
1
American Institute of Aeronautics and Astronautics

On the Development of a Computing Infrastructure that
Facilitates IPPD from a Decision-Based Perspective

Mark A. Hale*, James I. Craig†, Farrokh Mistree‡, Daniel P. Schrage§

Georgia Institute of Technology
Atlanta, Georgia 30332-0140

Abstract
* † ‡ § - This is white
Integrated Product and Process Development (IPPD)

embodies the simultaneous application of both system
and quality engineering methods throughout iterative
design processes. The use of IPPD results in the time-
conscious, cost-saving development of engineering
systems. A computing infrastructure called IMAGE is
designed to implement IPPD from a decision-based
perspective. IMAGE has four components: designer
activities, available assets, agent collaboration, and a
computing architecture. IMAGE captures a designer's
activities through a timeline partitioning scheme,
problem formulation and solution, and comprehensive
information management. To support these activities,
IMAGE incorporates design resources through the use
of agents. Agents are a critical computational enabling
technology that provide accountable mechanisms for
resource collaboration in an integrated computing
environment.

Background and Motivation

Considerable time and effort has been invested in
the development of new computing technologies and
their associated methods for Integrated Product and
Process Development (IPPD). These technologies have
been applied in systems that emphasize modularity,
interdisciplinary program utilization, resource
collaboration, and distributed processing. These
systems include integrated design frameworks,
conceptual design systems, and quasi-procedural
systems.1-9 Though these systems have marked
improvements in information processing, their
applicability to aiding a designer in making decisions
based on new design knowledge remains questionable.10

Furthermore, the applicability of these systems to

* Graduate Researcher, Student Member AIAA, Aerospace Systems
Design Laboratory, Corresponding Author

mhale@cad.gatech.edu
http://www.cad.gatech.edu/image

† Professor, Member AIAA, Aerospace Systems Design Laboratory
‡ Professor, Member AIAA, Systems Realization Laboratory
§ Professor, Member AIAA, Aerospace Systems Design Laboratory

Copyright © 1995 by the American Institute of
Aeronautics and Astronautics, Inc. All rights reserved.

continuous, iterative design processes has not been
proven and is uncertain, at best.

The characteristics of a computing environment
that enable a designer to perform design activities
through the use of state-of-the-art computing
technologies are summarized in this paper. The
development is founded upon several underlying
principles concerning the means by which the
computing architecture embodies design activities.
These principles are as follows:

• A designer would like to do more with less
throughout all design processes. A designer would
like to have more robustness, greater openness, and
better efficacy while expending fewer resources,
paying less cost, and reducing the number of design
cycles.

• The principal role of a designer is that of a
decision-maker. Decision-making activities can be
marked by discrete milestones in a design process.
This designer-centered approach forms the basis of
Decision Based Design (DBD) paradigm for IPPD.

• The Decision Support Problem (DSP) Technique
is one embodiment of DBD with which a designer
can manage design activities. The DSP Technique
has two phases. First, a designer partitions a
design timeline into manageable sub-problems,
called Support Problems. Second, the resulting
Support Problems are solved.

• Support Problems are the basic design elements
that represent design processes.

• A computing infrastructure will support design
activities throughout an entire design timeline.
This is true for both product and process design.

• A product model must support both form and
function representations as well as the process by
which this is done. This model is inherently
object-oriented and complex inter-relationships and
hierarchies exist.

• Computer design environments should be designed
to assist a designer in performing design activities;
therefore, a designer is "in the loop". Automation
should exist only when an appropriate context can
be added to design information produced by
automated processes.

2
American Institute of Aeronautics and Astronautics

Database Visuali-
zation

Optimi-
zation

Geometry Algorithmic
Simulation

Heuristic
Simulation

Available AssetsDesign Activities

Computing Architecture

Tasking Parallelism Protocols Scheduling Network

Agent
Collaboration

Model
Wrap

Model
Wrap

Model
Wrap

Model
Wrap

Model
Wrap

Model
Wrap

Model
Wrap

Model
Wrap

Model
Wrap

Model
Wrap

Figure 1. IMAGE Infrastructure

These principles are a foundation of design and
information models. Arguments in support of a DBD
perspective can be found in references [10-16], those in
support of a multi-dimensional product model can be
found in [10, 17, 18], and general infrastructure
requirements are outlined in [2-7, 10, 18-20]. The
computing infrastructure that is outlined in this paper is
being developed using these principles as guidelines.

A Computing Infrastructure

A computing infrastructure can be assembled that
provides coherent support for design activities.
Significant work has been done in the computer science
community for establishing computing technologies
required for framework integration.2-4, 9, 19-26 However,
these technologies will need to be systematically
applied to a coherent design architecture if a framework
is to support design activities throughout a design
timeline. Expanding on ideas asserted earlier, such a
computing infrastructure will have to incorporate:

• A design partitioning process;
• A mechanism for solving the resulting design sub-

problems;
• A design information model;
• Information generation in context for informed

decision-making;
• Efficient and cost-effective application of design

resources; and
• Geographically distributed design activities.

The resulting infrastructure is called IMAGE, an
Intelligent M ultidisciplinary A ircraft Generation
Environment. The infrastructure began as a special
project that addressed the lack of facilities for supporting
a designer's activities in traditional frameworks.27

A diagram of the IMAGE infrastructure is shown in
Figure 1. This infrastructure is comparable to the
Framework for Interdisciplinary Design Optimization
(FIDO), Affordable Systems Optimization Process
(ASOP), and other efforts in the development of
underlying computing technologies.9, 28 However, the
IMAGE infrastructure is designed to explicitly support
general design activities and an information model
within an accountable design context.

IMAGE has the following features:

• Design Activities: A designer partitions a problem
into activities for solution as well as to provide
comprehensive information management;

• Available Assets: A variety of design resources are
provided to aid in the generation of design
knowledge. Resources range from object-oriented
databases to CAD packages;

• Agent Collaboration: A generic toolkit allows
resources to be incorporated into a design
infrastructure with minimal effort by the end user.
Notice that the incorporation of a model within the
toolkit allows for knowledge to be generated in
context allowing a designer to interrogate
knowledge for the who, what, where, when, and
how the information was created.

• Computing Architecture: Components that are
required for objects to operate in a distributed,
homogeneous computing environment are included
in an underlying infrastructure.

The characteristics of each component of the
architecture will be outlined in the following sections.
The implementation of the Design Activities category
will be discussed in greater detail since the incorporation
of these activities has been lacking in previous
computer architecture developments and publications.

3
American Institute of Aeronautics and Astronautics

IMAGE Features
Design Activities Available

Assets
Agent

Collaboration
Computing
Architecture

Required Functionality
DSPT Palette

Design
Specification

Editor
Partitioning Process √ √
Solution of Sub-Problems √ √ √ √ √
Information Model √ √ √ √
Information in Context √ √ √ √
Design Efficacy √ √ √ √ √
Distributed Design Activities √ √ √ √ √

Table 1. Matrix of Required Functionality vs. IMAGE Components

A matrix that outlines the relationship between the four
features of IMAGE and the functionality they support is
shown in Table 1. The shaded table elements are topics
that are emphasized in this paper.

Throughout this paper, examples will be used to
highlight the IMAGE computing infrastructure.
IMAGE is built around the Tk/tcl interpretive
windowing system with extensions added for drag &
drop (blt), object-oriented definitions (itcl), natural
language processing (marpa), and message-passing
(PVM)* .29 All of these extensions are publicly
available except for the PVM extension which was
developed by the first author.

Design Activities

IMAGE is a computing infrastructure that assists a
designer in performing Design Activities. A
corresponding architecture is being developed that
models the Design Activities required to solve a design
problem. This architecture is shown in Figure 2.
Based on techniques for modeling a designer's activities
along a design timeline, the architecture has three
fundamental components:

• System Partitioning and Execution: Facilities are
provided that permit a designer to partition a design
problem into manageable sub-problems and for the
solution of the resulting sub-problems;

• Support Problem Definition and Solution: A
consistent scheme has been developed that allows a
designer to define and solve sub-problems, which
are called Support Problems; and

• Design Management: Utilities are provided to a
designer that allow for comprehensive, object-
oriented data management throughout design
processes.

* Parallel Virtual Machine: An inter-process message passing interface.

Utilizing these three components, a designer can
manage complex system design problems throughout
all design processes. This process architecture has been
given the acronym DREAMS (Developing Robust
Engineering Analysis Models and Specifications).
Each of the three components will be discussed in turn.

System Partitioning through the DSP Technique
The processes involved in system partitioning can

be modeled using a DSPT Palette. A DSPT Palette
provides a set of base entities that can be used by a
designer to model a design timeline. A designer can use
legacy design models (prescriptive models) or create new
design models (descriptive models) to describe current
design processes and then proceed to solve the design
problem.12

There are two phases in the DSP Technique:

• The meta-design phase, whereby a designer
partitions a design timeline with the aid of Support
Problems; and

• The actual design phase, whereby Support
Problems are exercised so that knowledge about a
design can be generated and decisions can be made.

During the meta-design phase, a designer explicitly
models design processes using Support Problems.
Several activities that may occur during a generic design
process are shown in Figure 3. The activities are
depicted in a manner consistent with a traditional design
timeline. A designer can use the DSP Technique to
partition this design timeline into Support Problems.
The timeline from Figure 3 can be partitioned as shown
in Figure 4. Design Phases† and Events‡ are identified
by a designer during the partitioning process. A
designer also identifies information that is to be
accumulated for making decisions. For the generic case
represented in Figure 4, a designer has identified four
design Phases and three design Events that occur during
the Conceptual Design Phase.

† Design Phases are distinct stages of a design's development whose
boundaries are usually characterized by changes in design fidelity.

‡ A Design Event is a coincidence of design activties that are to occur
so that the solution of a problem or sub-problem can be achieved.

4
American Institute of Aeronautics and Astronautics

System Partitioning
and Execution

Support Problem
Definition and Solution

Design
Management

Decision Support
Problem Technique Formulate → Translate → Evaluate Design Specification

and Heterarchy

Figure 2. DREAMS Architecture for Supporting a Designer's Activities

1.1 Define Requirements

1.2 Establish Baseline
1.3 Generate Alternatives

1. Conceptual Design

2. Preliminary Design

3. Detailed Design

4. Manufacture and Support

Figure 3. A Traditional Design Timeline

P

P
P

P

E

E

I

I

P
ha

se
s

E
ve

nt
s

In
fo

1. Conceptual Design
2. Preliminary Design

3. Detailed Design
4. Manufacture and Support

1.1 Define Requirements
1.2 Establish Baseline
1.3 Generate Alternatives

E

i. Statement of Requirements

ii . Conceptual Design Matrix
iii . Top Level Specification

I

Figure 4. A Partitioned Timeline Corresponding to Figure 4

Support Problems may be formulated that represent
design activities that are to occur during design
processes. A partial representation of the Support
Problems that comprise the shaded timeline partition in
Figure 4 are shown in Figure 5. This schematic depicts
the transformation of the Statement of Requirements
into Top Level Specifications through two design
Phases and three design Events. Notice that the
schematic is multi-level. The lower sequence represents
the activities that comprise the Conceptual Design
Phase. Design Events may occur simultaneously, thus
requiring the use of multidisciplinary and concurrent
analysis techniques. Transmission Entities, shown as
Information blocks with a triangular border, encapsulate
the respective information requirements that are shared
among Support Problems.

Through Phase and Event Support Problems, the
first or highest level of design activities that may occur
can be represented, as shown in Figure 5. As a design
process is decomposed further, other Support Problems
may be encountered. The different types of Support
Problems and their corresponding function are outlined
in Table 2.

Table 2. Support Problems
Support Problem Icon Function

Phase P Stages of development

Event E Coincidence of design activities

Task T Activity to be accomplished

Decision ? Evaluation of a design based on
its content

System Actual design components
which may be real or abstract

I

IP

P

I E I E I

E

Statement of
Requirements

Conceptual
Design

Preliminary
Design

Top Level
Specifications

Generate
Alternatives

Establish
Baseline

Statement of
Requirements

Top Level
Specifications

Conceptual
Design Matrix

Define
Requirements

Figure 5. Support Problem Network
Corresponding to Figure 4 (See Table 2)

5
American Institute of Aeronautics and Astronautics

Top Level Design Palette

Palette Corresponding to a
 Generic Design

Linquistic Problem Formulation
Corresponding to a Generic Design

Figure 6. Screen Capture of the DSPT Palette as Displayed in the IMAGE Environment

In IMAGE, the DSPT Palette implementation
provides an interface for meta-design activities
(partitioning a design timeline) and actual designing
(solving Support Problems). The implementation is
adapted from earlier work done on a Design Guidance
System.15 An implementation of the DSPT Palette
used in IMAGE is shown in Figure 6. The DSPT
Palette supports the following functions:

• A top-level Design Palette for multiple problem
management;

• Additional Palettes that allow for problem
decomposition;

• An editor for linguistic problem formulation;
• A natural language processor based on grammars

for linguistic parsing (not shown);
• A dictionary for English language and design

catalogues (not shown);
• Information recomposition from lower Palettes to

higher Palettes (not shown); and
• Multiple-user problem definition.

These functions allow a designer or an integrated
team to decompose and solve a design problem
throughout a design timeline. After defining design

processes in meta-design, a designer can use the DSP
Technique to generate knowledge used for decision-
making by solving the resulting Support Problems.
For example, each icon in Figure 5 corresponds to an
associated Support Problem. A standard technique
exists for describing and solving Support Problems and
is outlined in the next section.

Support Problem Definition and Solution
Within the DSP Technique, Support Problems are

exercised by a designer to produce knowledge about a
design so that decisions can be made based on that
knowledge. Support Problems provide standard models
for transforming design information into knowledge.
There are three steps required in defining and solving
Support Problems:

• Formulation: The structuring of the problem
statement into specific Support Problem models;

• Translation: Associating processes, that govern the
generation of information into knowledge, with the
Support Problems; and

• Evaluation: Producing design knowledge through
the solution of the Support Problems.

6
American Institute of Aeronautics and Astronautics

WING
COMPROMISE

DSP

Structures

Economics

Performance
MATH FORM

OF WING
COMPROMISE

DSP

Aerodynamics Weights

Structures

Economics

Performance
WING

COMPROMISE
DSP

TEMPLATE

Aerodynamics Weights

Formulate Translate Evaluate

Support Problem Math Form Template

ASTROS
PASCO

MTT
RAND

VORLAX
ENSAERO

APAS
BDAP

WING
WEIGHT

RSM

FLOPS

Figure 7. Multidisciplinary Wing Integration Compromise Decision Support Problem

These three steps are illustrated with a multidisciplinary
wing integration Compromise Decision Support
Problem* in Figure 7. This problem examines the
flutter and buckling constraints imposed on a High
Speed Civil Transport.30

Formulation - Support Problem
Support Problems are defined when a design

process is partitioned in meta-design. Support
Problems have a defined structure given by keywords.
The Compromise DSP has the following form:15

Given: Feasible design and aspiration
spaces

Find: Values of variables
Satisfy: Systems constraints, bounds, and

goals
Minimize: Deviation between "what I want"

and "what I can have"

Support Problems are formulated as linguistic
statements, a form natural to a designer and, hopefully,
unambiguous in meaning. As Support Problems are
formulated, they are embodied by Forms and Functions
from a Design Specification.

Translation - Math Form
Once a Support Problem has been formulated, the

problem is then translated into an equivalent Math
Form. The Math Form provides the process
connectivity between Forms and Functions†. At this
point, a Form-Function-Model triplet is selected. This
triplet is a Process element. For instance, the functions
Lift and Drag are associated with the form Wing
through the relations:

* A compromise decision is a process of determining the "right" values
of design variables such that a system is feasible. In contrast, a
selection decision is a process of making a choice between a number
of possibilities.

† Forms, Functions, and Models are an inherent part of the information
model used in IMAGE and are discussed in the Design Management
section to follow. These entities are summarized in Table 3.

Lift = ClqS (1)
Drag = CdqS (2)

where C l and C d are the respective lift and drag
coefficients, q is the dynamic pressure, and S is the
wing area. As the Math Form becomes more complex,
equations are typically grouped into engineering models.
In turn, models are often grouped into disciplines.
Some of the traditional aerospace disciplines that are
present in the multidisciplinary wing integration
problem are shown in Figure 7. Notice that inter-
disciplinary models do exist, as in the case of
aeroelasticity, and must be accounted for. Looking
again at Figure 7, the problem definition can be
visualized as an expanding cone. The Compromise
DSP forms the frustum of the cone and the cone
expands as the problem is translated into the Math
Form.

Evaluation - Template
Finally, the Math Form of the Support Problem

can be solved. The Support Problem solution consists
of three steps: pairing the Math Form with a suitable
Agent, structuring a solution network, and solving the
Problem. Agents are used by a designer to generate
design information from the expressions found in the
Math Form of a Support Problem‡ . As shown in
Figure 7, Agents are typically engineering analysis
codes. Other Agents include expert systems, hyper-
media sources, virtual reality, and the human designer.
After the Math Form and Agents have been collected,
the new form of the Support Problem is called the
Support Problem Template. The SP Template forms
the base of the expanding cone. The notion of the SP
Template is important for modeling design processes.
SP Templates represent a bridge between modeling
design processes and systematically employing
Available Assets to generate the information required for
those processes.

‡ Agents will be discussed in more detail in the Available Assets and
Agent Collaboration sections to follow.

7
American Institute of Aeronautics and Astronautics

FORM FUNCTION

MODEL

PROCESS

TIME

Information Hierarchy Information Heterarchy
Figure 9. Design Information

Continuing, a solution network must be generated
for Agent collaboration and distribution. Figure 8
shows a solution network corresponding to the
multidisciplinary wing integration problem shown in
Figure 7.30 Finally, the Support Problem must be
solved. D ecision S upport In the D esign of
Engineering Systems (DSIDES) is a suite of tools used
to solve Support Problems.11 Tools in DSIDES are
used to solve Selection DSPs (SELECT) and multi-
level, multi-goal Compromise DSPs (ALP).

BULK_GEN

P ASCO
GEN

ASTROS

PASCO

FLOPS_GEN

FLOPS

WINGDES

AWAVE

WD S.OUTWD 1WAV

WIN G_PR O

WA VIN

W AV OUT

F LOP S.IN

F LOPS.OUT

ASTROS
IN

A STR OS
CORE

ASTROS
OUT

PA SCO.IN

PA SCO.OU T

PASCO
C ORE

C O N T R O L

Loop back until
converged

Loop back unt il
converged

F LOP S
C ORE

WDS.IN

C ADDB

Figure 8. Partial Solution Network for the
Multidisciplinary Wing Integration Problem

Design Management
Support Problems are explicitly tied to an

information model since they govern the transformation
of information into knowledge. The DREAMS
architecture provides comprehensive information
management for this purpose. As represented by the
icons in Figure 9, information can be either structured
(an information hierarchy) or unstructured (an
information heterarchy).

The information heterarchy refers to unstructured
information, or loose information.15 During design
processes, some information will be structured from the

heterarchy into the information hierarchy. An example
of unstructured information would include local program
variables and process id's.

Stephens has shown that design hierarchies can be
formed based on Form-Function-Process-Model/
Temporal design sub-spaces.18 These spaces span nine-
dimensions as given in Table 3. These sub-spaces
encompass all of the elements that are to occur during a
design process, including both the physical artifact and
the process of designing itself. The four sub-spaces,
Form, Function, Process, and Model, are populated by
multiply-connected object hierarchies, giving rise to
two dimensions for each category. For instance, a
Form sub-space may be populated by the objects and
organized into the hierarchy shown in Table 4.

Table 3. Design Hierarchy Entities
Category Function Dimensions

Form A mechanism by which a design
can perform an activity

2

Function An assigned activity a design is
to perform

2

Process The means by which a function
is performed by a form

2

Model An idealization of a process 2
Time Either real or event-based 1

Σ = 9

Table 4. Form Objects
Objects Hierarchy

Aircraft Aircraft
Lifting Surface |----- Centerbody
Vertical Stabilizer |----- Lifting Surface
Propulsion Unit |----- Propulsion Unit
Centerbody |----- Vertical Stabilizer

Looking again at Figure 9, Process elements are
formed by a Form-Function-Model triplet. Later, it
will be shown that Process elements are implemented as
Agents. Because Process elements explicitly contain
Models, these Agents can be used by a designer to
produce design information in context. Therefore, a
designer may interrogate design information to
determine who produced it, when it was created, what
was used to produce it, etc. Thus, accountable design
information may be obtained through the use of Agents.

The Design Specification Editor is a tool for
comprehensive information management and
implements the notions of both information
heterarchies and hierarchies. The Editor is based on an
earlier information system called DEFINE implemented
as part of a L aboratory E nvironment for the
Generation, Evaluation, and Navigation of Design
(LEGEND).18 The Editor is shown in Figure 10. The
Editor includes:

8
American Institute of Aeronautics and Astronautics

Form Function

Process Model

Heterarchy

S
ch

em
a

E
di

to
r

Figure 10. Screen Capture of the Design Specification Editor as Displayed in the IMAGE Environment

• Generation of Heterarchy, Form, Function,
Process, and Model objects;

• Generation of Form, Function, Process, and Model
hierarchies;

• Heterarchical to hierarchical object migration;
• Varying levels of fidelity;
• Schema development and evolution;
• Instance accumulation provided in context (not

shown);
• Object sharing among projects and team members

(not shown); and
• An interpretive object-oriented database

management system including inheritance,
persistence, memory management, and object
condensation (not shown).

These capabilities allow for comprehensive design
information management based on a common product
data model.

As a design progresses, the Information model
must support increasing levels of fidelity consistent

with increasing completeness of a design. Table 5
shows a Lifting Surface Form object described to
a tertiary level of fidelity from a structural standpoint.
Each object encapsulates one or more schemas*, each
potentially having different degrees of accuracy. Table 6
illustrates three schemas that may be used to represent a
Lifting Surface Form object in conceptual
design. The ability to support increasing levels of
accuracy within the information model is called schema
evolution.

Table 5. Increasing Fidelity for a
Lifting Surface

Lifting Surface
| ----- Inboard Wing Box

| ----- Spars
| ----- Ribs

| ----- Outboard Wing Box
| ----- Spars
| ----- Ribs

* A collection of attributes and their instances.

9
American Institute of Aeronautics and Astronautics

Table 6. Three Possible Schemas for
Describing a Lifting Surface

Schema 1 Schema 2 Schema 3
Root Chord Aspect Ratio (X1,Y1)
Span Span (X2,Y2)
Taper Ratio Taper Ratio (X3,Y3)
Root t/c Root t/c (X4,Y4)
Tip t/c Tip t/c (X5,Y5)
Sweep Sweep Root t/c
Dihedral Dihedral Tip t/c
Twist Twist Dihedral
NACA Profile NACA Profile Twist

NACA Profile

Available Assets

Available Assets are the second feature of the
IMAGE infrastructure shown in Figure 1. These
Assets, or resources, are the entities that are inevitably
responsible for carrying out design methods. The
Assets can be categorized as databases, visualization
tools, optimization routines, geometric modelers, and
algorithmic and heuristic simulation. The most
familiar form of a resource is the computer program. A
designer directs computer programs to calculate some
desired information based on pre-determined algorithmic
procedures. These programs may be combined in
automated analysis modules that may incorporate
heuristic controllers. Some examples of computer
programs used by the aerospace industry include:
ASTROS (a structural optimization code), FLOPS (an
aircraft convergence code), ACSYNT (an aircraft
convergence code), CONMIN (an optimization
package), CATIA™ (a three-dimensional geometric
modeling, simulation and analysis package), and
ORACLE™ (a relational database).

Traditional computer-based design systems utilize
resources that primarily operate in the conceptual stage
of design. The design resources used in these systems
are mostly non-proprietary codes, as illustrated in
Figure 11. However, computing environments must
also incorporate proprietary resources that often
predominate later during a product's design, as also seen
in Figure 11. Proprietary resources are generally stand-
alone in nature, with limited communications
capabilities, and preserve software rights through a

N
u

m
b

er
 o

f
A

va
ila

b
le

 R
es

o
u

rc
es

Design Life-Cylcle

Non-Proprietary
Resources

Proprietary
Resources

Conceptual Preliminary Detailed Manufacture Service

Figure 11. Proprietary Resources

number of advanced computing techniques. Together,
they present a formidable challenge to implementation
of integrated design environments. IMAGE
incorporates newly developed technologies that
accommodate proprietary resources.

There are a number of other Available Assets that
are often overlooked. The first is the design expert. A
designer plays an important role in providing expert
knowledge, some of which may be captured in
knowledge-based systems. Legacy design processes are
an Asset that can be incorporated through the
prescriptive capabilities of the DSPT Palette. Finally,
on-line services, such as World Wide Web (WWW)
documents, can be utilized for information
dissemination.

Agent Collaboration

Agents are one of the key enabling technologies
that bind IMAGE together, as shown in Figure 1.
Agents allow for the meaningful creation of design
knowledge by Available Assets (resources) during
Design Activities. As discussed earlier, the
information model used in the IMAGE implementation
incorporates the use of Process elements. The
instantiation of these elements as Agents results in
knowledge generation in context.

The creation of an Agent requires three
components: a Resource, a Model, and a Wrap.
Resources are the Available Assets discussed in the
previous section. Models have two components: the
Process Model and the Implementation Model. The
Process Model is the model incorporated into the
process element. The model may be physical or
intellectual. Models are typically based on
mathematical formulations, engineering principles, or
geometrical constructions.

The Process Model has typically been discarded or
included only in external reference documents The use
of Agents allows for Process Models to be explicitly
defined. For example, a solids construction model used
to represent complex solids in CATIA™ is shown in
Figure 12. In words, the geometric process model
describing the volume transformation would be:

In a volume transformation, an object is
represented by an approximate solid
computed directly from the exact volume. A
volume is constructed from faces which, in
turn, are defined by the edges that enclose
simple or multiply connected regions of
planar or complex surfaces.

VOLUME SOLIDEDGES FACES/SURFACES

Figure 12. CATIA Solid Representation

10
American Institute of Aeronautics and Astronautics

The Implementation Model, the second model
component, captures the execution characteristics of the
resource. Some of the items that are contained in the
implementation model include: variable definition, file
descriptions, units, execution characteristics, and
platform dependencies.

A Wrap enables Agents to work in a collaborative
environment. A Wrap is responsible for publishing
models so that designers may employ the services of
resource contained within, communicating information
among resources while conforming to protocols and data
exchange standards, and negotiating its services with
other agents. In all a Wrap has six components: a
Communications Interface, a Protocol Filter, a Model
Interpreter, a Resource Interpreter, the (Graphical) User
Interface, and a Low Level Compliance layer.

A generic scheme has been proposed that allows for
Agents to be developed from existing available assets or
new Agents to be developed that incorporate the
functionality of new design environments and
computing characteristics. References [10, 19, 20]
summarize generic Agent implementation schemes.
Examples of Agents that incorporate proprietary
resources are also highlighted in these references.

Computing Architecture

Design Activities utilize Available Assets in an
accountable fashion through the collaborative use of
Agents. The Computing Architecture allows for this
process to occur using existing computer facilities, see
Figure 1. The underlying architecture is a subset of
what has come to be known as the National Information
Infrastructure. The NII is simply a conglomeration of
users and services on the Internet. Users range from
end-users performing design functions to developers
providing simulation services. Services range from
information dissemination, such as on the WWW, to
underlying transport mechanisms such as TCP/IP*. In
addition, the NII also provides direction for new
computing technologies such as fine-grained and parallel
computing.

The wrap component of the Agent allows for
collaborative efforts to occur through an intimate
interface with the NII. Proper integration requires that
the following services be standardized and made
available: communications support, protocols, data
representations, and ontologies. As a testbed, the
following services are implemented in IMAGE:

• Transparent X-based communications and message
passing using Parallel Virtual Machine (PVM);23

• An object-oriented data model that includes multi-
fidelity, multi-accuracy, persistence, ownership, and
accumulation schemes;

* Transmission Control Protocol / Internet Protocol

• A dynamic protocol;
• An ontology†.

The NII incorporates rapidly expanding and evolving
computing facilities. IMAGE has been designed so that
new technologies may be incorporated and tested within
the architecture without re-configuration.

Summary

A computing infrastructure called IMAGE has been
outlined. The infrastructure consists of four
components: design activities, available assets, agent
collaboration, and a computing architecture. These four
categories were discussed in detail and their respective
importance to overall design processes was noted. A
formal architecture called DREAMS was presented and
provides consistent support for designer activities
throughout a design timeline. IMAGE integrates
available assets through state-of-the-art computing
technologies. A generic agent scheme has been
designed that allows for resources to be integrated easily
into a design environment and allows for the generation
of design knowledge by these resources in context.
Using IMAGE, a designer will eventually be able to
produce better, more robust designs while expending
fewer resources and, therefore, can perform Integrated
Product and Process Development.

Acknowledgments

Funding for this paper is provided by the NASA
Graduate Student Researchers Program (NGT-51250)
under the direction of NASA Langley's High
Performance Computing and Communications
Program. Software and hardware support is provided by
the CAE/CAD Laboratory at the Georgia Institute of
Technology.

References

[1] "ACSYNT Overview and Installation Manual,"
ACSYNT Institute, Virginia Polytechnic Institute and
State University, May 1992.

[2] Cutkosky, M.R., et al., "PACT: An Experiment in
Integrating Concurrent Engineering Systems," IEEE
Computer, vol. 26, pp. 28-37, January, 1993.

[3] Dovi, A.R., G.A. Wrenn, J.-F.M. Barthelemy, P.G.
Coen and L.E. Hall, "Multidisciplinary Design
Integration System for a Supersonic Transport Aircraft,"
Fourth AIAA / USAF / NASA / OAI Symposium on
Multidisciplinary Analysis and Optimization,
Cleveland, OH, September 21-23, 1992. AIAA-92-
4841.

[4] Hughes, D., "Generic Command Center Speeds
Systems Design," Aviation Week & Space Technology,
pp. 52-53, March 8, 1993.

† An ontology is a specification of discourse among agents in the form
of definitions of shared vocabulary2.

11
American Institute of Aeronautics and Astronautics

[5] Jones, K.H., D.P. Randall and C.K. Cronin,
"Information Management for a Large Multidisciplinary
Project," Fourth AIAA / USAF / NASA / OAI Symposium
on Multidisciplinary Analysis and Optimization,
Cleveland, OH, September 21-23, 1992. AIAA-92-
4720.

[6] Gage, P. and I. Kroo, "Development of the Quasi-
Procedural Method for Use in Aircraft Configuration
Optimization," Fourth AIAA / USAF / NASA / OAI
Symposium on Multidisciplinary Analysis and
Optimization, Cleveland, OH, September 21-23, 1992.
AIAA-92-4693.

[7] Kroo, I. and M. Takai, "A Quasi-Procedural,
Knowledge-Based System for Aircraft Design," AIAA /
AHS / ASEE Aircraft Design, Systems and Operations
Meeting, Atlanta, GA, September 7-9, 1988. AIAA-88-
4428.

[8] McCullers, L.A., "FLight OPtimization System,
User's Guide, Version 5.41," NASA Langley Research
Center, December, 1993.

[9] Townsend, J.C., R.P. Weston and T.M. Eidson, "An
Overview of the Framework for Interdisciplinary Design
Optimization (FIDO) Project," NASA Langley Research
Center, July, 1994.

[10] Hale, M.A., "A Computing Infrastructure that
Facilitates Integrated Product and Process Development
from a Decision-Based Perspective," Thesis Proposal,
Georgia Institute of Technology, School of Aerospace
Engineering, January, 1995.

[11] F. Mistree, O.F. Hughes, and B.A. Bras, T h e
Compromise Decision Support Problem and the Adaptive
Linear Programming Algorithm, Ed. Kamat, M.P.,
Structural Optimization: Status and Promise,
Washington, DC, (pp. 247-286), AIAA.

[12] Bras, B.A. and F. Mistree, "Designing Design
Processes in Decision-Based Concurrent Engineering,"
SAE Transactions Journal of Materials & Manufacturing,
vol. 100, no. pp. 451-458, Warrendale, PA, SAE
International, 1991.

[13] F. Mistree, W.F. Smith, and B.A. Bras, A Decision-
Based Approach to Concurrent Engineering, Ed. Paresai,
H.R. and W. Sullivan, Handbook of Concurrent
Engineering, Chapman & Hall, New York, 1993. (pp.
127-158).

[14] Muster, D. and F. Mistree, "The Decision Support
Problem Technique in Engineering Design," T h e
International Journal of Applied Engineering Education,
vol. 4, no. 1, pp. 22-33, 1988.

[15] B.A. Bras, W.F. Smith, and F. Mistree, T h e
Development of a Design Guidance System for the Early
Stages of Design, Ed. Oortmerssen, G.V., CFD and CAD
in Ship Design, Elsevier Science Publishers B.V.,
Wageningen, The Netherlands, (pp. 221-231).

[16] Mistree, F., W.F. Smith, B.A. Bras, J.K. Allen and
D. Muster, "Decision-Based Design: A Contemporary
Paradigm for Ship Design," Transactions, Society of
Naval Architects and Marine Engineers, vol. 98, pp.
565-597, 1990.

[17] Pahl, G. and W. Beitz, Engineering Design: A
Systematic Approach. Berlin, Germany: Springer-
Verlag. 1992.

[18] Stephens, E., "LEGEND: Laboratory Environment
for the Generation, Evaluation, and Navigation of

Design," Doctoral Dissertation, Georgia Institute of
Technology, School of Aerospace Engineering,
September 1993.

[19] Hale, M.A. and J.I. Craig, "Preliminary
Development of Agent Technologies for a Design
Integration Framework," AIAA / NASA / USAF / ISSMO
Symposium on Multidisciplinary Analysis and
Optimization, Panama City, Florida, September 7-9,
1994. AIAA-94-4297.

[20] Hale, M.A. and J.I. Craig, "Use of Agents to
Implement an Integrated Computing Environment,"
Computing in Aerospace 10, AIAA, San Antonio, TX,
March 28-30, 1995. AIAA-95-1001.

[21] Chapman, B., P. Mehrotra, J.V. Rosendale and H.
Zima, "A Software Architecture for Multidisciplinary
Applications: Integrating Task and Data Parallelism,"
Institute for Computer Applications in Science and
Engineering, March 1994.

[22] "The Common Object Request Broker: Architecture
and Specification," December, 1991.

[23] "Parallel Virtual Machine User's Manual," Version
2.4, June, 1993.

[24] Finin, T., et al., "Specification of the KQML Agent-
Communication Language," The DARPA Knowledge
Sharing Initiative External Interfaces Working Group,
February, 1994.

[25] Frank, G.A., J.B. Clary and B.L. Dove, "Design
Automation for Concurrent Engineering," Center for
Digital Systems Research, 1989.

[26] Genesereth, M.R. and N.P. Singh, "A Knowledge
Sharing Approach to Software Interoperation," January,
1994.

[27] Hale, M.A., "IMAGE: An Intelligent
Multidisciplinary Aircraft Generation Environment,"
Masters Program Special Project, Georgia Institute of
Technology, School of Aerospace Engineering,
September, 1992.

[28] "Definiton of Requirements for and Aeronautics
Affordable Systems Optimization Process," Proposal to
NASA Langley Research Center, Madic Team #2,
January, 1995.

[29] Ousterholt, J.K., An Introduction to Tcl and Tk.
Reading, MA: Addison-Wesly Publishing Company, Inc.
1993.

[30] Röhl, P., D.P. Schrage and D.N. Mavris, "A
Multilevel Wing Design Procedure Centered on the
ASTROS Structural Optimization System," AIAA / NASA
/ USAF / ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Panama City, Florida,
September 7-9, 1994. AIAA-94-4411.

