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SUMMARY

Over the last decades, general-purpose computing stack and its abstrac-

tions have provided both performance and productivity, which have been the

main drivers for the revolutionary advances in IT industry. However, the com-

putational demand of emerging applications grows rapidly and the rate of data

generation exceeds the level where the capabilities of current computing sys-

tems can match. The challenges have coincided with the Dark Silicon era in

which conventional technologies offer insufficient performance and energy effi-

ciency. Thus, it is timely to move beyond conventional techniques and explore

radical approaches that can overcome the limitations of general-purpose sys-

tems and deliver large gains in performance and efficiency. One such approach

is specialization, where the hardware and systems are developed for a domain

of applications. However, the specialization creates a tension between the per-

formance and productivity, since (1) programmers need to delve into the details

of specialized hardware, and (2) perform low-level programming. Hence, the

objectives are (1) delivering large gains in performance and efficiency (2) while

retaining automation and productivity through high-level abstractions. Achiev-

ing both of these conflicting objectives is a crucial challenge to place the spe-

cialization techniques in a position of practical utility, which is the main focus of

this dissertation research. My works offer algorithm-driven computing stacks,

which span from algorithms and languages to micro-architectural designs. I

have primarily focused on two paradigms of specialization: acceleration and

approximation.

xvii



Chapter 1

INTRODUCTION

Conventionally, general-purpose computing has offered both performance and

productivity, which delivered numerous capabilities for our lives. However, the

computational demand of emerging applications grows rapidly and the rate of

data generation exceeds the level where the capabilities of current computing

systems can match. The challenges have coincided with the Dark Silicon era

in which conventional technologies offer insufficient performance and energy

efficiency. To tackle these challenges, community has started exploring radi-

cal approaches that can overcome the limitations of general-purpose systems

while providing large performance and efficiency benefits. In this dissertation,

we focus on one such solution, hardware specialization. While the specializa-

tion techniques offer significant gains in performance and efficiency, they cre-

ate a tension between the performance and productivity, since (1) programmers

need to delve into the details of specialized hardware, and (2) perform low-level

programming. Hence, the objectives are (1) delivering large gains in perfor-

mance and efficiency (2) while retaining automation and productivity through

high-level abstractions. Achieving both of these conflicting objectives is a cru-

cial challenge to place the specialization techniques in a position of practical

utility, which is the main focus of this dissertation research. My works offer

algorithm-driven computing stacks, which span from algorithms and languages

to micro-architectural designs. I have primarily focused on two paradigms of
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specialization: acceleration and approximation. My efforts in acceleration lever-

age algorithmic insights to redefine the hardware-software abstractions and en-

able programmers to automatically utilize hardware accelerators (e.g., FPGAs)

in scale-out setting for emerging workloads, such as data analytics and ma-

chine learning. For approximation, I have devised programming language and

crowdsourcing software engineering solutions that improve the productivity and

utility of approximation technologies, and bridges the gap between unconven-

tional research innovations and practical real-world applications.

1.1 Resolving Performance and Productivity for Accelera-

tion of Machine Learning

A growing number of commercial and enterprise systems increasingly rely on

compute-intensive Machine Learning (ML) algorithms. Hardware accelerators

offer several orders of magnitude higher performance than general-purpose

processors and provide a promising path forward to accommodate the needs

of ML algorithms. Even software companies have begun to incorporate vari-

ous forms of accelerators in their data centers. Microsoft’s Project Brainwave

integrated FPGAs in datacenter scale for real-time AI calculations and Google

developed the TPU as a specialized matrix multiplication engine for machine

learning. However, not only do the benefits come with the cost of lower pro-

grammability, but also the acceleration requires long development cycles and

extensive expertise in hardware design. Moreover, conventionally, accelera-

tors are integrated with the existing computing stack by profiling hot regions

of code and offloading the computation to the accelerators. This approach is

suboptimal since the stack is designed and optimized merely for CPUs, the

sole processing platform up until very recently. To tackle these challenges, we

2



developed cross-stack and algorithm-hardware co-designed solutions that re-

build the computing stack for acceleration of machine learning. These solutions

break the conventional abstractions of computing stack by reworking the entire

layers of computing stack, which include programming language, compiler, sys-

tem software, accelerator architecture, and circuit generator.

1.1.1 Full Stack Solution for Scale-Out Acceleration of Learning

Recently, community has started exploring mostly single-node acceleration tech-

niques to meet the massive compute demand of ML. In a concurrent yet disjoint

effort, others have also explored the use of distributed general-purpose sys-

tems (e.g., Spark and Hadoop) as a mean to scale the learning frameworks.

However, there is a gap between these accelerators and scale-out systems

due to the lack of solutions that enable distributed acceleration of learning at

scale. To bridge these two paradigms, we developed CoSMIC [1], a full com-

puting stack that constitutes language, compiler, system software, template ar-

chitecture, and circuit generators, which enable programmable acceleration of

learning at scale. CoSMIC enables programmers to exploit scale-out accel-

eration using FPGAs and Programmable ASICs (P-ASICs) from a high-level

and mathematical Domain-Specific Language (DSL). Nonetheless, CoSMIC

does not require programmers to delve into the onerous task of system soft-

ware development or hardware design. CoSMIC achieves three conflicting ob-

jectives of efficiency, automation, and programmability, by integrating a novel

multi-threaded template accelerator architecture and a cohesive stack that gen-

erates the hardware and software code from its high-level DSL. CoSMIC can

accelerate a wide range of learning algorithms that are most commonly trained

using parallel variants of gradient descent. The key is to distribute partial gra-

dient calculations of the learning algorithms across the accelerator-augmented

3



nodes of the scale-out system. Additionally, CoSMIC leverages the paralleliz-

ability of the algorithms to offer multi-threaded acceleration within each node.

Multi-threading allows CoSMIC to efficiently exploit the numerous resources

that are becoming available on modern FPGAs/P-ASICs by striking a balance

between multi-threaded parallelism and single-threaded performance. CoSMIC

takes advantage of algorithmic properties of machine learning to offer a spe-

cialized system software that optimizes task allocation, role-assignment, thread

management, and internode communication. While accelerators gain traction,

their integration in the system stack is not well understood. CoSMIC takes an

initial step toward such an integration for an important class of applications,

while providing generality and a high-level programming interface.

1.1.2 Algorithmic Approaches to Accelerate Machine Learning.

As a preliminary effort for the CoSMIC project, in collaboration with my fellow

graduate students, we developed a single-node FPGA accelerator generation

framework for data analytics, dubbed TABLA [2], which enables FPGA accelera-

tion from high-level specifications of algorithms. We open-sourced the code and

it is available at http://act-lab.org/artifacts/tabla. TABLA leverages the insight

that many learning algorithms can be solved using stochastic gradient descent

that minimizes an objective function. The solver is fixed while the objective

function changes with the learning algorithm. Therefore, TABLA uses stochas-

tic optimization as the abstraction between hardware and software. Conse-

quently, programmers specify the learning algorithm by merely expressing the

gradient of the objective function in our domain specific language. TABLA then

automatically generates the synthesizable implementation of the accelerator

for FPGA realization using a set of template designs. Real hardware mea-

surements show orders of magnitude higher performance and power efficiency
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while the programmer only writes 60 lines of code.

As a follow-on work, we developed DNNWEAVER [3], a framework that au-

tomatically generates a synthesizable accelerator for a given (DNN, FPGA)

pair from a high-level specification in Caffe. To achieve large benefits while

preserving automation, we devised hand-optimized design templates that the

DNNWEAVER framework uses to generate the accelerators. First, DNNWEAVER

translates a given high-level DNN specification to its novel ISA that represents

a macro dataflow graph of the DNN. The DNNWEAVER compiler is equipped

with our optimization algorithm that tiles, schedules, and batches DNN op-

erations to maximize data reuse and best utilize target FPGA’s memory and

other resources. The final result is a custom synthesizable accelerator that best

matches the needs of the DNN while providing high performance and efficiency

gains for the target FPGA.

1.2 Improving Productivity in Approximate Computing

Approximate computing is another form of specialization, which brings forth an

unconventional yet innovative computing paradigm that trades accuracy of com-

putation for otherwise hard-to-achieve performance and efficiency. This new

computing paradigm is built upon the property that emerging applications (e.g.,

sensor processing, translation, vision, and data analytics) are increasingly toler-

ant to imprecision. Leveraging this property, approximation techniques are able

to provide orders of magnitude higher performance and efficiency gains, while

maintaining the acceptable level of functionalities. However, these techniques

are only pragmatic when (1) they are easy to use for the programmers, and

(2) they produce acceptable output quality from the perspective of application

users. To this end, my research efforts for approximation focus on improving
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productivity and utility of approximation technologies by developing program-

ming language and crowdsourcing-based software engineering solutions.

1.2.1 Practical Approximate Programming

While approximate computing is currently a hot area, the programmability of

approximation techniques is still one of the pivotal challenges to enable their

practical and prevalent use. State-of-the-art approximate programming models

require extensive manual annotations on program data and operations to guar-

antee safe execution of approximate programs. The need for extensive manual

annotations hinders the pragmatic use of approximation techniques. We devel-

oped a small set of language extensions, dubbed FlexJava, that significantly re-

duces the annotation effort, paving the way for practical approximate program-

ming [4]. These extensions enable programmers to annotate approximation-

tolerant method outputs. The FlexJava compiler, which is equipped with an

approximation safety analysis, automatically infers the operations and data that

affect these outputs and selectively marks them as approximable while provid-

ing safety guarantees. The automation and the language-compiler co-design

relieve programmers from manually and explicitly annotating data declarations

or operations as safe to approximate. FlexJava is designed to support safety,

modularity, generality, and scalability in software development. Compared to

other models, FlexJava largely reduces the number of annotations and pro-

grammers spend significantly less time annotating programs based on our user

study.
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1.2.2 Crowdsourcing Quality Target Determination in Approximate Com-

puting

Approximation is useful only if its impact on application output quality is ac-

ceptable to the users. However, there is a lack of systematic solutions and

studies that explore users’ perspective on the effects of approximation. We

sought to provide one such solution for the developers to probe and discover

the boundary of quality loss that most users will deem acceptable. We pro-

posed AXGAMES, a crowdsourced solution that enables developers to readily

infer a statistical common ground from the general public through three enter-

taining games [5]. The users engage in these games by betting on their opinion

about the quality loss of the final output while the AXGAMES framework collects

statistics about their perceptions. The framework then statistically analyzes the

results to determine the acceptable levels of quality for a pair of (application,

approximation technique). The three games are designed such that they ef-

fectively capture quality requirements with various tradeoffs and contexts. We

recruited 700 participants/users through Amazon’s Mechanical Turk to play the

games that collect statistics about their perception on different levels of qual-

ity. Subsequently, the AXGAMES framework uses the Clopper-Pearson exact

method statistically project the quality level that satisfies a given percentage of

users. The developers can use these statistical projections to tune the level of

approximation based on the user experience.

In addition to the aforementioned works, I have worked on many collabora-

tive projects that aim to develop hardware-software co-designed approximation

techniques. These techniques seek opportunities for approximation at various

components of computing stack, which span from neural accelerators [6, 7] and

memory subsystems [8] to GPUs [9] and hardware description languages [10].
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1.3 Thesis Contributions

This dissertation makes the following contributions.

1. We propose a series of full-stack solutions that bridge the semantic gap

between the programmers and specialized accelerators by leveraging the

algorithmic insights of Machine Learning algorithms. We provide CoSMIC–

Computing Stack for ML acceleration In the Cloud–that offers a complete

computing stack for scale-out acceleration of machine learning, which

comprises a domain-specific language, a compiler, a specialized run-

time system, and a multi-threaded template architecture for the accel-

erator. As its prior effort, we propose TABLA–a single node predecessor

of CoSMIC–that enables the automated acceleration of Machine Learn-

ing on FPGAs. DnnWeaver is another work in the same line of research,

which enables the acceleration of DNN inference on FPGAs from high-

level specification of DNN models. Chapter 2 describes these solutions

in more detail.

2. We provide a practical and automated programming model, FlexJava, for

approximation techniques, which leverages automated program analysis

techniques for more effective approximate programming. Such effort is

imperative to enabling the widespread applicability of approximation tech-

niques. The FlexJava language is designed to be intuitive and support

essential aspects of modern software development: safety, modularity,

generality, and scalability. We believe that FlexJava takes an effective

and necessary step toward leveraging approximation in modern software

development. Chapter 3 elaborates the language constructs, analysis,

and evaluation in detail.
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3. We provide an automated programming tool, AxGames, that methodically

utilize crowdsourcing in identifying the desirable application output quality

from the final users. This readily available tool provides a path for the

research community to better assess their innovative approximation tech-

niques. The framework enables developers to conveniently study user

responses at scale and gain statistical confidence when deploying ap-

proximated applications. Our results from examining a variety of applica-

tions show the necessity of solutions such as AxGames since the crowd’s

response to approximation varies drastically across different applications,

tradeoff, and context. These results suggests that AxGames can add an

unexplored, yet important, dimension to the research and development in

approximate computing. Chapter 4 illustrates the three games, statistical

analysis, and experiments including user studies, in more detail.
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Chapter 2

SCALE-OUT ACCELERATION OF MACHINE LEARNING

2.1 Introduction

Prevalence of interconnected compute platforms has transformed the IT indus-

try, which is now rapidly moving towards scale-out solutions that extract in-

sights from data. Following this trend, systems that enable distributed comput-

ing on general-purpose platforms are gaining eminence (e.g., Spark [16] and

Hadoop [17]). In a concurrent yet disjoint effort, due to the diminishing benefits

from general-purpose processing, the community is developing mostly single-

node accelerators for a variety of applications, including machine learning [18,

19, 20, 21, 22, 23, 24, 25, 3, 2]. However, there is a gap between scale-out

systems and accelerators due to the lack of solutions that enable distributed

acceleration at scale. Moreover, it is not enough to just design and integrate

accelerators independent from algorithms and programming interfaces. We

need a holistic approach that reworks the fundamental hardware-software ab-

stractions and enables a broad community of programmers to seamlessly utilize

accelerators at scale for a specific domain of applications. Reusing the tradi-

tional stack for scale-out acceleration is inadequate as the entire computing

stack is designed and optimized merely for CPUs, which were the sole pro-

cessing platform up until recently. To that end, this work sets out to design a full
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and specialized computing stack, dubbed CoSMIC1, for scale-out acceleration

of learning.

CoSMIC offers the entire stack of layers to execute a wide range of learning

algorithms on accelerator-augmented scale-out systems. These layers com-

prise a domain-specific language, a compiler, a specialized runtime system,

and a multi-threaded template architecture for the accelerator. The template

architecture can be automatically tailored for deployment on FPGAs or realiza-

tion as custom Programmable ASICs (P-ASICs). FPGAs offer flexibility as well

as efficiency and are becoming readily available in different markets [26, 27,

28, 29], now even in Amazon Elastic Compute Cloud (EC2) [29]. Not only have

FPGAs become a lower-cost alternative to ASICs, but also serve as prototypes

for custom chip design. However, designing efficient accelerators is onerous

even when targeting a single-node FPGA and requires extensive expertise in

both hardware design and application domain. This challenge is exacerbated in

the scale-out setting due to the added complexity of task distribution and com-

munication. Additionally, P-ASICs impose high non-recurring engineering costs

over long design periods and usually need unintuitive or narrow programming

interfaces. Furthermore, as technology is scaled, modern FPGAs and ASICs

can harbor an ample amount of resources, whose effective utilization necessi-

tates rethinking accelerator design paradigms. Therefore, to realize scale-out

acceleration, we address the following triad of challenges when devising the

CoSMIC full stack: (1) efficiently exploiting large number of on-chip resources,

(2) enabling distributed acceleration using accelerator-augmented nodes, and

(3) relieving programmers of distributed system coordination and the onus of

hardware design. Furthermore, CoSMIC targets a wide class of learning algo-

rithms and provides support for new learning models and algorithmic changes

1CoSMIC: Computing Stack for ML acceleration In the Cloud
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to the existing ones. To realize CoSMIC we were required to address the fol-

lowing research challenges.

(1) How to enable scale-out acceleration of many ML algorithms, yet dis-

engage programmers from hardware design.

To tackle this challenge, CoSMIC leverages a combination of two theoretical

insights: (1) a wide range of learning algorithms are stochastic optimization

problems, solved using a variant of gradient descent [30, 31, 2]; (2) differen-

tiation is a linear mathematical operator, and thus the gradient over a set of

data points can be calculated as an aggregated value over the partial gradients

computed in parallel for each point [32, 33, 34, 35, 36, 37, 38]. A variety of

learning algorithms can be parallelized using these two insights. Examples in-

clude, but are not limited to, recommender systems, Kalman filters, linear and

nonlinear regression models, support vector machines, least square models,

logistic regression, backpropagation, softmax functions, and conditional ran-

dom fields. To implement these algorithms, one needs to have (1) the partial

gradient calculation function, (2) the aggregation operator, and (3) the number

of data points that are processed before each aggregation. The first layer of the

CoSMIC stack exposes a high-level mathematical language to programmers to

specify these three constructs, which capture the entirety of the learning algo-

rithm. The next layer of the CoSMIC stack fully automates the scale-out ac-

celeration. The CoSMIC compiler maps and schedules the operations on the

distributed accelerators. The next layer, a specialized runtime system, assigns

roles and tasks for the scale-out system components and orchestrates the dis-

tributed calculation of the partial gradients and their iterative aggregation. The

final layer of the CoSMIC stack provides a novel multi-threaded template archi-

tecture for the accelerators. This layer can be automatically customized and

tailored according to the high-level specification of the learning algorithm and
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the constraints of the system.

(2) How to design customizable accelerators that efficiently exploit the

large capacity of advanced process technologies.

Advanced manufacturing processes have made integration of compute and

storage resources on the chip. As a result, even modern FPGAs offer large

capacities—e.g. Intel Arria 10 [39] instances comprise 1,518 DSP slices with

6.6 MBytes of storage and Xilinx UltraScale+ in Amazon EC2 [29] includes

6,840 DSP slices and 43 MBytes of storage. A single instance of learning

algorithm may not effectively exploit resources since it is limited by the fine-

grained parallelism in its Dataflow Graph (DFG). Therefore, CoSMIC offers a

novel Multiple-Instruction Multiple-Data (MIMD) multi-threaded template archi-

tecture that divides the resources across multiple instances of the learning al-

gorithm as independent threads. The last layer of CoSMIC customizes this

template and generates the final accelerator by striking a balance between the

number of threads running on the chip and the resources assigned to each

thread. The code generation differs for FPGAs and P-ASICs. For FPGAs, the

generated core is tailored to one specific learning algorithm as the chip can be

erased and reprogrammed for different applications. For P-ASICs, the gener-

ated accelerator is a programmable superset of the design that fits in the area

and power budget of the chip. Any algorithm that can be expressed using the

DSL can be compiled and accelerated on the generated P-ASIC. The gener-

ated code and template are in the form of Register-Transfer Level (RTL) Verilog

code. The template architecture is designed, optimized, and implemented by

experts once in Verilog, which ensures efficiency although CoSMIC generates

the accelerators automatically. More specifically, the template is designed as

a two-dimensional matrix of compute units to ensure data dependencies and

within-thread communications do not curtail its scalability to rather large num-
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ber of processing elements. We also designed a tree-like bus to connect the

rows and allocated bidirectional communication across columns. Hence, the

communication latency only grows by a logarithmic order with an increase in

the number of compute units, improving on-chip scalability. Furthermore, CoS-

MIC’s backend compiler minimizes data movement by mapping operations to

where their operands are located. This hardware-software co-design that aims

to maximize effective resource utilization ensures effective utilization of on-chip

resources, especially when they are plentiful.

(3) How to devise the system software that is specialized for distributed

multi-threaded acceleration of learning.

To be inline with the recent industry trends in integrating accelerators in data-

centers [27, 28, 29], CoSMIC targets commodity distributed systems in which

accelerators sit on the high-speed expansion slots (e.g., PCIe). For general-

ity, we assume no special connectivity between the accelerators although such

connectivity will most likely improve the benefits of CoSMIC. CoSMIC aims to

best utilize the system-wide resource on both CPUs and accelerators. CoSMIC

achieves this objective by offering a lean and specialized system software layer

that exclusively supports learning algorithms that can be trained using parallel

variants of stochastic gradient descent. This specialized layer allows the CoS-

MIC stack to assign the partial gradient calculation onto the accelerators while

the CPUs perform aggregation and networking. This task assignment alleviates

the use of accelerator resources for TCP/IP communication, avoids data copies

to accelerator boards for aggregation, and enables using commodity distributed

systems with CoSMIC. Moreover, it maximizes system-wide resource utiliza-

tion as well as portability to different accelerator boards. Within each node, the

system software maintains an internal thread pool. These threads handle the

communication with the remote peer nodes. Internally managing this thread
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pool avoids costly OS-level context switches. The system software layer also

maintains another internal thread pool that asynchronously aggregates the par-

tial gradients. In addition, this layer assigns roles to the nodes and orchestrates

the exchange of partial gradients and their aggregation.

We evaluate the benefits of the CoSMIC stack using 10 different learning ap-

plications from various domains including medical diagnosis, computer vision,

finance, audio processing, and recommender systems. We compare CoSMIC

against Spark, a popular framework for scale-out computing using the opti-

mized MLlib machine learning library [40]. On average, a 16-node CoSMIC

with UltraScale+ VU9P FPGAs offers 18.8× speedup over a 16-node Spark

system with Xeon E3 Skylake CPUs while the programmer only writes 22–55

lines of code. When scaling the nodes from 4 to 16, CoSMIC’s performance

improves by 2.7×, while Spark’s performance scales only by 1.8×. We also

compare the CoSMIC system with the distributed GPU (NVIDIA Tesla K40c)

implementation. We report the benefits of CoSMIC for two P-ASIC implemen-

tations that match the compute resources and off-chip bandwidth of the FPGA

and the GPU. On average, these P-ASICs offer 1.2× and 2.3× higher system-

wide performance, while the GPU delivers 1.5× speedup over FPGA system.

While using custom chips can improve computation time by 11.4×, the system-

wide performance benefits are limited to 2.3×. Finally, with CoSMIC’s novel

multi-threaded accelerator architecture, the FPGA and the two P-ASIC sys-

tems respectively achieve 4.2×, 6.9×, and 8.2× higher Performance-per-Watt

than the GPU system. These results confirm that CoSMIC is an effective and

vital initial step to enable acceleration of learning at scale. To this end, this

work not only contributes the full stack of CoSMIC, but also defines a new mul-

tithreaded accelerator architecture, a novel communication-aware scheduling

and mapping algorithm, and a lean and specialized system software for thread
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management and system orchestration.

2.2 Distributed Learning

The CoSMIC stack empowers programmers to exploit accelerator-augmented

distributed systems for a wide range of learning algorithms without requiring

them to deal with the laborious task of hardware design and system software

programming. Although providing higher performance drives this work, pro-

grammability and generality are its other two pillars. CoSMIC facilitates pro-

gramming by exposing a math-oriented DSL to programmers to express vari-

ous learning algorithms as stochastic optimization problems. The layers of the

CoSMIC stack compile this high-level specification to generate the accelerator

architecture, and offer the system software that orchestrates them for scale-out

execution. This stack is not designed for a specific ML algorithm. Instead, it is

adept at accelerating learning algorithms that can be trained using variants of

gradient descent optimizer. This section provides the theoretical foundation of

these type of algorithms.

2.2.1 Learning as Stochastic Optimization

CoSMIC targets a wide range of supervised machine learning algorithms. These

algorithms have two phases: training and prediction (inference). We focus on

training, as it is more complex and involves several passes of prediction-tuning

over the training data. Since training involves prediction, CoSMIC can acceler-

ate prediction as well.

Each machine learning algorithm is identified by a set of parameters (θ ) and

a transfer function (g), that maps an input vector (Xi) to a predicted output vector

(Yi). As Equation 2.1 illustrates, training is the process of finding θ such that
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the predicted output Yi = g(θ ,Xi) has a minimum difference from the expected

output Y ∗i for all input-output pairs (Xi,Y ∗i ) in the training dataset.

Find θ 3 {Loss = ∑
i

f (θ ,Xi,Y ∗i ) = ∑
i
〈g(θ ,Xi)−Y ∗i 〉} is Minimized (2.1)

This unique loss function (∑i f (θ ,X ,Y ∗)) defines each of the learning algo-

rithms in our target class. A machine learning algorithm learns the model (θ ) by

solving an optimization problem that minimizes this loss function (∑i〈g(θ ,Xi)−

Y ∗〉). To learn a model (θ ), optimization algorithms iterate over the training

data and gradually reduce the loss by adjusting the model parameters. One

of the most common [31, 30, 63] optimization algorithm is Stochastic Gradient

Descent (SGD). SGD is based on the observation that a function decreases

fastest in the negative direction of its gradient.

θ
(t+1) = θ

(t)−µ× ∂ ( f (θ (t),Xi,Yi))

∂θ (t)
(2.2)

As Equation 2.2 shows, each iteration t of SGD calculates θ (t+1) by updating

θ (t) in the negative direction of the gradient (∂ f ) with a learning rate (µ). The

process is repeated until the loss is minimized. The gradient function varies

with the learning algorithm, while the rest of the process is fixed. Hence, our

stack requires programmers to specify the algorithm by expressing the gradient

of its loss function ( ∂ f
∂θ

).

2.2.2 Parallelizing Stochastic Optimization

SGD only consumes one input-output vector (Xi,Yi) per iteration, traversing the

entire data sequentially. Thus, basic SGD is impractical for scale-out accel-

eration, where the training data is large and dispersed across multiple nodes.
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To enable scale-out acceleration, we exploit the insight that gradient is a linear

operator. Therefore, the gradient over a set of data points can be computed by

aggregating partial gradients calculated over partitions of this set. Different par-

allel variants of SGD [32, 33, 34, 35, 36, 37, 38] have been developed, which

differ in how they iterate over the partitions and aggregate the partial gradients.

For instance, the batched gradient descent algorithm [34] uses summation for

aggregation, whereas the parallelized SGD [33] uses averaging. Equation 2.3

shows the use of parallelized stochastic gradient descent algorithm [33], for

distributed learning.

Parallel
j:1→n

〈θ (t+1)
j = SGD

(
{XY1, ...,XYb},θ (t), f

)
〉 (2.3a)

θ
(t+1) =

∑ j θ
(t+1)
j

n
(2.3b)

As shown, each node independently performs the traditional stochastic gra-

dient descent for b input-output pairs ({XY1, ...,XYb}) and calculates a set of

partial updates, θ
(t+1)
j . These partial updates are aggregated with averaging,

which yields the overall update (θ (t+1)). Equation 2.3a and 2.3b are repeated

until the loss function f is minimized and the model is trained. The meta param-

eter b, called the mini-batch size, is the amount of local data that is processed

before each aggregation step. CoSMIC expects the programmer to provide the

gradient ( ∂ f
∂θ

), aggregation operator (σ ), and mini-batch size (b). Using only this

information, CoSMIC orchestrates the scale-out acceleration of the learning al-

gorithm. The next section discusses the accelerated execution flow and the

system software layer.
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Figure 2.1: Execution and acceleration flow within each node.

2.3 CoSMIC System Software

CoSMIC targets scale-out systems with commodity nodes that use off-the-shelf

CPUs. Each node hosts an accelerator board, identical across all the nodes

and installed on a high-speed expansion slot such as PCIe. The nodes commu-

nicate through conventional TCP/IP stack via a Network Interface Card (NIC).

We choose to use commodity host systems, networking hardware-software to

alleviate dependency on a particular part. To understand the specialized sys-

tem software layer of CoSMIC, we first need to delve into the overall execution

flow across the nodes of the scale-out system.

2.3.1 Execution and Acceleration Flow

Figure 2.1 illustrates a single node of the system. Each node stores a partition

(Di) of the training dataset. We have devised a multi-threaded ML accelerator

for the nodes, which will be discussed in Section 2.5. To utilize multi-threading

in the accelerator, the node further divides its data into equally sized sub-

partitions (Di1 , ..., Di j, ... Dim). These data sub-partitions are simultaneously
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processed by the accelerator. In Figure 2.1, each accelerator Threadi j calcu-

lates its own private partial gradient (θ (t+1)
i j ) by consuming a sub-partition of

the training data. After the partial gradient updates are calculated, the multi-

threaded accelerator aggregates them locally and produces the node’s partial

gradient update (θ (t+1)
i ). The host CPU sends this locally-aggregated partial

gradient update (θ (t+1)
i ) to a special node that maintains the trained model pa-

rameters for a group of nodes. We refer to this special node as a Sigma node,

while other nodes are called Delta nodes. The system software layer of CoS-

MIC performs the aggregation in a hierarchical manner to avoid overwhelming

a single Sigma node. In the first level of the hierarchy, the group Sigma node

calculates the group aggregate. In the next level of the hierarchy, a master

Sigma node combines the aggregates. Besides aggregation, the Sigma nodes

compute their own partial gradient updates, as they are also equipped with

accelerators. After the aggregation, the Sigma nodes distribute the updated

model parameters back to all the nodes and threads and invoke training for the

next mini-batch.

2.3.2 Task Assignment in the System Software

CoSMIC offers a lean and scalable system software layer that amortizes the

cost of OS-level context switches, networking, and general thread scheduling;

avoids unnecessary data copies; and matches tasks to the system resources.

To devise this layer, we leverage the observation that aggregation is significantly

less compute intensive than partial gradient calculations. Hence, the system

software layer assigns the partial gradient calculation to the accelerators, while

the CPUs perform aggregation and networking. This task assignment alleviates

the use of accelerator resources for TCP/IP communication, avoids data copies

to accelerator boards for aggregation, and enables using commodity distributed
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Figure 2.2: System software in a Sigma node.

systems. Moreover, it maximizes system-wide resource utilization and portabil-

ity to different accelerator boards. To avoid extra data transfer with the memory

and the host CPU, each accelerator internally aggregates the partial gradients

for all its worker threads. Delta nodes send these partially aggregated gradi-

ents to their corresponding Sigma node. The system software workflow in the

Sigma nodes is as follows.

Internal thread pools for networking and aggregation. Figure 2.2 illustrates

the system software and its subroutines in the Sigma nodes. The main objective

in devising these subroutines is to avoid the cost of generic thread management

(creation, scheduling, and context switches) and networking by exploiting the

specific execution flow of our class of learning algorithms. These subroutines

need to open a socket for each communicating node. A naive approach would

assign an active thread to handle each socket and spawn a thread to aggre-

gate the received partial gradients. In contrast, the CoSMIC system software

internally manages two thread pools, Networking Pool and Aggregation Pool as

shown in Figure 2.2, limiting the number of active threads and reusing them as

described below. When a Sigma node receives a partial update, our Incoming

Network Handler catches the recv event using the Linux epoll system call. The

epoll system call is effective since it does not require a linear scan on the list of

monitored sockets. The Incoming Network Handler assigns a thread from the

Networking Pool to copy the received data from the socket buffer in the kernel
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space to a Circular Buffer for aggregation (Figure 2.2). We use Circular Buffers

for concurrent networking and aggregation while each corresponding thread

deals with smaller portions of data. As soon as the first chunk of data is copied,

a thread from the Aggregation Pool starts processing the data and updates the

Aggregation Buffer. This buffer holds the results of overall aggregation. The

networking threads are data producers, while the aggregation threads are the

consumers. Since Sigma nodes communicate with multiple other nodes, this

approach uses the multi-threading capabilities of the CPUs to improve concur-

rency. The Circular Buffer reduces the memory required for aggregating partial

results from multiple sources while enabling overlap between communication

and computation. Our internally managed thread pools (1) alleviate the need

to create an active thread for each connection, limiting the number of active

threads; (2) reuse threads for different connections, mitigating the cost of con-

text switching; and (3) use a producer-consumer semantics between the two

thread pools, specializing their scheduling. These techniques avert the cost

of generic thread management (creation, scheduling, and context switches),

which is oblivious to the execution flow of machine learning.

2.4 The CoSMIC Stack

Figure 2.3 illustrates the layers of the CoSMIC stack and their interworking that

orchestrates Sigma and Delta nodes and enable scale-out acceleration. This

section discusses each layer briefly.

2.4.1 Programming Layer

Our stack makes the accelerator-augmented scale-out systems programmable

from a high-level DSL. With CoSMIC, programmers use our extension of the
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mu = 0.01; // learning rate
m = 3; // num of features
minibatch_size = 10000;

model_input x[m]; 
model_output y; 
model w[m]; 
gradient g[m]; 
iterator i[0:m]; 

h = sum[i](w[i] * x[i]);
c = y * h;
g[i] = ((c > 1) * (0 - y)) * x[i];

n = 10; // number of nodes
aggregator(n) {
      iterator j[0:n];

w[i] = (sum[j](w[i])) / n; }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
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  source  
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  *  

  sink  

***
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(b)
Figure 2.4: (a) Programmer specifies the classification algorithm as its gradient
and aggregation functions. (b) Translator outputs the DFG.

high-level language, developed in the prior work [2] that focuses on single-

FPGA acceleration of learning. We chose to extend this DSL since it has a

one-to-one mapping to mathematical formulations instead of providing linear

algebra primitives as proposed in the past [64]. Moreover, it is open source

and publicly available (http://act-lab.org/artifacts/tabla). Using the extended lan-

guage, programmers express the mathematical formula of the partial gradient

and the aggregation operator in a textual format. Additionally, the program-

mer declares the mini-batch size. Figure 2.4a illustrates how a programmer

uses our stack to accelerate the training of a binary classifier based on sup-

port vector machines. The first part of the code is the textual representation of

Equation 2.4.

Gradienti =


−y×Xi,

(
(∑i Xi×Wi)× y

)
> 1

0,
(
(∑i Xi×Wi)× y

)
≤ 1

(2.4)

The code has three segments: data declarations, gradient formulation, and
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aggregator specification. The DSL provides five data types: model input, model output,

model, gradient, and iterator. These types denote the semantics of the vari-

ables in learning algorithms, and the statements represent the mathematical

operations. For instance, the ∑i Xi×Wi term in Equation 2.4 is implemented

as sum[i](w[i] * x[i]), where x and w are declared as model input and model,

respectively. The iterator i represents the subscript in ∑i. The aggregation

function of the parallelized SGD, which averages the partial gradients, is spec-

ified by w[i] = sum[j](w[i]) / n. This high-level expression is then converted to a

Dataflow Graph (DFG) by the Translator (Figure 2.4b).

2.4.2 Compilation Layer

In a conventional computing stack, the next natural step after translation would

be compilation. However, in our specialized stack, the order of the steps is

different since the architecture of the accelerator has not yet been solidified.

First, the Planner (from the architecture layer) needs to produce the architec-

tural plan of the accelerator. In the FPGA case, this plan even depends on the

DFG of the learning algorithm. In the P-ASIC case, although this plan is not

dependent on the DFG, it still changes according to the chip constraints. The

back-edge from the architecture layer to the compilation layer in the left diagram

of Figure 2.3 illustrates the dependence of Compiler to the Planner. Once the

architecture is planned, the Compiler leverages our novel mapping/scheduling

algorithm to statically map operations to the accelerator Processing Engines

(PEs). This static mapping is converted to state machines and control units

that are embedded in the accelerator code for FPGA realization. For P-ASIC,

the mapping is converted to microcodes. This static scheduling strategy avoids

the von Neumann overheads and significantly simplifies the hardware which is

necessary for the efficiency of the accelerator. As detailed in Section 2.6, our
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mapping/scheduling algorithm also minimizes on-chip communication and alle-

viates the need for data preprocessing or marshaling. Compiler also generates

the schedule for the template architecture’s programmable memory interface

that feeds a large number of PEs and streams data in without the need for PEs

to request the data.

2.4.3 System Layer

Section 2.3 already detailed the system layer. The topmost component of this

layer is the System Director that assigns roles (Sigma or Delta) to the nodes

and then configures and initiates the corresponding system subroutines. This

role assignment is based on the system specification, which includes the total

number of nodes, the number of groups, and the accelerator type (Figure 2.3,

right).

2.4.4 Architecture Layer

In the conventional stack, this layer defines the Instruction Set Architecture

(ISA) of a microprocessor. In CoSMIC, this layer is responsible for planning

the architecture of the accelerator in accordance with the constraints of the tar-

get platform. The plan is generated with respect to our novel multi-threaded

template architecture, which is a parametric RTL Verilog of customizable de-

sign. This template architecture can accelerate multiple instances of the partial

gradients simultaneously. However, it is not specific to a learning algorithm and

can be shaped according to the constraints of the acceleration platform (e.g.,

area) and the DFG of the algorithm in the case of FPGA acceleration. Instead, it

is a two-dimensional matrix of customizable PEs that this layer needs stretches

or squeezes in either dimension to match the chip specifications. The main

challenge is allocating the chip resources in such a way that strikes a balance
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between the single-threaded performance and multi-threaded parallelism. The

Planner is responsible for this balanced plan by determining how many threads

will be accelerated simultaneously; how many PEs will be allocated to each

thread; and how the PE will be arranged in the 2D matrix of the accelerator.

For P-ASICs, the Planner determines the largest number of PEs that fits in the

area and power budget of the target chip. However, this metric depends on

the PE buffer capacity that is decided according to a set of benchmarks. After

determining the total number of PEs, the Planner steps are similar for P-ASICs

and FPGAs. Thus, we only discuss the Planner in the context of FPGAs for

brevity.

To determine these factors, the Planner takes in a high-level specification

of the FPGAs, which includes the number of DSP units, the off-chip memory

bandwidth, the number of on-chip Block RAMs (BRAMs), and the size of each

BRAM (Figure 2.3). The first step is determining the number of columns (=#

PEs in a row) and rows. The Planner uses the off-chip memory bandwidth

to first set the number of columns equal to the number of words that can be

fetched in parallel from memory (=off-chip bandwidth). Having fewer columns

would waste bandwidth, while more would increase pressure on the internal in-

terconnection between the PEs. The Planner will then determine the maximum

row count as rowmax =
# DSPs

# o f Columns .

Next, the Planner determines the number of threads and their PE allocation

through design space exploration. However, this design space is prohibitively

large, due to the copious amount of resources in the modern FPGAs. We prune

this design space through the following intuitive design decisions. The Planner

first calculates the amount of required storage and area for accelerating one

worker thread based on its DFG. The ratio of total on-chip storage and area to

this thread’s footprint will be the upper bound on the number of simultaneous
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threads. Then, we restrict the PE allocation to the row granularity, meaning

each thread will have at least a row of PEs. Another parameter that affects

the maximum number of threads is the programmer-provided mini-batch size,

as it determines how many parallel threads can potentially be launched. The

minimum of these parameters is the maximum number of possible threads:

tmax = min
( # BRAMs×BRAM Size

DFG.storage()
, rowmax, Mini−Batch Size

)

These design choices and the column/row arrangement restrict the design

space from which the Planner needs to determine the optimal allocation of PEs

to the threads. For instance, in UltraScale+, the design space is limited to 27

design points. However, the Planner still needs to explore this reduced design

space. Instead of simulation, which will be intractable, we propose to equip the

Planner with a performance estimation tool. The tool will use the static schedule

of the operations for each design point to estimate its relative performance. This

enables the Planner to choose the smallest, best-performing design point which

strikes a balance between the number of cycles of data processing and off-chip

data transfer. Performance estimation is viable, as the DFG does not change,

there is no hardware managed cache, and the accelerator architecture is fixed

during execution. Thus, there are no irregularities that can hinder estimation.

As such, it takes less than five minutes to explore all the possible design points

for UltraScale+. The result of this design space exploration is presented in

Section 2.8. After this analysis, the Planner generates the Verilog code of the

accelerator datapath from the template.
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2.4.5 Circuit Layer

As Figure 2.3 depicts, the Constructor is the main module of the Circuit layer

and generates the final Verilog code by adding the control logic. In the case

of FPGAs, to generate the state machines and control units, the Constructor

needs the Compiler to first statically map and schedule all the operations. In

this case, the accelerator avoids the von Neumann overhead by bypassing in-

struction fetch and decode stages. Instead, the Constructor statically converts

the execution schedule to state machines and control logic. In the case of P-

ASICs, the Constructor adds a control logic that enables microcode execution

on the PEs. Then, it inserts these control units within the datapath Verilog code

generated by the Planner and produces the final synthesizable Verilog code of

the accelerators. The Planner, the Constructor, and the Compiler work in tan-

dem to make CoSMIC a cohesively co-designed stack that delivers high gains.

2.5 Template Architecture

A major challenge in acceleration is the generality across a wide range of al-

gorithms and applications while supporting a variety of platforms (e.g., various

FPGA chips). It is also crucial to offer a solution that can adapt to new al-

gorithms and algorithmic changes. A fixed architecture cannot offer enough

flexibility and is not deployable on different chips. Therefore, CoSMIC offers

a template architecture to accelerate learning at scale. This template is pre-

designed, yet re-organizable, providing the capability to implement different

gradient calculations and parallel variants of gradient descent aggregations and

updates. The template offers reusability while delivering high performance, as

it is hand-crafted by experts (e.g., our team). Our stack stretches and squeezes

the template to best match the DFGs and the target chip. Hence, it is modular
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Figure 2.5: CoSMIC Multi-Threaded Template Architecture.

and scalable to maximally utilize the ample amount of resources in the server-

grade FPGAs and P-ASICs.

The need for multi-threading. A single instance of a learning algorithm can-

not effectively exploit as much resources, since it is limited by the level of paral-

lelism in its DFG. The DFG of the partial gradient update dictates the num-

ber and type of operations, along with data-dependencies. However, data-

dependencies in the DFG limit the number of operations that the accelerator

can execute in parallel. To increase the parallelism available to the accelerator,

we use the insight that partial gradient updates generated by worker threads

in parallel gradient descent algorithms are independent. As such, the CoSMIC

template architecture executes multiple worker threads in the FPGA acceler-

ator; each thread, using a subset of the accelerator resources, executes the

entire DFG over the thread’s data sub-partition to generate an independent par-

tial gradient update. This multi-threading limits the data-communication within

a worker thread to a subset of the accelerator’s DSP slices, reducing commu-

nication overhead.
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2.5.1 Accelerator Organization

As depicted in Figure 2.5, the template architecture constitutes: (1) the memory

interface—to transfer data to and from external memory; (2) the shifter—to align

the data coming from memory; (3) the prefetch buffer—to store the aligned

data; and (4) the two-dimensional array of PEs—to compute partial gradient

updates and locally aggregate them. We choose this 2D topology, because it

enables the Planner to modularly add or remove PEs as columns or rows. As

discussed, this organization also enables an efficient design space exploration

by assigning PEs to the worker threads in the rows granularity.

Connectivity and bussing. As Figure 2.5 shows, the number of PEs in each

row of the template matches the off-chip bandwidth so that the memory inter-

face can feed all the PEs in a row every cycle, maximizing parallelism. Each

row of PEs connects to the memory interface using a pipelined bus, as shown

in Figure 2.5. Pipelining the bus is necessary for scalability since the bus is

shared by all the rows in the accelerator. In addition to data transfer between

external memory and the PEs, connectivity between PEs is required to trans-

fer intermediate results due to data-dependencies in the DFG. To facilitate the

communication, PEs in a single row are connected to their adjacent PEs us-

ing bi-directional links and are also connected to the other PEs in the row via

a shared bus. A hierarchical tree bus connects the shared bus for different

rows. We specialize the interconnect between PEs in the template architecture

for communication patterns typical for operations in stochastic gradient descent

based learning algorithms. One such example of a common operation is a vec-

tor dot product, which involves element-wise multiplication followed by reduction

(∑). The result is then typically communicated to all PEs. While the PEs can

execute the element-wise multiplication in parallel, the reduction and broad-

cast operations require significant communication between PEs, which can be
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a performance bottleneck. In order to alleviate the communication overhead

and ensure high utilization of the accelerator’s resources, PEs possess three

distinct levels of connectivity. Figure 2.5 shows these three levels of connectiv-

ity for the template architecture with (n) PEs per row and (m) rows. At the first

level, the n adjacent PEs within each row can communicate using bi-directional

links. Next, a shared bus connects all of the n PEs within each row. Finally,

we use a tree bus to connect the shared bus of m rows of the accelerator. To

further aid the reduction operation, each node in the tree bus contains an ALU

to perform ∑ and ∏ operations.

PE design. Figure 2.6 details a PE, the basic unit of the template architecture

responsible for executing the operations of the DFG. The rows of PEs within a

worker thread exploit fine-grained parallelism in the DFG, enabling the execu-

tion of multiple independent operations in parallel. A PE consists of separate

buffers for storing training data, model parameters, and intermediate results.

This partitioning of buffers is necessary to enable parallel accesses required

for DFG operations. The buffers are composed of on-chip SRAMs and the size

of each buffer can be configured by the Planner for a given DFG. CoSMIC’s

Compiler statically generates the schedule of operations for each PE. The PEs
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execute the scheduled operations using a five stage pipeline, orchestrated by a

PE scheduler. The first pipeline stage reads the required data from PE’s buffers,

adjacent PE links, and shared bus links. This data is registered in the second

stage. The third stage selects the input operands required by the scheduled

operation. The fourth stage executes the scheduled operation using the PE’s

ALU. For FPGA implementation, the ALU uses DSPs blocks—the hardened

on-chip arithmetic unit on the FPGA. The non-linear unit is a look-up table that

implements expensive operations like sigmoid, gaussian, divide, and logarithm

and is only instantiated in a PE if the Compiler schedules a non-linear opera-

tion for that PE. The output of the ALU unit is written back in the fifth and final

stage of the PE pipeline. The PEs have a bypass path between the final stage

and the ALU stage to forward the result of the previous operation. Figure 2.6

highlights the path taken by an add operation which reads from data and model

buffers and writes back to the interim buffer.

Memory interface. Simplicity of the PEs and their highly pipelined design is

vital for the efficiency of the accelerator. To further simplify the design, the tem-

plate architecture prevents the PEs from initiating data requests to the memory.

Instead, as illustrated in Figure 2.5, the design harbors a smart memory inter-

face which feeds the PEs according to the schedule generated by the Compiler.

This memory interface design is intended to alleviate the overhead of data mar-

shaling, which would have been prohibitive since CoSMIC targets distributed

learning with copious amounts of data. However, one issue that arises is that

the vectors of data in the off-chip memory do not necessarily align with the

rows of the PEs. This can lead to under-utilization of off-chip bandwidth, which

is often a performance bottleneck. To avoid the overhead of padding the data

to align with the PEs, we propose to use an on-chip Shifter that aligns input

data after fetching it, according to the data map generated by the Compiler. In
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addition to the Shifter, the memory interface will have a Prefetch Buffer. The

size of the training data for each DFG is often large. Hence the time required

for external memory access is significant. The Prefetch Buffer enables the

accelerator to store the subsequent set of training data for the worker threads,

thereby hiding the latency of memory accesses and enabling efficient MIMD ex-

ecution. The memory interface can also perform broadcast writes to the PEs,

as the same model needs to be sent to all the worker threads before they start

calculating the new gradient updates.

2.5.2 Multi-Threaded Acceleration

The programmable memory interface plays a significant role in enabling mul-

tithreading in the accelerator without imposing significant hardware overhead.

It harbors a Memory Schedule queue along with a Thread Index Table that

stores thread-specific information as depicted in Figure 2.5. This information

includes the memory address of each thread’s data sub-partition and the base

index of the first allocated PE row to the thread. In addition, each thread has

its own dedicated pointer to the Memory Schedule queue. The data transfer

schedule is the same for all the threads but it needs to start from different ad-

dresses and write to different PEs. The Thread Index Table enables correct

and efficient data transfer from memory to all the threads while the schedule

is shared. Each row of the table corresponds to one thread. The first field in

each row is Mem Addr, which specifies the starting address of each thread’s

data sub-partition in the off-chip memory. The second field, PE Offset, speci-

fies the index of the first PE of the thread. By walking through these rows, the

memory interface controller uses the entries of the Memory Schedule and the

Thread Index Table to generate memory accesses for each thread in a round-

robin fashion. Each entry of the schedule stores a Base PE Index, RD/WR bit,
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Broadcast bit, and Size. The index of the target physical PE is (Base PE Index +

PE Offset). The latter term in the addition comes from the Thread Index Table.

The memory address is also obtained from the Thread Index Table, which is

updated by the size of the transferred data after it finishes. Using this table, the

memory interface has the necessary information to transfer each thread’s data

to its allocated PEs without the need for storing multiple copies of the memory

schedule. The RD/WR bit of the memory schedule entry specifies whether the

memory access is a read or a write. The Broadcast bit allows a memory read

to be sent to all the worker threads via the memory interface bus. This bit is

particularly useful when sending model parameters from memory to all worker

threads. The Size specifies the size of the data transfer. The Compiler gener-

ates the memory schedule according to the Planner-provided architecture and

the DFG. The following section discusses the Compiler in detail.

2.6 CoSMIC Compilation

The Compiler is a critical layer of CoSMIC, since it statically determines a fine-

grained map and schedule of all the data and operations, which significantly

simplifies the hardware. This simplification is necessary for acceleration, par-

ticularly for FPGAs that incur lower frequency when design complexity grows.

Furthermore, the Compiler minimizes on-chip and off-chip communication and

avoids data preprocessing or marshaling. Avoiding data marshaling is crucial,

since the accelerators process large amounts of data and any data transfer is

costly. To this end, we propose an algorithm that minimizes data movements by

statically mapping data elements to PEs before mapping the operations. Con-

ventional mapping algorithms [65, 2] map operations before the data to find the

lowest-latency schedule which adheres to the on-chip resource constraints. In
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contrast, we reverse the order of mapping, thereby minimizing data movement

atop latency.

The Compiler takes as input the DFG of the gradient update, the architec-

tural plan of the multi-threaded accelerator, and the data layout of the training

dataset and model parameters in the memory. Using these inputs, the Compiler

generates the following for each thread:

1. Data map: assignment of inputs, outputs, model parameters, and interme-

diate values to the PEs.

2. Operation map: assignment of all the DFG operations to PEs.

3. Data transfer schedule: detailed schedule for memory interface and inter-

connection buses to send data to the appropriate PEs.

To generate the data map, the Compiler first segregates the DFG operands

(graph edges) into DATA, MODEL, and INTERIM categories. These categories

represent training data, model parameters, and intermediate operands, respec-

tively. This semantic segregation enables the Compiler to provide an optimal

data map without marshaling the data as follows. It starts by mapping each

training data element (type DATA) to the PE that is connected to the memory

interface column which brings in that element. The Compiler uses this data map

to generate the schedule of data transfer from off-chip memory and embeds it

into the memory interface. This map and schedule avoids marshaling by adher-

ing to the layout of training data in the memory. Next, the Compiler generates

the operation map and data map for the model parameters while minimizing the

communication between PEs. We have designed Algorithm 1 for the Compiler

to map the operations to the same PEs that hold their operands; hence minimiz-

ing inter-PE communication. This algorithm also maps the model parameters

to the PEs that hold their corresponding operation. The intuition is to map the

MODEL and INTERIM edges on to the same PE if a node operates on both
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Input : G: Dataflow graph (V ,E)
nPE : Number of PEs per worker thread

Output : O: Operation map
D: Data map

;Initialize O[nPE ]← /0
Initialize D[nPE ]← /0
Initialize Graph← G
PEi = 0
while (graph 6= /0) do

for (v ∈ Graph) do
if (∀ pi in v.parents = MAPPED) then

if (∃ opi in v.ops & opi.type = DATA) then
v.pe = opi.pe
if (∃ op j in v.ops & op j.type = MODEL) then

D[v.pe].append(v.op j)
Break

else if (∃ opi in v.ops & opi.type = MODEL) then
if (opi.pe != NULL) then

v.pe = opi.pe
else

v.pe = wi
D[v.pe].append(v.opi)
PEi = (PEi + 1) % nPE

Break
else if (∃ opi in v.ops & opi.type = INTERIM) then

v.pe = opi.pe
Break

O[v.pe].append(v)
graph.remove(v)

end
end

Algorithm 1: Minimum-Communication Data/Operation Mapping.
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of them. After determining the data map on the PEs, the algorithm traverses

the DFG and map operations according to the location of their operands, mini-

mizing data movement. During this pass, to reduce latency, the Compiler also

prioritizes scheduling operations that have the longest dependence chain. The

algorithm takes in the DFG (G) and the number of PEs per thread (nPE) and

goes through the following steps:

1. Initialize the operation map (O[nPE ]) and the data map (D[nPE ]) to null and

the Graph variable to the DFG (G). O and D are arrays of lists that hold the

maps for each PE.

2. Select a vertex (v) that is ready i.e. all its predecessors are mapped.

3. Check the operand type for this vertex (v). If any of its operands (opi) is of

type DATA, then map v to the PE containing this data, else go to step (4).

Check the type of the other operand (op j). If the other operand (op j) is of

type MODEL, then map this model parameter to v’s PE and go to step (5).

4. If operand type of the vertex (v) is MODEL, then map v to the PE where

the model parameter resides, otherwise go to step (5). If the operand is not

mapped, then map this vertex and the operand opi to a new PE (PEi). The

PEi variable is a counter, incremented after each round of successful map-

ping. Incremental assignment enables parallel execution of the operations

in neighboring PEs.

5. If operand type of the vertex (v) is INTERIM, map the vertex(v) to the PE

in which the operand resides.

6. Reiterate steps 2 through 5 until all the vertices are mapped.

Given the data and operation map, the Compiler generates the execution

schedule for all the components of the accelerator, including its programmable

memory interface and PE interconnects. Recall that each thread performs the

same gradient update rule but uses different training data. Therefore, the Com-
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piler generates the map and schedule for one thread and use it for all of them.

However, to overlap off-chip data transfer with computation, the accelerator is

MIMD, not SIMD. Thus, threads can be at different computation stages since

they start execution as soon as they receive an operand. To enable the MIMD

execution, the Planner produces a PE Offset for each thread, which is the index

of the first PE that is assigned to the thread. The PE Offset and the starting

address of its training data is loaded into the Thread Index Table as discussed

before (see Figure 2.5). The Compiler generates only one schedule for the

memory interface since the destination PE can be calculated at runtime by

adding each thread’s PE Offset to the PE index that is in the schedule. Finally,

the Compiler uses the map of the model parameters to generate the schedule

for the aggregation stage that follows partial gradient calculations.

2.7 In-Network Acceleration of Gradient Compression

While the CoSMIC’s lean and specialized runtime software reduces the commu-

nication overhead of the system coordination between the accelerator nodes,

the communication time still takes a significant fraction of the entire training

runtime. To tackle this challenge, in collaboration with Prof. Nam Sung Kim’s

research group at the University of Illinois at Urbana–Champaign, we devise a

in-network acceleration technique that enables compression of single-precision

floating-point gradient values on FPGA-enabled NICs. In this work, we focus

on the compression of gradient values since gradients are significantly more

tolerant to precision loss than weights and as such lend themselves better to

aggressive compression without the need for the complex mechanisms to avert

any loss. Leveraging this unique property of gradient values, we propose a

lossy compression algorithm, which offers high compression ratio as well as
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Input : f : 32-bit single-precision FP value
Output : v: Compressed bit vector (32, 16, 8, or 0 bits)

t: 2-bit tag indicating the compression mechanism

s← f [31] // sign
e← f [30 : 23] // exponent
m← f [22 : 0] // mantissa
if (e≥ 127) then

v← f [31 : 0]
t← NO COMPRESS // 2’b11

else if (e < error bound) then
v←{}
t← 0BIT COMPRESS // 2’b00

else if (error bound ≤ e < 127) then
n shi f t← 127− e
shi f ted m← concat(1’b1, m)>> n shi f t
if (e≥ error bound + d(127− error bound)/2e) then

v← concat(s, shi f ted m[22 : 16])
t← 8BIT COMPRESS // 2’b01

else
v← concat(s, shi f ted m[22 : 8])
t← 16BIT COMPRESS // 2’b10

end
end

Algorithm 2: Lossy compression algorithm for single-precision
floating-point gradients.

hardware-friendliness due to its low complexity. Note that this algorithm is

specifically designed for the hardware implementation in that there are one-

to-one mappings from the data/operations in the algorithm to hardware logics.

Therefore, we only discuss the algorithms and omit the hardware implementa-

tion details. Then, we discuss the integration of compression/decompression

modules with the FPGA-enabled NICs.

2.7.1 Compression Algorithm

Algorithm 2 elaborates the procedure of compressing a 32-bit floating-point

gradient value ( f ) into a compressed bit vector (v) and a 2-bit tag indicating the

used compression mechanism (t). Note that this algorithm is described based

on the standard IEEE 754 floating-point representation which splits a 32-bit

value into 1 sign bit (s), 8 exponent bits (e), and 23 mantissa bits (m). Depending

on the range where f falls in, the algorithm chooses one of the four different
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compression mechanisms. If f is larger than 1.0 (i.e., e ≥ 127), we do not

compress it and keep the original 32 bits (NO COMPRESS). If f is smaller than

an error bound, we do not keep any bits from f (0BIT COMPRESS). When the

gradient values are in the range (error bound < f < 1.0), we should take a less

aggressive approach since we need to preserve the precision. The simplest

approach would be to truncate some LSB bits from the mantissa. However, this

approach not only limits the maximum obtainable compression ratio since we

need to keep at least 9 MSB bits for sign and exponent bits, but also affects

the precision significantly as the number of truncated mantissa bits increases.

Instead, our approach is to always set e to 127 and to not include the exponent

bits in the compressed bit vector. Normalizing e to 127 is essentially multiplying

2(127−e) to the input value; therefore, we need to remember the multiplicand so

that it can be decompressed. To encode this information, we concatenate a

1-bit ‘1’ at the MSB of m and shift it to the right by 127−e bits. Then we truncate

some LSB bits from the shifted bit vector and keep either 8 or 16 MSB bits

depending on the range of value. Consequently, the compression algorithm

produces a compressed bit vector with the size of either 32, 16, 8, or 0 and

2-bit tag indicating the used compression mechanism.

2.7.2 Decompression Algorithm

Algorithm 3 describes the decompression algorithm that takes a compressed bit

vector v and a 2-bit tag t. When t is NO COMPRESS or 0BIT COMPRESS, the de-

compressed output is simply 32-bit v or zero, respectively. If t is 8BIT COMPRESS

or 16BIT COMPRESS, we should reconstruct the 32-bit IEEE 754 floating-point

value from v. First, we obtain the sign bit s by taking the first bit of v. Then we

find the distance from MSB to the first ‘1’ in v, which is the multiplicand used

for setting the exponent to 127 during compression. Once we get the distance,
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Input : v: Compressed bit vector (32, 16, 8, or 0 bits)
t: 2-bit tag indicating the compression mechanism

Output : f : 32-bit single-precision FP value

if (t = NO COMPRESS) then
f ← v[31 : 0]

else if (t = 0BIT COMPRESS) then
f ← 32’b0

else
if (t = 8BIT COMPRESS) then

s← v[7]
n shi f t← f irst1 loc f rom MSB (v[6 : 0]) m← concat(v[6 : 0]<< n shi f t, 16’b0)

else if (t = 16BIT COMPRESS) then
s← v[15]
n shi f t← f irst1 loc f rom MSB (v[14 : 0]) m← concat(v[14 : 0]<< n shi f t, 8’b0)

end
e← 127−n shi f t
f ← concat(s, e, m)

end

Algorithm 3: Decompression algorithm.

e can be calculated by subtracting the distance from 127. The next step is to

obtain m by shifting v to left by the distance and padding LSBs with zeros to fill

the truncated bits during compression. Since we now have s, e, and m, we can

concatenate them together as a 32-bit IEEE 754 floating-point value and return

it as the decompression output.

2.7.3 Accelerator Architecture and Integration with NIC

Our compression/decompression algorithms can be instantiated as hardware

modules in accelerators that compress/decompress gradient values. Using

these modules as building blocks, we develop compression/decompression en-

gines that can process 256-bit network bursts, and integrate these engines with

the existing FPGA-enabled NICs. In this section, we first introduce our NIC ar-

chitecture and discuss the details of compression/decompression engines.

NIC architecture. To evaluate our system in a real world setting, we implement

our accelerators on the Xilinx VC709 evaluation board [66] that offers 10Gbps

network connectivity along with programmable logic. We insert our accelerator

within the NIC reference design [67] that comes with the board. Figure 2.7 illus-
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Figure 2.7: Overview of NIC architecture integrated with compressor and decom-
pressor.

trates this integration of compression and decompression engines. For output

traffic, as in the reference design, the packet DMA collects the networks data

from the host system through the PCIe link. These packets then go through

the Compression Engine that stores the resulting compressed data in the virtual

FIFOs that are used by the 10G Ethernet MACs. These MACs drive the Eth-

ernet PHYs on the board and send or receive the data over the network. For

input traffic, the Ethernet MACs store the received data from the PHYs in the

virtual FIFOs. Once a complete packet is stored in the FIFOs, the Decompres-

sion Engine starts processing and passing it to the packet DMA for transfer to

the CPU. Both engines use the standard 256-bit AXI-stream bus to interact with

other modules.

Although hardware acceleration of the compression and decompression al-

gorithms is straightforward, their integration within the NIC poses several chal-

lenges. These algorithms are devised to process streams of floating-point num-

bers, while the NIC deals with TCP/IP packets. Hence, the accelerators need

to be customized to transparently process TCP/IP packets. Furthermore, the

compression is lossy, the NIC needs to provide the abstraction that enables the

software to activate/deactivate the lossy compression per packet basis. The

following discusses the hardware integration. The software abstractions are

outside of the scope of this dissertation and therefore not discussed.

Compression Engine. Not to interfere with the regular packets that should not
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be compressed, the Compression Engine first needs to identify which packets

are intended for lossy compression. Then, it needs to extract their payload,

compress it, and then reattach it to the packet. The Compression Engine pro-

cesses packets in bursts with size of 256 bit, which is the number of bits which

the AXI interface can deliver in one cycle. Our engines process the packet in

this burst granularity to avoid curtailing the processing bandwidth of the NIC.

The compression starts as soon as the first burst of payload arrives.

Figure 2.8 depicts the architecture of the compression hardware. The pay-

load burst feeds into the Compression Unit equipped with eight Compression

Blocks (CBs), each of which performs the compression described in Algorithm 2.

Each CB produces a variable-size output in the size of either 32, 16, 8, or 0 bits,

which need to be aligned as a single bit vector. We use a simple binary shifter

tree that produces the aligned bit vector of which possible size is from 0 to

256. The 2-bit tags of the eight CBs are simply concatenated as a 16-bit vector.

Finally, the aligned bit vector and tag bit vector are concatenated as the final

output of Compression Unit, of which size is at least 16 bits and can go up to 272
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bits. For each burst, Compression Unit produces a variable-size (16 – 272) bit

vector; therefore, we need to align these bit vectors so that we can transfer the

256-bit burst via the AXI interface. The Alignment Unit accumulates a series of

compressed bit vectors and outputs a burst when 256 bits are collected.

Decompression Engine. Similar to the Compression Engine, Decompression

Engine processes packets in the burst granularity. The payload bursts of com-

pressible packets feed into the decompression hardware, of which architec-

ture is delineated in Figure 2.9. Since the compressed burst that contains 8

FP numbers can overlap two consecutive bursts at the Decompression Engine,

reading only a single burst could be insufficient to proceed to the decompres-

sion. Therefore, the Decompression Engine has Burst Buffer that maintains up

to two bursts (i.e., 512 bits). When Burst Buffer obtains two bursts, it feeds the

16-bit tag to Tag Decoder to calculate the size of the eight compressed bit vec-

tors. Given the sizes, the eight compressed bit vectors are obtained from the

buffered 512 bits. Since each compressed bit vector has a variable size of ei-

ther 32, 16, 8 or 0 bits, the possible size of the eight compressed bit vectors is
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from 0 and 256. These eight compressed bit vectors (0 – 256) and the tag bit

vector (16) are fed into the eight Decompression Blocks (DBs) in Decompression

Unit, which executes the decompression algorithm described in Algorithm 3.

Then, Decompression Unit simply concatenates the outputs from the eight DBs

and transfers it via the AXI interface. For the next cycle, Burst Buffer shifts away

the consumed bits and reads the next burst if a burst (i.e., 256 bits) has been

consumed and the left bits are fewer than a burst.

2.8 Evaluation

We evaluate CoSMIC with 10 different machine learning benchmarks using

various acceleration platforms, which consist of one FPGA (Xilinx UltraScale+

VU9P) and two P-ASICs. These accelerators are hosted in machines equipped

with Intel Xeon E3 v5 processors. We first compare the scalability of the

FPGA-accelerated CoSMIC systems to a popular distributed computing plat-

form, Spark [16], while increasing the number of nodes from 4 to 8 to 16. For

the scale-out experiments, we used Amazon EC2. We built a local three node

system for the in-depth sensitivity studies. We also perform comparison with the

distributed GPU (Nvidia K40c) implementation of the benchmarks. Table 2.2

details the specification of these platforms. Lastly, we compare the CoSMIC

template architecture with TABLA [2], a single-node FPGA acceleration frame-

work for ML.

2.8.1 Methodology

Benchmarks and training input datasets. Table 2.1 shows the list of 10

benchmarks—obtained from machine learning literature—that train two differ-

ent models with each of the following five different algorithms: backpropagation,
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linear regression, logistic regression, collaborative filtering, and support vector

machines. The benchmarks represent various application domains including

image processing, audio processing, finance, medical diagnosis, recommen-

dation systems, and computer vision. The mnist and acoustic benchmarks train

Multi-Layer Perceptrons (MLPs) for handwritten digit [68, 69] and automatic

speech recognition [70], respectively. The stock benchmark trains a linear re-

gression model to predict stock prices using the tick-level data points [71]. The

texture benchmark trains another linear regression model for texture recogni-

tion [72]. The tumor and cancer1 benchmarks train two different logistic regres-

sion models to detect tumors [73] and cancer [74] using the microarray gene

expression data. The movielens and netflix benchmarks train recommender sys-

tems that employ the collaborative filtering algorithm on Movielens datasets [75,

76] and Netflix Prize Dataset [77]. The face benchmark trains a support vector

machine for face recognition [78]. The cancer2 benchmark trains another sup-

port vector machine to detect cancer [78]. We train each benchmark for 100

epochs over its dataset. We repeat the experiments 10 times and use the av-

erage runtime. In Table 2.1, the “# of Features” column shows the number of

elements in each training data vector and the “Model Topology” column denotes

the model topology of each benchmark. The “Model Size” column shows the

size of the model parameters. The “Lines of Code” column lists the number of

lines of code that the programmer writes, which ranges from 22 to 55. Finally,

the “# of Input Vectors” and “Input Data Size” columns show the number of the

training vectors and the size of the training data. The model parameters for all

the benchmarks fit in on-chip memory of the FPGA and the P-ASICs.

Scale-out system specification. Both CoSMIC and Spark systems are de-

ployed on a cluster of machines, which are equipped with the high-performance

quad-core Intel Xeon E3 Skylake processors with hyper-threading support that
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Table 2.2: CPU, GPU, FPGA, and P-ASICs.

CPU GPU FPGA P-ASIC P-ASIC

Cores 4 2,880 DSP	Slices 6,840 PEs 768 2,880
Memory	 32	GB 12	GB BRAM 44,280	KB Area	(mm2) 29 105
TDP 80	W 235	W TDP 42	W Power 11	W 37	W

Frequency 3.6	GHz 875	MHz LUTs 1,182	K Frequency 1	GHz 1	GHz
Technology 14		nm 28	nm Flip	Flops 2,364	K Technology 45	nm 45	nm

Chip GChip
Xeon	

E3-1275	v5
Tesla	
K40c

FChip
UltraScale+	

VU9P	

operates at 3.6 GHz. The detailed CPU specification is provided in Table 2.2.

The machines run Ubuntu 16.04.1 LTS with the kernel version 4.4.0-47. The

machines are connected through a TP-LINK 24-Port gigabit Ethernet switch

(TL-SG1024) via TP-Link gigabit Ethernet network interface card (TG‘-3468).

The switch supports full duplex operation on all ports (2 Gbps per port) and a

combined switching capacity of up to 48 Gbps.

Spark. We compare CoSMIC with Spark version 2.1.0. Spark is selected as

the point of comparison since it supports efficient in-memory processing for it-

erative applications. Moreover, Spark provides the MLlib [40] machine learning

library. The Spark MLlib library provides the baseline implementation for back-

propagation, linear regression, logistic regression, collaborative filtering, and

support vector machines [40]. To optimize the performance of MLlib, we build

Spark with vectorized OpenBLAS library. For all the Spark results, we use the

best-performing combination of machines and threads. The best number of

threads is selected for each benchmark individually.

FPGA. As Table 2.2 shows, we use Xilinx Virtex UltraScale+ VU9P for the

FPGA experiments. We use Xilinx Vivado 2017.2 to synthesize the generated

accelerators at 150MHz. The synthesized accelerators are connected to the

external DRAM using the AXI-4 IP.

GPU. For comparison with GPUs, we extend CoSMIC’s runtime system to sup-

port GPUs since Spark does not. The alternative would have been integrating
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GPUs with Spark, which is on its own a line of ongoing research [79, 80, 81, 82].

As such, we build a GPU-accelerated CoSMIC system. We had three Nvidia

Tesla K40 GPUs at our disposal, which are used for this comparison (see Ta-

ble 2.2 for hardware specification). For the GPU experiments, we developed

highly optimized CUDA implementations using well-known libraries, including

LibSVM-GPU [83] and Caffe2+cuDNN [84], as well as source code from re-

lated works [21, 2]. In all cases, we used the latest versions of each library

(e.g., cuBLAS v8.0 [85] and cuDNN v7.0 [86]). We use WattsUp [87] to mea-

sure the system power following the same methodology in the prior work [88].

P-ASICs. We use Synopsys Design Compiler (L-2016.03-SP5) and TSMC 45-

nm high-Vt standard cell libraries to synthesize the CoSMIC-generated archi-

tectures and obtain the area, frequency, and power results. We used CoSMIC

to generate two P-ASIC designs: one with the PE count and off-chip band-

width that match those of the FPGAs (P-ASIC-F), the other that match those

of the GPUs (P-ASIC-G). Table 2.2 provides the details of these P-ASICs. We

combine the system-level measurements with the synthesis and simulation/es-

timation results to evaluate these P-ASICs.

2.8.2 Experimental Results

2.8.2.1 Performance Comparison

Figure 2.10 shows the result of performance comparison between CoSMIC and

Spark using three system configurations: 4-Node, 8-Node, and 16-Node. The

baseline is a 4-Node Spark system, referred to as 4-CPU-Spark. On aver-

age, the 4-FPGA-, 8-FPGA-, 16-FPGA-CoSMIC configurations deliver 12.6×,

23.1×, and 33.8× higher performance, respectively. Whereas, increasing the

number of nodes with Spark from 4 to 16 only yields 1.8× performance im-

provement. The performance does not scale linearly as the number of nodes
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Figure 2.10: Speedup over Spark as the number of nodes increases from 4 to 8
to 16. Baseline: Spark system with 4 nodes (4-CPU-Spark).

increases due to system management overhead in networking and aggrega-

tion. The performance gains for different benchmarks depend on their model

topology, parallelism, and memory footprint. For example, movielens (collabora-

tive filtering) sees the highest speedup (100.7×) since its DFG is significantly

parallel that allows CoSMIC to utilize the FPGAs resources for higher perfor-

mance. On the contrary, mnist and acoustic (backpropagation) achieve relatively

smaller speedup (6.8× and 16.5×) since these benchmarks require significant

on-chip communication, which bottlenecks performance. These results show

that CoSMIC’s full-stack approach, which comes with our multithreaded accel-

erators, is highly effective for the scale-out acceleration of these ML applica-

tions. Furthermore, these results show that CoSMIC better utilizes the added

resources and is more scalable as the number of nodes increases.

2.8.2.2 Scalability

To better compare the scalability of the two systems, Figure 2.11 shows the

performance improvement over each system’s own 4-Node configuration. Fig-

ure 2.11(a) shows the improvement with CoSMIC when the 4-FPGA-CoSMIC

is the baseline and Figure 2.11(b) shows the improvement with Spark when

4-CPU-Spark is the baseline. On average, CoSMIC performs 1.8× and 2.7×

faster when the system is scaled up to 8 and 16 nodes, respectively. As a point
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Figure 2.11: Scalability comparison of CoSMIC and Spark as the number of
nodes increases from 4 to 8 to 16.

of reference and comparison, Spark shows 1.3× and 1.8× speedup for the

same increase in the number of nodes. The results from Figure 2.10 and Fig-

ure 2.11 show that CoSMIC scales well and better than Spark as the number of

nodes increases. The improvement gap between Spark and CoSMIC is larger

for the benchmarks that have higher ratio of communication to computation in

the runtime (stock, texture, tumor, cancer1, face, and cancer2). For the other bench-

marks, CoSMIC scales less steeply in comparison to Spark. These bench-

marks are compute-bound and therefore acceleration is effective and adding

accelerators reduces the computation time in the baseline 4-Node configura-

tion. Since Spark does not utilize the accelerators, it benefits more from the

added nodes as they bring in the necessary compute power that was miss-

ing in the 4-Node configuration. Therefore, adding more nodes helps but it is

more effective for Spark. Nonetheless, as Figure 2.10 illustrates, CoSMIC sig-

nificantly outperforms Spark across all the benchmarks. These results confirm

that the specialization of the system software has been effective in enabling

acceleration at scale.
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2.8.2.3 Comparison of Different Acceleration Platforms

Figure 2.12 compares the benefits of CoSMIC with FPGAs and P-ASICs to

GPUs. The results are obtained from our three-node system configuration and

the baseline is the 3-FPGA-CoSMIC. On average, the 3-P-ASIC-F-CoSMIC, 3-

P-ASIC-G-CoSMIC, and 3-GPU-CoSMIC systems provide average 1.2×, 2.3×,

and 1.5× higher performance than the 3-FPGA-CoSMIC system, respectively.

Although as expected P-ASICs and the GPU outperform the FPGA, the benefits

are relatively modest. To understand this trend, Figure 2.13 shows the improve-

ment in compute time without considering the system software. On average,

P-ASIC-F, P-ASIC-G, and GPU perform 1.5×, 11.4×, and 1.9× faster than

FPGA, respectively. Except for mnist and acoustic benchmarks, which use the

backpropagation algorithm, the benefits from P-ASIC-F and GPU are not over-

whelming. GPU provides higher speedup on two specific benchmarks (20.3×
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Figure 2.14: Performance-per-Watt, baseline: 3-GPU system.

for mnist and 12.8× for acoustic) as the dominant part of their computation is

relatively large matrix-matrix multiplication that GPUs can compute very effi-

ciently. P-ASIC-F offers the same number of PEs and bandwidth compared to

the FPGA but at higher frequency. These results show that just improvement

in frequency does not translate to proportional speedup as long as the band-

width remains unchanged. These results also show that the coalescence of

CoSMIC’s Planner, Compiler, and multi-threaded accelerator design has been

effective in exploiting the FPGA resources. Across all benchmarks, P-ASIC-

G shows significantly higher improvement as this design point combines more

PEs, higher frequency, and higher bandwidth. The PE count and bandwidth of

P-ASIC-G matches the GPU and its frequency is higher than the FPGA. How-

ever, as Figure 2.12 illustrates, even in the case of P-ASIC-G, the computation

speedup does not translate to proportional system-wide improvement. These

results confirm the importance of system software and CoSMIC-like full-stack

approaches, as accelerators gain popularity.

The speedup of 3-GPU-CoSMIC comes from the GPU’s higher frequency

as well as massive parallelism; however, it also comes at an expense of higher

power dissipation.

Figure 2.14 highlights this power-performance tradeoff by depicting the im-

provement in Performance-per-Watt when comparing the FPGA- and P-ASIC-
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Figure 2.15: Fraction of 3-FPGA-CoSMIC runtime.

accelerated systems to the GPU-based system. The 3-FPGA-CoSMIC, 3-

PASIC-F-CoSMIC, and 3-PASIC-G-CoSMIC systems achieve on average 4.2×,

6.9×, and 8.2× higher Performance-per-Watt than 3-GPU-CoSMIC, respec-

tively. These results show that when the power-efficiency is the main con-

cern, FPGAs or P-ASICs will be more desirable acceleration platforms than

GPUs although GPUs provide higher performance than FPGAs and one of the

P-ASICs, namely P-ASIC-F. Moreover, although P-ASICs provide both higher

performance and power-efficiency, they impose a significant design and manu-

facturing cost. CoSMIC’s template approach reduces the design time and cost

as it offers a way to generate accelerator code. However, the cost of manufac-

turing may tip the scale towards FPGAs as they also offer significant benefits in

both performance and power efficiency.

2.8.2.4 Sensitivity to Mini-Batch Size

We use 10,000 as the default mini-batch size as used in the machine learning

literature [89, 90, 91]. However, the optimal mini-batch size depends on several

variables such as model, datasets, and training iterations. Larger mini-batch

size reduces the rate of aggregation, which reduces the inter-node commu-

nication, leading to higher performance. Figure 2.15 illustrates this effect by
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Figure 2.16: Performance vs. mini-batch size as it is swept from 500 to 100,000;
baseline: 3-node Spark when the mini-batch size is 10,000.

segregating the fraction of runtime spent in computation and communication as

the number of mini-batch size increases from b=500 to b=100,000 in the three-

node runtime. On average, the computation with the mini-batch size 500 takes

12% of runtime but this increases to 95% when the mini-batch size is 100,000.

However, reducing the aggregation rate can adversely affect training conver-

gence [89, 90, 92, 91, 93]. To study the effect of mini-batch size on Spark and

CoSMIC, we sweep the mini-batch size from 500 to 100,000 for three-node sys-

tem configuration. Figure 2.16(a) and Figure 2.16(b) present the result of this

sweep. For both figures, the baseline is the three-node Spark when mini-batch

size is 10,000, our default setting. Comparing Figure 2.16(a) and Figure 2.16(b)

shows that 3-FPGA-CoSMIC is faster across all combinations of benchmarks

and mini-batch sizes. On average, with the same mini-batch size of b=500,

CoSMIC is 16.8× faster. When the mini-batch size increases to b=100,000,

CoSMIC is 9.1× faster. As the mini-batch size increases, Spark’s overheads

diminish. Nevertheless, CoSMIC outperforms Spark.
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Figure 2.17: Speedup breakdown between FPGAs and system software (aggre-
gation, networking, and management) for 3-FPGA-CoSMIC.

2.8.2.5 Sources of Speedup

Figure 2.17 teases apart the benefits of FPGA acceleration from the benefits

of the specialized system software over the three-node Spark. On average, the

three FPGAs provide 20.7× speedup and the specialized system software–

which also includes the aggregation part of the computation–is 28.4× faster

than Spark’s system software. As we discuss below, six of the benchmarks

are more sensitive to data transfer and thus gain more benefits from the spe-

cialized system software compared to the benefits from FPGA. These bench-

marks specifically benefit from the system software’s task assignment that uti-

lizes CPUs for both networking and aggregation of partial results from other

nodes, thereby avoiding extra data transfer to the FPGAs. Nonetheless, all

benchmarks gain from both FPGAs acceleration and specializing the system

software.

2.8.2.6 Sensitivity to FPGA Resources and Bandwidth

CoSMIC can reshape and customize the template to match the resources of the

target FPGAs or P-ASICs. The two main resources that affect performance are

the number of PEs and the off-chip memory bandwidth. However, the DFG of

the learning algorithm determines which resource is dominant. To study the in-
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Figure 2.18: Speedup comparison with varying number of PEs and memory
bandwidth for CoSMIC accelerators.

terplay of algorithms and resources, we use a performance estimation tool that

is validated against the hardware. Figure 2.18(a) illustrates the performance

changes when the number of PEs varies from 192 to 6144 for a CoSMIC ac-

celerator. The benchmarks that use the backpropagation (mnist and acoustic)

and collaborative filtering algorithms (movielens and netflix) algorithms show per-

formance benefits as the number of PEs increases, since they are compute-

bound. The rest of the benchmarks–linear regression, logistic regression, and

support vector machines do not see any performance gains when the number of

DSPs increases. Although these benchmarks are offered more PEs, the limited

bandwidth curtails their performance. Figure 2.18(b), which sweeps bandwidth,

suggests the same categorization (bandwidth-bound vs. compute-bound) for

our algorithms. These results show that a single fixed design is not the most

optimal for all the algorithms. Therefore, there is a need for template architec-

tures and solutions, such as CoSMIC, that customize the accelerator design
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Figure 2.19: Design space exploration; Tx×Ry, x represents the number of
threads and y represents the number of rows; baseline: T1×R1.

according to the algorithm. These results also suggest that modern accelera-

tors need to strike a balance on allocating resource to off-chip communication

and on-chip computation to maximize benefits for all benchmarks. Nonethe-

less, CoSMIC finds an optimal accelerator design considering both compute

and bandwidth resources available on the FPGA.

2.8.2.7 Design Space Exploration

The Planner determines the number of PEs per thread and the number of

threads in the accelerator. The Planner allocates PEs to each thread at the

granularity of one row. This allocation strategy limits the design space that the

Planner explores to find the optimal number of threads and rows-per-thread. In

the case of UltraScale+ VU9P FPGA, the maximum number of possible design

points is 27. Also, recall that the number of threads is also limited by the size of

the model and not all the design points are possible. Figure 2.19 illustrates the

result of this design space exploration for four different benchmarks. The per-

formance of each design point is normalized to the design point which runs 1
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Table 2.3: Number of threads and FPGA resource utilization.

Used Util Used Util Used Util Used Util

mnist 2              851,276   72.0% 772,029   32.7% 8,640    88.9% 4,070   59.5%
acoustic 2              851,276   72.0% 772,029   32.7% 8,128    83.6% 4,070   59.5%
stock 8              278,838   23.6% 249,907   10.6% 8,640    88.9% 1,320   19.3%
texture 1              283,535   24.0% 257,005   10.9% 8,640    88.9% 1,355   19.8%
tumor 4              281,522   23.8% 253,963   10.7% 8,640    88.9% 1,340   19.6%
cancer1 2              282,864   23.9% 255,991   10.8% 8,640    88.9% 1,350   19.7%
movielens 2              851,276   72.0% 772,029   32.7% 8,128    83.6% 4,070   59.5%
netflix 1              851,947   72.1% 773,043   32.7% 8,128    83.6% 4,075   59.6%
face 4              281,522   23.8% 253,963   10.7% 8,640    88.9% 1,340   19.6%

cancer2 2              282,864   23.9% 255,991   10.8% 8,640    88.9% 1,350   19.7%

Name
LUTs BRAM	(Bytes)Flip	Flops DSP	Slices#	Threads

	per
	FPGA

(Total:	1,182,240) (Total:	2,364,480) (Total:	9720	KB) (Total:	6840)

thread using 1 row (T1xR1) of PEs. We sweep the number of rows from 1 to 48,

which is the maximum number of rows in UltraScale+ while the maximum num-

ber of threads varies for every benchmark. The optimal design points are high-

lighted with a concentric circle in the graphs. Benchmarks mnist and movielens

see the highest speedup when they use all the 48 rows since they are compute-

bound. In contrast, the performance for stock and tumor saturates beyond 16

rows. This result is commensurate with Figure 2.18(a), which shows that mnist

and movielens benefit significantly with an increase in the FPGA’s computational

resources (PEs), while stock and tumor do not. The rest of the benchmarks show

trends similar to the ones in Figure 2.19. Further, the figure shows that for

a fixed number of PE rows, increasing the number of threads improves per-

formance, which confirms the importance of multi-threading. Table 2.3 shows

the resource utilization and the optimal number of threads-per-FPGA for all the

benchmarks corresponding to the optimal design point chosen by the Planner.

The resource utilization is highest for benchmarks that are compute-bound and

lowest for the benchmarks that are bandwidth-bound. Moreover, the results

show the benefits of our template-based approach that enables optimal utiliza-

tion of the limited resources in the FPGA’s reconfigurable fabric.
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Figure 2.20: Speedup of CoSMIC’s template architecture over TABLA’s.

2.8.2.8 Comparison with TABLA

Prior work in TABLA [2] has explored single-node acceleration using a low-

power FPGA (Zynq ZC702 with 220 DSPs). Our work, on the other hand,

explores scale-out acceleration using modern high-power FPGAs (UltraScale+

with 6,840 DSPs). To provide a head-to-head comparison, we use the open-

source TABLA framework [94] to generate accelerators for UltraScale+. We

modify the templates for UltraScale+ and perform design space exploration to

present the best results with TABLA. Figure 2.20 shows the speedup of CoS-

MIC compared to TABLA on UltraScale+ when using the same number of PEs.

On average, CoSMIC performs 3.9× faster than TABLA. While both CoSMIC

and TABLA use the same number of FPGA compute resources, the gap in per-

formance shows that CoSMIC uses the compute resources more efficiently.

The bottleneck for performance in TABLA is the communication of intermedi-

ate results due to data dependencies. As the number of DSPs in the TABLA

architecture grows, the communication overhead grows significantly. To re-

duce the communication overhead, CoSMIC architecture uses a scalable tree-

bus across rows of our 2-D PE architecture, and a bidirectional link between

columns of PEs. Moreover, TABLA’s compiler does not consider the overhead

of data communication, which is particularly important when the number of PEs

is large. CoSMIC compiler (Section 2.6) maps the operations of the learning
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algorithm according to the location of data in order to reduce communication

overhead. The combination of CoSMIC’s scalable architecture, along with com-

piler optimization ensures that the FPGA’s computational resources are used

effectively.

2.9 Related Work

Multi-node accelerators for Machine Learning. DaDianNao [19] provides a

multi-chip ASIC accelerator for DNNs. Other works use multiple FPGAs for ac-

celerating one specific task [95, 96, 97]. Farabet et al. [95] and Donninger et

al. [96] use multiple FPGAs to accelerate DNNs [95] and a chess game [96], re-

spectively. Walters et al. [97] propose a multi-FPGA accelerator for the Hidden

Markov Models [97]. Putnam et al. [27] provide an FPGA fabric for accelerating

Bing’s ranking algorithms [27]. Microsoft [28] also provides an infrastructure for

deploying FPGAs in datacenters, which is also used for the inference phase

of DNNs. This release does not deal with training nor does it offer a frame-

work for programming. CoSMIC provides the necessary framework to utilize

and program such an infrastructure [28] for machine learning algorithms with-

out involving programmers in hardware design. Recently, Microsoft also un-

veiled Brainwave [98] that uses multiple FPGAs for DNN inference. In contrast,

CoSMIC is a full stack to accelerate training at scale. Google’s TPU [99] is

a systolic array for acceleration of matrix multiplication, which is prevalent op-

eration in ML. TPU is also programmable from Tensorflow [100] that recently

supports distributed execution. In contrast, CoSMIC enables the use of FPGAs

for scale-out acceleration and comes with its own template architecture.

Template-based acceleration. TABLA [2] is a single-node accelerator gen-

erator for machine learning, which also uses a template-based architecture.
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As discussed in Section 2.8, TABLA, developed for a low-power FPGA (Zynq),

does not effectively utilize the resources of a modern server-scale FPGA (Ultra-

Scale+). Furthermore, TABLA generates single-node FPGA accelerators which

are inherently limited by the fine-grained parallelism available in the single-

thread of stochastic gradient descent. In contrast, CoSMIC not only generates

scalable accelerators for distributed systems using a novel multi-threaded tem-

plate architecture, but also provides the necessary system software stack for

scale-out acceleration. Moreover, the compilation algorithm of this work differs

from TABLA. Our algorithm reduces the data communication by mapping data

first. In contrast, TABLA’s algorithm maps operations first to reduce the single-

threaded latency. Additionally, our algorithm optimizes the mapping of operation

to the FPGA’s resources according to the location of data to avoid data mar-

shaling. DNNWEAVER [3] is another template-based accelerator generator that

only generates accelerators for prediction with Deep Neural Networks (DNNs).

DNNWEAVER does not deal with training, multiple FPGAs, or algorithms be-

sides DNNs. Cheng, et al. [101] propose predesigned data flow templates as

the intermediate point for HLS from general C/C++ workloads. LINQits [102]

provides a template architecture for accelerating database queries. The last

two works [101, 102] do not focus on learning algorithms nor do they deal with

scale-out systems.

Single-node accelerators for Machine Learning. There is a large body of

work on single-node accelerator design for ML [41, 42, 43, 44, 45, 18, 21, 22,

23, 24, 25, 20, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 53, 54, 58, 59,

60, 61, 62]. These works mostly focus on accelerating one or a fixed number

of learning algorithms. CoSMIC, on the other hand, is a full stack that targets

scale-out acceleration of learning.

HLS for FPGAs. Many related works (e.g., [101, 108, 109, 62]) explore HLS

63



for FPGAs. HLS targets general applications while CoSMIC focuses specifically

on machine learning. Therefore, HLS does not leverage any domain-specific

knowledge or algorithmic insights. Using algorithmic commonalities for a range

of machine learning algorithms is fundamental to our work and enables fur-

ther benefits from hardware acceleration. Acceleration with HLS still requires

hardware expertise. For instance, DNNWEAVER [3] reports that hardware de-

sign to optimize a Vivado HLS implementation of a deep neural network for

FPGA took one month. The resulting implementation was an order of mag-

nitude slower than a template-based accelerator for the same FPGA. A more

recent work [101] uses dataflow templates as intermediate compilation target

for C/C++ programs and delivers 9× higher performance than state-of-the-art

HLS tools. CoSMIC takes a template-based approach that is driven by the the-

ory of machine learning and targets distributed FPGA acceleration of training

from a high-level domain-specific language.

System software for distributed FPGA acceleration. Another inspiring work [110]

provides the mechanisms to integrate predesigned FPGA accelerator with Spark [16].

Melia [111] uses Altera’s OpenCL-based HLS to offer a MapReduce-based

framework for utilizing FPGAs in distributed systems. Another work [112] pro-

vides the framework for using Xilinx Vivado HLS tool for MapReduce [113] ap-

plications. CoSMIC does not rely on pre-developed FPGA accelerators or HLS

for distributed FPGA acceleration, or generic system software.

2.10 Conclusion

While accelerators gain traction, their integration in the system stack is not

well understood. CoSMIC takes an initial step toward such an integration for

an important class of applications while providing generality and a high-level
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programming interface. The evaluations confirm that a full-stack approach is

necessary and just designing efficient accelerators does not yield proportional

benefits without a co-design of the entire system stack. The traditional ap-

proaches of profiling and offloading hot-regions of code lack the flexibility to

support ever-changing algorithms and the emerging scale and heterogeneity

in the systems. It is clear that a full-stack design is non-trivial but deeply un-

derstanding algorithmic properties of the application domain can significantly

facilitate such approaches. CoSMIC takes advantage of the algorithmic un-

derstanding to simplify the layers of its stack by specializing them and offers a

cohesive hardware-software solution. The encouraging results show that this

paradigm is effective but the multifaceted nature of the cross-stack approach

promises an exciting yet challenging road ahead.

2.11 Algorithmic Approaches for ML Acceleration

As a preliminary effort for the CoSMIC project, we developed a single-node

FPGA accelerator generation framework for data analytics, dubbed TABLA [2],

which enables FPGA acceleration from high-level specifications of algorithms.

We open-sourced the code and it is available at http://act-lab.org/artifacts/tabla.

TABLA leverages the insight that many learning algorithms can be solved using

stochastic gradient descent that minimizes an objective function. The solver is

fixed while the objective function changes with the learning algorithm. There-

fore, TABLA uses stochastic optimization as the abstraction between hardware

and software. Consequently, programmers specify the learning algorithm by

merely expressing the gradient of the objective function in our domain specific

language. TABLA then automatically generates the synthesizable implementa-

tion of the accelerator for FPGA realization using a set of template designs.
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Real hardware measurements show orders of magnitude higher performance

and power efficiency while the programmer only writes 60 lines of code.

As a follow-on work, we developed DNNWEAVER [3], a framework that au-

tomatically generates a synthesizable accelerator for a given (DNN, FPGA)

pair from a high-level specification in Caffe. To achieve large benefits while

preserving automation, we devised hand-optimized design templates that the

DNNWEAVER framework uses to generate the accelerators. First, DNNWEAVER

translates a given high-level DNN specification to its novel ISA that represents

a macro dataflow graph of the DNN. The DNNWEAVER compiler is equipped

with our optimization algorithm that tiles, schedules, and batches DNN op-

erations to maximize data reuse and best utilize target FPGA’s memory and

other resources. The final result is a custom synthesizable accelerator that best

matches the needs of the DNN while providing high performance and efficiency

gains for the target FPGA.

As the most recent effort in this line of research, we explored to leverage

another algorithmic property of DNNs to open a new dimension in the design

of DNN accelerators. We leverage the property that bitwidth of operations in

DNNs can be reduced without compromising their classification accuracy. How-

ever, to prevent loss of accuracy, the bitwidth varies significantly across DNNs

and it may even be adjusted for each layer individually. Thus, a fixed-bitwidth

accelerator would either offer limited benefits to accommodate the worst-case

bitwidth requirements, or inevitably lead to a degradation in final accuracy. To

alleviate these deficiencies, we introduce the dynamic bit-level fusion/decompo-

sition as the new dimension and develop Bit Fusion [114], a bit-flexible acceler-

ator, that constitutes an array of bit-level processing elements that dynamically

fuse to match the bitwidth of individual DNN layers. This flexibility in the ar-

chitecture enables minimizing the computation and the communication at the
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finest granularity possible with no loss in accuracy.
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Chapter 3

LANGUAGE SUPPORT FOR APPROXIMATE PROGRAMMING

3.1 Introduction

Energy efficiency is a primary concern in modern systems. Mobile devices are

limited by battery life and a significant fraction of the data center cost emanates

from energy consumption. Furthermore, the dark silicon phenomenon limits

the historical improvements in energy efficiency and performance [115]. Ap-

proximate computing is a promising approach that trades small and acceptable

loss of output quality for energy efficiency and performance gains [116, 117,

118, 119, 120, 121, 122, 123]. This approach exploits the inherent tolerance of

applications to occasional error to execute faster or use less energy. These ap-

plications span a wide range of domains including web search, big-data analyt-

ics, machine learning, multimedia, cyber-physical systems, speech and pattern

recognition, and many more. For instance, a lossy video codec can tolerate

imprecision and occasional errors when processing pixels of a frame. Practical

programming models for approximation are vital to fully exploit this opportunity.

Such models can provide significant improvements in performance and energy

efficiency in the hardware by relaxing the abstraction of full accuracy [124, 125,

6, 126].

Safe execution of programs is crucial to the applicability of such techniques.

That is, the programming model needs to guarantee that approximation will
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never lead to catastrophic failures such as array out-of-bound exceptions. Re-

cent works on approximate programming languages [119, 117] enable these

techniques to provide such safety guarantees. These guarantees, however,

come at the expense of extensive programmer annotations: programmers need

to manually annotate all approximate variable declarations [119] or even anno-

tate the safe-to-approximate operations [117]. This need for extensive annota-

tions hinders the practical use of approximation techniques.

In this work, we propose a small set of language extensions that signifi-

cantly lowers the annotation effort and paves the way for practical approximate

programming. To achieve this goal, we identified the following challenges that

need to be addressed. The extensions should enable programmers to annotate

approximation-tolerant method outputs. The compiler then should automatically

infer the operations and data that affect these outputs and selectively mark

them approximable while providing safety guarantees. This process should be

automatic and the language–compiler should be codesigned in order to relieve

programmers from manually and explicitly annotating data declarations or op-

erations. We address these challenges through the following contributions:

1. We introduce FlexJava, a small set of extensions that enables safe, modular,

general, and scalable object-oriented approximate programming. It provides

these features by introducing only four intuitive annotations. FlexJava sup-

ports modularity by defining a scope for the annotations based on the syn-

tactic structure of the program. Scoping and adherence to program structure

makes annotation a natural part of the software development process (Sec-

tion 3.3).

2. The FlexJava annotations are designed to support both coarse-grained and

fine-grained approximation, and enable programmers to specify a wide range

of quality requirements, quality metrics, and recovery strategies (Section 3.3).
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3. The language is codesigned with a compiler that automatically infers the

safe-to-approximate data and operations from limited annotations on pro-

gram or function outputs. The compiler statically enforces safety using a

scalable dataflow analysis that conservatively infers the maximal set of safe-

to-approximate data and operations. This automated analysis significantly

reduces the number of annotations and avoids the need for safety checks at

runtime (Section 3.5).

4. We implemented FlexJava annotations as a library to make it compatible

with Java programs and tools. We extensively evaluate FlexJava using a

diverse set of programs and by conducting a user study (Section 3.4 and

Section 3.6).

The results of our evaluation show that FlexJava reduces the number of

annotations (from 2× to 17×) compared to EnerJ, a recent approximate pro-

gramming language. We also conduct a user study that shows from 6× to 12×

reduction in annotation time compared to EnerJ. With fine-grained approxima-

tion and small losses in quality, FlexJava provides the same level of energy

savings (from 7% to 38%) compared to EnerJ. With coarse-grained approxima-

tion, FlexJava achieves even higher benefits—2.2× average energy reduction

and 1.8× average speedup—for less than 10% quality loss.

A growing body of work is proposing new approximation techniques that

stand to deliver an order of magnitude benefits in both energy and perfor-

mance [127, 6, 128, 118, 122]. Our results suggest that practical programming

solutions, such as FlexJava, are imperative for making these techniques widely

applicable.
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3.2 Background

Approximation techniques are broadly divided into two types: (1) fine-grained

techniques that apply approximation at the granularity of individual instructions

and data elements, and (2) coarse-grained techniques that apply approxima-

tion at the granularity of entire code blocks. FlexJava supports both types of

techniques. We review the literature on these techniques before presenting the

design of FlexJava.

3.2.1 Fine-Grained Approximation

Architectures support fine-grained approximation by allowing to execute inter-

leaved approximate and precise instructions [119, 120, 8, 129, 117]. As Fig-

ure 3.1 shows, such architectures support both approximate operations and ap-

proximate storage. A bit in the instruction opcode identifies whether the instruc-

tion is the approximate or the precise version. Current proposals for approxi-

mate instructions lack room for enough bits to encode multiple approximation

levels. As a result, we assume the prevalent binary-level approximation [119,

120, 8, 129, 117], although our approach can take advantage of multi-level

approximation.

In this model, an approximate instruction has probabilistic semantics: it re-

turns an approximate value with probability p and the precise value with prob-

Execute Memory Write Back

… …

Reg Read

Data 
Cache

Register 
File

Register 
File

INT
Unit

FP
Unit

MemoryCPU

Figure 3.1: A processor that supports fine-grained approximation. The shaded
units perform approximate operations or store data in approximate storage.

71



Table 3.1: Error probabilities and energy savings for different operations in
fine-grained approximation. We consider the three hardware settings of Mild,
Medium, and Aggressive from [119].

Operation Technique Mild Medium Aggressive
Timing Error Probability 10-6 10-4 10-2

Energy Reduction 12% 22% 30%
Mantissa Bits (float) 16 bits 8 bits 4 bits
Mantissa Bits (double) 32 bits 16 bits 8 bits
Energy Reduction 32% 78% 85%
Read Upset Probability 10-16.7 10-7.4 10-3

Write Failure Probability 10-5.6 10-4.9 10-3

Energy Reduction 70% 80% 90%
Per-Second Bit Flip
Probability
Memory Power Reduction 17% 22% 24%

Integer
Arithmetic/Logic

Floating Point
Arithmetic

DRAM (Memory)

Voltage
Overscaling

Bit-width
Reduction

Reduced
Refresh Rate

SRAM Read/Write
(Reg File/Data Cache)

Voltage
Overscaling

10-9 10-5 10-3

ability 1− p. The approximate value may be arbitrary. The architecture also

allows approximate storage, i.e., program data can be stored in approximate

sections of the memory, cache, or registers. We use three such probabilistic

architecture settings, shown in Table 3.1, that offer increasing energy savings

with higher error probabilities. These models are similar to the ones that are

used in recent works on approximate programming [119, 117].

3.2.2 Coarse-Grained Approximation

Coarse-grained approximation techniques concern approximating entire loop

bodies or functions [116, 130, 128]. Loop perforation [116] is one such tech-

nique that transforms loops to skip a subset of their iterations. Green [130] sub-

stitutes functions with simpler approximate implementations or terminates loops

early. NPUs [128] are a new class of accelerators that replace functions with

hardware neural networks to approximately mimic the functions behavior. More

generally, as the focus of the semiconductor industry shifts to programmable

accelerators [131, 132, 133, 27], coarse-grained approximation can pave the

way for new classes of approximate accelerators that can deliver significantly

better performance and energy savings.
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3.3 FlexJava Language Design

We have designed a set of language extensions for approximate programming

that satisfy four key criteria:

1. Safety. The extensions guarantee safe execution. In other words, approx-

imation can never lead to catastrophic failures, such as array out-of-bound

exceptions.

2. Modularity. The extensions are modular and do not hinder modular pro-

gramming and reuse.

3. Generality. The extensions are general and enable utilizing a wide range

of approximation techniques without exposing their implementation details.

4. Scalability. The extensions are scalable and let programmers annotate

large programs with minimal effort.

We have incorporated these extensions in the Java language. This sec-

tion describes approximate programming in the resulting language FlexJava

using a series of examples. In the examples, bold-underline highlight the

safe-to-approximate data and operations that the FlexJava compiler infers au-

tomatically from the programmer annotations. Section 3.5 presents the formal

semantics of the annotations and the static analysis performed by the compiler.

3.3.1 Safe Programming in FlexJava

Providing safety guarantees is the first requirement for practical approximate

programming. That is, the approximation should never affect critical data and

operations. The criticality of data and operations is a semantic property of the

application that can only be identified by the programmer. The language must

therefore provide a mechanism for programmers to specify where approxima-

tion is safe. This poses a language-compiler co-design challenge in order to
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alleviate the need for manually annotating all the approximate data and opera-

tions. To address this challenge, we provide two language annotations, called

loosen and tighten. These annotations provide programmers with full control

over approximation without requiring them to manually and explicitly mark all

the safe-to-approximate data and operations.

Selectively relaxing accuracy requirements. As discussed above, not all

program data and operations are safe to approximate. Therefore, FlexJava

allows each data and operation in the program to be either precise or approxi-

mate. Approximate data can be allocated in the approximate sections of mem-

ory, and an approximate operation is a variant that may generate inexact re-

sults. All data and operations are precise by default. The loosen annotation

allows to relax the accuracy requirement on a specified variable at a specified

program point. That is, any computation and data that exclusively affects the

annotated variable is safe to approximate. For example, in the following snippet,

the programmer uses loosen(luminance) to specify that the computation of

luminance can be safely approximated.

float computeLuminance (float r, float g, float b) {

float luminance = r * 0.3f + g * 0.6f + b * 0.1f;

loosen(luminance);

return luminance;

}

From this single annotation, the FlexJava compiler automatically infers that data

r, g, b, and luminance can be safely allocated in the approximate memory.

It also infers that all arithmetic operations, loads, and stores that contribute to

calculating luminance are approximable. To provide memory safety and avoid

null pointer exceptions, operations that calculate addresses to access r, g, and

b are not approximable. A single annotation thus suffices to relax the accu-

racy of four variables and nine operations. Our language-compiler codesign
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alleviates the need to manually annotate all these variables and operations.

Control flow safety.

To avoid unexpected control flow, FlexJava keeps all the computation and

data that affects control flow precise by default. Consider the following example:

int fibonacci(int n) {

int r;

if (n <= 1)

r = n;

else

r = fibonacci(n - 1) + fibonacci(n - 2);

loosen(r);

return r;

}

Variable r is annotated as an approximate output and n affects r. But since n

also affects control flow in the conditional, it is not safe to approximate.

In many cases, conditionals represent simple control flow that can be con-

verted to data dependence. Programmers can add explicit loosen annotations

to mark such conditionals approximate. However, to reduce programmer ef-

fort, the FlexJava compiler automatically achieves this effect by conservatively

converting control dependencies into data dependencies using a standard al-

gorithm [134]. The following example illustrates this optimization:
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double sobel(double[][] p){

double x, y, g, r;

x = p[0][0] + ...;

y = p[0][2] + ...;

g = sqrt(x * x + y * y);

if (g > 0.7) r = 0.7;

else r = g;

loosen(r);

return r;

}

double sobel(double[][] p){

double x, y, g, r;

x = p[0][0] + ...;

y = p[0][2] + ...;

g = sqrt(x * x + y * y);

r = (g > 0.7) ? 0.7 : g;

l

loosen(r);

return r;

}

In the code snippet on the left, by annotating r, there are only a few opportu-

nities for approximation since r depends on g which is used in the conditional.

However, the FlexJava compiler can convert this control dependence to data

dependence. This conversion is illustrated in the snippet on the right using the

ternary ?: operator. After conversion, r is only data dependent on g, which in

turn makes g safe to approximate. Consequently, as the snippet on the right

shows, all data and operations that affect g are also safe to approximate. As

this example shows, this automation significantly increases approximation op-

portunities without the need for extra manual annotations.

Memory safety. Approximating address calculations may lead to memory ac-

cess violations or contamination of critical data. To avoid such catastrophic

failures and provide memory safety, any computation or data that affects ad-

dress calculations is precise in FlexJava. Similarly, any computation or data

that affects object allocation size is also precise. However, objects that do not

contribute to address calculations, allocation sizes, or control flow may be allo-

cated in approximate memory in accordance with the programmer annotations.

Consider the following example:
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int computeAvgRed (Pixel[] pixelArray) {

int sumRed = 0;

for(int i = 0; i < pixelArray.length; i++)

sumRed = sumRed + (int) pixelArray[i].r;

int avgRed = sumRed / pixelArray.length;

loosen(avgRed);

return avgRed;

}

Variables i and pixelArray are not approximable since they are used for

address calculations. But the contents of the Pixel objects pointed to by

the pixelArray elements, e.g., pixelArray[i].r, are approximable due

to loosen(avgRed). As discussed before, programmers can always override

the default semantics and relax these strict safety guarantees.

Restricting approximation.

FlexJava provides the tighten annotation which is dual to loosen. Annotating

a variable with tighten makes any data or operation that affects the variable pre-

cise, unless a preceding loosen makes a subset of those data and operations

approximable. The following examples illustrate the interplay between loosen

and tighten:

float computeAvg (Pixel p) {

float sum= p.r + p.g + p.b;

tighten(sum);

float avg = sum / 2.0f;

loosen(avg);

return avg;

}

float computeAvg (Pixel p) {

float sum= p.r + p.g + p.b;

loosen(sum);

float avg = sum / 2.0f;

tighten(avg);

return avg;

}

In the left example, we relax the accuracy of data and operations that affect avg

except those that affect sum. Conversely, in the right example, we relax the ac-

curacy of data and operations that affect sum while keeping the last step of com-
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puting avg precise. The FlexJava compiler automatically introduces tighten an-

notations to prevent approximating control flow and address calculations. The

tighten annotation could also be used by programmers when critical data and

operations are intertwined with their approximate counterparts. No such cases

appeared when annotating the evaluated benchmarks (Section 3.6.1).

3.3.2 Modular Approximate Programming

Scoped approximation. Modularity is essential when designing a language

since it enables reusability. To make approximate programming with FlexJava

modular, we define a scope for the loosen annotation. The default scope is

the code block that contains the annotation; e.g., the function or the loop body

within which the loosen annotation is declared. As the following example illus-

trates, data and operations that are outside of the scope of the loosen annota-

tion are not affected.

int p = 1;

for (int i = 0; i < a.length; i++)

p *= a[i];

for (int i = 0; i < b.length; i++) {

p += b[i];

loosen(p);

}

Since loosen(p) is declared in the second loop that process the b array, the

operations outside of this loop (e.g., p *= a[i]) are not affected and cannot

be approximated. Assigning scope to the loosen annotation provides separa-

tion of concerns. That is, the loosen annotation only influences a limited region

of code that makes it easier for programmers to reason about the effects of the

annotation. Furthermore, the scope of approximation adheres to the syntactic

structure of the program that makes annotating the code a natural part of the
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program development.

To ensure safety, the scope for the tighten annotation is the entire program.

All data and operations in the program that affect the annotated variable in

tighten will be precise. The same principle applies to the conditionals and point-

ers. The FlexJava compiler automatically applies these global semantics and

relieves programmers from safety concerns.

Reuse and library support in FlexJava. Composing independently developed

codes to build a software system is a vital part of development. Composability

must be supported for the annotations. To this end, we define two variants for

the loosen; the default case and the invasive case (loosen invasive). These

variants have different semantics when it comes to function calls. If a function

call is in the scope of a loosen annotation and its results affects the annotated

variable, it may be approximated only if there are loosen annotations within

the function. In other words, the caller’s annotations will not interfere with the

annotations within the callee and may only enable them. If the callee does

not affect caller’s annotated variable, its internal loosen annotations will not

be enabled. With this approach, the library developers can develop general

approximate libraries independently regardless of the future specific use cases.

The users can use these general libraries without concerning themselves with

the internal annotations of the libraries. The following examples demonstrate

the effects of loosen for function calls.
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static int square(int a){

int s = a * a;

loosen(s);

return s;

}

public static void main

(String[] args){

int x = 2 + square(3);

loosen(x);

System.out.println(x);

}

static int square(int a){

int s = a * a;

loosen(s);

return s;

}

public static void main

(String[] args){

int x = 2 + square(3);

System.out.println(x);

}

In the left example, as highlighted, loosen(x) declares the local operations with

the main function as safe-to-approximate. The annotation also enables ap-

proximation in the square function that was called in the scope of the loosen(x)

annotation. Within the square function, the approximation will be based on the

annotations that are declared in the scope of square. As the right example il-

lustrates, if there are no loosen annotations in the caller function, main, nothing

will be approximated in the callee function, square.

An expert user may want to apply approximation to the callee functions

even if they do not contain any internal annotations. FlexJava provides the

loosen invasive for such cases. The loosen invasive enables applying approx-

imation to the conventional libraries that are not annotated for approximation.

Note that loosen invasive does not cause control flow or memory address cal-

culations to be approximated as we discussed for loosen. The only difference

is how approximation is enforced in the callee function as illustrated below.
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static int square(int a){

int s = a * a;

return s;

}

public static void main

(String[] args){

int x = 2 + square(3);

loosen(x);

System.out.println(x);

}

static int square(int a){

int s = a * a;

return s;

}

public static void main

(String[] args){

int x = 2 + square(3);

loosen_invasive(x);

System.out.println(x);

}

In the left example, the loosen(x) annotation approximates the local operations

in main function but will not lead to any approximation in the square function

since it does not contain any loosen annotations. In contrast, in the right exam-

ple, loosen invasive(x) enforces safe approximation in square since its return

value affects x.

Supporting separate compilation. FlexJava supports separate compilation [135].

That is, a FlexJava program can link with both annotated and unannotated pre-

compiled code without having to re-compile it. If the precompiled code is not

annotated, it executes precisely. If the precompiled code is annotated, its anno-

tations are respected and its data and operations are approximated accordingly.

Moreover, the annotations in the new program will not approximate any addi-

tional operations and data in the precompiled code other than the ones already

approximated by annotations in them.

3.3.3 OO Programming in FlexJava

To this point, we have described how to use FlexJava annotations to identify

approximate data and operations within methods of a class. This section de-

scribes how to declare class fields as approximate and how inheritance and
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polymorphism interplay with the annotations.

Approximating class fields. Since class fields are not declared in the scope

of any of the methods, we allow the programmers to selectively relax their se-

mantics in the constructor of the class. The fields will be allocated in the ap-

proximate section of the memory if an outer-level loosen enables approximation

in the constructor. In principle, instantiation of an object involves a function call

to the constructor. The outer-level loosen annotations have the same effect on

constructors as they have on other function calls.

class A {

float x, y;

A (float x, float y) {

this.x = x;

this.y = y;

loosen(x); }

public static void main() {

A a = new A(1.5f, 2.0f);

float p = 3.5f + a.x;

loosen(p);

}

}

The annotated p is affected by the instance of A. Therefore, loosen(p) enables

approximation in the constructor. Consequently, the x field will be allocated

in the approximation section of the memory because of the loosen(x) in the

constructor. The y field will not be allocated in the approximation section since

it is not annotated in the constructor.

Inheritance. When inheriting an annotated class, annotations are preserved in

methods that are not overridden. Naturally, if the child class overrides a method,

the overriding method must be re-annotated if approximation is desired.

Polymorphism due to approximation. Depending on the annotations, differ-
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ent instances of a class and different calls to a method may carry approximate

or precise semantics. The FlexJava compiler generates different versions of

such classes and methods using code specialization [136].

3.3.4 Generality in FlexJava: Support for Coarse-Grained Approximation

The annotations discussed so far enable fine-grained approximation at the level

of single operations and data. This section describes another form of annota-

tions, the begin loose–end loose pair, that enables coarse-grained approxima-

tion in FlexJava. Any arbitrary code block that is enclosed between this pair of

annotations can be approximated as a whole. Both annotations have a variable

argument list. The first argument of begin loose, which is a string, identifies

the type of approximation that can be applied to the code block. The compiler

or the runtime system then can automatically apply the corresponding approx-

imation technique. Some approximation techniques may require programmers

to provide more information. For example, function substitution [130] requires

the programmer to provide an approximate version of the function. This extra

information can be passed to the compiler or runtime system through the argu-

ments of begin loose or end loose. This approach is flexible enough to enable

a variety of coarse-grained approximation techniques. We describe how to use

the approach with two such techniques: loop perforation [116] and NPUs [128,

48, 137].

Loop perforation. Loop perforation [116] allows the runtime to periodically

skip iterations of loops. The programmer can set the initial rate of perforation

(skipping the iterations). FlexJava annotations can be used for loop perforation

as the following example shows.
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begin_loose("PERFORATION", 0.10);

for (int i = 0; i < n; i++) { ... }

end_loose();

The begin loose("PERFORATION", 0.10) and end loose() annotations

identify the loop that can be approximated. The first argument of begin loose,

"PERFORATION", declares that the desired approximation technique is loop

perforation. The second argument, 0.10, identifies the rate of perforation.

Neural acceleration. Neural Processing Units (NPU) [128, 123, 6, 48, 137] are

a new class of accelerators that replace compute-intensive functions with hard-

ware neural networks. We give an overview of the NPU compilation workflow

since we use them to evaluate FlexJava’s coarse-grained annotations. The

compiler first automatically trains a neural network on how an approximable

code block behaves. Then, it replaces the original block with an efficient hard-

ware implementation of the trained neural network or the NPU. This automatic

code transformation also identifies the inputs and outputs of the region. The

compiler performs the transformation in four steps:

1. Input/output identification. To train a neural network to mimic a code

block, the compiler needs to collect the input-output pairs that represent

the functionality of the block. Therefore, the first step is identifying the inputs

and outputs of the delineated block. The compiler uses a combination of live

variable analysis and Mod/Ref analysis [138] to automatically identify the in-

puts and outputs of the annotated block. The inputs are the intersection of

live variables at the location of begin loose("NPU") with the set of variables

that are referenced within the segment. The outputs are the intersection

of live variables at the location of end loose() with the set of variables that

are modified within the segment. In the example that follows, this analysis

identifies x and y as the inputs to the block and p and q as the outputs.
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2. Code observation. The compiler instruments the program by putting probes

on the inputs and outputs of the block. Then, it profiles the instrumented

program using representative input datasets such as those from a test suite.

The probes log the block inputs and outputs. The logged input–output pairs

form the training dataset.

3. Training. The compiler uses the collected input–output dataset to configure

and train a multilayer perceptron neural network that mimics the approx-

imable block.

4. Code generation. Finally, the compiler replaces the original block with a

series of special instructions that invoke the NPU hardware, sending the

inputs and receiving the computed approximate outputs.

The following example illustrates the use of FlexJava annotations for NPU ac-

celeration.

Double foo(Double x, Double y) {

begin_loose("NPU");

p = Math.sin(x) + Math.cos(y);

q = 2 * Math.sin(x + y);

end_loose();

return p + q;

}

The programmer uses begin loose–end loose to indicate that the body of func-

tion foo is a candidate for NPU acceleration. The first argument of begin loose("NPU")

indicates that the approximation technique is NPU acceleration.

3.3.5 Support for Expressing Quality Metrics, Quality Requirements, and

Recovery

Practical and complete approximate programming languages need to provide

a mechanism to specify and express quality metrics, quality requirements, and
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package edu.flexjava;
abstract class QualityMetric {

double acceptableQualityLoss = 0.0;
QualityMetric(double q) { acceptableQualityLoss = q; }
abstract void checkQuality(Object... o);
abstract void recover(Object... o);

}

Figure 3.2: An abstract class for defining the quality metric.

package edu.flexjava;
class FlexJava {

s t a t i c void loosen(Object... o) {}
s t a t i c void loosen_invasive(Object... o) {}
s t a t i c void tighten(Object... o) {}
s t a t i c void begin_loose(String type, Object... o) {}
s t a t i c void end_loose(Object... o) {}

}

Figure 3.3: FlexJava annotations are implemented as a library.

recovery mechanisms. As shown in prior works on approximation, quality met-

rics are application dependent [119, 116, 120, 128, 130]. For example, an

image processing application may use signal-to-noise ratio as the quality met-

ric, while the quality metric for web search is relevance of the results to the

search query. The quality metric for machine learning algorithms that perform

classification is the misclassification rate. Consequently, the common practice

in approximate computing is for programmers to specify the application quality

metric and the acceptable level of quality loss. The FlexJava annotations can

be naturally extended to express quality metrics and requirements.

As Figure 3.2 shows, we first provide an abstract class as a template for

implementing the quality metric function. The programmer can implement this

abstract class and override the checkQuality function to implement the qual-

ity metric. The constructor of this class can be used to set the acceptable

level of quality loss, acceptableQualityLoss. The programmer can also

override the recover to implement a recovery procedure for the occasions

that the quality loss is greater than the requirements. Note that the quality re-
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quirement can be expressed as a probability if desired. After implementing the

QualityMetric class, the programmer can pass its instance via the last ar-

gument of loosen, loosen invasive, or end loose to the compiler or the runtime

system. Clearly, the programmer need not specify the quality metric in each

such annotation; it is usually specified only when annotating the final output or

important functions of the application, as illustrated in the following example.

static int cube (int x) {

int y = x * x * x;

loosen(y);

return y;

}

public static void main (String[] args) {

int z = cube(7);

loosen(z, new ApplicationQualityMetric(0.10));

System.out.println(z);

}

Notice that the quality requirement is not specified in the function or library

annotations (loosen(y)). It is specified only in the last annotation on the final

output z of the program. In this example, the acceptable quality loss is 10%,

which is passed to the constructor as 0.10.

3.4 FlexJava Implementation

FlexJava is a small set of extensions to Java that enables safe, modular, gen-

eral, and scalable object-oriented approximate programming. It achieves these

goals by introducing only four intuitive annotations: loosen, tighten, loosen invasive,

and the begin loose–end loose pair. In this section, we describe our implemen-

tation of these annotations and the development environment of FlexJava.
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3.4.1 Implementation of Annotations

We implemented FlexJava annotations as a library to make it compatible with

Java programs and tools. Figure 3.3 illustrates this library-based implementa-

tion that provides the interface between the FlexJava language and compiler.

The FlexJava class implements the annotations as empty variable-length ar-

gument functions. Consequently, compiling a FlexJava program with a tradi-

tional compiler yields a fully precise executable. The approximation-aware com-

piler, however, can intercept calls to these functions and invoke the necessary

analyses and approximate transformations.

3.4.2 Integrated Highlighting Tool

FlexJava is coupled with a static approximation safety analysis that automati-

cally infers the safe-to-approximate operations and data from the programmer

annotations. We have developed an integrated tool that highlights the source

code with the result of this analysis. By visualizing the result, this tool further

facilitates FlexJava programming and can help programmers to refine their an-

notations. In its current form, the integrated tool adds comments at the end of

each line showing which of the line’s operations are safe to approximate. It is

straightforward to convert this visual feedback to syntax highlighting. In fact, we

used the result of this tool to highlight the examples in Section 3.3.

3.5 Approximation Safety Analysis

In this section, we define the formal semantics of approximation safety for an-

notated programs in FlexJava. We define a core language with loosen and

tighten annotations. We give a concrete semantics parameterized by the set of

operations to be approximated in an annotated program in the language. The
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(real constant) r ∈ R (variable) v ∈ V
(real expression) e ∈ R∪V (operation label) l ∈ L
(statement) s ::= v :=l δ (e1,e2) | loosen(v) | tighten(v)

| assume(v) | s1;s2 | s1+s2 | s∗

Figure 3.4: Language syntax.

(stack ) ρ ∈ V→ R (tainted set) T ⊆ V
(state) ω ::= 〈s,ρ,T 〉 | 〈ρ,T 〉 | error | halt

Figure 3.5: Semantic domains.

semantics determines if a given set of operations is approximable. As this prob-

lem is undecidable, we develop a static analysis that conservatively infers the

largest set of approximable operations in a given annotated program.

3.5.1 Core Language

Figure 3.4 shows the syntax of our core language. It supports real-valued data

and control-flow constructs for sequential composition, branches, and loops.

We elide conditionals in branches and loops, executing them nondeterministi-

cally and using the assume(v) construct that halts if v≤ 0.

We extend the language with annotations loosen(v) and tighten(v). These

annotations arise from their source-level counterparts described in Section 3.3.

Further, tighten(v) is implicitly added by the FlexJava compiler before each use

of variable v in a conditional, an array index, a pointer dereference, or a program

output. To statically identify operations that are approximable under the given

annotations, each operation has a unique label l.
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Example. We illustrate the above concepts for the program on the left below.

For now, ignore the sets in annotations next to each line of the program.

L={1,2,5,6} L={2,6}

1: v1 := input(); {{v1}} {{}}

2: v2 := input(); {{v1,v2}} {{v2}}

3: tighten(v1); {T} {{v2}}

4: while (v1 > 0) { {T} {{v2}}

5: v1 := f(v1); {T} {{v2}}

6: v2 := g(v2); {T} {{v2}}

7: tighten(v1); {T} {{v2}}

8: } {T} {{v2}}

9: loosen(v2); {T} {{}}

10: tighten(v2); {T} {{}}

11: output(v2); {T} {{}}

The compiler introduces tighten(v1) on lines 3 and 7 to ensure that v1> 0

executes precisely, and tighten(v2) on line 10 to ensure that the value of v2

output on line 11 is precise. The programmer relaxes the accuracy of v2 on

line 9, which allows the operations writing to v2 on lines 2 and 6 to be approx-

imated without violating the tighten(v2) requirement on line 10. However, the

operations writing to v1 on lines 1 and 5 cannot be approximated as they would

violate the tighten(v1) requirement on line 3 or 7, respectively. �

3.5.2 Concrete Semantics

We define a concrete semantics to formalize approximation safety for our lan-

guage. Figure 3.5 shows the semantic domains. Each program state ω (ex-

cept for special states error and halt described below) tracks a tainted set T

of variables. A variable gets tainted if its value is affected by an approximate

operation, and untainted if loosen is executed on it.
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L |= 〈v :=l
δ (e1,e2),ρ,T 〉 〈ρ[v 7→ [[δ (e1,e2)]](ρ)],T ′〉

where T ′ =
{

T ∪{v} if l ∈ L or uses(e1,e2)∩T 6= /0
T \{v} otherwise

(ASGN)

L |= 〈loosen(v),ρ,T 〉 〈ρ,T \{v}〉 (LOOSEN)
L |= 〈tighten(v),ρ,T 〉 〈ρ,T 〉 [if v /∈ T ] (TIGHTENPASS)
L |= 〈tighten(v),ρ,T 〉 error [if v ∈ T ] (TIGHTENFAIL)
L |= 〈assume(v),ρ,T 〉 〈ρ,T 〉 [if ρ(v)>0] (ASMPASS)
L |= 〈assume(v),ρ,T 〉 halt [if ρ(v)≤0] (ASMFAIL)

Figure 3.6: Concrete semantics of approximation safety.

Figure 3.6 shows the semantics as a set of rules of the form:

L |= 〈s,ρ1,T1〉  〈ρ2,T2〉 | halt | error

It describes an execution of annotated program s when the set of approximated

operations is L, starting with stack (i.e., valuation to variables) ρ1 and tainted

set T1. The rules are similar to information flow tracking: approximated op-

erations in L are sources (rule ASGN), loosen(v) are sanitizers (rule LOOSEN),

and tighten(v) are sinks (rules TIGHTENPASS and TIGHTENFAIL). The execution

ends in state error if some tighten(v) is executed when the tainted set contains

v, as described by rule TIGHTENFAIL. The execution may also end in state halt,

which is normal and occurs when assume(v) fails (i.e., v≤ 0), as described by

rules ASMPASS and ASMFAIL. We omit the rules for compound statements and

those that propagate error and halt, as they are relatively standard and do not

affect the tainted set.

We now define approximation safety formally:

Defn 3.5.1 (Approximation safety) A set of operations L in a program s is

approximable if ∀ρ : L |= 〈s,ρ, /0〉 6 error.

To maximize approximation, we seek as large a set of approximable operations
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as possible. In fact, a unique largest set exists, as our semantics satisfies the

property that if operation sets L1 and L2 are approximable, then so is L1∪L2.

Example. In the example program, the largest set of approximable operations

is those on lines 2 and 6. Column L={2,6} shows the tainted set as per our

semantics after each statement under this set of approximated operations. The

error state is unreachable in any run as the tainted set at each tighten(v) does

not contain v. Hence, this set of operations is approximable. �

3.5.3 Static Analysis

The problem of determining if a given set of operations is approximable in a

given annotated program even in our core language is undecidable. We present

a novel static analysis that conservatively solves this problem, i.e., if the analy-

sis deems a set of operations as approximable, then it is indeed approximable

according to Defn. 3.5.1. Further, we apply an efficient algorithm that uses the

analysis to automatically infer the largest set of approximable operations.

Our static analysis is shown in Figure 3.7. It over-approxim-ates the tainted

sets that may arise at a program point in the concrete semantics by an abstract

state D, a set each of whose elements is > or an abstract tainted set π of

variables.

The analysis is a set of transfer functions of the form FL[s](D)=D′, denot-

ing that when the set of approximated operations is L, the annotated program

s transforms abstract state D into abstract state D′. The element > arises in

D′ either if it already occurs in D or if s contains a tighten(v) statement and an

abstract tainted set incoming into that statement contains the variable v. Thus,

the element > indicates a potential violation of approximation safety. In particu-

lar, an annotated program does not violate approximation safety if the analysis

determines that, starting from input abstract state { /0}, the output abstract state

92



(abstract tainted set) π ∈ Π = 2V

(abstract state) D ⊆ D= Π∪{>}

FL[s] : 2D→ 2D

FL[s1 ; s2](D) = (FL[s1]◦FL[s2])(D)
FL[s1+s2](D) = FL[s1](D)∪FL[s2](D)

FL[s∗](D) = leastFix λD′.(D∪FL[s](D′))
FL[t](D) = { transL[t](d) |d ∈ D}

for atomic statement t, where:

transL[t](>) = >

transL[v :=l δ (e1,e2)](π) =


π ∪{v} if l ∈ L ∨

uses(e1,e2)∩π 6= /0
π \{v} otherwise

transL[tighten(v)](π) =

{
π if v /∈ π

> otherwise
transL[loosen(v)](π) = π \{v}

Figure 3.7: Approximation safety analysis.

does not contain >:

Theorem 3.5.2 (Soundness) For each program s, if > /∈ FL[s]({ /0}) then for

each state ρ, L |= 〈s,ρ, /0〉 6 error.

Example. For our example from Section 3.5.1, the columns on the right show

the abstract state computed by the analysis after each statement, under the set

of approximated operations indicated by the column header. For L={1,2,5,6},

the final abstract state contains >, and indeed the operations on lines 1 and 5

are not approximable. But for L={2,6}, the final abstract state does not contain

>, proving that operations on lines 2 and 6 are approximable. �

Our static analysis has the useful property that for any annotated program,

there exists a unique largest set of operations that it considers approximable.

Theorem 3.5.3 (Unique largest solution) ∃ Lmax⊆L :> /∈ FLmax [s]({ /0}) ∧ (> /∈

FL[s]({ /0})⇒ L⊆ Lmax).

We use a standard algorithm [139] to infer this largest set of approximable

operations. Starting with all operations approximated, it iteratively finds a largest
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set of approximable operations which passes all the tighten checks in the pro-

gram.

3.6 Evaluation

This section aims to answer the following research questions.

• RQ1: Can FlexJava significantly reduce the number of manual annota-

tions?

• RQ2: Can FlexJava significantly reduce the programmer effort and anno-

tation time?

• RQ3: Can FlexJava give significant speedup and energy gains with both

fine- and coarse-grained approximation?

As the results of the evaluations show, FlexJava reduces the number of an-

notations (between 2× and 17×) compared to EnerJ, the leading approximation

language. We also conduct a user study that shows from 6× to 12× reduction

in annotation time compared to EnerJ. FlexJava; however, provides the same

level of energy savings (from 7% to 38%) compared to EnerJ with fine-grained

approximation. With coarse-grained approximation, FlexJava achieves 2.2× en-

ergy reduction and 1.8× speedup for under 10% quality loss.

Benchmarks and quality metrics. As Table 3.2 shows, we evaluate Flex-

Java using 10 Java programs. Eight are the EnerJ benchmarks [119]. We use

two additional benchmarks, hessian and sobel. Five of these come from the Sci-

Mark2 suite. The rest are zxing, an Android bar code recognizer; jmeint, an

algorithm to detect intersecting 3D triangles (part of the jMonkeyEngine game

engine); sobel, an edge detection application based on the Sobel operator; and

raytracer, a simple 3D ray tracer. To better study the scalability of our analy-
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sis, we added the hessian application from the BoofCV vision library with 10,174

lines of code. This application uses the Hessian affine region detector to find

interesting points in an image. The code for this application uses Java gener-

ics that is not supported by the EnerJ compiler and simulator. However, our

safety analysis supports Java generics and was able to analyze this applica-

tion. Therefore, only for this specific application, our comparisons are limited

to annotation effort and safety analysis. Table 3.2 also shows the application-

specific quality metrics. We measure quality by comparing the output of the

fully precise and the approximated versions of the program. For each bench-

mark, we use 10 representative input datasets such as 10 different images. The

quality degradation is averaged over the input datasets.

3.6.1 RQ1: Number of Annotations

To answer RQ1, we compare the number of EnerJ annotations with FlexJava

annotations. We use EnerJ as a point of comparison because it requires the

minimum number of annotations among existing approximate languages [119,

117]. EnerJ requires programmers to annotate all the approximate data dec-

larations using type qualifiers. Then, the EnerJ compiler infers the safe-to-

approximate operations for fine-grained approximation. In contrast, our approx-

imation safety analysis infers both approximate data and operations from a lim-

ited number of FlexJava annotations on the program or function outputs. We

used the Chord program analysis platform [140] to implement our approxima-

tion safety analysis. Compared to EnerJ, our analysis infers at least as many

number of safe-to-approximate data and operations with significantly fewer num-

ber of manual annotations.

Figure 3.8 shows the number of annotations with EnerJ and FlexJava. As

Figure 3.8 illustrates, there is a significant reduction in the number of annota-
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Figure 3.8: Number of annotations required to approximate the same set of data
and operations using EnerJ and FlexJava.

tions with FlexJava. FlexJava requires between 2× (mc) to 17× (hessian) less

annotations than EnerJ. The largest benchmark in our suite is zxing with 26,171

lines of code. It requires 696 annotations with EnerJ, 109 annotation with Flex-

Java. Thus, FlexJava reduces the number of annotations by a factor of 6×. The

zxing benchmark needs several loosen annotations to mark its function outputs

as approximable. Further, many condition variables are safe to approximate

and such variables need to be annotated explicitly. Therefore, zxing requires a

number of FlexJava annotations that is relatively large compared to all other

benchmarks. These results confirm that FlexJava annotations and its approx-

imation safety analysis can effectively reduce the number of manual annota-

tions.

The results in Figure 3.8 are with no use of loosen invasive. Using loosen invasive

only reduces the number of annotations with FlexJava. Moreover, in the evalu-

ated benchmarks, there is no need for any manual tighten annotations. As de-

scribed before, FlexJava’s approximation safety analysis automatically inserts

tighten annotations for the critical variables to ensure control flow and memory

safety. The FlexJava highlighting tool was useful since it effectively visualizes

the result of the automated approximation safety analysis.
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Approximation safety analysis. In Table 3.2, columns “# of Lines” and “Anal-

ysis Runtime (sec)” report the number of lines in each program and the runtime

of the approximation safety analysis. The analysis analyzes application code

and reachable Java library (JDK) code uniformly although we report their sizes

separately in the table. The analysis was performed using Oracle HotSpot JVM

1.6.0 on a Linux machine with 3.0 GHz quad-core processors and 64 GB memory.

The analysis runtime strongly correlates with the number of potentially ap-

proximable data and operations. The potential approximable elements include

all the data declarations and all the operations that are not address calcula-

tions and jump or branch instructions in the byte code. The number of potential

elements is presented in columns “# of Approximable Data-Potential” and “# of Ap-

proximable Operations-Potential”, respectively. The analysis determines whether

or not each of these elements is safe to approximate with respect to the pro-

grammer annotations. The number of all the potential approximable elements

defines the search space of the analysis. Thus, the space of possible solutions

that the approximation safety analysis explores for zxing is of size 2(1053+8454).

Automatically finding the largest set of approximable elements from this huge

space justifies the 12,722 seconds (=3 hours and 32 minutes) of running time to ana-

lyze zxing. However, the analysis runtime is not exponential with respect to the

number of potential elements. That is because in each iteration, the analysis

eliminates at least one element from the potentials list.

Naturally, significantly reducing the number of manual annotations requires

an automated analysis that takes some machine time. That is, the analysis is

trading machine time for fewer annotations, potentially saving programmer time.

Furthermore, we report the pessimistic runtime when all of the libraries and pro-

gram codes are analyzed in a single compiler run without separate compilation.

Separate compilation may reduce this runtime when precompiled approximate
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Figure 3.9: Annotation time with EnerJ and FlexJava for (a) sor, (b) smm, and (c)
fft. The x-axes denotes the user study subjects.

libraries are available.

3.6.2 RQ2: Programmer Effort/Annotation Time

To answer RQ2, we conduct a user study involving ten programmers. The

programmers are asked to annotate three programs with both languages. To

avoid bias in our study toward FlexJava, we used three programs from the En-

erJ benchmark suite [141]. The benchmarks are not large so that the subjects

can understand their functionality before annotating them. As presented in Fig-
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ure 3.9, we measure the annotation time with EnerJ and FlexJava and compare

the results. The subjects are computer science graduate students who have

prior background in Java programming but have no experience in approximate

programming. We measured the annotation time using the following procedure.

First, we orally explain how to annotate the programs with FlexJava and

EnerJ. Then, we demonstrate the annotation process on a simple benchmark,

mc, and show the subjects how to use the tools for both languages. For this

study, the subjects then annotate three of benchmarks, sor, smm, and fft, using

both languages. Half of the subjects use EnerJ annotations first and the other

half use FlexJava first. The measured time for EnerJ constitutes annotation

plus compilation time. Whereas the measured time for FlexJava constitutes

annotation time, plus the time for running the approximation safety analysis,

plus the time for analyzing the analysis results using the source highlighting

tool. We provide the unannotated application and a description of its algorithm

for the subjects. We allow the subjects to review each application code prior to

annotating it. Our current highlighting tool is enough to check whether or not

the analyzed results are equivalent between the two languages.

Figure 3.9 shows the annotation time. On average the annotation time with

FlexJava is 6×, 12×, 8× less than EnerJ for sor, smm, and fft, respectively.

Although we demonstrate how the subjects can use the languages, they need

time to gain experience while annotating the first program. Once the subjects

acclimate to FlexJava with the first benchmark (sor), they spend proportionally

less time annotating the next benchmark. The FlexJava annotation time for

the second benchmark (smm) is typically lower than the first benchmark (sor). In

contrast, the annotation time with EnerJ does not reduce beyond a certain point

even after gaining experience. We believe that this is because EnerJ requires

manually annotating all the approximate variable declarations and more. Using
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FlexJava, sor and smm require three loosen annotation, but fft requires six. We

believe that this explains why the time to annotate fft in FlexJava is greater

than the time to annotate sor and smm. In summary, these results show that

FlexJava significantly reduces programmer effort by providing intuitive language

extensions and leveraging the automated approximation safety analysis.

3.6.3 RQ3: Energy Reduction and Speedup

To answer RQ3, we study energy gains and speedup of FlexJava with both fine-

and coarse-grained approximation.

3.6.3.1 Fine-Grained Approximation

Tools and models. We modify and use the EnerJ open-source simulator [119]

for error and energy measurements. The simulator provides the means to

instrument Java programs based on the result of the analysis. It allows ob-

ject creation and destruction in approximate memory space and approximating

arithmetic and logic operations. The runtime simulator is a Java library that is

invoked by the instrumentation. The simulator records memory-footprint and

arithmetic-operation statistics while simultaneously injecting error to emulate

approximate execution and measure error. The simulator uses the runtime

statistics to estimate the amount of energy dissipated by the program. The

error and energy measurements are based on the system models described in

Table 3.1. The models and the simulator do not support performance measure-

ments. We measured the error and energy usage of each application over ten

runs and average the results.

Figure 3.10 shows the energy reduction and the output quality loss when

the safe-to-approximate data and operations are approximated. These results

match those of EnerJ [141]. As shown, the geometric mean of energy reduction
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Figure 3.10: (a) Energy reduction and (b) quality loss when approximating all the
safe-to-approximate data and operations.

ranges from 16% with the Mild hardware setting to 23% with the Aggressive hard-

ware setting. The energy reduction is least for jmeint (7% with Mild) and highest

for raytracer (38% with Aggressive). All the applications show low and acceptable

output quality loss with the Mild setting. However, in most cases, there is a jump

in quality degradation when the hardware setting is changed to Aggressive. If this

level of quality is not acceptable (fft), then the application should dial down the

hardware setting to Medium or Mild. FlexJava provides the same level of benefits

and quality degradations as EnerJ while significantly reducing the number of

manual annotations.

3.6.3.2 Coarse-Grained Approximation

To evaluate FlexJava’s generality, we use the NPU coarse-grained approxima-

tion [128]. NPU can only be used to approximate the benchmarks fft, sobel,

raytracer, and jmeint. Each benchmark has only one function that can be approx-

imated with NPUs. Each of these functions can be delineated using a single
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Figure 3.11: Speedup, energy reduction, and output quality loss when the ap-
proximate annotated functions using the NPU.

pair of begin loose–end loose annotation.

Tools and models. We measure the benefits of NPUs in conjunction with a

modern Intel Nehalem (Core i7) processor. We use a source-to-source trans-

formation that instruments the benchmarks’ Java code to emit an event trace

including memory accesses, branches, and arithmetic operations. This source-

level instrumentation is unaffected by the JIT, garbage collection, or other VM-

level systems. Using a trace-based simulator, we generate architectural event

statistics. The architectural simulator includes a cache simulation. The simula-

tion process outputs detailed statistics, including the cycle count, cache hit and

miss counts, and the number of functional unit invocations. The trace-based

CPU simulator is augmented with a cycle-accurate NPU simulator that also

generates the statistics required for the NPU energy estimation. The resulting

statistics are sent to a modified version of McPAT [142] to estimate the energy

consumption of each execution. We model the energy consumption of an eight-

processing-engine NPU using the results from CACTI 6.5 [143], McPAT [142],

and [144].

Figure 3.11 shows the energy reduction, speedup, and quality loss with the

NPU coarse-grained approximation. The baseline executes the precise version

of the benchmark on the CPU without any NPU approximation. On average, the

benchmarks see a 2.2× energy reduction and a 1.8× speedup. These benefits
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come for less than 10% quality degradation across all the benchmarks, which is

commensurate with other approximation techniques [120, 118, 122, 137] and

prior NPU works [128, 6, 48]. The EnerJ system does not provide any coarse-

grained approximation results for comparison.

These results demonstrate that coarse-grained approximation may have lim-

ited applicability but can provide higher benefits. Whereas, fine-grained approx-

imation is more widely applicable with possibly lower gains. FlexJava supports

both granularities as a general language to maximize opportunities for approxi-

mation in a wider range of applications.

3.7 Related Work

There is a growing body of work on language design, reasoning, analysis,

transformations, and synthesis for approximate computing. These works can

be characterized based on (1) static vs. dynamic, (2) approximation granularity,

(3) automation, and (4) safety guarantees. To this end, FlexJava is a language

accompanied with an automated static analysis that supports both fine- and

coarse-grained approximation and provides formal safety guarantees. We dis-

cuss the related work with respect to these characteristics.

EnerJ [119] is an imperative programming language that statically infers

the approximable operations from approximate type qualifiers on program vari-

ables. In EnerJ, all approximable variables must be explicitly annotated. EnerJ

works at the granularity of instructions and provides safety but not quality guar-

antees. Rely [117] is another language that requires programmers to explicitly

mark both variables and operations as approximate. Rely works at the granu-

larity of instructions and symbolically verifies whether the quality requirements

are satisfied for each function. To provide this guarantee, Rely requires the pro-
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grammer to not only mark all variables and operations as approximate but also

provide preconditions on the reliability and range of the data. Both EnerJ and

Rely could be a backend for FlexJava when it automatically generates the ap-

proximate version of the program. Axilog [126] introduces a set of annotations

for approximate hardware design in the Verilog hardware description language.

Verilog does not support imperative programming constructs such as pointers,

structured data, memory allocation, recursion, etc. The lack of these features

results in fundamentally different semantics for safe approximation and annota-

tion design.

Chisel [129] uses integer linear programming (ILP) formulation to optimize

approximate computational kernels. A Chisel program consists of code written

in an imperative language such as C and a kernel function written in Rely that

will be optimized. Several works have focused on approximation at the granular-

ity of functions or loops. Loop perforation [145, 116, 146] is an automated static

technique that periodically skips loop iterations. Even though loop perforation

provides statistical quality guarantees, the technique is not safe and perforated

programs may crash. Green [130] provides a code-centric programming model

for annotating loops for early termination and functions for approximate sub-

stitution. The programmer needs to provide the alternative implementation of

the function. Green is also equipped with an online quality monitoring system

that adjusts the level of approximation at runtime. Such runtime adjustments

are feasible due to the coarse granularity of the approximation. FlexJava pro-

vides the necessary language extensions for supporting these coarse-grained

approximation techniques as well as the fine-grained ones.

Similar to EnerJ, Uncertain<T> [147] is a type system for probabilistic pro-

grams that operate on uncertain data. It implements a Bayesian network se-

mantics for computation on probabilistic data. Similarly, [148] uses Bayesian
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networks and symbolic execution to verify probabilistic assertions.

3.8 Conclusion

Practical and automated programming models for approximation techniques

are imperative to enabling their widespread applicability. This work described

one such language model that leverages automated program analysis tech-

niques for more effective approximate programming. The FlexJava language is

designed to be intuitive and support essential aspects of modern software de-

velopment: safety, modularity, generality, and scalability. We implemented Flex-

Java and its approximation safety analysis and evaluated its usability across

different approximation techniques that deliver significant energy and perfor-

mance benefits. The results suggest that FlexJava takes an effective and nec-

essary step toward leveraging approximation in modern software development.

3.9 Hardware Description Lauguage (HDL) Support for Ap-

proximate Hardware Design

Similar to FlexJava’s approach to provide modularity in approximate program-

ming, we introduce Axilog to enable reusability in approximate hardware design

for hardware description language. Axilog is a set of language annotations, that

provides the necessary syntax and semantics for approximate hardware design

and reuse in Verilog. Axilog enables the designer to relax the accuracy require-

ments in certain parts of the design, while keeping the critical parts strictly

precise. Axilog is coupled with a approximation safety analysis that automat-

ically infers the relaxable gates and connections from the designer’s annota-

tions. The analysis provides formal safety guarantees that approximation will
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only affect the parts that the designer intended to approximate, referred to as

relaxable elements. Finally, we describe a synthesis flow that approximates

only the relaxable elements. Axilog enables applying approximation in the syn-

thesis process while abstracting away the details of approximate synthesis from

the designer. We evaluate Axilog, its analysis, and the synthesis flow using a

diverse set of benchmark designs. The results show that the intuitive nature

of the language extensions coupled with the automated analysis enables safe

approximation of designs even with thousands of lines of code. Applying our

approximate synthesis flow to these designs yields, on average, 54% energy

savings and 1.9× area reduction with 10% output quality loss.
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Chapter 4

UNDERSTANDING AND CONTROLLING QUALITY IN

APPROXIMATE COMPUTING

4.1 Introduction

Power efficiency is a primary concern in modern systems. Battery capacity of-

ten limits mobile devices, while power consumption and cooling imposes bud-

getary constraints on data centers. Moreover, traditional CMOS scaling has

slowed to a point that threatens the longstanding cadence of continuously im-

proving performance [149, 150, 131]. Meanwhile, emerging workloads must

manage ever-growing datasets with high responsiveness and availability to end

users. Expert analyses show that in 2011, 1.8 zettabytes (1.8 trillion gigabytes)

of information was created and replicated by all sources, with individual con-

sumers responsible for 75% [151]. By 2020, the world’s data centers will be

responsible for managing 50× this staggering figure [151]. This level of de-

mand for computing raises serious concerns about the capabilities of current

computing systems to match emerging trends. Apropos these confluent chal-

lenges, a growing body of recent work seeks to exploit a common property

of many emerging applications: tolerance to approximate computation. These

techniques relax the traditional abstraction of full accuracy in data processing,

storage, and retrieval, thus trading losses in output quality for improved perfor-

mance and efficiency [118, 122, 120, 47, 6, 119, 4, 116, 117, 152, 153, 154].
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Figure 4.1: AxGames is a crowdsourcing solution that transforms the tradeoff
between quality and energy-performance gains from approximation to the trade-
off between the gains and user satisfaction.

While these techniques provide promising gains, the effects of quality loss

on the users are not well understood, leaving approximation techniques in a

position of questionable utility. The challenge is determining the level of quality

loss that the large majority of users deem acceptable. Discovering this level re-

quires end users, who are not readily available during the development phase.

Even after the application is deployed, frameworks that enable users to provide

feedback on the quality loss are currently unavailable. To this end, we aim to

develop a framework that methodically utilizes crowdsourcing to identify the de-

sirable application output quality without exposing the details of approximation

to the users. The objective is to aid the developers in identifying the acceptable

level of quality loss and enable the crowd of users to directly help in determining

this level. The crowdsourcing process needs to also be engaging and enjoyable

enough to retain users. To address these challenges, we describe AXGAMES,

a game-based crowdsourcing framework that statistically projects user-driven

quality targets for approximate computing. As Figure 4.1 illustrates, AXGAMES

changes the tradeoff between output quality and energy-performance gains to

a tradeoff between the gains and the percentage of the users who are satisfied

with the output.

AXGAMES comprises three web-based games that enable players to collec-

tively identify the acceptable level of quality for the application in question. The

games are designed to find a statistical consensus among the players on which
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level of quality loss is acceptable. Finding the statistical consensus is impera-

tive in ensuring that the majority of the application users will accept the quality

loss caused by the approximation technique. The first game allows the users

to express their perception about the quality of the approximated output without

regard to the quality-cost tradeoff. The second game enables users to choose a

level of quality while considering an abstract cost tradeoff. The third game adds

an element of context by asking the players to answer a multiple-choice ques-

tion about the approximated output. The users are given an incentive to select

the lowest output quality that allows them to answer the question. All the three

games involve betting, spending, losing, and winning virtual money. The virtual

money is an abstract metaphor for compute resources (time, energy, storage)

that need to be spent to achieve a higher quality output. The rewarding pro-

cedure in the games is designed to place players in competition with previous

players. This strategy uses the overall group to act as a check mechanism for

the feedback that is provided by the players. While the participants/users play,

the games collect statistics about their choices.

We use the Clopper-Pearson exact method [155] to statistically project the

acceptable level of accuracy based on the statistics collected by the games.

These projections provide a statistical basis for the developers to decide which

degree of approximation will provide a satisfactory experience for the users.

Our analysis is impartial to the benefits of approximation and independent of

the approximation technique that is utilized.

To evaluate our solution, we study seven applications that produce user

perceptible outputs and cover a wide range of domains including image pro-

cessing, optical character recognition, speech recognition, and audio process-

ing. Humans are naturally tolerant to approximation; hence, many approxima-

tion techniques target these domains of applications. We recruit 700 partici-
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pants/users through Amazon’s Mechanical Turk to play the games. The study

shows that level of acceptable quality changes significantly across applications.

For instance, to satisfy 90% of users, the level of acceptable quality loss is

2% for one application and 26% for another. Moreover, the study shows that

generally users have higher tolerance to approximation when exposed to the

tradeoff between cost and quality. The users’ tolerance is even higher when

they consider a context. Moreover, the pattern with which the crowd responds

to approximation takes significantly different shape and form depending on the

class of applications. These results suggest the necessity of solutions that sys-

tematically explore the effect of approximation on the end user experience.

By introducing the AXGAMES framework, this work makes the following con-

tributions:

1. Crowdsourcing for approximate computing: We develop a game-based

crowdsourcing solution as an effective step towards enabling developers to

systematically assess the effect of approximation from the user’s perspec-

tive.

2. Statistical inference: We couple the crowdsourcing with statistical analysis

to quantitatively translate raw data from the games to actionable results.

3. Deployment: Through deployment on Amazon’s Mechanical Turk, we in-

vestigate the effectiveness of the proposed solution and show the necessity

of the end user feedback by examining a diverse of real applications from

different domains.

This study open a new axis, that of user experience, for the growing re-

search in approximate computing. This work also sheds light on previously

unexplored effects of approximation on the users. Moreover, it provides a de-

velopment tool–rather unconventional–for the research community to better as-

sess their innovative approximation techniques. Our tool is open source and is
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Figure 4.2: An overview of the AxGames crowdsourcing solution which deter-
mines the user-driven quality target for a given approximated application.

publicly available at http://act-lab.org/artifacts/axgames.

4.2 Overview

Figure 4.2 provides an illustration of AXGAMES’s overall structure. AXGAMES

is comprised of four major components: (1) approximated output database, (2)

the three games namely POLLICE VERSO1, WINABATT, and QNA; (3) the data

collection engine; and (4) the crowd response analyzer. This section provides

an overview of these components.

Approximated output database. The first step in using the AXGAMES so-

lution is generating outputs of a given approximated application with varying

degrees of quality loss. Note that AXGAMES is independent of the approxima-

tion technique and does not depend on how approximation is applied in the

program. The developer provides a program which: (1) has an approximation

knob to vary the degree of quality loss, and (2) can measure the quality loss

for an approximated output2. For each input in the input dataset, the applica-

tion is executed with different degrees of quality losses. A database records

1Wikipedia: “Pollice verso refers to the hand gesture or thumbs signal used by Ancient Roman
crowds to pass judgment on a defeated gladiator.”

2When developing an approximated program the developer needs to provide both the approx-
imation knob and the quality measurement procedure [119, 47, 117, 116]. Therefore, in this
regard, using AXGAMES does not require extra effort.
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the approximated outputs, their degree of quality loss, and the setting of the

approximation knob. We refer to this database as the approximated output

database.

AXGAMES is designed to study a wide range of applications that generate

outputs perceivable by humans through output devices such as a monitor or a

speaker. Therefore, AXGAMES currently provides a large collection of images,

audio, and text. This collection can be used by a wide variety of applications

that span different domains to generate their own specific approximated output

database. By playing the games, players collectively build a judgment regard-

ing the acceptable quality for the collection of outputs. Additional information

may be stored in the approximated output database. For instance, in the QNA

game, players will need to answer one simple question for each approximated

output. These questions are stored in the database as well. Section 4.3 dis-

cusses these questions and describes the three games in detail. Populating

the approximated output database is performed offline to avoid unnecessary

involvement of developers with the internals of gaming and crowdsourcing.

The three games. AXGAMES used the approximated output database as an

input to its three different games. In all the games, a player is given an ini-

tial allowance of virtual money. The player’s objective is to earn more money

by guessing the statistical common ground among the previous players. In a

sense, each player is playing with all of the past players and her guess af-

fects the majority vote for the future players. As the crowd of gamers play the

games, the players are iteratively converging to a statistical common ground.

AXGAMES can then statistically infer the acceptable level of quality from the

gamers’ choices. Section 4.3 presents the details of the three games.
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Statistics collection engine. As the users play, the games record the player

choices and the game state in a database along with the player user IDs.

AXGAMES uses this data to perform statistical projections about the percent-

age of users that deem a certain level of quality acceptable.

User response analyzer. After collecting the statistics from all the players,

AXGAMES uses the Clopper-Pearson exact method [155] to calculate the bino-

mial proportion confidence interval [156] for each level of quality loss. These

intervals represent the percentage of users that deem a certain level of quality

acceptable. Section 4.4 elaborates on the calculation and use of these intervals

to recommend quality targets for the approximated applications.

4.3 The Three Games

AXGAMES includes three web-based games which aim to enable the crowd to

iteratively converge to a statistical common ground. The players register with

a unique user ID on the website to play the games without revealing personal

information. Each user plays all three games independently and each game is

played for 10 rounds. From the player’s perspective, all three games revolve

around betting, earning, spending, and losing virtual money. The score is the

player’s balance at the end of the game. We intentionally avoided exposing

the direct relationship between virtual money and the computation cost to avoid

biasing the gamers in choosing any level of quality. This relationship is a pa-

rameter in the games and can be exposed if desired. We also intended to make

the games entertaining and enjoyable by using virtual money as the score and

as a proxy for compute resources in two of the games. Our surveys show that

84% of the users were entertained when playing the games.

We devised the three games with different intuitions about inferring user-
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driven acceptable level of quality through crowdsourcing. The first game, POL-

LICE VERSO, is a betting game. In each round, the player is presented with

an approximated output and its corresponding precise version. The player is

asked to guess whether or not the majority of other players thought that the

approximated output is good enough. The player bets money on her guess and

wins money back if the guess is correct3. This game aims to find a statistical

common ground about the acceptability of an approximated output. However,

POLLICE VERSO does not have any notion of tradeoff between quality and cost.

To include the notion of cost, we designed WINABATT which presents the player

with a very low quality output and asks the player “How much would your spend

to receive a better output?”. The player can spend money to improve the output

quality with a slider. The player wins money back depending on how close her

choice of quality is to the previous players’ selection. The objective of these two

games is to find the statistical common ground while players judge the quality

of the output in an abstract and context-insensitive manner. To provide some

general context to the players, the third game QNA, presents the player with

a very low quality output and asks the player a multiple choice question about

that specific output. To answer the multiple-choice question, the player can im-

prove the quality of the output by spending money with a slider. The player wins

money back based on both the correctness of her answer and the closeness

of her choice of quality to the previous players’ selection. QNA gives incentive

to the players to strike a balance between quality and cost while considering

some context. The rest of this section describes these three games in further

detail.
3POLLICE VERSO shares similarities with A/B testing [157]. However, A/B testing does not in-
corporate (1) games and betting (provided by all three games) (1) a sense of tradeoff (provided
by WINABATT) and (2) a sense of context (provided by QNA) to the users. As the statistical
results show, users’s tolerance to approximation increases when the tradeoff and/or context is
added to the games.
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Figure 4.3: A round of the Pollice Verso game when deployed for an approxi-
mated implementation of the jpeg application.

4.3.1 Pollice Verso

As Figure 4.3 illustrates, POLLICE VERSO is a betting game that gives each

player an initial allowance of $500 virtual money. By keeping track of players’

bets, the game aims to infer the statistical common ground for the acceptable

level of quality for a given application. The game randomly selects an approxi-

mated output o, and displays o along with its precise counterpart o∗. Internally,

we represent each approximated output o with the following tuple:

(o,q,s,n,nGoodEnough) (4.1)

In Equation (4.1), q is the output quality; s is the setting of the approximation

knob that led to this quality; n is the total number of past players that have played

this particular output; and nGoodEnough is the number of players who thought the

output is good enough. The last two parameters capture the history of the

previous players’ choices.
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After displaying the outputs, a player is asked “How much do you want to

bet that this approximation is Good Enough/Unacceptable?” Using the gaming

chips shown in Figure 4.3, the player chooses to bet b amount of money on her

answer. The player’s choice c, is a binary decision.

Rewarding procedure. The player may win money or lose the bet depending

on whether the past players agree with her choice. This rewarding strategy in-

centivizes the players to gradually come to a statistical common ground without

directly interacting with each other. As Equation 4.2 shows, the winnings w, is

a function of the player’s choice c, the amount of bet b, and the past player’s

choices, captured by n and nGoodEnough. Note that the values of n and nGoodEnough

are updated after the player receives her reward. Therefore, the player’s choice

affects the winnings of future players.

w(c,b,n,nGoodEnough) = b · (reward(c,n,nGoodEnough)−1) (4.2)

where
reward(c,n,nGoodEnough) =

2 · f (c,n,nGoodEnough) if 0≤ f ≤ 0.5

−7.8 · f (c,n,nGoodEnough)+8.9 if 0.5 < f ≤ 1

(4.3)

As Equation 4.2 shows, the player wins money proportional to the amount

of bet b. The reward function (Equation 4.3 and Equation 4.4) defines this

proportion based on whether or not the majority of previous players agree with

the player’s choice c. In Equation 4.3, the constants (2, −7.8, 8.9) are picked

such that the player loses all her bet in the worst case or quadruples her bet in

the best case. Moreover, if the output is controversial, the loss is low and the

gain is high. An output is controversial if nGoodEnough/napprox0.5. That is, almost

half of the past players think the output is good enough and the other half thinks

otherwise. In Equation 4.3, f captures the level of agreement between the
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player’s choice with the majority vote of the previous players as presented in

Equation 4.4.

f (c,n,nGoodEnough) = agreement(c,n,nGoodEnough) =
nGoodEnough/n if c = Good Enough

1−nGoodEnough/n if c =Unacceptable

(4.4)

To enable players to make choices primarily based on their own perception,

the reward function is hidden. Additionally, they play the game with no knowl-

edge of the majority vote.

4.3.2 WinABatt

POLLICE VERSO enables users to perceptively judge the quality of an approx-

imated output without regard to the tradeoff between quality and cost. To add

this notion of tradeoff, we designed WINABATT as shown in Figure 4.4. The

player starts with $100 of initial allowance and in each round, the game dis-

plays an approximated output at its lowest quality and asks the player: “How

much would you spend to receive a better output?” The player is also given a

slider with which she can adjust the output quality. The slider controls the qual-

ity and the cost associated with each quality level. Selecting a higher quality

translates to spending more virtual money. Unlike POLLICE VERSO, the player’s

choices in WINABATT are no longer yay/nay binary decisions, and the player

uses a continuous slider to choose a level of quality while considering its cost.

If the game was naively designed, the player would always choose the lowest

level of quality since it costs the least. However, in WINABATT, the player will

be rewarded or penalized depending on how her choice of quality is close to

the previous players. Hence, the player is also trying to guess the statistical

common ground among the past players in a cost-conscious manner.
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output?

Figure 4.4: A round of the WinABatt game when deployed for an approximated
implementation of the sobel application.

Rewarding procedure. To calculate the player’s winnings and the statistical

common ground, the game internally represents each output with the following

tuple:
(O,Qc,qMA,n) (4.5)

In Equation 4.5, O is the set of different approximated versions of an output; Qc

is the set of previous players’ choice of quality, qMA is the cumulative moving

average of the past players’ choice of quality; and n is the number of previ-

ous players that played the O set. The qMA captures the statistical common

ground among the past n players and is updated based on Equation 4.6 after

the current player is rewarded.

q(n+1)
MA =

q(n)MA ·n+qc

n+1
(4.6)

As shown in Equation 4.7, the player’s winnings w, is a function of her choice

of quality qc and qMA. As shown, the player’s reward is deducted by her bet

money b, which is the cost associated with her choice of quality qc. This cost
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function is linear to avoid bias towards any specific quality with $5 for the lowest

quality version (qmin) and $30 for the highest quality version (qmax). The condi-

tional part of Equation 4.7 is the reward that is determined by f (qc,qMA), which

is presented in Equation 4.8 and captures how the player’s choice of quality, qc,

is close to the choice of previous players’ moving average, qMA. The constants

in Equation 4.7 is chosen such that the player’s winnings, w, is between −$35

and +$35.

w(qc,qMA) =−b+


5 · f (qc,qMA)−10 if f ≤ 10

40 = 5 ·10−10 if f > 10
(4.7)

f (qc,qMA) = agreement(qc,qMA) =

(
|qc−qMA|
qmax−qmin

)−1
(4.8)

This rewarding procedure incentivizes the players to balance the cost and

quality while guessing the past player’s consensus.

4.3.3 QnA

While WINABATT provides an opportunity to the players to explore the tradeoff

between quality and cost, they do so in an abstract and context-insensitive

manner. To provide some context to the players, we design the QNA game.

As Figure 4.5 illustrates, in each round, QNA displays an approximated output

initially set to its lowest quality level, along with a slider, and a multiple-choice

question about the output. The questions are in the form of ”What can you find

in this image? Sports car / SUV / Truck / Heavy equipment.” The player needs

to answer the question and can spend money to improve the quality using the

slider. Similar to WINABATT, the initial allowance provided is $100. In contrast

to WINABATT, the slider cannot move backwards. This feature is to prevent

the players from cheating, increasing the quality to answer the question, and

then decrease the quality to minimize the cost. In other words, once the player
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output

Figure 4.5: A round of the QnA game when deployed for an approximated imple-
mentation of the emboss application.

improves the quality, she cannot recover the cost of seeing the higher quality

output.

Rewarding procedure. The winnings are calculated based on the rewarding

procedure explained for WINABATT with the exception that the player also pays

a $20 penalty for answering the question incorrectly. There is no extra reward

for correct answers. The player wins money back depending on the correctness

of her answer and the closeness of her choice of quality to the moving average

of the previous players. QNA incentives the players to find a statistical common

ground while balancing quality and cost with respect to some context about the

output.
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4.4 Statistical Analysis

As mentioned before, the games internally collect the player’s choices and de-

cisions for a series of outputs at different levels of quality. To enable the appli-

cation developer to draw meaningful conclusions from this raw data, we devise

a statistical framework that projects the user-driven quality target. Due to the

large space of possible inputs and the diversity of users, it is practically infeasi-

ble to find a quality target that satisfies the entire population of the users for any

arbitrary input. However, coupling the games with statistical analysis provides

a pragmatic approach to determine the quality target that, with high confidence,

satisfies the large majority of users.

4.4.1 Binomial Proportion Confidence Interval

We calculate the binomial proportion confidence interval [156] for each level of

quality loss. Given the decisions of a sample population (players of the games),

the binomial proportion confidence interval projects what percentage of the sta-

tistical population (all the users) are likely to deem a certain level of quality good

enough (acceptable). After the players play the games, AXGAMES calculate

this confidence interval for a range of quality losses which resulted from ap-

proximating the application-under-study. Based on the confidence interval, we

can determine the level of quality loss that is highly likely to satisfy, for example,

90% of the statistical population4 of the users.

AXGAMES leverages a commonly used method, the Clopper-Pearson ex-

act method [155] to compute the binomial proportion confidence interval. We

chose the Clopper-Pearson method as it has certain advantages over the other

4Statistical population is the entire pool from which a sample population is drawn. Here, the
sample population are the gamers who are drawn from the entire pool of the application users.
Thus, statistical population is the entire users.
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available options [158, 159] such as, (1) higher accuracy as the number of sam-

ples becomes relatively large, and (2) it can calculate the confidence interval

even when the opinion of the sample population is very skewed towards a de-

cision. These features are important in our setup since the games provide a

relatively large number of statistical samples, and the large majority of the play-

ers are highly likely to think that 1% quality loss is almost always acceptable

and similarly a 50% quality loss is almost never good enough. Moreover, the

Clopper-Pearson exact method calculates a conservative confidence interval

that reduces the risk of being too aggressive when it comes to approxima-

tion. The binomial confidence interval is calculated based on a set of binary

decisions from the sampled population. For example, in the case of the POL-

LICE VERSO game, a binary decision comes directly from the player’s choice

on whether or not an approximated output with the quality of q is good enough.

Later in this section we describe how the WINABATT’s and QNA’s sliders are

translated to binary decisions.

To calculate the confidence interval, we first need to calculate the sampled

binomial proportion for each level of quality. The sampled binomial proportion

is calculated for each approximated output by computing the fraction of votes

that deem a level of quality good enough to the total number of votes. This

sampled binomial proportion is calculated based on the (nVotes,nGoodEnough)
(q)

pair, where nVotes is the total number of decisions on outputs with the quality

of q, and nGoodEnough is the number of decisions that deem these outputs good

enough. This pair is calculated for each level of quality.

As Equation 4.9 shows, the Clopper-Pearson exact method computes the

one-sided confidence interval of success rate, θ (q), when the number of sample

trials, nVotes, and the number of successes among the trials, nGoodEnough, are
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measured for a sample of the population.

1

1+ nVotes−nGoodEnough+1
nGoodEnough·F[1−α;2·nGoodEnough,2·(nVotes−nGoodEnough+1)]

< θ
(q) (4.9)

In Equation 4.9, F is the F-critical value that is calculated based on the

F-distribution [160]. The discontinuous nature of the binomial distribution pre-

cludes any interval with exact coverage for all values of nVotes and nGoodEnough

(all possible values of the binomial proportions). However, because of the re-

lationship between the cumulative binomial distribution and the continuous F-

distribution, we use the common alternative form of the binomial confidence in-

terval that provides exact coverage for all population proportions. F[1−α;d1,d2]

is the (1−α) quintile of the F-distribution with d1 and d2 degrees of freedom.

The (1−α) ·100% is degree of confidence on the interval. For instance, for 95%

confidence interval, α is 0.05 and for 90% confidence interval, α is 0.10. The

two degrees of freedom, d1 and d2, decide the shape of the F-distribution based

on the collected statistics, nVotes and nGoodEnough in our case.

To understand the meaning of θ (q), we discuss an example deployment of

the game that resulted in nVotes=60 and nGoodEnough=56 for quality level q=97%.

From Equation 4.9, the lower limit of the 95% confidence interval, θ (97%), is

85.4%. That is, with 95% confidence, we can project that at least 85.4% of the

users will deem 97% quality level acceptable. This projection is conservative

because the Clopper-Pearson exact method calculates a conservative lower

bound for the confidence interval. The degree of confidence is the probability

of the projection being true. The projection based on 95% confidence interval

is true with probability of 0.95.

For each level of quality, AXGAMES projects the fraction of user population

(statistical population) that deems that level of quality acceptable. Using this

124



information, the developer can choose the level of quality that satisfies a target

majority of users.

Translating a choice of quality to a set of binary decisions. Players in

POLLICE VERSO make binary decision on the quality of an approximated out-

put. These yay/nay decisions can be directly used in the Clopper-Pearson sta-

tistical analysis. In contrast, the players in WINABATT and QNA, choose a

level of quality using a slider. To be able to use the Clopper-Pearson statistical

analysis, each chosen level of quality needs to be translated to a series of bi-

nary decisions. Intuitively, when a player chooses the quality level of qc to be

good enough, she implies that any level of quality higher than qc is also good

enough. Because of the rewarding procedure, the player has the incentive to

choose the lowest acceptable quality. Choosing higher quality translates to a

higher cost. The choice of player also implies that lower quality outputs are not

good enough, otherwise, she would have chosen a lower quality to pay a lower

cost. Based on this intuition, we convert one chosen level of quality, qc, which

is in the range of (qmin,qmax) to qmax−qlow+1 binary decisions (Equation 4.10).

decision(q) =


“GoodEnough” if q≥ qc

“Unacceptable” if q < qc

∀q ∈ (qmin,qmax) (4.10)

By using this conversion, the same method of statistical projection can be

applied to all three games. Moreover, WINABATT and QNA provide larger num-

ber of decisions per round. We did not use this conversion in POLLICE VERSO

to enlarge the number of decisions since the players do not have an opportu-

nity to see a range of quality losses for each output. Whereas, WINABATT and

QNA allows the players to see the same output at different quality levels using

the slider.
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4.5 Statistical Quality Guarantees for Approximate Acceler-

ation

While the AXGAMES solution provides a way for the approximate application

developers to understand the quality requirements of application users, con-

trolling approximation techniques to meet the quality targets is still a remained

challenge. Conventionally, an approximate accelerator replaces every invoca-

tion of a frequently executed region of code without considering the final quality

degradation. However, there is a vast decision space in which each invoca-

tion can either be delegated to the accelerator—improving performance and

efficiency–or run on the precise core—maintaining quality. To this end, as a

follow-up work of AXGAMES, we propose MITHRA [7], a co-designed hardware-

software solution, that navigates these tradeoffs to deliver high performance

and efficiency while lowering the final quality loss. MITHRA seeks to identify

whether each individual accelerator invocation will lead to an undesirable qual-

ity loss and, if so, directs the processor to run the original precise code.

This identification is cast as a binary classification task that requires a cohe-

sive co-design of hardware and software. The hardware component performs

the classification at runtime and exposes a knob to the software mechanism to

control quality tradeoffs. The software tunes this knob by solving a statistical

optimization problem that maximizes benefits from approximation while provid-

ing statistical guarantees that final quality level will be met with high confidence.

The software uses this knob to tune and train the hardware classifiers. We de-

vise two distinct hardware classifiers, one table-based and one neural network

based. To understand the efficacy of these mechanisms, we compare them with

an ideal, but infeasible design, the oracle. Results show that, with 95% confi-

dence the table-based design can restrict the final output quality loss to 5%
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Table 4.1: Applications and their quality metric.

Description Domain Quality	Metric
emboss Embossing	filter
jpeg Lossy	compression
mean Blurring	filter
sobel Edge	detection
audio-enc Audiio	encoder Audio	Processing
ocr Optial	character	recognition
speech2txt Speech	to	text

Image	
Processing

Pattern
Recognition

Text	Similarity	Ratio

Normalized	Root	Mean	
Square	Error	(NRMSE)

for 90% of unseen input sets while providing 2.5× speedup and 2.6× energy

efficiency. The neural design shows similar speedup however, improves the

efficiency by 13%. Compared to the table-based design, the oracle improves

speedup by 26% and efficiency by 36%. These results show that MITHRA per-

forms within a close range of the oracle and can effectively navigate the quality

tradeoffs in approximate acceleration.

4.6 Evaluation

To evaluate the effectiveness of the AXGAMES crowdsourcing framework, we

deploy the three games on the web for seven different applications. We use

Amazon’s Mechanical Turk to recruit a large number of users to play the games.

Using the collected data through the games and our statistical analysis, we

measure what level of quality is acceptable for the majority of users. We also

study how the acceptable level of quality varies across different applications

and how the statistical analysis effectively captures these trends.

4.6.1 Methodology

Applications. x As Table 4.1 shows, we examine AXGAMES using a wide

range of applications from diverse domains that include image processing, au-

dio processing, optical character recognition, and speech to text conversion.
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AXGAMES is not limited to these applications and can be used with other ap-

plications that produce outputs perceptible by humans. As shown in Table 4.1,

our set of programs includes four image processing applications. The emboss

application is an image filter that replaces each pixel either by a highlight or a

shadow. Applying this filter to an image usually results in an image resembling

a paper or metal embossing of the original image. The jpeg application imple-

ments the JPEG image compression algorithm. The sobel application is an edge

detection algorithm which employs the Sobel operator. The mean is a sliding-

window spatial filter that replaces the center pixel with the average (mean) of

the pixel values in the window and blurs the image. Additionally, we also eval-

uate audio-enc, an audio compression engine that compresses WAV files and

transforms them into MP3 files [161] . The quality metric for the image process-

ing and audio compression applications is the normalized root mean square

error (NRMSE) which is calculated by comparing an approximated output with

its precise counter part.

We also use two applications that recognize text and speech. The ocr appli-

cation is an optical character recognition program that converts raster images

of written text to characters. The speech2txt application is a speech recognition

engine that converts speech audio files to text [162]. The quality metric for

these two applications that produce text output is the text similarity ratio that is

computed by comparing the original application output with the approximated

application output. We use an open-source implementation of the Gestalt Pat-

tern Matching algorithm [163] to measure the text similarity ratio. This algorithm

assigns higher scores to the outputs that look right to a human reader. The set

of applications have often been used to evaluate the benefits of approximation

techniques in the approximate computing literature [117, 47, 164, 118, 10, 122].

Approximation techniques. For the image processing applications, we use a
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variation of loop perforation [116] as the approximation technique. This tech-

nique skips computing some of the pixels and instead, copies the values from

neighboring pixels. The rate at which the computation is skipped is the knob

for controlling the quality. We refer to this technique as tiling. We chose tiling for

image processing applications since it is a simple yet effective coarse-grained

approximation technique. For the audio compression and pattern recognition

applications, we use the same model used in previous fine-grained approxima-

tion works [119, 4, 117, 129, 120] that adds stochastic noise to the computation

by leveraging voltage overscaling, bit-width reduction, and reducing the DRAM

refresh rate. The rate and the magnitude of noise are the knobs for control-

ling approximation. We refer to this technique as fine-grained approximation. We

use tiling and fine-grained approximation to examine AXGAMES, since they repre-

sent the two main categories of approximation techniques, coarse-grained and

fine-grained, respectively. AXGAMES is general and is not limited to these tech-

niques. This flexibility is inherent in the framework since it only needs a set

of approximated outputs with varying degrees of quality loss. Naturally, if the

approximation technique changes, the games need to be redeployed in order

to understand the user response to the new technique.

Datasets. As part of the AXGAMES framework, we include the input dataset

that contains 200 images, 200 audio files, 200 speech files, and 200 printed

text files. We collect this dataset from open-source databases or public data

archives such as ImageNet [165], Freesound [166], VoxForge [167], and New

York Times TimeMachine [168]. The applications can use this collection to

generate the approximated output database which is used in the three games.

AXGAMES also assigns one multiple-choice question to each data element.

These questions are used during the QNA game to provide some context to the

gamers when they trade quality for cost. The questions are part of the frame-
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work and do not need to be regenerated for other applications that produce

similar outputs. Additionally, the approximated output database is generated

offline by running the application-under-study with different settings of the ap-

proximation knob. The AXGAMES’s requirement is to generate each output with

varying degrees of quality loss. For our experiments, we generate 51 versions

of each output, with quality loss ranging from 0% to 50%, and a step size of

1%.

Game deployment. We separately deploy the three games on the web for

each of the seven applications. In each round, each game randomly selects an

output from the approximated output database. In the POLLICE VERSO game,

the players bet and vote on whether the quality of the approximated output is

good enough. Thus, the game randomly picks a quality loss for the displayed

output. The following ten quality losses are used for the selected approximated

output: 1%, 3%, 5%, 7%, 10%, 15%, 20%, 30%, 40%, and 50%. The other

two games use all 51 quality levels which are generated for each approximated

output and allow the player to pick any of them. We have made AXGAMES open

source in our artifact portal (http://act-lab.org/artifacts/axgames). The deployed

games, which are used for evaluations, are also available through the same

portal.

Crowdsourcing through Amazon’s Mechanical Turk. To collect a reasonable

amount of statistics from a diverse set of users, we leverage a crowdsourcing

Internet marketplace, Amazon’s Mechanical Turk [169]. The games for each

application is played by 100 individual Mechanical Turk workers (turkers)5. For

the seven applications, 700 turkers contributed to our study. Each turker plays

the games once. We do not allow a worker to play the games more than once

to avoid bias in statistics from a few heavy gamers. Each game has 10 rounds,
5We received Institutional Review Board (IRB) approval before deploying AXGAMES. The re-
quest was approved in three weeks.
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our 100 turkers make a total of 1,000 binary decisions in POLLICE VERSO for

each individual application. Therefore, each of the 10 discrete levels of quality

in POLLICE VERSO receives 100 votes for each application. As discussed in

Section 4.4, in each round of WINABATT and QNA, a player’s choice of quality

on the slider is translated to 51 binary decisions, which correspond to one of

the 51 quality levels of an approximated output. Hence, for each of these two

games the turkers make a total of 51,000 (= 100 players × 10 rounds × 51

binary decisions per round) binary decisions for each individual application .

Thus, each of the 51 levels of quality receive 1000 votes in WINABATT and

QNA for each application. This amount of information provides the grounds for

making high confidence statistical projections on the acceptable level of quality

for each application. We also conduct an optional survey at the end of the

games to understand whether or not the games were entertaining. The survey

results show that 84% of players were entertained.

Game initialization. The results are reported when the games are deployed

with random initial votes for 10 imaginary gamers on each output. These ran-

dom initial votes are not used in the statistical analysis. To understand the effect

of initialization, in a separate experiment, we also asked 10 graduate students

to play the games without regard to the rewards. We then extrapolated their

choices across all the outputs with the same quality. We observed that both

initialization strategies yield similar trends and therefore, we report the results

with random initial values. This similarity is the result of recruiting large number

of turkers and the fact that the human turkers ultimately make decisions based

on their own perception of the approximated outputs.
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Figure 4.6: Projected acceptable level of quality loss with 95% confidence. These
levels of quality are projected by our statistical analysis based on the game plays
of 100 Mechanical Turk workers. Starting from left, each bar corresponds to the
level that is projected to satisfy 99%, 95%, 90%, 80%, and 80% of the applications’
users. These projections vary significantly across the applications.

4.6.2 Statistical Projections

Figure 4.6 shows the projected acceptable level of quality for each approxi-

mated application. The confidence level of these projections is 95%. As shown,

each pair of (application, game) yields a set of projections. Starting from left,

each bar corresponds to the level that satisfies 99%, 95%, 90%, 85%, and 80%

of statistical population of the application users. The details of these projections

are provided in Figure 4.7 and are discussed later in the section. As shown in

Figure 4.6, for all the pairs of (application, game), the projected level of quality

loss that satisfies more than 99% of the users is 0%. That is, for developers

who aim to satisfy 99% of their users, the specific approximation techniques

that are used in our evaluations (tiling and fine-grained approximation) are not a vi-

able option. However, when the target is to satisfy a large majority of the users,

starting from 90% of the users, there are opportunities to utilize these approxi-

mation techniques across all the image processing applications. Based on the

statistics from POLLICE VERSO, if a developer chooses to satisfy 90% of the

users, emboss can utilize tiling with 7% quality loss while jpeg, mean, and sobel
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can utilize tiling with 1% quality loss. Based on POLLICE VERSO, audio-enc and

ocr can be only approximated if target is to satisfy 85% or less percentage of

the users. For speech2txt, only if the target is to satisfy 80% or less percentage

of the users, approximation can be enabled given the statistics from POLLICE

VERSO.

As Figure 4.6 depicts, based on the statistics from QNA, all the applications

can be approximated if the target is to satisfy 90% of the users. For this target,

the acceptable level of quality loss is 6% for emboss, 8% for jpeg, 2% for mean,

10% for sobel, 26% for audio-enc, 8% for ocr, and 3% for speech2txt. As these

results show, there is a clear difference between the three games when they

assess the user satisfaction even for one application. This difference emanates

from the fact that WINABATT and QNA provide an opportunity for the users to

consider tradeoff and context, while POLLICE VERSO does not. We will discuss

these differences in more detail later in this section.

User response varies significantly across applications. Another observa-

tion from these results is that the user-driven level of acceptable quality varies

significantly across applications. Consider the four image processing appli-

cations that use the same approximation technique, tiling. Users show rela-

tively higher tolerance to the tiling approximation for two of the applications,

emboss and sobel. However, for other applications, especially for mean, the users

show significantly lower tolerance. This significant variation in user response

to the same approximation technique across different applications shows the

necessity of solutions that statistically evaluate the acceptable level of quality.

AXGAMES is one such solution, that effectively enables the users to provide

statistical feedback to the developers who intend to leverage approximation

techniques. With QNA, 90% of the users only accept 2% quality loss for mean
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while they tolerate 26% for audio-enc. These results shed light on the signifi-

cant variation of users response to quality loss from approximation for different

applications. To this end, AXGAMES provides the grounds for researchers to

statistically evaluate their innovations from the users’ perspective.

Users show higher tolerance to approximation when they consider cost

or context. From the results in Figure 4.6, it is evident that users show higher

level of tolerance to the approximation when playing WINABATT and QNA.

Whereas the level of tolerance to approximation is lower in POLLICE VERSO.

Intuitively, in these two games the players choose a level of acceptable quality

in a cost-conscious manner while also considering the context in the case of

QNA. In the case of POLLICE VERSO, the players vote only based on their per-

sonal impression of the approximated output without a chance to explore the

cost-quality tradeoff. On the other hand, the other two games, WINABATT and

QNA, introduce a notion of tradeoff between cost and benefits of approxima-

tion. Moreover, the players’ choice of quality in QNA is driven by their ability to

answer the associated multiple choice question with the output. This analysis

shows that these three games collectively provide a deeper understanding of

the user’ reaction to the approximation technique. The developer may choose

to use the results from any of these games on her own discretion depending on

her constraints on user experience and her target deployment environment.

4.6.3 Collected Statistics from the Games

The collected statistics from the games are presented in Figure 4.7. The bars

represent the fraction of players who chose “Good Enough” for each level of

quality loss. Our analysis uses the Clopper-Pearson method to computes the

one-sided confidence interval for each level of quality loss. This one-sided
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Figure 4.7: The collected statistics and the statistical projections. The bars show
the fraction of players that selected a certain level of quality loss as “Good
Enough.” The lines represent the lower bound of the binomial confidence in-
terval with different degrees of confidence, including 99%, 97.5%, 95%, and 90%.
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lower-bound conservatively projects what fraction of the users will deem a par-

ticular level of quality loss as “Good Enough.” The lines in Figure 4.7 repre-

sent the statistical projections with different levels of confidence, including 99%,

97.5%, 95%, and 90%. As shown, the projection lines fall below the collected

statistics from the sampled population (the turkers who played the games). That

is because the Clopper-Pearson confidence interval, by definition, covers the

sampled statistics in a conservative manner. A point on a projection line with

the (x,y) coordinates predicts that at least y% of the users will deem x% quality

loss as “Good Enough.” For instance, suppose that we want to use the statis-

tical results from WINABATT to find an acceptable level of quality for emboss.

Let’s target to find the quality loss level that provides satisfactory experience

at least for 90% of the users with 95% confidence level. The quality loss is

7%, which is the x coordinate of the intersection point between the y =90% line

and the red dashed projection line in Figure 4.7(b). The results in Figure 4.6

are obtained in this manner and also summarizes the statistical data given in

Figure 4.7. As depicted, the results for POLLICE VERSO do not decrease mono-

tonically whereas the results for WINABATT and QNA do. That is because only

for these two game, the statistical analysis converts the players’ selected level

to binary decisions for all the levels of quality loss (see Section 4.4).

From the results in Figure 4.7, we observe different patterns for the different

classes of applications. For the image processing applications, the graphs have

three regions, the top region where the majority of users agree on the low qual-

ity loss; the middle region where there is no clear consensus among the users;

and the tail where the majority of users reject low quality outputs The quality

level from which the middle region starts captures the point that the majority’s

opinion is shifting. This point of shift in opinion can be found by calculating

changes in the derivative of the projection lines. This point of shift may be used
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(b) Distribution of the quality choices in QNA

Figure 4.8: The box plot distribution of the players’ choices of quality for so-
bel. The dashed horizontal lines show the projected acceptable level of quality
loss that satisfies 80% and 90% of the users with 95% confidence (a) based on
WinABatt and (b) QnA.

by the developers to choose the acceptable level of quality. AXGAMES provides

the opportunity to find this point of shift for the developers. Instead of choosing

the level of quality loss that certain percentage of users prefer, a developer can

optimistically choose this point of shift in opinion.

The audio-enc application, which generates auditory output, shows a differ-

ent pattern. The gamers show a significantly higher tolerance to the quality

loss in the audio outputs. The majority of users tolerate the quality loss up to

a significantly high level, after which the user satisfaction drastically declines.

For the pattern recognition applications, ocr and speech2txt, the graphs show that

the fraction of satisfied users almost linearly decreases as the quality loss in-

creases. These two applications generate textual output. Unlike the other appli-

cations, there is not a clear point of shift in the crowd’s opinion about the quality

loss. These difference are significant and depend on the inherent characteris-

tics of application, its output format, and the applied approximation techniques.

Our experimental results show that the AXGAMES framework can effectively

capture such patterns that need to be taken into account when approximation

is employed.
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(a) Precise output (b) Output with 10%
quality loss.

(c) Output with 14%
quality loss.

(d) Output with 30%
quality loss.

Question: What can you see in the image? Correct answer: Horse racing
Wrong answers: Bowling, Bridge, Buffalo wings

Figure 4.9: Outputs from the edge detection filter, sobel, for image 13 in Fig-
ure 4.8b. The leftmost output is the precise version and the rest are the ap-
proximated outputs. The approximated outputs (b) and (c) have 10% and 14% of
quality loss that satisfy 90% and 80% of the users, respectively. The output (d)
has 30% of quality loss, which is the median of the votes for the image 13 from
the QnA plays.

4.6.4 User Response Variations

We investigate the user response variation across the same approximated im-

ages in Figure 4.8. Figure 4.8 shows the distribution of the responses from the

players for a randomly selected subset of the output images from sobel. The

trends are similar for the other applications. This distribution is shown as a box

plot. The bottom and top of each box represent the lower and upper quartiles,

respectively, and the band near the middle of the box is the 50th percentile (the

median). The bottom whisker represents the lowest datum that is still within

1.5 inter quartile range (IQR) of the lower quartile. The top whisker denotes

the highest datum that is still within 1.5 IQR of the upper quartile. The dashed

horizontal lines show the projected acceptable levels of quality loss that satisfy

80% and 90% of the users with 95% confidence. It is even visually evident that

these levels of quality cover their corresponding majority of users.

As expected, there is a large variation in the players choices. That is each

player is providing her own personal judgment on the quality of the output,

which is one of the main objectives of the games. Interestingly, the variation

is higher in the QNA game. We investigate this higher variation in Figure 4.9
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by showing the output image with the highest variation in Figure 4.8b, image

13. The associated question with this image is “What can you see in the im-

age: Horse racing/Bowling/Bridge/Buffalo wings?”. This question can be an-

swered even with high quality loss (30%) as shown Figure 4.9. However, it is

understandable if a player chooses a lower quality loss to answer the question.

Qualitatively, the context provided by the question allows a fraction of the users

to choose levels of quality loss that are relatively higher. We speculate that

approximation can be applied more aggressively if the output of this image pro-

cessing is fed to a machine learning algorithm that performs scene detection or

object recognition.

4.6.5 Changing the Tradeoff for Approximate Computing

The AXGAMES framework enables programmers to change the tradeoff be-

tween quality and performance-energy gains into the tradeoff between the users’

satisfaction and the gains. We demonstrate this ability by measuring the speedup

and energy savings for the image processing applications. A full investigating

of the benefits of approximation is out of the scope of this work. This study is

not to advocate approximation or show how much gains are possible; rather, it

is to investigate the users’ perspective on the output quality loss. For the per-

formance and energy modeling, we use the same setup as the one used in [6].

We use the MARSSx86 x86-64 cycle-accurate simulator [170] and McPAT [142]

for timing and energy modeling, respectively. The processor is modeled after a

single-core Intel Nehalem (3.4 GHz with 0.9 V at 45 nm). The use statistics are

based on QNA.

Figure 4.10 shows the improvement in energy-delay product when the out-

put quality and the fraction of satisfied users change from 80% to 100%. The

baseline is the application running on the processor without any approximation.
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Figure 4.10: Improvement in energy-delay products vs. output quality (a, c, e,
and g), and vs. % users satisfied. (b, d, f, and h). The results in (b), (d), (f), and
(h) are based on the statistics collected from the QnA plays.

Figure 4.10(a, c, e, and g) represent the tradeoff between quality and the gains

from approximation while Figure 4.10(b, d, f, and h) represent the tradeoff be-

tween the user satisfaction and the gains. All applications see a disparity in the

energy-delay product improvement for the same level of quality loss and fraction

of satisfied users. For instance, in Figure 4.10(e), mean sees 8.9× energy-delay

product improvement with 95% quality. Even though this level of quality seems

high, it only satisfies about 80% of users. For mean, as shown in Figure 4.10(f),

to satisfy 95% of users, only 1.3× energy-delay product improvement can be

achieved, which is significantly lower than the gains that can be achieved with

the 95% quality. Although the results in Figure 4.10 are specific to the pair of

(application, approximation technique), they show a clear change in the trade-

offs when user response is considered.

While many approximate techniques provide significant benefits, their util-

ity cannot be established without understanding the users’ perspective. Our

framework and our analysis are impartial to approximation techniques and are

intended to shed light on how application users react to approximation. The

games and the statistical analysis provide an effective mean for developers to

understand the user experience before employing approximation. In fact, the
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developers can explore the tradeoffs and the benefits in a new light that con-

siders users’ perspective.

4.6.6 Discussion

Currently, AXGAMES is implemented for applications that directly produce human-

perceivable outputs, such as image processing, audio processing, and pattern

recognition applications. These programs represent a large body of applica-

tions that are designed for humans as the end users. These applications can

benefit from approximation due to the inherent tolerance of humans to inex-

act results. In fact, many of the approximate computation research includes

such applications [119, 117, 129, 116, 47, 6, 118, 122, 10]. Furthermore, these

classes of applications, such as Instagram, Microsoft HoloLens, Qualcomm Vu-

foria, are gaining prominence as the computing services, more and more, aim

to provide natural and targeted experiences for the end users. This trend has

been amplified by prevalence of mobile devices and will grow in importance

as wearable electronics is gaining traction and smart and interactive home/of-

fice environments are emerging. Moreover, even complex machine learning

algorithms are being deployed in interactive data visualization [171] and ana-

lytics tools [172] that allow humans to interact with complex and large amounts

of data. Besides the direct use of AXGAMES in these domains, the results

of AXGAMES can be used as an upper bound for inaccuracy in cases where

the approximate output is fed to a machine learning engine. Humans are the

ultimate recognition engines.

As an end-to-end attempt toward crowdsourcing the target quality determi-

nation, our approach takes an initial and effective step toward enabling the end

users to become a helping force in the development and deployment of approx-

imation techniques.
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4.7 Related Work

There has been a substantial amount of effort to leverage crowdsourcing tools

and games to solve computationally difficult problems. However, there is a lack

of solutions that leverage crowdsourcing or game design for approximate com-

puting which statistically determine the level of quality considered acceptable

by the majority of application users. We provide one such solution and lies at

the intersection of (a) approximate computing, (b) crowdsourcing, and (c) game

with a purpose.

Approximate computing. A growing body of recent work explores a variety

of approximation techniques. These techniques include (a) approximate stor-

age designs [173, 174] which trade data quality for reduced energy [173] and

larger capacity [174], (b) voltage over-scaling [120, 175, 125, 176, 121, 117,

129], (c) computation and data sampling [116, 145, 177, 152], (d) loop early

termination [130], (e) computation substitution [118, 130, 178, 179], (f) memo-

ization [180, 122, 181], (g) limited fault recovery [124, 182, 183, 184, 145, 185,

186], (h) precision scaling [119, 127], (i) approximate circuit synthesis [187,

188, 189, 10, 190, 191, 192], and (j) neural acceleration [47, 6, 164]. Many

of these solutions include applications which produce perceptible outputs for

users. Although these techniques report promising benefits from approximate

computing, they do not explore the acceptability of the quality loss from the

users’ perspective.

Crowdsourcing. The reCAPTCHA [193] project is a successful crowdsourc-

ing application in production. This system uses the CAPTCHA, human Tur-

ing test, to classify text images from scanned books when other techniques

fail. Automan [194] is an automatic crowd programming system which enables

the integration of human computation in conventional programming languages
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and rigorously studies scheduling, budgeting, and statistical quality control in

programming with human computational resources. TurKit [195] provides a pro-

gramming model to integrate human computation in JavaScript using templates

which provide close integration with Mechanical Turk. TurKit also supports

checkpointing and recovery. Russell et al. [196] developed a web-based tool

that leverages crowdsourcing to identify objects and locations in images and

annotate them. These research efforts are not concerned with quality loss in

approximate computing.

Games with a purpose. Games with a purpose provide an opportunity to

engage the crowd in entertaining applications while providing insight to re-

searchers. Several prior works have successfully utilized game-based crowd-

sourcing to label random images and locate objects [197, 198, 199]. Further-

more, Dietl et al. [200] proposed to transform verification tasks into a puzzle

games which can be solved by humans. The solution of the puzzle is then

translated back and used for proving correctness and verification. Foldit [201]

is an online multiplayer game whose players interact with protein structures

while they compete and collaborate to optimize the computed energy. They

discovered that players of their game are able to search the state space of pro-

teins configurations faster than computational algorithms. We are inspired by

these efforts and exclusively developed a solution that uses games with a pur-

pose and crowdsourcing to statistically determine the users’ acceptable level of

quality for approximate computing.

4.8 Conclusion

Approximate computing is an emerging area that breaks the long-held funda-

mental abstraction of near-perfect accuracy in PL [202, 119, 117, 4, 147, 203],
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OS [204], and Architecture [47, 120, 173, 118, 122, 6, 164]. While these tech-

niques provide promising gains, they cause quality loss whose effects on the

users are not well understood; leaving approximation in a position of question-

able utility. Many of these inspiring studies argue that a certain quality loss

may be acceptable without systematically considering the users’ perspective.

It is timely to systematically explore and study users’ perspective on the ef-

fects of approximation. This work takes an effective initial step in this direction.

This work provided an automated programming tool–rather unconventional–to

methodically utilize crowdsourcing in identifying the desirable application output

quality from the final users. This readily available tool provides a path for the re-

search community to better assess their innovative approximation techniques.

The framework enables developers to conveniently study user responses at

scale and gain statistical confidence when deploying approximated applica-

tions. Our results from examining a variety of applications show the necessity

of solutions such as AXGAMES since the crowd’s response to approximation

varies drastically across different applications. Moreover, when the users con-

sider tradeoff and context, they tend of to be more tolerant to approximation.

These results suggests that AXGAMES can add an unexplored, yet important,

dimension to the research and development in approximate computing.

4.9 Other Work of This Author in Approximate Computing

In addition to the aforementioned works, I have been actively involved in many

research projects in the field of approximate computing. We propose and de-

velop several hardware approximation techniques, which target to achieve per-

formance and efficiency while imposing a modest level of accuracy degradation.

As the first effort, we aim to tackle two fundamental memory bottlenecks:

144



limited off-chip bandwidth (bandwidth wall) and long access latency (memory

wall). To achieve this goal, our approach exploits the inherent error resilience

of a wide range of applications. We introduce an approximation technique,

called Rollback-Free Value Prediction (RFVP) [205]. When certain safe-to-

approximate load operations miss in the cache, RFVP predicts the requested

values. However, RFVP does not check for or recover from load value mispre-

dictions, hence, avoiding the high cost of pipeline flushes and re-executions.

RFVP mitigates the memory wall by enabling the execution to continue with-

out stalling for long-latency memory accesses. To mitigate the bandwidth wall,

RFVP drops some fraction of load requests which miss in the cache after pre-

dicting their values. Dropping requests reduces memory bandwidth contention

by removing them from the system. The drop rate is a knob to control the

tradeoff between performance/energy efficiency and output quality.

We also explore to develop solutions–from circuit to compiler–that enable

general-purpose use of limited-precision hardware to accelerate “approximable”

code–code that can tolerate imprecise execution. We utilize an algorithmic

transformation that automatically converts approximable regions of code from

a von Neumann model to a neural model. While the prior work [128] aims to

develop a digital Neural Processing Unit (NPU) [128], we propose its analog

variation (ANPU) [6], which offers even larger performance and efficiency gains

without significant increase in accuracy loss. In this work, we outline the chal-

lenges of taking an analog approach, including restricted-range value encoding,

limited precision in computation, circuit inaccuracies, noise, and constraints on

supported topologies. We address these limitations with a combination of circuit

techniques, a hardware/software interface, neural-network training techniques,

and compiler support. As the next step, we explore the integration of Neural

Processing Unit (NPU) with GPUs, called NGPU [164]. Graphics Processing
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Units (GPUs) can accelerate diverse classes of applications, such as recogni-

tion, gaming, data analytics, weather prediction, and multimedia. Many of these

applications are amenable to approximate execution. This application charac-

teristic provides an opportunity to improve GPU performance and efficiency.

GPUs are, in a sense, many-core accelerators that exploit large degrees of

data-level parallelism in the applications through the SIMT execution model.

This project aims to harmoniously bring neural and GPU accelerators together

without hindering SIMT execution or adding excessive hardware overhead. We

introduce a low overhead neurally accelerated architecture for GPUs, dubbled

NGPU, that enables scalable integration of neural accelerators for large number

of GPU cores. This work also devises a mechanism that controls the tradeoff

between the quality of results and the benefits from neural acceleration.
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Chapter 5

FUTURE DIRECTIONS

Recent innovations in ML are set to revolutionize medicine, robotics, commerce,

transportation, and many other aspects of our lives. Such transformative effects

are predicated on providing (1) high-performance compute capabilities that en-

able learning of compute-intensive ML models, and (2) constantly advancing

ML algorithms that can adopt to ever-changing application needs. Computer

system and architecture community has taken the charge of fulfilling the first

precondition. The advances in the realm of computer system and architecture

have not only unleashed the capabilities of unsung ML algorithms, which used

to be computationally infeasible for many practical problems, but also offered

opportunities for further advances in the algorithms. However, current systems

mostly rely on completely offloading intelligence to the cloud. This approach is

not scalable in the era of Intelligent IoT, and raises privacy and security con-

cerns. To this end, our future research will focus on enabling intelligence and

learning on the edge. As the first step, we will devise an algorithm-defined spe-

cialized computing stack for accelerating ML and AI on edge devices. Then,

we will develop hardware-assisted privacy and security solutions for intelligent

edge devices.
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5.1 Pushing Intelligence to the Edge

IT industry has reached to a point where the capabilities of ML are enough to

be integrated with real-world applications. ML based services (e.g., Amazon

Alexa) are expanding their capabilities and available on edge devices such as

mobile phone. However, currently, the machine intelligence at the edge devices

is still only active when they are connected to centralized, high performance

cloud platforms. This system architecture is built upon the producer-consumer

model that the high-performance, power-hungry cloud servers learn and exe-

cute the ML models, while the low-performance, energy-limited edge devices

merely communicate the model inputs and outputs with the cloud. This separa-

tion is suboptimal since the data exchange between these compute platforms

not only incurs significant intercommunication cost, but also raises privacy and

security concerns when sensitive personal information is exchanged. To this

end, we plan to explore solutions that push intelligence to the edge, where the

edge devices have the learnt ML models in the local storage and perform the

model inference. The goal is to obtain sufficient energy-efficiency and perfor-

mance to enable inference at the edge while offering programmability to support

diverse ML algorithms. Therefore, we plan to research reconfigurable accelera-

tors for the energy-limited edge systems and to develop programming abstrac-

tions for the accelerators, building upon my most recent work [114].

5.2 Online Learning at the Edge

Our next step after realizing inference at the edge is to enable learning and

adaptation, which is still left on the cloud platforms. The challenge is that it is in-

feasible for edge devices to completely take over the entire learning tasks from
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remote servers due to the growing scale and complexity of modern learning

models. As such, the objective will be to design learning system architectures

for heterogeneous compute platforms–from high-performance cloud servers to

power-constrained edge devices–which the learning tasks are split and dis-

tributed over. With my experience in building specialized computing stacks, we

will develop a complete stack that provides high-level abstractions to unite the

heterogeneous compute platforms as a single learning system. In developing

the stack, we will leverage the online active learning algorithms, such as fed-

erated and few/one/zero shot learning, which are designed for learning in the

decentralized and small data setup.

5.3 Private and Secure Learning

Although the effort of pushing intelligence towards the edge reduces the inter-

platform communication, it cannot completely resolve the privacy and security

concerns due to the unavoidable exchange of sensitive data between clouds

and edge systems. Large internet companies such as Apple, Amazon, and

Google run their own clouds, which collect enormous amount of sensitive per-

sonal data from edge devices to provide the ML based services and improve the

ML model accuracy. Apple collects raw voice clips for Siri and Google collects

geographic information to predict the traffic on their map service. While conven-

tional cryptographic algorithms and more recently introduced blockchain tech-

nologies may meet the privacy and security demand, these solutions require

enormous amount of compute power, which make them infeasible to be hosted

on general-purpose systems in the energy-budgeted environment. To tackle

this challenge, we will first develop the hardware-friendly security algorithms

that can enable the private and secure learning at the end systems without
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imposing significant hardware complexity. We will then devise programmable

accelerators and their programming abstractions so that the acceleration sys-

tems not only offer efficiency to meet the performance and energy constraints

of the edge systems, but also provides expressibility for a wide range of security

algorithms.
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