}} \cup S_{T}\right)-V(B \cup C)\right| \geq 6$. Then $S_{T} \cap V(D) \neq \emptyset$ because $\left|S_{T^{\prime}}\right|=5$. By Lemma 2.6.1, we may assume $B \cap C \neq \emptyset$ (otherwise $|V(C)| \leq 4$). Hence, since G is 5 -connected, $\left|\left(S_{T^{\prime}} \cup S_{T}\right)-V(A \cup D)\right| \geq 5$. Since $\mid\left(S_{T^{\prime}} \cup S_{T}\right)-V(A \cup$ $D)\left|+\left|\left(S_{T^{\prime}} \cup S_{T}\right)-V(B \cup C)\right|=\left|S_{T}\right|+\left|S_{T^{\prime}}\right|=11,\left|\left(S_{T^{\prime}} \cup S_{T}\right)-V(A \cup D)\right|=5\right.$. If $|V(B \cap C)|=1$ then, since G is 5-connected, $G[T \cup(B \cap C)] \cong K_{4}^{-}$. If $|V(B \cap C)| \geq 2$ then, since $V(T) \subseteq\left(S_{T^{\prime}} \cup S_{T}\right)-V(A \cup D)$, the assertion follows from Lemma 2.4.6.

The proofs of the remaining two results in this section use Lemmas 2.5.1, 2.5.2 and 2.5.3. The following result will allow us to assume that if $\left(T, S_{T}, A, B\right) \in \mathcal{Q}_{x}$ is chosen to minimize $|V(A)|$ then $N(x) \cap V(A) \neq \emptyset$, which in turn will allow us to choose another quadruple at x.

Lemma 2.6.5 Let G be a 5-connected nonplanar graph and $x \in V(G)$. Suppose for any $H \subseteq G$ with $x \in V(H)$ and $H \cong K_{2}$ or $H \cong K_{3}, G / H$ is not 5 -connected. Let $\left(T, S_{T}, A, B\right) \in \mathcal{Q}_{x}$ minimizing $|V(A)|$. Then $N(x) \cap V(A) \neq \emptyset$, or one of the following holds:
(i) G contains a $T K_{5}$ in which x is not a branch vertex.
(ii) G contains K_{4}^{-}.
(iii) There exist distinct $x_{1}, x_{2}, x_{3} \in N(x)$ such that for any distinct $u_{1}, u_{2} \in N(x)-$ $\left\{x_{1}, x_{2}, x_{3}\right\}, G^{\prime}:=G-\left\{x v: v \notin\left\{x_{1}, x_{2}, x_{3}, u_{1}, u_{2}\right\}\right\}$ contains $T K_{5}$.

Proof. Suppose $N(x) \cap V(A)=\emptyset$. Then, since G is 5-connected, $\left|S_{T}\right|=6$ and $T \cong K_{3}$. Let $V(T)=\left\{x, x_{1}, x_{2}\right\}$ and $S_{T}=\left\{x, x_{1}, x_{2}, v_{1}, v_{2}, v_{3}\right\}$. By Lemma 2.4.8, we may assume $N\left(x_{1}\right) \subseteq V(A) \cup\left\{x, x_{2}\right\}$, and any three independent paths in $G_{A}:=G\left[A+\left(S_{T}-\{x\}\right)\right]-$ $E\left(S_{T}\right)$ from $\left\{x_{1}, x_{2}\right\}$ to v_{1}, v_{2}, v_{3}, respectively, with two from x_{1} and one from x_{2}, must include a path from x_{2} to v_{1}.

We wish to apply Lemma 2.5.1. Let G_{A}^{\prime} be obtained from G_{A} by adding a new vertex x_{1}^{\prime} and joining x_{1}^{\prime} to each vertex in $N\left(x_{1}\right) \cap V\left(G_{A}\right)$ with an edge. Thus, in G_{A}^{\prime}, x_{1} and x_{1}^{\prime} have the same set of neighbors. Note that $\left\{x_{1}, x_{1}^{\prime}, x_{2}\right\}$ and $\left\{v_{1}, v_{2}, v_{3}\right\}$ are independent sets in G_{A}^{\prime}.

Claim 1. There is no separation $\left(A_{1}, A_{2}\right)$ in G_{A}^{\prime} such that $\left|V\left(A_{1} \cap A_{2}\right)\right| \leq 3,\left\{x_{1}, x_{1}^{\prime}, x_{2}\right\} \subseteq$ $V\left(A_{1}\right)$ and $\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq V\left(A_{2}\right)$.

For, suppose such $\left(A_{1}, A_{2}\right)$ does exist. Then $\left\{x_{1}, x_{1}^{\prime}\right\} \nsubseteq V\left(A_{1} \cap A_{2}\right)$; for, otherwise, $A_{1}-\left\{x_{1}, x_{1}^{\prime}, x_{2}\right\} \neq \emptyset\left(\right.$ as $\left\{x_{1}, x_{1}^{\prime}, x_{2}\right\}$ is independent in G_{A}^{\prime} and x_{2} has a neighbor in $\left.V(A)\right)$ and, hence, $\left(V\left(A_{1} \cap A_{2}\right)-\left\{x_{1}^{\prime}\right\}\right) \cup\left\{x, x_{2}\right\}$ is a cut in G of size at most 4, a contradiction.

Thus, we may assume by symmetry that $x_{1} \notin V\left(A_{1} \cap A_{2}\right)$. Then $\left(A_{1}, A_{2}\right)$ may be chosen so that $x_{1}^{\prime} \notin V\left(A_{1} \cap A_{2}\right)$ (as x_{1}^{\prime} has the same set of neighbors as x_{1} in G_{A}^{\prime}). Moreover, $V\left(A_{1}\right)-V\left(A_{2}\right) \subseteq\left\{x_{1}, x_{1}^{\prime}, x_{2}\right\}$; otherwise $S_{T}^{\prime}:=V\left(A_{1} \cap A_{2}\right) \cup V(T)$ is a cut in G with $\left|S_{T}^{\prime}\right| \leq 6$, and $G-S_{T}^{\prime}$ has a component strictly contained in A, contradicting the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum.

Since G is 5-connected and $N\left(x_{1}\right) \subseteq V(A) \cup\left\{x, x_{2}\right\}, V\left(A_{1} \cap A_{2}\right) \cup\left\{x, x_{2}\right\}$ is not a 4-cut in G. So $x_{2} \in V\left(A_{1}\right)-V\left(A_{2}\right)$ and $\left|V\left(A_{1} \cap A_{2}\right)\right|=3$. Since G is 5-connected and $V\left(A_{1}\right)-V\left(A_{2}\right) \subseteq\left\{x_{1}, x_{1}^{\prime}, x_{2}\right\}, N\left(x_{1}\right)=\left\{x, x_{2}\right\} \cup V\left(A_{1} \cap A_{2}\right)$. Since $N\left(x_{2}\right) \cap V\left(A_{1}\right) \neq \emptyset$, there exists $v \in V\left(A_{1} \cap A_{2}\right)$ such that $v x_{2} \in E(G)$. Now $G\left[\left\{v, x, x_{1}, x_{2}\right\}\right] \cong K_{4}^{-}$and (ii) holds. This completes the proof of Claim 1.

Since any three disjoint paths in G_{A}^{\prime} from $\left\{x_{1}, x_{2}, x_{1}^{\prime}\right\}$ to $\left\{v_{1}, v_{2}, v_{3}\right\}$ contains a path from x_{2} to v_{1}, it follows from Claim 1 and Lemma 2.5.1 that G_{A}^{\prime} has a separation (J, L) such that $V(J \cap L)=\left\{w_{0}, \ldots, w_{n}\right\},\left(J, w_{0}, \ldots, w_{n}\right)$ is 3-planar, $\left(L,\left(x_{1}, x_{2}, x_{1}^{\prime}\right),\left(v_{2}, v_{1}, v_{3}\right)\right)$ is a ladder along some sequence $b_{0} \ldots b_{m}$, where $b_{0}=x_{2}, b_{m}=v_{1}$, and $w_{0} \ldots w_{n}$ is the reduced sequence of $b_{0} \ldots b_{m}$. (Note that if $(i i)$ of Lemma 2.5.1 holds then, by Claim 1, $\left(G_{A}^{\prime},\left(x_{1}, x_{2}, x_{1}^{\prime}\right),\left(v_{2}, v_{1}, v_{3}\right)\right)$ is a rung, and we let $L=G_{A}^{\prime}$ and J consist of v_{1} and x_{2}.)

Since L is a ladder, L contains three disjoint paths P_{1}, P_{2}, P_{3} from $x_{1}, x_{2}, x_{1}^{\prime}$, respectively, to $\left\{v_{1}, v_{2}, v_{3}\right\}$, with $v_{1} \in V\left(P_{2}\right)$. Without loss of generality, we may further assume that $v_{2} \in V\left(P_{1}\right)$ and $v_{3} \in V\left(P_{3}\right)$. Let $\left(R_{i},\left(a_{i-1}, b_{i-1}, c_{i-1}\right),\left(a_{i}, b_{i}, c_{i}\right)\right), i \in[m]$, be the rungs in L, with $a_{i} \in V\left(P_{1}\right), b_{i} \in V\left(P_{2}\right)$ and $c_{i} \in V\left(P_{3}\right)$ for $i=0, \ldots, m$. Since G is 5-connected, $\left(J, w_{0}, \ldots, w_{n}\right)$ is planar and, by Lemmas 2.5.2 and 2.5.3, we may assume that the rungs in L have the simple structures as in Lemma 2.5.3.

Claim 2. There exist $t \in V(A)$ and independent paths $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}$ in G_{A} such that $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ are from t to $x_{1}, x_{2}, v_{1}, v_{2}$, respectively, and Q_{5} is from x_{1} to v_{3}; and there exist $t \in V(A)$ and independent paths $Q_{1}^{\prime}, Q_{2}^{\prime}, Q_{3}^{\prime}, Q_{4}^{\prime}, Q_{5}^{\prime}$ in G_{A} such that $Q_{1}^{\prime}, Q_{2}^{\prime}, Q_{3}^{\prime}, Q_{4}^{\prime}$ are from t to $x_{1}, x_{2}, v_{1}, v_{3}$, respectively, and Q_{5}^{\prime} is from x_{1} to v_{2}.

We may assume that for $i \in[m],\left(R_{i},\left(a_{i-1}, b_{i-1}, c_{i-1}\right),\left(a_{i}, b_{i}, c_{i}\right)\right)$ is not of type (iv)
as in Lemma 2.5.3. For, suppose $\left(R_{i},\left(a_{i-1}, b_{i-1}, c_{i-1}\right),\left(a_{i}, b_{i}, c_{i}\right)\right)$ is of type $(i v)$ for some $i \in[m]$, and let $v \in V\left(R_{i}\right)-\left(\left\{a_{i-1}, b_{i-1}, c_{i-1}\right\} \cup\left\{a_{i}, b_{i}, c_{i}\right\}\right)$. Then Claim 2 holds with $v, v a_{i-1} \cup a_{i-1} P_{1} x_{1}, v b_{i-1} \cup b_{i-1} P_{2} x_{2}, v b_{i} \cup b_{i} P_{2} v_{1}, v a_{i} \cup a_{i} P_{1} v_{2}, P_{3}$ as $t, Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}$, respectively, and with $v, v c_{i-1} \cup c_{i-1} P_{3} x_{1}, v b_{i-1} \cup b_{i-1} P_{2} x_{2}, v b_{i} \cup b_{i} P_{2} v_{1}, v c_{i} \cup c_{i} P_{3} v_{3}, P_{1}$ as $t, Q_{1}^{\prime}, Q_{2}^{\prime}, Q_{3}^{\prime}, Q_{4}^{\prime}, Q_{5}^{\prime}$, respectively.

We claim that there exists $q \in[m]$, such that $x_{1} b_{q} \in E(G)$. Let $q \geq 1$ be the smallest integer such that $\left(R_{q},\left(a_{q-1}, b_{q-1}, c_{q-1}\right),\left(a_{q}, b_{q}, c_{q}\right)\right)$ is not of type (ii) as in Lemma 2.5.3, which must exist as $x_{1} \notin\left\{v_{1}, v_{2}, v_{3}\right\}$. Then $a_{q-1}=x_{1}$ and $c_{q-1}=x_{1}^{\prime}$. Since G is 5connected, $\left(R_{q},\left(a_{q-1}, b_{q-1}, c_{q-1}\right),\left(a_{q}, b_{q}, c_{q}\right)\right)$ cannot be of type (iii) (thus, must be of type $(i))$ as in Lemma 2.5.3. Since x_{1} and x_{1}^{\prime} have the same set of neighbors in $G_{A}^{\prime}, a_{q} \neq x_{1}$ and $c_{q} \neq x_{1}^{\prime}$. Since G is 5-connected, $V\left(R_{q}\right)=\left\{x_{1}, x_{1}^{\prime}, a_{q}, b_{q}, c_{q}\right\}$. Since $N\left(x_{1}\right) \subseteq$ $V(A) \cup\left\{x, x_{2}\right\}$ and G is 5-connected, $x_{1} b_{q} \in E(G)$.

We choose such q to be maximum. Note that $q \neq 0$ as $x_{1} b_{0} \notin E\left(G_{A}^{\prime}\right)$. We now show the existence of t and $Q_{i}, i \in[5]$; the proof of the existence of t and $Q_{i}^{\prime}, i \in[5]$, is symmetric (by switching the roles of v_{2}, P_{1} and v_{3}, P_{3}).

We may assume that for any choice of P_{1}, P_{3} there does not exist r, with $q<r \leq m$, such that L has disjoint paths S, S^{\prime} from b_{r}, x_{1} to v_{2}, v_{3}, respectively, and internally disjoint from $J \cup P_{2}$. For, suppose for some choice of P_{1}, P_{3} such r, S, S^{\prime} exist. By Claim 1, $J \cup P_{2}$ is 2 -connected. So let P_{2}^{\prime} denote the path between x_{2} and v_{1} in $J \cup P_{2}$ such that the cycle $P_{2}^{\prime} \cup P_{2}$ bounds the infinite face of $J \cup P_{2}$. Let $t \in V\left(P_{2}^{\prime}\right)$ such that $x_{2} t \in E\left(P_{2}^{\prime}\right)$. If there exist independent paths L_{1}, L_{2} in $J \cup P_{2}$ from t to b_{q}, b_{r}, respectively, and internally disjoint from P_{2}^{\prime}, then $L_{1} \cup b_{q} x_{1}, L_{2} \cup S, t x_{2}, t P_{2}^{\prime} v_{1}, S^{\prime}$ give the desired $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}$, respectively. Thus we may assume that such L_{1}, L_{2} do not exist. So $J \cup P_{2}$ has a separation $\left(J_{1}, J_{2}\right)$ such that $\left|V\left(J_{1} \cap J_{2}\right)\right| \leq 3, t \in V\left(J_{1}\right)-V\left(J_{2}\right)$, and $\left\{b_{q}, b_{r}, v_{1}, x_{2}\right\} \subseteq V\left(J_{2}\right)$. By planarity of $J \cup P_{2}, V\left(J_{1} \cap J_{2}\right)$ contains x_{2} and a vertex $t^{\prime} \in V\left(t P_{2}^{\prime} v_{1}\right)$. Since $V\left(J_{1} \cap J_{2}\right)$ cannot be a cut in G, we must have $\left|V\left(J_{1} \cap J_{2}\right)\right|=3, t^{\prime}=v_{1}$, and $V\left(J_{1} \cap J_{2}\right)-\left\{t^{\prime}, x_{2}\right\} \subseteq$ $V\left(b_{r} P_{2} v_{1}\right)$. Let $b_{s} \in V\left(J_{1} \cap J_{2}\right)-\left\{t^{\prime}, x_{2}\right\}$. Then $V(T) \cup\left\{a_{s}, b_{s}, c_{s}\right\}$ is a cut in G separating
$\bigcup_{i=1}^{s} R_{s}$ from $B+t$, contradicting the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum.
Hence, for any $j>q,\left(R_{j},\left(a_{j-1}, b_{j-1}, c_{j-1}\right),\left(a_{j}, b_{j}, c_{j}\right)\right)$ must be of type (i) or (ii) as in Lemma 2.5.3 and there is no edge in G_{A}^{\prime} from P_{2} to $P_{1}-x_{1}$. Also notice that, for $j \leq q$ with $b_{j-1} \neq b_{q}$, because of edges $x_{1} b_{q}, x_{1}^{\prime} b_{q}$ in $G_{A}^{\prime},\left(R_{j},\left(a_{j-1}, b_{j-1}, c_{j-1}\right),\left(a_{j}, b_{j}, c_{j}\right)\right)$ must be of type $(i i)$ as in Lemma 2.5.3. For $j \leq q$ with $b_{j-1}=b_{q}$, we see that $V\left(R_{j}\right)=$ $\left\{x_{1}, x_{1}^{\prime}, a_{j}, b_{q}, c_{j}\right\}$ as G is 5 -connected, and we may assume that $b_{q} a_{j} \notin E(G)$ (otherwise, $b_{q}, b_{q} x_{1}, b_{q} P_{2} x_{2}, b_{q} P_{q} v_{1}, b_{q} a_{q} \cup a_{q} P_{1} v_{2}, P_{3}$ give the desired $\left.t, Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}\right)$.

Thus, we may assume that for some $j>q,\left\{a_{j-1}, c_{j-1}\right\} \cap\left\{a_{j}, c_{j}\right\}=\emptyset$. For, otherwise, $\left(G_{A}, x_{1}, x_{2}, v_{1}, v_{2}, v_{3}\right)$ is planar, and the assertion follows from Lemma 2.4.5.

If $R_{j}-a_{j-1}$ contains disjoint paths S_{1}, S_{2} from b_{j}, c_{j-1} to a_{j}, c_{j}, respectively, then b_{j} and the paths $S_{1} \cup a_{j} P_{1} v_{2}, x_{1} P_{3} c_{j-1} \cup S_{2} \cup c_{j} P_{3} v_{3}$ contradict the nonexistence of b_{r}, S, S^{\prime}. So assume S_{1}, S_{2} do not exist. Then by Lemma 2.4.10, $\left(R_{j}-a_{j-1}, a_{j}, c_{j}, b_{j}, c_{j-1}\right)$ is planar. By Lemma 2.4.5, we may assume $\left|V\left(R_{j}-a_{j-1}\right)\right| \leq 5$.

If $\left|V\left(R_{j}-a_{j-1}\right)\right|=5$ then there exists $v \in V\left(R_{j}\right)-\left\{a_{j-1}, a_{j}, b_{j}, c_{j-1}, c_{j}\right\}$ such that v is adjacent to all of $\left\{a_{j-1}, a_{j}, b_{j}, c_{j-1}, c_{j}\right\}$; so b_{j} and the paths $b_{j} v a_{j} \cup a_{j} P_{1} v_{2}, P_{3}$ contradict the nonexistence of b_{r}, S, S^{\prime}.

Hence, we may assume $\left|V\left(R_{j}-a_{j-1}\right)\right|=4$. Then, since R_{j} has no cut of size at most 3 separating $\left\{a_{j-1}, b_{j-1}, c_{j-1}\right\}$ from $\left\{a_{j}, b_{j}, c_{j}\right\}$, we must have $a_{j-1} c_{j}, a_{j} c_{j-1} \in E(G)$. Note that there exists $t>q$ such that L has a path Z from b_{t} to $z \in V\left(x_{1} P_{1} a_{j-1}-x_{1}\right) \cup$ $V\left(x_{1}^{\prime} P_{3} c_{j-1}-x_{1}^{\prime}\right)$ and internally disjoint from $J \cup P_{1} \cup P_{2} \cup P_{3}$; for otherwise, $\left\{a_{j}, b_{j}, c_{j}, x_{1}\right\}$ would be a cut in G. If $z \in V\left(x_{1} P_{1} a_{j-1}-x_{1}\right)$ then b_{t} and the paths $Z \cup z P_{1} v_{2}, P_{3}$ contradict the nonexistence of b_{r}, S, S^{\prime}. So assume $z \in V\left(x_{1} P_{3} c_{j-1}-x_{1}\right)$. Then b_{t} and the paths $Z \cup z P_{3} c_{j-1} \cup c_{j-1} a_{j} \cup a_{j} P_{1} v_{2}, x_{1} P_{1} a_{j-1} \cup a_{j-1} c_{j} \cup c_{j} P_{3} v_{3}$ contradict the nonexistence of b_{r}, S, S^{\prime}, with $x_{1}^{\prime} P_{3} c_{j-1} \cup c_{j-1} a_{j} \cup a_{j} P_{1} v_{2}, x_{1} P_{1} a_{j-1} \cup a_{j-1} c_{j} \cup c_{j} P_{3} v_{3}$ as P_{1}, P_{3}, respectively. This completes the proof of Claim 2.

Now that we have the paths in Claim 2, we turn to $G_{B}:=G\left[B+S_{T}-x_{1}\right]$. Choose $x_{3} \in N(x) \cap V(B)$, let $u_{1}:=x_{3}$ and let $u_{2} \in N(x)-\left\{x_{1}, x_{2}, x_{3}\right\}$ be arbitrary. Note that
$u_{2} \in S_{T} \cup V(B)$. We wish to prove (iii) by attempting to find a $T K_{5}$ in $G^{\prime}:=G-\{x v: v \notin$ $\left.\left\{u_{1}, u_{2}, x_{1}, x_{2}\right\}\right\}$. Since G is 5 -connected and $N\left(x_{1}\right) \cap V(B)=\emptyset, G_{B}$ has four independent paths $B_{1}, B_{2}, B_{3}, B_{4}$ from u_{1} to $v_{1}, v_{2}, v_{3}, x_{2}$, respectively, and we may assume that these paths are induced.

Claim 3. We may assume $u_{2} \notin S_{T}$.
For, suppose $u_{2} \in S_{T}$. If $u_{2}=v_{1}$ then $T \cup Q_{1} \cup Q_{2} \cup\left(Q_{3} \cup v_{1} x\right) \cup u_{1} x \cup B_{4} \cup$ $\left(B_{2} \cup Q_{4}\right) \cup\left(B_{3} \cup Q_{5}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $t, u_{1}, x, x_{1}, x_{2}$. If $u_{2}=v_{2}$ then $T \cup Q_{1} \cup Q_{2} \cup\left(Q_{4} \cup v_{2} x\right) \cup u_{1} x \cup B_{4} \cup\left(B_{1} \cup Q_{3}\right) \cup\left(B_{3} \cup Q_{5}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $t, u_{1}, x, x_{1}, x_{2}$. Now assume $u_{2}=v_{3}$. Then $T \cup Q_{1}^{\prime} \cup Q_{2}^{\prime} \cup\left(Q_{4}^{\prime} \cup v_{3} x\right) \cup u_{1} x \cup B_{4} \cup$ $\left(B_{1} \cup Q_{3}^{\prime}\right) \cup\left(B_{2} \cup Q_{5}^{\prime}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $t, u_{1}, x, x_{1}, x_{2}$. This completes the proof of Claim 3.

Let P be a path in G_{B} from u_{2} to some $w_{2} \in V\left(B_{1} \cup B_{2} \cup B_{3} \cup B_{4}\right)-\left\{u_{1}\right\}$ and internally disjoint from $B_{1} \cup B_{2} \cup B_{3} \cup B_{4}$.

Claim 4. We may assume that for any choice of $P, w_{2} \in V\left(B_{4}\right)$.
For, if $w_{2} \in V\left(B_{1}\right)$ then $T \cup Q_{1} \cup Q_{2} \cup\left(Q_{3} \cup v_{1} B_{1} w_{2} \cup P \cup u_{2} x\right) \cup u_{1} x \cup B_{4} \cup\left(B_{2} \cup\right.$ $\left.Q_{4}\right) \cup\left(B_{3} \cup Q_{5}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $t, u_{1}, x, x_{1}, x_{2}$. If $w_{2} \in V\left(B_{2}\right)$ then $T \cup Q_{1} \cup Q_{2} \cup\left(Q_{4} \cup v_{2} B_{2} w_{2} \cup P \cup u_{2} x\right) \cup u_{1} x \cup B_{4} \cup\left(B_{1} \cup Q_{3}\right) \cup\left(B_{3} \cup Q_{5}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $t, u_{1}, x, x_{1}, x_{2}$. If $w_{2} \in V\left(B_{3}\right)$ then $T \cup Q_{1}^{\prime} \cup Q_{2}^{\prime} \cup\left(Q_{4}^{\prime} \cup v_{3} B_{3} w_{2} \cup P \cup\right.$ $\left.u_{2} x\right) \cup u_{1} x \cup B_{4} \cup\left(B_{1} \cup Q_{3}^{\prime}\right) \cup\left(B_{2} \cup Q_{5}^{\prime}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $t, u_{1}, x, x_{1}, x_{2}$. This completes the proof of Claim 4.

Let U_{2} denote the $\left(B_{1} \cup B_{2} \cup B_{3}\right)$-bridge of G_{B} containing $B_{4}+u_{2}$. That is, U_{2} is the subgraph of G_{B} induced by the edges in the component of $G_{B}-\left(B_{1} \cup B_{2} \cup B_{3}\right)$ containing $B_{4}+u_{2}$ and the edges from that component to $B_{1} \cup B_{2} \cup B_{3}$.

Claim 5. We may assume that $V\left(U_{2}\right) \cap V\left(B_{2} \cup B_{3}\right)=\left\{u_{1}\right\}$.
For, suppose there exists $w \in V\left(U_{2}\right) \cap V\left(B_{2} \cup B_{3}\right)$ such that $w \neq u_{1}$. By symmetry, we may assume $w \in V\left(B_{2}-u_{1}\right)$ and choose w so that $w B_{2} v_{2}$ is minimal.

Then U_{2} has a path X between x_{2} to w and internally disjoint from $B_{1} \cup B_{2} \cup B_{3}$, and a path from u_{2} to some $u_{2}^{\prime} \in V(X)$ and internally disjoint from $X \cup B_{1} \cup B_{2} \cup B_{3}$. Since G is 5-connected, U_{2} has four independent paths from u_{2}^{\prime} to four distinct vertices in $V\left(U_{2}\right) \cap V\left(B_{1} \cup B_{2} \cup B_{3}\right)$ and internally disjoint from $B_{1} \cup B_{2} \cup B_{3}$. Thus, by Lemma 2.4.11, U_{2} contains independent paths $L_{1}, L_{2}, L_{3}, L_{4}$ from u_{2}^{\prime} to $u_{2}, x_{2}, w, w^{\prime}$, respectively, and internally disjoint from $B_{1} \cup B_{2} \cup B_{3}$, where $w^{\prime} \in V\left(B_{1} \cup B_{2} \cup B_{3}\right)$.

If $w^{\prime} \in V\left(w B_{2} u_{1}-w\right)$ then $T \cup\left(L_{1} \cup u_{2} x\right) \cup L_{2} \cup\left(L_{3} \cup w B_{2} v_{2} \cup P_{1}\right) \cup\left(u_{1} B_{2} w^{\prime} \cup\right.$ $\left.L_{4}\right) \cup u_{1} x \cup\left(B_{1} \cup P_{2}\right) \cup\left(B_{3} \cup P_{3}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $u_{1}, u_{2}^{\prime}, x, x_{1}, x_{2}$. (Note we identify x_{1}^{\prime} with x_{1} when we use P_{3}.)

If $w^{\prime} \in V\left(B_{1}-u_{1}\right)$ then $T \cup Q_{1}^{\prime} \cup Q_{2}^{\prime} \cup\left(Q_{4}^{\prime} \cup B_{3} \cup u_{1} x\right) \cup\left(L_{1} \cup u_{2} x\right) \cup L_{2} \cup\left(L_{3} \cup\right.$ $\left.w B_{2} v_{2} \cup Q_{5}^{\prime}\right) \cup\left(L_{4} \cup w^{\prime} B_{1} v_{1} \cup Q_{3}^{\prime}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $t, u_{2}^{\prime}, x, x_{1}, x_{2}$.

If $w^{\prime} \in V\left(B_{3}-u_{1}\right)$ then $T \cup Q_{1} \cup Q_{2} \cup\left(Q_{3} \cup B_{1} \cup u_{1} x\right) \cup\left(L_{1} \cup u_{2} x\right) \cup L_{2} \cup\left(L_{3} \cup\right.$ $\left.w B_{2} v_{2} \cup Q_{4}\right) \cup\left(L_{4} \cup w^{\prime} B_{3} v_{3} \cup Q_{5}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $t, u_{2}^{\prime}, x, x_{1}, x_{2}$. This completes the proof of Claim 5.

Now let $z \in V\left(B_{1} \cap U_{2}\right)$ such that $z B_{1} v_{1}$ is minimal. Since G is 5-connected, there exists a path Y in $G_{B}-x$ from some $y \in V\left(z B_{1} u_{1}\right)-\left\{u_{1}, z\right\}$ to some $y^{\prime} \in V\left(B_{2} \cup B_{3}\right)-$ $\left\{u_{1}\right\}$ and internally disjoint from $U_{2} \cup B_{1} \cup B_{2} \cup B_{3}$.

Claim 6. We may assume that $G\left[U_{2}-B_{1}+z\right]$ has no independent paths from u_{2} to x_{2}, z, respectively.

For, suppose $G\left[U_{2}-B_{1}+z\right]$ (and hence $G\left[U_{2} \cup z B_{1} u_{1}\right]$) has independent paths from u_{2} to x_{2}, z, respectively. Then by Lemma 2.4.11, $G\left[U_{2} \cup z B_{1} u_{1}\right]$ has independent paths $L_{1}, L_{2}, L_{3}, L_{4}$ from u_{2} to distinct vertices x_{2}, z, z_{1}, z_{2}, respectively, and internally disjoint from B_{1}, where u_{1}, z_{2}, z_{1}, z occur on B_{1} in the order listed. Possibly, $u_{1}=z_{2}$.

If $y^{\prime} \in V\left(B_{2}-u_{1}\right)$ then $T \cup Q_{1}^{\prime} \cup Q_{2}^{\prime} \cup\left(Q_{4}^{\prime} \cup B_{3} \cup u_{1} x\right) \cup u_{2} x \cup L_{1} \cup\left(L_{2} \cup z B_{1} v_{1} \cup\right.$ $\left.Q_{3}^{\prime}\right) \cup\left(L_{3} \cup z_{1} B_{1} y \cup Y \cup y^{\prime} B_{2} v_{2} \cup Q_{5}^{\prime}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $t, u_{2}, x, x_{1}, x_{2}$.

If $y^{\prime} \in V\left(B_{3}-u_{1}\right)$ then $T \cup Q_{1} \cup Q_{2} \cup\left(Q_{4} \cup B_{2} \cup u_{1} x\right) \cup u_{2} x \cup L_{1} \cup\left(L_{2} \cup z B_{1} v_{1} \cup\right.$ $\left.Q_{3}\right) \cup\left(L_{3} \cup z_{1} B_{1} y \cup Y \cup y^{\prime} B_{3} v_{3} \cup Q_{5}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $t, u_{2}, x, x_{1}, x_{2}$.

By Claim 6, $G\left[U_{2}-B_{1}+z\right]$ has a 1-separation $\left(U_{21}, U_{22}\right)$ such that $u_{2} \in V\left(U_{21}\right)-$ $V\left(U_{22}\right)$ and $\left\{x_{2}, z\right\} \subseteq V\left(U_{22}\right)$. We choose this separation so that U_{22} is minimal. Let u_{2}^{\prime} denote the unique vertex in $V\left(U_{21} \cap U_{22}\right)$. By the minimality of U_{22}, we see that U_{22} has independent paths L_{1}, L_{2} from u_{2}^{\prime} to x_{2}, z, respectively.

Claim 7. We may assume that u_{2}^{\prime} has exactly two neighbors in U_{22}.
For, otherwise, by the minimality of $U_{22}, G\left[U_{22} \cup z B_{1} u_{1}\right]-u_{1}$ has three independent paths from u_{2}^{\prime} to three distinct vertices in $V\left(z B_{1} u_{1}-u_{1}\right) \cup\left\{x_{2}\right\}$. So by Lemma 2.4.11, $G\left[U_{22} \cup z B_{1} u_{1}\right]-u_{1}$ has independent paths $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ from u_{2}^{\prime} to x_{2}, z, z_{1}, respectively, and internally disjoint from B_{1}, where z, z_{1}, u_{1} occur on B_{1} in order. Let L be a path in U_{21} from u_{2} to u_{2}^{\prime}.

If $y^{\prime} \in V\left(B_{2}-u_{1}\right)$ then $T \cup Q_{1}^{\prime} \cup Q_{2}^{\prime} \cup\left(Q_{4}^{\prime} \cup B_{3} \cup u_{1} x\right) \cup\left(L \cup u_{2} x\right) \cup L_{1}^{\prime} \cup\left(L_{2}^{\prime} \cup z B_{2} v_{1} \cup\right.$ $\left.Q_{3}^{\prime}\right) \cup\left(L_{3}^{\prime} \cup z_{1} B_{1} y \cup Y \cup y^{\prime} B_{2} v_{2} \cup Q_{5}^{\prime}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $t, u_{2}^{\prime}, x, x_{1}, x_{2}$.

If $y^{\prime} \in V\left(B_{3}-u_{1}\right)$ then $T \cup Q_{1} \cup Q_{2} \cup\left(Q_{4} \cup B_{2} \cup u_{1} x\right) \cup\left(L \cup u_{2} x\right) \cup L_{1}^{\prime} \cup\left(L_{2}^{\prime} \cup z B_{2} v_{1} \cup\right.$ $\left.Q_{3}\right) \cup\left(L_{3}^{\prime} \cup z_{1} B_{1} y \cup Y \cup y^{\prime} B_{3} v_{3} \cup Q_{5}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $t, u_{2}^{\prime}, x, x_{1}, x_{2}$. This completes the proof of Claim 7.

Since G is 5 -connected, it follows from Claim 7 that u_{2}^{\prime} has at least two neighbors in U_{21}. Since all paths from u_{2} to $B_{1} \cup B_{2} \cup B_{3} \cup B_{4}$ must end on $B_{4}, G\left[U_{21} \cup z B_{1} u_{1}\right]-\left\{z, u_{1}\right\}$ has independent paths L_{3}, L_{4} from u_{2}^{\prime} to z_{1}, u_{2}, respectively, and internally disjoint from B_{1}, where $z_{1} \in V\left(z B_{1} u_{1}\right)-\left\{z, u_{1}\right\}$.

If $y^{\prime} \in V\left(B_{2}-u_{1}\right)$ then $T \cup Q_{1}^{\prime} \cup Q_{2}^{\prime} \cup\left(Q_{4}^{\prime} \cup B_{3} \cup u_{1} x\right) \cup\left(L_{4} \cup u_{2} x\right) \cup L_{1} \cup\left(L_{2} \cup z B_{2} v_{1} \cup\right.$ $\left.Q_{3}^{\prime}\right) \cup\left(L_{3} \cup z_{1} B_{1} y \cup Y \cup y^{\prime} B_{2} v_{2} \cup Q_{5}^{\prime}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $t, u_{2}^{\prime}, x, x_{1}, x_{2}$.

If $y^{\prime} \in V\left(B_{3}-u_{1}\right)$ then $T \cup Q_{1} \cup Q_{2} \cup\left(Q_{4} \cup B_{2} \cup u_{1} x\right) \cup\left(L_{4} \cup u_{2} x\right) \cup L_{1} \cup\left(L_{2} \cup z B_{2} v_{1} \cup\right.$ $\left.Q_{3}\right) \cup\left(L_{3} \cup z_{1} B_{1} y \cup Y \cup y^{\prime} B_{3} v_{3} \cup Q_{5}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $t, u_{2}^{\prime}, x, x_{1}, x_{2} . \llbracket$

We conclude this section with another technical lemma, which deals with a special case that occurs in the proof of Lemma 2.7.5. It is included in this section because its proof also makes use of Lemmas 2.5.1, 2.5.2 and 2.5.3.

Lemma 2.6.6 Let G be a 5-connected nonplanar graph and $x \in V(G)$. Let $\left(T, S_{T}, A, B\right) \in$ \mathcal{Q}_{x} such that $|V(A)|$ is minimum, and suppose there exists $\left(T^{\prime}, S_{T^{\prime}}, C, D\right) \in \mathcal{Q}_{x}$ such that $T^{\prime} \cong K_{3}, T^{\prime} \cap A \neq \emptyset, V(A \cap C)=S_{T} \cap V(C)=V(B \cap D)=V(B) \cap S_{T^{\prime}}=\emptyset$, $\left|V(A) \cap S_{T^{\prime}}\right|=\left|V(D) \cap S_{T}\right|=|V(D \cap T)|=1$, and $\left|S_{T} \cap S_{T^{\prime}}\right|=5$. Suppose for any $H \subseteq G$ with $x \in V(H)$ and $H \cong K_{2}$ or $H \cong K_{3}$, we have G / H is not 5 -connected, $|V(H \cap A)| \leq 1$, and $H \cong K_{3}$ when $H \cap A \neq \emptyset$. Then one of the following holds:
(i) G has a $T K_{5}$ in which x is not a branch vertex.
(ii) G contains K_{4}^{-}.
(iii) There exist $x_{1}, x_{2}, x_{3} \in N(x)$ such that, for any distinct $y_{1}, y_{2} \in N(x)-\left\{x_{1}, x_{2}, x_{3}\right\}$, $G^{\prime}:=G-\left\{x v: v \notin\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right\}\right\}$ contains $T K_{5}$.

Proof. Note that $\left|S_{T}\right|=\left|S_{T} \cap S_{T^{\prime}}\right|+|V(D \cap T)|=6$. Let $V(T)=\left\{x, w, x_{1}\right\}$ and $T^{\prime}=\{x, a, b\}$ such that $V(A) \cap S_{T^{\prime}}=\{a\}$ and $V(D) \cap S_{T}=\{w\}$, and let $S_{T} \cap S_{T^{\prime}}=$ $\left\{x, x_{1}, b, z_{1}, z_{2}\right\}$. Then $|V(D)|=|V(A)|=|V(A \cap D)|+1$. Moreover,
(1) $|N(s) \cap V(A)| \geq 2$ for $s \in\left\{b, z_{1}, z_{2}\right\}$,
for, otherwise, $\left(T,\left(S_{T}-\{s\}\right) \cup(N(s) \cap V(A)), A-N(s), G[B+s]\right) \in \mathcal{Q}_{x}$, contradicting the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum. We may assume that
(2) G has no edge from $T-x$ to $T^{\prime}-x$,
as otherwise $G\left[T \cup T^{\prime}\right]$ contains K_{4}^{-}and (ii) holds. We may also assume
(3) $N\left(x_{1}\right) \cap V(D) \neq\{w\}$ and $N(w) \cap V(A) \neq \emptyset$,
for, otherwise, let $S:=S_{T} \backslash\left\{x_{1}\right\}$ and $B^{\prime}=G\left[B+x_{1}\right]$ if $N\left(x_{1}\right) \cap V(D)=\{w\}$, and let $S:=S_{T} \backslash\{w\}$ and $B^{\prime}=G[B+w]$ if $N(w) \cap V(A)=\emptyset$; then $\left(x w, S, A, B^{\prime}\right) \in \mathcal{Q}_{x}$, and (ii) follows from Lemma 2.6.3. We may further assume that
(4) for any $x^{\prime} \in N(x) \cap V(A \cap D), x x^{\prime} z_{1} x$ or $x x^{\prime} z_{2} x$ is a triangle.

For, let $x^{\prime} \in N(x) \cap V(A \cap D)$. By Lemma 2.6.2, we may assume that there exists $H \subseteq G$ with $x, x^{\prime} \in V(H)$ and $H \cong K_{2}$ or $H \cong K_{3}$. By the assumption of this lemma, $H \cong K_{3}$ and $V(H) \cap S_{T} \neq\{x\}$. If $V(H) \cap\left\{b, x_{1}\right\} \neq \emptyset$ then $H \cup T$ or $H \cup T^{\prime}$ contains K_{4}^{-}. So we may assume $V(H) \cap\left\{z_{1}, z_{2}\right\} \neq \emptyset$ and, hence, $x x^{\prime} z_{1} x$ or $x x^{\prime} z_{2} x$ is a triangle.

We may assume that
(5) $|N(x) \cap V(A \cap D)| \leq 2$.

For, otherwise, by (4), there exist $i \in[2]$ and distinct $x^{\prime}, x^{\prime \prime} \in N(x) \cap V(A \cap D) \cap N\left(z_{i}\right)$. So $G\left[x^{\prime}, x^{\prime \prime}, x, z_{i}\right]$ contains K_{4}^{-}, and (ii) holds.

We now distinguish two cases.

Case 1. $z_{i} \notin N(x)$ for $i \in[2]$.
Then by (4), $N(x) \cap V(A \cap D)=\emptyset$. We prove that (iii) holds with $x_{2}=w$ and $x_{3}=b$. Let $y_{1}, y_{2} \in N(x)-\left\{x_{1}, x_{2}, x_{3}\right\}$. Since G is 5-connected and $z_{1}, z_{2} \notin N(x)$, we may assume $y_{1} \in V(B \cap C)$. Then $G_{B}:=G\left[B+\left\{b, x_{1}, z_{1}, z_{2}\right\}\right]$ has independent paths $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ from y_{1} to z_{1}, z_{2}, x_{1}, b, respectively.

We may assume that $w z_{i} \notin E(G)$ for $i \in[2]$. For, suppose $w z_{1} \in E(G)$. If $G[A+$ $\left.\left\{b, w, x_{1}\right\}\right]$ has independent paths Q_{1}, Q_{2} from b to x_{1}, w, respectively, then $T \cup b x \cup Q_{1} \cup$ $Q_{2} \cup y_{1} x \cup\left(Y_{1} \cup z_{1} w\right) \cup Y_{3} \cup Y_{4}$ is a $T K_{5}$ in G^{\prime} with branch vertices b, w, x, x_{1}, y_{1}. So we may assume that such Q_{1}, Q_{2} do not exist. Then $G\left[A+\left\{b, w, x_{1}\right\}\right]$ has a cut vertex v separating b from $\left\{w, x_{1}\right\}$. Let D denote the component of $G\left[A+\left\{b, w, x_{1}\right\}\right]-v$ containing b. Since $|N(b) \cap V(A)| \geq 2$ (by (1)), $|V(D)| \geq 2$. Now $\left\{b, v, x, z_{1}, z_{2}\right\}$ is a cut in G, and G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{b, v, x, z_{1}, z_{2}\right\},\left|V\left(G_{1}\right)\right| \geq 6$ and $\{a, b\} \subseteq$ $V\left(G_{1}\right)$, and $B+\left\{w, x_{1}\right\} \subseteq G_{2}$. By the choice of $\left(T, S_{T}, A, B\right)$ with $|V(A)|$ minimum, $\left|V\left(G_{1}\right)\right|=6$. Let $u \in V\left(G_{1}\right)-V\left(G_{2}\right)$. If $u=a$ then, $V\left(G_{1} \cap G_{2}\right) \subseteq N(a)$ (since G is 5-connected) and $b v \in E(G)$ (since $|N(b) \cap V(A)| \geq 2$); so $G[\{a, b, v, x\}] \cong K_{4}^{-}$, and (ii) holds. So assume $u \neq a$. Then $v=a$ and $G[\{b, u, v, x\}]$ contains K_{4}^{-}; so (ii) holds.

We may assume that $G_{A}:=G\left[A+\left\{b, w, x_{1}, z_{1}, z_{2}\right\}\right]$ does not contain three independent paths, with one from x_{1} to b, one from b to w, and one from w to z_{i} for some $i \in[2]$. For, otherwise, such three paths and $T \cup b x \cup y_{1} x \cup Y_{i} \cup Y_{3} \cup Y_{4}$ form a $T K_{5}$ in G^{\prime} with branch vertices b, w, x, x_{1}, y_{1}.

We wish to apply Lemma 2.5.1. Let G_{A}^{\prime} be the graph obtained from G_{A} by identifying z_{1} and z_{2} as z^{\prime}, and duplicating w, b with w^{\prime}, b^{\prime}, respectively (adding edges from w^{\prime} to all vertices in $N(w)$, and from b^{\prime} to all vertices in $N(b)$). Then any three disjoint paths in G_{A}^{\prime} from $\left\{w, x_{1}, w^{\prime}\right\}$ to $\left\{b, z^{\prime}, b^{\prime}\right\}$, if exist, must contain a path from x_{1} to z^{\prime}.

Suppose G_{A}^{\prime} has a separation $\left(A_{1}, A_{2}\right)$ such that $\left|V\left(A_{1} \cap A_{2}\right)\right| \leq 2,\left\{w, x_{1}, w^{\prime}\right\} \subseteq$ $V\left(A_{1}\right)$, and $\left\{b, z^{\prime}, b^{\prime}\right\} \subseteq V\left(A_{2}\right)$. Since w and w^{\prime} have the same set of neighbors in G_{A}^{\prime}, we may assume $\left\{w, w^{\prime}\right\} \subseteq V\left(A_{1} \cap A_{2}\right)$ or $\left\{w, w^{\prime}\right\} \cap V\left(A_{1} \cap A_{2}\right)=\emptyset$. If $\left\{w, w^{\prime}\right\} \subseteq$ $V\left(A_{1} \cap A_{2}\right)$ then $V\left(A_{1}\right)=\left\{x_{1}\right\} \cup V\left(A_{1} \cap A_{2}\right)$ as $\left\{x, x_{1}, w\right\}$ cannot be a cut in G; hence, $N\left(x_{1}\right) \cap V(D)=\{w\}$, contradicting (3). So $\left\{w, w^{\prime}\right\} \cap V\left(A_{1} \cap A_{2}\right)=\emptyset$. Suppose $\left\{b, b,{ }^{\prime}, z^{\prime}\right\} \cap V\left(A_{1} \cap A_{2}\right)=\emptyset$. Then, since $w z_{i} \notin E(G)$ for $i \in[2], V\left(A_{1} \cap A_{2}\right) \cup\left\{x_{1}, x\right\}$ is a cut in G separating w from $B+\left\{b, z_{1}, z_{2}\right\}$, contradicting the fact that G is 5-connected. So $\left\{b, b,{ }^{\prime}, z^{\prime}\right\} \cap V\left(A_{1} \cap A_{2}\right) \neq \emptyset$. Note that $\left\{b, b^{\prime}\right\} \nsubseteq V\left(A_{1} \cap A_{2}\right)$; as otherwise $\left\{b, x, x_{1}\right\}$ would be a cut in G. Thus, we may assume that $b, b^{\prime} \notin V\left(A_{1} \cap A_{2}\right)$ as b and b^{\prime} have the same set of neighbors in G_{A}^{\prime}. Hence, $z^{\prime} \in V\left(A_{1} \cap A_{2}\right)$. Now $S:=\left\{x, x_{1}, z_{1}, z_{2}\right\} \cup\left(V\left(A_{1} \cap A_{2}\right)-\left\{z^{\prime}\right\}\right)$ is a cut in G separating w from $B+b$. Since G is 5 -connected, $x_{1} \notin V\left(A_{1} \cap A_{2}\right)$. If $\left|V\left(A_{1}-x_{1}-A_{2}\right)\right| \geq 2$ then $\left(x x_{1}, S, A_{1}-x_{1}-A_{2}, G-S-A_{1}\right) \in \mathcal{Q}_{x}$ which contradicts the choice of $\left(T, S_{T}, A, B\right)$ with $|V(A)|$ minimum. So $V\left(A_{1}-x_{1}-A_{2}\right)=\{w\}$. Since G is 5-connected, $w z_{i} \in E(G)$ for $i \in[2]$, a contradiction.

Hence, by Lemma 2.5.1, G_{A}^{\prime} has a separation (J, L) such that $V(J \cap L)=\left\{w_{0}, \ldots, w_{n}\right\}$, $\left(J, w_{0}, \ldots, w_{n}\right)$ is planar (since G is 5 -connected), $\left(L,\left(w, x_{1}, w^{\prime}\right),\left(b, z^{\prime}, b^{\prime}\right)\right)$ is a ladder along a sequence $b_{0} \ldots b_{m}$, where $b_{0}=x_{1}, b_{m}=z^{\prime}$, and $w_{0} \ldots w_{n}$ is the reduced sequence of $b_{0} \ldots b_{m}$. Moreover, we may assume that L has disjoint induced paths P_{1}, P_{2}, P_{3} from w, x_{1}, w^{\prime} to $b, z^{\prime}, b^{\prime}$, respectively, and J is a connected plane graph with P_{2} as part of the
outer walk of J and w_{0}, \ldots, w_{n} occurring on P_{2} in order. (When $(i i)$ of Lemma 2.5.1 holds, we let $J=P_{2}$.) Note that by Lemmas 2.5.2 and 2.5.3, each rung of $\left(L,\left(w, x_{1}, w^{\prime}\right),\left(b, z^{\prime}, b^{\prime}\right)\right)$ is of type $(i)-(i v)$ as in Lemma 2.5.3, with possible exceptions of those rungs containing z^{\prime}. Let $\left(R_{j},\left(a_{j-1}, b_{j-1}, c_{j-1}\right),\left(a_{j}, b_{j}, c_{j}\right)\right), j \in[m]$, be the rungs in $\left(L,\left(w, x_{1}, w^{\prime}\right),\left(b, z^{\prime}, b^{\prime}\right)\right)$ such that $a_{j} \in V\left(P_{1}\right)$ and $c_{j} \in V\left(P_{3}\right)$ for $j=0,1, \ldots, m$.

We now show that there exists $t \in N(w)$ such that $t \in V\left(P_{2}\right)-\left\{x_{1}, z^{\prime}\right\}$. For, suppose such t does not exist. Choose the largest j such that $\left\{w, w^{\prime}\right\} \subseteq V\left(R_{j}\right)$ and $\left(R_{j},\left(a_{j-1}, b_{j-1}, c_{j-1}\right),\left(a_{j}, b_{j}, c_{j}\right)\right)$ is not of type (ii) in Lemma 2.5.3, which is well defined as $w \neq b$. Since G is 5-connected and w and w^{\prime} have the same set of neighbors in $G_{A}^{\prime},\left(R_{j},\left(a_{j-1}, b_{j-1}, c_{j-1}\right),\left(a_{j}, b_{j}, c_{j}\right)\right)$ cannot be of type (iii) as in Lemma 2.5.3. Moreover, $\left(R_{j},\left(a_{j-1}, b_{j-1}, c_{j-1}\right),\left(a_{j}, b_{j}, c_{j}\right)\right)$ is not of type (iv) as in Lemma 2.5.3, as otherwise G contains K_{4}^{-}(obtained from $R_{j}-\left\{b_{j-1}, b_{j}\right\}$ after identifying w with w^{\prime}). So $\left(R_{j},\left(a_{j-1}, b_{j-1}, c_{j-1}\right),\left(a_{j}, b_{j}, c_{j}\right)\right)$ is of type (i) as in Lemma 2.5.3. Now $V\left(R_{j}\right)=$ $\left\{a_{j}, b_{j}, c_{j}, w, w^{\prime}\right\}$, as otherwise $\left\{a_{j}, b_{j}, c_{j}, w\right\}$ would be a cut in G. Then $w b_{j} \in E(G)$; for otherwise, $N(w) \subseteq\left\{a_{j}, c_{j}, x, x_{1}\right\}$, a contradiction. Hence $t:=b_{j}$ is as desired.

Without loss of generality, we may assume that the edge of P_{2} incident with z^{\prime} corresponds to the edge of G incident with z_{1}. We view P_{3} as a path in G_{A} from b to w. Then $G_{A}-V\left(P_{1} \cup P_{3}\right)-z_{2}$ has independent paths from t to x_{1}, z_{1}, respectively. Hence, by Lemma 2.4.11, G_{A} has five independent paths $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}$ from t to $x_{1}, w, z_{1},\left(V\left(P_{1} \cup P_{3}\right)-\{w\}\right) \cup\left\{z_{2}\right\}$, respectively, with only t in common, and internally disjoint from $P_{1} \cup P_{3}$. Without loss of generality, we may assume that Q_{4} ends at $t^{\prime} \in V\left(P_{3}\right)$.

If $G_{B}-x$ contains disjoint paths S_{1}, S_{2} from z_{1}, b to y_{1}, x_{1}, respectively, then $T \cup b x \cup$ $P_{1} \cup S_{2} \cup Q_{1} \cup Q_{2} \cup\left(Q_{3} \cup S_{1} \cup y_{1} x\right) \cup\left(Q_{4} \cup t^{\prime} P_{3} b\right)$ is $T K_{5}$ in G^{\prime} with branch vertices b, t, w, x, x_{1}. Hence, we may assume such S_{1}, S_{2} do not exist. Then by Lemma 2.4.10, there exists a collection \mathcal{D} of subsets of $\left(G_{B}-x\right)-\left\{z_{1}, b, y_{1}, x_{1}\right\}$ such that $\left(G_{B}-\right.$ $\left.x, \mathcal{D}, z_{1}, b, y_{1}, x_{1}\right)$ is 3-planar.

If $\left(G_{B}-x,\left\{b, x_{1}, z_{1}, z_{2}\right\}\right)$ is planar then the assertion of the lemma follows from Lemma 2.4.5, with the cut $\left\{b, x, x_{1}, z_{1}, z_{2}\right\}$ giving the required 5 -separation for Lemma 2.4.5.

So we may assume that either $\mathcal{D}=\emptyset$ and z_{2} does not belong to the facial walk of $G_{B}-x$ containing $\left\{b, x_{1}, y_{1}, z_{1}\right\}$, or $\mathcal{D}=\{D\}$ for some $D \subseteq V\left(G_{B}-x\right)-\left\{b, x_{1}, y_{1}, z_{1}\right\}$ and $z_{2} \in D$. Thus, since G is 5-connected and $\left(G_{B}-x,\left\{z_{1}, b, y_{1}, x_{1}\right\}\right)$ is 3-planar, $G_{B}-x$ has disjoint paths $S_{1}^{\prime}, S_{2}^{\prime}$ from z_{2}, b to y_{1}, x_{1}, respectively. Moreover, if b has degree at least two in $G_{B}-x$ then $G_{B}-x$ has independent paths $Y, Y_{2}^{\prime}, Y_{3}^{\prime}, Y_{4}^{\prime}$, with Y from b to x_{1} and $Y_{2}^{\prime}, Y_{3}^{\prime}, Y_{4}^{\prime}$ from y_{1} to z_{2}, x_{1}, b, respectively.

We may assume that $G_{A}^{\prime}-J$ contains a path Z from z_{2} to some $z_{2}^{\prime} \in V\left(P_{1} \cup P_{3}\right)-\left\{b, b^{\prime}\right\}$ and internally disjoint from $P_{1} \cup P_{3}$. For, suppose not. Then, since $\left|N\left(z_{2}\right) \cap V(A)\right| \geq 2$ (by (1)), z_{2} has at least two neighbors in $J-z^{\prime}$. Then $G_{A}^{\prime}-V\left(P_{1} \cup P_{3}\right)-z_{1}$ has independent paths from t to x_{1}, z_{2}, respectively; for otherwise, $G_{A}^{\prime}-V\left(P_{1} \cup P_{3}\right)-z_{1}$ has a cut vertex $v \in V\left(t P_{2} x_{2}\right)$ separating t from $\left\{x_{1}, z_{2}\right\}$ and, hence, $V(T) \cup\left\{v, z_{1}, z_{2}\right\}$ is a cut in G, contradicting the choice of S_{T} with $|V(A)|$ minimum. Hence, by Lemma 2.4.11, G_{A} has five independent paths $Q_{1}^{\prime}, Q_{2}^{\prime}, Q_{3}^{\prime}, Q_{4}^{\prime}, Q_{5}^{\prime}$ from t to $x_{1}, w, z_{2},\left(V\left(P_{1} \cup P_{3}\right)-\left\{w, b^{\prime}\right\}\right) \cup\left\{z_{1}\right\}$, respectively, with only t in common, and internally disjoint from $P_{1} \cup\left(P_{3}-\left\{b^{\prime}, w^{\prime}\right\}\right)$. Without loss of generality, we may assume that Q_{4}^{\prime} ends at $t^{\prime \prime} \in V\left(P_{3}\right)$. Then $T \cup b x \cup$ $P_{1} \cup S_{2}^{\prime} \cup Q_{1}^{\prime} \cup Q_{2}^{\prime} \cup\left(Q_{3}^{\prime} \cup S_{1}^{\prime} \cup y_{1} x\right) \cup\left(Q_{4}^{\prime} \cup t^{\prime \prime} P_{3} b\right)$ is $T K_{5}$ in G^{\prime} with branch vertices b, t, w, x, x_{1}.

Without loss of generality, we may assume that $z_{2}^{\prime} \in V\left(P_{3}\right)$. We may further assume that b has only one neighbor in $G_{B}-x$; for, otherwise, $T \cup b x \cup P_{1} \cup Y \cup y_{1} x \cup\left(Y_{2}^{\prime} \cup Z \cup\right.$ $\left.z_{2}^{\prime} P_{3} w\right) \cup Y_{3}^{\prime} \cup Y_{4}^{\prime}$ is a $T K_{5}$ in G^{\prime} with branch vertices b, w, x, x_{1}, y_{1}.

Thus, since G is 5-connected and $b w \notin E(G)$ (by (2)), b has a neighbor $u \in V(A)-$ $V\left(P_{1} \cup P_{3}\right)$. We choose u and the rung $\left(R_{j},\left(a_{j-1}, b_{j-1}, c_{j-1}\right),\left(a_{j}, b_{j}, c_{j}\right)\right)$ such that $b, b^{\prime}, u \in$ $V\left(R_{j}\right)$. Since b and b^{\prime} have the same set of neighbors in $G_{A}^{\prime}, a_{j-1}=b$ if, and only if, $c_{j-1}=b^{\prime}$. Moreover, we must have $b_{j}=z^{\prime}$ because of the path Z.

First, suppose $b_{j-1}=z^{\prime}$. Then $a_{j-1} \neq b$ and $c_{j-1} \neq b^{\prime}$. If z_{2} has no neighbor in $V\left(G_{A}^{\prime}-\right.$
$\left.J-R_{j}\right)$ then $V(T) \cup\left\{a_{j-1}, c_{j-1}, z_{1}\right\}$ is a cut in G separating $a_{j-1} P_{1} w \cup c_{j-1} P_{3} w \cup\left(J-z^{\prime}\right)$ from $B \cup\left(R_{j}-\left\{b^{\prime}, z^{\prime}\right\}\right)$, contradicting the choice of $\left(T, S_{T}, A, B\right)$ with $|V(A)|$ minimum. Thus, z_{2} has a neighbor in $V\left(G_{A}^{\prime}-J-R_{j}\right)$; so the above path Z may be chosen to be disjoint from R_{j}. Let S be a path in $R_{j}-\left\{a_{j-1}, c_{j-1}\right\}$ from b to z_{1} (which must exist as otherwise $\left\{a_{j-1}, c_{j-1}, z_{2}\right\} \cup V(T)$ is a cut in G contradicting the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum). So $T \cup b x \cup P_{1} \cup\left(S \cup z_{1} P_{2} x_{1}\right) \cup y_{1} x \cup\left(Y_{2} \cup Z \cup z_{2}^{\prime} P_{3} w\right) \cup Y_{3} \cup Y_{4}$ is $T K_{5}$ in G^{\prime} with branch vertices b, w, x, x_{1}, y_{1}.

Now assume $b_{j-1} \neq z^{\prime}=b_{j}$. Since $b_{j-1} \neq b_{j}$ and since b and b^{\prime} have the same set of neighbors in G_{A}^{\prime}, we must have $a_{j-1}=b$ and $c_{j-1}=b^{\prime}$. If $u \in\left\{b_{j-1}, b_{j}\right\}$ then, since $b z^{\prime} \notin E\left(G_{A}^{\prime}\right), u=b_{j-1}$; and let $S=b b_{j-1}$. Now suppose $u \notin\left\{b_{j-1}, b_{j}\right\}$. Then $\left\{b, b_{j-1}, x, z_{1}, z_{2}\right\}$ is a cut in G separating u from $\left(J-z^{\prime}\right) \cup B$. By the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum, $\{u\}=V\left(R_{j}\right)-\left\{b, b^{\prime}, b_{j-1}, z^{\prime}\right\}$. Since G is 5connected, $N(u)=\left\{b, b_{i-1}, x, z_{1}, z_{2}\right\}$. Let $S=b u b_{j-1}$. Since $\left|N\left(z_{2}\right) \cap V(A)\right| \geq 2$ (by (1)), the path Z may be chosen to be disjoint from R_{j}. So $T \cup b x \cup P_{1} \cup\left(S \cup b_{j-1} P_{2} x_{1}\right) \cup$ $y_{1} x \cup\left(Y_{2} \cup Z \cup z_{2}^{\prime} P_{3} w\right) \cup Y_{3} \cup Y_{4}$ is $T K_{5}$ in G^{\prime} with branch vertices b, w, x, x_{1}, y_{1}.

Case 2. $N(x) \cap\left\{z_{1}, z_{2}\right\} \neq \emptyset$.
Without loss of generality, we may assume $x z_{1} \in E(G)$. We may further assume z_{1} is not adjacent to any of $\left\{a, b, w, x_{1}\right\}$; for otherwise, $G\left[T+z_{1}\right]$ or $G\left[T^{\prime}+z_{1}\right]$ contains K_{4}^{-}, and (ii) holds. We wish to prove (iii), with $x_{2}=b$ and $x_{3}=z_{1}$. Let $y_{1}, y_{2} \in N(x)-\left\{b, x_{1}, z_{1}\right\}$ be distinct.

Subcase 2.1. There exists some $i \in[2]$ such that $y_{i} \in V(B) \cup\left\{z_{2}\right\}$.
Without loss of generality, assume $y_{1} \in V(B) \cup\left\{z_{2}\right\}$ and, whenever possible, let $y_{1} \in V(B)$. Let $G_{B}:=G\left[B+\left\{b, x_{1}, z_{1}, z_{2}\right\}\right]$. When $y_{1} \in V(B)$ let $t=y_{1}$ and let $Y_{1}, Y_{2}, Y_{3}, Y_{4}, Y_{5}$ be independent paths in $G[B]$ from t to $z_{1}, y_{1}, b, x_{1}, z_{2}$, respectively. When $y_{1}=z_{2}$ let $t=y_{1}$ and let $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ be independent paths in $G[B]$ from t to $z_{1}, y_{1}, b, x_{1}, z_{2}$, respectively. Let $G_{A}=G\left[A+\left\{b, w, x_{1}, z_{1}\right\}\right]$.

We may assume that there is no cycle in G_{A} containing $\left\{b, x_{1}, z_{1}\right\}$. For, such a cycle and
$x b \cup x x_{1} \cup x z_{1} \cup Y_{1} \cup\left(Y_{2} \cup y_{1} x\right) \cup Y_{3} \cup Y_{4}$ is a $T K_{5}$ in G^{\prime} with branch vertices b, t, x, x_{1}, z_{1}.
We may also assume that G_{A} is 2-connected. To see this, we first assume $N\left(x_{1}\right) \cap$ $N(w)=\{x\}$; for otherwise, letting $u \in\left(N\left(x_{1}\right) \cap N(w)\right)-\{x\}$ we see that $G[T+u]$ contains K_{4}^{-}and (ii) holds. Therefore, since $N(w) \cap V(A) \neq \emptyset \neq N\left(x_{1}\right) \cap V(A)$ (by (3)), it suffices to show that $G\left[A+\left\{b, z_{1}\right\}\right]$ is 2-connected. So assume for a contradiction that there exists a separation $\left(A_{1}, A_{2}\right)$ in $G\left[A+\left\{b, z_{1}\right\}\right]$ such that $\left|V\left(A_{1} \cap A_{2}\right)\right| \leq 1$. Without loss of generality, let $\left|\left\{b, z_{1}\right\} \cap V\left(A_{1}\right)\right| \leq 1$. Then $V\left(A_{1}\right) \nsubseteq V\left(A_{2}\right) \cup\left\{b, z_{1}\right\}$ as $|N(s) \cap V(A)| \geq 2$ for $s \in\left\{b, z_{1}\right\}$ (by (1)). Hence, $V(T) \cup\left(\left\{b, z_{1}\right\} \cap A_{1}\right) \cup V\left(A_{1} \cap A_{2}\right) \cup\left\{z_{2}\right\}$ is a cut in G of size at most 6 which separates A_{1} from the rest of G, contradicting the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum.

Then, since G_{A} has no cycle containing $\left\{b, x_{1}, z_{1}\right\},(i)$, or $(i i)$, or $(i i i)$ of Lemma 2.4.12 holds for G_{A} and $\left\{b, x_{1}, z_{1}\right\}$. So for each $u \in\left\{b, x_{1}, z_{1}\right\}, G_{A}$ has a 2-cut S_{u} separating u from $\left\{b, x_{1}, z_{1}\right\}-\{u\}$, and let D_{u} denote a union of components of $G_{A}-S_{u}$ such that $u \in V\left(D_{u}\right)$ for $u \in\left\{b, x_{1}, z_{1}\right\}$ and $D_{b}, D_{x_{1}}, D_{z_{1}}$ are pairwise disjoint. We choose S_{u} and $D_{u}, u \in\left\{b, x_{1}, z_{1}\right\}$, to maximize $D_{b} \cup D_{x_{1}} \cup D_{z_{1}}$. Note that, since $w x_{1} \in E(G)$, $w \notin V\left(D_{b} \cup D_{z_{1}}\right)$.

We claim that for $u \in\left\{b, x_{1}, z_{1}\right\}, V\left(D_{u}\right)=\{u\}$. For, otherwise, $S:=S_{u} \cup\left\{u, x, z_{2}\right\}$ is a cut in G separating $D_{u}-u$ from the rest of G. If $\left|V\left(D_{u}\right)\right| \geq 3$ then $\left(u x, S, D_{u}, G-\right.$ $\left.S-D_{u}\right) \in \mathcal{Q}_{x}$ contradicts the choice of $\left(T, S_{T}, A, B\right)$ with $|V(A)|$ minimum. So let $V\left(D_{u}\right)=\left\{u, u^{\prime}\right\}$ and let $S_{u}=\left\{s_{u}, t_{u}\right\}$. Since G is 5-connected, $N\left(u^{\prime}\right)=\left\{s_{u}, t_{u}, u, x, z_{2}\right\}$. Since $|N(u) \cap V(A+w)| \geq 2$ (by (1) and (3)), we may assume that $u s_{u} \in E(G)$. Then $G\left[\left\{s_{u}, u, u^{\prime}, x\right\}\right]$ contains K_{4}^{-}, and (ii) holds.

For $u \in\left\{b, x_{1}, z_{1}\right\}$, let $S_{u}=\left\{s_{u}, t_{u}\right\}$. Since G_{A} is 2-connected, $\left\{u s_{u}, u t_{u}\right\} \subseteq E(G)$. Note $a \in\left\{s_{b}, t_{b}\right\}$; so we may assume $s_{b} t_{b} \notin E(G)$ because otherwise $G\left[\left\{x, b, s_{b}, t_{b}\right\}\right]$ contains K_{4}^{-}, and (ii) holds. Similarly, $w \in\left\{s_{x_{1}}, t_{x_{1}}\right\}$ and we may assume $s_{x_{1}} t_{x_{1}} \notin E(G)$. If (i) of Lemma 2.4.12 occurs then $a x_{1} \in E(G)$, contradicting (2). If (iii) of Lemma 2.4.12 occurs then let R_{1}, R_{2} be the components of $G_{A}-V\left(D_{b} \cup D_{x_{1}} \cup D_{z_{1}}\right)$ and assume without
loss of generality that $s_{u} \in V\left(R_{1}\right)$ and $t_{u} \in V\left(R_{2}\right)$ for $u \in\left\{b, x_{1}, z_{1}\right\}$. By symmetry, assume $w \notin V\left(R_{1}\right)$. Hence, $\left.\left(x b,\left\{x, b, x_{1}, s_{z_{1}}, z_{2}\right\}, R_{1}-s_{z_{1}}, G-R_{1}-\left\{x, b, x_{1}, z_{2}\right\}\right]\right) \in \mathcal{Q}_{x}$ with $2 \leq\left|V\left(R_{1}-s_{z_{1}}\right)\right|<|V(A)|$, contradicting the choice of $\left(T, S_{T}, A, B\right)$.

So we may assume that (ii) of Lemma 2.4.12 holds. Without loss of generality let R_{1}, R_{2} be the components of $G-V\left(D_{b} \cup D_{x_{1}} \cup D_{z_{1}}\right)$ containing $z=s_{b}=s_{x_{1}}=s_{z_{1}}$, $\left\{t_{b}, t_{x_{1}}, t_{z_{1}}\right\}$, respectively. By (2), $z \neq a$ and $z \neq w$. So $a=t_{b}$ and $w=t_{x_{1}}$. Thus, we may assume $x z \notin E(G)$ as, otherwise, $G[T+z]$ contains K_{4}^{-}and (ii) holds. Hence, $R_{1}=R_{2}$ (otherwise z would have degree at most 4 in G). By (1) and by the maximality of $D_{b} \cup D_{x_{1}} \cup D_{z_{1}}, G\left[R_{2}+z_{2}\right]$ is 2-connected (since G is 5-connected).

We claim that there exist distinct $t_{1}, t_{2} \in\left\{a, w, t_{z_{1}}\right\}$ such that $G\left[R_{2}+z_{2}\right]$ contains disjoint paths P_{1}, P_{2} from z, t_{1} to z_{2}, t_{2}, respectively. For, suppose $\{a, w\}$ cannot serve as $\left\{t_{1}, t_{2}\right\}$. Then, by Lemma 2.4.10, $\left(G\left[R_{2}+z_{2}\right], a, z_{2}, w, z\right)$ is 3-planar. Hence, $G\left[R_{2}+z_{2}\right]$ has disjoint paths from z, a to $z_{2}, t_{z_{1}}$, respectively, or disjoint paths from z, w to $z_{2}, t_{z_{1}}$, respectively.

Suppose $z_{2} \neq y_{1}$. Recall the definition of t and the paths $Y_{1}, Y_{2}, Y_{3}, Y_{4}, Y_{5}$. If $\left\{t_{1}, t_{2}\right\}=$ $\{a, w\}$ then $b x x_{1} z b \cup x z_{1} z \cup\left(x_{1} w \cup P_{2} \cup a b\right) \cup\left(Y_{2} \cup y_{1} x\right) \cup\left(Y_{5} \cup P_{1}\right) \cup Y_{3} \cup Y_{4}$ is a $T K_{5}$ in G^{\prime} with branch vertices b, t, x, x_{1}, z. If $\left\{t_{1}, t_{2}\right\}=\left\{a, t_{z_{1}}\right\}$ then $b x z_{1} z b \cup x x_{1} z \cup\left(z_{1} t_{z_{1}} \cup\right.$ $\left.P_{2} \cup a b\right) \cup Y_{1} \cup\left(Y_{2} \cup y_{1} x\right) \cup Y_{3} \cup\left(Y_{5} \cup P_{1}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices b, t, x, z, z_{1}. If $\left\{t_{1}, t_{2}\right\}=\left\{w, t_{z_{1}}\right\}$ then $x_{1} x z_{1} z x_{1} \cup x b z \cup\left(x_{1} w \cup P_{2} \cup t_{z_{1}} z_{1}\right) \cup Y_{1} \cup\left(Y_{2} \cup y_{1} x\right) \cup Y_{4} \cup\left(Y_{5} \cup P_{1}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices t, x, x_{1}, z, z_{1}.

So assume $z_{2}=y_{1}$. Then $y_{2} \neq z_{2}$; and hence, by the choice of y_{1}, we have $y_{2} \in$ $V(A) \cup\{w\}$. If $R_{2}-z$ has independent paths S_{1}, S_{2}, S_{3} from y_{2} to $a, w, t_{z_{1}}$, respectively, then $x b z x_{1} x \cup y_{2} x \cup\left(S_{1} \cup a b\right) \cup\left(S_{2} \cup w x_{1}\right) \cup Y_{3} \cup Y_{4} \cup\left(Y_{1} \cup z_{1} t_{z_{1}} \cup S_{3}\right) \cup\left(Y_{2} \cup z_{2} x\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices b, t, x, x_{1}, y_{2}. So assume such S_{1}, S_{2}, S_{3} do not exist. Then R_{2} has a separation $\left(A_{1}, A_{2}\right)$ such that $z \in V\left(A_{1} \cap A_{2}\right),\left|V\left(A_{1} \cap A_{2}\right)\right| \leq 3, y_{2} \in$ $V\left(A_{1}-A_{2}\right)$ and $\left\{a, w, t_{z_{1}}\right\} \subseteq V\left(A_{2}\right)$. Thus $S:=\left\{x, z_{2}\right\} \cup V\left(A_{1} \cap A_{2}\right)$ is a 5-cut in G separating y_{2} from $B \cup A_{2} \cup\left\{b, x_{1}, z_{1}, z\right\}$. Hence, by the choice of $\left(T, S_{T}, A, B\right)$ (with
$|V(A)|$ minimum $), V\left(A_{1}-A_{2}\right)=\left\{y_{2}\right\}$. Therefore, since G is 5-connected, $N\left(y_{2}\right)=S$. By the maximality of $D_{b} \cup D_{x_{1}} \cup D_{z_{1}}, R_{2}-\left\{y_{2}, z\right\}$ has a path Q from a to w. Then $b x x_{1} z b \cup\left(b a \cup Q \cup w x_{1}\right) \cup z y_{2} x \cup\left(Y_{1} \cup z_{1} z\right) \cup\left(Y_{2} \cup z_{2} x\right) \cup Y_{3} \cup Y_{4}$ is a $T K_{5}$ in G^{\prime} with branch vertices b, t, x, x_{1}, z.

Subcase 2.2. $y_{1}, y_{2} \in V(A) \cup\{w\}$.
First, we show that we may assume $y_{1}=w$. For, suppose $y_{1}, y_{2} \in V(A)$. Then by Lemma 2.6.2, for each $i \in[2]$ there exists $\left(T_{i}, S_{T_{i}}, A_{i}, B_{i}\right) \in \mathcal{Q}_{x}$ such that $x, y_{i} \in V\left(T_{i}\right)$ and $T_{i} \cong K_{2}$ or $T_{i} \cong K_{3}$. By the assumption of this lemma, we have $T_{i} \cong K_{3}$ and $V(A) \cap S_{T_{i}}=\left\{y_{i}\right\}$. Hence, $\left\{b, w, x_{1}, z_{1}, z_{2}\right\} \cap V\left(T_{i}\right) \neq \emptyset$ for $i \in$ [2]. Without loss of generality, we may assume that $y_{1} \neq a$. By the symmetry between z_{1} and z_{2}, we may also assume $z_{1} \in V\left(T_{1}\right)$; for, otherwise, $G\left[T+y_{1}\right]$ or $G\left[T^{\prime}+y_{1}\right]$ contains K_{4}^{-}and (ii) holds. Therefore, we may choose $S_{T_{1}}=V\left(T_{1}\right) \cup\left\{b, x_{1}, z_{2}\right\}$. Note the symmetry between $T_{1}, S_{T_{1}}$ and T, S_{T}, and we may choose $T_{1}, S_{T_{1}}$ as T, S_{T}, respectively. So we may assume $y_{1}=w$ (as y_{1} now plays the role of w).

Let $t \in V(B)$, and let $L_{1}, L_{2}, L_{3}, L_{4}$ be independent paths in $G_{B}=G\left[B+\left\{b, x_{1}, z_{1}, z_{2}\right\}\right]$ from t to z_{1}, z_{2}, b, x_{1}, respectively. Let $G_{A}:=G\left[A+\left\{b, w, x_{1}, z_{2}\right\}\right]$. Note that, by the same argument as in Subcase 2.1 (with z_{2} in place of z_{1}), we may assume that G_{A} is 2-connected.

We may assume that G_{A} does not contain independent paths from z_{2}, w, b to w, b, x_{1}, respectively; for otherwise, these paths and $T \cup b x \cup\left(L_{1} \cup z_{1} x\right) \cup L_{2} \cup L_{3} \cup L_{4}$ form a $T K_{5}$ in G with branch vertices b, t, w, x, x_{1}.

Hence, since G_{A} is 2-connected, $w z_{2} \notin E(G)$. We may assume that $w z_{1} \notin E(G)$; else $G\left[T+z_{1}\right]$ contains K_{4}^{-}and (ii) holds. Therefore, since G is 5 -connected, it follows from (2) that

$$
|N(w) \cap V(A \cap D)| \geq 3
$$

Let G_{A}^{\prime} be the graph obtained from G_{A} by duplicating w, b with w^{\prime}, b^{\prime}, respectively, and adding all edges from w^{\prime} to $N(w)$, and from b^{\prime} to $N(b)$. Then any three disjoint paths in
G_{A}^{\prime} from $\left\{b, b^{\prime}, z_{2}\right\}$ to $\left\{w, w^{\prime}, x_{1}\right\}$ must have a path from z_{2} to x_{1}, and we wish to apply Lemma 2.5.1.

First, we note that G_{A}^{\prime} has no cut of size at most 2 separating $\left\{x_{1}, w, w^{\prime}\right\}$ from $\left\{b, b^{\prime}, z_{2}\right\}$. For, otherwise, G_{A}^{\prime} has a separation $\left(A_{1}, A_{2}\right)$ such that $\left|V\left(A_{1} \cap A_{2}\right)\right| \leq 2,\left\{x_{1}, w, w^{\prime}\right\} \subseteq$ $V\left(A_{1}\right)$ and $\left\{b, b^{\prime}, z_{2}\right\} \subseteq V\left(A_{2}\right)$. Note that $V\left(A_{1} \cap A_{2}\right) \neq\left\{w, w^{\prime}\right\}$ as otherwise, w would be a cut vertex in G_{A}. Further, $\left\{w, w^{\prime}\right\} \cap V\left(A_{1} \cap A_{2}\right)=\emptyset$; for, otherwise, since w and w^{\prime} have the same set of neighbors in G_{A}^{\prime}, it follows from (3) that $V\left(A_{1} \cap A_{2}\right)-\left\{w, w^{\prime}\right\}$ would be a cut in G_{A} of size at most one. On the other hand, $V\left(A_{1}-A_{2}\right) \subseteq\left\{x_{1}, w\right\}$; otherwise $\left(T, V(T) \cup\left\{z_{1}\right\} \cup V\left(A_{1} \cap A_{2}\right),\left(A_{1}-A_{2}\right)-w^{\prime}, G-\left(T \cup A_{1}\right)\right) \in \mathcal{Q}_{x}$ with $1 \leq\left|\left(A_{1}-A_{2}\right)-w^{\prime}\right|<|A|$, contradicting the choice of $\left(T, S_{T}, A, B\right)$. However, this implies $|N(w) \cap V(A \cap D)| \leq\left|V\left(A_{1} \cap A_{2}\right)\right| \leq 2$, a contradiction.

Hence by Lemma 2.5.1, G_{A}^{\prime} has a separation (J, L) such that $V(J \cap L)=\left\{w_{0}, \ldots, w_{n}\right\}$, $\left(J, w_{0}, \ldots, w_{n}\right)$ is 3-planar, $\left(L,\left(w, x_{1}, w^{\prime}\right),\left(b, z_{2}, b^{\prime}\right)\right)$ is a ladder along some sequence $b_{0} \ldots b_{m}$, where $b_{0}=z_{2}, b_{m}=x_{1}$, and $w_{0} \ldots w_{n}$ is the reduced sequence of $b_{0} \ldots b_{m}$. Let P_{1}, P_{2}, P_{3} be three disjoint paths in L from w, x_{1}, w^{\prime} to b, z_{2}, b^{\prime}, respectively, and assume that they are induced in G_{A}^{\prime}. (Let $L=G_{A}^{\prime}$ and $J=P_{2}$ if (ii) of Lemma 2.5.1 holds.) Let $\left(R_{i},\left(a_{i-1}, b_{i-1}, c_{i-1}\right),\left(a_{i}, b_{i}, c_{i}\right)\right), i \in[m]$, be the rungs in L with $a_{i} \in V\left(P_{1}\right)$ and $c_{i} \in V\left(P_{3}\right)$ for $i=0,1, \ldots, m$.

Since $|N(w) \cap V(A \cap D)| \geq 3$ and P_{1}, P_{3} are induced paths in G_{A}^{\prime}, there exists $w^{*} \in(N(w) \cap V(A))-V\left(P_{1} \cup P_{3}\right)$. We show that there exists $u \in V\left(P_{2}\right)$ such that $G\left[G_{A}+\left\{x, z_{1}\right\}\right]$ has five independent paths $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}$ from u to distinct vertices $x_{1}, w, z_{2}, u_{1}, u_{2}$, respectively, with $u_{1}, u_{2} \in V\left(P_{1}-w\right) \cup V\left(P_{3}-\left\{b^{\prime}, w^{\prime}\right\}\right) \cup\left\{x, z_{1}\right\}$, and internally disjoint from $P_{1} \cup\left(P_{3}-\left\{b^{\prime}, w^{\prime}\right\}\right)$. If $w^{*} \in V\left(P_{2}\right)$ then let $u=w^{*}$ and we see that there exist independent paths in $G_{A}-\left(V\left(P_{1}-w\right) \cup V\left(P_{3}-\left\{b^{\prime}, w^{\prime}\right\}\right)\right)$ from u to x_{1}, w, z_{2}, respectively; then the paths Q_{1}, \ldots, Q_{5} exist by Lemma 2.4.11. Now suppose $w^{*} \notin V\left(P_{2}\right)$. Let $\left(R_{i},\left(a_{i-1}, b_{i-1}, c_{i-1}\right),\left(w, b_{i}, w^{\prime}\right)\right)$ be the rung in L containing $\left\{w, w^{\prime}, w^{*}\right\}$. Since w and w^{\prime} have the same set of neighbors in $G_{A}^{\prime}, w=a_{i-1}$ iff $w^{\prime}=c_{i-1}$. If $w=a_{i-1}$ and $w^{\prime}=c_{i-1}$
then $S_{T}^{*}:=V(T) \cup\left\{b_{i-1}, b_{i}, z_{1}\right\}$ is a cut in G of size at most 6 , and $G-S_{T}^{*}$ has a component of size smaller than $|V(A)|$, contradicting the choice of $\left(T, S_{T}, A, B\right)$. So $w \neq a_{i-1}$ and $w^{\prime} \neq c_{i-1}$. Suppose $R_{i}-x_{1}$ has a separation $\left(R^{\prime}, R^{\prime \prime}\right)$ such that $\left|V\left(R^{\prime} \cap R^{\prime \prime}\right)\right| \leq 2$, $w \in V\left(R^{\prime}-R^{\prime \prime}\right)$, and $\left\{a_{i-1}, c_{i-1}, b_{i-1}, b_{i}\right\}-\left\{x_{1}\right\} \subseteq V\left(R^{\prime \prime}\right)$. Then we may assume $w^{\prime} \in V\left(R^{\prime}-R^{\prime \prime}\right)$ as w and w^{\prime} have the same set of neighbors in G_{A}^{\prime}. Therefore, since $|N(w) \cap V(A \cap D)| \geq 3, S_{T}^{*}:=V(T) \cup V\left(R^{\prime} \cap R^{\prime \prime}\right) \cup\left\{z_{1}\right\}$ is a cut in G of size at most 6, and $G-S_{T}^{*}$ has a component of size smaller than $|V(A)|$, contradicting the choice of $\left(T, S_{T}, A, B\right)$. Thus we may assume, by Lemma 2.4.11, $R_{i}-x_{1}$ contains three independent paths from w to $a_{i-1}, c_{i-1},\left\{b_{i-1}, b_{i}\right\}-\left\{x_{1}\right\}$, respectively, and internally disjoint from $\left\{b_{i-1}, b_{i}\right\}$. Again since w and w^{\prime} have the same set of neighbors in G_{A}^{\prime}, the parts of P_{1}, P_{3} inside R can be modified so that the three paths in R_{i} correspond to $w P_{1} a_{i-1}, w^{\prime} P_{3} c_{i-1}$ and a path from w to some $u \in\left\{b_{i-1}, b_{i}\right\}-\left\{x_{1}\right\}$ and internally disjoint from $P_{1} \cup P_{2} \cup P_{3}$. Thus, there exist independent paths in $G_{A}-\left(V\left(P_{1}-w\right) \cup V\left(P_{3}-\left\{b^{\prime}, w^{\prime}\right\}\right)\right)$ from u to x_{1}, w, z_{2}, respectively. Now the paths Q_{1}, \ldots, Q_{5} exist by Lemma 2.4.11,

We may assume $u_{1}=z_{1}$ and $u_{2}=x$. For, otherwise, we may assume by symmetry that $u_{1} \in V\left(P_{1}\right)$. If $G_{B}-x$ has disjoint paths B_{1}, B_{2} from z_{1}, b to z_{2}, x_{1}, respectively, then $T \cup b x \cup P_{3} \cup B_{2} \cup Q_{1} \cup Q_{2} \cup\left(Q_{3} \cup B_{1} \cup z_{1} x\right) \cup\left(Q_{4} \cup u_{1} P_{1} b\right)$ is a $T K_{5}$ in G with branch vertices b, u, w, x, x_{1}. (Here we view P_{3} as a path in G by identifying b^{\prime}, w^{\prime} with b, w, respectively.) So we may assume that such B_{1}, B_{2} do not exist. Then by Lemma 2.4.10, $\left(G_{B}-x, z_{1}, b, z_{2}, x_{1}\right)$ is planar; so the assertion of the lemma follows from Lemma 2.4.5.

We may also assume $|N(b) \cap V(B)| \leq 1$. For, suppose $|N(b) \cap V(B)| \geq 2$. Then, since G is 5 -connected, $G\left[B+\left\{b, x_{1}, z_{2}\right\}\right]$ contains independent paths B_{1}, B_{2} from b to x_{1}, z_{2}, respectively. Hence, $T \cup b x \cup P_{3} \cup B_{1} \cup Q_{1} \cup Q_{2} \cup\left(Q_{3} \cup B_{2}\right) \cup\left(Q_{4} \cup z_{1} x\right)$ is a $T K_{5}$ in G with branch vertices b, u, w, x, x_{1}, where we view P_{3} as a path in G^{\prime} by identifying b^{\prime}, w^{\prime} with b, w, respectively.

Then we may assume $\left|N(b) \cap V\left(A+z_{2}\right)\right| \geq 3$ as otherwise, $b z_{1} \in E(G)$ by (2); so $G\left[T^{\prime}+z_{1}\right]$ contains K_{4}^{-}and $(i i)$ holds. Let $b^{*} \in\left(N(b) \cap V\left(A+z_{2}\right)\right)-V\left(P_{1} \cup P_{3}\right)$.

If $b^{*} \in V\left(P_{2}\right)$ let $z=b^{*}$ and let $P=b z$ which is internally disjoint from $P_{1} \cup P_{2} \cup P_{3}$. Now suppose $b^{*} \notin V\left(P_{2}\right)$. Let $\left(R_{j},\left(b, b_{j-1}, b^{\prime}\right),\left(a_{j}, b_{j}, c_{j}\right)\right)$ be the rung in L containing $\left\{b, b,{ }^{\prime} b^{*}\right\}$. Since b and b^{\prime} have the same set of neighbors in $G_{A}^{\prime}, b=a_{j}$ iff $b^{\prime}=c_{j}$. If $b=a_{j}$ and $b^{\prime}=c_{j}$ then, since $a z_{1} \notin E(G), S_{T}^{*}:=V\left(T^{\prime}\right) \cup\left\{b_{j-1}, b_{j}, z_{1}\right\}$ is a cut in G of size 6 and $G-S_{T}^{*}$ has a component of size smaller than $|V(A)|$, contradicting the choice of $\left(T, S_{T}, A, B\right)$. So $b \neq a_{j}$ and $b^{\prime} \neq c_{j}$. We claim that $P_{1} \cap R_{j}$ and $P_{3} \cap R_{j}$ may be modified so that G_{A} contains a path P from b to some $z \in V\left(P_{2}\right)$ and internally disjoint from $P_{1} \cup P_{2} \cup\left(P_{3}-\left\{b^{\prime}, w^{\prime}\right\}\right)$. If R_{j} contains three independent paths from b to $a_{j}, c_{j},\left\{b_{j-1}, b_{j}\right\}$, respectively, and internally disjoint from $\left\{a_{j}, c_{j}, b_{j-1}, b_{j}\right\}$, then $P_{1} \cap R_{j}, P_{3} \cap R_{j}$ can be modified so that the three paths in R_{j} correspond to $b P_{1} a_{j}, b^{\prime} P_{3} c_{j}$ and a path P from b to $z \in\left\{b_{j-1}, b_{j}\right\}$ and internally disjoint from $P_{1} \cup P_{2} \cup\left(P_{3}-\left\{b^{\prime}, w^{\prime}\right\}\right)$. So assume that such three paths in R_{j} do not exist. Then by the existence of $b P_{1} a_{j}$ and $b^{\prime} P_{3} c_{j}$ and by Lemma 2.4.11, R_{j} has no three independent paths from b to $\left\{a_{j}, c_{j}, b_{j-1}, b_{j}\right\}$ and internally disjoint from $\left\{a_{j}, c_{j}, b_{j-1}, b_{j}\right\}$. Thus R_{j} has a separation $\left(A_{1}, A_{2}\right)$ with $\left|V\left(A_{1} \cap A_{2}\right)\right| \leq 2$, $V\left(A_{1} \cap A_{2}\right) \subseteq V\left(P_{1} \cup P_{3}\right), b, b^{*} \in V\left(A_{1}-A_{2}\right)$ and $\left\{a_{j}, c_{j}, b_{j-1}, b_{j}\right\} \subseteq V\left(A_{2}\right)$. Since b^{\prime} is a copy of b, we may assume $b^{\prime} \in V\left(A_{1}-A_{2}\right)$. Now, since $a z_{1} \notin E(G), V\left(A_{1} \cap A_{2}\right) \cup$ $\left\{x, b, z_{1}\right\}$ is a cut in G; so $V\left(A_{1}\right)=V\left(A_{1} \cap A_{2}\right) \cup\left\{b, b^{\prime}, b^{*}\right\}$ by the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum. Then $b^{*} x, b^{*} z_{1} \in E(G)$ (as G is 5-connected); so $G\left[\left\{x, b^{*}, b, z_{1}\right\}\right]$ contains K_{4}^{-}, and (ii) holds.

Suppose $R_{i} \neq R_{j}$. Since G is 5 -connected, $G\left[B+\left\{b, x_{1}\right\}\right]$ has a path B_{1} from b to x_{1}. Since Q_{3} is internally disjoint from $P_{1} \cup P_{3}$, we may assume that $z \in V\left(Q_{3}\right)$ and P is also internally disjoint from Q_{3}. Hence, $T \cup b x \cup P_{3} \cup B_{1} \cup Q_{1} \cup Q_{2} \cup\left(u Q_{3} z \cup P\right) \cup\left(Q_{4} \cup z_{1} x\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices b, u, w, x, x_{1}, where we view P_{3} as a path in G by identifying b^{\prime}, w^{\prime} with b, w, respectively.

So $R_{i}=R_{j}$. Then $a_{i-1}=b$ and $c_{i-1}=b^{\prime}$. Recall $b w \notin E(G)$ (by (2)). Since w and w^{\prime} (respectively, b and b^{\prime}) have the same set of neighbors in G_{A}^{\prime}, it follows from Lemma 2.5.3 that $b_{i-1}=b_{i}$. Then $\left\{b, b_{i}, w, x, z_{1}\right\}$ is a cut in G separating $P_{1} \cup\left(P_{3}-\left\{b^{\prime}, w^{\prime}\right\}\right)$ from
$B \cup J$. Since $b w \notin E(G),\left|V\left(P_{1} \cup\left(P_{3}-\left\{b^{\prime}, w^{\prime}\right\}\right)\right)\right| \geq 2$. This contradicts the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum.

2.7 Interactions between quadruples

In this section, we explore the structure of G by considering a quadruple $\left(T, S_{T}, A, B\right)$ with $|V(A)|$ minimum and a quadruple $\left(T^{\prime}, S_{T^{\prime}}, C, D\right) \in \mathcal{Q}_{x}$ with $T^{\prime} \cap A \neq \emptyset$. The lemma below allows us to assume that if $T \cap C=\emptyset$ then $A \cap C=\emptyset$.

Lemma 2.7.1 Let G be a 5-connected nonplanar graph and $x \in V(G)$. Suppose for any $H \subseteq G$ with $x \in V(H)$ and $H \cong K_{2}$ or $H \cong K_{3}, G / H$ is not 5 -connected. Let $\left(T, S_{T}, A, B\right) \in \mathcal{Q}_{x}$ with $|V(A)|$ minimum and $\left(T^{\prime}, S_{T^{\prime}}, C, D\right) \in \mathcal{Q}_{x}$ with $T^{\prime} \cap A \neq \emptyset$. Suppose $T \cap C=\emptyset$. Then $A \cap C=\emptyset$, or one of the following holds:
(i) G contains a $T K_{5}$ in which x is not a branch vertex.
(ii) G contains K_{4}^{-}.
(iii) There exist $x_{1}, x_{2}, x_{3} \in N(x)$ such that for any $y_{1}, y_{2} \in N(x)-\left\{x_{1}, x_{2}, x_{3}\right\}$, $G-$ $\left\{x v: v \notin\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right\}\right\}$ contains $T K_{5}$.

Proof. We may assume $T \cong K_{3}$ (by Lemma 2.6.3) and $T^{\prime} \cong K_{3}$ (by Lemma 2.6.4). Suppose $A \cap C \neq \emptyset$.

Then $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(B \cup D)\right| \geq 7$; otherwise $\left(T^{\prime},\left(S_{T^{\prime}} \cup S_{T}\right)-V(B \cup D), A \cap\right.$ $C, B \cup D) \in \mathcal{Q}_{x}$ and $1 \leq|V(A \cap C)| \leq|V(A-a)|<|V(A)|$, contradicting the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum. Hence $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup C)\right|=5$, as $\left|S_{T}\right|=$ $\left|S_{T^{\prime}}\right|=6$. Since $T \cap C=\emptyset, V(T) \subseteq\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup C)$.

Suppose $|V(B \cap D)| \geq 2$. Then G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=$ $\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup C)$ and $\left|V\left(G_{i}\right)\right| \geq 7$. So the assertion of this lemma follows from Lemma 2.4.6.

Hence, we may assume $|V(B \cap D)| \leq 1$. Therefore, by the minimality of $|V(A)|$, $\left|S_{T} \cap V(D)\right| \geq\left|S_{T^{\prime}} \cap V(A)\right|$. But this implies that $\left|S_{T}\right| \geq\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(B \cup D)\right| \geq 7$, a contradiction.

We need a lemma for finding paths to deal with a special case when $A \cap C=\emptyset$ for quadruples $\left(T, S_{T}, A, B\right),\left(T^{\prime}, S_{T^{\prime}}, C, D\right) \in \mathcal{Q}_{x}$.

Lemma 2.7.2 Let G be a 5-connected nonplanar graph and $x \in V(G)$, and suppose for any $H \subseteq G$ with $x \in V(H)$ and $H \cong K_{2}$ or $H \cong K_{3}, G / H$ is not 5 -connected. Let $\left(T, S_{T}, A, B\right) \in \mathcal{Q}_{x}$ with $|V(A)|$ minimum and $\left(T^{\prime}, S_{T^{\prime}}, C, D\right) \in \mathcal{Q}_{x}$ with $T^{\prime} \cap A \neq \emptyset$. Let $V(T)=\left\{x, x_{1}, x_{2}\right\}$ and $V\left(T^{\prime}\right)=\{x, a, b\}$ with $a \in V(A)$. Suppose $A \cap C=\emptyset$, $\left|S_{T}\right|=6=\left|S_{T^{\prime}}\right|, V(T) \subseteq S_{T}-V(C),\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(B \cup C)\right|=7$, and $\left(S_{T} \cup S_{T^{\prime}}\right)-$ $V\left(B \cup C \cup T \cup T^{\prime}\right)=\left\{x_{3}, x_{4}\right\}$. Then G contains K_{4}^{-}, or the following statements hold:
(i) $N(b) \cap V(A-a) \neq \emptyset$ and ift $\in N(b) \cap V(A-a)$ then $G\left[(A-a)+\left\{b, x_{1}, x_{2}, x_{3}, x_{4}\right\}\right]$ has independent paths from to $b, x_{1}, x_{2}, x_{3}, x_{4}$, respectively, and
(ii) ifb $\in S_{T}$ then $G\left[A+\left\{b, x_{1}, x_{2}\right\}\right]$ has independent paths from b to x_{1}, x_{2}, respectively.

Proof. First, we note that $N(b) \cap V(A-a) \neq \emptyset$. For, otherwise, $\left(T,\left(S_{T} \cup S_{T^{\prime}}\right)-V(B \cup\right.$ $C)-\{b\}, A-a, G[B \cup C+b]) \in \mathcal{Q}_{x}$. By the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum, we must have $V(A-a)=\emptyset$. So G contains K_{4}^{-}by Lemma 2.6.1.

To complete the proof of (i), let $t \in N(b) \cap V(A-a)$. If $G\left[(A-a)+\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right]$ has four independent paths from t to $x_{1}, x_{2}, x_{3}, x_{4}$, respectively, then these four paths and $t b$ give the desired five paths. So we may assume that such four paths do not exist. Then $G\left[(A-a)+\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right]$ has a separation $\left(G_{1}, G_{2}\right)$ such that $\left|V\left(G_{1} \cap G_{2}\right)\right| \leq 3$, $t \in V\left(G_{1}-G_{2}\right)$ and $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \subseteq V\left(G_{2}\right)$. Hence, $\left(T^{\prime}, V\left(T^{\prime}\right) \cup V\left(G_{1} \cap G_{2}\right), G_{1}-\right.$ $\left.G_{2}, G-T^{\prime}-G_{1}\right) \in \mathcal{Q}_{x}$ and $1 \leq\left|V\left(G_{1}-G_{2}\right)\right| \leq|V(A-a)|<|V(A)|$, contradicting the choice of $\left(T, S_{T}, A, B\right)$.

To prove $(i i)$, let $b \in S_{T}$ and assume that the two paths in (ii) do not exist. Note that if $b \in V(T)$ then $T \cup T^{\prime}$ contains K_{4}^{-}. So we may assume $b \notin V(T)$. Then, $G\left[A+\left\{b, x_{1}, x_{2}\right\}\right]$
has a separation $\left(G_{1}, G_{2}\right)$ such that $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right| \leq 1, b \in V\left(G_{1}\right)-V\left(G_{2}\right)$ and $\left\{x_{1}, x_{2}\right\} \subseteq V\left(G_{2}\right)$. Since $N(b) \cap V(A-a) \neq \emptyset$ and $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right| \leq 1, \mid V\left(G_{1}-\right.$ $\left.G_{2}\right) \mid \geq 2$. Let $S_{b x}=\left(S_{T}-\left\{x_{1}, x_{2}\right\}\right) \cup V\left(G_{1} \cap G_{2}\right)$, and let $F=G_{1}-S_{b x}$. Then $|V(F)| \geq 1$ as $\left|V\left(G_{1}-G_{2}\right)\right| \geq 2$. If $|V(F)| \geq 2$ then $\left(b x, S_{b x}, F, G-S_{b x}-F\right) \in \mathcal{Q}_{x}$ with $2 \leq|V(F)|<|V(A)|$, contradicting the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum. So assume $|V(F)|=1$ and let $v \in V(F)$. Since G is 5-connected, v is adjacent to all vertices in $S_{b x}$. If $v \neq a$ then $V\left(G_{1} \cap G_{2}\right)=\{a\}$; so $G[\{a, b, v, x\}]$ contains K_{4}^{-}. Now assume $v=a$. Let $w \in V\left(G_{1} \cap G_{2}\right)$. Since $N(b) \cap V(A-a) \neq \emptyset$, $b w \in E(G)$. So $G[\{a, b, w, x\}]$ contains K_{4}^{-}.

In the next two lemmas, we consider the case when quadruples $\left(T, S_{T}, A, B\right)$ and $\left(T^{\prime}, S_{T^{\prime}}, C, D\right)$ may be chosen so that $\left|V\left(T^{\prime} \cap A\right)\right|=2$.

Lemma 2.7.3 Let G be a 5-connected nonplanar graph and $x \in V(G)$. Suppose for any $H \subseteq G$ with $x \in V(H)$ and $H \cong K_{2}$ or $H \cong K_{3}, G / H$ is not 5-connected. Let $\left(T, S_{T}, A, B\right) \in \mathcal{Q}_{x}$ with $|V(A)|$ minimum. Suppose there exists $\left(T^{\prime}, S_{T^{\prime}}, C, D\right) \in \mathcal{Q}_{x}$ such that $T^{\prime} \cong K_{3}$ and $\left|V\left(T^{\prime} \cap A\right)\right|=2$. Then one of the following holds:
(i) G contains a $T K_{5}$ in which x is not a branch vertex.
(ii) G contains K_{4}^{-}.
(iii) There exist $x_{1}, x_{2}, x_{3} \in N(x)$ such that for any $y_{1}, y_{2} \in N(x)-\left\{x_{1}, x_{2}, x_{3}\right\}$, $G-$ $\left\{x v: v \notin\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right\}\right\}$ contains $T K_{5}$.
(iv) $\left|S_{T} \cap S_{T^{\prime}}\right|=1,\left|S_{T^{\prime}} \cap V(B)\right|=2$, and either $\left|S_{T} \cap V(C)\right|=2$ and $T \cap C=\emptyset$ or $\left|S_{T} \cap V(D)\right|=2$ and $T \cap D=\emptyset$.

Proof. We may assume $T \cong K_{3}$ (by Lemma 2.6.3). We may also assume that $\left|S_{T}\right|=$ $\left|S_{T^{\prime}}\right|=6$; for, otherwise, (i) or (ii) or (iii) follows from Lemma 2.4.6. We may further assume $|V(A)| \geq 5$; as otherwise, by Lemma 2.6.1, G contains K_{4}^{-}and (ii) holds.

Let $T^{\prime}=\{a, b, x\}$ with $a, b \in V(A)$. By symmetry, assume $T \cap C=\emptyset$. Then, by Lemma 2.7.1, we may assume $A \cap C=\emptyset$. Now $B \cap C \neq \emptyset$; for, otherwise, $|V(C)|=$ $\left|S_{T} \cap V(C)\right| \leq 3$, contradicting the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum. Hence, $S_{T} \cap V(C) \neq \emptyset$ as $S_{T^{\prime}}-\{a, b\}$ is not a cut in G. Moreover, $A \cap D \neq \emptyset$; for otherwise, $\left|V(A) \cap S_{T^{\prime}}\right|=5$ and, hence, $\left|S_{T^{\prime}} \cap S_{T}\right|=1$ and $\left|S_{T^{\prime}} \cap V(B)\right|=0$; so $\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)$ is a cut in G of size at most 4 and separating $B \cap C$ from $A \cup D$, a contradiction.

We claim that $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(B \cup C)\right|=7$ and $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)\right|=5$. First, note that $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(B \cup C)\right| \geq 7$; otherwise, $\left(T^{\prime},\left(S_{T} \cup S_{T^{\prime}}\right)-V(B \cup C), A \cap D, B \cup C\right) \in \mathcal{Q}_{x}$ and $1 \leq|V(A \cap D)| \leq|V(A-a)|<|V(A)|$, contradicting the choice of $\left(T, S_{T}, A, B\right)$ that $\mid V(A)$ is minimum. Also note that $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)\right| \geq 5$ since $B \cap C \neq \emptyset$ and G is 5 -connected. Thus the claim follows from the fact that $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(B \cup C)\right|+$ $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)\right|=\left|S_{T}\right|+\left|S_{T^{\prime}}\right|=12$.

We may assume that $\left|S_{T} \cap V(C)\right| \neq 1$ or $\left|S_{T^{\prime}} \cap V(A)\right| \neq 2$. For, suppose $S_{T} \cap V(C)=$ $\{c\}$ and $S_{T^{\prime}} \cap V(A)=\{a, b\}$. If $a, b \in N(c)$ then $G\left[T^{\prime}+c\right]$ contains K_{4}^{-}and (ii) holds. So by the symmetry between a and b, we may assume that $c a \notin E(G)$. Then $\left(T,\left(S_{T}-c\right) \cup\{b\}, A-b, G[B+c]\right) \in \mathcal{Q}_{x}$, contradicting the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum.

We may also assume $T \cap D \neq \emptyset$; for, otherwise, since $A \cap D \neq \emptyset$, (i) or (ii) or (iii) follows from Lemma 2.7.1. Therefore, $S_{T} \cap V(D) \neq \emptyset$. Note that $1 \leq\left|S_{T} \cap S_{T^{\prime}}\right| \leq 4$, and we distinguish four cases according to $\left|S_{T} \cap S_{T^{\prime}}\right|$.

Suppose $\left|S_{T} \cap S_{T^{\prime}}\right|=4$. Then $S_{T^{\prime}} \cap V(B)=\emptyset$ and $\left|S_{T} \cap V(C)\right|=\left|S_{T} \cap V(D)\right|=1$. Therefore, by the minimality of $|V(A)|, B \cap D \neq \emptyset$. Hence, $S_{T}-V(C)$ is a 5-cut in G and $V(T) \subseteq S_{T}-V(C)$. By the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum, $|V(B \cap D)| \geq 5$. Now (i) or (ii) or (iii) follows from Lemma 2.4.6.

Consider $\left|S_{T} \cap S_{T^{\prime}}\right|=3$. Suppose for the moment $S_{T^{\prime}} \cap V(B)=\emptyset$. Then $\left|S_{T} \cap V(C)\right|=$ 2 as $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)\right|=5$. So $B \cap D=\emptyset$ as otherwise $S_{T}-V(C)$ would be a 4-cut in G. However, this implies $|V(D)|<|V(A)|$, contradicting the choice of
$\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum. So $S_{T^{\prime}} \cap V(B) \neq \emptyset$. Therefore, since $\left|S_{T^{\prime}}\right|=6$, we have $\left|S_{T^{\prime}} \cap V(B)\right|=1$ and $S_{T^{\prime}} \cap V(A)=\{a, b\}$. Since $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)\right|=5$, $\left|S_{T} \cap V(C)\right|=1$. This is a contradiction, as we have $\left|S_{T} \cap V(C)\right| \neq 1$ or $\left|S_{T^{\prime}} \cap V(A)\right| \neq 2$.

Now let $\left|S_{T} \cap S_{T^{\prime}}\right|=2$. First, assume $\left|S_{T} \cap V(C)\right|=1$. Then $\left|S_{T^{\prime}} \cap V(B)\right|=2$ (as $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)\right|=5$) and, hence, $\left|S_{T^{\prime}} \cap V(A)\right|=2$ (as $\left|S_{T^{\prime}}\right|=6$), a contradiction. So we may assume that $\left|S_{T} \cap V(C)\right| \geq 2$, which implies $\left|S_{T^{\prime}} \cap V(B)\right| \leq 1$ as $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)\right|=5$. Hence, since $\left|S_{T}\right|=\left|S_{T^{\prime}}\right|=6,\left|S_{T^{\prime}} \cap V(A)\right| \geq 3$ and $\left|S_{T} \cap V(D)\right| \leq 2$. Therefore, by the minimality of $|V(A)|, B \cap D \neq \emptyset$. Thus $\left(S_{T} \cap S_{T^{\prime}}\right)-V(A \cup C)$ is a 5 -cut in G and contains $V(T)$. So $|V(B \cap D)| \geq 5$ by the minimality of $\mid V(A)$. Now (i) or $(i i)$ or (iii) follows from Lemma 2.4.6.

Finally, assume $\left|S_{T} \cap S_{T^{\prime}}\right|=1$. If $\left|S_{T^{\prime}} \cap V(B)\right|=2$ then $\left|S_{T} \cap V(C)\right|=2$ (as $\left.\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)\right|=5\right)$; so (iv) holds. If $\left|S_{T^{\prime}} \cap V(B)\right|=3$ then $\left|S_{T} \cap V(C)\right|=$ 1 (since $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)\right|=5$) and $S_{T^{\prime}} \cap V(A)=\{a, b\}$ (as $\left|S_{T^{\prime}}\right|=6$), a contradiction. Hence, we may assume $\left|S_{T^{\prime}} \cap V(B)\right| \leq 1$. Then $\left|S_{T} \cap V(C)\right| \geq 3$ (since $\left.\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)\right|=5\right),\left|S_{T^{\prime}} \cap V(A)\right| \geq 4$, and $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup C)\right| \leq 4$. Hence, since G is 5-connected, $B \cap D=\emptyset$; so $|V(D)|<|V(A)|$. However, this shows that $\left(T^{\prime}, S_{T^{\prime}}, D, C\right)$ contradicts the choice of $\left(T, S_{T}, A, B\right)$.

Next, we take care of the case when (iv) of Lemma 2.7.3 holds.

Lemma 2.7.4 Let G be a 5-connected nonplanar graph and $x \in V(G)$, and suppose for any $H \subseteq G$ with $x \in V(H)$ and $H \cong K_{2}$ or $H \cong K_{3}, G / H$ is not 5 -connected. Let $\left(T, S_{T}, A, B\right) \in \mathcal{Q}_{x}$ with $|V(A)|$ minimum and $\left(T^{\prime}, S_{T^{\prime}}, C, D\right) \in \mathcal{Q}_{x}$ with $T^{\prime} \cap A \neq \emptyset$. Suppose $T \cap C=\emptyset, S_{T} \cap S_{T^{\prime}}=\{x\}$ and $\left|S_{T} \cap V(C)\right|=\left|S_{T^{\prime}} \cap V(B)\right|=2$. Then one of the following holds:
(i) G contains a $T K_{5}$ in which x is not a branch vertex.
(ii) G contains K_{4}^{-}.
(iii) There exist $x_{1}, x_{2}, x_{3} \in N(x)$ such that, for any $y_{1}, y_{2} \in N(x)-\left\{x_{1}, x_{2}, x_{3}\right\}, G^{\prime}:=$ $G-\left\{x v: v \notin\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right\}\right\}$ contains $T K_{5}$.

Proof. We may assume $T \cong K_{3}$ (by Lemma 2.6.3) and $T^{\prime} \cong K_{3}$ (by Lemma 2.6.4). By Lemma 2.6.1, we may assume $|V(A)| \geq 5$. We may further assume that $\left|S_{T}\right|=\left|S_{T^{\prime}}\right|=6$; for, otherwise, the assertion follows from Lemma 2.4.6.

Let $V(T)=\left\{x, x_{1}, x_{2}\right\}, V\left(T^{\prime}\right)=\{x, a, b\}, S_{T} \cap V(C)=\left\{p_{1}, p_{2}\right\}, S_{T^{\prime}} \cap V(B)=$ $\left\{c_{1}, c_{2}\right\}, S_{T^{\prime}} \cap V(A)=\{a, b, q\}$, and $S_{T} \cap V(D)=\left\{x_{1}, x_{2}, w\right\}$. Since $T \cap C=\emptyset$, we may assume by Lemma 2.7.1 that $A \cap C=\emptyset$. Then $B \cap C \neq \emptyset$ by the minimality of $|V(A)|$.

We may assume $N\left(p_{1}\right) \cap V(A)=\{a, q\}$ and $N\left(p_{2}\right) \cap V(A)=\{b, q\}$. To see this, for $i \in[2]$, let $S_{i}:=\left(S_{T}-\left\{p_{i}\right\}\right) \cup\left(N\left(p_{i}\right) \cap\{a, b, q\}\right)$ which is a cut in G and containing $V(T)$. If $N\left(p_{i}\right) \cap\{a, b, q\}=\emptyset$ then $\left|S_{i}\right|=5$ and the assertion of this lemma follows from Lemma 2.4.6. If $\left|N\left(p_{i}\right) \cap\{a, b, q\}\right|=1$ then $\left(T, S_{i}, A-\left(N\left(p_{i}\right) \cap\{a, b, q\}\right), S_{i}, G\left[B+p_{i}\right]\right) \in$ \mathcal{Q}_{x}, contradicting the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum. Hence, we may assume that $\left|N\left(p_{i}\right) \cap\{a, b, q\}\right| \geq 2$ for $i \in[2]$. We may assume $\{a, b\} \nsubseteq N\left(p_{i}\right)$ for $i \in[2] ;$ as otherwise, $G\left[T^{\prime}+p_{i}\right]$ contains K_{4}^{-}and (ii) holds. Moreover, $N\left(p_{1}\right) \cap\{a, b, q\} \neq N\left(p_{2}\right) \cap$ $\{a, b, q\}$, as otherwise, $S:=\left(S_{T}-\left\{p_{1}, p_{2}\right\}\right) \cup\left(N\left(p_{1}\right) \cap\{a, b, q\}\right)$ is a cut in G containing $V(T)$; so $\left(T, S, A-\left(N\left(p_{1}\right) \cap\{a, b, q\}\right), G\left[B+\left\{p_{1}, p_{2}\right\}\right]\right) \in \mathcal{Q}_{x}$, contradicting the choice of $\left(T, S_{T}, A, B\right)$ with $|V(A)|$ minimum. Hence, we may assume $N\left(p_{1}\right) \cap V(A)=\{a, q\}$ and $N\left(p_{2}\right) \cap V(A)=\{b, q\}$.

Note that $N\left(x_{i}\right) \cap V(B) \neq \emptyset$ for $i \in[2]$; for, otherwise, $S:=V\left(T^{\prime}\right) \cup\left\{q, x_{3-i}, w\right\}$ is a cut in G, and $\left(T^{\prime}, S, G\left[(A \cap D)+x_{i}\right], G\left[B+\left\{p_{1}, p_{2}\right\}\right]\right) \in \mathcal{Q}_{x}$, contradicting the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum. Moreover, we may assume $N(w) \cap V(B) \neq \emptyset$; as otherwise, $S_{T}-\{w\}$ is a 5-cut in G and $V(T) \subseteq S_{T}-\{w\}$, and the assertion of this lemma follows from Lemma 2.4.6.

We wish to prove (iii) with $x_{3}=b$. Let $y_{1}, y_{2} \in N(x)-\left\{x_{1}, x_{2}, x_{3}\right\}$ be distinct. Choose $v \in\left\{y_{1}, y_{2}\right\}-\{a\}$. We may assume $v \notin\left\{p_{1}, p_{2}\right\}$, as otherwise $G\left[T^{\prime}+v\right]$ contains K_{4}^{-}and (ii) holds. By Lemma 2.7.2, we may choose $t \in N(b) \cap V(A-a)$
such that $G\left[(A-a)+\left\{b, q, x_{1}, x_{2}, w\right\}\right]$ has independent paths $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ from t to b, x_{1}, x_{2}, w, q respectively. We distinguish four cases according to the location of v.

Case 1. $v \in V(B)$.
Let W be the component of B containing v. First, suppose $N\left(x_{i}\right) \cap W \neq \emptyset$ for $i \in[2]$. Then there exists $v^{*} \in V(W)$ such that $G\left[W+\left\{x_{1}, x_{2}\right\}\right]$ has three independent paths from v^{*} to v, x_{1}, x_{2}, respectively. Hence by Lemma 2.4.11, $G\left[W+\left(S_{T}-\{x\}\right)\right]$ has independent paths $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ from v^{*} to v, x_{1}, x_{2}, u, respectively, and internally disjoint from S_{T}, where $u \in S_{T}-\left\{x, x_{1}, x_{2}\right\}$. If $u=w$ then $T \cup\left(P_{1} \cup b x\right) \cup P_{2} \cup P_{3} \cup\left(Q_{1} \cup v x\right) \cup Q_{2} \cup Q_{3} \cup$ $\left(Q_{4} \cup P_{4}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $t, v^{*}, x, x_{1}, x_{2}$. If $u=p_{i}$ for some $i \in[2]$ then $T \cup\left(P_{1} \cup b x\right) \cup P_{2} \cup P_{3} \cup\left(Q_{1} \cup v x\right) \cup Q_{2} \cup Q_{3} \cup\left(Q_{4} \cup p_{i} q \cup P_{5}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $t, v^{*}, x, x_{1}, x_{2}$.

Thus, we may assume that $N\left(x_{1}\right) \cap W=\emptyset$. Since G is 5-connected, $N\left(x_{2}\right) \cap W \neq \emptyset$. So $G\left[W+\left(S_{T}-\left\{x_{1}\right\}\right)\right]$ has independent paths $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}$ from v to $x, x_{2}, w, p_{1}, p_{2}$, respectively. Clearly, we may assume that $Q_{1}=v x$. Since $N\left(x_{1}\right) \cap V(B) \neq \emptyset$, let W^{\prime} be a component of B with $N\left(x_{1}\right) \cap V\left(W^{\prime}\right) \neq \emptyset$. Since G is 5-connected, there exists $i \in[2]$ such that $N\left(p_{i}\right) \cap V\left(W^{\prime}\right) \neq \emptyset$. Hence, $G\left[W^{\prime}+\left\{x_{1}, p_{i}\right\}\right]$ has a path R from x_{1} to p_{i}, and, by symmetry, assume R is from x_{1} to p_{1}. Now $T \cup\left(P_{1} \cup b x\right) \cup P_{2} \cup P_{3} \cup Q_{1} \cup Q_{2} \cup\left(Q_{3} \cup\right.$ $\left.P_{4}\right) \cup\left(Q_{4} \cup R\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices t, v, x, x_{1}, x_{2}.

Case 2. $v \in V(A \cap D)$.
First, we show that $G\left[(A \cap D)+\left\{q, w, x, x_{1}, x_{2}\right\}\right]$ has independent paths $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}, P_{4}^{\prime}$, P_{5}^{\prime} from v to q, x, x_{1}, x_{2}, w, respectively (and we may assume that $P_{2}^{\prime}=v x$). This is clear if $G\left[(A \cap D)+\left\{q, w, x_{1}, x_{2}\right\}\right]$ has independent paths from v to q, x_{1}, x_{2}, w, respectively. So we may assume that $G\left[(A \cap D)+\left\{q, w, x_{1}, x_{2}\right\}\right]$ has a separation $\left(G_{1}, G_{2}\right)$ such that $\left|V\left(G_{1} \cap G_{2}\right)\right| \leq 3, v \in V\left(G_{1}-G_{2}\right)$ and $\left\{q, w, x_{1}, x_{2}\right\} \subseteq V\left(G_{2}\right)$. Then $S:=V\left(T^{\prime}\right) \cup$ $V\left(G_{1} \cap G_{2}\right)$ is a cut in G, and $\left(T^{\prime}, S, G_{1}-G_{2}, G-S-G_{1}\right) \in \mathcal{Q}_{x}$, contradicting the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum.

Suppose B has a component W such that $N\left(x_{i}\right) \cap W \neq \emptyset$ for $i \in[2]$. Then there exists $z \in V(W)$ such that $G\left[W+\left\{x_{1}, x_{2}\right\}\right]$ has independent paths from z to x_{1}, x_{2}, respectively. Hence by Lemma 2.4.11, $G\left[W+\left(S_{T}-\{x\}\right)\right]$ has four independent paths $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ from z to $x_{1}, x_{2}, u_{1}, u_{2}$, respectively, and internally disjoint from S_{T}, where $u_{1}, u_{2} \in\left\{w, p_{1}, p_{2}\right\}$ are distinct. If $\left\{u_{1}, u_{2}\right\}=\left\{w, p_{1}\right\}$ then we may assume $u_{1}=w$ and $u_{2}=p_{1}$; now $T \cup P_{2}^{\prime} \cup P_{3}^{\prime} \cup P_{4}^{\prime} \cup Q_{1} \cup Q_{2} \cup\left(Q_{3} \cup P_{5}^{\prime}\right) \cup\left(Q_{4} \cup p_{1} a b x\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices v, x, x_{1}, x_{2}, z. If $\left\{u_{1}, u_{2}\right\}=\left\{w, p_{2}\right\}$ then we may assume $u_{1}=w$ and $u_{2}=p_{2} ;$ now $T \cup P_{2}^{\prime} \cup P_{3}^{\prime} \cup P_{4}^{\prime} \cup Q_{1} \cup Q_{2} \cup\left(Q_{3} \cup P_{5}^{\prime}\right) \cup\left(Q_{4} \cup p_{2} b x\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices v, x, x_{1}, x_{2}, z. So assume $\left\{u_{1}, u_{2}\right\}=\left\{p_{1}, p_{2}\right\}$. We may further assume $u_{i}=p_{i}$ for $i \in[2]$. Then $T \cup P_{2}^{\prime} \cup P_{3}^{\prime} \cup P_{4}^{\prime} \cup Q_{1} \cup Q_{2} \cup\left(Q_{3} \cup p_{1} q \cup P_{1}^{\prime}\right) \cup\left(Q_{4} \cup p_{2} b x\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices v, x, x_{1}, x_{2}, z.

Hence, we may assume that no component of B contains neighbors of both x_{1} and x_{2}. Since G is 5 -connected, we may assume by symmetry that Z is a component of B such that $N\left(x_{1}\right) \cap V(Z)=\emptyset$ and $N\left(x_{2}\right) \cap V(Z) \neq \emptyset$. Again, since G is 5-connected, $G\left[Z+\left(S_{T}-\left\{x_{1}\right\}\right)\right]$ has five independent paths $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}$ from some $z \in V(Z)$ to $x_{2}, w, p_{1}, p_{2}, x$, respectively. Since $N\left(x_{1}\right) \cap V(B) \neq \emptyset$, let Z^{\prime} be a component of B with $N\left(x_{1}\right) \cap Z^{\prime} \neq \emptyset$. Then $N\left(x_{2}\right) \cap V\left(Z^{\prime}\right)=\emptyset$. So $G\left[Z^{\prime}+\left\{x_{1}, p_{1}\right\}\right]$ contains a path R from x_{1} to p_{1}. Now $T \cup P_{2}^{\prime} \cup P_{3}^{\prime} \cup P_{4}^{\prime} \cup\left(Q_{4} \cup p_{2} b x\right) \cup Q_{1} \cup\left(Q_{3} \cup R\right) \cup\left(Q_{2} \cup P_{5}^{\prime}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices v, x, x_{1}, x_{2}, z.

Case 3. $v=q$.
Suppose B has a component Z such that $\left\{w, x_{1}, x_{2}\right\} \subseteq N(Z)$. Then there exists $z \in$ $V(Z)$ such that $G\left[Z+\left\{w, x_{1}, x_{2}\right\}\right]$ has independent paths from z to w, x_{1}, x_{2}, respectively. By Lemma 2.4.11, $G\left[Z+\left(S_{T}-\{x\}\right)\right]$ has independent paths $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ from z to x_{1}, x_{2}, w, u, respectively, and internally disjoint from S_{T}, where $u \in\left\{p_{1}, p_{2}\right\}$. Let $S=$ $Q_{4} \cup p_{1} a b x$ if $u=p_{1}$ and $S=Q_{4} \cup p_{2} b x$ if $u=p_{2}$. Then $T \cup Q_{1} \cup Q_{2} \cup S \cup\left(P_{4} \cup Q_{3}\right) \cup$ $P_{2} \cup P_{3} \cup\left(P_{5} \cup q x\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices t, x, x_{1}, x_{2}, z.

So we may assume that no component of B is adjacent to all of x_{1}, x_{2} and w. Since $N(w) \cap V(B) \neq \emptyset$, there exists a component Z of B such that $N(w) \cap V(Z) \neq \emptyset$. Since G is 5 -connected, we may assume by symmetry that $N\left(x_{2}\right) \cap V(Z) \neq \emptyset$. Then $N\left(x_{1}\right) \cap V(Z)=\emptyset$. Since G is 5 -connected, $G\left[Z+\left(S_{T}-\left\{x_{1}\right\}\right)\right]$ has independent paths $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}$ from some $z \in V(Z)$ to $x_{2}, w, p_{1}, p_{2}, x$, respectively. Since $N\left(x_{1}\right) \cap$ $V(B) \neq \emptyset$, there exists some component Z^{\prime} of B with $N\left(x_{1}\right) \cap V\left(Z^{\prime}\right) \neq \emptyset$. Hence, $N\left(x_{2}\right) \cap V\left(Z^{\prime}\right)=\emptyset$ or $N(w) \cap V\left(Z^{\prime}\right)=\emptyset$; so $G\left[Z^{\prime}+\left\{x_{1}, p_{1}\right\}\right]$ contains a path R from x_{1} to p_{1}. Now $T \cup Q_{1} \cup\left(Q_{3} \cup R\right) \cup\left(Q_{4} \cup p_{2} b x\right) \cup\left(P_{4} \cup Q_{2}\right) \cup P_{2} \cup P_{3} \cup\left(P_{5} \cup q x\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices t, x, x_{1}, x_{2}, z.

Case 4. $v=w$.
Suppose B has a component Z such that $\left\{w, x_{1}, x_{2}\right\} \subseteq N(Z)$. Then there exists $z \in$ $V(Z)$ such that $G\left[Z+\left\{w, x_{1}, x_{2}\right\}\right]$ has three independent paths from z to w, x_{1}, x_{2}, respectively. Hence, by Lemma 2.4.11, $G\left[Z+\left(S_{T}-\{x\}\right)\right]$ has independent paths $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ from z to x_{1}, x_{2}, w, u, respectively, and internally disjoint from S_{T}, where $u=p_{i}$ for some $i \in[2]$. Then $T \cup Q_{1} \cup Q_{2} \cup\left(Q_{3} \cup w x\right) \cup\left(P_{1} \cup b x\right) \cup P_{2} \cup P_{3} \cup\left(P_{5} \cup q p_{i} \cup Q_{4}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices t, x, x_{1}, x_{2}, z.

Hence, we may assume that no component of B is adjacent to all of w, x_{1}, x_{2}. Since $N(w) \cap V(B) \neq \emptyset, B$ has a component Z such that $N(w) \cap V(Z) \neq \emptyset$. Since G is 5connected, we may assume by symmetry that $N\left(x_{2}\right) \cap V(Z) \neq \emptyset$. Then $N\left(x_{1}\right) \cap V(Z)=\emptyset$. Since G is 5-connected, $G\left[Z+\left(S_{T}-\left\{x_{1}\right\}\right)\right]$ has five independent paths $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}$ from z to $x_{2}, w, p_{1}, p_{2}, x$, respectively. Since $N\left(x_{1}\right) \cap V(B) \neq \emptyset, B$ has a component Z^{\prime} such that $N\left(x_{1}\right) \cap V\left(Z^{\prime}\right) \neq \emptyset$. Then $N\left(x_{2}\right) \cap V\left(Z^{\prime}\right)=\emptyset$ or $N(w) \cap V\left(Z^{\prime}\right)=\emptyset$; so $G\left[Z^{\prime}+\left\{x_{1}, p_{1}\right\}\right]$ contains a path R from x_{1} to p_{1}. Now $T \cup Q_{1} \cup\left(Q_{2} \cup w x\right) \cup\left(Q_{3} \cup R\right) \cup$ $\left(P_{1} \cup b x\right) \cup P_{2} \cup P_{3} \cup\left(P_{5} \cup q p_{2} \cup Q_{4}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices t, x, x_{1}, x_{2}, z.

We end this section with the following lemma which deals with another special case when $\left(T, S_{T}, A, B\right) \in \mathcal{Q}_{x}$ with $|V(A)|$ minimum, $\left(T^{\prime}, S_{T^{\prime}}, C, D\right) \in \mathcal{Q}_{x}$ with $T^{\prime} \cap A \neq \emptyset$, and $A \cap C=\emptyset$.

Lemma 2.7.5 Let G be a 5-connected nonplanar graph and $x \in V(G)$ such that for any $H \subseteq G$ with $x \in V(H)$ and $H \cong K_{2}$ or $H \cong K_{3}, G / H$ is not 5 -connected. Let $\left(T, S_{T}, A, B\right) \in \mathcal{Q}_{x}$ with $|V(A)|$ minimum, and $\left(T^{\prime}, S_{T^{\prime}}, C, D\right) \in \mathcal{Q}_{x}$ with $T^{\prime} \cap A \neq \emptyset$. Suppose $A \cap C=\emptyset,\left|S_{T}\right|=6,\left|S_{T^{\prime}}\right|=6, V\left(T^{\prime}\right) \cap S_{T}=\{x, b\}, V\left(T^{\prime} \cap A\right)=S_{T^{\prime}} \cap V(A)=\{a\}$ and $V(C) \cap S_{T}=\emptyset$. Then, one of the following holds:
(i) G contains a $T K_{5}$ in which x is not a branch vertex.
(ii) G contains K_{4}^{-}.
(iii) There exist distinct $x_{1}, x_{2} \in N(x)$ such that for any distinct $y_{1}, y_{2} \in N(x)-$ $\left\{b, x_{1}, x_{2}\right\}, G^{\prime}:=G-\left\{x v: v \notin\left\{x_{1}, x_{2}, b, y_{1}, y_{2}\right\}\right\}$ contains $T K_{5}$.

Proof. By assumption, $V\left(T^{\prime}\right)=\{a, b, x\}$ with $a \in V(A)$ and $b, x \in S_{T} \cap S_{T^{\prime}}$. Let $V(T)=\left\{x, x_{1}, x_{2}\right\}$ and $S_{T}=\left\{b, x, x_{1}, x_{2}, x_{3}, x_{4}\right\}$. We wish to prove (iii) with $x_{3}=b$; so let $y_{1}, y_{2} \in N(x)-\left\{b, x_{1}, x_{2}\right\}$ be distinct. Let $v \in\left\{y_{1}, y_{2}\right\}-\{a\}$.

Note that $B \cap C \neq \emptyset$ as $S_{T^{\prime}}$ is a cut. So $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)\right| \geq 5$. Moreover, we may assume $A \cap D \neq \emptyset$ by Lemma 2.6.1. So $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(B \cup C)\right| \geq 7$ by the minimality of $|V(A)|$. Since $\left|S_{T}\right|=\left|S_{T^{\prime}}\right|=6$,

$$
\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)\right|=5 \text { and }\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(B \cup C)\right|=7
$$

We may assume that $N\left(x_{i}\right) \cap V(B) \neq \emptyset$ for $i \in[2]$. For, suppose this is not true and by symmetry assume $N\left(x_{1}\right) \cap V(B)=\emptyset$. Let $S=\left(S_{T}-\left\{x_{1}\right\}\right) \cup\{a\}, C^{\prime}=B$, and $D^{\prime}=G\left[(A-a)+x_{1}\right]$. Then $\left(T^{\prime}, S, C^{\prime}, D^{\prime}\right) \in \mathcal{Q}_{x}$. We now apply Lemma 2.6.6 to $\left(T, S_{T}, A, B\right)$ and $\left(T^{\prime}, S, C^{\prime}, D^{\prime}\right)$. Note that $\left|S \cap S_{T}\right|=5, V\left(A \cap C^{\prime}\right)=S_{T} \cap V\left(C^{\prime}\right)=$ $S \cap V(B)=V\left(B \cap D^{\prime}\right)=\emptyset$, and $|S \cap V(A)|=\left|S_{T} \cap V\left(D^{\prime}\right)\right|=\left|V\left(T \cap D^{\prime}\right)\right|=1$. To verify the other condition in Lemma 2.6.6, let $\left(H, S_{H}, C_{H}, D_{H}\right) \in \mathcal{Q}_{x}$ such that $H \cong K_{2}$ or $H \cong K_{3}$. Then we may assume that $H \cong K_{3}$ when $H \cap A \neq \emptyset$ (by Lemma 2.6.4) and that $|V(H \cap A)| \leq 1$ (by Lemmas 2.7.3 and 2.7.4). Therefore, the assertion of this lemma
follows from Lemma 2.6.6. Hence, we may assume $N\left(x_{i}\right) \cap B \neq \emptyset$ for $i \in[2]$.
We may assume that for any component W of $B, N(b) \cap W \neq \emptyset$; for, otherwise, $S_{T}-\{b\}$ is a 5 -cut in G, and the assertion of this lemmas follows from Lemma 2.4.6. We consider three cases according to the location of v.

Case 1. $v \in V(B)$.
Let B_{v} be the component of B containing v. First, suppose $N\left(x_{i}\right) \cap V\left(B_{v}\right) \neq \emptyset$ for $i \in[2]$. Then $G\left[B_{v}+\left\{x_{1}, x_{2}\right\}\right]$ has independent paths from some $v^{*} \in V\left(B_{v}\right)$ to v, x_{1}, x_{2}, respectively. Thus, by Lemma 2.4.11, $G\left[B_{v}+S_{T}-x\right]$ has independent paths $P_{1}, P_{2}, P_{3}, P_{4}$ from v^{*} to v, x_{1}, x_{2}, u, respectively, and internally disjoint from S_{T}, where $u \in\left\{b, x_{3}, x_{4}\right\}$. Suppose $u=b$. By Lemma 2.7.2, we may assume that $G\left[A+\left\{b, x_{1}, x_{2}\right\}\right]$ contains independent paths R_{1}, R_{2} from b to x_{1}, x_{2}, respectively. Then $T \cup R_{1} \cup R_{2} \cup$ $b x \cup\left(P_{1} \cup v x\right) \cup P_{2} \cup P_{3} \cup P_{4}$ is a $T K_{5}$ in G^{\prime} with branch vertices $b, v^{*}, x, x_{1}, x_{2}$. So we may assume by symmetry that $u=x_{3}$. By Lemma 2.7.2 again, we may choose $t \in N(b) \cap$ $V(A-a)$ and let $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}$ be independent paths in $G\left[(A-a)+\left\{b, x_{1}, x_{2}, x_{3}, x_{4}\right\}\right]$ from t to $b, x_{1}, x_{2}, x_{3}, x_{4}$, respectively. Then, $T \cup\left(Q_{1} \cup b x\right) \cup Q_{2} \cup Q_{3} \cup\left(P_{1} \cup v x\right) \cup P_{2} \cup$ $P_{3} \cup\left(P_{4} \cup Q_{4}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $t, v^{*}, x, x_{1}, x_{2}$.

Therefore, we may assume by symmetry that $N\left(x_{1}\right) \cap V\left(B_{v}\right)=\emptyset$. Since G is 5 connected, $G\left[B_{v}+S_{T}-x_{1}\right]$ has independent paths $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ from v to $x, b, x_{2}, x_{3}, x_{4}$, respectively, and we may assume that $P_{1}=v x$. Since $N\left(x_{1}\right) \cap V(B) \neq \emptyset, B$ has a component $B_{x_{1}}$ such that $N\left(x_{1}\right) \cap V\left(B_{x_{1}}\right) \neq \emptyset$. Again, since G is 5-connected, $N\left(x_{j}\right) \cap V\left(B_{x_{1}}\right) \neq$ \emptyset for some $j \in\{3,4\}$, and we may assume $j=3$. Then $G\left[B_{x_{1}}+\left\{x_{1}, x_{3}\right\}\right]$ contains a path Q from x_{1} to x_{3}. Let $t \in N(b) \cap V(A-a)$. By Lemma 2.7.2, we may assume that $G\left[(A-a)+\left\{b, x_{1}, x_{2}, x_{3}, x_{4}\right\}\right]$ has independent paths $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}$ from t to $b, x_{1}, x_{2}, x_{3}, x_{4}$, respectively. Then $T \cup\left(Q_{1} \cup b x\right) \cup Q_{2} \cup Q_{3} \cup\left(P_{5} \cup Q_{5}\right) \cup\left(P_{4} \cup Q\right) \cup P_{1} \cup P_{3}$ is a $T K_{5}$ in G^{\prime} with branch vertices t, v, x, x_{1}, x_{2}.

Case 2. $v \in V(A \cap D)$.

We claim that $G\left[(A-a)+\left\{x, x_{1}, x_{2}, x_{3}, x_{4}\right\}\right]$ has independent paths $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ from v to $x, x_{1}, x_{2}, x_{3}, x_{4}$, respectively (and we may assume $P_{1}=v x$). This is clear if $G\left[(A-a)+\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right]$ has independent paths from v to $x_{1}, x_{2}, x_{3}, x_{4}$, respectively; so we may assume such paths do not exist. Then there exists a separation $\left(G_{1}, G_{2}\right)$ in $G[(A-$ $\left.a)+\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right]$ such that $\left|V\left(G_{1} \cap G_{2}\right)\right| \leq 3, v \in V\left(G_{1}-G_{2}\right)$, and $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \subseteq$ $V\left(G_{2}\right)$. Let $S:=V\left(G_{1} \cap G_{2}\right) \cup V\left(T^{\prime}\right)$, which is a cut in G of size at most 6 . Since G is 5 -connected, $\left|V\left(G_{1} \cap G_{2}\right)\right| \geq 2$. Then, $\left(T^{\prime}, S, G_{1}-G_{2},(G-S)-G_{1}\right) \in \mathcal{Q}_{x}$ and $1 \leq\left|V\left(G_{1}-G_{2}\right)\right| \leq|V(A-a)|<|V(A)|$, contradicting the choice of $\left(T, S_{T}, A, B\right)$ that $|V(A)|$ is minimum.

Suppose that B has a component W such that $N\left(x_{i}\right) \cap V(W) \neq \emptyset$ for $i \in[2]$. Then there exists $w \in V(W)$ such that $G[W+b]$ has independent paths from w to x_{1}, x_{2}, b, respectively. By Lemma 2.4.11, $G\left[B+S_{T}\right]$ has independent paths $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}$ from w to $x_{1}, x_{2}, b, u_{1}, u_{2}$, respectively, and internally disjoint from S_{T}, where $u_{1}, u_{2} \in$ $\left\{x, x_{3}, x_{4}\right\}$ are distinct. By symmetry, we may assume $u_{1}=x_{3}$. Then $T \cup P_{1} \cup P_{2} \cup P_{3} \cup$ $Q_{1} \cup Q_{2} \cup\left(Q_{3} \cup b x\right) \cup\left(Q_{4} \cup P_{4}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices v, w, x, x_{1}, x_{2}.

Hence, we may assume that no component of B is adjacent to both x_{1} and x_{2}. Let W be a component of B such that $N\left(x_{2}\right) \cap V(W) \neq \emptyset$. Then $N\left(x_{1}\right) \cap V(W)=\emptyset$. Since G is 5-connected, $G\left[W+S_{T}-x_{1}\right]$ has independent paths $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}$ from some $w \in V(W)$ to $b, x_{2}, x_{3}, x_{4}, x$, respectively. Since $N\left(x_{1}\right) \cap V(B) \neq \emptyset, B$ has a component B_{x} such that $N\left(x_{1}\right) \cap V\left(B_{x}\right) \neq \emptyset$. Then $N\left(x_{2}\right) \cap V\left(B_{x}\right)=\emptyset$. Again, since G is 5connected, $G\left[B_{x}+\left\{x_{1}, x_{3}\right\}\right]$ contains a path R from x_{1} to x_{3}. Now $T \cup P_{1} \cup P_{2} \cup P_{3} \cup$ $\left(Q_{1} \cup b x\right) \cup Q_{2} \cup\left(Q_{3} \cup R\right) \cup\left(Q_{4} \cup P_{5}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices v, w, x, x_{1}, x_{2}.

Case 3. $v \in S_{T}$.
We may assume that $v=x_{3}$. By Lemma 2.7.2, we may assume $t \in N(b) \cap V(A-$ a) and $G\left[(A-a)+\left\{b, x_{1}, x_{2}, x_{3}, x_{4}\right\}\right]$ has independent paths $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ from t to $b, x_{1}, x_{2}, x_{3}, x_{4}$, respectively, with $P_{1}=t b$. Also by Lemma 2.7.2, we may assume that $G\left[A+\left\{b, x_{1}, x_{2}\right\}\right]$ has independent paths Q_{1}, Q_{2} from b to x_{1}, x_{2}, respectively.

Suppose B has a component W such that $\left\{x_{1}, x_{2}\right\} \subseteq N(W)$. Then there exists $w \in$ $V(W)$ such that $G\left[W+\left\{b, x_{1}, x_{2}\right\}\right]$ has independent paths from w to b, x_{1}, x_{2}, respectively. So by Lemma 2.4.11, $G\left[B+S_{T}\right]$ has independent paths $R_{1}, R_{2}, R_{3}, R_{4}, R_{5}$ from w to $x_{1}, x_{2}, b, u_{1}, u_{2}$, respectively, and internally disjoint from S_{T}, where $u_{1}, u_{2} \in\left\{x, x_{3}, x_{4}\right\}$ are distinct. Assume by symmetry that $u_{1} \in\left\{x_{3}, x_{4}\right\}$. If $u_{1}=x_{3}$, then $T \cup b x \cup Q_{1} \cup Q_{2} \cup$ $R_{1} \cup R_{2} \cup R_{3} \cup\left(R_{4} \cup x_{3} x\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices b, w, x, x_{1}, x_{2}. If $u_{1}=x_{4}$, then $T \cup\left(P_{4} \cup x_{3} x\right) \cup P_{2} \cup P_{3} \cup R_{1} \cup R_{2} \cup\left(R_{3} \cup b x\right) \cup\left(R_{4} \cup P_{5}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices t, w, x, x_{1}, x_{2}.

Thus, we may assume that no component of B is adjacent to both x_{1} and x_{2}. Since G is 5-connected, we may assume by symmetry that W is a component of B such that $N\left(x_{2}\right) \cap$ $V(W) \neq \emptyset$ and $N\left(x_{1}\right) \cap V(W)=\emptyset$. Let $w \in V(W)$. Since G is 5-connected, $G[W+$ $\left.S_{T}-x_{1}\right]$ has independent paths $R_{1}, R_{2}, R_{3}, R_{4}, R_{5}$ from w to $x, x_{2}, x_{3}, x_{4}, b$, respectively. Since $N\left(x_{1}\right) \cap B \neq \emptyset, B$ has a component B_{x} such that $N\left(x_{1}\right) \cap V\left(B_{x}\right) \neq \emptyset$. Then $N\left(x_{2}\right) \cap V\left(B_{x}\right)=\emptyset$. Since G is 5-connected, $G\left[B_{x}+\left\{x_{1}, x_{4}\right\}\right]$ contains a path R from x_{1} to x_{4}. Now $T \cup b x \cup Q_{1} \cup Q_{2} \cup R_{2} \cup\left(R_{3} \cup x_{3} x\right) \cup R_{5} \cup\left(R_{4} \cup R\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices b, w, x, x_{1}, x_{2}.

2.8 Proof of Theorem 1.2.1

In this section, we complete the proof of Theorem 1.2.1, using the lemmas we have proved so far. Let G be a 5 -connected nonplanar graph. We proceed to find a $T K_{5}$ in G. By Lemma 2.4.1, we may assume that
(1) G contains no K_{4}^{-}.

Let M denote a maximal connected subgraph of G such that

$$
H:=G / M \text { is 5-connected and nonplanar, and contains no } K_{4}^{-} .
$$

Note that $|V(M)|=1$ (i.e., $H=G$) is possible. Let x denote the vertex of H resulting from the contraction of M. Then, for any $T \subseteq H$ with $x \in V(T)$ and $T \cong K_{2}$ or $T \cong K_{3}$, one of the following holds:

H / T contains K_{4}^{-}, or H / T is planar, or H / T is not 5-connected.

For convenience, we will use x_{T} to denote the vertex of H / T resulting from the contraction of T. We may assume that
(2) for any $T \subseteq H$ with $x \in V(T)$ and $T \cong K_{2}$ or $T \cong K_{3}$, if F is a $T K_{5}$ in H / T then x_{T} is a branch vertex of F.

For, suppose that F is a $T K_{5}$ in H / T in which x_{T} is not a branch vertex. If $x_{T} \notin V(F)$ then F is also $T K_{5}$ in G. So assume $x_{T} \in V(T)$. Let $u, v \in V(F)$ such that $x_{T} u, x_{T} v \in E(F)$. Since M is connected, $G[M+\{u, v\}]$ has a path P from u to v. Thus, $(F-x) \cup P$ is a $T K_{5}$ in G. So we may assume (2).

Suppose there exists $T \subseteq V(H)$ with $x \in V(T)$ and $T \cong K_{2}$ or $T \cong K_{3}$, such that H / T is 5 -connected and planar. Then by Lemma 2.4.9, $H-T$ contains K_{4}^{-}, contradicting (1). So
(3) for any $T \subseteq H$ with $x \in V(T)$ and $T \cong K_{2}$ or $T \cong K_{3}$, if H / T is 5-connected then H / T is nonplanar.

We now show that
(4) if $T \subseteq H$ with $x \in V(T)$ and $T \cong K_{2}$ or $T \cong K_{3}$ and if $x_{1}, x_{2}, x_{3} \in N_{H / T}\left(x_{T}\right)$ such that $H / T-\left\{x_{T} v: v \notin\left\{u_{1}, u_{2}, x_{1}, x_{2}, x_{3}\right\}\right\}$ contains $T K_{5}$ for every choice of distinct $u_{1}, u_{2} \in N_{H / T}\left(x_{T}\right)-\left\{x_{1}, x_{2}, x_{3}\right\}$, then G contains $T K_{5}$.

To prove (4), let $A=N_{G}(M \cup T)=N_{H / T}\left(x_{T}\right)$. Consider the subgraph $G[M \cup T+A]$. Since $M \cup T$ is connected, there is a vertex $v \in V(M \cup T)$ such that $G\left[M \cup T+\left\{x_{1}, x_{2}, x_{3}\right\}\right]$
has independent paths from v to x_{1}, x_{2}, x_{3}, respectively. Since G is 5-connected, $G[M \cup$ $T+A]$ has five independent paths from v to A with only v in common and internally disjoint from A. Hence, by Lemma 2.4.11, there exist distinct $u_{1}, u_{2} \in A-\left\{x_{1}, x_{2}, x_{3}\right\}$ such that $G[M \cup T+A]$ has five independent paths $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ from v to $x_{1}, x_{2}, x_{3}, u_{1}, u_{2}$, respectively, and internally disjoint from A. Now suppose F is a $T K_{5}$ in $H / T-\left\{x_{T} v\right.$: $\left.v \notin\left\{x_{1}, x_{2}, x_{3}, u_{1}, u_{2}\right\}\right\}$. Then $F-x_{T}$ and the four paths among $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ corresponding to the four edges at x_{T} in F form a $T K_{5}$ in G. Hence, we may assume (4).

By (3), we have two cases: for some $T \subseteq H$ with $x \in V(T)$ and $T \cong K_{2}$ or $T \cong K_{3}$, H / T is 5-connected and nonplanar but contains K_{4}^{-}; or for every $T \subseteq H$ with $x \in V(T)$ and $T \cong K_{2}$ or $T \cong K_{3}, H / T$ is not 5 -connected.

Case 1 . There exists $T \subseteq H$ with $x \in V(T)$ and $T \cong K_{2}$ or $T \cong K_{3}$ such that H / T is 5-connected and nonplanar, and H / T contains K_{4}^{-}.

Let $K \subseteq H / T$ such that $K \cong K_{4}^{-}$, and let $V(K)=\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ with $y_{1} y_{2} \notin E(H)$. By (1), $x_{T} \in V(K)$.

Subcase 1.1. x_{T} has degree 2 in K.
Then we may assume that the notation is chosen so that $x_{T}=y_{2}$. By Lemma 2.4.2, one of the following holds:
(i) H / T contains a $T K_{5}$ in which x_{T} is not a branch vertex.
(ii) $H / T-x_{T}$ contains K_{4}^{-}.
(iii) H / T has a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{x_{T}, a_{1}, a_{2}, a_{3}, a_{4}\right\}$, and G_{2} is the graph obtained from the edge-disjoint union of the 8 -cycle $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4} a_{1}$ and the 4 -cycle $b_{1} b_{2} b_{3} b_{4} b_{1}$ by adding x_{T} and the edges $x_{T} b_{i}$ for $i \in[4]$.
(iv) For $w_{1}, w_{2}, w_{3} \in N_{H / T}\left(x_{T}\right)-\left\{x_{1}, x_{2}\right\}, H / T-\left\{x_{T} v: v \notin\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}\right\}$ contains $T K_{5}$.

Note that (i) does not occur because of (2), and (ii) does not occur because of (1).

Now suppose (iii) occurs. First, assume $\left|V\left(G_{1}\right)\right| \geq 7$. Then by Lemma 2.4.3, for any $u_{1}, u_{2} \in N\left(x_{T}\right)-\left\{b_{1}, b_{2}, b_{3}\right\}, H / T-\left\{x_{T} v: v \notin\left\{b_{1}, b_{2}, b_{3}, u_{1}, u_{2}\right\}\right\}$ contains $T K_{5}$. Hence, by (4) (with x_{i} as b_{i} for $i \in[3]$), G contains $T K_{5}$. So we may assume that $\left|V\left(G_{1}\right)\right|=6$, and let $v \in V\left(G_{1}-G_{2}\right)$. By (1), $a_{i} a_{i+1} \notin E(G)$ for $i \in[4]$, where $a_{5}=a_{1}$. Hence, since G is 5-connected, $a_{1} a_{3}, a_{2} a_{4} \in E(G)$. Now $\left(H-x_{T}\right)-\left\{a_{1} v, a_{1} b_{4}, a_{4} v, a_{4} b_{4}\right\}$ is a $T K_{5}$ with branch vertices $a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$, contradicting (2).

Finally, suppose (iv) holds. Then, by (4) (with w_{1}, w_{2}, w_{3} as x_{3}, u_{1}, u_{2}, respectively), we see that G contains $T K_{5}$.

Subcase 1.2. x_{T} has degree 3 in K.
Then we may assume that the notation is chosen so that $x_{T}=x_{1}$. By Lemma 2.4.4, one of the following holds:
(i) H / T contains a $T K_{5}$ in which x_{T} is not a branch vertex.
(ii) $H / T-x_{T}$ contains K_{4}^{-}, or H / T contains a K_{4}^{-}in which x_{T} is of degree 2.
(iii) x_{2}, y_{1}, y_{2} may be chosen so that for any distinct $z_{0}, z_{1} \in N_{H / T}\left(x_{T}\right)-\left\{x_{2}, y_{1}, y_{2}\right\}$, $H / T-\left\{x_{T} v: v \notin\left\{z_{0}, z_{1}, x_{2}, y_{1}, y_{2}\right\}\right\}$ contains $T K_{5}$.

By (2), (i) does not occur. If (ii) holds then, by (1), H / T contains K_{4}^{-}in which x_{T} is of degree 2; and we are back in Subcase 1.1. If (iii) holds then G contains $T K_{5}$ by (4).

Case 2. H / T is not 5-connected for each $T \subseteq H$ with $x \in V(T)$ and $T \cong K_{2}$ or $T \cong K_{3}$.

Let \mathcal{Q}_{x} denote the set of all quadruples $\left(T, S_{T}, A, B\right)$, such that

- $T \subseteq V(H), x \in V(T)$, and $T \cong K_{2}$ or $T \cong K_{3}$,
- S_{T} is a cut in H with $V(T) \subseteq S_{T}, A$ is a nonempty union of components of $H-S_{T}$, and $B=H-S_{T}-A \neq \emptyset$,
- if $T \cong K_{3}$ then $5 \leq\left|S_{T}\right| \leq 6$, and
- if $T \cong K_{2}$ then $\left|S_{T}\right|=5,|V(A)| \geq 2$, and $|V(B)| \geq 2$.

Among all the quadruples in \mathcal{Q}_{x}, we select $\left(T, S_{T}, A, B\right)$ such that $|V(A)|$ is minimum.
Since $K_{4}^{-} \nsubseteq H, T \cong K_{3}$ (by Lemma 2.6.3) and there exists $a \in V(A)$ such that $a x \in E(H)$ (by Lemma 2.6 .5 and by (2) and (4)). By Lemma 2.6.2, there exists $T^{\prime} \subseteq H$ such that $x \in V\left(T^{\prime}\right)$ and $T^{\prime} \cong K_{2}$ or $T^{\prime} \cong K_{3}$, and there exists $\left(T^{\prime}, S_{T^{\prime}}, C, D\right) \in \mathcal{Q}_{x}$. Again since $K_{4}^{-} \nsubseteq H, T^{\prime} \cong K_{3}$ by Lemma 2.6.4 and by (2) and (4).

We may assume, without loss of generality, that $T \cap C=\emptyset$. Hence, by Lemma 2.7.1 and by (2) and (4), $A \cap C=\emptyset$ (since $K_{4}^{-} \nsubseteq H$). We may assume $B \cap C \neq \emptyset$; for otherwise, $|V(A)| \leq|V(C)|=\left|V(C) \cap S_{T}\right| \leq 3$ and, by Lemma 2.6.1, H contains K_{4}^{-}, a contradiction.

We may assume that $\left|V\left(T^{\prime}\right) \cap S_{T}\right|=2$ for any choice of $\left(T^{\prime}, S_{T^{\prime}}, C, D\right) \in \mathcal{Q}_{x}$ with $T^{\prime} \cap A \neq \emptyset$; otherwise, by Lemmas 2.7.3 and 2.7.4, we derive a contradiction to (2), or (4), or the fact $K_{4}^{-} \nsubseteq H$. Hence, since $K_{4}^{-} \nsubseteq H$, we have $A \cap D \neq \emptyset$ by Lemma 2.6.1.

Note that $\left|S_{T}\right|=\left|S_{T^{\prime}}\right|=6$; for otherwise, by Lemma 2.4.6, we derive a contradiction to (2), or (4), or the fact $K_{4}^{-} \nsubseteq H$. We claim that $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(B \cup C)\right|=7$ and $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)\right|=5$. First, note that $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(B \cup C)\right| \geq 7$; otherwise, $\left(T^{\prime},\left(S_{T} \cup S_{T^{\prime}}\right)-V(B \cup C), A \cap D, G[B \cup C]\right) \in \mathcal{Q}_{x}$ and $1 \leq|V(A \cap D)|<|V(A)|$, contradicting the choice of $\left(T, S_{T}, A, B\right)$ with $|V(A)|$ minimum. Since H is 5-connected and $B \cap C \neq \emptyset,\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)\right| \geq 5$. So the claim follows from the fact that $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(B \cup C)\right|+\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)=\left|S_{T}\right|+\left|S_{T^{\prime}}\right|=12\right.$.

If $S_{T} \cap V(C)=\emptyset$ for some choice $\left(T^{\prime}, S_{T^{\prime}}, C, D\right)$ then $\left|S_{T^{\prime}} \cap V(A)\right|=1$ as $\left|S_{T^{\prime}}\right|=6$ and $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)\right|=5$; so by Lemma 2.7.5, we derive a contradiction to (2), or (4), or the fact $K_{4}^{-} \nsubseteq H$.

Hence, we may assume that

$$
S_{T} \cap V(C) \neq \emptyset
$$

for any choice of $\left(T^{\prime}, S_{T^{\prime}}, C, D\right) \in \mathcal{Q}_{x}$ with $T^{\prime} \cap A \neq \emptyset$. Then $2 \leq\left|S_{T} \cap S_{T^{\prime}}\right| \leq 4$ as $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)\right|=5$.

Suppose $\left|S_{T} \cap S_{T^{\prime}}\right|=4$. Then $\left|S_{T^{\prime}} \cap V(B)\right|=0$ and $\left|S_{T} \cap V(C)\right|=1$, as $\mid\left(S_{T} \cup S_{T^{\prime}}\right)$ $V(A \cup D) \mid=5$. Since $\left|S_{T}\right|=\left|S_{T^{\prime}}\right|=6,\left|S_{T} \cap V(D)\right|=1$ and $\left|S_{T^{\prime}} \cap V(A)\right|=2$. Hence, $B \cap D \neq \emptyset$ (since $|V(D)| \geq V(A) \mid)$. So $S_{T}-V(C)$ is a 5-cut in H and $V(T) \subseteq S_{T}-V(C)$. Note $|V(B \cap D)| \geq 2$; for otherwise, since H is 5-connected, $H[T \cup(B \cap D)]$ contains K_{4}^{-}, a contradiction. Hence, by Lemma 2.4.6, we derive a contradiction to (2), or (4), or the fact $K_{4}^{-} \nsubseteq H$.

Now assume $\left|S_{T} \cap S_{T^{\prime}}\right|=3$. Then, $\left|S_{T^{\prime}} \cap V(B)\right| \leq 1$ as $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)\right|=5$ and $\left|S_{T} \cap V(C)\right|>0$. Suppose $\left|S_{T^{\prime}} \cap V(B)\right|=0$. Then $\left|S_{T^{\prime}} \cap V(A)\right|=3$ as $\left|S_{T^{\prime}}\right|=6$. So $\left|S_{T} \cap V(D)\right|=1$ since $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(B \cup C)\right|=7$. Thus, since H is 5-connected, $B \cap D=$ \emptyset. However, this implies that $|V(D)|<|V(A)|$, a contradiction. So $\left|S_{T^{\prime}} \cap V(B)\right|=1$. Then $\left|S_{T^{\prime}} \cap V(A)\right|=2$ as $\left|S_{T^{\prime}}\right|=6$, and $\left|S_{T} \cap V(C)\right|=1$ as $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)\right|=5$. Let $q \in S_{T^{\prime}} \cap V\left(A-T^{\prime}\right), S^{\prime}:=\left(S_{T^{\prime}}-\{q\}\right) \cup\left(S_{T} \cap V(C)\right), C^{\prime}:=B \cap C$, and $D^{\prime}=G[D+q]$. Then $\left(T^{\prime}, S^{\prime}, C^{\prime}, D^{\prime}\right) \in \mathcal{Q}_{x}$ with $T^{\prime} \cap A \neq \emptyset$ and $T \cap C^{\prime}=\emptyset$, However, $S_{T} \cap V\left(C^{\prime}\right)=\emptyset$, a contradiction.

Finally, assume $\left|S_{T} \cap S_{T^{\prime}}\right|=2$. Suppose $\left|S_{T} \cap V(C)\right| \geq 2$. Then $\left|S_{T^{\prime}} \cap V(B)\right| \leq 1$ (as $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)\right|=5$), and $\left|S_{T^{\prime}} \cap V(A)\right| \geq 3$ (as $\left|S_{T^{\prime}}\right|=6$). So $B \cap D \neq \emptyset$ as $|V(D)| \geq|V(A)|$. Hence, $\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup C)$ is a 5-cut in H and contains $V(T)$. If $|V(B \cap D)|=1$ then, since H is 5-connected, $H[T \cup(B \cap D)]$ contains K_{4}^{-}, a contradiction. So $|V(B \cap D)| \geq 2$. Then, by Lemma 2.4.6, we derive a contradiction to (2), or (4), or the fact $K_{4}^{-} \nsubseteq H$. Therefore, we may assume $\left|S_{T} \cap V(C)\right|=1$. Hence, $\left|S_{T} \cap V(D)\right|=3$ (as $\left.\left|S_{T}\right|=6\right),\left|S_{T^{\prime}} \cap V(B)\right|=2\left(\right.$ as $\left|\left(S_{T} \cup S_{T^{\prime}}\right)-V(A \cup D)\right|=5$), and $\left|S_{T^{\prime}} \cap V(A)\right|=2$ (as $\left|S_{T^{\prime}}\right|=6$). Let $q \in S_{T^{\prime}} \cap V\left(A-T^{\prime}\right), S^{\prime}:=\left(S_{T^{\prime}}-\{q\}\right) \cup\left(S_{T} \cap V(C)\right), C^{\prime}:=B \cap C$, and $D^{\prime}=G[D+q]$. Then $\left(T^{\prime}, S^{\prime}, C^{\prime}, D^{\prime}\right) \in \mathcal{Q}_{x}$ with $T^{\prime} \cap A \neq \emptyset$ and $T \cap C^{\prime}=\emptyset$, However, $S_{T} \cap V\left(C^{\prime}\right)=\emptyset$, a contradiction.

REFERENCES

[1] R. Diestel, Graph theory (4th ed.) Springer, 2010.
[2] K. Kuratowski, "Sur le probleme des courbes gauches en topologie," Fund. Math., vol. 15, pp. 271-283, 1930.
[3] K. Wagner, "Über eine erweiterung eines satzes von Kuratowski," Deutsche Mathematik, vol. 2, pp. 280-285, 1937.
[4] A. K. Kelmans, "Every minimal counterexample to the Dirac conjecture is 5-connected," Lectures to the Moscow Seminar on Discrete Mathematics, 1979.
[5] P. D. Seymour, "Private communication through X. Yu,"
[6] G. A. Dirac, "Homomorphism theorems for graphs," Math. Ann., vol. 153, pp. 6980, 1964.
[7] P. Erdős and H. Hajnal, "On complete topological subgraphs of certain graphs," Ann. Univ. Sci. Budapest, Sect. Math., vol. 7, pp. 143-149, 1964.
[8] A. E. Kézdy and P. J. McGuiness, "Do $3 n-5$ edges suffice for a subdivision of K_{5} ?" J. Graph Theory, vol. 15, pp. 389-406, 1991.
[9] Z. Skupień, "On the locally hamiltonian graphs and kuratowski's theorem," Roczniki PTM, Prace Math., vol. 11, pp. 255-268, 1968.
[10] C. Thomassen, "Some homeomorphism properties of graphs," Math. Nachr., vol. 64, pp. 119-133, 1974.
[11] _-, " K_{5}-subdivisions in graphs," Combinatorics, Probability and Computing, vol. 5, pp. 179-189, 1996.
[12] -_, "Dirac's conjecture on K_{5}-subdivisions," Discrete Math., vol. 165, pp. 607608, 1997.
[13] W. Mader, " $3 n-5$ Edges do force a subdivision of K_{5}," Combinatorica, vol. 18, pp. 569-595, 1998.
[14] C. Thomassen, "Some remarks on Hajós' conjecture," J. Combin. Theory Ser. B, vol. 93, pp. 95-105, 2005.
[15] D. Kühn and D. Osthus, "Topological minors in graphs of large girth," J. Combin. Theory Ser. B, vol. 86, pp. 364-380, 2002.
[16] X. Yu and F. Zickfeld, "Reducing Hajós’ coloring conjecture," J. Combin. Theory Ser. B, vol. 96, pp. 482-492, 2006.
[17] Y. Sun and X. Yu, "On a Coloring Conjecture of Hajós," Graphs and Combinatorics, vol. 32, pp. 351-361, 2015.
[18] G. A. Dirac, "A property of 4-chromatic graphs and some remarks on critical graphs," J. London Math. Soc., Ser. B, vol. 27, pp. 85-92, 1952.
[19] P. A. Catlin, "Hajós' graph coloring conjecture: variations and counterexamples," J. Combin. Theory Ser. B, vol. 26, pp. 268-274, 1979.
[20] P. Erdős and S. Fajtlowicz, "On the conjecture of Hajós," Combinatorica, vol. 1, pp. 141-143, 1981.
[21] J. Fox, C. Lee, and B. Sudakov, "Chromatic number, clique subdivisions, and the conjecture of Hajós," Combinatorica, vol. 33, pp. 181-197, 2013.
[22] D. He, Y. Wang, and X. Yu, "The Kelmans-Seymour conjecture I, special separations," Submitted, arXiv: 1511.05020.
[23] —_, "The Kelmans-Seymour conjecture II, 2-vertices in K_{4}^{-}," Submitted, arXiv: 1602.07557.
[24] -_, "The Kelmans-Seymour conjecture III, 3-vertices in K_{4}^{-}," Submitted, arXiv: 1609.05747.
[25] J. Ma and X. Yu, "Independent paths and K_{5}-subdivisions," J. Combin. Theory Ser. B, vol. 100, pp. 600-616, 2010.
[26] -_, " K_{5}-Subdivisions in graphs containing K_{4}^{-}," J. Combin. Theory Ser. B, vol. 103, pp. 713-732, 2013.
[27] E. Aigner-Horev, "Subdivisions in apex graphs," Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 82, pp. 83-113, 2012.
[28] K. Kawarabayashi, J. Ma, and X. Yu, " K_{5}-Subdivisions in graphs containing $K_{2,3}$," J. Combin. Theory Ser. B, vol. 113, pp. 18-67, 2015.
[29] X. Yu, "Disjoint paths in graphs i, 3-planar graphs and basic obstructions," Annals of Combinatorics, vol. 7, pp. 89-103, 2003.
[30] _-, "Disjoint paths in graphs ii, a special case," Annals of Combinatorics, vol. 7, pp. 105-126, 2003.
[31] ——, "Disjoint paths in graphs iii, characterization," Annals of Combinatorics, vol. 7, pp. 229-246, 2003.
[32] L. Lovász, Problems in recent advances in graph theory (ed. m. fiedler). Academia, Prague, 1975.
[33] W. T. Tutte, "How to draw a graph," Proc. London Math. Soc., vol. 13, pp. 743-768, 1963.
[34] K. Kriesell, "Induced paths in 5-connected graphs," J. Graph Theory, vol. 36, pp. 5258, 2001.
[35] G. Chen, R. Gould, and Y. X., "Graph connectivity after path removal," Combinatorica, vol. 23, pp. 185-203, 2003.
[36] K. Kawarabayashi, O. Lee, P. Wollan, and B. Reed, "A weaker version of Lovász' path removal conjecture," J. Combin. Theory Ser. B, vol. 98, pp. 972-979, 2008.
[37] C. Thomassen, "Graph decomposition with applications to subdivisions and path systems modulo k," J. Graph Theory, vol. 7, pp. 261-271, 1983.
[38] P. D. Seymour, "Disjoint paths in graphs," Discrete Math., vol. 29, pp. 293-309, 1980.
[39] C. Thomassen, "2-linked graphs," Europ. J. Combinatorics, vol. 1, pp. 371-378, 1980.
[40] N. Robertson and K. Chakravarti, "Covering three edges with a bond in a nonseparable graph," Annals of Discrete Math. (Deza and Rosenberg eds), vol. 8, p. 247, 1979.
[41] Y. Shiloach, "A polynomial solution to the undirected two paths problem," J. Assoc. Comp. Mach., vol. 27, pp. 445-456, 1980.
[42] H. Perfect, "Applications of menger's graph theorem," J. Math. Analysis and Applications, vol. 22, pp. 96-111, 1968.
[43] M. E. Watkins and D. M. Mesner, "Cycles and connectivity in graphs," Canadian J. Math., vol. 19, pp. 1319-1328, 1967.

VITA

Yan Wang is born in Shanghai, China in 1990. Between 2006 and 2010, he studied Information Security at Shanghai Jiao Tong University. He received a Diplôme de l'Ecole polytechnique from Ecole Polytechnique in France in 2013. He is a Ph.D. candidate in Algorithms, Combinatorics and Optimization at Georgia Institute of Technology.

