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Executive Summary

This research topic relates directly to the concentric pipe system designs in silo

or other mixing units. It has been found that concentric pipe mixers are better than

transverse mixers, and are currently used in silo mixing units. We foresee that in the

future approach flow system design or modification, concentric pipe mixers will be

used even more widely. Because of the fact that concentric pipe mixers have a long

suspended inner pipe (often as long as two meters), structure integrity in relation to

flow-induced vibration and pipe joint fatigue failure is one of the important design

considerations. To properly introduce the subject dealt with in this report, we

quickly summarize the research on the vibration of the concentric pipe systems.

The research approaches for this subject are two-fold: firstly, we set out to find

the resonance natural frequencies of the suspended pipe coupled with internal and

external fluid flows; secondly, we search for potential critical design information

when the pipe flows are pulsatile, which is often the case due to pressure pulsations

within the pipe flows.

To come up with critical design criteria concerning the dynamical behavior of

the tubular beam, we need to vary the pipe lengths, inclination angle, free surface

level, flow velocities, and pipe radii. We find that in addition to the introduction of

damping effects, the interaction between the inner tubular beam and the internal



and external fluids significantly reduce the natural frequencies. Furthermore, it

is found that the longer the outer pipe, the smaller are the natural frequencies

of the inner pipe, i.e., the increased confinement of the inner pipe increases its

effective (fluid added) mass. We also observe that varying the inner pipe length has

a similar, however, much stronger effect on the coupled system frequencies. The

physical explanation is that the inner pipe length determines directly the inner pipe

structural stiffness and mass (in fact, for a cantilever beam, the natural frequency is

inversely proportional to the square of the beam length), and the outer pipe length

only contributes to the fluid-structure coupling part. In general, if the structure is

more flexible, it is more susceptible to turbulence buffeting as well as to buckling

or flutter. We also show that the coupled system frequencies for the given design

configuration with different pipe lengths are between the lower and upper bounds

calculated for the two cases in which the inner and outer pipes have the same lengths

of I and L, respectively. In addition, we find that the lengths of the pipes have a

much greater effect on the second coupled system natural frequency than the first

one. This result also matches the physical understanding based on the dependence of

mode shapes on the pipe length. Interestingly, calculations show that the inclination

angle and the depth of the submerged pipe system do not significantly influence

the characteristic behavior of the tubular beam. Increasing the inner pipe radius

increases the pipe stiffness but also increases the external flow velocity and added

mass effects. At some point, the velocity and added mass effects overwhelm the

stiffening effect and the inner pipe frequency drops rapidly. In practice we want to

avoid the low frequency consistency and pressure variations introduced by the low

frequency vibration of the inner pipe, which may not be effectively attenuated. It

is also clearly indicated that as the outer pipe diameter increases, for the constant



volume flow rates, the natural frequencies of the inner pipe increase to a plateau.

This occurs because reduced confinement lowers the added mass effects on the inner

pipe and the external flow velocity decreases until these effects no longer change

with increasing outer pipe diameter. To further assist in the design of the pipe

system, we also show that the longer the inner pipe, the lower are the natural

frequencies of the inner pipe, but the larger are the damping ratios. With the same

outer pipe inner diameter, the smaller the inner pipe diameter, the smaller are the

natural frequencies of the inner pipe; however, the change of damping ratio is not

monotonic and there exists a region around such that the damping ratio is at its

lowest level.

In order to obtain the dynamical stability regions, we have to compute the mon-

odromy matrices and their eigenvalues at all parameter spatial grid points within

a parameter space subdivided into parameter spatial divisions. Because we do not

know a priori the structure of the monodromy matrix, and because a poorly con-

structed monodromy matrix can lead to incorrect conclusions of the dynamical in-

stability, we need to know the critical time step before the numerical integration,

and try to avoid the costly trial and error process. With the critical time step

problem solved, based on the mathematical model for a submerged concentric pipe

system with both unconfined and confined external flows, we have studied both

static and dynamic stability issues relating to the pipe system design and obtained

some interesting results (elaborated in the coming Report 8 of project F004).

For the steady flow case, we show that the fourth mode is the mode in which,

for a sufficiently high value of flow velocity, flutter instability can happen. We note

that friction forces have positive effects on avoiding flutter instability, and the longer

the outer pipe length, the less likely that flutter will occur. Similarly, friction forces



also have positive effects on delaying the buckling instability. However, the longer

the outer pipe length, the more susceptible the inner pipe is to buckling. A more

elaborate study on the dependence of the critical buckling velocity on the outer

pipe length, friction, and gravitational forces indicates that there exists a transition

region. In general, the effects of gravitational forces are not as significant as those

of frictional forces.

For the pulsatile flow case, although the numerical Floquet analysis is lengthier

than the Bolotin method, it includes both the parametric and combination insta-

bilities. The dynamic instability regions for different cases suggest that gravity and

friction effects are not as significant as the outer pipe length with respect to the

dynamic stability issues.

We have presented the ranges of both buckling and flutter instability for pipes

conveying steady flows for a case study. For the pipes conveying pulsatile fluids, we

have also presented two methods to determine the regions of dynamic instability.

We find that the outer pipe length is a more important design factor than gravity

(relating to inclination angle and submerge depth) and friction. For the inner pipe

conveying pulsatile flow, the lowest critical perturbation frequency is nearly twice

the second system natural frequency. Although we note that for current pipe sys-

tem designs with reasonable flow rates, the concentric pipe system is stable, the

procedures investigated in this work clearly provide tools in assisting the design or

modification of silo piping systems in general.



I Introduction

Fluid conveying pipes are widely used in engineering applications. One of the design

challenges is to avoid pipe buckling and flutter under various operation conditions.

Initial work on such flow-induced vibration analysis was reported by Ashley and

Haviland [2], Benjamin [4] [5], and Paidoussis [10] [13]. A recent survey of this

subject is available in Ref. [16].

In the paper industry, one of the key components in approach flow systems is the

so-called silo water mixing unit, a cylindrical water storage tank with a constant

water level, as depicted in Fig. 1. The inner pipe protruding into the fan pump

inlet zone contains a higher consistency fiber stock, and the concentric outer pipe

collects the recirculated stock. In addition to the effects on the smooth operation

of impellers, the uniformity of stock consistency, and the minimization of pressure

variations [22], the turbulent jets coming out of the concentric pipes may introduce

severe oscillations in the suspended pipes, which can cause structural damages such

as fatigue failure of pipe joints. The flow-induced oscillations associated with the

submerged and inclined concentric pipes have been studied in Ref. [21], in which the

effects of various design parameters on the natural frequencies and damping ratios

are discussed.

In this paper, we consider stability issues relating to such pipe systems. In

addition to the divergence (buckling) and oscillatory (flutter) instabilities, we also

consider the possible dynamic instability induced by a pulsating flow [8] [15]. Apart

from the traditional approach of the Galerkin-Ritz method, with one or two terms

for the spatial series expansions, and the Bolotin method [7], we incorporate, in this

work, the spatial finite difference approach presented in Ref. [21] along with a direct

time integration for the computation of the monodromy matrix. The advantage of



finite difference schemes is to avoid the use of C 1 finite elements or mixed formula-

tions. An elaborate discussion on this subject is available in Refs. [3] and [24]. Based

on the eigenvalues of the monodromy matrix, we then deduce the dynamic stability

information corresponding to the presence of periodic coefficients. Of course, the

physical problem discussed in this paper also possesses some novelties, in particular,

discontinuous coefficients introduced by different pipe lengths.

We begin with the mathematical model and its corresponding governing equation

in Section 2, and discuss the numerical procedures for the spatial discretization and

the construction of the monodromy matrix in Section 3. We present in Section 4

numerical results for a particular pipe system design with both steady and pulsatile

flows. As a further check on the numerical results obtained in Section 4, we also

offer, in Section 5, an analytical study based on the Bolotin method to compare

with the numerical Floquet approach, for a particular pipe system design.



Nomenclature

I inner pipe length

L outer pipe length
Ri inner radius of the tubular beam

Ro outer radius of the tubular beam

Re inner radius of the outer pipe

I area moment of the tubular beam, _(R 4 - R4)/4
A cross-sectional area of the tubular beam, _r(Ro2 - R_)

Ai inner cross-sectional area of the tubular beam, _R 2
Ao outer cross-sectional area of the tubular beam, _Ro2
g gravity

inclination angle
T axial tension

E elastic modulus of the pipe

p internal and external fluid densities

Ui averaged turbulent flow velocity for the internal pipe flow
Ue averaged turbulent flow velocity for the external pipe flow

e internal pipe flow velocity perturbation
Pi internal pipe pressure

Pe external pipe pressure
Do outer diameter of the inner pipe

Xo entrance distance associated with the turbulent boundary layer

2 The Mathematical Model

Figure 2 shows the mathematical model of the suspended concentric pipe system

with the longitudinal direction being that of the x-axis. We assume that the outer

pipe is rigid and consider the inner pipe to be a tubular beam. We note that

both pipes are submerged in water, and continuous flow between the two concentric

cylinders only occurs in the domain 0 __ x __ L __ 1. For the pulsatile inner pipe

flow we have Ui - Ui(1 + e cos wot), where Ui, e, and Wo represent the mean value of

the averaged inner pipe flow velocity, the velocity perturbation magnitude, and the

perturbation frequency, respectively. According to the discussion in Ref. [15], the

OUi
inertia term pAi-_- needs to be added to the axial force equilibrium of the internal

flow. By the chain rule, we have for the transverse inertia effects
..
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Moreover_ we denote the freesurfacelevelmeasured from the origin(0,O) (fixed

Boundarylocationforthesuspendedpipes)asYo,suchthatthehydrostaticpressure

atthetipofthesubmergedbeam (x- l)isgivenby p- Pgyo- pglsinO;thuswe

obtain as the expression for the hydrostatic pressure of the external fluid,

Pe -- (1 - x)pg sin 0 - ypg cos 0 + p. (2)

Accordingto Refs. [ll], [14],and [l?], we also have the following expression for

the hydrodynamic pressure in the concentric flow region,

1

poAo- _pDoU_Cih(x), (3)

where the friction coefficient Ci has, as indicated in Refs. [13], [19], and [20],

different values in the confined and unconfined regions, i.e.,

{ C}, O<x <L,Cf- C_, L_< x_< l, (4)

while

I Ro (L-x) 0 < x < L
h(_)- R_ So - (5)

O, L_<x<_l,

and

I Ro O<x<L,

dh(x) _ -R_- Ro' - (6)
dx O, L _<x < l.



As discussed in Refs. [11], [13], and [14], the external flow exerts on the tubu-

lar beam the following viscous forces per unit length in both the transverse and

longitudinal directions,

_pDoUiC_,fie=

lpD°U_Cf(ay_7_-:ay) (7)
s; 2 _+v, ,

where y stands for the transverse displacement of the tubular beam.

Defining the functions cr - 1 + 0.4(xo/L)C} and c_- 0.4C}/rr for the confined

external flow region, we obtain the external fluid inertia forces

_x e = 0_

where

R*2+ R°2 o < z < L,
X- R2 - Ro2' - (9)

1, L_< x _<l,

and

- / v_(i- _(x/z:)_)/_, o<_x< z:,U_ - U_, L _<x< 1.- (10)k

Following the derivation in Ref. [21], we obtain the explicit expression for the ten-

1 _D2rr2
sion T, based on the assumption that Pi I/=l - P-_p ou, Cb/A, and the axial force

1
equilibrium at the tip of the tubular beam, i.e., T I_=t - -i5A + o pDo2Ue2Cb,where

1 2 Ao
Cb is the coefficient representing the base drag. Abbreviating -15Ao + _pD oU2Cb A

OUi 1

as _0, (m + pA_)gsin 0 + pA_--_- as _i, and _pDoU 2 as _2, with m as the mass per-

unit length of the inner pipe, we obtain

O(T-p_&)
= 6i- 62Cf, (ii)Ox



so that

z
T- piAi - 60 -F (x - 1)61 --F62 Cfdx

{c_(L - _)+c_(1-L), 0< · <L,= 60+ (x -l)6_ + 62 ¢s_(1- x), L _<x _<I. (12)

Thus, in a manner similar to the derivation presented in Ref. [21], we find the

following governing equation for y(x, t),

04y 02y 02y 02y Oy Oy _ 0 (13)_5_x4+ _b-_x_+ _oxot+ _b-J_'+ __ + _ o-7- '

where the coefficients are given by

C1 ---- EI,
1

c2 -- pAiVi 2 - (T - piAi Jr-peAo Jr- _pDoVe2Cfh(x)) Ur-XpAoUeVe,

c3 - 2pAi Vi Jr- XpAo ([-Ye+ I-Ye),

c4 -- m+ pal + XpAo, (14)

I D ,_h(x))C5 = --(m + pAi - pAo)gsinO + 5p oU_Cf(1 dx
1

c6 = _pDoUeCf.

Remark I: For the case of clamped (or built-in) boundary condition at x - O, we

have

y(o,t) - o, Oy(O,t)o_ = 0, (15)

while for the free end of the tubular beam at x = l, we have

a_y(z,t) o_y(z,t) __._,_. ay(z.t) -

Remark II: We recognize that the coefficients cl to c6 can be variables depending

on the position x. To circumvent the discontinuity at the location x = L, where the

10



confined and unconfined external flow domains are separated, we prescribe a nodal

point at that location.

Remark III: For pulsatile flow, only the coefficients c2 and Ca are periodic in time

Wo

with the period To = 2_'

Remark IV: Since we focus our attention on the stability issues, we only retain in

Eq. (13) the homogeneous part of the governing equation.

3 Stability Analysis

We employ the standard finite difference discretizations to replace the partial dif-

ferential equation (13) with a set of ordinary differential equations with respect to

time. Equivalent difference schemes are also used for the boundary conditions in

Eqs. (15) and (16). We define the solution variable y(x, t) at the spatial grid (or

nodal) point i as Yi(t) (depicted in Fig. 3), and its corresponding time derivative as

_i(t). Using an equal spacing h between finite difference stations, and employing

the same finite difference approximations as in Ref. [21], we obtain the discretized

characteristic equation

nodei (l_<i_<N)'

· · i · =_'_ci ·i "i c_yi+_ c_?i__ + q vi+2 c_ c_ yi+l
(_7)· ' i

(6C/1 2ci2 yi c_ 4ci_ c_ yi-1 Cl yi-2 i ' ih4 _-_) + (h_ h4 5--h) +__ +_r - o.

As the variable coefficients c_ to cs in Eq. (14) could be functions of x they are

denoted as c/1to c/5 at the nodal point i. Therefore, Equation (13) becomes

MY + C'i r + KY - 0, (18)

11



where Y is the solution vector, and M, C, and K stand for the mass, damping (in-

cluding gyroscopic terms), and stiffness algebraic coefficient matrices, respectively.

For the steady flow case, i.e., e - 0, if we assume a characteristic solution Y - ei_ty,

where Y represents the mode shape with the natural frequency w - 2Iff, the stable

system corresponds to Ira(co) _> 0 with Re(w) _ 0. We define the buckling instabil-

ity as Re(w) ---+ 0 with Ira(w) >_ 0, and the flutter instability as Ira(w) < 0 with

Re(w) _ O. Moreover, having the set of second-order ordinary differential equations

in Eq. (18), for the case of pulsatile flow, we now introduce a new solution vec-

tor q - (Y, '¢), and replace Eq. (18) with the following system of 2N first-order

differential equations with periodic coefficients

(l- A(t)q, (19)

where

o i ]_M-1K _M-lC ·

Of course, the stability analysis of the trivial solution of Eq. (19) also applies

to the stability of solutions near the fixed point of the nonlinear dynamical system

with the Jacobian matrix A(t). For this nonautonomous system, the matrix A(t)

has a period To. According to the Floquet theory, the fundamental matrix satisfying

Eq. (19) can be expressed as the function of a periodic nonsingular matrix Q(t),

with the period To, and a constant matrix D,

q(t) -- Q(t)e rD. (20)-

Therefore, the eigenvalues of the matrix D, denoted by/3, determine the stability

of Eq. (19), and we obtain

12



q(t+ To)- q(t)N, (21)

with the monodromy matrix N - eT°D.

The eigenvalues of the matrix N, denoted by/k, are related to the eigenvalues/3

of the matrix D by

1

/3- _(Zogl_l + iarg_), i- _l. (22)

It is clear that only the real part of/3 is uniquely defined. If we assign

q(0)--I, (23)

where I is the identity matrix, we obtain,

N- q(To). (24)

In order to derive the monodromy matrix N, we numerically integrate Eq. (19),

together with the initial condition (23), using the second-order Runge-Kutta method,

i.e._

q(t + At) -- q(/) + At(kl + k2)/2, (25)

where

kl- A(t)q(t),

k2 - A(t + At)(q(t) + AtA(t)q(t)).

The i th column of the matrix N corresponds to the numerical solution of Eq. (19)

with the i th column of the identity matrix I as the initial condition. In general, due to

the explicit nature of the Runge-Kutta scheme, the construction of the monodromy

13 .



matrix can be very expensive. The detailed discussion on the selection of a proper

time step is available in Ref. [23].

4 Numerical Results

We study the stability issues for a particular pipe system design with the following

physical parameters: p- 1000 kg/m3; m- 2.12 kg/m3; 1 - 2.392 m; L- 1.135 m;

xo - 2.4 m; yo - 6.155 m; R_ - 0.02 m; Ro - 0.025 m; Re - 0.035 m; g - 9.8 m/s2;

E - 70 GPa; C} - 0.004Ir; C_ - 0.5_'Ri/1; and Cb - 0.01257r.

For the steady flow case, Figure 4 shows the loci of the fourth mode in the

complex w plane as a function of the dimensionless velocity u - V E1 Uil, i.e.,

U_ - 13.28u. We find that the fourth mode is the mode in which, for a sufficiently

high value of u, flutter instability can happen. We note that friction forces have

positive effects on avoiding flutter instability, and the longer the outer pipe length,

the less likely that flutter will occur. Similarly, as depicted in Fig.. 5, friction forces

have positive effects on delaying the buckling instability. However, the longer the

outer pipe length, the more susceptible the inner pipe is to buckling. A more

elaborate study on the dependence of the critical buckling velocity Uc on the outer

pipe length, friction, and gravitational forces indicates, as shown in Fig. 6, that there

exists a transition region around L/1 - 0.6. In general, the effects of gravitational

forces are not as significant as those of frictional forces.

For the pulsatile flow case, we denote v:oi as the i tn natural frequency of the

corresponding steady flow case with both gravity and friction effects. As discussed

in Refs. [1], [12], and [18], although the numerical Floquet analysis is lengthier than-

the Bolotin method, it includes both the parametric (v:o/Wo_- 2/k, k - 1, 2, 3, ...)

and combination instabilities (CVo/(Woi- o;oj) -- l/k, k - 1,2,3,...). Figure 7

14



shows the dynamic instability regions for different cases; as can be seen, gravity and

friction effects are not as significant as the outer pipe length / with respect to the

dynamic stability issues.

5 Bolotin Method

In this section we consider the case of a pipe system with the same inner and outer

pipe length. To simplify the expression for the eigenfunctions satisfying the beam

equation and its associated boundary conditions, we ignore frictional forces, the

axial load at the tip of the inner tubular beam, and, in general, the gravitational

forces. As a consequence of Eq. (12), the forms of _0 and _l, and the assumed

structure of the pulsatile inner pipe flow, we have

T - piAi - (l - x)pAiUiwoe sin wot, (26)

while the coefficients cl to c6 in Eq. (14) take on the following form'

cl = EI,

c2 -- pAl[ri 2(1 +e cos Wot)2 + (x - 1)pAi[Tiwoe sin Wot+ XpAoU_,

ca -- 2pAiUi(1 + ecoswot) + 2xpAoUe, (27)
c4 - m+ pAi+ xpAo,

C5 -- O_

c6 ---- O.

In addition, we may rewrite c2 and cs in the form

c2 - _2 + 5_e cos wot + (x - 1)a2e sin wot + 82ac2 cos 2wot, (28)
ca -- aa + c3e cOSWot,

_

with

15



_2 __ pAi_riCao,
_ - pA_/2,
_a -- 2pA_U_+ 2XpAoUe,
c3 - 2pAiUi,

and obtain the following governing partial differential equation:

04Y 51e O:ot+ (x --I)_22e cos _x2+Cl_x--4x4 + (c2 + cos sin wot+ 532e2 2Wot)02y (29)
(c3+ 53ecosWot)02y 02yOxOt+ c40-t7 = O.

We express the solution of Eq. (29) in the form of a series

C_

y(x, t) -- _ aj(t)qbj(x), (30)
j=l

where _bjis the jth eigenfunction corresponding to eigenvalue Xj for the system

d4 qbj 4
=,kj¢j, O<x<l, (31)dx4

with the boundary conditions

4>_(o)- _'j(o)- o,
cyj(l) - (5_'"(1) - 0 '_'3

Moreover, the eigenvalue /_j satisfies the transcendental algebraic equation [6]

1 + cos Ajl cos hail - O, j - 1, 2, ... (32)

and the corresponding _bjis given by

c)j(x) -- (cos/kjx - coshAjx) + cfi(sin ,kjx - sinhAjx), (33)
crj - (sin _jl - sinh/kjl)/(cos Ajl + cosh_jl).

Of course, we also have the following orthogonal relations

16



rio_c)j(x)c)k(x)dx -- 0, j y_k, (34)

f0__';(_)_i_(_)_- o, j _ k. (35)

Substituting Eq. (30) into Eq. (29), multiplying the resulting equation by _bk(x),

and integrating from x - 0 to x - l, we obtain the following equation:

OO

C4ak -4- E { (C3 -4- C3c COS WoT_)Okja j -]- (C2 -Jr-C1¢5COS Wo_ -+- CIC2 COS 2Wot)pkjaj+
, j=l (36)

4
_2eqkjaj sin wot} + ClAkak-- O,

where

/a - fo_4}_x,

/0'I (37)

pkj fo 4k4'j_x/_k,

/o'qkj (x- l)c_k_'jdx/_k.

Notice that some analytical expressions exist for Eq. (37), and in this work, we

choose to use numerical integrations. As in Ginsburg [9], we select a two-term series

expansion in Eq. (30), i.e., j - 1, 2. In this manner, we obtain as the coupled

equations for al(t) and a2(t) which result from Eq. (36) the following:

c4al -4- (C3 -[- C3_5COS Cdo_)(Ollal -+- 012a2) -4- (6'2 -1- _1([ cos (Mo_ _4__3([2 cos 2CVot)(pllal+

pl2a2) + c2esinvvot(qllal + ql2a2) + clA4al -- O,
(38)_

c4a2 nt- (c3 '+' C3e COS (Mot) (021(_1 'q- 022a2) --[- (c2 -Jr-c1_5COS(Mot 'Jr- C23e2COS 20Jot)(P21al+

P22a2) + c2esinoJot(q21a1 + q22a2)+ ClA4a2-- O.
(39)

17



The coefficients in Eqs. (38) and (39) are periodic with the period To and the

transition from stability to instability is marked by the existence of a solution with

the period To or 2To.

The solutions associated with the primary instability at _o/Woi - 2/k, k -

1, 3, 5, ... correspond to solutions with the period 2To and are constructed from the

Fourier series:

ai(t) - Z rij cos _wot + Sij sin _wot , i-1,2 (40)
j--1,3,5,...

while solutions associated with the secondary instability at cuo/woi - 2/k, k -

2, 4, 6, ... correspond to solutions with the period To and are constructed using the

Fourier series:

ai(t) -- _eio + _ eij cos _wot + fij sin _wot , i--1,2 (41)
j=2,4,6,...

The primary principal instability boundary is generated by solutions of the form

(40) with j - 1. Thus, truncating the series in Eq. (40), as in Ginsberg [9], we have

1 1

al(t) - ri cos _wot + si sin _wot, i - 1, 2 (42)

with ri - ril and si - sil. Substituting Eq. (42) into Eqs. (38) and (39), using

various trigonometric relations, and collecting the coefficients of the linearly inde-
1 1

pendent terms sin _oJot and cos _wot, we obtain the system of algebraic equations

Mi1 M12 M13 M14 ri 0

M21 M22 M23 M24 81 __ 0 (43)-
Mai M32 M33 M34 r2 0
M41 M42 M43 M44 82 0

where

18



- 2/4 + c2Pll + eS_pll/2 + cia 4,Mll -- -C4Wo

M_ - _o_O:o/2+ _o_:o/4 + _e_q_/2,
Mia -- c-2pl2+ eS_pl2/2,
M14 = c3012Wo/2 -]- fc3012Wo/4 -1- _c2q12/2;

M_ = -_o_:o/2 +_o_:o/4 +_a_q_/2,
~1

M22 ---- -c4wo2/4 + c2Pll -- c2Pll/2 + cia 4,
M_ = -_o_o/2 +_o_:o/4 +_a_q_/2,

-- ~1

M24 -- c2P12 - c2P12/2;

Mai -- c-2P21+ e5_p21,
3//32 - c-ao21_o/2 + eaao21wo/4 + ea_q21/2,

- -/V/aa = --C4Wo2/4 + c2p22 + ec_P22/2 + C1A4,

Ma4- _-ao_._o/2+ _aao_o/4+ _a_,q_._/2;
M_ = -_ao_o/2+_aao_o/4+ _alq_._/2,
.3//42 -- C'-2P21-- ec21P21/2,
M43 -' -U3o22COo/2+ ecao22Wo/4+ ec'2q22/2,
M44 -- -C4Wo2/4 + c2p22- eclp22/2 + ciA}.

The existence of the solution of the form (42) corresponds to detMij - O. Using

this criterion, we may obtain the dynamic stability information associated with

various design parameters, such as e and o:o. Figure 8 shows that the results derived

from the Bolotin method and the Floquet theory match with each other. The

advantage of using the Bolotin method is, of course, its simplicity and efficiency;

however, when considering more terms in the series expansions, a derivation based

on the Bolotin method can be extensive, and in addition, the Bolotin method is

limited to the parametric instability analysis [18].

6 Conclusions

Based on the mathematical model for a submerged concentric pipe system with both

unconfined and confined external flows, we have studied both static and dynamic

stability issues relating to the pipe system design. We have presented the ranges
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of both buckling and flutter instability for pipes conveying steady flows for a case

study. For the pipes conveying pulsatile fluids, we have also presented two methods

to determine the regions of dynamic instability. We find that the outer pipe length

is a more important design factor than gravity (relating to inclination angle and

submerge depth) and friction. For the inner pipe conveying pulsatile flow, the lowest

critical perturbation frequency is nearly twice the second system natural frequency.

However, we note that for current pipe system designs with reasonable flow rates,

the concentric pipe system is stable. The procedure implemented in this paper

clearly shows much promise in assisting the design for the silo piping system.
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A-A Section

A

Y "_ 1

Z

/

Figure 2' The concentric piping equilibrium configuration.
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Figure 3' Finite difference stations on the tubular beam.
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Figure 4: Flutter instability of the fourth mode with Ui/Ue - 1.7. (Twenty-one grid

points.)
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Figure 5' Buckling instability of the first mode with Ui/Ue - 1.7. (Twenty-one grid

points.)
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Figure 6' Critical buckling velocity vs. the outer pipe length with Ui/Ue - 1.7.

(Twenty-one grid points.)

O7/.../ i i i I I

X
- X -

2.6 - -: 1../1=1 mo (0o3 Instability zone x

x: !_/1=0.4745 x
×
X -

2.5 - +: Without friction effects x
×

o: Withoutgravityeffects x
×

2.4- xx
X

x Instability zoneX

2.3- Xx
x

X
X

S °
_o2.2- x x -X
S (0o- 2(0o2 x

2.1- x
X

2 - Instabilityzone

1.9-

1.8 - -

0.2 0.25 03 0.35 04 0.45 0.5

£
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with five grid points.)

24



2.5 i i i i

2.4 - +: Bolotin method

o: Floquet theory -I-
+

2.3- + -
+

+
+ 0

+
+ 0

2.2- + -
+ 0

+
+ 0

+
+ 0

.?.1- ++ o
++ 0 Instability region

o++
0 ++2-

0 + +
0 +

1.9- _ +
o+ +

0 + +

'b +
1.8- +0 + '

+

1.7 i I t I
0.25 0'3 0.35 0.4 0.45 0.5

Figure 8' Results derived from the Floquet theory and the Bolotin method. (Eleven
grid points for spatial discretization.)
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