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SUMMARY

The thesis consist of three independent parts. In the first part, we investigate the

height sequence of an element of a partially ordered set. Let x be an element of the partially

ordered set P . Then hi(x) is the number of linear extensions of P in which x is in the ith

lowest position. The sequence {hi(x)} is called the height sequence of x in P . Stanley

proved in 1981 that the height sequence is log-concave, but no combinatorial proof has been

found, and Stanley’s proof does not reveal anything about the deeper structure of the height

sequence. In this part of the thesis, we provide a combinatorial proof of a special case of

Stanley’s theorem. The proof of the inequality uses the Ahlswede–Daykin Four Functions

Theorem.

In the second part, we study two classes of segment orders introduced by Shahrokhi.

Both classes are natural generalizations of interval containment orders and interval orders.

We prove several properties of the classes, and inspired by the observation, that the classes

seem to be very similar, we attempt to find out if they actually contain the same partially

ordered sets. We prove that the question is equivalent to a stretchability question involving

certain sets of pseudoline arrangements. We also prove several facts about continuous

universal functions that would transfer segment orders of the first kind into segments orders

of the second kind.

In the third part, we consider the lattice whose elements are the subsets of {1, 2, . . . , n}.

Trotter and Felsner asked whether this subset lattice always contains a monotone Hamilto-

nian path. We make progress toward answering this question by constructing a path for all

n that satisfies the monotone properties and covers every set of size at most 3. This portion

of thesis represents joint work with David M. Howard.

viii



CHAPTER I

INTRODUCTION

In this chapter, we introduce the basic concepts and background material for this thesis.

In the first section we give a very brief overview of the key definitions in graph theory. In

the second section, we give a slightly more detailed introduction to the theory of partially

ordered sets. We will mention the basic results and examples to which we refer later in this

work.

1.1 Basics of graphs and partially ordered sets

1.1.1 Graphs

A graph is a ordered triple of sets (V,E, I), where I ⊆ V × E is an incidence relation

between elements of V (which are called vertices or less frequently points) and the elements

of E (which are called edges or less frequently arcs) with the restriction that every edge is

in relation with one or two vertices. An edge that is incident with only one vertex is called

a loop. Two edges that are incident with the same set of vertices are called parallel edges.

If a graph has no loops and parallel edges, we call it a simple graph. In this case we often

refer to G as the ordered pair (V,E), where E ⊆ V × V . Here the two components of an

e ∈ E are the two vertices that the edge is incident with. From now on we will only deal

with simple graphs with finitely many vertices, and we will make use of the second notation

for graphs. We will also use V (G) to denote the set of vertices of G and E(G) to denote

the set of edges of G.

We say two vertices v1 and v2 are adjacent (in notation v1 ∼ v2), if (v1, v2) ∈ E. Let G

and H be two graphs, and let f : V (G) → V (H) be a function that preserves adjacency: for

u, v ∈ V (G), u ∼ v if and only if f(u) ∼ f(v). We say that two graphs are isomorphic. We

do not differentiate isomorphic graphs in the theory. For example, if a graph has n vertices,

and every vertex is adjacent to every other vertex, we call that graph Kn, the complete

graph on n vertices, when in fact we talk about a isomorphy class of graphs.
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A sequence of vertices v1, . . . , vk is called a walk, if v1 ∼ v2 ∼ · · · ∼ vk. A walk

with distinct vertices is called a path. A sequence of vertices v1, . . . , vk is called a cycle, if

v1 = vk and there are no other repeated vertices, i.e. the walk v1, . . . , vk−1 is a path. A

cycle is Hamiltonian, if every vertex of the graph appears among the vertices of the cycle.

Similarly, a path is Hamiltonian, if it covers every vertex of the graph.

If a graph has a Hamiltonian cycle it obviously has a Hamiltonian path, but not vice

versa. If a graph has a Hamiltonian path, we call it a traceable graph, if it also has a cycle,

we say it is Hamiltonian graph.

The questions: “Is G traceable?” and “Is G Hamiltonian?” are computationally diffi-

cult: they are NP-complete. These question are not only important for this reason: finding

Hamiltonian or “almost” Hamiltonian paths in graphs is one of the flourishing areas of

combinatorial optimization. Nevertheless there are some simple examples. Let V be the

subsets of the set {1, . . . , n}. Let two vertices u and v be adjacent, if u ⊆ v and |u|+1 = |v|

or if v ⊆ u and |v| + 1 = |u|. The resulting graph is frequently called the n-dimensional

hypercube. It is easy to show that the n-dimensional hypercube is Hamiltonian for all

n ≥ 2.

A function c : V (G) → N is called a coloring if c(u) = c(v) implies u 6∼ v, in other

words, adjacent vertices never get the same color. The least number of colors necessary to

color a graph G is called the chromatic number of G, denoted by χ(G). For a fixed k ≥ 3,

to determine if χ(G) ≤ k is an NP-complete problem. On the other hand, for k = 2, the

question is polynomial: χ(G) ≤ 2 if and only if it contains no odd cycles.

Graphs with large chromatic numbers obviously exist: χ(Kn) = n. However, a graph

does not have to contain a large Kn to have large chromatic numbers. There are K3-free

graphs with arbitrarily high chromatic number.

1.1.2 Partially ordered sets

Let A be an arbitrary set. A relation R on is a subset of A×A. Some basic characteristics

of relations are the following.

• If (a, a) ∈ R for all a ∈ A, then R is reflexive.
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• If (a, a) 6∈ R for any a ∈ A, then R is irreflexive.

• If (a, b) ∈ R implies (b, a) ∈ R, then R is symmetric.

• If (a, b) ∈ R and (b, a) ∈ R implies a = b, then R is antisymmetric.

• If (a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R, then R is transitive.

A relation that is reflexive and transitive is called a quasiorder. If a quasiorder is also

symmetric, we say it is equivalence. If a quasiorder is also antisymmetric, we says it is a

partial order. In a partial order R, if (a, b) ∈ R, we say a is less than or equal to b. We

frequently write aRb, a ≤R b or simply a ≤ b is it does not cause confusion. If (a, b) ∈ R

but a 6= b, then we say a is less than b, and write a <R b or simply a < b. If either (a, b) ∈ R

or (b, a) ∈ R, we say a and b are comparable, other we call them incomparable. To denote

the latter, we can write a‖Rb or a‖b.

Irreflexivity and transitivity together imply antisymmetry. This has an interesting con-

sequence that makes it possible to define partial orders in a slightly different way. Suppose

that S is an irreflexive and transitive relation and let R = S ∪ {(a, a) : a ∈ A}. Then R is a

partial order. Some authors call an irreflexive and transitive relation a strict partial order.

In this way, a partial order is strict partial order with all the diagonal pairs added.

A partially ordered set or poset 1 P is a pair (A,R), where A is a set (called the ground

set) and R is a partial order on the set. Sometimes, to make notations simpler, we will

write x ∈ P , when in fact we mean x ∈ A. Thereby we will not need to name the ground

set and the relation.

We say x is covered by y or y covers x in P (notation: x <: y), if x < y and there is no

z ∈ P such that x < z < y.

Let P = (A,R) be a poset and let P ′ = (A′, R′) such that A′ ⊆ A and for all a, b ∈ A′

a <′
R b if and only if a <R b. We say P ′ is a subposet of P .

An element a of a poset P is called maximal (minimal), if for all x ∈ P , x 6> a (x 6< a).

An element a is called maximum (minimum), if for all x ∈ P , x ≤ a (x ≥ a). A poset

1The name “order” is also commonly used. We discourage the usage of the ambiguous name. However,
this explains the names of some subclasses of posets, like “interval orders”.
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can only have at most one maximum and at most one minimum element, and they are also

maximal and minimal respectively. However, there may be several maximal or minimal

elements, that are not maximum or minimum.

A subposet X of P is called a chain, if any two elements of X are comparable. A subposet

X is called an antichain, if no two elements of X are comparable. A chain C is maximal, if

no chain of P contains X. A chain C is maximum, if it is of maximum cardinality. Minimal

and minimum antichains can be defined in a similar way. The cardinality of a maximum

chain is called the height of the poset and the cardinality of a maximum antichain is called

the width of the poset. Posets that are chains themselves are called total orders or linear

orders.

One of the most classical theorem of posets is by Dilworth [8].

Theorem 1.1.1. Every poset of width w can be partitioned into w chains. Dually, every

poset of height h can be partitioned into h antichains.

These are in fact two quite different statements, and they are not equivalent. The

dual version is very easy, and the first statement is what is usually referred as Dilworth’s

Theorem. It belongs to an elegant family of combinatorial theorems, all with a common

linear programming flavor; these include Hall’s Theorem, the Kőnig–Egerváry Theorem,

Menger’s Theorem and Tutte’s Theorem.

Let P and Q be two posets on the same ground set. Suppose that a <P b implies a <Q b.

We say Q is an extension of P . If Q is a linear order, we say Q is a linear extension of P .

The linear extensions are frequently denoted by enumerating the elements as an ordered

sequence from the least to the greatest. The number of linear extensions of a poset P will

be denoted by e(P ).

It is not completely obvious that every poset has a linear extension, and in fact this

statement is equivalent to the axiom of choice (see [24]). For finite posets, the axiom of

choice is not necessary. The proof is based on the elementary fact that if x‖y, then there

is a linear extension in which x < y. Then we can find a sequence of extension, each of

them contains one fewer incomparable pair than the previous one, and since there are only
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finitely many pairs, we must end at a linear extension.

It is frequently useful to visualize posets. Let P = (A,R). In an affine plane fix a

straight directed line and call its direction “up”. (This is equivalent of a Cartesian plane

with the x-axis removed.) To each point of A, assign a point of the plane in such manner,

that for a, b ∈ A, a < b, the point assigned to b is higher than the point assigned to a.

It is clear that this condition is satisfied if the order of the points upwards form a linear

extension of P , therefore, it is always possible to make such an assignment. Now connect

the points a and b with a straight line segment, if and only if a <: b. The set of points

and segments together is called the Hasse diagram of P . It is also not unusual to draw the

Hasse diagram of a poset with curves between the points instead of straight line segments.

The Hasse diagram also defines a graph in a natural way. The vertex set is the set of

points, and two vertices a and b are adjacent, if a <: b.

This form of visualization explains the name of the following sets. For an element a ∈ A,

the set U(x) = {x ∈ A : a < x} is called the upset of a, and the set D(x) = {x ∈ A : x < a}

is the downset of a. The set U [x] = {x ∈ A : a ≤ x} is referred as the closed upset and the

set D[x] = {x ∈ A : x ≤ a} is the closed downset of a.

The set of elements that are neither in the upset nor in the downset of x is called the

incomparable set of x, in notation: I(x) = {x ∈ A : x‖a}.

1.1.3 Dimension of partially ordered sets

From now on, we will always make the assumptions that our partially ordered sets are finite.

The following definition occupies central place in the theory of posets.

Definition 1.1.2. Let P be a poset. Let R = {R1, R2, . . . , Rt} is a set of linear extensions.

If R1 ∩ · · · ∩Rt = P , we say R is a realizer of P . The minimum cardinality of a realizer is

called the dimension of P , denoted by dim(P ).

Every poset has a realizer, because the set of all linear extensions is always a realizer.

But in general it is difficult to find an optimal realizer with minimum cardinality.

Chains are of dimension 1 and they are the only 1-dimensional posets. Antichains are

of dimension 2. Dilworth [8] proved that the dimension can not exceed the width, but

5



Figure 1: S5, the 5-dimensional standard example

antichains show that the dimension can be much less than the width. Hiraguchi [16] proved

that the dimension can not exceed half of the number of points.

There are posets of arbitrarily large dimension. Since the following examples are com-

monly used examples for large dimensional posets, they were named “standard examples”.

Definition 1.1.3. Let U = {u1, . . . , un} and D = {d1, . . . , dn}. Let A = U ∪ D the ground

set. Let di < uj if and only if i 6= j. The poset defined this way is called the n-dimensional

standard example, denoted by Sn.

Proposition 1.1.4. For n ≥ 2, dim(Sn) = n.

Proof. Let Li = (d1, d2, . . . , di−1, di+1, . . . , dn, ui, di, u1, u2, . . . , ui−1, ui+1, . . . , un.

Then {L1, . . . , Ln} is a realizer so dim(P ) ≤ n. Now consider the pair {di, ui}. Since they

are incomparable, there must be a linear extension in every realizer where they are ordered

ui < di. Now suppose there is linear extension where for i 6= j ui < di and uj < dj . Then

dj < ui < di < uj, which contradicts uj < dj . Therefore one linear extension can only

reverse one {di, ui} pair, so there must be at least n linear extension in the realizer, i.e.

dim(P ) ≥ n.

Dimension of partially ordered sets is sometimes considered the analogue of chromatic

number for graphs. In this sense, Sn is analogous to Kn. And just as there are graphs of

high chromatic number with no Kn subgraph, there are posets of high dimension with no

Sn subposet (see interval orders later).

There are several ways of constructing new posets from existing one. We will mention

two of these. The first one is the following.
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Definition 1.1.5. Let P = (A,≤P ) and Q = (B,≤Q) be two posets. The Cartesian product

of P and Q is

P × Q = (A × B,≤A×B),

where (a1, b1) ≤A×B (a2, b2) if and only if a1 ≤A a2 and b1 ≤B b2.

The second way is the following.

Definition 1.1.6. Let (A,P ) a poset and (Bi, Qi) posets for i ∈ A. The lexicographic sum

of the posets (Bi, Qi) over P is the poset (C,R) where C = ∪i∈ABi and for a ∈ Bi and

b ∈ Bj we have a <R b if either i <P j or i = j and a <Qi
b. In notation:

(C,R) =
∑

i∈(A,P )

(Bi, Qi)

1.1.4 Special poset classes

Let P = (A,R) be a poset and let S ⊆ A. A point x ∈ A is an upper bound of S, if s ≤ x

for all s ∈ S. One can define lower bounds similarly. An upper bound x is a least upper

bound, if every other upper bound is greater than x. Similarly we can define greatest lower

bound.

Definition 1.1.7. A poset is a lattice, if every par of elements {x, y} has a unique least

upper bound (also called join, denoted by x ∨ y) and a unique greatest lower bound (also

called meet, denoted by x ∧ y).

A finite lattice always contains a least and a greatest element, they are sometimes called

“zero” and “one”.

The lattice can be viewed as an algebraic structure with two binary operations. These

operations are commutative, associative, idempotent, and they satisfy the so called absorp-

tion laws (a∨ (a∧ b) = a and a∧ (a∨ b) = a for all a, b). These properties also characterize

lattices (in fact idempotence is implied by the others).

A lattice P = (A,∨,∧) is a sublattice of a lattice P ′ = (A′,∨′,∧′), if A ⊆ A′ and A is

closed under the lattice operations. Observe, that a subposet of P ′ that is a lattice itself

7



for the partial ordering of P ′ is not necessarily a sublattice. In this sense, “sublattice” is

an algebraic notion, not combinatorial.

Observe, that the two operations are not necessarily distributive.

Definition 1.1.8. A lattice is a distributive lattice if the two operations are distributive

with each other, in other words

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

for all x, y, z.2

There are nice characterizations of distributive lattices, the most famous being the

following.

Theorem 1.1.9 (Birkhoff). A lattice is distributive if and only if it has no sublattice

isomorphic to one of the following lattices.

It is important to remark that a sublattice is not simply a subposet that happens to be

a lattice, but rather a subset that is closed under the lattice operations.

A Boolean lattice is a distributive lattice in which every element has a unique com-

plement. From the point of view of algebra, a Boolean lattice is an algebraic structure

(A,∧,∨,¬), with (A,∧,∨) being a distributive lattice, and the complement operation ¬

satisfies the following properties:

a ∨ ¬a = 1, a ∧ ¬a = 0 ∀a ∈ A.

The Boolean lattice of subsets, or simply the subset lattice is the lattice whose ground

set consists of all the subsets of the set {1, . . . , n}, with ∧ is the ∩ operation ∨ is the ∪

2The two distributivity conditions are in fact equivalent.
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operation and ¬ is complement. The number n is the dimension of the subset lattice. This

does not cause confusion, because it is also the poset-dimension of the lattice. Every finite

Boolean lattice is isomorphic to the subset lattice of dimension n for some n. In the subset

lattice, X ≤ Y if and only if X ⊆ Y .

Now we will talk about another important subclass of posets. Let P = (A,R) be a

poset. Suppose there is a bijection f : A → I, where is a set of closed intervals on the real

line. Suppose furthermore, that a <R b if and only if the right endpoint of f(a) is less than

the left endpoint of f(b). We call I an interval representation of P .

Definition 1.1.10. We say P is an interval order if P has an interval representation.

The interval representation of an interval order is of course not unique.

Interval orders have a nice characterization in terms of forbidden subposets. The fol-

lowing theorem was first given explicitly by Fishburn in [11].

Theorem 1.1.11. A poset is an interval order if and only if it does not contain the subposet

below.

This immediately implies the following.

Corollary 1.1.12. If n ≥ 2, then Sn is not an interval order.

The theory of interval orders is extremely rich. Here we will only discuss two basic facts

that are important for us later in this work.

Let In be the canonical interval order, whose representation consist of every interval

with integer endpoints from {1, . . . , n}.

Theorem 1.1.13 ([14]). dim(In) = lg lg n +
(

1
2 + o(1)

)

lg lg lg n

The previously mentioned theorem of Hiraguchi inspired a conjecture that became one

of the longest standing open problems in the dimension theory of posets. The following

statement would imply Hiraguchi’s Theorem directly.
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Conjecture 1.1.14 (Removable Pair Conjecture). For every finite partially ordered

set on at least three points, there is a pair whose removal decreases the dimension of the

poset by at most one.

It has been proven for several special cases of posets. The following theorem has been

proven in [4].

Theorem 1.1.15. The Removable Pair Conjecture holds for posets of dimension at most

3, as well as interval orders.

1.2 Previous and related work

1.2.1 Correlation

Let P be finite partially ordered set, and let Ω be a sample space that consist of the all the

linear extensions of P . Define a probability measure on Ω such that every L ∈ Ω has equal

probability, namely Pr(L) = 1
|Ω| .

For x, y ∈ P , the probability of the event

Ax<y = {L ∈ Ω : x <L y}

is denoted by Pr[x < y]. In more simple words, it is the number of linear extensions of P

in which x < y, divided by the total number of linear extensions of P .

One of the most famous conjectures of the theory of partially ordered sets is the so-called

1/3–2/3 conjecture.

Conjecture 1.2.1. Every finite partially ordered set that is not chain contains a pair x, y,

such that

1

3
≤ Pr[x < y] ≤ 2

3
.

Kahn and Saks [18] proved the existence of a pair x, y, such that 3/11 ≤ Pr[x < y] ≤

8/11. Brightwell, Felsner and Trotter [6] improved the result by showing that there exists

a pair for which

5 −
√

5

10
≤ Pr[x < y] ≤ 5 +

√
5

10
.
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The result is best possible for infinite posets.3 The authors pose a very interesting conjec-

ture, whose special case, which they prove, implies their result. We describe the conjecture

in the following after a few necessary definitions.

Let P be a finite poset. Let hL(x) denote the position of the element x in L counted

from below, more precisely

hL(x) = |{y ∈ P : y ≤L x}|.

Now fix x, y, z elements of P . Let L(i, j) be the number of linear extensions L in which

hL(y) − hL(x) = i and hL(z) − hL(y) = j.

Conjecture 1.2.2 (Cross Product Conjecture). For any i, j ≥ 1

L(i, j)L(i + 1, j + 1) ≤ L(i, j + 1)L(i + 1, j)

So far we said nothing about correlation. The first major conditional type theorem was

by Shepp [22]. He proved the following.

Theorem 1.2.3 (XYZ theorem).

Pr[x < y] ≤ Pr[x < y|x < z]

Intuitively, this shows that if we know that x < z, or in other words, there is an element

z that is greater than x, then it becomes more likely that x is less than a fixed element y.

The theorem might seem to be trivial, but the following example shows we have to be

careful with these kind of statements. Consider the following inequality.

Pr[x < y < w] ≤ Pr[x < y < w|x < z < w] (1)

One might argue, that if we know that there is an element that is greater than x and less

than w, it would make more likely x to be “small” and w to be “large”, so it would make

it more likely that y is between them. However, C. L. Mallows showed that (1) is false

by providing the following simple counterexample, in which Pr[x < y < w] = 4/15 and

Pr[x < y < w|x < z < w] = 1/4.

3Of course, for this remark to make sense, we have to be able to define the probability of the event Ax<y.
That is possible for certain countable posets, but the discussion of this is beyond the scope of this work.
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Fishburn [12] proved that the inequality of the XYZ theorem is strict if and only if x, y

and z form a 3-element antichain.

Most of these results has some non-combinatorial part in the argument, for example a

tool that is used frequently in these results is Aleksandrov–Fenchel inequalities for mixed

volumes. On the other hand, most of these questions can be translated as an inequality

between cardinalities of two finite sets of linear extensions. This latter approach suggests

that it may be possible to find a injection from the smaller set to the larger set directly.

The main benefit of this approach would be that it would be much simpler to handle the

questions when these inequalities are strict, and it would be possible to say something about

the error if they are strict.

The main advance to this direction is a paper by Brightwell and Trotter [7] in which

proved the strong form of XYZ inequality (and another correlation result) using purely

combinatorial argument.

1.2.2 Geometric containment orders

One of the most basic examples of partially ordered sets is the following. Let A be a set

whose elements are also sets.4 Then P = (A,⊆) forms a partially ordered set.

This example is especially nice, because it is universal, that is, every partially ordered

set can be represented as a set inclusion order.

The question becomes more interesting, if we restrict what kind of sets can be the

elements of the ground set. If the sets are geometric objects, we arrive to geometric con-

tainment orders.

4Of course this property is true for every set under ZFC, but here we would like to emphasize this
property.
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One basic example when the elements of the ground set are intervals of the real line.

These posets are called interval containment orders. It is not difficult to show that they are

precisely the two dimensional posets.

Now consider the following objects. Fix n positive integer and consider the n-tuple

(x1, x2, . . . , xn). Let X ⊆ R
n such that (y1, . . . , yn) ∈ X if and only if 0 ≤ y1 ≤ x1, . . . ,

0 ≤ yn ≤ xn. This way every n-tuple defines an n-dimensional rectangle. If we restrict

the ground set to contain a set of these n-dimensional rectangles and the ordering is set

containment, then we get the class of all n-dimensional posets. This fact is not completely

trivial, but it is an easy exercise to see. This explains why the name of “dimension”.

Fishburn and Trotter [13] posed the definition of angle orders. The ground set consists

of angular regions. An angle is a point of the plane with and ordered pair of half-lines

starting from the point. The ordering is important to distinguish inner and outer angles.

then the angular region is the region bounded by the two half lines swept from the first one

to the second one.

Fishburn and Trotter [13] showed that every 4-dimensional order, just like every interval

order is an angle order. They constructed a 7-dimensional order that is not an angle order.

It can be shown using degrees of freedom (see [2]) that there exits a 5-dimensional order

that is not an angle order. These techniques are very similar to the ones we will use to

study segment orders in Chapter 3 of this thesis.

Let A consist of circular disk in the Euclidean plane. The poset P = (A,⊆) is called a

circle order. A degrees of freedom argument shows that there exist a 4-dimensional poset

that is not a circle order. It is a simple exercise to show that every 2-dimensional order is

a circle order.

Fix a positive integer n. If A consist of regular polygons with n-sides, then P = (A,⊆)

is called an n-gon order.

Proposition 1.2.4. Every finite 3-dimensional poset is an n-gon order for every n ≥ 3.

Since intuitively, if n is very large, an n-gon much like a circle, this result suggested that

every 3-dimensional poset is a circle order. Until the following result surfaced.
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Theorem 1.2.5 (Scheinerman and Weirman [20]). The infinite poset Z×Z×Z is not

a circle order.

Nevertheless, Felsner, Trotter and Fishburn [9] constructed a finite 3-dimensional poset

that is not a circle order. The proof is very sophisticated and uses deep techniques.

1.2.3 α-sequences

The Hasse diagram of a poset can be viewed as a graph, with two vertices adjacent if and

only one covers the other. It is interesting to study the chromatic number of these graphs

and their relations to the poset structure.

The dual of Dilworth’s Theorem implies that the chromatic number can not be greater

than the height of the poset. Nešetřil and Rödl [19] proved that for every h ≥ 1 there exists

a poset of height h such that the chromatic number of the diagram is h.

Definition 1.2.6. Let t be a positive integer. C(t) is the largest integer h such that whenever

P is an interval order of height h, the chromatic number of the diagram is at most t.

It might seem strange that the first couple of paragraph of a section titled “α-sequences”

only talked about chromatic numbers of various poset diagrams. As strange as it seems to

be, this notion has a strong connection to the sequences mentioned in the title.

Definition 1.2.7. A sequence of sets (S0, . . . , Sh) of sets is an α-sequence, if S0 6⊆ S1, and

Sj 6⊆ Si ∪ Si+1 when j > i + 1.

Let F (t) be the largest integer h for which there is an α-sequence (S0, . . . , Sh) with

Si ⊆ {1, . . . t} for all i.

Proposition 1.2.8. The following example is the longest α-sequence with the subsets of

{1, 2, 3, 4}.

(∅, {1}, {2}, {3}, {4}, {2, 4}, {1, 4}, {1, 3}, {1, 2, 3}, {2, 3, 4})

Corollary 1.2.9. F (4) = 9

Theorem 1.2.10 (Felsner and Trotter [10]). For every t ≥ 1

C(t) = F (t).
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Consider the Boolean lattice of subsets of {1, . . . , n}. The Hasse diagram of this lattice

is isomorphic to the n-dimensional hypercube. We mentioned previously that this graph is

Hamiltonian. Let {S1, . . . , S2n} be a Hamiltonian path. We say it is monotone, if for every

i, either (a) every subset of Si appears among the sets S1, . . . , Si−1, or (b) only one (say S)

does not, furthermore Si+1 = S.

It is not known if the diagram of the subset lattice of {1, . . . , n} is Hamiltonian for all

n.

Felsner and Trotter also showed the following theorem.

Theorem 1.2.11.

F (t) ≤ 2t−1 +

⌊

t − 1

2

⌋

with equality holding if and only if there is a monotone Hamiltonian path in the subset lattice

of {1, . . . , t}.

15



CHAPTER II

HEIGHT-SEQUENCE OF PARTIALLY ORDERED SETS

2.1 Introduction

In the following, we will study the height-sequence of a partially ordered set. We will use

the following notation.

Definition 2.1.1. Let x be an element of the partially ordered set P . Then hi(x) is the

number of linear extensions of P in which x is in the ith lowest position, in other words,

those linear extensions L, for which

|{y ∈ P : y ≤L x}| = i.

By this definition, hi = 0 if i ≤ 0 or i > |P |. If it is clear from the context, we will

frequently omit x, simply writing hi.

Stanley proved in [23] that for any partially ordered set, the height-sequence is log

concave. More precisely

Theorem 2.1.2. Let P be a partially ordered set and x ∈ P an element. Then

hihi+2 ≤ h2
i+1.

for all i ∈ Z.

In his argument, he used the Aleksandrov–Fenchel inequalities from the theory of mixed

volumes. The proof is short and elegant, however it does not provide any information about

the difference of the two sides of the inequality. In particular, it is not known when equality

holds.

In the following, we will provide a fully combinatorial argument to prove a special case

of the inequality. We hope, that the techniques used here are deep enough that they can

provide a proof the theorem in whole generality.
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Theorem 2.1.3. Let P be a partially ordered set such that the height sequence has at most

3 nonzero elements. Then

hi(x)hi+2(x) ≤ h2
i+1(x)

for all i ∈ Z.

Before we provide a proof, we explain an another motivation why it would be important

to know more about the error term in the inequality.

Definition 2.1.4. The average height of x ∈ P is

h(x) =

∑n
i=1 ihi(x)

∑n
i=1 hi(x)

Kahn conjectured the following.

Conjecture 2.1.5. Let x, y ∈ P . Let n = |P | and m = |D[x] ∪ D[y]|. Then

max{h(x), h(y)} ≥ m − 1

Kahn observed that log-concavity of the height sequence implies the conjecture when

n = m, i.e. when x and y are the only two maximal elements. Applying the same technique

for the general conjecture, one can only derive a weaker result.

Proposition 2.1.6. Let x, y ∈. Let n = |P | and m = |D[x] ∪ D[y]|. Then

max{h(x), h(y)} ≥ m ln 2 ≈ 0.7m

If we could understand the behavior of the difference of the two sides in Staley’s inequal-

ity we may have a chance to prove the general conjecture, or at least something stronger

than the proposition above.

2.2 Proof of Theorem 2.1.3

First we discuss the case when y1 and y2 are comparable. Without loss of generality we

may assume y1 < y2.

We will use the following theorem by Ahlswede and Daykin (see [1]).
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Theorem 2.2.1. Let L be a distributive lattice. For sets X,Y ⊆ L and a function f : L →

R, let

f(X) =
∑

x∈X

f(x)

X ∧ Y = {x ∧ y : x ∈ X, y ∈ Y }

X ∨ Y = {x ∨ y : x ∈ X, y ∈ Y }

Let α, β, γ and δ four functions mapping L to the non-negative reals. If

α(x)β(y) ≤ γ(x ∨ y)δ(x ∧ y)

for all x, y ∈ L, then

α(X)β(Y ) ≤ γ(X ∨ Y )δ(X ∧ Y )

for all X,Y ⊆ L.

In this proof, some of the ideas are similar to that are used in [21] and [22]. We will

define a distributive lattice whose elements are 4-tuples of order-preserving functions from

P to a long chain. When the chain is very long, these functions will almost look like linear

extensions of P .

As promised, let us define a distributive lattice L. The elements of the ground set are

4-tuples of functions (f1, f2, f3, f4) such that

fi : P ∪ {u} → {0, . . . , k − 1}

are order preserving functions, where k is some fixed positive integer (parameter of L) and

u is an artificial element that is not in the ground set of P . Also, when we require order

preserving functions, we consider u to be incomparable with all other elements of P , so in

effect, fi(u) can be assigned freely.

To complete the definition of the lattice, we have to define the lattice operations.

(f1, f2, f3, f4) ∧ (g1, g2, g3, g4) = (f1 ∧ g1, f2 ∧ g2, f3 ∧ g3, f4 ∧ g4)

(f1, f2, f3, f4) ∨ (g1, g2, g3, g4) = (f1 ∨ g1, f2 ∨ g2, f3 ∨ g3, f4 ∨ g4)
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where

(f ∧ g)(u) =max{f(u), g(u)}

(f ∧ g)(x) =max{f(u), g(u)}+ (2)

+ min{f(x) − f(u), g(x) − g(u)} for all x ∈ P,

and similarly,

(f ∨ g)(u) =min{f(u), g(u)}

(f ∨ g)(x) =min{f(u), g(u)}+ (3)

+ max{f(x) − f(u), g(x) − g(u)} for all x ∈ P.

Intuitively, the meet operation pushes u up, and everything else is down, relative to u. The

join operation pushes u down, and everything else is up, relative to u.

Lemma 2.2.2. L is a distributive lattice.

Proof. Observe that L = L′ × L′ × L′ × L′, with L′ having order preserving functions

P ∪ {u} → {0, . . . , k − 1} as elements, and operations are as described in (2) and (3). It is

sufficient to prove that L′ is a distributive lattice, because products of distributive lattices

are distributive lattices.

First we show L′ is a lattice. For this, note that L′ is closed under the lattice operations.

Then note that the operations are trivially commutative. Associativity and absorption

follow from simple calculations.

Now we show that the operations are distributive. For this, note that for any three real

numbers a, b and c

max{a,min{b, c}} = min{max{a, b},max{a, c}} (4)

and dually

min{a,max{b, c}} = max{min{a, b},min{a, c}}. (5)
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Then

f ∧ (g ∨ h)(x) = max{f(u),min{g(u), h(u)} + min{f(x) − f(u),

min{g(u), h(u)} + max{g(x) − g(u), h(x) − h(u)} − min{g(u), h(u)}} =

= max{f(u),min{g(u), h(u)} + min{f(x) − f(u),

max{g(x) − g(u), h(x) − h(u)}}

(f ∧ g) ∨ (f ∧ h)(x) = min{max{f(u), g(u)},max{f(u), h(u)}}+

+ max{max{f(u), g(u)} + min{f(x) − f(u), g(x) − g(u)} − max{f(u), g(u)},

max{f(u), h(u)} + min{f(x) − f(u), h(x) − h(u)} − max{f(u), h(u)}} =

min{max{f(u), g(u)},max{f(u), h(u)}}+

+ max{min{f(x) − f(u), g(x) − g(u)},

min{f(x) − f(u), h(x) − h(u)}}

Applying (4) and (5) we get that the two expressions above are equal.

We define X,Y ⊆ L formally. The definitions are illustrated on Figure 2. In the

following definitions, A denotes the the upset of x and B denotes the downset of x in P .

X = {(f1, f2, f3, f4) :

f1(u) = f1(y1),

f1(B) = f2(B) = f2(y1) = f2(y2) = 0,

f2(u) < f2(x) for all x ∈ A,

f3(A) = f4(A) = f3(y1) = f3(y2) = k − 1,

f3(u) > f3(x) for all x ∈ B,

f4(u) = f4(y1) = f4(y2),

fi(x) 6= fi(y) ∀x, y ∈ P, i = 1, 2, 3, 4,

other than when required by the above}
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Figure 2: Subsets X, Y , X ∨ Y and X ∧ Y
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Y = {(f1, f2, f3, f4) :

f4(u) = f4(y2),

f4(A) = f3(A) = f3(y1) = f3(y2) = k − 1,

f3(u) > f3(x) for all x ∈ B,

f1(B) = f2(B) = f2(y1) = f2(y2) = 0,

f2(u) < f2(x) for all x ∈ A,

f1(u) = f1(y1) = f1(y2),

fi(x) 6= fi(y) ∀x, y ∈ P, i = 1, 2, 3, 4,

other than when required by the above}

To apply Theorem 2.2.1, we need to determine the cardinality of |X|, |Y |, |X ∨ Y | and

|X ∧ Y |. This is relatively easy. In the following, a = |A| and b = |B|. Also e will denote

the number of linear extensions of the poset A ∪ B, in which the relation is inherited from

P .

|X| = hie

(

k

a + 2

)(

k

b + 1

)(

k

a + 1

)(

k

b + 1

)

|Y | = hi+2e

(

k

a + 1

)(

k

a + 1

)(

k

b + 1

)(

k

b + 2

)

We can not exactly count |X ∨Y | and |X ∧Y | with our method. However, the following

is clear:

|X ∨ Y | = h∗
i+1e

(

k

a + 2

)(

k

a + 1

)(

k

b + 1

)(

k

b + 1

)

+ R∨,

where h∗
i+1 is the number of linear extensions of P such that x is in the ith lowest position

and y2 is in a position where y1 could also go. Clearly h∗
i+1 ≤ hi+1.

R∨ is the number of elements of X ∨ Y in which “collision” happens. This is when

fi(x) 6= fi(y) or gi(x) 6= gi(y), but (fi ∨ gi)(x) = (fi ∨ gi)(y) for some i. Clearly, these case

are not included in the first term, that is why we need the adjustment.

Using a similar counting method and notation

|X ∧ Y | = h∗∗
i+1e

(

k

a + 1

)(

k

a + 1

)(

k

b + 1

)(

k

b + 2

)

+ R∧.
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with h∗∗
i+1 ≤ hi+1.

Now apply Theorem 2.2.1 with all four functions being constant 1. Then simplify by e

and the binomial coefficients. We have

hihi+2 ≤
(

h∗
i+1 + r∨

) (

h∗∗
i+1 + r∧

)

where r∨ = R∨

e( k
a+2)(

k
a+1)(

k
b+1)(

k
b+1)

and r∧ = R∧

e( k
a+1)(

k
a+1)(

k
b+1)(

k
b+2)

.

Now let k → ∞. The probability of a collision tends to zero, more precisely r∨ → 0 and

r∧ → 0. Then applying hi+1 ≤ h∗
i+1 and hi+1 ≤ h∗∗

i+1 implies the inequality.

It remains to discuss the case when y1‖y2.

Let the number of linear extensions in which x is in the ith position and y1 < y2 be

denoted by hi(y1 < y2), and the number of linear extensions in which y2 < y1 be denoted

by hi(y2 < y1).The inequality we need to show is

[hi(y1 < y2) + hi(y2 < y1)][hi+2(y1 < y2) + hi+2(y2 < y1)] ≤

[hi+1(y1 < y2) + hi+1(y2 < y1)]
2.

Since hi(y1 < y2)hi+2(y1 < y2) ≤ hi+1(y1 < y2)
2 and hi(y2 < y1)hi+2(y2 < y1) ≤ hi+1(y2 <

y1)
2 by the first case, we only need to show hi(y2 < y1)hi+2(y1 < y2)+hi(y1 < y2)hi+2(y2 <

y1) ≤ 2hi+1(y1 < y2)hi+1(y2 < y1). This can be done by showing hi(y2 < y1)hi+2(y1 <

y2) ≤ hi+1(y2 < y1)hi+1(y1 < y2) and hi(y1 < y2)hi+2(y2 < y1) ≤ hi+1(y1 < y2)hi+1(y2 <

y1) similarly to the first case.
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CHAPTER III

SEGMENT ORDERS

3.1 Introduction

The containment order of closed intervals on the real line is a very natural partially ordered

set that one wants to investigate. Interval I is less than interval J , if and only if I ⊂ J . It

is easy to show the following.

Proposition 3.1.1. A partially ordered set is a containment order of real intervals if and

only its dimension is at most 2.

Farhad Shahrokhi proposed a definition of two families of partially ordered sets. These

came up for him with relation of a graph theory problem. He originally asked if the families

contain an arbitrary large dimensional partially ordered sets. It is not difficult to show that

the answer is “yes”. However, the classes turned out to be interesting on their own right.

In particular, Shahrokhi, Trotter and his students realized that it is not clear if the two

families are actually the same or not. This inspired this line of research, in which we will

define Shahrokhi’s two families and we propose the definition of two other families. They

are all very similar, and actually they all might be the same (though it seems unlikely).

First we will define two kinds of partial orders between certain closed line segments of a

two-dimensional Cartesian coordinate system. The segments subject to this order have an

endpoint (x1, 0) on the x-axis, and the other endpoint (x2, x3) satisfies x1 < x2 and x3 > 0.

First we define the partial order of the first kind. We say, the line segment x (whose

endpoints are (x1, 0) and (x2, x3)) is greater than the line segment y (whose endpoints are

(y1, 0) and (y2, y3)), if x1 < y1, x2 > y2 and every vertical line that intersects both x and y

intersects x strictly above y. In particular, if x ∩ y 6= ∅ then they are incomparable.

For the partial order of the second kind, we say, the line segment x is greater than the

line segment y, if x1 < y1, x2 < y2 and every vertical line that intersects both x and y

intersects x strictly above y. In other words, we reverse the ordering rule on the right end
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of the line segment.

Let P be a poset. If there is a function l1 such that for x, y ∈ P , x < y if and only is

l1(x) is less than l2(x) in the first kind of line segment ordering, then we say P is a segment

order of the first kind. We denote the class of segment orders of the fist kind by P1. We can

also say P is a P1-order, and the set of corresponding line segment is a P1-representation

of P . We use similar definitions to define the class P2, the class of segment orders of the

second kind.

Shahrokhi’s two families were not these two. He added another restriction to both

classes producing subfamilies of these families.

Let P ∈ P1 a poset. If P has a P1-representation L, such that every line segment in

L intersects the y-axis, we say P is a central segment order of the first kind. We use p1

to denote this class. Similarly, we can define p2, the class of central segment orders of the

second kind.

It is clear that p1 ⊆ P1 and p2 ⊆ P2, but it is not at all clear if these are proper

containments or not.

Every interval containment order is in P1. This is trivial, because one can easily turn an

interval containment representation into a P1-representation by adding 1 to the y-coordinate

to the right endpoint of each interval. In this sense, P1 is a natural generalization of interval

containment orders.

Using a similar analogy, P2 is a natural generalization of interval orders. Again, just

lifting the right endpoints of the intervals by 1 will produce a P2-representation from any

interval representation of an interval order. Interval orders and interval containment orders

are two very different classes, nevertheless, it is not clear how different P1 and P2 are.

Theorem 3.1.2. Every interval containment order is both in p1 and in p2.

Proof. To see that every interval containment order is in p1, consider an interval represen-

tation L = {[a1, b1], . . . , [an, bn]} of the order P . There exists an m ∈ R such that the set of

intervals L′ = {[ai−m, bi+m] : [ai, bi] ∈ L} is pairwise intersecting. Observe, that L′ is still

a representation of P . Now let L′′ = {line segments from (ai, 0) to (bi, 1) : [ai, bi] ∈ L′}.
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Then L′′ is a p1-representation of P . The second part of the proof is quite similar to the

first, so we omit it.

We will prove a more general statement later, namely, that every 3-dimensional poset,

as well as every interval order is both in p1 and p2. On the other hand, the fraction of

4 and higher dimensional posets that are in the classes is very small (we will make this

statement rigorous later). This makes these classes even more interesting: as we know that

the Removable Pair Conjecture holds for 3-dimensional posets and interval orders, p1 and

p2 seem to be the next ideal choices to test the conjecture.

We will show many other small results about the classes p1, p2 and P1, P2. For a

substantial part of the chapter, statements are equally true for both centered and regular

classes of segment orders, and depending on the statement, we will claim and prove the

form that is stronger. The main question of this discussion (which will appear even more

natural after understanding these classes a little better) is if p1 = p2. We conjecture that

the answer is negative and we will be able to prove a statement that says that there is no

continuous function of line segments to line segments that turns a P1 order into a P2 order.

This statement has a corollary on the central classes. Though these results might seem to

be weak, they are surprisingly difficult to prove. The discretization of these proofs are also

beyond our understanding at this point.

Since our ultimate goal is to prove p1 6= p2, the reader might think that eventually

somebody will draw a p1 poset with less than a hundred lines and will show it is not in

p2. While we can’t rule out the possibility completely, the following discussion will show

that it is indeed very improbable. It seems very likely the deep techniques are required to

construct such a poset, and it will contain at least several billion points.

3.1.1 A note about tied endpoints

Suppose we want to redefine the definition of P1 or P2 by allowing equality in the x-

coordinates of the endpoints. Or similarly, if x is the segment from (0, 0) to (1, 1) and y is

the segment from (−1, 0) to (3, 1), why don’t we define x < y in P1?

Observe, that if we make any or all of these changes, we actually don’t change the class.
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For example, if a finite number of line segments in a P1-representation have a the same

x-coordinate for their right endpoints, the segments are pairwise incomparable. One can

make the ith segment (ordering them increasingly according their y-coordinates) ε/i longer

to the right, using an ε so small that this addition will not affect the relationship of the

tied segments with the others. If we modify the definition making the above mentioned line

segments pairwise comparable, add ε/i to their lengths in reverse order.

Similarly, one can break all the ties that arise in any of the four classes. Therefore no

matter how we define the classes in terms of ties, we get equivalent definitions. We will

extensively use this fact by changing our definition of the classes at will, depending of what

definition is the easiest to use.

3.2 Basic properties of regular and central segment orders

The following proposition answers Shahrohki’s question.

Proposition 3.2.1. For every positive integer n, the “standard examples” Sn are in both

p1 and p2.

Proof. Let C be the quarter circle whose equation is (x − 1)2 + y2 = 4 with x ≤ 1 and

y ≥ 0. Let p1, p2, . . . , pn be the points on C, such that the x-coordinate of pi is i/(n + 1).

For each i = 1, . . . , n, let ai be a line segment whose left endpoint is of the form (x, 0) with

−1 < x < 0 and right endpoint is pi. Let bi be a segment of the tangent of C at point

pi, such that its left endpoint lies on the x-axis and its right endpoint has x-coordinate 2.

Then {a1, . . . , an, b1, . . . , bn} is a p1-representation of Sn, hence Sn ∈ p1. (See Figure 3.)

To show that Sn ∈ p2 is very similar, but the choice of C is slightly more complicated.

Let C be the arc y = ex with x ∈ [0, 1]. Let p1, p2, . . . , pn be the points on C, such that

the x-coordinate of pi is i/(n + 1). For each i = 1, . . . , n, let bi be a line segment whose

left endpoint is of the form (x, 0) with x < −1 and right endpoint is pi. Let ai be a

segment of the tangent of C at point pi, such that its left endpoint lies on the x-axis and

its right endpoint has x-coordinate 2. Then {a1, . . . , an, b1, . . . , bn} is a p2-representation of

Sn, hence Sn ∈ p2. (See Figure 4.)
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Theorem 3.2.2. Every poset of dimension at most 3 is in both p1 and p2.

Proof. Let P be a three-dimensional poset. Let L1, L2 and L3 be linear extensions such

that L1 ∩ L2 ∩ L3 = P . For each x ∈ P , let xi be the position of x in Li, counting from

low to high. For each x ∈ P , draw a line segment from (−x1, 0) to (0, x2). There is an

ε > 0 such that if we change the x-coordinate of the right endpoint of every line segment

to any number between 0 and ε (from the original 0), then the intersection properties will

not change, in other words, two line segments will intersect, if and only if they intersected

before.

Then change the right endpoint of line segment x to εx3

|P | . Clearly line segment x is

greater than line segment y in p2 if and only if x < y in L1, L2, L3. So P ∈ p2.

To prove that P ∈ p1, we can start with the same line segments and ε as above. Then

change the right endpoint of line segment x to ε − ε(x3−1)
|P | . Now line segment x is greater

than line segment y in p1 if and only if x < y in L1, L2, L3. Therefore P ∈ p1.

Before we start to think that maybe p1 and p2 are universal, we discover the following

theorem:

Theorem 3.2.3. For every d > 3, there is a d-dimensional poset that is neither in P1 nor

in P2. Furthermore, for every 0 < p < 1 there is a positive integer n, such that out of all

d-dimensional posets on n elements, at most their p-fraction is in P1 or P2.

Before we discuss the proof, we need a few definitions and a theorem.

Definition 3.2.4. Let F be a family of sets. Let P be a poset. We say P is an F-order, if

there is a function f : P → F such that f(x) ⊆ f(y) if and only if x ≤ y in P .

Definition 3.2.5. A family of sets F has k degrees of freedom, if there is an injec-

tive function f : F → R
k, such that there exist polynomials p1, . . . , pt of 2k variables

such that for two sets S, T ∈ F , the question if S ⊆ T can be decided by the signs of

pi(f1(S), . . . , fk(S), f1(T ), . . . , fk(T )) for i = 1, . . . , t.
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Theorem 3.2.6 (Alon and Scheinerman [2]). Let F be any family of sets. If F has at

most k degrees of freedom, there is some k + 1-dimensional poset which is not an F-order.

Proof. We will define F1 (or F2) to be an infinite family of sets that represents the P1 (or

P2) ordering. For P1 this can be done as the following: to a line segment (a, 0) to (b, c),

assign the closed triangle with vertices (a, 0), (b, 0), (b, c). Containment of these triangles

will result in an ordering that is not quite the same as in the original definition of P1, but

it defines an equivalent class (see Section 3.1.1). For P2 the assignment is the following:

to a segment (a, 0), (b, c), assign the union of the closed triangle with vertices (a, 0), (b, 0),

(b, c), and the set {(x, y) : x ≥ b, y ≥ 0}. Similar remark applies as in the previous case.

So every poset of P1 (P2) is an F1-order (F2-order). Then we show that F1 (F2) has at

most 3 degrees of freedom by providing finitely many (that will be 3) polynomials, whose

sign pattern will determine the relationship between two sets of F1 (F2). We will provide

the polynomials for F1 here as an example and leave the polynomials for F2 as an exercise.

Let a line segment have the endpoints (x, 0), (y, z). Then we will assign the triple

(x, y, z) to the set of F1 that was assigned to the line segment. Let two line segments have

the endpoints (x1, 0), (y1, z1) and (x2, 0), (y2, z2).

p1(x1, y1, z1, x2, y2, z2) = x2 − x1

p2(x1, y1, z1, x2, y2, z2) = y1 − y2

p3(x1, y1, z1, x2, y2, z2) = −z1x2 + z1y2 − z2y1 + x2z2

The first line segments is less than the second if and only if all three polynomials are negative.

Observe, that p1 and p2 determines the ordering of the projections of the endpoints to

the x-axis, and p3 determines if the endpoint of the second line segment stays under line

determined by the first line segment.

This shows that F1 has at most 3 degrees of freedom. Therefore, by Theorem 3.2.6,

there is a 4-dimensional poset that is not an F1-order, hence it not in P1.

The statement of the theorem is stronger than this, but this is not a problem. The proof

of Theorem 3.2.6 in [2] implies a stronger statement than the theorem, and that is exactly

what we need to deduce the stronger statement of our theorem.
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Corollary 3.2.7. For every d > 3, there is a d-dimensional poset that is neither in p1 nor

in p2. Furthermore, for every 0 < p < 1 there is a positive integer n, such that out of all

d-dimensional posets on n elements, at most their p-fraction is in p1 or p2.

Theorems 3.2.2 and 3.2.7 suggest that p1 and p2 strongly overlap with the low dimen-

sional posets. Perhaps with the exception of a few obscure examples, these classes contain

exactly the low-dimensional posets. In that case, the classes are not very interesting. For-

tunately it turns out that it is very far from being true.

As Proposition 3.2.1 shows, there is no bound for the dimension of posets in either

classes. However, one may wonder, if the standard examples are the only high dimensional

examples in p1 or p2. The following theorem shows that this is not the case.

Theorem 3.2.8. Every interval order is in both p1 and p2.

Proof. It is clearly sufficient to prove that In = {[a, b] : a = 1, . . . , n, b = 1, . . . , n} is both

in p1 and p2. We will first show that In ∈ p1.

Draw a quarter of a circle with radius 1 and center (1, 0). For every interval of In, place

a point to the circle, in the way it is shown on the left of Figure 5. For every point [i, j],

if i ≥ 3, draw a half-line from the point representing [i, j] so that it intersects the circle

between the point representing [i − 2, i − 1] and the next point up on the circle. Drop the

portion of this half-line that is under the x-axis to create a line segment. This line segment

will be assigned to the interval [i, j].

If i ≤ 2 draw a line segment from (0, ε) to the point representing [i, j], where ε is a small

positive real, such that (0, ε) will be the point closest to the origin on the x-axis of all the

endpoints of the segments.

It is clear that the p1 ordering among these segments is the same as the interval ordering

among the intervals.

If we change the quarter circle as it is shown on the right of Figure 5, then the same

argument gives a proof that every interval order is a p2 order.
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Figure 5: Right endpoints of segments and the segment assigned to [4, 5]

3.3 Goals and motivations

We were not able to find a p1 poset that is not p2 or vice versa. The previous discussion

shows that if there is one, it is of dimension at least 4, not an interval order and not a

standard example. If the two classes are the same, one would expect that there is short

proof, which would be something like a nice, bijective function from the line segments of R
2

to itself that maps the line segments of a p1 poset to another set of line segments, so that

it will be a p2-representation of the same poset. Or maybe its is even true for P1 and P2.

Momentarily, we will show, that at least the latter statement is false.

From now on we will focus on the question whether p1 = p2.

Definition 3.3.1. A universal function is a function f : R
3 → R

3 such that for every L p1-

representation of a poset P , the set of line segments {f(l) : l ∈ L} forms a p2-representation

of P .

Remark: f(l) denotes the line segment, whose left endpoint is defined by the first coor-

dinate of f(l) and right endpoint defined by the third and forth coordinates of f(l); f(l) is

computed by transforming the line segment l to a triple using the x coordinate of the left

endpoint of l and the x and y coordinates of the right endpoint of l, in order.

Definition 3.3.2. A shift insensitive universal function is a function f : R
3 → R

3 such

that for every L p1-representation of a poset P and for every s ∈ R, there exists an s′, such
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that the set of line segments {f(l + s) : l ∈ L} + s′ forms a p2-representation of P .

Remark: for a line segment l from (x, 0) to (y, z), l + s denotes the line segment from

(x + s, 0) to (y + s, z). For a set of line segments L′ and s′ ∈ R, L′ + s′ = {l′ + s′ : l′ ∈ L′}.

Clearly, not every universal function is shift insensitive universal, but also, not every

shift insensitive universal function is universal.

The partial result that we achieved is the following.

Theorem 3.3.3. There is no continuous shift insensitive universal function.

This is one reason why we make the following conjecture.

Conjecture 3.3.4. p1 6= p2. Furthermore, p1 6⊂ p2 and p2 6⊂ p1.

In this whole section we will assume that the intersection of two line segments never

occurs in the endpoint of any of them. We can do this because of the remarks we made in

Section 3.1.1.

Definition 3.3.5. Let P be a poset in p1 with a representation P1. We say, L is the left

linear extension of P (defined by P1), if L is defined by the regular ordering of the absolute

values of the x-coordinates of the left endpoints of the line segments of P1. Similarly, we say,

R is the right linear extension of P (defined by P1), if R is defined by the regular ordering

of the absolute values of the x-coordinates of the right endpoints of the line segments of P1.

The following lemma will allow us to make strong assumptions about how a poset is

represented.

Lemma 3.3.6. Let P1 be a p1-representation of a poset P . Then there exists a Q1 ⊇ P1

p1-representation of a poset Q, such that for any Q2 p2-representation of Q, there exists

P2 ⊆ Q2 such that P2 is a p2-representation of P 1, and additionally the following is true:

L1 is the left linear extension of P (defined by P1), R1 is the right linear extension of

P (defined by P1). Similarly, L2 is the left linear extension of P (defined by P2), R2 is the

right linear extension of P (defined by P2).

1This far, the statement is totally trivial, as P2 can be chosen to be set of line segments corresponding to

the line segments in P1. The question is, if we can force this to behave as it is described in the second part

of the statement. In fact, probably we can not, and in the proof, P2 will be slightly different than just the

image of P1.
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Then

i) L1 = Rd
2

ii) L2 = R1.

Let P1 be a p1-representation of a poset and l and m be two line segments. Let l1 be

the absolute value of the x-coordinate of the left endpoint of l and define l2 similarly for

the right endpoint. Similarly define m1 and m2. Assume further that l1 > m1 and l2 > m2.

Now try to represent the poset in p2. Do we know anything about the order of the

projections of the endpoints of the line segments corresponding to l and m? If in P1, l and

m are comparable (then l > m), then yes, these orders are fixed. However, l and m may

very well be incomparable in P1 in which case there is no restriction how the endpoints are

ordered in the p2-representation. The power of the lemma, is that we can actually force

some order on the endpoints, by building a set of “helper” lines above P1 first to form Q1,

then find the the representation of Q1 in p2, and find the correct subset. This will essentially

tie our hands how to create p2-representations.

3.4 Proof of Lemma 3.3.6

The idea of the proof is the following. First we will provide a construction of Q1 that

only proves i). Then we start over and provide another construction of Q1 that proves ii),

but then we assume that i) already holds. So in reality, if one wants to force the desired

behavior, he has build the helper segments that force ii), then above that he builds the

helpers that force i).

We will dedicate a section to each part of the proof.

3.4.1 First part

In this section we will construct Q1 that forces i).

Let the elements of P = {p1, p2, . . . , p|P |}. Let n = 2|P |+1. We will add two sets of line

segments to P1:

A = {a1, . . . , an}, B = {b1, . . . , bn}.
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They form a standard example, like in Figure 3. Specially, the elements of B are confined

to a narrow space: each of them starts after the last element of P (i.e. the left endpoints

of the elements of P are left from the left endpoints of the elements of B), and each of the

ends before the first ending element of P . Also, pi ∩ aj = ∅ for all i, j.

Additionally, we construct a set of line segments G.

G = {gS : S is a set of consecutive integers not greater than n}.

We define G so that G‖A, and for each S for which gS ∈ G, it holds that gS‖{b ∈ B : b ∈ S}

but gS > {b ∈ B : b 6∈ S}. Note, that this does not define how to draw the line segments

of G, but clearly, it is easy to do it (“intermix” the segments with the elements of A). See

Figure 6.

Suppose that the x-coordinates of the right endpoints of the elements of p1, . . . , p|P | are

pR
1 , . . . , pR

|P |. Without loss of generality, pR
1 < · · · < pR

|P |. Note, this is equivalent to the

statement R1 = (p1, . . . , pn). Then the x-coordinates of the right endpoints of the elements

of A, call them aR
1 , . . . , aR

n will follow the following rule:

aR
i =

pR
j + pR

j+1

2
if i =

(

k − 1

2

)

2j for some k. (6)

Some aR
i are not defined by this rule (namely, iff i|2|P |); they will be such that aR

i > pR
j for

all j, but otherwise arbitrary.
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Now we will show that Q2 has to attain a very specific form, and so does P2. From now

on, we change the notation, and pi, ai, bi denote line segments of the p2-representation,

and we use again aL
i , aR

i for the absolute values of the x-coordinates of the left and right

endpoints of the segments. However, we maintain the indices, so in this way ai is the image

of the original ai
2.

In the following, we will study the structure of A ∪ B in the p2-representation. Since

this will be useful later, too, we state it as a separate lemma.

Lemma 3.4.1. Every p2-representation of Sn (standard example) has the arrangement as

in Figure 7, with the exception of at most two pairs of line segments.

Proof. The sets A and B are the maximum antichains in Sn. A = {a1, . . . , an}, B =

{b1, . . . , bn} and ai > bj if and only if i 6= j.

Hence in the representation,

aL
i > bL

j

for all i, j except maybe for one pair. Let us ignore that pair now and concentrate on the

remaining. Now let ak be such that aR
k is maximal. Then each bi < ak with i 6= k, so each

bR
i > aR

k with i 6= k. If we ignore ak and bk now, too, then the remaining

{aR
i < bR

j } for all i, j, except for the ignored.

2We believe that the confusion this might cause is less than the confusion that would be caused by the
hordes of indices.
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Still, for every i, ai‖bi somehow: the only way this can be if, ai ∩ bi 6= ∅. So the p2-

representation must look like Figure 7.

We can specify an ordering on B with the aid of the left linear extension (defined by

Q2), call it L2(Q2)|B . Also, denote the linear order specified by the left linear extension

(defined by Q1) by L1(Q1)|B . We claim that if we keep ignoring the pairs in the previous

paragraph, then either

L1(Q1)|B = L2(Q2)|B or L1(Q1)|B = (L2(Q2)|B)d. (7)

To see this, pick bx and by consecutive elements in L1(Q1)|B . We know that y = x + 1

unless some elements were ignored between them, in which case every i : x < i < y is an

index of an ignored element. Let S = {x, . . . , y} a set of (at least two) integers, and consider

the image of gS , call it g∗. Now g∗ > bi for all i except for the images of bx and by (and the

ignored elements of course). This is only possible if the images of bx and by are consecutive

line segments on Figure 7, or more rigorously, the images of bx and by are consecutive in

L2(Q2)|B . So we deduced that the consecutivity property is preserved between L1(Q1)|B
and L2(Q2)|B , which implies (7)3.

Note that the proposition above has no consequence to the right linear extension of B.

However, it immediately implies a similar statement on the right linear extension of A. Let

L2(Q2)|A be the right linear extension (defined by Q2). Then

L2(Q2)|A = (a1, . . . , an) or (an, . . . , a1). (8)

(Again, recall that we may have missing elements from these sets, but that will not affect

our argument.)

Recall that R1 = (p1, . . . , p|P |), so we need to show that L2 = (p1, . . . , p|P |).

Now recall the definition of Q1, specifically that all ai had its left endpoint left from all

pi, and the ordering of their right endpoints by (6). In particular it implies that p1 < ai for

all i. Therefore it must be that p1 <L2
ai for all i. Also from (6), p2 < ai if and only if i is

even, and p2‖ai if and only if i is odd. Therefore using (8), the only possible arrangements

3In fact, this is all we need the set G for.
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for A in Q2 is that the even indexed left endpoints are grouped together, and also the odd

indexed left endpoints are grouped together, and p2’s left endpoints is between the two

groups. In particular, p1 <L2
p1. See Figure 8.

We can continue this argument by considering p3, p4, and so on, in every step concluding,

that the given pj < ai if and only if i|2j−1, otherwise pj‖ai. So the left endpoints of A are

grouped in a manner shown in Figure 8, and the left endpoints of P must be between the

groups. That forces an order on the left endpoints of P , namely

p1 <L2
p2 <L2

· · · <L2
p|P |.

Q.E.D.

As a last remark, let us add that we needed all 2|P |+1 elements of A and B. If we didn’t

have to “ignore” elements early in the argument, then 2|P |−1 would have been enough, but

in the current situation, we had to defend us against the situation when crucial elements,

that would force ordering on P , are ignored. Using 2|P |+1 intervals ensures that there are

at least 4 elements of A in every important group on Figure 8 (3 would have been enough,

but it is just simpler to increase the exponent of two by 1), so even if we ignore 2 of those,

at least 1 is left do its job.

3.4.2 Second part

Surprisingly, repeating the techniques of the first part of the proof does not seem to work

here. Naturally, we tried to do that first, but we could not work it out. So we needed
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something different. The ideas are somewhat simpler here, but the description of proof is

more technical, and we heavily use the first part of the lemma.

As we mentioned earlier, in this part of the proof, we will assume that Q1 and Q2 already

obeys (i) of the lemma.

For every pair of incomparable line segments in P1, we will add some extra line segments

to form a portion of Q1. The configuration of the new line segments depends on the

configuration of the two original line segments. According to this, we will separate several

cases.

In the following cases, the two line incomparable segments will always be denoted by r

and b, and always so that the left endpoint of r is left from the left endpoint of b in P1.

We will also use the notation aL, aR for a line segment a as in the previous section, and

we will add the notation aU for the y-coordinate of the right endpoint of a. Also, we keep

the convention that we will use the same letter for the line segment in Q2 (or specially P2)

as for the line segment in Q1 (or P1) and we will make it clear with the context which line

segment is the argument about.

Using these notation and assumptions, in every case we will prove that

rL > bL in P1 =⇒ rR
0 < bR

0 in P2,

where most of the time r0 = r and b0 = b, and other times r0 6= r, but r0 has the same

relation to any other element of P1 as r, and similar statement is true for b.

Since we eventually build helpers above every pair of incomparable line segments, this

statement is going to be proven for every pair of incomparable line segments, and therefore

the second part of the lemma follows.

3.4.2.1 Case 1

bR < rR and bU < rU in Q1

Relabel r to r1 and b to b1, and add extra line segments b2, b3, r2, r3 so that bR
1 < bR

2 <

bR
3 < rR

1 < rR
2 < rR

3 and bU
1 < bU

2 < bU
3 < rU

1 < rU
2 < rU

3 and bL
1 < bL

2 < bL
3 < rL

1 < rL
2 < rL

3 ,

and make sure that b2 and b3 has the same relation to every element of the poset as b1,

similarly for r2, r3 and r1.
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Add 6 additional segments so that they now form S6. Also add the line segment g so

that bL
3 < gL < rL

1 and gR < bR
1 . Also g <Q ri for i = 1, 2, 3 and g intersects bi for i = 1, 2, 3

in Q1.

Apply Lemma 3.4.1 to the poset induced by r1, r2, r3 and b1, b2, b3. In Q2, there must

be a pair, call them r0 and b0 that intersect. Where is g in Q2? Due to the first part of the

lemma, gL < bL
0 < rL

0 . Suppose that bR
0 < rR

0 ; then by g <Q r0, g can not possibly intersect

b0 in Q2, so g <Q b0, a contradiction. We showed that rR
0 < bR

0 . (This is the only part of

the proof where r may not be identical to r0 and b may not be identical to b0.)

3.4.2.2 Case 2

bR < rR and rU < bU in Q1

We need to add two extra line segments, g and l, so that bL < gL < rL < lL, gR < bR <

rR < lR, gU < rU < bU < lU in Q1. By the first part, gL < bL < rL < lL in Q2. Also

g <Q r <Q l. By Case 1, we may assume that b intersects l. If bR < rR, then b > g, a

contradiction. So rR < bR.

3.4.2.3 Case 3

rR < bR and r ∩ b 6= ∅ in Q1
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Add two line segments, g and l, so that in Q1

• g <Q b

• g‖Qr, and g and r are in the same relation as b and r in Case 1

• gR < rR and gR < bR

• l <Q r

• l‖Qb

• lR is less than all of gR, rR, bR

In Q2, bL > rL by the first part of the lemma. Suppose that bR < rR. Then b and r must

intersect in Q2 in order to be incomparable. gL < rL, g <Q b and g‖Qr. Also, g∩ r 6= ∅ and

gR > rR by the Case 1 construction. Then it should happen that l <Q r, l‖Qb and lL < gL.

This is impossible, so rR < bR.
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3.4.2.4 Case 4

rR < bR and r ∩ b = ∅ in Q1

Add a line segment g such that g >Q b and g and r are in the same relation as b and r in

Case 3. In Q2, gR < bR, because g >Q b. If bR < rR, then gR < rR, contradicting Case 3.

This concludes the proof of the main lemma.

Although we worked out the proof for p1 and p2, observe that position of the y-axis did

not really play any role in the proof. In the points when it came up in the discussion it only

made the proofs harder, so if we drop the assumption that every line segments intersects

the y-axis, the proof still stands. Therefore we can also conclude the following:

Lemma 3.4.2. The statement of Lemma 3.3.6 holds for P1 and P2, too.

3.5 Connections with pseudoline arrangements

In this section, unless otherwise noted, we will work on on the real projective plane P
2.

Definition 3.5.1. A pseudoline is a simple closed curve whose removal does not disconnect

the plane.

Consider a set of pseudolines on the plane. Maybe we are not interested the exact paths

the pseudolines describe, or they analytical properties. If we are only interested how they

connect certain points of the plane, then we talk about graph theory. In this case, we define

abstract object—graphs—that contain only these properties of the lines. If we are also

interested the intersection properties of these lines, then we will define a different kind of

abstract object: a pseudoline arrangement.

Definition 3.5.2. An arrangement of pseudolines is a set of pseudolines such that any two

intersects at exactly one point, and not all of them intersect in the same point.

Definition 3.5.3. Consider the sphere model of P
2, in which the points are pairs of an-

tipodal points, and the lines are the great circles. Let a and b be two points in P
2, and

(a1, a2), (b1, b2) be the corresponding pairs of antipodal points. The distance of a and b is

min{d(a1, b1), d(a1, b2), d(a2, b1), d(a2, b2)}, where d(ai, bj) is the length of the shortest arc
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between ai and bj on the surface of the sphere. A function P
2 → P

2 is continuous, if it is

continuous with respect to the metric defined by the distance above. A function P
2 → P

2 is

a homeomorphism, if it is bijective, continuous and its inverse is also continuous.

Definition 3.5.4. Two pseudoline arrangements are isomorphic, if there is a homeomor-

phism that maps one to the other.

Definition 3.5.5. A pseudoline arrangement is stretchable if it is isomorphic to a pseu-

doline arrangement, in which every pseudoline is a straight line.

Not every pseudoline arrangement is stretchable. To show a counterexample, recall the

classical geometrical theorem by Pappus.

Theorem 3.5.6 (Pappus). Let a1, a2, a3 be collinear points, and b1, b2, b3 be another set

of collinear points. Let (ai, bj) denote the straight line that passes through the points ai and

bj. Then the points (a1, b2) ∩ (a2, b1), (a1, b3) ∩ (a3, b1), (a2, b3) ∩ (a3, b2) are collinear.

Corollary 3.5.7. The pseudoline arrangement on Figure 13 is not stretchable.

Desargues’ Theorem can be used to produce a non-stretchable configuration on 10 lines.

There are several other famous examples. Bokowski and Sturmfels provided a “minor-

minimal” infinite family of non-stretchable arrangements. This already suggests that that

it is difficult to determine if a pseudoline arrangement is stretchable. Indeed, Mnëv proved

that the problem determining if a pseudoline arrangement is stretchable is NP-complete.
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Definition 3.5.8. A pseudoline-arrangement is simple, if no three pseudolines cross in the

same point.

Simple pseudoline arrangements will be central points of interest to us, because the

method that we will develop will produce arrangements that are simple, or close to simple.

It is easy to transform the non-Pappus arrangement into a simple pseudoline arrangement, as

shown on Figure 14. We encourage the reader to reconstruct the proof that the arrangement

is non-stretchable using Pappus’s Theorem.

For more information on pseudoline arrangements, see [15], or for more detailed expo-

sition from the point of view of oriented matroids, see [3].

In the following, we will see how Conjecture 3.3.4 is related to stretchability of pseudoline

arrangements. We will define a sequence of posets Un ∈ p1 for every positive integer n. We

will assign a family of pseudoline arrangements to each Un, and we will ask if it is true that

there is a stretchable arrangement in each family.

Let Ûn = {1, . . . , n}3, the set of ordered triples of positive integers not greater than n.

To every element (l, r, u) of Ûn, assign the line segment from (−l, 0) to (r, u). Consider

these line segments as a p1-representation of a poset. Call this poset Un.

If there is an n such that Un 6∈ p2, then p1 6⊆ p2, specifically, Conjecture 3.3.4 is true.

On the other hand, if Un ∈ p2 for every n positive integer, then p1 ⊆ p2. Indeed, every

poset in p1 can be represented as a subset of Ûn for some large n.
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The subsets of Ûn that is determined by the triples

P (r, u) = {(i, r, u) : i ∈ {1, . . . , n}}

are called pencils.

We say a pencil P (r1, u1) dominates a different pencil P (r2, u2) at level i, if

• r1 ≤ r2 and u1 ≥ u2, or

• r1 > r2 and u1 > u2 and the line segment (−i, 0) to (r1, u1) passes above the point

(r2, u2), or

• r1 < r2 and u1 < u2 and the line segment (−i, 0) to (r2, u2) passes below the point

(r1, u1).

The following proposition is a straightforward consequence of the definition.

Proposition 3.5.9. The domination relation of pencils at a fixed level i is a total order on

the pencils.

In the following, we describe a pseudoline arrangement, that is associated with the

poset Un. For simplicity, we we will use a Cartesian coordinate system, and we add the

ideal line. We will only specify ordered sequences of points in the coordinate system that

the pseudoline passes through, in the prescribed order. Doing so, we actually do not fully

specify the arrangement, but we do specify many (intersection) properties of it. Then

we consider all pseudoline arrangements that satisfy these properties to get our family of

arrangement.

Start with straight lines v1, . . . , vn, such that vi is the straight line passing through (i, 0)

and (i, 1). Add a new pseudoline pr,u for each pencil P (r, u). Let li(r, u) be the position

of the pencil P (r, u) at level i in the total order defined by domination, so that li(r, u) is 1

for the smallest pencil and n2 for the largest. Let the pseudoline pr,u pass through (−r, 0),

then for i = 1, . . . , n, (i, li(r, u)). See Figure 15.

Observe, that we did not specify how the pseudolines intersect left from v1, but it is

very strictly defined how they intersect between any vi and vi+1. This way, taking every
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possible arrangement (up to isomorphism), we have defined a family of arrangements. Call

it Fn.

Proposition 3.5.10. If there exists an n ∈ N such that no pseudoline arrangement in Fn

is stretchable, then p1 6⊆ p2.

Proof. Consider Ûn, a p1-representation of Un. It is clear that we can break the ties with the

endpoint coordinates in Ûn without changing the underlying poset. Also, we can move the

line segments so that no line segment endpoint lies on another line segment, still without

changing the underlying poset.

For each set of line segment that used to be pencils, create two other identical “pencils”

(these are not really pencils any more after the tiebreaking), overlapping the original. Now

move one replica’s right endpoints to left, and move the other’s right endpoints to the right.

Do this so that the replicas have the same relationship with every other line segments

that are not in any copy on this pencil. Also, do this for every pencil, and call this new

p1-representation Ũn.

We will apply Lemma 3.3.6 on Ũn; recall that this involves building a huge helper poset

above Ũn.

In Ûn, there were only n values attained by x-coordinates of left endpoints of line seg-

ments (namely −1, . . . ,−n). In Ũn, the x-coordinates of the left endpoints of the correspond-

ing segments are grouped to n disjoint intervals. By Lemma 3.3.6, this property is preserved

in the p2-representation of the poset. A similar property holds for the x-coordinates of the

right endpoints.

Also by the lemma, the image of a pencil in the p2-representation resembles a ray (a

half-line). It is so that

• the left endpoints are confined to an interval in which no other line segments start,

except the ones with identical x-coordinates of right endpoints,

• the right endpoints hit the groups mentioned in the previous paragraph: each segment

hits exactly one group, and the order is also preserved,
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• the “shorter” line segments do not intersect any line segments that the “longer” ones

do not.4

For each pencil, concentrate only the “longest” line segments. We know where these

start on the x-axis (recall how they are confined into disjoint intervals).

We will add vertical lines to this p2-representation. First consider the replicas of pencils

P (i, u) for a fixed i that were moved to the left. These are confined to an interval IL
i in the

p2-representation. The replicas that were moved to the right are confined to the interval

IR
i . Similar holds to the original copies of pencils, call their interval Ii.

IL
i , Ii and IR

i are pairwise disjoint, and Ii is the one in the middle. So there is a real

number ri strictly between IL
i and IR

i .

In the stripe IL
i × R there is a pseudoline, and we know the order it intersects the

“longest” line segments defined above. This order is li, the total order defined by pencil

domination. There is a similar pseudoline in the stripe IR
i × R, on which the intersection

order is the same. So the order must still be same on the vertical line with x = ri. Keep

only these vertical lines along with the “longest” line segments, and turn the “longest” line

segments into lines by continuing them to infinity at both ends.

What we got is a straight line arrangement that adhere to all the defining requirements

of the members of Fn, contradicting the assumption that no pseudoline arrangement in Fn

is stretchable.

3.6 Properties of continuous universal functions

In this section, we will again heavily use Lemma 3.3.6. We will frequently make statements

that will imply that certain arrangements of line segments must hold in a p2-representation

of a certain poset. What we mean in these cases, is that we may assume that the segments

are arranged in the specified way, because by Lemma 3.3.6 there exists a superposet of the

current poset that forces the current posets arrangement in the specified way. In other

4The “shorter” segments here are those, whose right endpoint has smaller x-coordinate, although their
“arc length” can technically be longer.

48



words, we assume the statement of Lemma 3.3.6 in these cases. It would be really cumber-

some to make the precise statement every time in each argument, so we chose to use this

“shortcut”.

Lemma 3.6.1. Let f be a continuous universal function function and r, b two line segments

with rL > bL.

i) If the right endpoint of r lies on the line defined by b, then the right endpoint of f(b)

lies on the line defined by f(r).

ii) If the right endpoint of b lies on the line defined by r, then the right endpoint of f(r)

lies on the line defined by f(r) (specifically in the interior of f(r)).

The proof of this lemma relies on a sequence of basic statements that do not require

continuity and are somewhat similar to Lemma 3.3.6. The proof of these are very technical,

but not hard. The lemma will be a relatively straightforward consequence of these. The

statements are claimed together in the following lemma.

Lemma 3.6.2. Let r1 and b1 two line segments of a representation of a p1 poset P such

that rL
1 > bL

1 . Let b and r be the corresponding elements of P . Find a p2-representation of

P . In this, the line segment corresponding to r1 and b1 will be called r2 and b2 respectively.

Let the lines defined by ri be called Ri and the lines defined by li be called Li respectively.

Then

1. (bR
1 < rR

1 ) ∧ (r1 ∩ b1 6= ∅) =⇒ (r2 ∩ b2 6= ∅).

2. (bR
1 < rR

1 ) ∧ (r1 ∩ b1 = ∅) ∧ (r1 ∩ B1 6= ∅) =⇒ (r2 ∩ b2 = ∅) ∧ (R2 ∩ b2 6= ∅).

3. (bR
1 < rR

1 ) ∧ (r1 ∩ b1 = ∅) ∧ (r1 ∩ B1 = ∅) =⇒ (r2 ∩ b2 = ∅) ∧ (R2 ∩ b2 = ∅).

4. (rR
1 < bR

1 ) ∧ (r1 ∩ b1 6= ∅) =⇒ (r2 ∩ b2 = ∅) ∧ (R2 ∩ b2 = ∅).

5. (rR
1 < bR

1 ) ∧ (r1 ∩ b1 = ∅) ∧ (R1 ∩ b1 6= ∅) =⇒ (r2 ∩ b2 = ∅) ∧ (R2 ∩ b2 6= ∅).

6. (rR
1 < bR

1 ) ∧ (r1 ∩ b1 = ∅) ∧ (R1 ∩ b1 = ∅) =⇒ (r2 ∩ b2 6= ∅).
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Proof. 1) is trivial, because if r2 ∩ b2 = ∅, then r > b would follow, while r‖b.

In 2), the part that r2 ∩ b2 = ∅ is trivial for similar reasons: we must have r > b. To

prove the other part, add a new line segment g1 such that bL
1 < gL

1 < rL
1 , bR

1 < gR
1 < rR

1

and g1 ∩ b1 6= ∅ and g1 ∩ r1 6= ∅. Lemma 3.3.6 implies bL
2 < gL

2 < rL
2 and rR

2 < gR
2 < bR

2 .

Then g2 ∩ r2 6= ∅, because we need g‖r, and g2 ∩ b2 6= ∅, because we need g‖b. This implies

R2 ∩ b2 6= ∅.

3) will be proven at the end of the proof.

To prove 4), add a new line segment g1 such that gL
1 < bL

1 < rR
1 , gR

1 < rR
1 < bR

1 and

g1 ∩ r1 6= ∅. Lemma 3.3.6 implies gL
2 < rL

2 < bL
2 and rR

2 < bR
2 < gR

2 . Since g < b, we have

g2 ∩ b2 = ∅. Since r‖g, we must have r2 ∩ g2 6= ∅. Therefore the right endpoint of r2 in Q2

can not stay in the triangle defined by the left endpoints of b2 and r2 and the right endpoint

of b2. This implies both statements.

To prove 5, add two new line segments g1 and w1 in the following way.

• gL
1 < bL

1 < rL
1 < wL

1

• rR
1 < gR

1 < wR
1 < bR

1

• g1 ∩ b1 6= ∅, w1 ∩ r1 6= ∅ and w1 ∩ b1 6= ∅

• w1 ∩ g1 = ∅

By Lemma 3.3.6 we may assume that rL
2 < gL

2 < wL
2 < bL

2 and wR
2 < rR

2 < bR
2 < gR

2 . Since

g‖b, we have g2 ∩ b2 6= ∅. Similarly, r2 ∩ w2 6= ∅. But w > g, therefore r2 ∩ g2 6= ∅. This

implies the statement of the lemma.

To show 6, add g1 so that bL
1 < rL

1 < gL
1 , rR

1 < bR
1 < gR

1 and g1 ∩ r1 6= ∅ and g1 ∩ b1 = ∅.

By Lemma 3.3.6 rL
2 < bL

2 < gL
2 and gR

2 < rR
2 < bR

2 . Since g‖r it follows that g2 ∩ r2 6= ∅.

Since g > b it follows that g2 ∩ b2 = ∅. This implies the statement.

Now let us return to 3). We get the first part trivially form r > g. To see the second

part, add a new line segment g1 such that gL
1 < bL

1 < rL
1 , bR

1 < rR
1 < gR

1 and g1 ∩ b1 6= ∅ and

g1 ∩ R1 = ∅. Lemma 3.3.6 implies bL
2 < rL

2 < gL
2 and rR

2 < bR
2 < gR

2 . Because of the already

proven part 4, g2 ∩ b2 = ∅. Because of part 6, g2 ∩ r2 6= ∅. This implies the second part.
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Figure 17: Proof of Lemma 3.6.2 case 5

Now we are ready to prove Lemma 3.6.1.

Proof. The lemma contains four statements altogether. Part i) has two statements enclosed:

one if the right endpoint of r lies in the interior of b, and the other, if it lies outside of b.

Similarly, part ii) includes two statements. All four statements have very similar proofs,

so we only include the proof of the case of part i) when the right endpoint of r lies in the

interior of b. The other statements are proven similarly.

Consider a sequence of segments {ri}∞i=1 such that all ri have their left endpoints at the

left endpoint of r, and their right endpoints converge to the right endpoint of r, but the

relation of ri and b is such as r and b in part 4 of Lemma 3.6.2. Also consider another

sequence of segments {Ri}∞i=1 such that their left endpoints are also at the left endpoint of

r, their right endpoints also converge to the right endpoint of r, however, the relation of Ri

and b is such as r and b in part 5 of Lemma 3.6.2.

Let T be the triangle determined by the line segment f(b) as a side and the left endpoint

of f(r) as opposite vertex. The images f(ri) all lie outside of T (left endpoints being at

a vertex), and the images f(Ri) lie inside of T (left endpoints being at the same vertex).
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The right endpoints of these segments converge to the right endpoint of f(r). So the right

endpoint of f(r) must lie on the boundary of T , which implies the statement of lemma.

Nothing that has been done in this section depends on the position of the y-axis. Since

Lemma 3.3.6 works also in the absence of the y-axis, and we didn’t use the y-axis in

Lemma 3.6.2, it follows that Lemma 3.6.1 works also for shift insensitive universal functions.

We emphasize this in the following corollary.

Corollary 3.6.3. Let f be a continuous shift insensitive universal function function and

r, b two line segments with rL > bL.

i) If the right endpoint of r lies on the line defined by b, then the right endpoint of f(b)

lies on the line defined by f(r).

ii) If the right endpoint of b lies on the line defined by r, then the right endpoint of f(r)

lies on the line defined by f(r) (specifically in the interior of f(r)).

3.7 Proof of Theorem 3.3.3

Lemma 3.7.1. Let r be a line segment from (−x, 0) to (y, z) and b be a segment from (−x, 0)

to (y, w) with x, y, z, w > 0 and z > w. Let f be a continuous universal function. Then f(r)

and f(b) has a common left endpoint and their right endpoints have equal x-coordinate, but

different y-coordinates.

Proof. Lemma 3.3.6 with the continuity of f imply that the x-coordinates of the left end-

points of f(r) and f(b) are equal, therefore the left endpoints are identical. Also, for similar

reasons, the x-coordinates of the right endpoints are equal. So unless f(r) = f(b), the

statement is true. Suppose f(r) = f(b).

Let g be a line segment starting at (−x − 1, 0) passing through (y, z) ending at (y +

1, z(x+y+2)/(x+y+1)). Due to Lemma 3.6.1, the right endpoint of f(z) lies on f(r) = f(b).

Considering Lemma 3.3.6, it is clear that the right endpoint of f(z) must lie in the interior

of f(b). This makes z and b incomparable in the underlying poset, when the construction

of b and g implies g > b.
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Corollary 3.7.2. Let r be a line segment from (x, 0) to (y, z) and b be a segment from (x, 0)

to (y, w) with z > w. Let f be a continuous shift insensitive universal function. Then f(r)

and f(b) has a common left endpoint and their right endpoints have equal x-coordinate, but

different y-coordinates.

Proof. The argument is the same as for the previous lemma. Instead of using Lemma 3.3.6

and Lemma 3.6.1, we have to use their shift insensitive versions, and the argument can be

repeated without change.

Now we are ready to prove Theorem 3.3.3.

Consider two non-intersecting line segments in a P1 or P2-representation of a poset.

Let d(x0) is the distance between the points that are defined by the intersection of the line

segments with the horizontal line y = x0. The function d(x) is defined on at least on some

interval [0, ε] for some ε > 0. If d(x) is monotonously increasing, then we say they diverge.

Similarly, if d(x) is decreasing, we say they converge. If they neither diverge nor converge,

we say they are parallel (actually this is not our definition).

Let r be the line segment (0, 0) to (1, 2). Let b be the line segment (0, 0) to (1, 1). For

ε > 0 define bε to be the segment from (0, 0) to (1, 1 − ε).

Because of Lemma 3.7.2, f(r) and f(b) diverge. Since f is continuous, there exists ε > 0

such that f(r) and f(bε) diverge. Let r′ = f(r) and b′ = f(bε).

Define a new line segment l such that it passes through the points (1, 2) and (1, 1 − ε)

and its left endpoint is on the x-axis. This does not define l ′ completely, because it does

not describe the right endpoint, but that is in fact not necessary: the location of the right

endpoint does not matter. Let l′ = f(l).

Applying Lemma 3.6.1 to r and l we conclude that the right endpoint of l ′ lies on the

line defined by r′. Similarly, looking at bε and l, we conclude that the right endpoint of

l′ lies on the line defined by b′. Hence the lines defined by r′ and b′ intersect at the right

endpoint of l′. This contradicts the fact that they diverge. Q.E.D.
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3.8 Some known configurations

Naturally we attempted to find an integer n, such that no pseudoline arrangement of Fn is

stretchable. This actually would imply that for all m > n, no pseudoline arrangement of

Fm is stretchable, because Ûn ⊆ Ûm. So we do not need to find the smallest n, and it is

certainly more natural to try to prove the statement, that for n large enough, no pseudoline

arrangement of Fn is stretchable.

We know that the problem of stretchability is difficult is general. However, we may be

able to find a subset of Ûn for large n, that is a known example of a non-stretchable arrange-

ment. The simplest known non-stretchable arrangement is the non-Pappus arrangement.

Unfortunately we can come to the following conclusion.

Theorem 3.8.1. The non-Pappus pseudoline arrangement is not a subset of Ûn for any

n.

This theorem is actually quite hard to prove, but since it is not closely related to the

topic, we omit the proof.

Two more attempts to find the so called bad pentagon (see [15]) and the the Desargues

configuration also resulted in failures.

All we can really do here is to describe certain arrangements whose image under a

hypothetical continuous universal function is very restricted. They provide some hope that

a contradiction will arise from them.

Fix the positive real numbers x6 < x3 and y6 < y5. We will define 8 points in R
2:

• P−1(−1, 0)

• P0(0, 0)

• P6(x6, y6)

• P5(x6, y5)

• P4

(

x3,
x3y5

x6

)

• P3

(

x3,
(x3+1)y6

x6+1

)
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Figure 18: p1 poset whose image is the Pappus configuration

• P2 is the intersection of the line determined by the points P−1 and P5 and the line

determined by the points P0 and P3.

• P1 is the intersection of the line determined by the points P−1 and P4 and the line

determined by the points P0 and P6.

An easy calculation gives that the x-coordinates of P1 and P2 are both

x3y5

x3y6 − x3y5 + y6
.

Now let the line segment li,j connect points Pi and Pj for i = 1, . . . , 6 and j = −1, 0. See

Figure 18. Since this representation is full of ties, we can not directly apply Lemma 3.3.6 to

it. However, it is fairly intuitive, that the lemma can be applied to representations that are

“close” to this one, and therefore get a strong conclusion about the image of P̂0. Therefore,

its is easy to show the following.

Proposition 3.8.2. Let f be a continuous universal function. Then f maps Figure 18 into

a Pappus-like configuration, shown on Figure 19.
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CHAPTER IV

MONOTONE HAMILTONIAN PATHS IN THE BOOLEAN LATTICE

OF SUBSETS

4.1 Introduction

The n-dimensional hypercube, as a graph is one of the first standard examples of a Hamil-

tonian graph in college graph theory classes; a simple induction shows that a Hamiltonian

cycle exists for every n ≥ 2. However, if we follow any cycle like this, we will find, that the

sizes of the sets along the cycle goes up and down and does not show any kind of monotone

property. The question occurs: if we give up having a cycle, and we just want a Hamiltonian

path, can we find such a path, for which every time we cover a set, we will have covered all

the subsets of this set? This kind of path would start from the empty set, end in the set

{1, . . . , n}, and it would traverse the diagram of the subset lattice “from bottom to top”.

It is immediately clear that this is impossible even for n = 2. So we relax the conditions

even more. For this, we change our point of view, and from this point on, we consider the

subset lattice of the set {1, . . . , n}. The diagram of this lattice, as a graph, is isomorphic to

the n-dimensional hypercube. We are searching for a Hamiltonian path {S1, . . . , S2n} such

that for every i, either

• every subset of Si appears among the sets S1, . . . , Si−1, or

• only one (say S) does not; in this case Si+1 = S.

If a Hamiltonian path has the above properties, we call it a monotone Hamiltonian path.

If a path is not Hamiltonian, but it starts at the empty set and has the above properties,

we call it a monotone stub or simply stub of a monotone Hamiltonian path. If a stub covers

all the sets of at most size k, we call is a k-stub. Obviously, the existence of an n-stub is

equivalent to the existence of a monotone Hamiltonian path. The answer for the following

questions is not known:
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1. Is there a monotone Hamiltonian path for every n in the n-cube?

2. If the answer is no, what is the largest k such that a k-stub of a monotone Hamiltonian

path exists?

Trotter and Felsner [10] found some striking combinatorial connections related to these

questions. Without going into much details, let us just mention the results. For basic

definitions on interval orders and partial orders, see [25], and on graph theory, see [5].

Definition 4.1.1. C(t) is the largest integer h so that whenever P is an interval order of

height h, the chromatic number of the diagram of P is at most t.

Definition 4.1.2. A sequence (S0, S1, . . . , Sh) of sets is an α-sequence if

• S0 6⊆ S1, and

• Sj 6⊆ Si ∪ Si+1 when j > i + 1

F (t) is the largest h for which there exists an α-sequence of subsets of {1, . . . , t}.

Theorem 4.1.3. For every t ≥ 1

C(t) = F (t) ≤ 2t−1 +

⌊

t − 1

2

⌋

,

with equality holding if and only there is monotone Hamiltonian path in the t-cube.

Another closely related problem is the famous “middle two level” conjecture posed

by Ivan Havel. That problem is almost solved, see [17]. We do not know any specific

connections, but both problems deal with the same kind of objects, so we can hope that

solving one might help solving the other.

Trotter conjectured, that if n is sufficiently large, there is no monotone Hamiltonian

path in the n-cube. He also conjectured that if n is sufficiently large, there is no 3-stub in

the n-cube.

The existence of a k-stub for k = 0, 1 is absolutely trivial, and it is really easy to show

that 2-stubs exist. The number of 2-stubs is enormous, but not all of them are prefixes of

3-stubs. In our construction, we have to be really careful how we cover the 2-sets, so that

we can continue it to construct a 3-stub.
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4.2 The existence of 3-stubs

Theorem 4.2.1. For every n positive integer, a 3-stub exists in the subset lattice of

{1, . . . , n}.

The existence of a monotone Hamiltonian path for n ≤ 10 was checked with computers

by Trotter and it has been rechecked by the authors. So in the following, we may assume

that n ≥ 9.

4.2.1 Construction of a 2-stub

Start the path with the following sequence: ∅, {1}, {1, 2}, {2}, {2, 3}, {3}, . . . , {n}. So far,

this is a 1-stub.

Now we will use a table to demonstrate how to cover the remaining 2-sets. In the table,

we just list the 2-sets that are not covered so far without curly braces and commas to

save space. When we connect two 2-sets in this table, say {a, b} and {b, c} (which will be

denoted by ab and bc), we mean that the path goes from {a, b} to {a, b, c} and then to

{b, c}. Observe, that this is only possible if the set {a, c} has been covered. We will be

careful to only connect subsets, if that is allowed. Here is our table:

13

14 24

15 25 35

...

1n 2n 3n ... n-2 n

Later we will refer to the rows of this table. When we refer to the first, second, etc.

row, we will call them row 3, row 4, etc. respectively. So row k is the row that contains the

2-sets, whose largest element is k.

Observe, that if two sets are next to each other (up-down or left-right), it is always

possible to connect them, because the missing 2-set that must have been covered is of the

form {α, α + 1}, and these were covered in the 1-stub. Additional opportunities to connect

sets arise as we go along the path. It is now fairly obvious, that we can construct 2-stubs
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Figure 20: Construction of a 2-stub

in many ways. We will do it as demonstrated in Figure 20. In this figure we used n = 12

and we used the letters A, B and C in place of the numbers 10, 11 and 12.

In general, the demonstrated path is the following: after the set {n}, we cover {3, n},

{2, 3, n}, {2, n}, {1, 2, n}, {1, n}, {1, 3, n} (it is allowed, because {3, n} has been covered),

{1, 3}, {1, 3, 4}, {1, 4} and so on as demonstrated in Figure 20. After {2, 7}, we do the

following. We cover the table row-by-row, going down to the next row only after we covered

every 2-set in a given row. The order of the 2-sets within a row is arbitrary, with the

following restrictions (k ≥ 7, the ∗ sign denotes an arbitrary element):

• If a row ends with the sets {a, k}, {∗, k}, {b, k}, then the next row starts with the sets

{b, k + 1}, {a, k + 1}.

• The row before the last one ends with the sets {5, n − 1}, {∗, n − 1}, {4, n − 1}.

• The last row ends with {6, n}.

When we cover row k, every row of index less than k has been covered, and this makes

it possible that every jump within the row is allowed. So just by this fact, each row could

be covered in an arbitrary order. The restrictions given above are important though in the

construction of the 3-stub.

It is clear, that for large n there are still exponentially many ways to build a 2-stub

that satisfies the requirements. For clarity, let us list the 2-sets covered in order for n = 12

in the lexicographically first stub. We will omit the curly braces, commas and we will not

mention the implied 3-sets. We will use the letters A, B, C as before.
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3C, 2C, 1C, 13, 14, 24, 25, 35, 15, 16, 26, 36, 46, 47, 27, 17, 37, 57, 58,

18, 28, 38, 48, 68, 69, 39, 19, 29, 49, 59, 79, 7A, 4A, 1A, 2A, 3A, 6A, 5A, 8A,

8B, 6B, 1B, 2B, 3B, 6B, 5B, 7B, 4B, 4C, 5C, 7C, 8C, 9C, AC, 6C

4.2.2 Construction of a 3-stub

The idea of this construction is the following. We will partition the non-covered 3-sets into

“tables”. Table k contains the set of non-covered 3-sets, whose largest element is k. So

Table 3 contains only one element: {1, 2, 3}, Table 4 contains one again ({2, 3, 4} – the sets

{1, 2, 4} and {1, 3, 4} were covered during the beginning of the 2-stub), Table 5 consists of

{1, 2, 5}, {1, 4, 5} and {3, 4, 5}. We will traverse the tables one by one and in an increasing

order.

Of course one problem is that the last 2-set is {6, n}, so we can not make a jump

to {1, 2, 3}. This is how we go back: {1, 6, n}, {1, 2, 6, n}, {2, 6, n}, {2, 3, 6, n}, {3, 6, n},

{1, 3, 6, n}, {1, 3, 6}, {1, 2, 3, 6}, {1, 2, 3}. We encourage the reader to check that every step

is valid. Note, that this is basically a “greedy” path; we swap out the elements of the set

{6, n} to the elements of the set {1, 2, 3} as fast as possible.

Another important thing to observe that we only used some elements of Table n and

one element of Table 6, so tables from 7 to n − 1 are unaffected.

Here is how we cover the 3-sets from Table 3 to Table 6. We will omit the the 4-sets

between each pair of 3-sets for simplicity. The reader is encouraged to check the validity.

{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 4, 5}, {1, 2, 5}, {2, 5, 6}, {3, 5, 6}, {4, 5, 6}, {1, 4, 6}, {2, 4, 6}

Now we will show how to cover tables from 7 to n − 1. In order to do this, we will

introduce a nice, compact way to write down the element of a table in an actual table.

When we consider Table k, each element will contain k, so we will omit that element. In

effect we will just write down 2-sets, without curly braces and commas.

We will use custom row and column indices. An element is row i and column j will be

the element ij, denoting the set {i, j, k}.

Consider the way we covered row k in the construction of the 2-stub. Say the order of

the 2-sets in that row is {α1, k}, {α2, k}, . . . , {αk−2, k}. Index the columns in order with
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Figure 21: Table 7 on the left and Table 8 on the right
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Figure 22: Table 9 on the left and Table 10 on the right

k − 1, α1, α2, . . . , αk−4. Index the rows in order with α2, α3, . . . , αk−2. This way we get

a k − 3 × k − 3 table. Obviously, due to symmetry, only half of the table, say the lower

triangle (including the diagonal) is necessary to consider. Observe, that in the beginning,

the valid moves are exactly the moves between up-down or left-right neighbors in the table.

However, while covering a table, new valid moves appear.

We need two different constructions to cover the tables: one kind for even indexed tables

and one for odd. Instead of writing down how to cover the tables in an abstract way, let us

just show the examples of Tables 7 to 10 for the case of n = 12 and the lexicographically first

2-stub. The examples will clearly show the pattern and how to generalize it. See Figures 21

and 22.

One can check that every step is valid inside a table. Also, we start to cover Table 7

with the set {2, 6, 7}, and this is possible, because the last element of Table 6 was {2, 4, 6}

and it is valid to move to {2, 4, 6, 7} and then to {2, 6, 7}, because {2, 4, 7} and {4, 6, 7}

were covered during the 2-stub. This is true in general, i.e. it is always possible to move

from one table to the next one. We end Table k with the element {a, b, k}, where row k

(covering the 2-stub) ended with the sets {a, k}, {∗, k}, {b, k} (lower right corner of the

table). We start Table k + 1 with the element {a, k, k + 1} (upper left corner of the table).

The implied 4-set between them is {a, b, k, k + 1}. The 3-sets that have to be covered to
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make this a valid step, are {a, b, k + 1} and {b, k, k + 1}. The former was covered in the

beginning of row k +1, which started as {b, k +1}, {a, k +1} implying the missing set. The

latter was covered between row k and row k +1; row k ended with {b, k}, row k +1 started

with {b, k + 1}, implying the missing set.

It remains to be shown how to traverse Table n. Remember that the table is special for

two reasons: first row n was covered irregularly in the 2-stub, and second, because when

we started to cover the 3-sets, and we had to “go back” to the set {1, 2, 3}, we used some

entries of Table n.

The beauty of the construction is that these two forces neutralize each other. Remember,

that the first three sets covered in row n were {3, n}, {2, n} and {1, n}. Let us ignore these

for a moment, and concentrate on the order the remaining sets were covered. Say this

order is {α1, n}, . . . , {αn−5, n} = {6, n}. Index the columns of Table n with n − 1, α1,

. . . ,αn−5 = 6, 1, and index the rows with α2, . . . , αn−5 = 6, 1, 2, 3.

When we draw the lower triangular n−3×n−3 table now, it is not completely “accurate”

for the following reasons:

• The moves between column 6 and column 1 are not valid.

• The set {1, 6, n} is missing from the table. This is not an actual difference, because

this set was covered in the beginning on the 3-stub.

• The sets {1, 3, n}, {2, 6, n} and {3, 6, n} are present on the table, but they are in fact

covered in the beginning of the 3-stub.

We can easily take care of the last problem by dropping the corresponding elements from

the table. As we mentioned, the second problem does not cause difficulty. Now look at the

first problem. After we drop the elements mentioned in the third problem, the separated

columns on the right are dropped, so the problem resolved itself.

Now it is really easy to traverse Table n, because we can use the exact same techniques

that we used to traverse the previous tables. Let us just illustrate how to cover the table

for n = 12 on Figure 23. The construction needs to be changed for different parity in the

same way as it was for the smaller tables. We use the letters A and B as before.
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Figure 23: Table 12

4.3 The general problem

Of course the immediate question arises if this technique exhibited here is useful for solving

the general problem. If nothing else, maybe for constructing a 4-stub. In our opinion, with

hard work, it is probably possible to construct a 4-stub using the same ideas, but it is at

least questionable if the gained insight would be enough to solve the general question.

This argument has several points that are very special for 3-stubs. The basic idea, that

we cover the 2-sets “row by row” and then the 3-sets “table by table” does not work without

modification. This is why we needed to do special things in the beginning of covering the

2-sets and even more special things in the beginning of covering the 3-sets. The fact that

the two “tweaks” fit together perfectly, almost seems to be lucky.

We hope that this construction, or a simplification of this, can provide a general pattern,

that will help answer the question if there is monotone Hamiltonian path of every subset

lattice.
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