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SUMMARY 

This thesis focuses on four policy decisions relevant in health systems today: (i) the 

impact of geographic distance to care on patients with cystic fibrosis, (ii) the impact of 

global health supply chain design on the health outcomes where they operate, (iii) the 

evaluation of the current state of access to pediatric preventive dental care and the impact 

of three interventions to improve access to care, and (iv) the impact and cost effectiveness 

of using silver diamine for treating caries (cavities) in young children. 

The first portion of the thesis examines the impact of geographic distance from 

cystic fibrosis centers on lung function in patients with cystic fibrosis. Clinical patient-

level data on 20,351 patients for years 1986-2011 were evaluated from the Cystic Fibrosis 

Foundation National Patient Registry. Distance was measured using a patient’s zip code 

centroid to the center where they received care. A heteroscedastic mixed effects model was 

used to capture the association of distance with longitudinal variation in patients’ lung 

function. Children, young adults, and adults in lower socioeconomic categories were found 

to have lung function measured by %FEV1 between 3 and 10 percentage-points lower than 

those living in higher income areas and those privately insured. For patients who changed 

distance categories, high distance was associated with lower lung function in young adults 

(p-value<0.001).  For older patients we observe the reverse, suggesting that the choice to 

move farther away is associated with better health (p-value<0.001). For patients who do 

not change distance categories, only medium distance on children is significant (p-

value=0.01) Known confounding factors including age and CFTR mutation class are 

statistically significantly associated with health outcomes (p-value<0.001). This study 
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shows distance was not found to be associated with health outcomes among patients whose 

distance category remained unchanged during the course of the analysis. For patients who 

move, the association of health with distance depend on the age group of the patient; adult 

patients further from their care center are healthier. Overall, we find that socioeconomic 

and genetic factors appear to impact health outcomes to a greater extent than distance.   

The second portion of the thesis evaluates the USAID malaria supply chain design 

in the context of the health outcomes in each of the counties it operates.  Malaria is a life-

threatening mosquito-borne infectious disease that causes fevers, chills, and vomiting. Sub-

Saharan Africa is both resource-constrained and has 90 percent of malaria related deaths. 

To combat the disease, global health agencies including USAID provide commodities 

necessary to prevent and treat malaria. The supply chain systems at these organizations are 

integral to the success of programs aimed to combat malaria. The supply chain factors that 

are most associated with reduced malaria mortality were determined to inform effective 

global health supply chain design. Using publicly available data, the impact of funding 

levels, supply chain performance, GDP per capita and other global development indicators, 

and known malaria health predictors on malaria mortality were determined. Linear 

regression was used to determine if there is a significant association between supply chain 

factors and malaria health.  Percent of malaria product shipped by air, population, USAID 

funding levels, percentage of any antimalarial coverage, life expectancy, physician density, 

and the malarial season duration in each country were all found to be significantly 

associated with malaria-based mortality. Population, physician density, and season 

duration are positively associated. Life expectancy, USAID funding, percent antimalarial 

coverage, and percent air shipments are negatively associated. Other supply chain and 
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transportation infrastructure variables such as cycle time, total malaria funding, and LPI 

score were not found to significantly explain any of malaria mortality variability.  Supply 

chain design was found to be an important factor in reducing malaria mortality. While it is 

important to deliver more product to needed areas and ensure thorough coverage of malaria 

preventive measures, it is also important to have an adaptable supply chain design capable 

of responding to shifts in the demand and flexible enough to react to changing developing 

world conditions.  

The third portion of the thesis evaluated how to improve access of pediatric 

preventive care in Georgia.  We used an optimization model to represent the current patient 

and provider network in Georgia along with network and policy constraints needed to 

represent the current state of the dental system in Georgia. Network constraints included 

distance to care and capacity constraints.  Policy constraints were insurance acceptance and 

hygienist supervision requirements.  The network was then modified to show the impact 

of a variety of potential changes.  A selection of network interventions were evaluated to 

determine their impact. Medicaid children were found to have significantly limited access 

to oral health providers while kids at the top of the income spectrum had good access to 

preventive care.  The results of this section naturally motivate the forth section of methods 

to improve access. 

The fourth portion continues the analysis of improving access to oral healthcare by 

determining the impact of loan repayment programs, revising Medicaid fee-for-service 

rates, and changing dental hygienist supervision requirements on access to preventive 

dental care for children in Georgia.  Cost savings were estimated from the three 

interventions on preventive care for young children. Federal loan repayments to dentists 
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and school-based sealant programs were found to have lower intervention costs (with 

higher potential cost savings) than raising the Medicaid reimbursement rate.  A regression 

model was used to evaluate the impact of changing the Medicaid reimbursement rates.  The 

impact of supervision was evaluated by comparing general and direct supervision in 

school-based dental sealant programs. General supervision had costs 56% lower than direct 

supervision of dental hygienists for implementing a school-based sealant program.  Raising 

the Medicaid reimbursement rate by 10 percentage points would improve utilization by 

less than 1% and cost over $38 million. Given one parameter set, school-based sealant 

programs could serve over 27,000 children with an intervention cost between $500,000 

and $1.3 million with a potential cost saving of $1.1 million. Loan repayment could serve 

almost 13,000 children for a cost of $400,000 and a potential cost saving of $176,000.  The 

three interventions all improved met need for preventive dental care.  Raising the 

reimbursement rate alone would marginally affect utilization of Medicaid services but 

would not substantially increase acceptance of Medicaid by providers. Both loan 

repayment programs and amending supervision requirements are potentially cost saving 

interventions. Loan repayment programs provide complete care to targeted areas, while 

amending supervision requirements of dental hygienists could improve preventive care 

across the state. 

The fourth portion of the thesis evaluates the cost saving potential and cost 

effectiveness of using silver diamine fluoride (SDF) to treat caries in young children aged 

0-5.  SDF is a cheaper alternative to traditional restorative care.  While it does not have the 

ability to restore the tooth completely, it provides a treatment option for young children by 

potentially arresting the caries in affected primary teeth until they are replaced with 



 xxii 

permanent teeth.  Alternatively, for very young children who will need restorative care 

before their permanent teeth will arrive, SDF has the potential to delay the restorative care 

until the child is old enough for standard restorative dental treatments. In addition, SDF 

does not require expensive anesthesia for treatment. This study evaluates the potential of 

this treatment option using a simulation approach with costs based on the realized costs of 

treatments found in the Medicaid data. The simulation was conducted by varying the 

percentage of children who receive treatment with SDF as well as the effectiveness of SDF.  

We found states could avert significant costs from more expensive restorative care 

procedures by using SDF in all scenarios. Using the effectiveness published in the literature 

with 25% of the children receiving SDF, the potential cost savings per state range between 

$1M and $24M. SDF can also provide a simpler and easier treatment option for children, 

particularly in low-resource settings. 
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CHAPTER 1.  INTRODUCTION 

In recent years, health policies have become ever more important.  With the 

increasing political bias and political foundation for addressing policy decisions, it is more 

crucial to provide effective data driven evaluations concerning the impact policy decisions 

will have on the health systems they govern.  This thesis focuses on the impact of four 

policy questions and assessing the alternatives to guide policymakers to make informed 

policy decisions.   

1.1 Chapter 2: Impact of Geographic Distance on patients with Cystic  

In the first section of the thesis, patients with cystic fibrosis (CF) were studied to 

evaluate the potential impact geographic distance has on their health outcomes. Cystic 

Fibrosis is a genetic disease affecting a patient’s lung function. There are thousands of 

possible mutations of the gene known to cause CF.  The mutations can be classified into 

severity levels based on whether they are pancreatic sufficient or pancreatic insufficient 

[1]. The majority of patients with CF have one of the severe pancreatic insufficient 

mutations. Further, since CF is a rare condition, access to care is limited to specific 

geographies.  The goal of this research was to understand the impact this limited access has 

on patients.  To evaluate this, patient level health records including clinical information 

and geographic location data were obtained to allow a robust statistical analysis.  In prior 

literature, many demographic factors influencing a CF patient’s health outcome were 

studied, but the impact of distance to care on patients with a chronic condition like CF had 

not been addressed. The section looks at this question while controlling for the factors 
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known to influence health outcomes in Cystic Fibrosis to predict a patient’s lung function, 

evaluated through the outcome variable percent predicted FEV1.   

1.1 Chapter 3: Global Health Supply Chain Design 

The second section of the thesis looks at the relationship between global health 

supply chains and the health outcomes in the countries where they operate.  This section 

was motivated during time spent at the United States Agency for International 

Development (USAID). While there, it became clear the rationale and impact of the 

majority of the divisions were well known and clearly evaluated.  That was not true of the 

supply chain divisions.  The supply chain divisions were there to support the missions of 

the other USAID implemented programs, but the specific impact of the supply chain 

divisions was not well known.  Additionally, the impact of the supply chain design on 

health outcomes was not known, meaning the specific design of the supply chain could not 

be tailored to match the goals of the implemented programs.  This study sought to address 

these questions, providing USAID supply chain divisions with clarity in understanding 

their impact on USAID health programming.  Further, we sought to understand the aspects 

of supply design that most positively affect health outcomes.   

1.2 Chapter 4: Evaluating and Improving Access for Pediatric Preventive Dental 

Care in Georgia 

The third portion of the thesis aims to outline an optimization model for the current 

structure of the dental network in Georgia.  The optimization model is used to match 

children with dental providers given a number of constraints including distance to care, 

provider insurance acceptance, capacity, etc.  The model is used to evaluate both the current 
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state of access as well as the impact of specific network interventions such as adding 

dentists and dental hygienists to the network.  The model can also be used to target very 

specific locations for optimal provider placements to maximize the number of children 

receiving care. The results of the model were motivation for the subsequent chapter on 

improving access to preventive dental care. 

1.3 Chapter 5: Interventions to Improve Access for Pediatric Preventive Dental 

Care in Georgia 

The fourth section of the thesis looks to address a growing need for access to 

preventive dental care for children as shown in the third section. We know oral disease is 

one of the greatest unmet health needs among children in the United States [2]. There are 

also significant disparities in access to dental care [3].   In Georgia, there are a large number 

of Medicaid children, the vast majority of which do not have access to preventive dental 

care.  This study aims to address this need through the evaluation of three potential 

interventions that could be used to improve access to preventive dental services for this 

population.  Interventions considered include raising the Medicaid reimbursement rate, 

providing dental loan repayment programs, and changing the supervision requirements for 

dental hygienists.  This research has been particularly timely as the Georgia Dental 

Hygienist Association sought to enable hygienists to provide additional preventive services 

in Georgia.  It is also one of the first pieces providing a framework to compare vastly 

different policies ranging from system level changes to the payment structure to 

community level targeted interventions. Outcomes evaluated include met need and the cost 

of implementation.   
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1.4 Chapter 6: Cost Effectiveness of Silver Diamine Fluoride 

Silver Diamine Fluoride (SDF) is an up and coming treatment used to arrest caries.  

Currently, it is used mostly in Japan.  It has been approved for use in the United States to 

treat tooth sensitivity, but research suggests it can be particularly effective at arresting 

caries.  This study looks to evaluate the potential impact in terms of averted cost and caries 

arrested in three populations of children under six years old: realized Medicaid claim data, 

all Medicaid patients, and all children.  The study is aimed to show the potential impact 

and cost savings states can achieve by allowing dentists to perform SDF treatments on 

young children.  This study looks at the realized Medicaid claims payments in place in 3 

states in the Southeast and four comparison states in the Northeast using a simulation 

approach on each population to determine the potential impact given a range in the 

percentage of children who receive SDF and in the effectiveness of SDF to arrest caries.  

The results of this study can be used by policymakers to make informed decisions about 

the impact of using SDF to treat caries in young children. 

1.5 Chapter 7: Conclusion 

The last portion of the dissertation outlines the main results and implications of 

each study.  The results are reiterated and potential future work is suggested.  Additionally, 

the main impact of each paper is discussed to provide more context of each study in relation 

to other literature or to current events. 
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CHAPTER 2.  DOES DISTANCE TO A CYSTIC FIBROSIS CENTER 

AFFECT HEALTH OUTCOMES? 

2.1 Introduction 

The study of healthcare access is fundamental to understanding variations in health 

outcomes in the United States [4]. One dimension of healthcare access is geographic access 

or distance to healthcare providers, particularly important for chronic disease management. 

With the reduction in distance and ease of access to providers, patients have regular health 

maintenance visits and monitoring that could prevent medical crises, reduce the use of the 

emergency room, and preempt severe adverse outcomes. 

Cystic Fibrosis (CF) is a chronic, life-shortening disease, with great variation in 

patient outcomes [5]. Recent research has shown that a significant proportion of the 

variation in CF-related outcomes can be attributed to socio-economic factors, but 

unexplained disparities remain [6]. Since CF is a rare condition, geographic proximity to 

care is limited, with only 121 accredited care centers in the continental United States [7]. 

While there has been significant interest in the relationship between CF disease 

management and outcomes [6, 8], there is little research that addresses the association with 

geographic distance to care and how the relationship varies across different age groups. In 

this study, we evaluate the link between geographic access (measured by travel distance to 

CF centers) and one common outcome measure for CF, lung function as measured by 

percent predicted Forced expiratory volume in 1 second (% FEV1) while controlling for 

known confounding factors such as the CFTR mutation class, socioeconomic environment, 
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insurance, gender, and age. The study is longitudinal, using patient-level data over multiple 

years acquired from the CF Foundation Patient Registry (CFFPR). Specific aims the study 

addresses include the following. 

Aim 1: To identify factors associated with longitudinal health outcomes 

Aim 2: Contrast the differences in factors identified for children vs adults 

Aim 3: Focus on the impact of geographic access on health outcomes. 

Aim 1 was fulfilled using mixed-effect modeling to assess the significance of factors 

thought to be associated with a patient’s health outcome.  Aim 2 was fulfilled by splitting 

the patient data into three age categories: children, young adults, and adults.  Models were 

run on each group to determine differences in how factors affect each age group. Aim 3 

was accomplished by including geographic distance to care as a potential factor influencing 

health outcomes.  We initially hypothesized patients closer to care centers would have 

better health outcomes. 

2.2 Methods 

We used mixed-effect modeling as described in this section, which also provides an 

explanation of assumptions and choices made regarding study design and methodology. 

2.2.1 Study Population 

The population in this study consists of patients with CF who received care at CF 

Foundation (CFF)-accredited centers and who were listed in the CFFPR during the years 

1986-2011 (IRB and CF Foundation approvals were obtained for this research.) The CFF 

estimated that it currently captures data on 81-84% of all persons with CF in the U.S. [7]. 
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We removed visits for patients with missing %FEV1 values, and further excluded 

patients who reported a foreign address or unidentifiable zip code, those with missing or 

unknown provider zip codes, and those without valid insurance and genetic information.  

We then excluded any patient with four or fewer valid visits in the dataset. This was done 

in order to ensure we had sufficient longitudinal data and to ensure sufficient data for each 

random effect in the model. Much of the missing data comes from the structure of the 

CFFPR, which did not require quarterly %FEV1 measurements until 1995 and underwent 

another significant change in 2003. 

2.2.2 Outcome Measure  

We used forced expiratory volume in 1 second as a percentage of predicted 

(%FEV1) using the equations of Wang [9] and Hankinson [10], calculated directly by the 

CFF from data submitted by the centers, as our health outcome measure [8, 11-13]. We 

classified patients with a %FEV1 lower than 60 as low %FEV1 and patients that have a 

%FEV1 above 60 as high %FEV1. 

2.2.3 Geographic Distance or Access Measure  

We measured geographic access or distance using the travel distance between the 

zip codes of each patient’s home location and the location of the center where the patient 

received care. Each patient’s geographic access was determined as the road distance in 

miles computed through Bing Maps using the R package taRifx.geo [14]. Since patient zip 

codes were only recorded on some visits, we assumed that a patient lived at the same 

location until the patient’s zip code changed in the dataset.  This measure is a form of  

healthcare accessibility [15, 16]; we assumed that once a patient reaches a CF facility, care 
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services will be made available for the patient’s care regardless of the medical insurance 

provisions.  

Because we hypothesized that the association between health outcomes and 

geographic distance is nonlinear, we transformed travel distances into a discrete variable 

with three categories – high distance for distances greater than 75 miles; medium distance 

for distances between 25 and 75 miles; and low distance for distances less than 25 

miles.  The 25 mile limit for low distance was suggested by the U.S. Department of Health 

and Human Services defining underserved areas for primary care, thus setting the limits of 

the expected travel for routine care. Because willingness to travel higher distances for 

specialty care of rare conditions may be different from primary care, we set the ‘medium’ 

distance category with distances up to 75 miles, where this threshold was suggested by the 

shape of the distribution of travel distances. Patients were also filtered to remove any 

patient who traveled excessive distances (1000 miles) to care, as this extraordinary distance 

was clearly chosen by patients with the means to electively bypass care centers at a closer 

distance. Patients in Montana, Idaho, Wyoming, Alaska, and Hawaii were not filtered for 

excessive distance since the lack of CF care centers in those states during the analysis 

period forced these patients to travel further distances. To determine the effect of moving 

closer or farther away from CF centers on patient outcomes, the final dataset was split 

based on whether or not a patient changed distance categories during the course of the 

study.  In the paper, these groups are referred to as patients who moved and patients who 

did not move.  A STROBE diagram outlining the process to obtain the final dataset is 

provided in Figure 1.  
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Figure 1. STROBE diagram of final data selected. This figure shows the progression 
of data removal used to obtain the final data sets used for analysis. 

 

2.2.4 Model Covariates 

Patient-level model covariates include the patient’s gender, age at the time of FEV 

measurement, insurance status, and CFTR mutation class, all of which have been shown in 

the literature to be predictors of %FEV1 in patients with CF [8]. The year of the visit was 

included an as additional covariate to account for changing trends in treatment over time.  

Years were grouped into buckets of roughly 5 years throughout the duration of the study. 

Year groups include 1986-1990, 1991-1995, 1996-2000, 2001-2005, and 2005-2011.   The 

most recent year group (2005-2011) was used as the baseline in the analysis. 

Insurance status of a patient was encoded as a binary variable defined by the 

participation in the Medicaid program.  Patients who had ever been on Medicaid during the 
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period of analysis were placed in the Medicaid category and compared with patients who 

never reported to have received Medicaid. 

A patient’s genotype was encoded into two categorical groups based on the class 

of the patient’s genetic mutation.   We used the system of Green et al. [1] to categorize CF 

mutations into five functional  classes with further grouping into two severity groups: one 

representing genotype mutations in classes I, II and III (classic or pancreatic insufficient) 

and the other  representing genotype mutations in classes IV and V (mild or pancreatic 

sufficient).  

In section 2.2.5, we provide supporting visual displays for the inclusion of age 

(Figure 2) along with exploratory analysis motivating the inclusion of the other suggested 

covariates (Figure 3 through Figure 6). 

2.2.5 Exploratory Analysis of Model Covariates 

To capture the economic and geographic environment of each patient, we included 

the median household income of each zip code [17] and the Rural Urban Continuum Codes 

(RUCC) urban/rural classification for each county [18].  The median income was 

normalized by the maximum median income in the dataset, resulting in a final number 

between 0 and 1 so that its coefficients can be accurately compared to those of other binary 

variables. Normalized incomes provides the added benefit of an accurate comparison with 

the coefficients of other variables to assess which variables have the strongest impact on 

patient outcomes.   Counties with RUCC codes 5 or less were classified as urban.  The 

average urban value was used for zip codes crossing multiple counties.   
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We consider a set of variables that can affect the long-term outcome of patients as 

described in the main paper and in this supplemental material. The plots below show the 

possible variables considered and their relationships to %FEV1. The variables considered 

below have been identified in previous research work as being important determinants of 

outcomes for patients with cystic fibrosis.  

In Figure 2, we show the plot of the %FEV1 of 200 randomly selected patients in 

each age group against their age at each visit. We see that generally %FEV1 decreases as 

Age increases. To account for this effect, we included the variable age in our models. We 

allow the intercept and the slope of Age to vary randomly across patients because we model 

longitudinal data that are unbalanced (number of visits per patients vary from one patient 

to the other) and because we want to account for the within-patient variations.  
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Figure 2. Plot of the %FEV1 of 200 randomly selected patients in each age group vs. 
Age (children in top left, young adults in top right, and adults in the bottom). 

In Figure 3 through Figure 6, we show the boxplots of other variables that are 

known to affect %FEV1. The first variable of interest is gender; in Figure 3 we see that the 

presence of significant differences between the %FEV1 of male and female patients. Thus, 

we added a categorical variable to account for gender. Figure 4 shows the boxplot of the 

%FEV1 divided by age groups and by a proxy for socio economic status (Medicaid status).  
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Figure 3. %FEV1 by Age and Gender. 

 

Figure 4. %FEV1 by Age and Medicaid. 

In Figure 5, we illustrate the importance of adding a variable that captures the 

genetic severity of the disease. Patients with less severe mutations have better outcome 

than patients with more severe mutations.  
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We last show the boxplot of %FEV1 across distance groups. As explained earlier 

we proposed to group the patients in three categories. The patients who lived within 25 

miles of their care provider are in the group small, the patients living between 25 and 75 

(more than 75) miles away from their care provider belong to the medium (large). The 

boxplot in Figure 6 reveals very little about the potential influence of distance on outcome.  

 

Figure 5. %FEV1 by Age and genetic mutation severity. 
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Figure 6. %FEV1 split Age and distance group. 

2.2.6 Statistical Method  

We employed mixed-effects modeling as in [12] to assess the statistical significance 

of the association of geographic distance to %FEV1. In addition to the fixed effects for the 

covariates described above, the model also included random effects for the intercept and 

the age-at-visit factor to capture the within-individual and age-specific variability, 

respectively. We fit separate mixed effects models for children (patients 18 years old or 

younger), young adults (patients between 19 and 30) and adults (older than 30 years). The 

statistical model considered the non-constant nature of the variance of the errors in the 

mixed-effects model. We modeled the variance of the residuals as a power function of age.  

We estimated the model parameters by using maximum likelihood estimation. The 

p-values and the confidence intervals associated with the model parameters relied on large 

sample approximations; the sample sizes for all population groups were sufficiently large. 
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We implemented the model using the package nlme in the R statistical software (version 

3.2.1).  

The model goodness-of-fit was assessed by visually evaluating the distributional 

assumptions of the marginal and conditional residuals [19, 20] as shown later. 

2.2.7 Model  

In this study, we applied a mixed effects model to longitudinal data consisting of 

repeated measurements of %FEV1 of patients present in the registry between 2002 and 

2011. The premise of this model is that each patient in the population has his own subject-

specific mean response trajectory over time, and some of the parameters used in our 

regression model are random, i.e. they vary across different groupings of the population.  

Let 𝑦𝑦𝑖𝑖𝑖𝑖 be the %FEV1 measured at the 𝑗𝑗𝑡𝑡ℎ  visit for the 𝑖𝑖𝑡𝑡ℎ patient. In this model 𝑛𝑛𝑖𝑖 

denotes the number of recorded measurement for the 𝑖𝑖𝑡𝑡ℎ patient and 𝑚𝑚 represents the total 

number of patients used in the study. The Linear Mixed-Effects Model (LMM) presented 

below follows the formula  

𝒚𝒚𝒊𝒊 = 𝑿𝑿𝒊𝒊𝜷𝜷 + 𝒁𝒁𝒊𝒊𝒃𝒃𝒊𝒊 + 𝜺𝜺𝒊𝒊 

where 𝒚𝒚𝒊𝒊  is the vector of continuous responses, in this study, corresponding to all the 

%FEV1 measurements associated with one patient;  

𝑿𝑿𝒊𝒊 =  �
𝑋𝑋11

[𝑖𝑖] ⋯ 𝑋𝑋1𝑝𝑝
[𝑖𝑖]

⋮ ⋱ ⋮
𝑋𝑋𝑛𝑛𝑖𝑖1

[𝑖𝑖] ⋯ 𝑋𝑋𝑛𝑛𝑖𝑖𝑞𝑞
[𝑖𝑖]
�   is the design matrix consisting of the fixed effects in the 

model;  
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𝜷𝜷 = �
𝛽𝛽1
⋮
𝛽𝛽𝑝𝑝
� is the vector of the fixed effects; 

𝑛𝑛𝑖𝑖 is the recorded measurements for the 𝑖𝑖𝑡𝑡ℎ patients and p is the number of fixed 

effects; and 

𝒁𝒁𝒊𝒊 =  �
𝑍𝑍11

[𝑖𝑖] ⋯ 𝑍𝑍1𝑞𝑞
[𝑖𝑖]

⋮ ⋱ ⋮
𝑍𝑍𝑛𝑛𝑖𝑖1

[𝑖𝑖] ⋯ 𝑍𝑍𝑛𝑛𝑖𝑖𝑞𝑞
[𝑖𝑖]
� contains known values of q covariates corresponding the 

random effects associated with random effects coefficients 𝒃𝒃𝒊𝒊 = �
𝑏𝑏𝑖𝑖1
⋮
𝑏𝑏𝑖𝑖𝑖𝑖

�. 

Moreover, 𝒃𝒃𝒊𝒊 ∼ 𝑁𝑁𝑞𝑞(𝟎𝟎,𝜎𝜎2𝑫𝑫) and 𝜺𝜺𝒊𝒊 ∼ 𝑁𝑁(𝟎𝟎, 𝜎𝜎2𝐑𝐑𝒊𝒊), the residuals associated with 

the ith patient, are independent. We assume that 𝜎𝜎2 is an unknown scale parameter whereas 

𝑫𝑫 and 𝐑𝐑𝒊𝒊 are unknown covariance matrices. 

In our study the matrix of fixed effects covariates 𝑿𝑿𝒊𝒊  is composed of 7 fixed effects, 

2 quantitative variables (Age , median income) and 5 qualitative variables (Gender, Genetic 

Severity, Medium Distance indicator, Large Distance indicator, and a Medicaid insurance 

indicator. The covariates 𝒁𝒁𝒊𝒊 associated with the random effects are for the intercept and 

age.  

The parameters in the vector 𝜷𝜷 capture the population characteristics that are shared 

by all the patients, while 𝒃𝒃𝒊𝒊 captures subject-specific variations. For instance in the model 

specified above, by including age as a random effect in the model, we can not only measure 

how the mean response changes in the population as Age increases, it is also possible to 

determines how individual %FEV1 trajectories change as Age increases. 
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To take into account the fact that the variance of the residuals 𝜺𝜺𝒊𝒊 associated with 𝑖𝑖𝑡𝑡ℎ 

patient has a non-constant variance with age we proposed to model the variance of the error 

as a power function of age. So the variance for each patient is given by  𝝈𝝈𝒊𝒊𝒊𝒊 = 𝝈𝝈�𝑨𝑨𝑨𝑨𝒆𝒆𝒋𝒋�
𝜹𝜹
 

where 𝐴𝐴𝐴𝐴𝑒𝑒𝑗𝑗 is the age at which the 𝑗𝑗𝑡𝑡ℎ %FEV1 measurement was taken. We thus assume 

that the variance of the residuals of %FEV1 is a power function of age and we can capture 

the heteroscedasticity of observations within the 𝑖𝑖𝑡𝑡ℎ group.  

2.3 Results 

2.3.1 Study Population 

After removing missing data and filtering, the population was reduced from 44,541 

to 20,400 patients (Figure 1). Missing outcome (%FEV1) and distance information, which 

is vital for the question considered, account for 87% of the missing data. A comparison 

analysis of removed data to data used in the study is included in the online appendix section 

IV. We then split our analysis into three population groups, patients 18 years old and 

younger (7,909 patients), patients between 19 and 30 (7,726 patients), and patients older 

than 30 years (4,765 patients) to allow for differences in lifestyle between the age groups.  

Figure 7 displays the distribution of the %FEV1 obtained from patients considered in this 

study. 
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Figure 7: Density of %FEV1 across age categories. 

2.3.2 Geographic Distance or Access Measure  

Table 1 presents the number and percentage of patients within each population 

group and across model covariates along with information about patients’ change of 

geographic distance categories.  We note that 36.3% of older adult patients moved between 

geographic distance categories during the time covered by the analysis, compared with 

30.3% of young adults and only 12.7% of children and adolescents. 
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Table 1: Patient demographics by maximum age groups including number of 
patients who are women, have Medicaid, have severe mutation, and who live within 

a certain distance to care. 

  Maximum Age in Years     
Patient Characteristic <=18 >18 and <=30 >30 All Ages 
N (%) 7875 (38.7%) 7717 (37.9%) 4759 (23.4%) 20351 (100.0%) 
Women 3967 (50.4%) 3621 (46.9%) 2234 (46.9%) 9822 (48.3%) 
Severe Mutation 5830 (74.0%) 5713 (74.0%) 2979 (62.6%) 14522 (71.4%) 
Medicaid 4915 (62.4%) 5483 (71.1%) 3008 (63.2%) 13406 (65.9%) 
Distance               
Patient did not change 
categories               
Low (<=25 miles) 2510 (31.9%) 1967 (25.5%) 1159 (24.4%) 5636 (27.7%) 
Medium (>25 and <= 
75 miles) 2534 (32.2%) 1788 (23.2%) 1004 (21.1%) 5326 (26.2%) 
High (>75 miles) 1828 (23.2%) 1621 (21.0%) 868 (18.2%) 4317 (21.2%) 
Subtotal 6872 (87.3%) 5376 (69.7%) 3031 (63.7%) 15279 (75.1%) 
Patient changed 
categories               
Low ↔ Medium  282 (3.6%) 566 (7.3%) 400 (8.4%) 1248 (6.1%) 
Low ↔ High 257 (3.3%) 698 (9.0%) 559 (11.7%) 1514 (7.4%) 
Medium ↔ High 374 (4.7%) 809 (10.5%) 519 (10.9%) 1702 (8.4%) 
Low↔Medium↔High 83 (1.1%) 262 (3.4%) 247 (5.2%) 592 (2.9%) 
Subtotal 996 (12.6%) 2335 (30.3%) 1725 (36.2%) 5056 (24.8%) 

For patients who did move and those who did not move, a box plot showing the 

difference in %FEV1 with distance is shown for each age group in Figure 8.   For children, 

the median distance from a care center is higher than that for adults with the exception of 

the heathiest adults. As patients age, the heathiest patients tend to be the farthest away from 

their CF care centers. For adults who change geographic distance categories, the mean 

value of distance to a care center is 92.8 for patients who have a low %FEV1 and 107.3 for 

patients that have a high %FEV1 (p<0.001).  For children and adolescents who change 

distance categories in the study, the difference in means between these two groups is not 

significant (p-value of 0.12). 
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Figure 8: Boxplot of distribution of distance in miles by age group and outcome 
severity for patients who moved (top) and patients who did not move (bottom). 

For children who did not change distance categories, patients in the high %FEV1 

group have a mean 1.43 miles farther from a care center (p-value <0.001) while adults who 

did not change distance categories and were in the high %FEV1 category have a mean 2.94 

miles farther (p-value <0.001).  For young adults, the difference is not significant. 

2.3.3 Model Fit  

All the models were estimated using maximum likelihood estimation and 

implemented using the library nlme available in the R statistical software. To test whether 
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the variables incorporated in the model are significant we perform hypothesis testing using 

the Wald test. 

In Figure 9, we report the fitted values of %FEV1 for all the patients in each age 

group. Each vertical set of points in black correspond to the entire %FEV1 curve of a patient 

and the red points on the x-axis correspond to the fitted values of %FEV1. We see that the 

fitted model captures a large proportion of the variability present in the data, since the fitted 

values follow closely the true %FEV1 values with the exception of some outliers for lower 

values of observed %FEV1.  

 

 

Figure 9: Plot of the fitted values and the %FEV1 measurements for models across 
age groups, each vertical line corresponds to measurements associated with one 

patient. 
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In Figure 10, we plot the Pearson marginal residuals
𝜺𝜺�(𝒎𝒎)𝒊𝒊

√𝒗𝒗𝒗𝒗𝒗𝒗� (𝒚𝒚�(𝒎𝒎)𝒊𝒊)
 against the marginal 

fitted values 𝒚𝒚�𝒊𝒊 = 𝑿𝑿𝒊𝒊𝜷𝜷� . Based on these residuals plots, we can conclude that the mean 

structure of our model is appropriate since there is no discernable nonlinear pattern.   

In mixed effect models, it is also important to inspect the conditional residuals 

defined as  

𝜺𝜺�(𝑐𝑐)𝑖𝑖 = 𝒚𝒚𝒊𝒊 − 𝑿𝑿𝒊𝒊 𝜷𝜷� − 𝒁𝒁𝒊𝒊𝒃𝒃�𝒊𝒊 

where 𝒃𝒃�𝒊𝒊 is the conditional expectation of 𝒃𝒃𝒊𝒊.  And the marginal residuals are 

defined as  

𝜺𝜺�(𝑚𝑚)𝑖𝑖 = 𝒚𝒚𝒊𝒊 − 𝑿𝑿𝒊𝒊 𝜷𝜷� . 
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Figure 10: Scatterplot of the standardized marginal residuals versus the fitted 
values and smoothed trend lines shown in red. 

 To verify that the residuals errors are homoscedastic, we follow the 

recommendations of Santos Nobre and da Motta Singer (2007) [21] and plot the conditional 

Pearson residuals  
𝜺𝜺�(𝒄𝒄)𝒊𝒊

√𝒗𝒗𝒗𝒗𝒗𝒗� (𝒚𝒚�(𝒄𝒄)𝒊𝒊)
  against the conditional fitted values 𝒚𝒚�(𝒄𝒄)𝒊𝒊 = 𝑿𝑿𝒊𝒊𝜷𝜷� + 𝒁𝒁𝒊𝒊 𝒃𝒃�𝒊𝒊. 

Based on Figure 11, we conclude that the residual errors for the model used for children 

may not be heteroscedastic, since there is not an increase or decrease in their range as the 

conditional fitted values increase.  
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Figure 11: Plot of the conditional residuals vs. fitted values and smoothed trend line 
in red. 

We also assess the validity of the normality assumption when we use the 

conditional Pearson residuals. The Q-Q plots in Figure 12 show that the sample quantiles 

of the residuals are aligned with the theoretical quantiles of the normal distribution. It is 

important to add that these graphs do not necessarily allow us to conclude that the residuals 

are following the assumed distribution, but they allow us to assess if there is a substantial 

deviation from the normality assumption.   
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Figure 12: Normality plot of the residuals across age groups models. 

Figure 13 shows the relationship between the marginal Pearson residuals and the 

predictor Age. By fitting a model per age group, we were able to remove an upward trend 

in the plot of the residuals against the predictor age.  The red curve is a locally weighted 

smoothed line that shows that there is no apparent pattern between the marginal residuals 

and the predictor age and the marginal residuals are centered at mean 0. Thus, we can 

conclude that no transformation of the predictor age was needed.  
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Figure 13: Marginal Pearson Residuals against the covariate Age. 

To justify further the validity of the model and the choices considered for the 

variance covariance structure of these models, we conduct an Analysis of Variance test on 

a series of models with simpler assumptions. The alternative models considered are 

1- The Basic Model contains fixed effects (age, gender, disease severity, 

Medicaid status, median income, medium distance and large distance indicators) 

and the random effects intercept and age. Additionally, we assume that the 

residuals are homoscedastic and that they are uncorrelated. 
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2- The Basic Model + Heterogeneous variance have the same fixed effects 

and the same random effects contained in the basic model. We also add a variance 

power function that depends on the age during the visit. 

 

The tables below show the Analysis of Variance for the alternative models and the 

model we selected and each table corresponds to an age group. We can see that the model 

with heterogeneous variance always has the minimum AIC, BIC and negative log-

likelihood and thus they always provide the best fit. Additionally when we test the null 

hypothesis of homogeneous variance 𝐻𝐻0: 𝛿𝛿 = 0 𝑣𝑣𝑣𝑣.𝐻𝐻𝑎𝑎: 𝛿𝛿 ≠ 0 we reject the null hypothesis 

for all models, since the p-value associated with the test 1 vs. 2 is less than 0.0001 for all 

the age groups. This implies all age groups we used the model with heterogeneous variance. 

Table 2: Likelihood ratio test for the model fitted with patients 18 and younger for 
patients who did not change proximity categories. 

 

 

Table 3: Likelihood ratio test for the model fitted with patients between 19 and 30 
for patients who did not change proximity categories. 
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Table 4: Likelihood ratio test for the model fitted with patients older than 30 for 
patients who did not change proximity categories. 

 

 

Table 5: Likelihood ratio test for the model fitted with patients 18 and younger for 
patients who changed proximity categories. 

 

 

Table 6: Likelihood ratio test for the model fitted with patients between 19 and 30 
for patients who changed proximity categories. 

 

 

Table 7: Likelihood ratio test for the model fitted with patients older than 30 for 
patients who changed proximity categories. 

 

 

For each age group, we modeled the variance of the residuals as a power function 

of age. We observed that the variance of these residuals decreased as the age of the patients 
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increased. For patients who did not change proximity categories, the power coefficients are 

-0.25, -0.27, and -0.26 for children, young adults and adults respectively. For patients who 

change proximity categories, the coefficients are -0.19, -0.28, and -0.23 for each age group 

respectively. For all groups we see the variance of the residuals decrease as patients age, 

meaning our model produces a tighter fit.   

For the patients younger than 18 who changed proximity categories the variance 

covariance matrix of the random effects is given by  

𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 29.88, 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 = 2.68 and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎)  = −0.80. 

For the young adults between 19 and 30 who changed proximity categories the 

variance covariance matrix of the random effects is given by  

𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 27.44, 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 = 1.65 and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡,𝑎𝑎𝑎𝑎𝑎𝑎)  = −0.77. 

For older patients with an age over 30 at the time of the final visit who changed 

proximity categories, we have 

 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 44.87 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 = 1.36 and  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑎𝑎𝑎𝑎𝑎𝑎) =  −0.89 

For the patients younger than 18 who did not change proximity categories the 

variance covariance matrix of the random effects is given by  

𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 27.57, 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 = 2.53 and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎)  = −0.79. 

For the young adults between 19 and 30 who did not change proximity categories 

the variance covariance matrix of the random effects is given by  
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𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 27.85, 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 = 1.74 and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎)  = −0.79. 

For older patients with an age over 30 at the time of the final visit who did not 

change proximity categories, we have 

 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 54.29, 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 = 1.48 and  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑎𝑎𝑎𝑎𝑎𝑎) =  −0.90 

The negative correlation between the random effects intercept and age validates 

that %FEV1 decreases as patients get older.  

2.3.4 Mixed Effect Model Results 

Table 8 presents the parameter estimates for the mixed effects model, the 95% 

confidence intervals and the associated p-values for each of the three models for patients 

who did not change geographic distance categories throughout the study.  Table 9 presents 

the same results for patients who did change categories.  
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Table 8: The parameter estimates for the mixed effects model, the 95% confidence 
intervals and the associated p-values for patients who did not change geographic 

distance categories.  

  
Point 
Estimate Lower 95% CI  Upper 95% CI P Value 

Intercept      
Children and Adolescents (Age <= 18) 107.60 105.85 109.34 < 0.001 
Young Adults (18 < Age <= 30) 123.42 121.63 125.21 < 0.001 
Adults (Age > 30) 102.63 99.23 106.04 < 0.001 
Age      
Children and Adolescents -0.85 -0.92 -0.78 < 0.001 
Young Adults -2.26 -2.31 -2.20 < 0.001 
Adults -0.80 -0.87 -0.74 < 0.001 
Male (ref. female)      
Children and Adolescents 0.52 -0.30 1.34 0.22 
Young Adults 2.72 1.78 3.67 < 0.001 
Adults -2.92 -4.64 -1.20 < 0.001 
Severe Mutation      
Children and Adolescents -2.32 -3.26 -1.37 < 0.001 
Young Adults -1.63 -2.70 -0.56 0.00 
Adults -9.27 -11.05 -7.48 < 0.001 
Medium Distance (ref. Low  
Distance)     
Children and Adolescents 1.33 0.34 2.31 0.01 
Young Adults -0.42 -1.56 0.73 0.47 
Adults -1.13 -3.16 0.90 0.28 
High Distance (ref. Low 
Distance)      
Children and Adolescents 0.12 -1.03 1.27 0.84 
Young Adults -0.45 -1.67 0.78 0.48 
Adults -1.02 -3.20 1.16 0.36 
Urban      
Children and Adolescents 0.63 -0.21 1.47 0.14 
Young Adults -0.56 -1.22 0.11 0.10 
Adults -0.74 -1.75 0.26 0.15 
Medicaid Insurance      
Children and Adolescents -6.82 -7.68 -5.96 < 0.001 
Young Adults -6.80 -7.86 -5.74 < 0.001 
Adults -10.20 -12.01 -8.38 < 0.001 
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Table 8 (continued) 

Median Income      
Children and Adolescents -7.76 -9.72 -5.80 < 0.001 
Young Adults -3.86 -5.07 -2.66 < 0.001 
Adults -5.63 -7.26 -3.99 < 0.001 
Year 2001 - 2005      
Children and Adolescents -2.68 -2.89 -2.47 < 0.001 
Young Adults -0.22 -0.39 -0.06 0.01 
Adults -1.94 -2.17 -1.70 < 0.001 
Year 1996 - 2000      
Children and Adolescents -7.55 -8.26 -6.84 < 0.001 
Young Adults -2.14 -2.43 -1.86 < 0.001 
Adults 0.36 -0.05 0.77 0.08 
Year 1991 - 1995      
Children and Adolescents -16.88 -19.80 -13.97 < 0.001 
Young Adults -6.37 -6.81 -5.93 < 0.001 
Adults 3.04 2.46 3.62 < 0.001 
Year 1986 - 1990      
Children and Adolescents N/A N/A N/A N/A 
Young Adults -12.89 -13.79 -11.99 < 0.001 
Adults 4.94 4.14 5.74 < 0.001 
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Table 9: The parameter estimates for the mixed effects model, the 95% confidence 
intervals and the associated p-values for patients who changed geographic distance 

categories. 

  
Point 
Estimate 

Lower 95% 
CI  

Upper 95% 
CI P Value 

Intercept      
Children and Adolescents (Age <= 18) 107.63 103.82 111.44 < 0.001 
Young Adults (18 < Age <= 30) 121.34 118.88 123.80 < 0.001 
Adults (Age > 30) 98.11 94.45 101.77 < 0.001 
Age      
Children and Adolescents -1.28 -1.47 -1.09 < 0.001 
Young Adults -2.19 -2.26 -2.11 < 0.001 
Adults -0.89 -0.97 -0.81 < 0.001 
Male (ref. female)      
Children and Adolescents 1.49 -0.76 3.75 0.20 
Young Adults 2.42 0.99 3.85 0.00 
Adults -2.00 -3.97 -0.03 0.05 
Severe Mutation      
Children and Adolescents -0.69 -3.32 1.95 0.61 
Young Adults -1.90 -3.62 -0.17 0.03 
Adults -5.04 -7.21 -2.86 < 0.001 
Medium Distance (ref. Low 
Distance)      
Children and Adolescents -0.40 -0.97 0.17 0.17 
Young Adults -0.48 -0.77 -0.20 < 0.001 
Adults 0.07 -0.27 0.40 0.69 
High Distance (ref. Low 
Distance)      
Children and Adolescents 0.40 -0.19 0.98 0.18 
Young Adults -0.55 -0.83 -0.27 < 0.001 
Adults 1.53 1.21 1.85 < 0.001 
Urban      
Children and Adolescents -0.21 -1.25 0.83 0.69 
Young Adults -1.15 -1.64 -0.65 < 0.001 
Adults 0.66 -0.02 1.34 0.06 
Medicaid Insurance      
Children and Adolescents -7.45 -9.91 -5.00 < 0.001 
Young Adults -7.03 -8.62 -5.44 < 0.001 
Adults -6.41 -8.52 -4.30 < 0.001 
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Table 9 (continued) 

Median Income      
Children and Adolescents -2.77 -5.09 -0.44 0.02 
Young Adults -6.62 -7.64 -5.61 < 0.001 
Adults -4.03 -5.19 -2.87 < 0.001 
Year 2001 - 2005      
Children and Adolescents -2.41 -2.90 -1.91 < 0.001 
Young Adults 0.27 0.03 0.52 0.03 
Adults -0.97 -1.27 -0.67 < 0.001 
Year 1996 - 2000      
Children and Adolescents -6.76 -8.26 -5.25 < 0.001 
Young Adults -0.02 -0.45 0.42 0.94 
Adults 0.34 -0.18 0.86 0.20 
Year 1991 - 1995      
Children and Adolescents -19.20 -23.50 -14.91 < 0.001 
Young Adults -2.43 -3.08 -1.78 < 0.001 
Adults 2.26 1.52 2.99 < 0.001 
Year 1986 - 1990      
Children and Adolescents N/A N/A N/A N/A 
Young Adults -5.84 -7.10 -4.59 < 0.001 
Adults 4.60 3.60 5.61 < 0.001 

 

Among children and adolescents who did not move, those residing at medium 

distance had a slightly higher %FEV1 than those in the low distance category, but no other 

age groups showed any associations of distance with %FEV1 in our multivariable models. 

For patients who moved during the course of the study, we found statistically significant 

but clinically trivial differences in %FEV1 by distance in young adults. On the other hand, 

there appeared to be a trend whereby older adults who lived furthest from the CF center 

had higher %FEV1, with a coefficient of 1.53 for high distance.  

As shown in the tables, Medicaid insurance, age, and severe CFTR mutation class 

are generally found to be associated with lower %FEV1, as reported in previous studies [1, 
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6, 8]. We also find median family income by zip code is associated with lower %FEV1. 

We found an advantage to male sex in young adults, a disadvantage in older adults, and no 

difference for children and adolescents.  

Urban classification is negatively associated with %FEV1 for young adults and adults 

who do not change distance categories.  For those that do change categories, it is negatively 

associated for young adults and positively associated for adults.  Interactions between 

income and distance as well as urban and distance were also studied, but none yielded 

statistically significant results. 

2.3.5 Comparison of Removed Data 

A comparison of removed data was conducted to show the potential effect missing 

data has on the results.  Below are plots showing the number of visits per year prior to 

filtering, the number of visits per year used in the final dataset, the number of visits per 

year removed, and the percent of data removed in each year.  Finally, since 87% of the 

missing data is from missing %FEV1 and missing distance information, we have also 

included plots showing which years are missing %FEV1 and distance information.  As you 

can tell from Figure 14 and Figure 15, the majority of the included data is from the more 

recent years.  This is due to a significantly higher percentage of missing %FEV1 and 

distance data in the earlier years.  Additional plots of the distributions over time of the data 

are shown in 0. 
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Figure 14: Visits distribution per year for all data used in the analysis. 

 

Figure 15: Percent of data removed in each year. 
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Table 10 shows a comparion of the outcome and main predictor variables in both 

the data used for analysis as well as the data removed.  Note for the data removed,  the 

values shown are the means of the data available that is not missing. 

Table 10: The mean values of data used in the analysis and data removed from the 
analysis. 

Variable 
Mean: 
Data used 

Mean: Data 
removed 

Age 19.7 15.0 
Male 0.499 0.512 
Severe Genetics 0.759 0.595 
Small Distance 0.372 0.379 
Medium Distance 0.345 0.331 
Large Distance 0.283 0.290 
Medicaid 0.712 0.753 
Median Income 0.298 0.308 
Review Year 2004.6 1999.6 
FEV 73.2 58.4 

 

Overall, the data used has a higher mean age, higher percent of severe genetics 

patients, higher Review year, and higher %FEV1.   As expected based on the plots above, 

the data removed is on average older than the data used, which could account for some of 

the differences as treatments have evolved over time.  This is also shown in the regression 

analysis as the data in older years has lower %FEV1 than data in newer years. 

2.4 Discussion 

In this study, we evaluated the impact of geographic distance that patients must travel 

between their zip code of residence and the location of their CF care center. This study 

found no strong evidence of an effect of geographic distance from care center on %FEV1 
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in patients who did not change distance categories during the study period.  On the other 

hand, we found that for patients who did change geographic distance categories, the 

average %FEV1 was slightly higher for older adults who moved further from their CF 

center and marginally worse for young adults who moved farther from a CF care.  Further, 

as distance increased, the outcomes became better for older adults and worse for young 

adults. We found no significant interactions between the geographic distance and 

socioeconomic status or urban/rural characteristics. Because most CF centers are located 

in urban areas, which typically have higher incomes, there is a correlation between median 

income and a patient’s geographic distance to care.  To check the impact of this, the model 

was run without income and similar results were observed to the models presented. 

This study found associations between median income, geographic distance to a CF 

center, and urban/rural designations.  It appears CF centers are located in urban areas, many 

of which are also in zip codes with a higher median income.  Thus, patients with the 

smallest distances to care are also more likely to be associated with high median incomes 

and urban environments. The associations between geographic distance to care, urban 

environments, and median family income by zip code make it difficult to differentiate the 

true impact of each variable independently. 

An important challenge in characterizing the association between outcomes and 

distance to care was the high level of mobility in adults. In our study, less than 13% of 

children changed distance categories. In contrast, more than 36% of the adult population 

moved between geographic distance categories. This could partially explain the 

inconclusive results obtained in attempting to determine the impact of distance on health 

outcomes in the older patients. With patient mobility, it is difficult to determine the impact 
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of mobility versus the impact of distance, given this population is inherently different.  As 

changes in lung function generally occur gradually over time, it is difficult to assign a 

temporal relationship between moves and worsening lung disease. As a result, this study 

did not attempt to evaluate the temporal relationship between patient movement and a 

change in %FEV1.  This makes speculation on causation even more difficult.  We suspect 

that older patients who are healthier are more comfortable moving further from the CF 

center, whereas those who are sicker are more likely to move closer.  On the other hand, it 

is plausible to speculate that younger adults who move further away from the CF center 

(due to jobs or school) may suffer consequences of this move.   

While our study uncovers new results, the model and the data collected have 

inherent limitations.  First, the CF registry does not include the entire population of cystic 

fibrosis patients in the United States, and in fact, patients who are farthest away may be 

those who are likely to seek care from non-CFF accredited providers and therefore be 

excluded from the analysis. This bias is probably even more likely in those with milder 

disease since they are likely to seek care less often, so the true relationship of better health 

with higher distance may be greater than we report here. Second, we excluded patients with 

incomplete information regarding health outcomes and/or predictors, which may also have 

biased our results because these characteristics may be associated with both our predictor 

and our outcome variables. Third, the discretization of the continuous variable distance 

only allows us to partially capture the nonlinear effect of geographic distance on health 

outcome. A nonparametric model could better capture the relationship between geographic 

access and %FEV1; however, its interpretation could be more challenging. Fourth, this 



 41 

study focused only on travel distance.  Travel time to a care center would also play a 

significant role. 

In conclusion, contrary to our original hypothesis, it appears that geographic 

distance to CF centers has no significant association with lung health in patients who 

maintained the same distance category during the course of our analysis.  Among those 

who changed distance categories, we believe that the association that we found between 

better lung function and geographic distance in older adults is more likely from relocation 

following lung function rather than distance affecting lung function. We believe the 

association between worse lung function and distance in young adults may be due to the 

more heterogeneous population among young adults who move.   Further investigations 

into the effect of patient mobility and any self-selecting bias in patient mobility are 

warranted. One method to address this would be to use more detailed patient mobility and 

health data to study the relationship between lung function and distance taking into account 

each time a patient moves closer to a care center or farther from a center. 
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CHAPTER 3.  ESTIMATING THE IMPACT OF SUPPLY CHAIN 

PERFORMANCE ON MALARIA MORTALITY IN AFRICA 

3.1 Background 

Global health supply chains support several traditional functions including 

procurement, transportation, and warehousing in addition to the specific functions of 

preparedness and associated planning [22, 23].  Some of the key challenges for effective 

management of global supply chains include understanding the dynamics that arise such as 

high variation in demand and long lead times [24-26], coordinating activities between 

various parties [22, 27, 28], and satisfying several different types of objectives such as 

efficiency, equity, and quality [29, 30].  In addition, many of the locations that global health 

supply chains need to support have poor transportation infrastructure [31].  This greatly 

complicates the “last mile” problem of delivering products to the end customer [32-34].    

Malaria is a life-threatening mosquito-borne infectious disease, which causes fevers, 

chills, and vomiting approximately 10 to 15 days after infection. A disproportionately high 

number of cases are in the Sub-Saharan Africa region; 88% of global malaria cases and 

90% of malaria deaths [35].  In 2015, the World Health Organization (WHO) estimated 

that there were over 210 million cases and 438,000 deaths [35].   Although this burden is 

high, global and national efforts in Africa led to a decline in mortality; malaria deaths in 

Africa decreased from 1.61 million in 2004 to 1.13 million in 2010 [36].  As a result, the 

average annual percent change in malaria age-standardized death rate is projected to 

decrease by roughly 1.4% through the year 2030 [37].   
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One of the roles of the United States Agency for International Development (USAID) 

is to work with national governments to build supply chain capacity to prevent and treat 

malaria. One of the programs under USAID is the President’s Malaria Initiative (PMI) in 

partnership with the Centers for Disease Control and Prevention (CDC). Focusing 

primarily in Africa, USAID’s malaria supply chain targets nineteen focus countries to 

deliver materials and drugs necessary for prevention and treatment, insecticide-treated 

mosquito nets, and insecticides for indoor residual spraying around homes. The global 

malaria supply chain analyzed in this article moves product from the manufacturers to the 

first point of entry in a country. Generally, the point of entry will be a central medical store 

for the country, but sometimes the transfer could occur at the border. 

Due to the complexity of running global health supply chains, it is important to 

identify the factors that are most important for their effectiveness; namely, the reduction of 

the morbidity and mortality associated with malaria. We use publicly available data on 

malaria mortality [38-40], the USAID malaria supply chain  [41-43], and other factors 

known to impact malaria disease severity, in-country supply chains, or country specific 

demographics and development levels [17, 44, 45]. The supply chain data covers topics 

such as procurement, transportation, and some performance measures in the supply chain 

across the network of international suppliers, international warehouse locations, and an 

international distribution system to the target countries. Our overall goal is to determine 

which (if any) supply chain factors are significantly associated with mortality, and to make 

recommendations for supply chain improvement based on these factors. 
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3.2 Methods 

The full set of data elements and their summary statistics are provided in Table 11. 

The independent data variables are described below. 

Table 11. Data Elements, Sources, and Summary Statistics. 

Data Element Source  Average St. Dev. 
Estimated Malaria Deaths WHO World Malaria Report [40] 21397.4 40664.1 

Supply Chain Cycle Time  USAID public supply chain data 
[41] 109.5 47.7 

Supply Chain Percentage 
of Air Shipments 

USAID public supply chain data 
[41] 0.7 0.3 

Average Annual 
Temperature World Bank [17] 24.1 2.8 

Average Annual 
Precipitation World Bank [17] 1089.2 480.5 

Latitude CIA [45] 0.4 12.1 
UN Population WHO World Malaria Report [40] 31023494 35609926 
Average USAID Funding WHO World Malaria Report [40] 21596086 12595110 
Average Total Funding WHO World Malaria Report [40] 55215281 47968047 
Percentage of any 
Antimalarial Coverage WHO World Malaria Report [40] 82.0 28.6 

GDP per capita World Bank [17] 1038.2 1012.5 
LPI Score World Bank [17] 2.4 0.3 
Life Expectancy World Bank [17] 57.9 5.1 
Physician Density CIA [45] 0.1 0.1 
Malaria Season Duration MARA [44] 2.4 0.7 

Sparsity World Bank [17], WHO World 
Malaria Report [40] 97.6 110.7 

Malaria supply chain metrics were obtained from the global health commodity 

procurement contract under section J-9 of the solicitation for the new commodity 

procurement contract recently awarded [41]. This data includes information on 343 unique 

Malaria shipments delivered over the course of two years. Products shipped included drugs, 

insecticide treated bed nets, rapid diagnostic testing kits, and other malaria commodities. 
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Countries analyzed include all countries to which USAID shipped Malaria commodities 

during the time span of the data. These include Angola, Benin, Burkina Faso, Burundi, 

Cambodia, Democratic Republic of the Congo, Ethiopia, Ghana, Guinea, Kenya, Laos, 

Liberia, Madagascar, Malawi, Mali, Mozambique, Nigeria, Rwanda, Senegal, Sudan, 

South Sudan, Tanzania, Uganda, Zambia, and Zimbabwe. In the final model, Cambodia, 

Laos, Sudan, and South Sudan were omitted due to significant amounts of missing data. 

The data was separated into two groups in order to approximately match the mortality data: 

i) shipment arrival dates on or before September 30, 2011, and ii) shipment arrival dates 

on October 1, 2011, or later. Cycle time was computed as the time between the requisition 

order (RO) date (i.e., the date when a customer submits an order) and the date the product 

arrives in country at its final destination. Percentage of air shipments is computed as the 

percentage of total shipments distributed via air. 

Other controlling factors include health specific factors and infrastructure or 

country specific factors. Health specific controlling factors include factors related to 

Malaria itself as well as factors affecting a country more broadly. Funding for malaria and 

anti-malaria coverage for each country in the study was obtained from the World Malaria 

Report [38-40].  We expect mortality will decrease higher levels of anti-malarial coverage. 

The length of the malaria season by country was determined from the MARA (Mapping 

Malaria Risk in Africa) project [44]. Infrastructure and overall development levels in each 

country were obtained from the World Bank Database, including GDP per capita, land 

area, the Logistics Performance Index (LPI), climate data (monthly and annual temperature 

and precipitation levels), and life expectancy [17]. Physician density and latitude data were 

collected from the CIA’s database on countries around the world  [45]. Physician density 
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and life expectancy were used to control for the health infrastructure levels in each country, 

while life expectancy and GDP per capita were used to control for overall levels of 

development in each country. Temperature and precipitation have been previously shown 

to impact malaria mortality [46-48].  Population was used to control for the different sized 

populations found in each country. As population increases in a Malaria area, we expect 

malaria mortality to increase due to the added exposure.  

Since the goal is to determine which supply chain variables had a significant impact 

in the malaria health in each country, it is important to control for overall logistics 

differences between countries in the study. The LPI (Logistics Performance Index) was 

used to control for the logistics infrastructure in each country.  Sparsity (geographic area 

divided by population) was used as a proxy for population density to determine the 

potential impact of a spread out population.  

In the case of missing elements in the data (roughly 1.5% of the total data used), 

imputation was done by using the average of the surrounding years (or the prior year if the 

missing element was in the most recent year available) for around 1% of the data.  There 

were 0.5% of the total data elements that were not estimated by imputation, and those 

observations were dropped. 

Estimated malaria mortality, defined as the total number of deaths attributed to 

malaria during a specified year,  for each country in the study was obtained from the World 

Health Organization’s World Malaria Report [39, 40, 49].   In order to test the impact of 

supply chain variables on malaria health, linear regression was used to determine the 

impact of the independent variables on malaria mortality, measured as total malaria deaths 
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in a year in each country. Final variable selection was done using best subsets as well as 

forward and backward stepwise regression.  The data was standardized in order to allow 

direct comparison of the regression coefficients.   

3.3 Results 

Summary statistics on the dependent and independent variables are provided in Table 

11. Average cycle time is 109.5 days with a standard deviation of 47.7 days. The average 

percentage of air shipments was 69% with a standard deviation of 26%. Overall, average 

antimalarial coverage is 82% with a standard deviation of 29%.  Between the two periods 

considered, cycle time decreased by 18 days on average while the percentage of air 

shipments increased by 12%.  Mortality decreased year 1 to year 2 by around 11,500 deaths 

overall, while population grew by approximately 32 million people between all the 

countries considered.  Also, the percentage of antimalarial coverage increased by 5% and 

the average life expectancy increased by one year from year 1 to year 2.    
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Table 12. Regression Results. 

Coefficient Standardized 
Estimates 

Std. 
Error t Sig. 

Intercept 0.661 0.117 5.63 2.86E-06 *** 
Percent Air Shipments -0.094 0.034 -2.77 0.009183 ** 
Population 0.61 0.051 11.97 1.49E-13 *** 
USAID Funding -0.12 0.04 -3.03 0.00471 ** 
Percent Antimalarial Coverage -0.112 0.028 -3.99 0.000346 *** 
Life Expectancy -0.757 0.123 -6.18 5.74E-07 *** 
Physician Density 0.223 0.051 4.33 0.00013 *** 
Season Duration 0.126 0.035 3.62 0.000965 *** 
      
 N 41    
 Adj. R2 0.9491    

 

Resid Std. 
Error 0.04586    

 

The final model selected includes malaria mortality regressed on the percent of air 

shipments, population, USAID funding levels, percentage of any antimalarial coverage, 

life expectancy, physician density, and the malarial season duration in each country and is 

given in Table 12.  

Population, physician density, and season duration were found to be positively 

associated with malaria mortality. Physician density is also positively correlated directly 

with malaria deaths, so the positive association in the model is consistent with the data.  

For countries with higher populations, higher physician densities, and longer malaria 

seasons, we find increased mortality. 

Life expectancy, USAID funding, percent antimalarial coverage, and percent air 

shipments were found to be negatively associated with malaria mortality. For counties with 
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larger USAID funding, higher percentages of antimalarial coverage, higher life expectancy, 

and higher percentage of air shipments, we find malaria mortality was lower. The variables 

total malaria funding, cycle time, and LPI score were not included in the final model 

selection.   

Many of the independent variables are not under the direct control of USAID. On 

the other hand, two variables included are the USAID funding level and the percentage of 

air shipments. Based on the regression, we can estimate the impact of a change in USAID 

funding levels or percentage of air shipments on mortality, holding all other factors 

constant. For example, increasing the percentage of air shipments (representing the agility 

of the supply chain) or the funding levels by a half standard deviation, or 13% and $6.3M, 

can reduce mortality in an average country by 11% and 14% respectively as shown in Table 

13.  

Table 13. Prediction results for new supply chain parameters. 

  Average 
Medium Air 
Perc. 

High Air 
Perc. 

Medium 
Fund 

High 
Fund 

Percentage Air 
Shipments 0.69 0.82 0.95 0.69 0.69 
USAID Funding 21596086 21596086 21596086 27893641 34191196 
Predicted Deaths (fit) 22398 19842 17285 19232 16065 
Lower Prediction 
Interval 2760 147 -2644 -461 -3908 
Upper Prediction 
Interval 42037 39537 37214 38924 36039 
Difference (fit) from 
Average N/A -2557 -5113 -3166 -6333 
Perc. Difference N/A  -0.11 -0.23 -0.14 -0.28 
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3.4 Discussion 

As expected, in countries where the population has longer on-average lifespans, there 

is significantly less malaria mortality.  This suggests it is important to focus on the overall 

system to promote life expectancy; this could include investments in water, sanitation, 

livelihood programs, and health infrastructure. 

The supply chain factors that reduce malaria mortality are USAID funding and 

percent antimalarial coverage, which are proxies for supply chain throughput, or the total 

amount of malaria commodities shipped through the supply chain. While USAID funding 

is significant, interestingly, total funding was not. This suggests that the throughput of the 

USAID supply chain has a greater impact than the throughput of the donors in total.  It also 

suggests that USAID is serving as a type of safety net, sending emergency shipments as 

needed to help cover specific needs.  Further analysis outside the scope of this study on 

supply chain data from other donors would be beneficial to understand this issue.  

As expected, as the population grows in a country with malaria, the number of people 

exposed grow, which results in a greater number of deaths due to malaria.   Similarly, the 

longer the malarial season in a given country, the more time residents of that country are 

susceptible to the disease, also resulting in higher mortality.  Physician density has an 

unexpected positive sign, meaning an increase in the physician density is associated with 

an increase in mortality.  One possible reason we could see malaria mortality increase with 

physician density is the lack of diagnosed malaria cases in areas without physicians.  

Without a physician present to diagnose a death due to malaria, the death may be missed 

in the data entirely biasing the morality results toward areas with the most physicians.  
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The majority of countries have high antimalarial coverage. It is important to note, 

however, that this is based on any type of antimalarial coverage including indoor residual 

spraying, insecticide treated nets, and ACT treatment courses. This suggests, therefore, that 

the majority of countries considered in the study have received sufficient initial quantities 

of some antimalarial preventive measure. Hence, the majority of the startup operations 

have been completed. In responding to a need such as malaria, there is a startup period 

when countries build up their preventive and treatment infrastructure. After this period is 

complete, there is a steady stage period where it is important to resupply to maintain stock 

so no country runs out of preventive measures or treatment drugs.   

There are several differences between the initialization phase of a supply chain and 

ongoing operations.  In the first stage, it is important to ship commodities to a country as 

quickly as possible.  Until effective preventive and treatment measures are in place, there 

will be a constant need for prevention and treatment for the population that is susceptible 

to malaria.  Supply chain cycle time is important in order to place commodities in a timely 

way.  In the second stage, cycle time may become less important, as long as a county’s 

stock of product is maintained.  This is consistent with classic supply chain operations [50]. 

The key challenge when there are long cycle times in stage two is that in order to keep 

commodities delivered consistently, they have to be planned for in advance and those plans 

may not be very flexible.  This becomes problematic in countries where demand is 

uncertain and hence hard to predict in advance.  In these situations, emergency orders may 

be used to deal with the uncertainty in demand or supply, to effectively reduce the cycle 

time.  
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There is in addition the complexity of working with multiple donors.  With a single 

donor, they are able to control the entire supply chain and take responsibility for what 

occurs.  With multiple donors, the responsibilities become decentralized and based on 

agreements between donors [27].  If one donor is not performing reliably, it can put 

pressure on other donors to make up the gap.  In this environment, while cycle time may 

not be as important, it is important to be adaptable.  While reducing cycle time is one 

method of making a supply chain more flexible, an alternative approach to adapting to 

change is through the shipment method, which can decrease both cycle time and increase 

adaptability.  By switching from sea shipments to air shipments, quick changes can be 

made as soon as a commodity is available at a manufacturer or at a warehouse.  This 

decrease in cycle time and increase in adaptability gives USAID the ability to respond 

appropriately to changes or shocks in the supply chain. 

From Table 12, it can be seen that the percent of air shipments is one of the variables 

predicting a reduction in malaria mortality.  This indicates that this adaptability in the 

supply chain is important in reducing malaria mortality and should be utilized as part of a 

key strategy in developing a global health supply chain.   

In the supply chain, another choice that can be made is how far to distribute supplies 

into a country.  When treating a widespread disease, it is clear that coverage of preventive 

measures would be important, and this was shown in the results.  The supply chain needs 

to be capable of distributing the necessary commodities for prevention and treatment 

throughout the country.  The distribution network in many of these countries can be 

extremely difficult.  Thus, it is imperative that this last mile problem of delivering 

commodities to the final service delivery points is paramount to solving the full problem. 
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As expected, we found an increase in coverage of antimalarial treatments yields a lower 

mortality rate for a country. 

Lastly, it is interesting to consider the impact of various changes to the supply chain 

structure. Table 13 shows the estimated change in the dependent variable for several levels 

of USAID funding and percentage of air shipments, where each is varied by both one half 

and one standard deviation.  Even a one-half standard deviation increase in either value is 

associated with an estimate change in mortality of over 10%.  The estimated change in 

health outcomes is bigger for funding than for the variable associated with agility (air 

shipments). However, for a given budget, using a more agile supply chain design for 

malaria commodities in Africa could prevent deaths due to malaria.   

It is important to point out that this study has several limitations. First, linear 

regression is quantifying associations and does not directly imply cause and effect.  Second, 

there could be errors in data, such as in current coverage of antimalarial products. Third, 

the supply chain data that was utilized for the study is a subset of the complete data of the 

USAID program. Finally, the approach used is an ecological one with predictors at the 

country level; an analysis at a higher level of geographic granularity could be useful.  

3.5 Conclusions 

We found that several supply chain factors affect malaria mortality in Africa.  Many 

of the other factors considered are natural to the areas in which these countries are located 

and cannot be changed.  However, given malaria is endemic in these countries, there is an 

opportunity to battle malaria with the prevention and treatments procedures that have been 

developed through the years.  While conventional public health knowledge provides a vast 
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array of information about what procedures to use, which drugs to take, and how to apply 

prevention methods most effective, it is paramount to include the supply chain design and 

global health supply chain practitioners as part of the solution.  The model presented in this 

paper demonstrates the relationship between supply chains and malaria mortality.  Without 

a functioning supply chain, countries would not be able to maintain global health best 

practices.  The global health supply chain not only plays an integral role in operating a 

global health mission, but supply chain design plays a key role in the effective 

implementation of those programs. As seen in the results here, having an adaptable malaria 

supply chain capable of responding to shifts in the demand and flexible enough to react to 

changing developing world conditions could save lives. 
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CHAPTER 4.  EVALUATING AND IMPROVING ACCESS FOR 

PEDIATRIC PREVENTIVE DENTAL CARE IN GEOGRIA 

4.1 Background 

Among US children, poor oral health is the most prevalent unmet healthcare need 

and tooth decay the most common chronic condition [51].  In Georgia, this problem is 

further exacerbated by a large number of Medicaid enrolled children combined with few 

providers accepting Medicaid. This results in scarce capacity at Medicaid providers and 

children too distant from providers to receive the necessary care.  Policies regulating 

supervision of dental hygienists have been recently considered in Georgia. If enacted, these 

policies could lead to additional capacity for Medicaid-enrolled children. 

Currently in Georgia, there is a dichotomy in dental care.  Depending on 

perspective, different organizations say there is both an excess and a shortage of dental 

supply.  The Georgia Dental Association has said explicitly, “There is no shortage of 

dentists or dental hygienists in Georgia” [52].  They mention they have dentists with 

additional capacity that needs to be filled.  However, the opposite is quoted by the State 

Office of Rural Health.  They list a number of counties around Georgia as Dental Health 

Professional Shortage Areas as shown in Figure 16  [53]. 
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Figure 16. Georgia Dental Health Professional Shortage Areas. 

 

The goal of this research is two part.  First, we determine the current state of 

pediatric preventive dental care in Georgia due to the current provider network and policy 

structure.  Second, we evaluate the impact of potential solutions including policy changes 

and targeted interventions on the provider network.  

Specific questions the research will address include the localized impact on unmet 

need of policy decisions regarding supervision levels, budget limits for expansion, and 

where additional providers should be targeted for maximum impact. 
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4.2 Method 

We developed an optimization model to evaluate policies for improving access to 

preventive dental care for children. The model matches need for pediatric preventive care 

with the supply available for pediatric preventive care by taking in census tract level 

demographic data, existing public and private dental networks, and local dental regulations 

and insurance acceptance.   We evaluate the impact from adding dental providers or adding 

dental hygienists in “safety net” settings such as Federally Qualified Health Centers 

(FQHCs).  

One novel feature to this model is the use of capacity for dental care determined in 

the time available for these services.  Other papers looking at capacity for dental care 

consider the supply only in terms of the number of providers and not in terms of the time 

available for these services  [54-56].  This allows us to split apart dental care into the time 

spent on pediatric vs. adult care as well as on preventive care vs. treatment as shown in 

Cao et. al. [57].   

4.2.1 Network and Policy Levers Considered 

We consider two network and policy levers in the analysis:  (i) relaxing hygienist 

supervision requirements, and (ii) dentist and hygienist network expansion levels.  

Relaxing supervision requirements would allow hygienists to operate more independently 

to provide preventive care. Changing the dentist or dental hygienist network expansion 

levels would add providers to the current dental network by locating dentists or hygienists 

respectively at FQHC’s around the state.  
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To understand the impact of changing dental hygienist supervision requirements, 

we evaluate the model under the assumptions of both direct supervision and general 

supervision.  Under direct supervision, a dentist is required to be physically present with a 

hygienist for the hygienist to perform procedures. In this model, direct supervision means 

we can only locate dentists and hygienist together, meaning that, under this policy, we only 

consider the addition of dental offices.  General supervision allows hygienists to operate 

independently when authorized to do so by a dentist. Under general supervision, we allow 

hygienists to locate and operate independent of dentists, using the assumption they are 

authorized to do so under the general supervision of a dentist. 

  We changed the dentist or hygienist expansion levels by adding dentists or 

hygienists at FQHCs across Georgia.  Any FQHC was available to locate new providers.  

In this case, we assumed all new providers added to the system would provide preventive 

services to Medicaid children.    We varied the dental expansion levels by increasing the 

number of Medicaid dentists by five percent (16 dentists assisted by 32 hygienists) as well 

as adding 25, 50, 75, 100, 150, and 200 hygienists to the provider network.  These cases 

are chosen based the budget available for the Georgia Department of Public Health 

(GDPH) and the GDPH estimate of the supply of providers available in Georgia. The 

GDPH estimated they could potentially increase the number of dentists taking Medicaid 

by 5% but estimated even that number may be a stretch.  

4.2.2 Baseline 

The current state of pediatric preventive dental care was determined with respect to 

the current policy structure and provider network.   This established a baseline with which 
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we can compare network and policy inventions to evaluate their effectiveness.  Baseline 

parameters represented the existing state of the dental and provider network at the 

beginning of the study.  These included direct supervision (no hygienists operating 

independently), no additional dental providers beyond those already practicing, and the 

current Medicaid acceptance of each of those providers. 

4.2.3 Outcome Measure 

We compute the difference in unmet need for each census tract in Georgia before 

and after each policy implementation. Unmet need is defined as the percentage of children 

who do not have access to preventive dental care. The estimates are used to identify 

subpopulations and communities with the greatest need for interventions, allowing 

decision makers to improve access to preventive dental care for children under limited 

resources, such as a limited budget that can be used for additional facilities or providers. 

4.2.4 Input Data and Model Specifications 

The model and data descriptions used to evaluate the effectiveness of the proposed 

network and policy interventions are given in APPENDIX B.  Note the model does not 

compute provider types explicitly.  Each provider type is chosen by altering relevant input 

data in the model to allow for additional providers with the capacity of a dentist or a 

hygienist. 

To run the model, input data consisted of the population by age, risk status, and 

Medicaid eligibility for each census tract in Georgia.  The time needed for preventive dental 

care is then taken from the dental guidelines for each age and risk class to determine the 
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average time needed to serve a person in each risk class in each census tract. Since the 

guidelines for care differ by age, the average is weighted by the number of people in each 

age class. The patient population is broken down into three groups according to their 

income: Medicaid children at the lowest incomes, children with no financial access in the 

middle, and children with financial access at the upper income levels.  Children with no 

financial access are above Medicaid limits but do not have access to care and children with 

financial access either have private insurance or the ability to pay out of pocket as described 

in Cao et. al. [57].  

This need is then matched to the supply available at each dental provider site, which 

is also determined according to the time available for pediatric primary care. Cao et. al. 

[57] describes the methods used to compute the input supply and need parameters used in 

the model, including the need at each census tract by risk class and Medicaid status, 

provider capacity, and both Medicaid and total supply available at each provider.  Some 

provider locations may have more than one provider, so it is possible to have different 

amounts of Medicaid supply and total supply at one location.  

Salary information was determined from the average annual wages from the US 

Bureau of Labor Statistics for dentists and dental hygienists.  Budget information was built 

into the model but in the end was not used in the final analysis. Based on discussion with 

the GDPH, the budget information was translated into the dental or hygienist network 

expansion levels discussed earlier. We limited the number of additional providers to mimic 

the impact of both state budgets for providing care as well as the supply of providers 

available in the state. 
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The total existing and potential provider network was determined by the National 

Provider Index (NPI) list of dental providers and the list of FQHCs determined from the 

Health Resources and Service Administration Health Care Service Delivery Sites Data 

Mart.  We determined distance using the Texas A&M geocoding service as the distance 

between the center of each census tract (children locations) to each provider’s actual 

geocoded address.  

4.2.5 Solution Method 

We used CPLEX running on Georgia Tech servers to solve the dental access 

optimization model for each of the parameters discussed.  We programmed the model, 

including the objective function and each constraint, using the ILOG CPLEX C++ API to 

call the CPLEX optimization solver. We submitted each job using CONDOR to run each 

parameter set independently.  We evaluated and mapped output results using R. 

4.2.6 Model Description 

The objective of the model is to maximize the number of children receiving care.  

Decision variables available in the model include the percentage of need met for children 

with financial access and for Medicaid children, a binary variable deciding where to open 

new facilities and the number of additional providers to locate at each open facility. 

Constraints represent the problem structure, provider network, and current policy. 

Examples of constraints include distance to care limited to 45 miles, capacity limits for all 

patients, capacity limits for Medicaid patients, budget constraints, and constraints on the 

number of additional providers allowed. Detailed constraints are shown in APPENDIX B. 
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4.3 Results 

4.3.1 Baseline Results 

Overall, we found that out of 159 counties in Georgia, there are currently 81 with 

no Medicaid provider and 16 with no dental provider at all.  When reviewing provider 

acceptance of Medicaid, we find only 293 of the provider locations in our model accept 

Medicaid out of the 2513 provider locations included. 

We found that under the current dental situation in Georgia, there are around 1.5 

million children lacking access to preventive dental care. As shown in Figure 17, the 

current provider network is able to meet all the demand for children with financial access.  

However, a significant number of Medicaid children are left without care.   

 

Figure 17. Percentage of Need Met for private vs. Medicaid insurance. 

Despite this lack of capacity for Medicaid children, most counties in Georgia still 

have excess capacity that is currently unused. Figure 18 shows the counties with excess 

capacity in green compared to the counties without capacity in white.   
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Figure 18. Counties with excess capacity (green) compared to counties without 
excess capacity (white). 

4.3.2 Intervention: Dental Providers 

The result of adding five percent of dentists (16 dentists with 32 assisting 

hygienists) accepting Medicaid is shown in Figure 19.  While there is improvement in this 

model, the improvement was limited and only improved access to preventive care for 

approximately 1.3% (~20,000) of Medicaid-enrolled children.  

 

 



 64 

 

Figure 19. Improvement in Medicaid need met by adding 5% additional Medicaid 
Dentists. 

4.3.3 Intervention: Hygienist Providers 

  Figure 20 shows the results of adding hygienists at FQHCs to the current provider 

network.    
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Figure 20. Change in Percentage of Need Met for adding 25, 50, 75, 100, 150, and 
200 Hygienists. 
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Adding 100 dental hygienists to the network under the assumption of relaxed policy 

on Medicaid reimbursement and supervision improves the percentage of Medicaid children 

who receive preventive care by 4.5% (~70,000), a substantial improvement compared to 

that of only adding dentists to the network.  Further, when 200 hygienists were added to 

the system, the total Medicaid children served can be increased from 37.7% in the base 

case to 46.8% (9% difference).  This creates access for an additional 135,000 Medicaid 

children.  

4.4 Discussion 

Evaluating the baseline results, we see clearly the root of this dichotomy. As shown 

in Figure 17, we found we meet all need for children with financial access while leaving 

significant unmet need in the Medicaid population.  Additionally, we found both unmet 

need in the Medicaid population and unused capacity at providers.  It is clear that a large 

portion of the access problem within the Medicaid population was due to capacity 

constraints at current Medicaid providers and a lack of providers accepting Medicaid in 

many geographic areas. The current dental network results in limited access for Medicaid 

children across Georgia.  The stems from the lack of Medicaid acceptance among dentists 

in Georgia and demonstrates the system is not functioning as it was intended.  There is a 

need to fill both unmet capacity as well as unmet need under the current structure.   

Under the initial policy structure of direct supervision, only dentists were allowed 

to provide unsupervised preventive care.  As a result, the provider network interventions 

were limited to adding additional dentists to the provider network.  Since private capacity 
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is already met, we first focused on adding Medicaid providers to the current system and on 

the impact observed in the Medicaid population.   

We found adding dentists is not sufficient to achieve the statewide change that was 

sought. There are two additional challenges with this approach.  First, the GDPH believes 

adding this many dentists would be a stretch given the limited number of dentists and the 

even fewer proportion of them who take Medicaid under the Georgia Medicaid system.  

Second, there is an additional challenge of a predicted shortage of dentists. The U.S. 

Department of Health and Human Services says the 2012 shortage of 280 dentists in 

Georgia is only expected to grow.  They are expecting a shortage of 386 dentists by 2025 

[58].  With the low percentage of dentists willing to accept Medicaid and the predicted 

dental shortage, alternative methods are needed to improve access for Medicaid children 

in Georgia.  One of those strategies considered is relaxing the supervision of dental 

hygienists  [59, 60].   

Relaxing supervision of dental hygienists allows hygienists to operate 

independently performing preventive dental care procedures such as sealants, cleanings, 

etc.  Since hygienists are not allowed to perform treatment services, all of their time can be 

spent on prevention.  Additionally, they operate at a lower price point, making it more 

likely they will be able to operate under the lower reimbursements seen in the Medicaid 

program. Due to the capacity and treatment constraints on dentists, the addition of dental 

hygienists impacts access more substantially than adding dentists. 

While the need is great throughout Georgia, the model identified specific areas 

believed to have the strongest impact on unmet need, allowing Department of Public Health 
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officials to target specific locations and stage interventions over time, addressing the 

strongest need first.  The model, thus far, identifies southern Georgia as the best place to 

target interventions when the focus of the intervention is FQHC’s.  The current results 

presented focus on interventions targeted at the general Medicaid population, meaning the 

additional providers are allowed capacity to see both children and adult patients.  

Interventions focused on children will have a more pronounced effect on the kids in this 

model.   

There are added benefits of using hygienists to help solve the dental access problem 

in Georgia.  Not only are hygienists more likely to be able to operate at the current price 

point of Georgia’s Medicaid program, but there is also a current surplus of dental hygienists 

that is predicted to grow to 924 hygienists by 2025  [58].  For interventions targeted at 

preventive care, the use of dental hygienists provide a great tool to help resolve the access 

issue and the dental dichotomy in Georgia.   

Due to the nature of the type of model used, there are some inherent model 

limitations seen in the results of the model.  First, the model only considers preventive care.  

While preventive care is a great start for looking at dental care, treatment need still exists.  

Further, it is likely the need for treatment will depend on the coverage of preventive dental 

services.  Second, the model focuses on matching patient need as opposed to demand.  The 

model attempts to maximize the patients served, attempting to meet the need for all children 

in Georgia.  Likely, there will be a significant population of children who will not seek 

preventive dental care at the recommended level.  These patients will cause the 

corresponding demand for dental care to be less than the need represented here.  Third, this 

model assumes all new providers accept Medicaid.  Given the nature of this model and its 
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intended use by the Georgia Department of Public Health for providing additional 

providers under their budget, this is a reasonable assumption, but it should still be noted. 

Lastly, solution stability can be problematic with a model of this type.  Since there are 

many optimal solutions, the model will work through the nodes corresponding to single 

census tracts and providers before moving on to the next node.  This can create areas in 

close proximity with different levels of unmet need.  A smoothing algorithm applied on 

top of the optimization results would allow results that are more representative. 

In conclusion, the current shortage of dentists and surplus of hygienists in Georgia 

further enforces the conclusion observed in the model. The model shows that adopting 

practice acts for relaxing supervision requirements for dental hygienists can improve access 

to preventive dental care for children in Georgia. 
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CHAPTER 5.  THE COST-EFFECTIVENESS OF THREE 

INTERVENTIONS FOR PROVIDING PREVENTIVE SERVICES 

TO LOW-INCOME CHILDREN 

5.1 Introduction 

Oral disease is cited as the greatest unmet health need among U.S. children [2], and 

significant disparities exist [3]. Fewer than 9% of low-income children receive topical 

fluoride or pit-and-fissure sealants [61], even though these are highly effective at 

preventing caries [62]. Utilization of preventive care services is hampered by many factors, 

including access to dental care [63, 64], patient barriers to care such as transportation or 

education [65-67], affordability,   provider  availability, provider attitudes towards publicly 

insured children, and accommodation to children with special needs [15, 68, 69]. 

To reduce oral health disparities, several policy and network interventions have been 

proposed and/or implemented.  One example is the provision of dental services through 

federally-qualified health centers (FQHCs), which primarily serve uninsured and publicly 

insured populations [69]. Additionally, the Oral Health Initiative has encouraged targeted 

oral health interventions such as school-based sealant programs [70].  

Three commonly proposed interventions are dentist loan repayments, increasing the 

acceptance of Medicaid-enrolled children by dentists [65, 68, 71], and amending 

supervision requirements for dental hygienists in public health and safety net settings, 

allowing hygienists to perform specific preventive services without the physical presence 

of a dentist [72]. Loan repayment is commonly used to encourage providers to choose areas 
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of practice with higher need, such as rural areas [73, 74]. The increase in the acceptance of 

public insurance affects the availability of providers for children eligible for Medicaid and 

Children’s Health Insurance Program (CHIP). Difficulty in identifying a dentist accepting 

Medicaid is a frequently reported barrier to children seeking dental services [69]. Many 

factors affect a dentist’s willingness to participate in the Medicaid program, including 

paperwork associated with filing claims, low service payment fees, and substantial “no-

shows” among the Medicaid-eligible population that deter dentists from participating [75, 

76]. Loosening supervision requirements for dental hygienists from direct or indirect 

supervision (where a dentist needs to be present for the service delivery) to general 

supervision (when the dentists need not be present) has been undertaken in many states.  

Currently, three states do not allow general supervision, and five states allow general 

supervision only for some services and under specific settings. General supervision can 

facilitate improved access to dental care for vulnerable population [72, 77].  

We estimated the impact of the three interventions on the availability of dental 

services for children with unmet preventive care needs. We focused on availability since it 

is a precursor to many other interventions for increasing utilization of preventive services 

to infants [78] and children with complex conditions [79]. Availability addresses specific 

dimensions of care, such as oral health literacy [80]. Without the availability of providers, 

these interventions would have limited impact.  

Our aim was to determine which policy interventions are most effective in terms of 

met need and cost. It was conducted for the state of Georgia, which has a low Medicaid 

acceptance rate among dentists [81], restrictive supervision of dental hygienists, and 

recently reinstated the loan repayment program [82].  
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5.2 Methods 

We modeled three policy interventions to evaluate their impact on provider 

availability for preventive services.  Methods used to model each policy range from 

multivariate linear regression to mathematically modeling the structure of a school based 

sealant program.   

5.2.1 Data Sources 

We used the Medical Panel Expenditure Survey data to evaluate the resulting 

supply of additional providers from the intervention to obtain the hours available for 

pediatric preventive services at each provider. The American Academy of Pediatric 

Dentistry  (AAPD) guidelines on dental care were used for each age group and risk class 

to define need [83]. We obtained information for the regression analysis on Medicaid 

programs from the Kaiser Family Foundation. We obtained additional data used for the 

regression on state Medicaid acceptance rates, Medicaid structure, Medicaid fee for service 

(FFS) as a percentage of private rates, dentists per population ratios, and Medicaid 

utilization rates from the American Dental Association [81]. Additional details on selected 

data elements are in APPENDIX C. 

We obtained data for school-based sealant programs for each public school in 

Georgia—including type of school, student enrollment, and percentage of students on free 

and reduced lunch—from the National Center of Education Statistics for the 2011–2012 

school year.  The free and reduced lunch is a program offered to children in families with 

lower incomes.  A common federal target for school-based programs is schools with a high 

percentage (> 50%) of free and reduced lunch students. Three out of 1,818 elementary and 
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middle schools had missing information and were not included in the analysis. Example 

data is given in APPENDIX C. 

5.2.2 Study Population 

We considered children aged ≤19 years living in Georgia, differentiated by 

insurance status.  Children were considered to be publicly insured if they were eligible for 

Medicaid or CHIP (that is, had family incomes less than 247% of the Federal Poverty Line 

(FPL) according the eligibility levels). Other children were considered to be either privately 

insured or to have limited financial access based on family income [57].  Medicaid 

programs in the U.S. provide different coverage for dental care as compared to the child 

population; thus, this study applies to the child population only. For example, in Georgia, 

only emergency dental care services are provided under Medicaid for the adult population. 

5.2.3 Need and Supply 

Need (as defined by AAPD guidelines) was estimated at the census tract level and 

measured as the total hours required to provide preventive dental procedures at their 

recommended annual frequency annually [83]; these differ by age group (0-3, 4-5, 6-7 and 

8-18 years) and caries risk. We estimated supply at the provider level and measured as the 

number of hours of allocated pediatric preventive dental care using the national estimated 

percentages for general and pediatric dentists multiplied by the average annual work hours 

per dentist. Details are in APPENDIX C. Details for estimating risk are in the appendix for 

Cao et. al. [57]. 
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5.2.4 Outcomes 

We considered three outcomes: (i) Met need, defined as the number of additional 

children receiving care through the intervention, who are otherwise unserved; (ii) 

Intervention cost, estimated as the total cost of intervention implementation incurred by the 

state; and (iii) Cost saving from providing preventive care for children eligible for 

Medicaid/CHIP compared to treatment costs under no prevention. Cost saving is not the 

net cost and does not account for the intervention cost. Met need was further considered by 

sub-populations of family income. Met need is a measure for improvement in access to 

healthcare. For interventions focused on adding dentists to the system, we estimated that 

one dentist has the capacity to provide preventive services to approximately 1,076 children. 

Details are given in Cao et. al [57].  

We estimated cost savings of a preventive care intervention as the difference in 

costs between children who received preventive care before they had caries and children 

who did not have preventive care before caries. In Georgia, Medicaid children aged 3-6 

who received neither sealants nor fluoride before having a caries had total, costs of $209.23 

per child per year over 7 years. For children who received sealants and fluoride before 

having caries, the annual total cost of care was $93.46 per child. Thus, the annual cost 

saving from providing preventive care was $115.77 per child [84]. We assumed that there 

were no cost savings for children below three and over six. Thus, the cost saving per child 

was $27.24 in the overall child population. 
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The cost saving for sealant programs was the difference in average Medicaid 

payment for dental care between children who received sealants and those who did not. 

Estimated averted treatment costs from sealants are $50.42 per child [85].  

5.2.5 Dentist Loan Repayment 

Loan Repayment programs can vary in the annual loan repayment amount and the 

percentage of the dentist’s caseload involving Medicaid children. We considered annual 

loan repayments in the range $0 to $60,000 annually, in increments of $10,000. 

The impact of a loan repayment program was scaled by the number of participating 

providers. The Georgia Dental Association (GDA) estimated that using loan repayments 

would encourage 8–12 dentists to practice in rural areas and accept publicly-insured 

children [82]. 

To estimate met need, we determined the available capacity of each dentist to 

provide preventive services to children. Details are given in Cao et al. [57]. 

Dental loan repayment programs range from total loan forgiveness after a specified 

period to a fixed amount per year in exchange for a short-term commitment to practice in 

shortage areas. The intervention cost was computed as the amount contributed annually by 

the program. 

Potential cost savings were based on the additional number of publicly insured 

children served, based on the intervention setting and the publicly insured population in 

the service area.  The cost saving equaled the number of eligible publicly insured children 
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served multiplied by the potential savings per year per child for providing preventive 

services ($115.77).  

5.2.6 Medicaid Reimbursement Rate 

We used multivariate linear regression models to estimate the impact of fee-for-

service reimbursement on state-level Medicaid acceptance rate or utilization of preventive 

care services (past year dental visit). We controlled for confounding from: (i) the structure 

of the Medicaid program in each state, including whether dental care was included in a 

state’s managed care organizations (MCO), number of MCOs, and whether the state 

participated in Medicaid expansion; (ii) the dentist per 100,000 population ratio; (iii) the 

median family income; (iv) race/ethnicity; and (v) Medicaid enrollment. 

Model selection including best subsets, forward and backward stepwise regression, 

and lasso regularized regression [86] was used to determine the final model.  We 

considered various transformations of predictor variables. We normalized the data so that 

regression coefficients could be compared. 

We determined the impact of raising Medicaid reimbursement rates by 10 

percentage points (53% to 63% in Georgia). We estimated met need by the increase in 

utilization by taking the change in utilization multiplied by the number of publicly insured 

children.  The intervention cost was the percentage increase in fees across the publicly 

insured children already utilizing preventive care plus the total increase in costs of the 

additional met need.  We estimated cost savings by summing the potential savings across 

the met need satisfied through the provision of additional preventive services.  Details are 

provided in APPENDIX C. 
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5.2.7 Supervision of Dental Hygienists 

We estimated the impact of general supervision of dental hygienists based on its 

effect on school-based sealant programs (SBSP).  We compared the cost of implementing 

a SBSP in Georgia public schools under direct and general supervision.  We targeted 

schools with at least 60% of children participating in the free and reduced meal program.  

Sealant programs are aimed at all 2rd and 6th grade students (approximately ages 7-8 and 

11-12) based on normal eruption times of first and second molars. We assumed students at 

each school were evenly distributed over each grade level.  Screening and sealant times 

were 2 and 25 minutes respectively [87]. Each case assumed that 70% of the students 

screened received sealants [87].   

We assumed that there were 60 minutes of combined set-up and teardown time.  

Sealant teams work 8.5 hours per day including drive time, the first 30 minutes of which 

was considered normal commuting time and not included in salary cost estimates.  Similar 

to previous studies, we classified the drive time to be 30 minutes, 1 hour, and 1.5 hours for 

schools in cities and suburbs, towns, and rural areas respectively [87]. The mean hourly 

wages in Georgia of dentists, dental hygienists, and dental assistants were $85.36, $30.22 

and $17.31, respectively [88], and equipment and supply costs per child were $2.74 and 

$6.93 respectively [89]. We used total costs, which included administrative costs spread 

across the costs provided.  This provides a conservative cost estimate that would provide 

an upper bound as sealants are scaled to larger programs since administrative costs have 

economies of scale. 
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Under “direct supervision”, the dentist undertook all screenings and ensured that 

sealants were placed correctly, while dental hygienists applied the sealants.  Under “general 

supervision,” the hygienists performed screenings and sealant placement. Most school 

sealant programs used two chairs due to space constraints in the schools. We assumed that 

each hygienist had a dental assistant.  An additional dental assistant for the team performed 

equipment changes between procedures. Teams were assumed to visit (at most) one school 

per day.  

We estimated cost savings from the number of children sealed and the averted 

treatment costs per child ($50.42). Cost savings to the state were based on students who 

qualified for free or reduced lunch (family income less than 185% of the FPL), which is 

below the requirement for Medicaid [90]. While sealants deteriorate over time, they remain 

largely effective for at least 4 years [85].  The impact of the school sealant programs was 

determined for all schools as well as targeting a specific percentage of schools. 

5.3 Results 

5.3.1 Dentist Loan Repayment 

Approximately 1.49 million children were eligible for Medicaid/CHIP in Georgia. 

The impact of adding 8–12 dentists to underserved areas would have met needs for only an 

additional 8,610 to 12,915 children, even assuming 100% of the capacity was applied to 

publicly insured children.  

We determined the intervention cost by the loan repayment amount and the number 

of providers.  For eight providers, we estimated the intervention cost for a loan repayment 
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amount of $20,000 and $50,000 to be $160,000 and $400,000 annually, respectively.   The 

intervention cost per child served is $18.58 and $46.46 for loan repayment amounts of 

$20,000 and $50,000, respectively.  

Based on $115.77 savings per child per year, $29,318 could be saved per provider 

if the provider had a 100% Medicaid caseload of children who would not otherwise receive 

preventive care. We conducted two-way sensitivity analysis showing the intervention cost 

and cost savings for one provider over a range of Medicaid capacity percentages and annual 

loan amounts (Table 14). For eight providers, we estimated the cost savings to range from 

$117,273 to $234,545 for 50% to 100% a public insurance capacity, respectively.  For 12 

providers, the cost savings would range from $175,909 to $351,818.  The average cost 

savings per child is $27.24. 
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Table 14: Intervention cost and cost savings to Medicaid of implementing loan 
program per loan provided. 

  % Medicaid children 
Loan 
Repayment Cost Type 10 20 30 40 50 

0 Intervention Cost 0 0 0 0 0 
Cost Savings 2,932 5,864 8,795 11,727 14,659 

10,000 Intervention Cost 10,000 10,000 10,000 10,000 10,000 
Cost Savings 2,932 5,864 8,795 11,727 14,659 

20,000 Intervention Cost 20,000 20,000 20,000 20,000 20,000 
Cost Savings 2,932 5,864 8,795 11,727 14,659 

30,000 Intervention Cost 30,000 30,000 30,000 30,000 30,000 
Cost Savings 2,932 5,864 8,795 11,727 14,659 

40,000 Intervention Cost 40,000 40,000 40,000 40,000 40,000 
Cost Savings 2,932 5,864 8,795 11,727 14,659 

50,000 Intervention Cost 50,000 50,000 50,000 50,000 50,000 
Cost Savings 2,932 5,864 8,795 11,727 14,659 

60,000 Intervention Cost 60,000 60,000 60,000 60,000 60,000 
Cost Savings 2,932 5,864 8,795 11,727 14,659 

              
    % Medicaid children 
Loan 
Repayment Cost Type 60 70 80 90 100 

0 Intervention Cost 0 0 0 0 0 
Cost Savings 17,591 20,523 23,455 26,386 29,318 

10,000 Intervention Cost 10,000 10,000 10,000 10,000 10,000 
Cost Savings 17,591 20,523 23,455 26,386 29,318 

20,000 Intervention Cost 20,000 20,000 20,000 20,000 20,000 
Cost Savings 17,591 20,523 23,455 26,386 29,318 

30,000 Intervention Cost 30,000 30,000 30,000 30,000 30,000 
Cost Savings 17,591 20,523 23,455 26,386 29,318 

40,000 Intervention Cost 40,000 40,000 40,000 40,000 40,000 
Cost Savings 17,591 20,523 23,455 26,386 29,318 

50,000 Intervention Cost 50,000 50,000 50,000 50,000 50,000 
Cost Savings 17,591 20,523 23,455 26,386 29,318 

60,000 Intervention Cost 60,000 60,000 60,000 60,000 60,000 
Cost Savings 17,591 20,523 23,455 26,386 29,318 
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5.3.2 Medicaid Reimbursement Rate 

Variables selected for the final model for Medicaid acceptance rate were (i) 

race/ethnicity, (ii) Medicaid enrollment, (iii) MCO program structure, (iv) median family 

income, and (v) Medicaid expansion. States with higher proportions of their population 

comprising non-Hispanic whites had higher acceptance rates than those with lower 

proportions. In addition, states with higher median family incomes, states with the dental 

care included in their MCO program type and states with higher Medicaid enrollment rates 

had lower acceptance rates, but the Medicaid enrollment results were not as significant 

statistically. States with Medicaid expansion had higher acceptance rates. FFS rates were 

not significantly associated with Medicaid acceptance rates. 

The selected significant factors for predicting utilization of Medicaid services were 

Medicaid FFS percentage, the square of the Medicaid FFS percentage, and the number of 

dentists per 100,000 population.  The association between utilization and Medicaid FFS 

was nonlinear in the model, so the effect was positive for lower values of FFS rates and 

negative for large FFS rates. States with higher concentrations of dentists had higher 

utilization of Medicaid. Both models are presented in Table 15. 
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Table 15: Regression models predicting Medicaid acceptance rate and Medicaid 
utilization using standardized data. 

 Model 1 Model 2 

 Response: Medicaid Acceptance Rate* Response: Medicaid Utilization† 
Predictor  Estimate P value Estimate P value 
Intercept 0.605 0.020 -0.015 0.951 
White 0.389 0.034     
Dental Managed Care -0.134 0.010     
Median Family Income -0.536 0.023     
Medicaid Expansion 0.104 0.060     
Medicaid Enrollment -0.209 0.171     
FFS Percentage     1.827 0.011 
(FFS Percentage)2     -1.232 0.029 
Dentist per population     0.254 0.040 

* N: 51, Adjusted R2: 0.3051, Residual Standard Error: 0.1656 
† N: 51, Adjusted R2: 0.1915, Residual Standard Error: 0.1081 
 

An increase of 10 percentage points in reimbursement rates in Georgia yielded an 

increase of 0.49% in utilization holding the dentists per population ratio constant, or 

approximately 7,366 additional children (details provided in APPENDIX C, Table 37).  

Increasing the reimbursement in Georgia from 53% to 63% increased Medicaid/CHIP costs 

by 18.9%. The intervention cost, therefore, comprised of the 18.9% increase for each child 

in addition to the total cost of any additional utilization added to the system. We estimated 

the intervention costs for current and new members as $36.9 million and $1.4 million, 

respectively.  We estimated the intervention cost per child to be $5,205. This cost would 

be partially offset by the savings of $200,660 ($27.24 per child) resulting from the 

provision of preventive services.  
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5.3.3 General Supervision for Dental Hygienists 

In Georgia, 1,129 schools met the targeting criteria. The intervention cost for SBSP 

in all target schools was approximately $5 million under direct supervision and $2.2 million 

under general supervision.  The intervention costs using general supervision were on 

average 56% lower than direct supervision.  The findings were similar across school sizes. 

Implementing a SBSP at all target schools has the potential to screen 151,047 students and 

provide sealants for 105,733 students each year. We estimated the intervention cost per 

child screened to be under $33 for direct supervision and $14.50 for general supervision. 

We estimated the cost saving per child screened was estimated to be $28. 

Implementing SBSPs would improve outcomes and reduce costs to Medicaid/CHIP 

programs (Table 16). A program implemented in 10% of the target schools would reach 

16,153 children annually. Sealing 70% of the children would yield cost savings of 

$452,197 to the state. 

Table 16: Students Reached and Cost Measures for School-Based Sealant Programs. 

 Met Need Intervention Cost Annual Cost Savings 
Percent 
of Target 
Schools 

Screened 
per year 

Sealed 
per 
year Direct  General Direct  General 

10% 16,153 11,307 $529,394 $234,526 $452,197 $452,197 
25% 38,853 27,197 $1,274,743 $566,129 $1,087,675 $1,087,675 
50% 76,797 53,758 $2,521,672 $1,119,319 $2,149,902 $2,149,902 
75% 115,113 80,579 $3,776,382 $1,677,658 $3,222,544 $3,222,544 
100% 151,047 105,733 $4,965,490 $2,205,333 $4,228,502 $4,228,502 
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5.3.4 Comparison of the Three Interventions 

Table 17 shows a comparison of the met need and costs associated with each 

intervention.  We assumed a loan repayment for 12 dentists with a repayment of $50,000 

annually per provider and that dentists allocated 50% of their workload capacity to publicly 

insured children. The reimbursement rate assumed a ten percentage point increase in the 

Medicaid FFS rates. Both SBSPs affected 25% of target schools and differed by 

supervision requirements.  

Table 17: Comparison of interventions for loan repayment with 12 dentist at $50k 
repayment and 50% Medicaid caseload, 10 percentage point Medicaid rate increase, 

and supervision requirements based on implementation in 25% of target schools. 

Intervention Met Need Intervention Cost 
Annual Cost 
Savings 

Loan Repayment 12,915 $400,000 $175,909 
Reimbursement Rate 7,366 $38.3M $200,660 
Direct Supervision Sealant Program 27,197 $1,274,743 $1,087,675 
General Supervision Sealant Program 27,197 $566,129 $1,087,675 

 

5.4 Discussion 

Overall, providing loan reimbursement and SBSPs under general supervision could 

be cost saving. Loan repayment was cost saving for smaller loan repayment amounts and 

higher Medicaid caseload percentages. SBSPs under general supervision were cost saving 

for implementation in any percentage of target schools. Changing the Medicaid 

reimbursement rate had a very high incremental cost compared to the resulting benefit. 
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Providing loan reimbursement for dentists in Georgia would increase the provision 

of preventive services for only 0.65% of children eligible for Medicaid/CHIP. However, 

there are additional benefits from this type of program.  Some of the capacity of these 

providers could serve adults or be used for restorative care, allowing treatment options that 

dental hygienists or other mid-level providers cannot provide.  Moreover, loan 

reimbursement will provide, if targeted, additional capacity to those who need it and is a 

cost saving intervention. We focused on the benefits of adding capacity through loan 

repayments programs and not on their effectiveness.  Other studies have shown loan 

repayments to be one of the most successful ways to encourage generalist physicians to 

locate in underserved areas [91], though there is less success in the long term [92].  

Additionally, we assumed providers would relocate given any of the loan 

repayment amounts varied in the analysis.  In reality, we would expect more providers to 

be willing to relocate at higher repayment amounts.  For the loan repayment to be cost 

saving, it would be necessary to have providers willing to relocate at some of the lower 

annual repayment amounts.  

Adding providers through loan incentive programs also assumes those providers 

have sufficient patients to maintain their practice.  Given the substantial need for Medicaid 

providers shown in Chapter 4, we believe these providers will not have difficulty in finding 

children in need of oral healthcare in these high need areas.  The combination of substantial 

need across the state as well as targeted placements in high need areas benefits the 

practitioners as they bring in patients. 
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For the loan repayment programs analyzed here, since the results are annual results 

based on one loan provided, the structure of the loan repayment program in terms of the 

number of providers as well as the number of years of commitment can be left to the state 

to determine.  For the sake of this analysis, there is no difference between locating two 

providers each with two-year commitments or locating four providers with one-year 

commitments in sequential years. 

In our study, we found that in average over all states, Medicaid FFS reimbursement 

rates were not significantly associated with the Medicaid acceptance rates controlling for 

Medicaid system factors and for demographics and socio-economic factors. On the other 

hand, acceptance rates were lower for states with a higher non-Hispanic white population 

and for those with a higher median family income.  Given the large cost of increasing the 

reimbursement rate, this is not likely to be as cost-effective as other interventions. 

Additionally, the projected increase in utilization would reach fewer children than loan 

repayment programs. Note that the relatively small increase in utilization we found is 

consistent with previous literature [93].   Changing the Medicaid FFS rates results in a very 

expensive intervention due to the system wide changes that occur.  With the other 

interventions, the costs incurred by the intervention was only due to the children they 

reached through the intervention. Changing the Medicaid FFS rates affects all existing 

Medicaid children, resulting in substantial costs. 

A recent study compared three states (Connecticut, Maryland, and Texas), which 

have increased the reimbursement rates between 2005 and 2012, to a control group of 14 

states, which have not had significant changes in oral health policy for the Medicaid 

program during the same time period [94]. The study found that Connecticut and Texas 
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have experienced a statistically significant increase in utilization of preventive dental care 

for Medicaid enrolled children compared to the control group of states. However, one 

limitation of this study is that it aggregates the data of all control states to compare the 

difference between the three states and the control states. If taken individually, some states 

have also experienced a significant change, e.g. Illinois from 25% in 2008 [95] to 47% in 

2010 [96]. Other research has found that reimbursement rate increases are necessary but 

not sufficient to improve access. Reimbursement rates provide a foundation for 

encouraging provider acceptance, but there is also a need for administrative support and 

patient education [65, 97].   

Another recent study by the American Dental Association estimated 94% of 

publicly insured children in Georgia live within 15 minutes of a Medicaid Dentist [98].  

This result points to that geographic access is not a source concern for children on Medicaid in 

Georgia thus other barriers to utilization of dental care services may be more important. 

Implementing school based sealant programs remains particularly relevant even under this 

finding since children can be reached directly where they spent a good portion of their day. In 

this research, school-based programs were shown to be highly effective and can be cost saving 

under general supervision. Implementation of programs like school-based sealant programs 

along with access to dentists for restorative and additional preventive care would provide 

children with proper care.  

There are a few issues with the reporting of Medicaid acceptance, however. Often 

Medicaid acceptance is reported in a binary form: yes if a provider takes Medicaid and no if a 

provider does not take Medicaid. The result of this form of measurement for Medicaid 

acceptance is that if a provider accepts one Medicaid child in their practice, they are listed as 
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taking Medicaid despite the fact that they may see no other Medicaid children. The presence 

of a Medicaid dentist within 15 minutes of 94% of Medicaid children is Georgia is significant 

progress, but it does not answer the question of whether these children have access to care. 

These children and their parents still have to deal with the significant barriers to care discussed 

earlier including transportation, time off work, etc. Additionally, when the Medicaid capacity 

available at each provider (based on the Medicaid caseload they accept) are accounted for, the 

results could be very different.  

Reducing supervision requirements for dental hygienists would both reduce costs 

and increase access to care for underserved.  Moreover, the impact would not be limited to 

specific geographic locations because hygienists could reach populations where it may not 

be cost-effective for a dentist to operate.  Additionally, it was found that stricter task-related 

regulations raised prices for dental care by 12% [99].  School-based sealant programs more 

than doubled sealant prevalence in the states in which they were implemented [71]. Schools 

also provide the additional benefit of removing many of the patient barriers to care known 

to exist including transportation and time off from work [65-67].  

It is important to mention the difference in the stakeholders benefiting of the cost-

savings from the three interventions. The costs for loan repayment included the amount paid 

by the state of Georgia to encourage providers to locate in underserved areas, but it did not 

include any reimbursements paid by Medicaid for increased dental care capacity for Medicaid 

of these new providers. Thus, the cost-savings for the state of Georgia may be lower if 

supporting additional Medicaid expenditure due to the increase in Medicaid capacity. The cost 

for SBSPs was developed from the perspective of the state of Georgia implementing a SBSP 

by hiring the staff and purchasing the supplies through the Georgia Department of Public 
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Health. For each child reached through the SBSP programs, we assume current Medicaid 

reimbursement rates for expenditure for care and cost-savings. For children with other forms 

of financial access, the cost-savings may be higher while for those without any financial access, 

the cost-savings will be lower. Overall, the cost-savings are of the state of Georgia estimated 

assuming Medicaid reimbursement rates. In contrast, when evaluating the impact of Medicaid 

reimbursement rates, the cost represents the expenditure of the Medicaid program due to the 

reimbursements paid to dental providers for treatments performed thus the cost-savings are 

those of the Medicaid program. 

One factor that could affect the number of students actually sealed through these 

programs is the trading of capacity between dental offices and these sealant programs.  

While we did target high need schools, it is possible some of the children in these schools 

have already received sealants outside the school programs.  In this case, the effect of the 

program will be reduced correspondingly by the number of children (Medicaid or non-

Medicaid) who received outside care.  While worth mentioning, this effect can be mitigated 

by focusing on target schools with high Medicaid populations where access to care is 

known to be limited.  

There are several limitations to the study.  Varying assumptions around the 

guidelines for care for low and high-risk patients will change the number of children 

seeking care. Cost savings are limited to young children in this study; however, cost 

savings could be higher if we had considered children of all ages. The estimates for 

Medicaid acceptance rates do not accurately reflect the capacity dedicated to publicly 

insured children since providers reported as accepting public insurance may only devote a 

small amount capacity to publicly insured children. The regression model also assumes a 
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linear association between Medicaid reimbursement and Medicaid acceptance rates. 

However, this may not be linear once the reimbursement rates reach higher levels.   

The findings have several important implications for oral healthcare policy in the 

US.   Implementing loan repayment programs, raising Medicaid reimbursement rates, and 

loosening dental hygienist supervision can all improve access for underserved children.  

Moreover, both loan repayment programs and loosening supervision requirements were 

potentially cost saving.  

The proposed methods can be generalized and applied more broadly in areas with 

similar dental programs. The loan repayment program assumes specific parameters on 

repayment, but are general for such programs in the USA. Second, analysis of the impact 

of reimbursement rates on Medicaid was based on all states, so the findings hold nationally 

in the USA based on the state level data presented. Third, the cost analysis of the 

supervision of dental hygienist in school-based programs can be generalized by using data 

on available providers or the school network in any area such as a state or region. Finally, 

other countries can learn from the findings on the loan repayment program and on staffing 

with different levels of expertise. 
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CHAPTER 6.  POTENTIAL OF SILVER DIAMINE FLUORIDE TO 

REDUCE RESTORATIVE CARIES TREATMENT 

EXPENDITURES IN US CHILDREN 

6.1 Introduction 

Over 28% of US children aged 2 to 8 had dental caries in their primary teeth in 

2012 [100].  Further, significant disparities exist for untreated dental caries for this 

population [3].  For example, non-Hispanic black 2 to 8 year olds had more than double 

the prevalence of untreated decay (20.5%) compared to their non-Hispanic white 

counterparts (10.1%) [100].  A contributing factor to oral health disparities is the limited 

access to dental care for children in low-income families even when they are eligible for 

Medicaid [101, 102]. 

Untreated tooth decay in young children can lead to pain, infections, and expensive 

emergency department (ED) visits and/or hospitalizations.  In 2010, 0.65% of pediatric 

hospitalizations were due to non-traumatic dental conditions [103]. In 2011, $68 million in 

Medicaid payments were made for preventable dental conditions in operating rooms or 

ambulatory surgery centers, with 98% of those cases related to dental caries and 71% for 

children aged 1 to 5 years [104]. 

Silver diamine fluoride (SDF) has an antimicrobial effect on cariogenic biofilms 

and can slow down the demineralization of dentine [105-107]. The silver in SDF attacks 

harmful bacteria while the fluoride promotes remineralization of the tooth [108].  Recent 

systematic reviews show that the application of 38% SDF can arrest caries in the primary 
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teeth of young children, though there is not consensus on the total number or frequency of 

applications that should be applied [109-111].   

In young children, SDF has the potential to arrest caries in primary teeth, potentially 

removing the need for any restorative treatments until they are replaced by their permanent 

teeth.  Further, SDF can reduce the use of anesthesia in very young children, either by 

eliminating the need for the restorative care or by postponing the potentially stressful dental 

procedures until the child is old enough to receive more standard restorative care options. 

Pediatricians in many states have been applying topical fluoride varnish on the teeth of 

young children to prevent caries, and potentially could begin using SDF for Medicaid-

enrolled children with active caries lesions who have limited access to dental care.   

We applied a simulation approach to quantify the cost impact of using SDF in 

young children (aged 0 to 5 years) with dental caries in three sub-populations: i) Medicaid-

enrolled young children who had received caries related restorative care during 2010-2012, 

ii) all Medicaid-enrolled young children in 2010, and iii) all young children in the general 

population in 2010. States included in the analysis were Alabama (AL), Connecticut (CT), 

Massachusetts (MA), New Hampshire (NH), North Carolina (NC), South Carolina (SC), 

and Vermont (VT).  We considered these states for two reasons. First, the data for Medicaid 

payments and dental care utilization in these states had relatively few missing values. 

Second, we wanted to compare states from two different regions of the US with different 

demographics and utilization of dental care services [112]. The outcomes of interest were 

the reduction in the number of children with preventable restorative care assuming SDF 

application and the reduction in the resulting system expenditures from using SDF from 

the payer perspective.  The outcomes were determined for the three sub-populations for 
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varying levels of penetration of SDF intervention defined as the percentage of children 

receiving SDF application (10%, 25%, and 50%) and of SDF effectiveness. 

6.2 Methods 

6.2.1 Data Sources 

We analyzed data extracted from the 2010-2012 Medicaid Analytic Extract (MAX) 

files obtained from the Centers for Medicare and Medicaid Services (CMS) for seven 

states: three southeastern states (AL, NC, and SC) and four northeastern states (CT, MA, 

NH, and VT). The MAX claims data were used to extract procedure (CDT and CPT) codes, 

expenditures, and patient demographics including age, gender, and residence zip code. This 

study was approved by CMS (Data Use Agreement #23621) and by the Institutional 

Review Board of Georgia Tech (protocol #H11287).  

We also used demographic data from the US Census Bureau to determine the 

proportions for each age, education level, household size, income, and sex at the census 

tract level for the general child population in the seven states.  

We also used the demographic data from the US Census Bureau to determine the 

proportions for each age, education level of the parents, household size, income of the 

parents, and gender at the census tract in the seven states for the general child population. 

Census data came from four census tables: Single Years of Age and Sex: 2010 

(DEC_10_SF2_QTP2), Household Type by Household Size (DEC_10_SF2_PCT20), Sex 

By Educational Attainment For The Population 25 Years And Over 
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(ACS_10_SF4_B15002), and Age By Ratio Of Income To Poverty Level In The Past 12 

Months (ACS_10_SF4_B17024). 

6.2.2 Study Population 

As SDF is applied to existing caries lesions, we limited the population to children, 

aged 0 to 5 years, who would develop caries. For these children, we considered three 

populations/scenarios. Population 1 (P1) included all Medicaid-enrolled children who 

received a caries-related restorative dental procedure between 2010 and 2012; P1 reflects 

realized restorative dental care utilization in the Medicaid system for the 3 years 

considered.  Population 2 (P2) included all Medicaid-enrolled children in 2010; P2 reflects 

potential dental care utilization in the Medicaid system. Population 3 (P3) included all 

children provided in the 2010 census data; P3 reflects potential dental care utilization for 

the general population.  

6.2.3 Intervention and Comparison Group 

For each population we assumed that caries would be treated with either SDF or a 

restoration.  We assumed that a restoration would not fail within the study period. We also 

assumed only one caries incidence for children in P2 and P3 if they were determined to 

have caries. 

6.2.4 Caries Prediction Model (Probability of Caries) 

For the two populations, P2 and P3, without actual data on receipt of restorative 

dental care, we estimated the probability that a child aged 0 to 5 had at least one caries 

lesion within the past 24 months using a regression model [113]: 
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𝑃𝑃{𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1|𝐴𝐴𝐴𝐴𝐴𝐴,𝐸𝐸𝐸𝐸𝐸𝐸,𝐻𝐻𝐻𝐻𝐻𝐻, 𝐼𝐼𝐼𝐼𝐼𝐼,𝐹𝐹𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀} = 

1 − exp(− exp(−2.62183 + 0.52207 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴 − 0.21811 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸 + 0.07516 ∗ 𝐻𝐻𝐻𝐻𝐻𝐻

− 0.25528 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼 − 0.20061 ∗ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)) 

where AGE is the age in months of the participant at the time of the examination, EDU is 

the household reference person's education level as shown in the numeric levels below 

matching the levels found in NHANES, HHS is the size (total number of people) pf the 

participant's household, INC is the ratio of family income to the federal poverty level 

(FPL), and FEMALE is an indicator variable set at 1 if the child was female and 0 

otherwise.  

For Medicaid-enrolled children in P2, we determined the age, sex, race, and zip 

code from the MAX claims data.  Income, education level, and household size were 

simulated by using the demographic data from the 2010 Census Bureau, conditioned on 

the race of the child.  For children in P3, all demographic variables used were simulated 

using the demographics data from the 2010 Census Bureau at the census tract level. 

We used Monte Carlo simulation to simulate which children would develop caries. 

6.2.5 Effectiveness of SDF 

We used two distributions for the effectiveness of SDF.  The first distribution was 

based on  the 95% confidence interval (CI) for SDF effectiveness reported in the literature 

[105, 108] and heretofore referred to as  the “main” distribution. Because this is based on 

the 95% CI, we assumed SDF effectiveness was uniform between 41.2% and 90.7% with 

95% probability and between 0% and 100% with 5% probability.  To test the sensitivity of 
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lower SDF effectiveness, a second distribution was considered and referred to as the 

“lower” distribution.  The lower distribution assumed SDF effectiveness was uniform 

between 20% and 60% with 95% probability and between 0% and 100% effective with 5% 

probability.  

6.2.6 Cost of SDF Application 

Because SDF is not reimbursed by Medicaid in all states, the actual SDF 

reimbursement amount is not available.  As a proxy, we used 166% of the Medicaid 

reimbursement amount for topical fluoride in each state.  For states that did reimburse SDF, 

some of them treated SDF as a standard fluoride.  Other states reimbursed 50% to 100% 

more than fluoride.  While the material cost is very low [114], SDF application is more 

expensive than fluoride, thus the final reimbursement amount used was chosen to be two-

thirds higher than fluoride.  The final expenditures used for SDF application are provided 

in Table 18 [115]. 

Table 18. Actual fluoride and estimated SDF reimbursement rates. 

State Fluoride rate ($) Estimated SDF Rate ($) 
AL 15.00 24.90 
MS 22.42 37.22 
SC 15.89 26.38 
NC 15.61 25.91 
NH  18.00 29.88 
VT 15.00 24.90 
MA 26.00 43.16 
CT 20.00 33.20 
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6.2.7 Costs of Restorative Dental Care 

We assumed costs of restorative dental care from the payer perspective using 

Medicaid expenditures for restorative dental care operations. 

We estimated the Medicaid expenditures for dental care services by dividing the 

child population into three groups: children who received general or local anesthesia, 

children who received nitrous oxide, and children who received neither.  For children who 

received nitrous oxide and children who received local or general anesthesia, we estimated 

both the total expenditures per-visit (all expenditures of restorative dental care as well as 

anesthesia and surgery related expenses) and the anesthesia expenditures per-visit (only the 

expenditures related to anesthesia and other surgery expenses). 

For Medicaid-enrolled children with caries-related restorative procedures (P1) 

provided by the MAX claims data, we extracted claims for anesthesia (including nitrous 

oxide and local or general anesthesia) to identify children with caries related restorative 

procedures that were sedated by each type of anesthesia. The procedure codes used for 

caries related restorative care and anesthesia related procedures are shown in Table 19 and 

Table 20 respectively. 
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Table 19. Caries related restorative procedures codes used in cost analysis. 

CDT Code Description 
D2140 1-Surface Amalgam, Primary or Permanent Tooth 
D2150 2-Surface Amalgam, Primary or Permanent Tooth 
D2160 3-Surface Amalgam, Primary or Permanent Tooth 
D2161 4+ Surface Amalgam, Primary or Permanent Tooth 
D2330 Composite Resin, One Surface, Anterior 
D2331 Composite Resin, Two Surfaces, Anterior 
D2332 Composite Resin, Three Surfaces, Anterior 
D2335 Composite Resin, Four Surfaces or Incisal 
D2391 Comp Resin, One Surf., Post., Perm or Prim (includes PRR) 
D2392 Composite Resin, Two Surfaces, Post. (Perm or Primary) 
D2393 Composite Resin, Three Surfaces, Post. (Perm or Primary) 
D2394 Composite Resin, Four Surfaces, Post. (Perm or Primary) 
D2930 Crown-Stainless Steel, Primary Tooth 
D2931 Crown-Stainless Steel, Perm. Tooth 
D2932 Crown-Prefab. Resin, Primary Tooth 
D2934 prefabricated stainless steel crown with resin window 
D2940 Sedative Filling 
D2954 Post And Core (Prefab.), Excl Crown 
D3220 Vital Pulpotomy, Primary or Perm. Tooth 
D3221 Pulpal Debridement, Primary or Perm Tooth 
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Table 20. Anesthesia codes used in the cost analysis. 

Code 
Type Code Description Type 

CPT 
00100 - 
00222 Anesthesia for Procedures on the Head Anesthesia  

CDT D9210 
Local anesthesia not in conjunction with 
operative or surgical procedures Anesthesia  

CDT D9211 Regional block anesthesia Anesthesia  
CDT D9212 Trigeminal division block anesthesia Anesthesia  
CDT D9215 Local anesthesia Anesthesia  

CDT D9220 
Deep sedation/general anesthesia – first 30 
minutes Anesthesia  

CDT D9221 
Deep sedation/general anesthesia – each 
additional 15 minutes Anesthesia  

CDT D9230 
Analgesia, anxiolysis, inhalation of nitrous 
oxide Nitrous Oxide 

CDT D9241 
Intravenous conscious sedation/analgesia – 
first 30 minutes Anesthesia  

CDT D9242 
Intravenous conscious sedation/analgesia – 
each additional 15 minutes Anesthesia  

CDT D9248 Non-intravenous conscious sedation Anesthesia  
 

The statistical distributions of the total expenditures and anesthesia-only Medicaid 

expenditures per-visit were estimated for each state. Specifically, once we identified 

children who had received caries-related restorative care and anesthesia on the same day, 

the total healthcare expenditures per-visit per-child were determined by summing the 

Medicaid payment amounts across all procedures performed on the same day for each 

child.  

For children with each type of anesthesia (local or general anesthesia or nitrous 

oxide) and each state, a distribution of total Medicaid payments and a distribution of 

anesthesia or surgery related payments were estimated using kernel density estimation 

(KDE) on the 10th through 90th percentiles of per-visit expenditure data. We removed 10% 
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on each tail of the distribution of the per-visit expenditure observations to exclude potential 

outliers.   

For children in P1 who received any type of anesthesia during a visit, we used the 

actual reported Medicaid payments for all procedures.  For children with visits that did not 

have any anesthesia claims, we added the Medicaid payment of nitrous oxide with 

probability 77.3% or the Medicaid payment of local or general anesthesia with probability 

22.7% to the restorative dental care expenditure. This additional expenditure was added by 

sampling from the anesthesia payment distribution for the relevant state and anesthesia 

type.   

For children in sub-populations P2 and P3, simulated costs were sampled from the 

total expenditure distributions for children who received nitrous oxide with probability 

77.3% and for children who received local or general anesthesia with probability 22.7%. 

The total expenditure distributions include all restorative dental costs as well as the costs 

of anesthesia and other surgery related expenses. We used these Medicaid expenditures in 

all populations, including the general population P3.  For P3, using Medicaid expenditures 

is a lower bound on the cost since private fee schedules would be higher. 

6.2.8 Outcomes 

We considered four outcomes: i) the number of caries-related visits that received 

SDF (SDF applied), ii) the number of averted caries lesions from those that would have 

needed restorative treatment (SDF arrested), iii) the averted expenditures by using SDF 

(averted expenditures), and iv) the realized expenditures.  The averted expenditures is the 

expenditures for those prevented restorative procedures that would have been realized had 
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SDF not been used.  The realized expenditures were the sum of the expenditures of 

restorative dental care for children whose caries was not prevented by SDF (either because 

they did not receive SDF or because it was not effective) plus the expenditure of applying 

SDF treatments.  The averted expenditures is the expenditure saved by using SDF.  The 

realized expenditures is the cost the system actually experiences.  

6.2.9 Urban Classification 

We used Rural Urban Continuum Codes (RUCC) to classify counties in the seven 

states as being metropolitan or non-metropolitan [83].  RUCC codes contain nine levels; 

counties with codes 1-3 were classified as metropolitan while counties with codes 4-9 were 

classified as non-metropolitan. 

6.2.10 Simulation Model 

We used Monte Carlo simulation to simulate restorations and costs over 100 runs. 

We simulated which children had caries (for sub-populations P2 and P3), which received 

SDF, and among those who received SDF, which had caries successfully arrested with 

SDF. The cost of SDF application was added regardless of its effectiveness for any child 

who received SDF treatment. We reported the mean and standard error for each outcome 

across the simulations. 

For all three populations, we varied the percentage of children receiving SDF (SDF 

penetration) to 10%, 25%, and 50% of the population. Children were assigned to the SDF 

or other restorative treatment groups based on the penetration levels. 
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Figure 21. Diagram of Simulation Model. 

 

To determine whether an SDF application was successful in arresting a child’s 

caries, a Bernoulli distribution was sampled with the probability of success equal to the 

SDF effectiveness determined for each child who received SDF treatment.  Figure 21 

outlines the simulation process. 

In the simulation process, any child who received SDF will have realized SDF 

expenditures.  If a child does have caries but does not receive SDF or it is not effective, the 

child will have realized treatment expenditures.  If a child has caries and SDF is effective, 
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the treatment cost the child would have experienced is considered averted.  These outcomes 

are defined more in the outcomes section. 

Table 21. Description of each setting used in analysis. 

Setting SDF Penetration Effectiveness 
1 0.1 Lower 
2 0.1 Main 
3 0.25 Lower 
4 0.25 Main 
5 0.5 Lower 
6 0.5 Main 

 

The combination of three penetration and two effectiveness levels resulted in six 

simulation settings used in the analysis. Settings 1–2, 3–4, and 5–6 use 10%, 25% and 50% 

SDF penetration, respectively. Settings 2, 4, and 6 used our baseline distribution (main) of 

effectiveness while settings 1, 3, and 5 use the lower SDF effectiveness distribution. Each 

setting is described in Table 21. 

6.3 Results 

We initially considered 12 states for comparison.  For each state, we evaluated the 

percentage of CDT codes compared to CPT codes as well as the proportion of each that 

was not missing (or non-zero) in the database to determine the quality of the Medicaid 

payment data in each state.   
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Table 22. Count of dental related restorative and anesthesia claims in Medicaid 
MAX data overall and with non-zero cost data. 

State CPT CDT 
Percentage 

CDT 
CPT non-

zero 
CDT 

non-zero 

Percentage 
CDT non-

zero 
AL 16753 397416 0.96 16753 397416 0.96 
CT 16911 63989 0.79 5702 63843 0.92 
GA 60006 600577 0.91 18002 53840 0.75 
MA 8083 81603 0.91 6397 81535 0.93 
MS 190468 294128 0.61 188979 291934 0.61 
NC 184757 704420 0.79 184746 704420 0.79 
NH 8047 39823 0.83 8047 39823 0.83 
NJ 11221 159752 0.93 1559 1631 0.51 
NY 18976 167292 0.90 4430 52469 0.92 
SC 16937 349827 0.95 10074 349725 0.97 
TN 46884 473367 0.91 2197 473347 1.00 
VT 2080 33498 0.94 2080 33498 0.94 

 

Table 22 presents overview results on Medicaid payment data in each of the 12 

states initially considered.  We found SC, MS, NC, AL, NH, VT, and MA all have low 

percentages of zero values (missing values) for Medicaid payment amounts in both the 

included CDT and CPT codes. Further, they generally have a high percentage of CDT 

codes among the total codes included. 

NY, NJ, and GA were found to have poor cost data across the board.  TN and CT 

had good CDT data but poor CPT data.  However, looking at non-zero payment amounts 

in CT returned the ratio of CDT to CPT codes to similar values from other included states.  

Alternatively, TN was missing almost all payment data from CPT codes. In MS, there were 

very few nitrous oxide claims, all of which had a zero Medicaid payment. 
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The histogram of expenditures (blue) and KDE estimate (red) for the total payment 

in Alabama for children who received nitrous oxide and children who received local or 

general anesthesia is shown in Figure 22 and Figure 23, respectively. Additional 

expenditure distributions of the total expenditures by anesthesia type and state are shown 

in the Appendix. 

 

Figure 22. Histogram (blue) and KDE distribution (red) of total payment for 
children receiving only nitrous oxide anesthesia in Alabama. 

 



 106 

 

Figure 23. Histogram (blue) and KDE distribution (red) of total payment for 
children receiving local or general anesthesia in Alabama. 

 

Figure 24 and Figure 25 show the distribution of anesthesia expenditure for children 

in AL who received local or general anesthesia and children who received nitrous oxide, 

respectively. Similarly, additional expenditure distributions of the anesthesia expenditures 

(including other surgical related expenditures) by children who received each anesthesia 

type and by state are shown in the Appendix. The difference between this distribution and 

the distribution shown in Figure 23 is the dental payments associated with the caries related 

restorative care performed.  
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Figure 24. Histogram (blue) and KDE distribution (red) of anesthesia payment for 
children receiving local or general anesthesia in Alabama. 

 
 

 

Figure 25. Histogram (blue) and KDE distribution (red) of anesthesia payment for 
children receiving Nitrous Oxide anesthesia in Alabama. 
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Total payments for children who received nitrous oxide and children who received 

local or general anesthesia range between approximately $100 to $600 and $1000 to $5000 

per visit, respectively. In CT, the total payment for children who received local or general 

anesthesia ranges even higher, from approximately $1000 to $8000 per visit. 
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Table 23. SDF applied, and SDF arrested for P1, P2, and P3. 

  P1 P2 P3 

Setting State 
SDF 
Applied 

SDF 
Arrested 

SDF 
Applied 

SDF 
Arrested 

SDF 
Applied 

SDF 
Arrested 

1 

AL 11,044 4,473 2,607 1,056 4,167 1,683 
CT 3,952 1,593 1,143 463 2,296 934 
MA 6,457 2,614 2,289 926 4,071 1,649 
NC 18,451 7,473 5,422 2,198 8,564 3,464 
NH 1,120 453 309 125 746 300 
SC 9,816 3,977 2,558 1,038 4,114 1,666 
VT 623 251 222 90 373 149 

2 

AL 11,055 7,243 2,603 1,710 4,182 2,741 
CT 3,965 2,605 1,146 751 2,295 1,504 
MA 6,455 4,240 2,301 1,513 4,078 2,675 
NC 18,466 12,120 5,396 3,536 8,566 5,616 
NH 1,115 729 309 203 752 491 
SC 9,815 6,437 2,547 1,669 4,122 2,703 
VT 620 406 224 147 373 245 

3 

AL 27,581 11,169 6,520 2,645 10,436 4,225 
CT 9,889 4,002 2,852 1,152 5,717 2,316 
MA 16,131 6,541 5,739 2,322 10,166 4,122 
NC 46,140 18,684 13,511 5,464 21,445 8,679 
NH 2,798 1,129 770 312 1,874 759 
SC 24,532 9,928 6,409 2,594 10,303 4,178 
VT 1,561 634 560 227 934 376 

4 

AL 27,584 18,101 6,496 4,259 10,451 6,849 
CT 9,901 6,498 2,849 1,868 5,727 3,749 
MA 16,125 10,579 5,738 3,763 10,189 6,676 
NC 46,125 30,248 13,490 8,849 21,437 14,045 
NH 2,800 1,836 769 503 1,868 1,227 
SC 24,517 16,075 6,397 4,198 10,295 6,758 
VT 1,557 1,021 561 368 924 606 

5 

AL 55,143 22,347 13,018 5,271 20,899 8,456 
CT 19,807 8,037 5,698 2,309 11,461 4,638 
MA 32,254 13,058 11,502 4,665 20,366 8,237 
NC 92,267 37,369 26,992 10,933 42,904 17,371 
NH 5,587 2,264 1,543 625 3,737 1,517 
SC 49,067 19,877 12,759 5,165 20,631 8,359 
VT 3,114 1,261 1,126 456 1,858 754 
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Table 23 (continued) 
 
 

6 

AL 55,182 36,180 13,047 8,551 20,871 13,689 
CT 19,785 12,960 5,713 3,750 11,432 7,496 
MA 32,246 21,156 11,495 7,542 20,344 13,332 
NC 92,278 60,521 26,981 17,692 42,895 28,147 
NH 5,589 3,663 1,548 1,013 3,745 2,450 
SC 49,050 32,158 12,809 8,395 20,637 13,536 
VT 3,120 2,045 1,125 738 1,858 1,218 

 

The number of children who received an SDF application and the number of 

children who successfully averted treatment through SDF are reported in Table 23. The 

estimated number of caries related visits is shown in the Appendix.  

The number of SDF applications and the number of children with caries arrested 

through SDF rose with the percentage of children who received SDF and the SDF 

effectiveness. In setting 1 for P1, VT and NC were able to arrest 251 and 7,473 of their 

Medicaid caries between 2010 and 2012 by applying SDF to 623 and 18,451 people, 

respectively.  In setting 4, those numbers changed to arresting 1,021 and 30,248 caries 

lesions by applying SDF to 1,557, and 46,125 children, respectively.  In P3 and setting 1, 

they could have arrested 149 caries lesions in VT and 3464 caries lesions in NC based on 

the 2010 census by applying SDF to 373 and 8,564 children, respectively.  In setting 4, VT 

and NC could have arrested 606 and 14,045 caries lesions by applying SDF to 924 and 

21,437 children, respectively. For comparison, in P2, VT and NC could arrest 368 and 

8,849 caries lesions by applying SDF to 561 and 13,490 children, respectively.  The lower 

numbers observed in some of the states (VT) are due to the smaller populations of children. 
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Figure 26: Box plot of averted expenditures per visit with caries for setting 4 by 
state and population group. 

Figure 26 presents averted expenditures per visit with caries by state and population 

group for setting 4.  Averted expenditures per visit ranged from $75 to $250 per-visit for 

setting 4.  AL and SC had the lowest averted expenditures with values under $100 per 

caries-related visit for all population groups while the expenditures in most other states 

ranged from $100-$200 per caries-related visit.  NC, MA, and VT had the highest averted 

expenditures per-visit when looking across all population groups with mean averted 

expenditures per-child of $152, $162, and $168 respectively for P1.  CT also had high 

average averted expenditures per-child ($200) for P2 and P3 but has lower values for P1. 
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Figure 27. Averted expenditures per caries visit by state and setting for P1. 

Figure 27 shows the difference in expenditures averted per person for P1 by state 

and setting.  Higher expenditures averted per-child are found as SDF effectiveness rises 

and as more children received treatment from SDF. In P1, VT consistently had the highest 

averted expenditures per-child in all settings with AL at the bottom, followed by SC.    
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Figure 28. Box plot of outcome metrics by urban classification for setting 4 and P1. 

Figure 28 shows the outcome measures across all states stratified by metropolitan 

counties and non-metropolitan counties for setting 4 and P1.  The majority of the children 

in P1 lived in Metropolitan counties. As a result, we also found the majority of the SDF 

arrests, averted expenditures and realized expenditures occurred in the metropolitan 

counties.  However, there were higher averted expenditures per-visit in the non-

metropolitan counties.  
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Table 24. Averted and realized expenditures for P1. 

  Averted Expenditures Realized Expenditures 

Setting State Lower Mean  Upper 

Mean 
per 

Caries-
Related 

Visit Lower Mean Upper 

1 

AL 1,068,262 1,579,621 2,090,980 14.8 37,128,184 37,627,916 38,127,649 
CT 910,414 1,186,535 1,462,657 30.0 28,093,626 28,366,711 28,639,796 
MA 1,200,028 1,532,611 1,865,194 25.7 36,210,564 36,536,826 36,863,089 
NC 3,998,406 5,983,060 7,967,714 37.3 140,474,814 142,439,634 144,404,454 
NH 200,204 371,695 543,186 40.0 8,649,410 8,818,746 8,988,083 
SC 1,198,609 1,725,975 2,253,342 18.1 40,601,549 41,118,415 41,635,281 
VT 36,604 258,797 480,990 40.9 6,043,686 6,264,673 6,485,659 

2 

AL 1,899,881 2,560,932 3,221,983 23.9 36,003,393 36,646,857 37,290,321 
CT 1,584,814 1,944,025 2,303,236 49.0 27,254,468 27,609,641 27,964,813 
MA 2,071,543 2,489,464 2,907,385 41.1 35,171,255 35,579,914 35,988,574 
NC 7,189,632 9,723,469 12,257,306 60.7 136,192,349 138,699,607 141,206,866 
NH 380,550 600,260 819,970 64.0 8,372,786 8,590,010 8,807,234 
SC 2,124,485 2,793,739 3,462,992 29.3 39,396,169 40,050,626 40,705,084 
VT 154,247 427,475 700,703 68.2 5,824,261 6,095,923 6,367,585 

3 

AL 3,145,147 3,936,746 4,728,345 36.7 34,908,673 35,683,306 36,457,940 
CT 2,545,358 2,979,401 3,413,443 75.0 26,340,934 26,770,928 27,200,921 
MA 3,330,191 3,832,503 4,334,815 62.9 34,161,146 34,654,272 35,147,398 
NC 11,893,239 14,989,378 18,085,516 93.5 131,081,674 134,150,828 137,219,982 
NH 655,129 925,388 1,195,648 99.3 8,047,255 8,315,209 8,583,163 
SC 3,494,508 4,302,521 5,110,534 45.1 38,137,517 38,930,080 39,722,642 
VT 310,971 664,546 1,018,122 105.0 5,530,743 5,882,318 6,233,893 

4 

AL 5,403,176 6,385,119 7,367,062 59.6 32,277,784 33,235,006 34,192,228 
CT 4,313,652 4,834,644 5,355,636 121.3 24,400,761 24,916,080 25,431,400 
MA 5,571,988 6,179,226 6,786,465 101.5 31,711,654 32,307,321 32,902,989 
NC 20,472,050 24,258,573 28,045,097 152.1 121,131,280 124,881,231 128,631,181 
NH 1,165,285 1,501,991 1,838,697 161.5 7,405,601 7,738,678 8,071,754 
SC 5,996,724 6,981,769 7,966,814 73.3 35,286,427 36,250,423 37,214,418 
VT 645,604 1,065,552 1,485,499 168.2 5,063,282 5,481,210 5,899,138 
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Table 24 (continued) 

 

5 

AL 6,836,010 7,886,539 8,937,068 73.7 31,387,414 32,421,078 33,454,741 
CT 5,354,924 5,947,876 6,540,829 149.8 23,542,142 24,131,688 24,721,233 
MA 6,979,667 7,652,524 8,325,381 125.7 30,867,624 31,529,836 32,192,048 
NC 25,857,011 29,953,998 34,050,986 187.3 116,311,410 120,381,474 124,451,538 
NH 1,484,519 1,853,835 2,223,150 198.9 7,103,329 7,470,170 7,837,011 
SC 7,541,159 8,622,912 9,704,665 90.5 34,189,592 35,256,905 36,324,218 
VT 875,044 1,316,148 1,757,253 206.9 4,830,150 5,269,447 5,708,744 

6 

AL 11,523,817 12,772,589 14,021,362 119.1 26,311,124 27,536,007 28,760,891 
CT 8,910,332 9,611,242 10,312,151 241.3 19,772,049 20,467,593 21,163,136 
MA 11,594,024 12,386,990 13,179,957 203.3 26,015,322 26,794,997 27,574,672 
NC 43,702,309 48,504,998 53,307,687 303.0 97,067,980 101,830,772 106,593,564 
NH 2,566,316 3,001,236 3,436,156 322.8 5,891,959 6,322,847 6,753,735 
SC 12,714,952 13,974,397 15,233,843 146.9 28,667,031 29,904,964 31,142,896 
VT 1,618,741 2,135,730 2,652,719 335.1 3,935,749 4,450,013 4,964,278 

 

Table 24 shows the averted expenditures and realized expenditures CI as well as 

the average averted expenditure per-visit with caries for P1. Under all settings, states 

averted expenditures.  In setting 1, mean averted expenditures varied between $259,000 

for VT and $6M for NC.  In setting 4, the mean averted expenditures for all states was over 

$1M and up to $24M in NC.  The mean averted expenditures per caries visit was between 

$60 and $170 in setting 4 and between $119 and $335 in setting 6, where total mean averted 

expenditures varied between $2M and $48.5M. 

6.4 Discussion 

For young children aged 0 to 5 years, using SDF has the potential not only to arrest 

caries but also to avert dental care expenditures. For the youngest children, SDF has the 

potential to avert the dental care expenditures associated with dental care involving general 

anesthesia. For these children, SDF can either prevent more invasive restorative treatments 
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entirely if the caries remain arrested until permanent teeth replace the affected primary 

teeth, or it can delay the treatment until the child is sufficiently old enough that they do not 

need  to be treated under general anesthesia or conscious sedation.  For slightly older 

children, SDF has the potential to prevent restorative procedures on the primary teeth until 

they are replaced by healthy permanent teeth.  

We evaluated the impact of using SDF though Monte Carlo simulation.  We 

considered three subpopulations of children; the first (P1) captures the realized utilization 

and the second (P2) captures the potential utilization for Medicaid-enrolled young children 

while the third (P3) captures the potential utilization for all young children. P2 and P3 

represent conservative estimates of utilization since we used the probability of developing 

at least one caries lesion during a two–year period. In reality, it is possible that these 

children could have repeated visits, each of which would avert additional expenditures if 

SDF were used. 

Providing SDF as a caries management strategy for young children has the potential 

to save states dental care expenditures by averting more expensive caries treatment options. 

Assuming the main SDF effectiveness distribution and 25% of children with caries receive 

SDF, states were able to save in the range of $59.6-168.2, $51.5-189.5, and $51.1-$190 

per-visit with caries in the three sub-populations P1, P2, and P3, respectively.  In all three 

sub-populations and in all levels of SDF penetration and SDF effectiveness, the benefit of 

providing SDF outweighed the expenditures associated with its application.  In young 

children, the high rate of using local or general anesthesia was costly to the healthcare 

system.  With 22% of claims using the significantly higher cost distribution associated with 

local or general anesthesia, the potential to avert even a few of these cases could result in 
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cost savings to Medicaid or other dental care systems.  Mean total averted expenditures 

under these assumptions ranged from $1M in VT to $24M in NC. AL, MA, and SC had 

mean total averted expenditures greater than $6M. Note that differences in expenditure 

outcomes between states were likely the result of the different Medicaid reimbursement 

amounts and the proportion of different procedures given in each state, in particular for 

anesthesia.  

This study has several limitations. First, we assumed a range in the effectiveness of 

SDF.  While there have been systematic reviews on the effectiveness of SDF in arresting 

caries, previous studies have been critical of the methods used in these systematic reviews  

[105, 108], pointing out the lack sufficient control groups or lack of details on the specific 

application timing and dosage of SDF necessary to obtain the quoted level of effectiveness 

[109]. The lack of more specific information regarding optimal treatment guidelines for 

using SDF is a limitation in this study. Other limitations include using only Medicaid 

payment data and using the proportion of anesthesia found in the Medicaid claims data to 

extrapolate to the general young child populations. In the general population, the fee 

schedules for these procedures are likely different but we have pulled all payment data 

from distributions determined by Medicaid payments. Changing the proportion of 

anesthesia claims among children will have a large impact on expenditure outcomes 

because these procedures are expensive.  A more detailed analysis that included the number 

of children who receive different types of anesthesia in the different populations could 

potentially provide a more robust analysis.   

Additionally, since differences in expenditure distributions cause the majority of 

differences between states, another potential issue could be data issues with states coding 
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specific procedures different from expected.  Based on the distributions, it is difficult to 

determine if a state does not use the more expensive anesthesia types and other expensive 

treatment procedures or if they potentially use a different coding scheme.  If procedures 

used for dental care were different from those we listed, their cost would have been missed 

in our expenditure distributions.  

It is important to note the stakeholders benefiting from the cost benefit analysis.  In 

P1 and P2, the benefit is to the Medicaid population while in P3 the benefit is to the general 

population.  Further, it is important to mention the difference between P1 and the other 

populations.  P1 consisted of the caries related expenditures in the Medicaid population 

and the potential averted expenditures based on all caries related Medicaid claims between 

2010 and 2012.  P2 and P3 used a national level estimate for the probability of a child 

having caries within 24 months based on demographic factors.  Since many children will 

have more than one caries related visit, the estimates for P2 and P3 are very conservative.  

At minimum, we can compare P1 and P2.  P1 had more caries related visits than P2 despite 

P1 consisting only of Medicaid children with caries related visits and P2 consisting of the 

Medicaid population in 2010.   

Using the probability of caries also created a difference in timeframes between the 

populations.  P1 represented the caries related expenditures over 3 years (2010-2012) for 

the Medicaid population.  P2 and P3 represented conservative estimates of the expenditures 

for caries related visits over 2 years for the children aged 0-5 in 2010. Naturally, we would 

expect the expenditures to be higher for P1 both because of the timeframe of the analysis 

and the conservative nature of the caries estimation. 
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In the simulation, we assumed that children who received SDF were randomly 

selected.  It may be possible to obtain better results by targeting areas known to have more 

problems with children having caries or more severe oral health outcomes.  For example, 

while the majority of the expenditures averted comes from metropolitan counties, we found 

non-metropolitan counties had higher expenditures averted per visit with caries than did 

their metropolitan counterparts.  Targeting children in more rural areas who may have less 

access to preventive care and potentially higher treatment expenditures could provide even 

higher averted expenditures than shown here.   

6.5 Conclusion 

Overall, SDF provides a relatively inexpensive caries management option for 

young pediatric populations experiencing dental caries.  If used in the Medicaid-enrolled 

population, SDF potentially can save state Medicaid programs between $15 on the very 

low end and $330 on the high end per caries-related visit.  In additional to lower 

expenditures, using SDF could also prevent stressful restorative dental procedures for 

young children. 
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CHAPTER 7.  CONCLUSION 

Evaluating the impact of policy decisions is crucial to effective policymaking.  The 

ability to consider multiple policy options and the impact of each before they are 

implemented gives policymakers knowledge to make informed decisions.  This thesis 

aimed to address a selection of current policy issues in healthcare and health systems, 

ranging from the global health supply chain design to the potential impact of using new 

treatments in oral health. 

First, we considered the impact of geographic distance on patients with cystic 

fibrosis.  Beginning with the hypothesis that patients with better access to the specialized 

care necessary to treat CF would have better health outcomes, we used patient level health 

data from the Cystic Fibrosis Foundation and incorporated geographic distance in addition 

to the standard covariates that have been used in past literature to predict a patient’s lung 

function. This study helps doctors understand the impact travel distances have on a 

patient’s health and whether better access to care is helpful in providing better service to 

patients.  We found evidence patients moved throughout the course of the study and 

determined that when using realized distances, there is little evidence that patients who are 

closer to care are in fact healthier.  Alternatively, we found that for older adults who moved 

during the study period, the heathiest patients lived farther away from care centers, 

potentially meaning that patients who could manage to live farther away based on their 

health condition chose to do so.  To understand better the impact of patient mobility, it 

would be beneficial to study the temporal relationship between patient movements and lung 

function as well as to better characterize patient movement, potentially evaluating which 
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patients are moving closer to and farther from a care facility.  It would also be beneficial 

to study the impact of alternative care centers for patients who may see a standard doctor 

to supplement care at CF care centers. 

Second, the impact of the USAID malaria supply chain on malaria health in the 

countries it operates was studied.  Variables known to predict malaria mortality were 

combined with variables demonstrating the performance of the USAID supply chain to 

determine which aspects of supply chain design impacted malaria health.  This study 

demonstrates the value of supply chain organizations within health systems, not only to 

provide the commodities necessary to implement health programs, but also to contribute to 

the patients overall health by understanding the impact of supply chain design and the 

choices made in supply chain organizations. This type of analysis can show the value of 

the choices available to supply chain organizations. In this study, we found adaptable 

supply chains capable of responding to changes in demand and uncertain conditions could 

save lives.  Particularly in the context of donor driven commodities, the ability to respond 

to other donors missed shipments or to a sudden shift in demand is important in maintaining 

a fully functioning malaria supply chain.  Expanding on this scope of this study, it would 

be interesting to see how the results hold using other health commodity types or looking at 

other parts of the world.  With malaria, there are very specific health needs from bed nets 

to antimalarial medications.  Other diseases or health concerns could potentially be 

benefitted from a different supply chain optimization strategy.   

Next, we evaluated the need for pediatric preventive dental care in Georgia and 

looked at three potential policy interventions to improve access to pediatric preventive 

dental care, including dental loan repayment programs, changing the Medicaid 
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reimbursement rate, and relaxing the supervision requirements of dental hygienists. First, 

this study provided an optimization model to evaluate capacity in healthcare systems.  We 

showed there is a strong need for Medicaid capacity currently in Georgia. Second, we 

evaluated interventions to improve access to care. This study provides a methodology to 

compare vastly different policy interventions ranging from targeted community level 

interventions to system wide changes.  Specifically, we evaluated each policy in terms of 

met need and cost.   We found dental loan repayment programs and relaxing the supervision 

levels of dental hygienists (specifically looking at implementing a school based sealant 

program) to be cost saving interventions, while Medicaid reimbursement would affect 

utilization but would not substantially increase acceptance of Medicaid among providers.  

Loan repayment programs provide targeted complete care to specific areas; alternatively, 

relaxing the supervision requirements would enable hygienists to provide a basic level of 

preventive services across the state. Currently, this work focused on the impact of these 

policies in Georgia.  Practically, it was used by the Georgia Dental Hygienists Association 

to promote legislation that has since successfully passed through the Georgia legislature 

relaxing the supervision requirements of dental hygienists.  Now, other states have become 

interested in quantitative methods to evaluate the impact of similar policies in their states.  

This paper provides a framework for such analysis and future work based on this paper 

could include similar analyses of these interventions on other states.  Additionally, it would 

be possible to evaluate other interventions using a similar approach to understand the 

impact of a larger set of policy changes.   

Last, we evaluated the impact of using silver diamine fluoride to treat caries in 

young children.  SDF provides an advantageous and cost effective way to address caries in 
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very young children. Given the unique combination of ease of application, cheap materials, 

and high effectiveness at arresting caries, promoting SDF treatments to arrest caries in 

young children has the potential to save states between $60 and $170 per child with caries 

when it is applied 25% of the time with the normal effectiveness range reported in the 

literature.  Depending on the size of the state, this can translate into savings between $1M 

in Vermont and $24M in North Carolina. With the current lack of access to oral healthcare 

among Medicaid patients, SDF could provide Medicaid programs a cost effective way to 

increase services to a large number of children who currently do not have access to care, 

or to provide a cheaper and simpler alternative for those already receiving care.  This study 

allows seven states to observe the potential impact of using SDF under a variety of 

scenarios to aid in decision making. 

Overall, we have evaluated a number of healthcare policies including distance to 

care with cystic fibrosis, supply chain impact and design with the USAID malaria supply 

chain, access to pediatric preventive dental care, and the use of SDF to treat caries in young 

children.  The analysis and methods presented will aid policymakers both in understanding 

how to evaluate potential options as well as in the specific impacts of the policies presented.    
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APPENDIX A. SUPPLEMENTAL MATERIAL FOR CHAPTER 2 

The following plots in Figure 29 through Figure 32 show additional information 

about the distribution of visits overall and in removed data to understand the nature of the 

included and removed data in the dataset.    
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Figure 29: Visits distribution per year for all data prior to any filtering. 

 

Figure 30. Visits distribution per year for all data removed with filtering. 
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Figure 31: Visits distribution per year for data with missing %FEV1. 

 

Figure 32: Visits distribution per year for data with missing distance data. 
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APPENDIX B. SUPPLEMENTAL MATERIAL FOR CHAPTER 4 

B.1  Data 

The data elements listed here were used in the optimization model.  Note that 

existing facilities were assumed to have a fixed cost of zero since they are already open. 

𝐼𝐼 = {1, … ,𝑚𝑚} : Client locations 

𝐽𝐽 = {1, … ,𝑛𝑛} : Facility locations  

𝐽𝐽 ⊂ 𝐽𝐽: Facilities that do not accept Medicaid 

𝐸𝐸 ⊂ 𝐽𝐽: Existing facilities 

𝑃𝑃: Provider types (dentist or hygienist) 

𝑅𝑅: Risk classes (low (L), high (H)) 

𝑐𝑐𝑅𝑅: Yearly cost of providing service to a patient of risk class R 

𝐹𝐹𝑗𝑗: Fixed cost of opening a new facility.   

𝑑𝑑𝑖𝑖𝑖𝑖: Distance between client i and facility j 

𝑛𝑛𝑖𝑖𝐴𝐴𝐴𝐴: Number of pediatric preventive dental care patients with financial access other than 

Medicaid in census tract i with risk R. 

𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀: Number of pediatric preventive care Medicaid patients in census tract i with risk R. 

𝑛𝑛𝑖𝑖 = 𝑛𝑛𝑖𝑖𝐴𝐴𝐴𝐴 + 𝑛𝑛𝑖𝑖𝐴𝐴𝐴𝐴+ 𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀 + 𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀  : Number of pediatric preventive care patients in census 

tract i. 

𝑁𝑁𝚤𝚤𝑅𝑅����: Average number of hours per year needed for one patient of risk class R in census tract 

i, weighted by the number of people in each age class. 

𝐶𝐶𝐶𝐶𝐶𝐶: Number of hours available to one provider during the year 

𝑀𝑀: Maximum providers allowed at a facility 
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𝐵𝐵: Maximum budget allowed 

𝑁𝑁𝑁𝑁: Maximum number of new providers allowed 

𝐴𝐴𝐷𝐷𝑗𝑗: Binary data indicating whether facility j accepts new dentists or not. 

𝑆𝑆𝑗𝑗𝑀𝑀: Medicaid supply at facility j (existing) 

𝑆𝑆𝑗𝑗𝑇𝑇: Total supply at facility j (existing) 

𝑆𝑆𝑆𝑆𝑆𝑆: Salary need for provider 

B.2  Decision Variables 

 
𝑥𝑥𝑖𝑖𝑖𝑖𝐴𝐴 : Percentage of need met (in people) in census tract i at facility j for patients who have 

financial access other than Medicaid 

𝑥𝑥𝑖𝑖𝑖𝑖𝑀𝑀: Percentage of need met (in people) in census tract i at facility j for Medicaid patients 

𝑦𝑦𝑗𝑗: Decision variable for opening new locations 

𝑧𝑧𝑗𝑗: Number of new providers to locate at an open facility 

B.3  Model 

Objective Function: maximize the number of people served 

����𝑛𝑛𝑖𝑖𝐴𝐴𝐴𝐴𝑥𝑥𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 + 𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀𝑥𝑥𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀�
𝑟𝑟∈𝑅𝑅𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼

 

Constraints: 

Budget constraint: 

min��𝐹𝐹𝑗𝑗𝑦𝑦𝑗𝑗�
𝑗𝑗∈𝐽𝐽

+  ���𝑐𝑐𝑅𝑅�𝑛𝑛𝑖𝑖𝐴𝐴𝐴𝐴𝑥𝑥𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 + 𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀𝑥𝑥𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀�
𝑟𝑟∈𝑅𝑅𝑗𝑗∈𝐽𝐽𝑖𝑖∈𝐼𝐼

≤ 𝐵𝐵 
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Maximum number of new providers: 

�𝑧𝑧𝑗𝑗
𝑗𝑗∈𝐽𝐽

≤ 𝑁𝑁𝑁𝑁 

Max supply from a census tract is 1 for non-Medicaid patients: 

�𝑥𝑥𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 ≤ 1     
𝑗𝑗∈𝐽𝐽

∀𝑖𝑖 ∈ 𝐼𝐼, 𝑟𝑟 ∈ 𝑅𝑅 

Max supply from a census tract is 1 for Medicaid patients 

�𝑥𝑥𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀 ≤ 1     
𝑗𝑗∈𝐽𝐽

∀𝑖𝑖 ∈ 𝐼𝐼, 𝑟𝑟 ∈ 𝑅𝑅 

No patient can travel farther than 45 miles.   

𝑥𝑥𝑖𝑖𝑖𝑖 =   0    ∀ 𝑑𝑑𝑖𝑖𝑖𝑖 > 45    ∀  𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴,𝑀𝑀𝑀𝑀,𝑀𝑀𝑀𝑀   

We cannot staff additional providers unless a facility is open. 

𝑧𝑧𝑗𝑗 ≤ 𝑀𝑀 𝑦𝑦𝑗𝑗    ∀𝑗𝑗 ∈ 𝐽𝐽 

We cannot staff additional providers unless a facility takes additional providers. 

𝑧𝑧𝑗𝑗 ≤ 𝑀𝑀 𝐴𝐴𝐴𝐴𝑗𝑗    ∀𝑗𝑗 ∈ 𝐽𝐽 

Capacity limit: 

��𝑁𝑁𝚤𝚤𝑅𝑅�����𝑛𝑛𝑖𝑖𝐴𝐴𝐴𝐴𝑥𝑥𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 + 𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀𝑥𝑥𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀�
𝑟𝑟∈𝑅𝑅𝑖𝑖∈𝐼𝐼

≤ 𝑆𝑆𝑗𝑗𝑇𝑇 +  𝐶𝐶𝐶𝐶𝐶𝐶 𝑧𝑧𝑗𝑗  ∀𝑗𝑗 ∈ 𝐽𝐽 

Medicaid Capacity limit: 

��𝑁𝑁𝚤𝚤𝑅𝑅�����𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀𝑥𝑥𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀�
𝑟𝑟∈𝑅𝑅𝑖𝑖∈𝐼𝐼

≤ 𝑆𝑆𝑗𝑗𝑀𝑀 +  𝐶𝐶𝐶𝐶𝐶𝐶 𝑧𝑧𝑗𝑗  ∀𝑗𝑗 ∈ 𝐽𝐽 

All existing facilities must be open.  Note there is no cost to open new facilities. 

𝑦𝑦𝑗𝑗 = 1   ∀  𝑗𝑗 ∈   𝐸𝐸 

You can only locate a new provider if sufficient revenue is generated to support them 
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��𝑐𝑐𝑅𝑅�𝑛𝑛𝑖𝑖𝐴𝐴𝐴𝐴𝑥𝑥𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴 + 𝑛𝑛𝑖𝑖𝑀𝑀𝑀𝑀𝑥𝑥𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀�
𝑟𝑟∈𝑅𝑅𝑖𝑖∈𝐼𝐼

≥ 𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝑧𝑧𝑗𝑗     ∀𝑗𝑗 ∈ 𝐽𝐽 

Sign constraints: 

𝑥𝑥𝑖𝑖𝑖𝑖𝐴𝐴 ∈ [0,1] 

𝑥𝑥𝑖𝑖𝑖𝑖𝑀𝑀 ∈ [0,1] 

𝑧𝑧𝑗𝑗 ∈ ℤ+ 

𝑦𝑦𝑗𝑗 ∈ {0,1} 
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APPENDIX C. SUPPLEMENTAL MATERIAL FOR CHAPTER 5 

C.1   Additional Data Sources 

Detailed data was used in the analysis.  This appendix provides links to smaller 

additional data elements used to throughout each intervention to create the necessary 

definitions for each. 

Table 25: Additional Data Sources. 

Medicaid Learning 
Labs [116] http://www.medicaiddental.org/learninglabs 
ADA Dental Loan 
Repayment [117] 

https://www.ada.org/~/media/ADA/Education%20and%20C
areers/Files/dental-student-loan-repayment-resource.pdf 

Dental Hygienist 
Practice Acts [118] 

https://www.adha.org/resources-
docs/7511_Permitted_Services_Supervision_Levels_by_Stat
e.pdf 

Medical Expenditure 
Panel Survey [15] http://meps.ahrq.gov/mepsweb/ 
Kaiser Family 
Foundation – Medicaid 
Data [119] http://kff.org  
Medicaid Coverage 
[120] http://files.kff.org/attachment/tables-managed-care-medicaid 
School Population Data 
[37] http://nces.ed.gov/ 
Medicaid Eligibility 
[121] 

https://www.medicaid.gov/medicaid/program-
information/medicaid-and-chip-eligibility-levels/index.html 

School Program 
Information [122] https://www.benefits.gov/benefits/benefit-details/1960 
Federal Poverty 
Guidelines [123] 

https://dch.georgia.gov/sites/dch.georgia.gov/files/2016_Fed
eral_Poverty_Guidelines.pdf  

 

https://www.adha.org/resources-docs/7511_Permitted_Services_Supervision_Levels_by_State.pdf
https://www.adha.org/resources-docs/7511_Permitted_Services_Supervision_Levels_by_State.pdf
https://www.adha.org/resources-docs/7511_Permitted_Services_Supervision_Levels_by_State.pdf
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C.2   Supply and Met Need 

Met need is defined by the proportion of the time required to serve children that can be 

satisfied by the time that providers have available for dental care.  Dental loan repayment 

programs and changing the Medicaid reimbursement rate affect dentists overall in the state, 

either by encouraging new dentists to open practices in underserved areas or by opening 

up additional capacity by encouraging providers to take additional Medicaid children.   

C.2.1 Supply 

First, the annual time a dentist has for pediatric primary care is determined.  Based on 

the 2010 Survey of Dental Practice [124], male and female dentists work an average of 

35.2 and 33.6 hours/week respectively with 49 work weeks during the year. The total 

annual time is 1,715 hours/year.  This time is dedicated to adult and pediatric patients, and 

to preventive and treatment care.  

The capacity for dental hygienists is added to account for the support provided.  We 

assume dental hygienists have the same caseload of a dental provider [125].  We assume a 

dentist in Georgia will have an average of two hygienists under their supervision [125].  

Thus, each standard provider has an additional 3,430 hours of support available. This 

capacity is the total available for both children and adults as well as preventive care and 

restorative and other treatment procedures. The distribution of procedures performed in 

dental offices by age was obtained from the Medical Expenditure Panel System (MEPS)  

database [15].  To determine the supply available for pediatric cases, we need to remove 

supply used for adult need from the total capacity. The time necessary to perform each 

procedure was used to compute the total time used for each procedure in each age group. 
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For example, the times used for preventive procedures performed in dental offices are 

shown in Table 26 [126].  

Table 26. Time required for preventive procedures. 

Procedure Time (mins) 
Oral exam 11.7 
Fluoride rinse 2 
Fluoride 
varnish 20.4 

Cleaning 33 
Sealants 11.5 
X-rays 9.8 

 

The procedures were split into preventive/evaluation care (which from this point 

on we simple refer to as preventive care) and restorative care (treatment).  Preventive care 

procedures included exams, cleaning, x-rays, topical fluoride applications, and sealants.  

Other procedures were placed into the treatment category including fillings, crowns, root 

canals, etc. The proportion of time spent on each category was computed as shown in Table 

27.  Assuming a constant distribution across providers, each provider on average spends 

21.97% of their time on pediatric preventive care.   

Table 27. Percent of time spent by age and procedure type. 

  Preventive Treatment Total 
Pediatric  21.97% 4.21% 26.18% 
Adult 39.10% 34.72% 73.82% 
Total 61.07% 38.93% 100.00% 

 

Applying the proportion to the total time available for each additional provider 

(including support staff), each provider has the capacity for 1,130.5 hours available each 
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year for pediatric primary care.  By using this proportion, the assumption is made that the 

dentist is not specifically targeting children or one particular treatment type.   

C.2.2 Met Need 

 Risk class was estimated as described in Cao et. al. [57]. Next, the time 

required to provide care for one child is needed.  This is computed using the age 

breakdown, the risk level, the recommended dental guidelines for care by risk class and 

each age category, and the time required for each of the recommended procedures as 

described above.   

The population by age for each census tract in Georgia was obtained from census 

data. Children in each age group were broken down by the level of access (privately 

insured, publicly insured, and without financial access) as described above and risk level 

(low risk or high risk).  The details for this procedure are supplied in the section on 

estimating risk in Cao et. al.  Guidelines for each age group and risk class were determined 

from the American Academy of Pediatric Dentistry [127, 128]. Guidelines used in the 

analysis are shown in Table 28.  In this analysis, the choice of guidelines was selected to 

allow access for as many children as possible.  For example, when the recommended 

guidelines recommended a recall internal of between 6 months and 1 year, the guidelines 

used here would be a recall interval of 1 year. 
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Table 28: Number of procedures recommended by age group and risk level. 

 Low Risk - Procedures per year High Risk - Procedures per year 
Age 1-2 3-4 5 6 7+ 1-2 3-4 5 6 7+ 
Oral exam 1 1 1 1 1 2 2 2 2 2 
Fluoride rinse 0 0 0 0 1 0 0 0 0 2 
Fluoride varnish 1 1 1 1 0 2 2 2 2 0 
Cleaning 0 1 1 1 1 0 2 2 2 2 
Sealants 0 0 1 0 0 0 0 1 0 0 
X-rays 1 1 1 0.5 0.5 2 2 2 1 1 

The number of procedures for each age group and the time for each procedure were 

used to compute the total time required to provide recommended care for each age group 

and each risk class.  This measure was then applied to the breakdown of population by age 

and risk class to determine the time needed to meet the necessary need in each category.  

A weighted average was used to find the final average time needed for the annual 

recommended preventive care to be 1.05 hours. 

The number of children each additional provider can serve is then the annual time 

available (1,130 hours) divided by the average time necessary to serve one child in Georgia 

(1.05 hours). Each additional provider added through an intervention can meet the need of 

1,076 children.  

For the remaining intervention, school based sealant programs, met need for is 

computed differently and is included in the additional text under that intervention.  
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C.3   Additional Regression Results and Impact Calculation 

C.3.1 Regression Data 

Data used for the regression are shown in Table 29.  Dental inclusion in managed 

care programs, number of managed care organizations (MCOs), and Medicaid expansion 

information were obtained from the Kaiser Family Foundation [119]. Medicaid acceptance 

rate, fee for service as a percentage of private rates, dentists per population ratio, and 

utilization were obtained from the ADA Oral Health System state analysis [81]. Median 

family income was obtained from the US Census Bureau.  
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Table 29: Regression Data. 

State 
Medicaid 

Acceptance 
Rate 

Medicaid 
Utilization 
Rate 2013 

Dental 
Managed 

Care 

Number 
of 

MCO's 

Medicaid 
FFS 

Percentage 

Dentists 
per 

population 
2013 

Median 
Family 
Income 

AK 43 48 0 0 62 78.3 71829 
AL 74 54 0 13 54 44 41657 
AR 61 54 0 0 67 40.9 41264 
AZ 32 50 1 13 55 54.5 49928 
CA 29 45 0 22 29 76.6 61489 
CO 53 54 1 2 45 68.7 59448 
CT 46 64 0 15 67 76.2 69899 
DC 27 54 1 4 58 89.2 69235 
DE 55 49 0 2 81 45.4 60231 
FL 30 30 1 17 37 50.7 47212 
GA 28 53 1 3 54 47 49342 
HI 36 57 0 5 47 75.2 68201 
IA 86 54 0 3 42 51.9 52716 
ID 48 60 0 0 45 57.8 47334 
IL 30 55 1 12 33 66.7 57166 
IN 50 44 0 3 56 47.4 48737 
KS 26 49 1 3 47 50.5 51872 
KY 39 48 1 5 44 56.6 43342 
LA 43 51 0 5 61 48 44991 
MA 39 58 0 6 58 78 67846 
MD 25 58 0 8 48 71.9 74149 
ME 42 43 0 0 44 52.2 48804 
MI 92 41 0 11 33 61.4 49087 
MN 69 43 1 9 27 60.6 60828 
MO 23 39 1 3 40 48 47764 
MS 55 52 1 2 48 42.6 39464 
MT 72 53 0 0 53 58.9 46766 
NC 27 52 0 0 48 47.9 46693 
ND 83 33 0 1 63 54.4 55579 
NE 61 56 0 3 43 64.4 52400 
NH 45 60 0 2 40 64 65986 
NJ 24 50 1 5 69 81.2 72062 
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Table 29 (continued) 
 

NM 53 55 1 4 49 50.9 44968 
NV 42 46 1 2 48 51.9 52205 
NY 38 43 1 25 37 73.5 58687 
OH 20 42 1 5 41 51.9 48849 
OK 52 51 0 0 55 50.4 46235 
OR 39 45 1 16 33 68.9 50521 
PA 68 45 1 9 43 60.2 53115 
RI 45 47 0 2 28 53.7 56423 
SC 48 53 0 6 53 47.9 45003 
SD 65 45 0 0 51 54.1 50338 
TN 35 53 1 4 54 50 44621 
TX 48 64 1 19 60 50.5 52576 
UT 60 53 0 4 43 65.2 59846 
VA 31 52 0 6 47 62.8 64792 
VT 76 60 0 0 50 58.2 54447 
WA 29 59 0 5 41 71 60294 
WI 36 28 0 20 32 56 52738 
WV 71 52 1 4 70 48 41576 
WY 73 45 0 0 61 53 58252 
                

State Medicaid 
Expansion White Black Other Hispanic Enrollment  

 
AK Yes 0.665 0.035 0.3 0.062 158453  
AL No 0.691 0.264 0.045 0.04 885046  
AR Yes 0.783 0.155 0.062 0.067 889082  
AZ Yes 0.789 0.042 0.17 0.301 1699635  
CA Yes 0.621 0.059 0.32 0.382 11902445  
CO Yes 0.84 0.04 0.12 0.209 1353757  
CT Yes 0.776 0.102 0.122 0.143 753413  
DC Yes 0.402 0.496 0.102 0.099 258918  
DE Yes 0.697 0.216 0.087 0.086 236248  
FL No 0.762 0.161 0.077 0.233 3620085  
GA No 0.604 0.309 0.087 0.091 1744095  
HI Yes 0.252 0.019 0.729 0.096 340829  
IA Yes 0.914 0.031 0.055 0.053 613386  
ID No 0.918 0.006 0.076 0.117 289858  
IL Yes 0.725 0.144 0.131 0.163 3088044  
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Table 29 (continued) 
 

IN Yes 0.844 0.091 0.065 0.063 1473414  
KS No 0.853 0.058 0.09 0.11 422549  
KY Yes 0.877 0.079 0.043 0.032 1223869  
LA Yes 0.628 0.321 0.05 0.046 1308428  
MA Yes 0.8 0.07 0.13 0.102 1660518  
MD Yes 0.581 0.295 0.125 0.088 1226309  
ME No 0.951 0.011 0.038 0.014 270827  
MI Yes 0.792 0.14 0.069 0.046 2273394  
MN Yes 0.852 0.054 0.094 0.049 1026023  
MO No 0.828 0.115 0.057 0.038 961073  
MS No 0.593 0.373 0.033 0.028 687219  
MT Yes 0.894 0.005 0.103 0.032 239250  
NC No 0.696 0.215 0.09 0.087 1984599  
ND Yes 0.892 0.015 0.092 0.026 89460  
NE No 0.883 0.047 0.071 0.097 234836  
NH Yes 0.938 0.012 0.049 0.031 185735  
NJ Yes 0.687 0.135 0.178 0.186 1749400  
NM Yes 0.732 0.02 0.249 0.47 761033  
NV Yes 0.701 0.083 0.216 0.272 609435  
NY Yes 0.65 0.156 0.194 0.182 6372384  
OH Yes 0.826 0.122 0.052 0.033 2941236  
OK No 0.733 0.073 0.195 0.094 787331  
OR Yes 0.851 0.018 0.131 0.121 1019340  
PA Yes 0.819 0.109 0.072 0.061 2834129  
RI Yes 0.813 0.063 0.124 0.133 283838  
SC No 0.672 0.276 0.051 0.053 987147  
SD No 0.854 0.015 0.131 0.032 119252  
TN No 0.78 0.168 0.053 0.048 1628196  
TX No 0.747 0.119 0.135 0.382 4708051  
UT No 0.88 0.011 0.109 0.133 306857  
VA Yes 0.693 0.193 0.115 0.084 966932  
VT Yes 0.951 0.01 0.038 0.016 178142  
WA Yes 0.782 0.036 0.182 0.117 1775882  
WI No 0.867 0.062 0.07 0.062 1045160  
WV Yes 0.936 0.032 0.032 0.013 572107  
WY No 0.908 0.01 0.082 0.094 63618  
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C.3.2 Full Models 

Full models used for model selection including all predictor variables are included 

below.  

Table 30: Medicaid Acceptance Full Model. 

Coefficient Standardized 
Estimates Std. Error t Sig. 

Intercept -0.675 40.546 -0.02 0.987   
Number of MCO's 0.126 0.149 0.85 0.403   
Medicaid FFS 
Percentage 0.185 0.207 0.89 0.377   
Dentists per 
population 0.01 0.407 0.03 0.980   
Utilization 2013 0.027 0.248 0.11 0.913   
Median Family 
Income -0.593 0.406 -1.46 0.153   
Medicaid Expansion 0.098 0.06 1.63 0.112   
Dental Managed Care -0.126 0.06 -2.09 0.044 * 
White 1.51 38.579 0.04 0.969   
Black 0.519 20.129 0.03 0.980   
Other 0.919 29.566 0.03 0.975   
Hispanic -0.071 0.177 -0.4 0.692   
Enrollment -0.249 0.237 -1.05 0.299   
      
 N 51    

 Adjusted R2 0.2069    
 Resid. Std. Error 0.1769    
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Table 31: Medicaid Utilization Full Model. 

Coefficient Standardized 
Estimates Std. Error t Sig. 

Intercept -19.388 25.867 -0.75 0.458   
Number of MCO's -0.081 0.098 -0.83 0.415   
Medicaid FFS 
Percentage 0.025 0.105 0.24 0.810   
Dentists per population 1.505 0.881 1.71 0.096 . 
Utilization 2013 0.266 0.268 0.99 0.328   
Median Family Income -0.022 0.283 -0.08 0.939   
Medicaid Expansion 0.025 0.042 0.6 0.554   
Dental Managed Care -0.046 0.04 -1.13 0.265 * 
White 18.522 24.623 0.75 0.457   
Black 9.747 12.845 0.76 0.453   
Other 14.137 18.872 0.75 0.459   
Hispanic 0.175 0.11 1.59 0.120   
Enrollment -0.072 0.154 -0.46 0.646   
Medicaid FFS 
Percentage2 -1.063 0.691 -1.54 0.133   
      
 N 51    

 Adjusted R2 0.1069    
 Resid. Std. Error 0.1136    

 

C.3.3 Model Selection 

Final models were selected using best subsets, forward and backward stepwise 

regression, and Lasso.  Best subsets of variables were used to identify best models of 

different sizes.  Models were selected using forward and backward stepwise regression 

using the step function in the R statistical software.  The selected models from backward 

and forward stepwise regression were compared.  If both methods selected the same 

predictors, the models were validated using Lasso variable selection method using the R 

statistical software and chosen as the final model.  If the methods chose different predictors, 

they were compared to see which predictors were overlapping.  Lasso was then used to 
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identify which predictors were selected for the final model.  Final models selected were the 

most consistent models selected using each method.  Differences between best subset 

results and stepwise regression results are due to best subsets using the BIC criterion while 

stepwise regression uses the AIC criterion for model selection. 

C.3.4 Medicaid Acceptance 

The best subsets plot is shown below in Figure 33.   

 

Figure 33. Best subsets for Medicaid acceptance model. 

After the best subsets models were considered, forward stepwise regression was 

conducted.  The final model chosen by forward stepwise regression included white, dental 
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managed care, median family income, Medicaid expansion, and enrollment.   Next, 

backward stepwise regression was compared.  The results of each step in the stepwise 

regression for forward stepwise regression and backward stepwise regression are shown in 

Table 32 and Table 33 respectively.  In the tables, + indicated the variable was added in 

the specified step, - indicated it was subtracted, and the ● indicated the variable was 

included in the step. 

Table 32. Results of each step in forward stepwise regression for predicting 
Medicaid acceptance. 

 Step  
Coefficient 1 2 3 4 5 Final 

Intercept ● ● ● ● ● ● 
Number of MCO's             
Medicaid FFS Percentage             
Dentists per population             
Utilization 2013             
Median Family Income     + ● ● ● 
Medicaid Expansion       + ● ● 
Dental Managed Care   + ● ● ● ● 
White + ● ● ● ● ● 
Black             
Hispanic             
Enrollment         + ● 
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Table 33. Results of each step in backward  stepwise regression for predicting 
Medicaid acceptance. 

 Step  
Coefficient 1 2 3 4 5 6 Final 

Intercept ● ● ● ● ● ● ● 
Number of MCO's ● ● ● ● -     
Medicaid FFS Percentage ● ● ● ● ● -   
Dentists per population -             
Utilization 2013 ● -           
Median Family Income ● ● ● ● ● ● ● 
Medicaid Expansion ● ● ● ● ● ● ● 
Dental Managed Care ● ● ● ● ● ● ● 
White ● ● ● ● ● ● ● 
Black ● ● ● -       
Hispanic ● ● -         
Enrollment ● ● ● ● ● ● ● 

 

This resulted in final model consisting of the same variables.  Due to agreement 

between the methods, this model was chosen as the final model. Lasso variable selection 

was also checked for consistency and is shown below. 
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Figure 34. Lasso for Medicaid acceptance model. 

Figure 34 Legend: FFS.perc is the Medicaid FFS percentage. Dnt.Mn.C is Dental 

Managed Care. Enrllmnt is enrollment.  Md.Fm.In is median family income. 

C.3.5 Medicaid Utilization 

For Medicaid utilization, the best subsets plot is shown below. 
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Figure 35. Best subsets for Medicaid utilization model. 

After considering best subsets, forward and backward stepwise regression were 

performed.  Forward stepwise regression resulted in the Medicaid FFS percentage, 

Medicaid FFS percentage squared, and the dentist per population ratio as the final variables 

selected.  Backward stepwise regression resulted once again in the same set of variables.  

The results of each step in the stepwise regression for forward stepwise regression and 

backward stepwise regression are shown in Table 34 and Table 35, respectively.  In the 

tables, + indicated the variable was added in the specified step, - indicated it was subtracted, 

and the ● indicated the variable was included in the step.  
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Table 34. Results of each step in forward stepwise regression for predicting 
Medicaid utilization. 

 Step  

Coefficient 1 2 3 Final 

Intercept ● ● ● ● 
Number of MCO's         
Medicaid FFS Percentage + ● ● ● 
Dentists per population     + ● 
Medicaid Acceptance 
Rate         
Median Family Income         
Medicaid Expansion         
Dental Managed Care         
White         
Black         
Hispanic         
Enrollment         
Medicaid FFS Percentage2   + ● ● 

Table 35. Results of each step in backward stepwise regression for predicting 
Medicaid utilization. 

Coefficient 1 2 3 4 5 6 7 8 9 Final 

Intercept ● ● ● ● ● ● ● ● ● ● 
Number of MCO's ● ● ● ● ● ● ● -     
Medicaid FFS Percentage ● ● ● ● ● ● ● ● ● ● 
Dentists per population ● ● ● ● ● ● ● ● ● ● 
Medicaid Acceptance 
Rate ● -                 
Median Family Income -                   
Medicaid Expansion ● ● ● ● -           
Dental Managed Care ● ● ● ● ● ● -       
White ● ● ● -             
Black ● ● ● ● ● -         
Hispanic ● ● ● ● ● ● ● ● -   
Enrollment ● ● -               
Medicaid FFS Percentage2 ● ● ● ● ● ● ● ● ● ● 
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This set became the final model choice after being selected by both methods and 

being the best choice among the best subsets regression.  For consistency, lasso variable 

selection was again used and is included below. 

 

Figure 36. Lasso for Medicaid utilization model.  

Figure 36 legend: FFS.perc is the Medicaid FFS percentage.  Dntsts is the dentists 

per population ratio. FFS.^2 is the square of the Medicaid FFS percentage. 

C.3.6 Final Models  

The models presented in the paper use normalized data so that coefficients can be 

compared accurately to determine their relative impact.   
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The model predicting Medicaid utilization using non-standardized data is used to 

get a proper estimate of the impact of changing the Medicaid reimbursement rate.  The 

model is shown in Table 36.   

Table 36. Model predicting Medicaid utilization with non-standardized data. 

Coefficient Estimates Std. 
Error t Sig. 

Intercept -0.932 15.026 -0.06 0.951   
FFS Percentage 1.444 0.547 2.64 0.011 * 
(FFS Percentage)2 -0.012 0.005 -2.26 0.029 * 
Dentists per population 0.182 0.086 2.11 0.040 * 
    

 
 

 N 51   
 

 Adjusted R2 0.1915  
 

 

 

Residual Std. 
Error 6.919    

 

The prediction intervals used for estimated the impact of changing the FFS 

percentage are shown in Table 37.  

Table 37. Prediction and prediction intervals for estimating change in FFS 
percentage on Medicaid utilization. 

Dentists per 
population FFS Percentage fit lower upper 
47 53 50.39 36.13 64.65 
47 63 50.88 36.53 65.24 

 

C.3.7 Impact of Changing Reimbursement Rate 

The total costs per-member-per-year used are shown in Table 38 [129].  
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Table 38. Georgia Medicaid expenditures per-member-per-year (pmpy). 

Fluoride 11.36 
Sealants 8.19 
Evaluations 23.63 
Prophylaxis 23.59 
Caries Restorations 92.71 
Total Cost (pmpy) 159.48 

 

The impact of the rate increase is then determined for current members and the 

7366 estimated new members from the increase in utilization. The intervention cost per 

child is the rate increase for the current members and the full cost including the rate increase 

for new members as shown in Table 39. 

Table 39. Invention Cost by current and new members for changing the 
reimbursement rate. 

 
Number of 
Children  Cost per Child Total Cost 

Current Members 1,227,855 30.09 $36,946,852 
New Members 7366.365039 189.57 $1,396,446 
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C.4   Example School Data 

Table 40. Example School Data. 

School Name County Name 

Urban-
centric 
Locale  

School 
Level 
Code 

Total 
Free and 
Reduced 
Lunch 
Students 

Total 
Students 

A. S. CLARK 
ELEMENTARY 
SCHOOL CRISP COUNTY 

41-Rural: 
Fringe 

1-
Primary 329 404 

ABBOTTS HILL 
ELEMENTARY 
SCHOOL 

FULTON 
COUNTY 

21-
Suburb: 
Large 

1-
Primary 116 792 

ACADEMIC 
ENHANCEMENT 
PROGRAM 

BROOKS 
COUNTY 

41-Rural: 
Fringe 3-High 61 64 

ACADEMY OF 
RICHMOND 
COUNTY HIGH 
SCHOOL 

RICHMOND 
COUNTY 

12-City: 
Mid-size 3-High 703 1283 

ACWORTH 
INTERMEDIATE 
SCHOOL COBB COUNTY 

21-
Suburb: 
Large 

1-
Primary 500 816 

ADAIRSVILLE 
ELEMENTARY 
SCHOOL 

BARTOW 
COUNTY 

31-Town: 
Fringe 

1-
Primary 414 693 

ADAIRSVILLE 
HIGH SCHOOL 

BARTOW 
COUNTY 

41-Rural: 
Fringe 3-High 487 952 

ADAIRSVILLE 
MIDDLE 
SCHOOL 

BARTOW 
COUNTY 

41-Rural: 
Fringe 2-Middle 431 742 

ADAMSON 
MIDDLE 
SCHOOL 

CLAYTON 
COUNTY 

41-Rural: 
Fringe 2-Middle 491 617 

ADAMSVILLE 
ELEMENTARY 
SCHOOL 

FULTON 
COUNTY 

11-City: 
Large 

1-
Primary 363 381 

ADDISON 
ELEMENTARY 
SCHOOL COBB COUNTY 

21-
Suburb: 
Large 

1-
Primary 196 581 
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APPENDIX D. SUPPLEMENTAL MATERIALS FOR CHAPTER 6 

D.1  State Confidence Interval 

We reported expenditures with lower bound, mean, and upper bound of the 

confidence intervals for each state in the analysis.  To obtain the confidence interval for 

the state, the 95% confidence interval was created for each county.  The confidence interval 

listed for each state is the sum of each lower bound, mean, and upper bound of the 

confidence intervals for all counties in the state. 

D.2  Additional Expenditure Distributions 

Figure 37 through Figure 50 show the distributions of expenditures by state, service 

type for total payments (anesthesia and dental expenditures combined). 
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Figure 37. Histogram (blue) and KDE distribution (red) of total payment for 
children receiving only nitrous oxide anesthesia in Alabama. 

 

Figure 38. Histogram (blue) and KDE distribution (red) of total payment for 
children receiving local or general anesthesia in Alabama. 
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Figure 39. Histogram (blue) and KDE distribution (red) of total payment for 
children receiving only nitrous oxide anesthesia in Connecticut. 

 

Figure 40. Histogram (blue) and KDE distribution (red) of total payment for 
children receiving local or general anesthesia in Connecticut. 

 
 



 155 

 

Figure 41. Histogram (blue) and KDE distribution (red) of total payment for 
children receiving only nitrous oxide anesthesia in Massachusetts. 

 

Figure 42. Histogram (blue) and KDE distribution (red) of total payment for 
children receiving local or general anesthesia in Massachusetts. 
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Figure 43. Histogram (blue) and KDE distribution (red) of total payment for 
children receiving only nitrous oxide anesthesia in North Carolina. 

 

Figure 44. Histogram (blue) and KDE distribution (red) of total payment for 
children receiving local or general anesthesia in North Carolina. 
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Figure 45. Histogram (blue) and KDE distribution (red) of total payment for 
children receiving only nitrous oxide anesthesia in New Hampshire. 

 

Figure 46. Histogram (blue) and KDE distribution (red) of total payment for 
children receiving local or general anesthesia in New Hampshire. 
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Figure 47. Histogram (blue) and KDE distribution (red) of total payment for 
children receiving only nitrous oxide anesthesia in South Carolina. 

 

Figure 48. Histogram (blue) and KDE distribution (red) of total payment for 
children receiving local or general anesthesia in South Carolina. 
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Figure 49. Histogram (blue) and KDE distribution (red) of total payment for 
children receiving only nitrous oxide anesthesia in Vermont. 

 

Figure 50. Histogram (blue) and KDE distribution (red) of total payment for 
children receiving local or general anesthesia in Vermont. 
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Figure 51 through Figure 64 show the distributions of anesthesia expenditures by 

state and service type for anesthesia payments (expenditures for anesthesia and any other 

surgery expenditures). 

 

Figure 51. Histogram (blue) and KDE distribution (red) of anesthesia payment for 
children receiving only nitrous oxide anesthesia in AL. 
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Figure 52. Histogram (blue) and KDE distribution (red) of anesthesia payment for 
children receiving local or general anesthesia in AL. 

 

Figure 53. Histogram (blue) and KDE distribution (red) of anesthesia payment for 
children receiving only nitrous oxide anesthesia in CT. 
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Figure 54. Histogram (blue) and KDE distribution (red) of anesthesia payment for 
children receiving local or general anesthesia in CT. 

 

Figure 55. Histogram (blue) and KDE distribution (red) of anesthesia payment for 
children receiving only nitrous oxide anesthesia in MA. 
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Figure 56. Histogram (blue) and KDE distribution (red) of anesthesia payment for 
children receiving local or general anesthesia in MA. 

 

Figure 57. Histogram (blue) and KDE distribution (red) of anesthesia payment for 
children receiving only nitrous oxide anesthesia in NC. 
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Figure 58. Histogram (blue) and KDE distribution (red) of anesthesia payment for 
children receiving local or general anesthesia in NC. 

 

Figure 59. Histogram (blue) and KDE distribution (red) of anesthesia payment for 
children receiving only nitrous oxide anesthesia in NH. 
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Figure 60. Histogram (blue) and KDE distribution (red) of anesthesia payment for 
children receiving local or general anesthesia in NH. 

 

Figure 61. Histogram (blue) and KDE distribution (red) of anesthesia payment for 
children receiving only nitrous oxide anesthesia in SC. 
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Figure 62. Histogram (blue) and KDE distribution (red) of anesthesia payment for 
children receiving local or general anesthesia in SC. 

 

Figure 63. Histogram (blue) and KDE distribution (red) of anesthesia payment for 
children receiving only nitrous oxide anesthesia in VT. 
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Figure 64. Histogram (blue) and KDE distribution (red) of anesthesia payment for 
children receiving local or general anesthesia in VT. 
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D.3  Population Results 

Table 41 shows the estimated caries visits for P1, P2, and P3. 

Table 41. Estimated caries visits for P1, P2, and P3. 

  Caries Visits 

Setting State P1 P2 P3 

1 

AL 110,358 26,038 41,770 
CT 39,580 11,420 22,936 
MA 64,498 22,933 40,700 
NC 184,550 54,065 85,820 
NH 11,169 3,095 7,489 
SC 98,108 25,564 41,218 
VT 6,235 2,246 3,725 

2 

AL 110,358 26,038 41,816 
CT 39,580 11,433 22,936 
MA 64,498 22,961 40,751 
NC 184,550 54,016 85,776 
NH 11,169 3,095 7,490 
SC 98,108 25,554 41,213 
VT 6,235 2,242 3,724 

3 

AL 110,358 26,055 41,793 
CT 39,580 11,438 22,911 
MA 64,498 22,990 40,707 
NC 184,550 54,050 85,802 
NH 11,169 3,087 7,501 
SC 98,108 25,587 41,245 
VT 6,235 2,247 3,733 

4 

AL 110,358 26,025 41,797 
CT 39,580 11,433 22,923 
MA 64,498 22,967 40,730 
NC 184,550 54,001 85,773 
NH 11,169 3,094 7,484 
SC 98,108 25,564 41,246 
VT 6,235 2,248 3,715 
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Table 41 (continued) 
 
 

5 

AL 110,358 26,055 41,792 
CT 39,580 11,412 22,914 
MA 64,498 22,986 40,730 
NC 184,550 54,027 85,812 
NH 11,169 3,087 7,489 
SC 98,108 25,539 41,293 
VT 6,235 2,248 3,719 

6 

AL 110,358 26,078 41,763 
CT 39,580 11,424 22,890 
MA 64,498 22,972 40,711 
NC 184,550 53,984 85,817 
NH 11,169 3,091 7,483 
SC 98,108 25,582 41,243 
VT 6,235 2,245 3,722 

 

D.4   Expenditure Results 

Figure 65 through Figure 69 show the averted expenditures per visit by state and 

population group for settings 1, 2, 3, 5, and 6. 
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Figure 65: Box plot of averted expenditures per caries visit for setting 1 by state and 
population group. 

 

Figure 66: Box plot of averted expenditures per caries visit for setting 2 by state and 
population group. 
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Figure 67: Box plot of averted expenditures per caries visit for setting 3 by state and 
population group. 

 

Figure 68: Box plot of averted expenditures per caries visit for setting 5 by state and 
population group. 
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Figure 69: Box plot of averted expenditures per caries visit for setting 6 by state and 
population group. 

Figure 70 and Figure 71 show the averted expenditures per caries visit by state and 

setting for P2 and P3. 
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Figure 70. Averted expenditures per caries visit by state and setting for P2. 

 

 

Figure 71. Averted expenditures per caries visit by state and setting for P3. 
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Table 42 and Table 43 show the averted and realized expenditures for P2 and P3. 

Table 42. Averted and realized expenditures for P2.  

  Averted Expenditures Realized Expenditures 

Setting State Lower Mean Upper 

Mean 
per 
Caries 
Visit Lower Mean Upper 

1 

AL 171,481 533,698 895,915 20.5 10,998,582 12,650,625 14,302,668 
CT 322,459 510,385 698,310 45.0 11,167,651 12,037,016 12,906,381 
MA 472,142 728,753 985,364 32.1 16,283,666 17,513,862 18,744,057 
NC 852,541 2,141,995 3,431,448 39.7 44,725,855 50,823,585 56,921,315 
NH 9,786 123,678 237,571 40.0 2,412,709 2,934,190 3,455,670 
SC 175,552 323,487 471,422 12.6 7,029,582 7,711,219 8,392,857 
VT -37,941 103,708 245,357 46.0 1,797,534 2,484,383 3,171,232 

2 

AL 407,281 858,178 1,309,076 33.0 10,654,885 12,316,729 13,978,572 
CT 575,658 823,396 1,071,134 73.0 10,812,365 11,741,798 12,671,230 
MA 865,956 1,195,005 1,524,053 52.9 15,845,552 17,031,289 18,217,026 
NC 1,817,792 3,457,477 5,097,163 64.0 43,455,124 49,444,422 55,433,720 
NH 58,215 199,885 341,555 64.7 2,332,931 2,866,340 3,399,748 
SC 329,234 520,560 711,887 20.4 6,851,489 7,513,485 8,175,480 
VT -6,999 170,570 348,140 77.0 1,756,455 2,405,853 3,055,251 

3 

AL 764,992 1,331,709 1,898,426 51.3 10,322,298 11,937,546 13,552,794 
CT 942,155 1,254,990 1,567,825 109.4 10,476,439 11,346,129 12,215,820 
MA 1,429,129 1,834,536 2,239,943 79.0 15,383,518 16,564,834 17,746,151 
NC 3,301,585 5,350,490 7,399,394 99.0 41,877,145 47,825,831 53,774,517 
NH 128,554 306,938 485,323 98.5 2,261,560 2,767,364 3,273,168 
SC 571,882 808,233 1,044,583 31.6 6,646,571 7,332,253 8,017,936 
VT 37,988 261,331 484,674 115.1 1,704,394 2,334,569 2,964,743 

4 

AL 1,424,450 2,138,292 2,852,134 82.1 9,544,768 11,115,757 12,686,746 
CT 1,657,731 2,045,109 2,432,487 179.1 9,706,545 10,569,367 11,432,189 
MA 2,471,194 2,969,955 3,468,715 129.4 14,250,974 15,396,880 16,542,786 
NC 6,044,827 8,646,222 11,247,618 160.0 38,710,329 44,468,894 50,227,460 
NH 274,098 491,764 709,431 159.2 2,105,305 2,586,485 3,067,665 
SC 1,016,676 1,309,179 1,601,681 51.5 6,198,615 6,829,179 7,459,743 
VT 145,274 422,800 700,327 189.5 1,564,527 2,175,304 2,786,082 
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Table 42 (continued) 
 
 

5 

AL 1,861,669 2,656,316 3,450,963 101.9 9,237,516 10,771,390 12,305,265 
CT 2,095,252 2,529,288 2,963,324 220.7 9,257,923 10,142,645 11,027,366 
MA 3,114,145 3,681,745 4,249,346 162.2 13,802,217 14,955,268 16,108,319 
NC 7,809,499 10,668,634 13,527,770 198.0 37,254,505 42,791,677 48,328,848 
NH 371,854 620,440 869,026 199.1 2,006,952 2,481,042 2,955,132 
SC 1,276,650 1,610,573 1,944,495 63.1 6,046,366 6,683,436 7,320,506 
VT 210,692 525,414 840,136 235.2 1,476,190 2,086,021 2,695,851 

6 

AL 3,291,058 4,301,401 5,311,743 164.8 7,708,979 9,141,860 10,574,742 
CT 3,532,188 4,098,547 4,664,906 359.2 7,803,336 8,581,914 9,360,492 
MA 5,243,339 5,967,003 6,690,667 259.2 11,599,167 12,660,416 13,721,665 
NC 13,659,868 17,278,879 20,897,891 319.7 31,001,836 36,167,902 41,333,967 
NH 690,593 997,876 1,305,159 323.5 1,652,861 2,094,951 2,537,042 
SC 2,200,498 2,614,086 3,027,674 102.2 5,114,492 5,690,377 6,266,262 
VT 445,004 841,963 1,238,922 373.9 1,223,409 1,767,971 2,312,534 
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Table 43. Averted and realized expenditures for P3. 

  Averted Expenditures Realized Expenditures 

Setting State Lower Mean Upper 

Mean 
per 
Caries 
Visit Lower Mean Upper 

1 

AL 407,146 848,381 1,289,616 20.2 18,167,198 20,282,671 22,398,143 
CT 726,070 1,017,229 1,308,388 44.3 22,839,960 24,227,075 25,614,189 
MA 950,510 1,298,102 1,645,695 31.6 29,295,169 30,987,809 32,680,450 
NC 1,789,752 3,380,282 4,970,812 39.2 73,040,692 80,719,195 88,397,698 
NH 130,838 290,755 450,672 39.4 6,306,607 7,104,038 7,901,468 
SC 330,706 519,624 708,541 12.6 11,574,864 12,440,080 13,305,296 
VT -11,219 173,557 358,333 46.8 3,270,957 4,119,101 4,967,245 

2 

AL 809,621 1,376,400 1,943,179 33.0 17,716,423 19,765,859 21,815,295 
CT 1,286,932 1,657,430 2,027,928 72.6 22,180,742 23,532,260 24,883,778 
MA 1,665,462 2,116,468 2,567,473 52.5 28,617,064 30,235,666 31,854,268 
NC 3,439,876 5,478,132 7,516,388 63.9 71,066,714 78,523,829 85,980,944 
NH 266,438 487,119 707,800 65.0 6,168,550 6,948,079 7,727,608 
SC 606,372 842,324 1,078,275 20.4 11,233,230 12,104,533 12,975,836 
VT 51,680 282,322 512,965 74.8 3,208,835 4,012,775 4,816,714 

3 

AL 1,430,155 2,128,427 2,826,698 51.0 17,114,955 19,180,180 21,245,404 
CT 2,075,915 2,538,541 3,001,166 111.1 21,337,948 22,730,617 24,123,285 
MA 2,714,982 3,255,442 3,795,902 79.9 27,712,774 29,325,767 30,938,760 
NC 5,934,841 8,485,680 11,036,518 99.6 68,621,446 75,952,751 83,284,056 
NH 489,174 752,753 1,016,333 100.8 5,939,374 6,729,832 7,520,290 
SC 1,003,403 1,300,957 1,598,512 31.6 10,973,618 11,822,626 12,671,634 
VT 155,505 433,006 710,508 117.5 3,045,963 3,881,839 4,717,714 

4 

AL 2,548,598 3,454,049 4,359,501 82.5 15,873,451 17,863,515 19,853,578 
CT 3,497,009 4,093,547 4,690,085 178.0 19,821,717 21,196,419 22,571,121 
MA 4,590,849 5,263,826 5,936,804 129.2 25,749,236 27,345,627 28,942,018 
NC 10,501,618 13,702,714 16,903,810 159.8 63,385,443 70,615,260 77,845,078 
NH 866,082 1,209,258 1,552,433 162.6 5,473,458 6,221,215 6,968,973 
SC 1,737,112 2,103,329 2,469,545 51.1 10,181,237 11,016,296 11,851,356 
VT 342,130 702,788 1,063,446 190.0 2,825,378 3,601,899 4,378,420 
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Table 43 (continued) 
 

5 

AL 3,255,851 4,258,552 5,261,253 101.9 15,314,889 17,301,256 19,287,623 
CT 4,454,976 5,080,434 5,705,892 221.3 19,125,766 20,418,989 21,712,212 
MA 5,708,455 6,509,889 7,311,323 159.0 24,975,994 26,516,940 28,057,885 
NC 13,428,388 17,006,305 20,584,222 198.2 61,113,138 68,001,906 74,890,673 
NH 1,122,757 1,496,167 1,869,578 198.5 5,308,114 6,007,350 6,706,586 
SC 2,189,831 2,607,419 3,025,008 63.1 9,975,471 10,806,243 11,637,015 
VT 466,109 869,779 1,273,448 233.9 2,691,795 3,442,431 4,193,067 

6 

AL 5,651,743 6,892,664 8,133,586 165.0 12,880,741 14,669,322 16,457,904 
CT 7,402,134 8,203,544 9,004,954 357.3 16,057,108 17,264,692 18,472,276 
MA 9,550,675 10,530,279 11,509,883 259.3 21,109,373 22,491,449 23,873,524 
NC 23,014,898 27,485,235 31,955,572 319.6 51,034,834 57,466,547 63,898,260 
NH 1,943,996 2,423,130 2,902,264 325.2 4,388,773 5,077,349 5,765,924 
SC 3,693,349 4,214,781 4,736,214 102.2 8,435,456 9,173,942 9,912,427 
VT 909,191 1,404,031 1,898,871 377.0 2,223,234 2,920,663 3,618,092 
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D.5  General Results 

Figure 72 and Figure 73 show several outcome results for setting 4 and P2 and P3. 

 

Figure 72. Box plot of outcome metrics by urban classification for setting 4 and P2. 

 

Figure 73. Box plot of outcome metrics by urban classification for setting 4 and P3. 
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