
ACCELERATING BIOPHYSICAL NEURAL NETWORK

SIMULATION WITH REGION OF INTEREST BASED

APPROXIMATION

A Dissertation

Presented to

The Academic Faculty

by

Yun Long

In Partial Fulfillment

of the Requirements for the Degree

Master in the

School of Electrical and Computer Engineering

Georgia Institute of Technology

April 2019

COPYRIGHT © 2019 BY YUN LONG

ACCELERATING BIOPHYSICAL NEURAL NETWORK

SIMULATION WITH REGION OF INTEREST BASED

APPROXIMATION

Approved by:

Dr. Saibal Mukhopadhyay, Advisor

School of ECE

Georgia Institute of Technology

Dr. Arijit Raychowdhury

School of ECE

Georgia Institute of Technology

Dr. Asif Islam Khan

School of ECE

Georgia Institute of Technology

Date Approved: [04/13, 2019]

iv

ACKNOWLEDGEMENTS

First, I would like to especially thank my PhD advisor Dr. Saibal Mukhopadhyay,

without his guidance and support I would not have the chance to work on these interesting

topics, to learn how to do research. I also want to thank my PhD proposal committee

members Dr. Arijit Raychowdhury and Dr. Asif Islam Khan, your suggestions and advises

are very valuable and indispensable. I also would like to thank Georgia Tech and ECE

department for providing such a wonderful place to study and work. I also want to say

thank you to all my lab mates for the generous help during the past four years.

At last, I want to say thank you to my wife, who give me support and understanding

all the time. I can’t make it without you.

Many thanks to you all!

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

LIST OF TABLES vi

LIST OF FIGURES vii

SUMMARY ix

CHAPTER 1. INTRODUCTION 1

CHAPTER 2. BACKGROUND 4

2.1 Dynamics of Biophysical Neural Networks 4
2.1.1 Dynamics of neuron models 4
2.1.2 Dynamics of synapse models 5

2.2 Performance Analysis for Different Models 6

2.3 Prior Works for BNN Simulation Tools Design 8
2.4 Challenges of BNN Simulation Tools Design 9

CHAPTER 3. PROBLEM FORMULATION 11
3.1 The opportunities for ROI based BNN simulation 11
3.2 Challenges in ROI based BNN Simulation models 12

CHAPTER 4. ALGORITHMS 14

4.1 Template based computing 14

4.2 ROI based approximation 15
4.3 Parameter tuning 17

CHAPTER 5. EXPERIMENTAL RESULTS 19
5.1 Performance analysis without ROI 19
5.2 Performance analysis with ROI approximation 21

5.3 Accelerate visual cortex modeling with ROI approximation 22

CHAPTER 6. CONCLUSION 27

APPENDIX A. Neuron models 28

APPENDIX b. synaps models 30

REFERENCES 32

 vi

LIST OF TABLES

Table 1 Parameters for CPU, GPU, and Embedded system. 19

 vii

LIST OF FIGURES

Figure 1 The tradeoff between computing efficiency and biophysical

plausibility.

2

Figure 2 General phenomenon for neuron and synapse dynamics with

different models. (a-c) show neuron membrane potential (Vm)

trajectories with constant input current considering different neuron

models; (d-f) show synaptic weight or synaptic current evolution

considering different synapse dynamics. (a) Hodgkin-Huxley

model; (b) Leaky Integrate-and-Fire model; (c) Izhikevich model.

(d) Short Term Plasticity; (e) Long Term Plasticity (e.g. STDP); and

(f) Delay type of synapse. PreF and PosF mean pre-synaptic and

post-synaptic neuron fires, respectively.

5

Figure 3 Computing complexity considering combinations of different

neuron and synapse models. Neuron models include LIF, Izhikevich,

and HH model; Synapse models include fixed (F), STP (S), LTP (L),

and Delay (D).

7

Figure 4 High-level object-oriented user interface and low-level data layout.

Demon code is modified from the sample provided by BRIAN

simulator.

10

Figure 5 BNN simulation with (a) homogenous neuron models (all

biophysical accurate model) and (b) ROI based heterogeneous

models with biophysical accurate model at concerned region and

simpler model for the others.

11

Figure 6 Template based processing. (a) BNN specifications. (b) Data

templates. (c) Computing templates. (d) Algorithm for template

based processing (no ROI). (e) Output results as a raster plot.

15

Figure 7 A simple network with 5 neurons. Neurons can switch models

dynamically between LIF and Izhikevich model according to the

spiking frequency.

16

Figure 8 Computation flow for ROI based adaptive simulation algorithm. 17

Figure 9 Neurons with different models generate similar spiking frequency

after parameter tuning.

18

Figure 10 Correctness verification and computing speed comparison. Raster

plot and spiking frequency distribution for (a) our work and (b)

CARLsim. Insert table lists the speed for different simulators. For

CPU and GPU implementation, LIF and Izhikevich model are

20

 viii

considered, respectively. Data are measured for BNN containing 103

neurons and 104 synapses.

Figure 11 (a) Spiking frequency distribution for all Hodgkin-Huxley scenario.

(b) Normalized running time for ROI approximation with different

threshold, inserts are the neuron model map with black for Hodgkin-

Huxley and white for LIF. (c) Cumulative distribution function

(CDF) for all Hodgkin-Huxley, ROI approximation, and eliminating

the less active neurons.

21

Figure 14 Spiking frequency map for (a) static input with an image; and (b)

time-varying input with a video (the spiking frequency is sampled at

t=0.5s).

24

Figure 12 (a) Visual cortex model considering Young-Helmholz theory and

opponent-process theory. Solid lines represent synaptic connections

from excitatory pre-neurons. Dash lines represent synaptic

connections from inhibitory pre-neurons. (b) Static input with an

image. (c) Time-varying input with video, here we show 4 frames.

23

Figure 13 Membrane potential for the neuron in the same location with

different neuron models

24

Figure 15 (a) Voltage-gated ion channel and leakage channel for a neuron cell

based on Hodgkin-Huxley model. (b) Ion channels conductance

simulated from Hodgkin-Huxley and ROI approximation.

25

Figure 16 Running time for visual cortex simulation. The time step is 0.01 ms

and we run 20 ms (1000 iterations) biology time.

26

 ix

SUMMARY

Modeling the dynamics of biophysical neural network (BNN) is essential to

understand brain operation and design cognitive systems. Large-scale and biophysically

plausible BNN modeling requires solving multiple-terms, coupled and non-linear

differential equations, making simulation computationally complex and memory intensive.

In this work, an adaptive simulation methodology is presented in which neurons in the

region of interest (ROI) follow high biological accurate models while the other neurons

follow computation friendly models. To enable ROI based approximation, we propose a

generic template based computing algorithm which unifies the data structure and

computing flow for various neuron models. We implement the algorithms on CPU, GPU

and embedded platforms, showing 11x speedup with insignificant loss of biological details

in the region of interest.

 1

CHAPTER 1. INTRODUCTION

Biophysical neural network (BNN) modeling provides an avenue for exploring

hypotheses about how human brain works and how to realize neuronal coding [1].

Moreover, it is a critical step towards developing cognitive system [2], artificial

intelligence (AI) [3], and emerging computer architecture [4], etc. However, the BNN

modeling is challenging as the dynamics of neurons and synapses are regulated by

complex, coupled non-linear differential equations, making it computation intensive.

Moreover, for BNN simulation, there is a well-known tradeoff between the

computing efficiency and the biology accuracy. Biologically accurate models always

require more computation while less computing intensive models normally lack

biophysical plausibility. For example, Hodgkin-Huxley model [5] presents high degree of

biological credibility but is very computationally complex. Simplified mathematical

models, such as leaky integrate-and-fire model (LIF model) and Izhikevich models [6],

improve the computing efficiency but lack biology accuracy. Figure. 1 shows the tradeoff

with several commonly used neuron models.

To accelerate BNN simulation, parallel computing frameworks such as CPU clusters

and general-purpose graphics processing units (GPGPUs) are being actively explored [7,

8]. However, the performance is ultimately limited by the algorithm’s ability to leverage

parallel hardware and the memory bandwidth. There are efforts in developing specialized

application-specific integrated circuit (ASIC) which provide significant improvements on

performance and energy efficiency [4, 9]. However, the ASICs normally implement a

single neuron model, which lack the flexibility to support different types of neuron

 2

dynamics. Moreover, programming the ASIC also require specialized knowledge

compared to standard CPU or GPU based platforms.

In this work, an adaptive simulation methodology is developed that maintains high

biological accuracy with more complex neuron models (e.g. Hodgkin-Huxley model) in

the region of interest (ROI), while simplifys the neuron models (e.g. LIF and Izhikevich

model) elsewhere to improve the overall computation speed (different models complexity

are shown in Figure 1). At the interested regions, the ROI based approximation retains all

the biophysical information such as the sodium (Na+) and potassium (K+) ion channel

conductance which is missing in LIF and Izhikevich models. In the proposed algorithm,

the ROI can be statically defined as a specific region or determined dynamically during

simulation based on factors such as spiking frequency. The key challenge in ROI based

BNN simulation is the need to solve a system of hybrid neurons where the neuron models

(i.e. sets of partial differential equations (PDEs)) change over space as well as time. To

address the preceding challenge, a generic template based computing model is proposed,

where both data and computing are stored/defined as templates. The proposed template

Figure 1．The tradeoff between computing efficiency and biophysical plausibility.

Computing complexity

Efficient ProhibitiveModerate

B
io

p
h
y
s
ic

a
l
p

la
u
s
ib

ili
ty

P
o
o
r

M
o

d
e

ra
te

G
o

o
d

LIF

Izhikevich

Hodgkin-Huxley

Hindmarsh-Rose

Models
of equations

and parameters
of FLOPS

[6]

LIF 2/5 5

Izhikevich 4/5 13

Hindmarsh-Rose 5/7 120

Morris-Lecar 5/12 600

Hodgkin-Huxley 10/7 1200

Morris-Lecar

Models computation complexity

 3

based processing algorithm provides a uniform data structure and computing flow for

various neuron models. Therefore, models can be easily switched with no programming

overhead.

The proposed ROI based computing algorithm is implemented on CPU, GPU and

embedded system. Our baseline simulator with template based processing (without ROI

approximation) provides accuracy and performance comparable to the state-of-the-art

BNN simulators. The effectiveness of ROI based adaptive simulation is demonstrated

through a visual cortex simulation. The experimental results measured from CPU, GPU,

and embedded platforms demonstrate 11x speed-up on average with insignificant

biological accuracy loss in the regions of interest.

 4

CHAPTER 2. BACKGROUND

2.1 Dynamics of Biophysical Neural Networks

2.1.1 Dynamics of neuron models

As the basic computational element in BNN, the neuron operates in a “receive-

integrate-send” mode. A neuron receives input signals from 103 - 104 neighborhood

neurons via its dendrites, and, after integration, sends out the output signals to thousands

of other neurons via its axons. The signal can be either electrical or chemical depending on

the neurons and the connection types. The most critical variable in neuron dynamics is

membrane potential which updates continuously based on the integration of input signals.

Once the membrane potential reaches a pre-defined threshold, neuron fires and sends

spikes down to its thousands of post-neurons through axons.

Numerous efforts have been made during past few decades to model the neuronal

dynamics. One of the most famous is the Hodgkin-Huxley model (HH model) which was

developed in 1952 [10]. The general phenomenon of the membrane potential described by

HH model is shown in Figure 2(a). The HH model explores neuron dynamics and also

behaviors of voltage-gated ion channels (e.g. sodium and potassium channels) using a set

of coupled differential equations. However, HH model is computationally complex,

particularly for simulating large BNNs. On the other hand, the Leaky Integrate-and-Fire

model (LIF model) is much simpler, but lacks biological plausibility, shown in Figure 2(b).

To better balance the biological plausibility and the computation efficiency,

phenomenological spiking models are adopted for BNN simulation. For example,

 5

Izhikevich model, shown in Figure 2(c), which has only two Ordinary Differential

Equations (ODEs) for neuron dynamics, are much more computation friendly than HH

model yet contains detailed neuronal behaviors that maintains biological plausibility [11].

Details of the aforementioned neuron models are presented in appendix.

2.1.2 Dynamics of synapse models

As the bridge between the axon of pre-neuron and the dendrite of post-neuron,

synapse is the key element for both electrical and chemical signal propagation. There are

Figure 2. General phenomenon for neuron and synapse dynamics with different

models. (a-c) show neuron membrane potential (Vm) trajectories with constant input

current considering different neuron models; (d-f) show synaptic weight or synaptic

current evolution considering different synapse dynamics. (a) Hodgkin-Huxley

model; (b) Leaky Integrate-and-Fire model; (c) Izhikevich model. (d) Short Term

Plasticity; (e) Long Term Plasticity (e.g. STDP); and (f) Delay type of synapse. PreF

and PosF mean pre-synaptic and post-synaptic neuron fires, respectively.

PreF

Delay

(a) (b) (c)

(d) (e) (f)

PosF

PreF

PreF PosF

PreF

 6

mainly two synapse models: the current based (CUBA) model where the transmitted

current is proportional to synaptic weight and the conductance based (COBA) model where

the synaptic current depends on the synaptic value as well as pre-neuron’s membrane

potential [12].

The synapse weight is also time dependent variable, and in most cases, regulated by

differential equations. In this work, besides the fixed value synapse, we consider three

different aspects of synapse dynamics. First, Short Term Plasticity (STP) in which the

synapse weight can dynamically increase or decrease based on pre-neuron’s activity but

will quickly recovers to its original state with decades of milliseconds, as shown in Figure

2(d). Second, Long Term Potentiation (LTP) in which the synapse strength can

permanently (at least in a much longer time period than STP) be changed. Following

Hebbian theory: “Neurons that fire together, wire together” [13], our simulations utilize

the Spike-Timing Dependent Plasticity (STDP) that synapse weight potentiates when its

post-synaptic neuron fires right after its pre-synaptic neuron, and weight depresses when it

post-synaptic neuron fires right before its pre-synaptic neuron. The STDP phenomenon is

illustrated in Figure 2(e). Third, Synapse Delay in which the signal propagation get delayed

when passing through synapses, shown in Figure 2(f). Details of synapse dynamics are

presented in the appendix.

2.2 Performance Analysis for Different Models

Neuron models with detailed biophysical dynamics requires more computation while

less computationally demanding models tend to be less biologically plausible. Besides

neuron models, synapse dynamics is also very critical especially when the network has

 7

very dense connections (many connections per neuron). Figure 3 shows the computation

complexity considering different combinations of neuron and synapse models [6, 12, 14].

Neuron models includes LIF model, Izhikevich model, and HH model. Each neuron model

is evaluated under different synapse dynamics including Fixed (F), STP (S), LTP (L), and

Delay (D). For example, “Izh-F” means the measurement is based on a Izhikevich neuron

which is connected to fixed type of synapses. The firing rate of all the pre-neurons are 20

Hz. Data are normalized according to the execution time with LIF neuron model and fixed

value synaptic connections for better visualization. We observe that with different

combination of neuron and synapse models, the computing speed could be very different.

Figure 3. Computing complexity considering combinations of different neuron and

synapse models. Neuron models include LIF, Izhikevich, and HH model; Synapse

models include fixed (F), STP (S), LTP (L), and Delay (D).

 8

2.3 Prior Works for BNN Simulation Tools Design

Various software-based simulators have been developed to expedite the simulation

of BNN [8, 15-22]. The early stages of simulators design mainly utilized CPU and super-

computing cluster for the best performance. For example, NEURON [15] and GENESIS

[16] offer CPU version with both single node and cluster based computation mode. Later

on, simulation tools with better user convenience were developed by implementing high-

level language (e.g. Python) based user interface. For example: NEST [17], BRIAN [18],

PCSIM [19], and PyNN [20]. NEST is a C++ based highly optimized tool which provides

Python interface. BRIAN is a high flexible tool written in Python which supports both

standard types of neuron models and user-defined models. PCSIM is similar with NEST

which has C++ based computation kernel and Python programming language based user

interface. Different from the above simulators, PyNN is a simulator-independent BNN

computing platform. With PyNN API and Python, code can run without any modifications

on different simulators that PyNN supports (currently NEURON, NEST, PCSIM, and

BRIAN). Recent years, the GPU based simulator design has attracted lots of interests. BNN

simulation running on an off-the-shelf GPU can achieve more than 10X speedup than the

most advanced CPU. There are several public available GPU based simulators, such as

CARLsim [8], NCS6 [21], and HRLSim [22]. CARLsim is a Izhikevich model based,

highly-optimized, GPU-accelerated BNN simulator which is mainly used to accelerate

BNN simulation with GPU but also provides non-GPU support. NCS6 is designed to run

on clusters of multiple CPUs and GPUs. It supports both LIF neuron model and Izhikevich

neuron model. HRLSim is motivated by the need to support the neuromorphic hardware

 9

[23]. It is implemented on a cluster of GPU as an affordable and scalable tool for design,

real-time simulation, and analysis for large-scale BNN.

2.4 Challenges of BNN Simulation Tools Design

Developing of BNN simulation tools faces two main challenges: system flexibility

and computing efficiency. A simulation framework should be flexible enough to support

multiple neuron/synapse dynamics. To address this, Object-oriented Programming (OoP)

can be utilized to enhance the code reusability and system flexibility. In the OoP based

design, neurons and synapses are instances of respective model classes. Parameters and

variables for models are encapsulated as attributes and dynamics (ODEs/PDEs) are defined

as methods inside objects. This approach results in flexibility but sacrifices the computing

efficiency, which is a critical challenge for large-scale BNN simulation. Some BNN

simulation tools implement a mixed configuration which has a high-level object-oriented

interface for flexibility and user convenience, and a low-level procedural kernel utilizing

the vectorization techniques for computing efficiency [17, 18, 20]. In most cases, the high-

level user interface is presented with an interpreted language such as Python while the

computing kernel are written by low level language such as C or C++. As shown in Figure

4, the high-level user interface (Python script) describes a BNN with 1000 LIF neurons;

Neurons are divided into two groups and randomly connected together with 0.1 connection

possibility. The corresponding data layout for the network is also shown here. The

demonstration code is modified from the sample provided by BRIAN simulator [18].

 10

Figure 4. High-level object-oriented user interface and low-level data layout.

Demon code is modified from the sample provided by BRIAN simulator.

P = NeuronGroup(1000, model=‘LIF’,
threshold=50, reset=-60); // network size and neuron type

Pe = P.subgroup(800); // excitory neuron
Pi = P.subgroup(200); // inhibitory neuron
Connect_random(Pe, P, 0.1, weight=1.62); // connection for excitory neuron
Connect_random(Pi, P, 0.1, weight=-9); // connection for inhibitory neuron

 V:

Excitory neurons Inhibitory neurons

S:

No connection

Excitory connection

Inhibitory connection

Sample code:

Data layout:

 11

CHAPTER 3. PROBLEM FORMULATION

3.1 The opportunities for ROI based BNN simulation

Large-scale cortical modeling is one of the most critical scientific challenges in 21st

century. The cortical simulation facilitates better understanding of human brain, exploring

hypotheses of neuroscience, and developing human-like artificial intelligence. The central

nervous system (CNS) of human contains 1011 neurons and 1014 synapses, coupling

together and regulated by complex neuronal dynamics, which is challenging for simulation

even with the most powerful supercomputers [1, 4]. On the other hand, it is well known

that only a small portion of CNS are responsible to functions such as vision, sound,

and motion control. Modern imaging techniques such as PET (positron-emission

tomography) and fMRI (functional magnetic resonance imaging) also indicate that neurons

Figure 5. BNN simulation with (a) homogenous neuron models (all biophysical

accurate model) and (b) ROI based heterogeneous models with biophysical accurate

model at concerned region and simpler model for the others.

Neuron with computing friendly neuron model

Neuron with biophysically accurate neuron model

Not Computing efficient

Biophysically accurate

Computing efficient

Biophysically accurate at ROI

ROI

(a) (b)

 12

in different regions have varying activation levels. This inspires us to develop a ROI based

approximation algorithm to accelerate cortical simulation where the highly-active or

critical regions are modeled with biophysical accurate neuron models while the rest are

modeled with simpler models (Figure. 5).

3.2 Challenges in ROI based BNN Simulation models

The ROI based trade-off in accuracy and computation speed is a well-known concept

in scientific computation. For example, adaptive mesh refinement (AMR) algorithm

imposes finer sub-grids (denser grids) at the regions that require higher resolution to

achieve better accuracy. However, unlike the conventional ROI based computations that

mainly focus on the data-level approximation, the proposed algorithm for ROI based BNN

simulation is to change the underlying neuron dynamics being solved at each node (i.e.

model-level approximation). To be more specific, rather than emulating the detailed

neuronal dynamics with the same model for all the neuron groups (Figure 5(a)), we can

simplify the simulation by using computing friendly model for the less important regions

and biophysically accurate model for the critical regions (Figure 5(b)). Therefore, we need

to simulate a system of coupled differential equations where the equations are not only

different at different nodes, but also might changes over time (ROI changes over time).

This is a unique approach for performance-accuracy trade-off in BNN simulation. A few

of prior works implement heterogeneous simulation where different neuronal dynamics are

modeled simultaneously [17], however, our approach is to dynamically change the model

of the neurons, for example, depending on their spiking activity. Moreover, our objective

is to accelerate the simulation while maintaining the biology accuracy of the interested

region.

 13

In this work, we target on three neuron models: LIF model, Izhikevich model, and

Hodgkin-Huxley model. We focus on the ROI approximation for neuron dynamics and

assume synaptic weights are fixed. In the future work, we will implement the ROI

approximation for synaptic dynamics.

 14

CHAPTER 4. ALGORITHMS

4.1 Template based computing

We propose a template based computing algorithm where variables (e.g. neuron

membrane potential) and synaptic weights are stored in data templates, neuron dynamics

are defined in computing templates. The template based processing allows us to configure

and simulate a BNN where all the data and computing are represented in a unified form.

Therefore, ROI based adaptive BNN simulations consisting of different neuron models can

be easily realized by simply utilizing different data and computing templates.

An example is used to show how the template based processing works. As shown in

Figure 6(a), the BNN is utilized for visual cortex simulation, which contains 103 Izhikevich

neurons and the synapse connectivity is 0.1 (i.e. each neuron has 102 synapses). Figure 6(b)

shows the corresponding data templates including 𝑉, 𝑈 and synaptic weights. Storing data

into templates provides a compact data structure and enhance the computing efficiency for

element-wise functions, especially for parallel computing platforms such as GPU [8].

The concept of computing template is similar with the computational graph in

popular deep learning frameworks such as Tensorflow [11]. A computing template consists

of a series of matrix operations. Each operation in a computing template takes two or more

data templates (vectors and matrix) as inputs. The computing templates are pre-define

based on the differential equations in the neuron models. As shown in Figure 6(c), the

computing templates are defined based on the differential equations of Izhikevich model

in Figure 6(a).

 15

During computing, templates are first generated based on network specifications.

Then the computing templates are called repeatly to perform matrix operations. The whole

algorithm is shown in Figure 6(d). Meanwhile, neuron activities such as membrane

potential and spiking frequency can be recorded for post analyses. As shown in Figure 6(e),

we plot the recorded spikes (i.e. raster plot) for neurons in the network.

4.2 ROI based approximation

Benefiting from the template based computing, the neuron models can be switched

easily by calling different computing templates, enabling ROI based approximation. As

mentioned earlier, the ROI can be statistically defined by identifying a spatial region where

higher accuracy is desired during the simulation. Alternatively, the ROI can be dynamically

Figure 6. Template based processing. (a) BNN specifications. (b) Data templates. (c)

Computing templates. (d) Algorithm for template based processing (no ROI). (e)

Output results as a raster plot.

Human brain

Visual cortex

Neuron number: 1000

Synapse connectivity: 0.1

Neuron model:

Variable templates:

Synapse templates:

V: U:

S:

Computing templates:

)

when

(a) (b)

(c) (d) (e)

Algorithm: Template based computing

1 Input: BNN specifications

2 Initialization: generating templates

3 Repeat:

4 call computing templates

5 Output

Date templates:

 16

defined using certain criteria. For example, the information theory of a rate-based network

suggests that the more a neuron fires, the more information it propagates [12]. Hence, the

spiking frequency can be a criterion to keep the ‘busy’ neurons in biological plausible

model (defined as ROI).

Figure 7 illustrates the proposed algorithm considering 5 randomly connected neurons,

and assuming the neuron models can switch between LIF and Izhikevich models (in

practice, we consider model switching between the LIF and the Hodgkin-Huxley models).

We first initialize data and computing templates for both models. Then we create a

regulator vector which contains the spiking frequency for each neuron. During inference,

system first accesses the regulator vector and determines which model the neuron should

follow, which data templates and computing templates should be called. For example, if

we define the model switching threshold to be 20 Hz, the corresponding neuron will follow

Figure 7. A simple network with 5 neurons. Neurons can switch models dynamically

between LIF and Izhikevich model according to the spiking frequency.

 U:

 V:

 …
S:

 …

Izhikevich model: LIF model:

 V:

)

Shared synaptic weights

 Regulators: Current spiking frequency

Network specification:
5 neurons, randomly connected

Available neuron models:
LIF & Izhikevich

)

when

Data templates

Computing template

Data templates

 when

Computing template

 17

Izhikevich model once the spiking frequency is higher than 20 Hz, otherwise it will follow

LIF model.

Figure 8 illustrates the computation flow for ROI based adaptive simulation. First,

during network initialization, data and computing templates for different neuron models

are created. Second, during computation/inference, computing templates are called and

neuron spiking frequency are updated with a given time window. After each iteration,

program checks the regulator vector and determine which model the neuron should follow.

4.3 Parameter tuning

Even though the internal neuronal dynamics are different for different neuron models, ROI

based approximation requires that the output (represented with spikes) of a neuron should

remain the same after changing models. To acheve this goal, we carefully tune the

parameters in computing friendly models (i.e. LIF model and Izhikevich model) with the

Figure 8. Computation flow for ROI based adaptive simulation algorithm.

BNN specifications
Network size; connectivity;

Neuron models;

Data templates
Variables/synapses

Computing templates
Neuron dynamics

Call computing templates
Update variable templates

Update regulator vector
Spiking frequency

Output results
Data analyses

Check regulator vector
Decide which computing models to

be used for next iterations
N

et
w

o
rk

 In
it

ia
liz

at
io

n
C

o
m

p
u

ti
n

g
/I

n
fe

re
n

ce
Po

st
 a

n
al

ys
e

s

loop

loop

 18

Hodgkin-Huxley model as a baseline, to match the spiking frequency for different input

current. Figure 9 shows the tuned results. The spike frequencies match with each other very

well in the explored region (The input current scope for Hodgkin-Huxley neuron model is

0.1 to 1, unit is uA/mm2).

Figure 9. Neurons with different models generate similar spiking frequency after

parameter tuning.

Tuned Parameters:

LIF model:

Izhikevich model:

 19

CHAPTER 5. EXPERIMENTAL RESULTS

We implement the proposed BNN simulator on three platforms: CPU, GPU, and

embedded system, targeting three different application environments. For CPU

implementation, we use MATLAB since it is highly optimized for matrix-vector operation

which is the main type of computing for BNN simulation. For GPU implementation, we

utilize NVIDIA CUDA programming language. For embedded system, we use the popular

Raspberry Pi, a single-board micro-computer which promotes Python as the main

programming language. Table I summarizes the parameters for these platforms.

5.1 Performance analysis without ROI

First, we compare the accuracy of the proposed BNN simulator (without ROI) with

state-of-the-art GPU based BNN simulator, CARLsim [8]. Figure 10 (a, b) shows the raster

plots and spiking frequency distributions measured from CARLsim and our work. The

network contains 103 Izhikevich neurons and 104 synapses, excitatory and inhibitory

neurons in a 4:1 ratio [1]. Neurons receive uniformly distributed external input current and

spikes from the pre-neurons. We observe good match for the spiking pattern and spiking

Table 1. Parameters for CPU, GPU, and Embedded system.

Parameters CPU GPU Embedded system

Name Intel i7-7700k NVIDIA GTX 1080TI
Raspberry PI 3

(ARM Cortex-A53)

RAM 32 GB (DDR4) 11 GB (GDDR5X) 1 GB (DDR3)

Maximum power 75 W 250 W 4.8 W

Maximum
throughput

320 GFLOPS 11.3 TFLOPS 3.62 GFLOPS

Programming tools MATLAB CUDA Python

 20

frequency distribution. We further compare the computing speed of our simulator with

existing simulators: Brian [13], Nest [10], and CARLsim [8]. The first two simulators are

CPU based and CARLsim implements GPU version. To ensure the best performance, Data

for these simulators are measured from the sample codes provided by the tools developer.

As shown in the insert table of Figure 10, our simulator provides the state-of-the-art

Figure 10. Correctness verification and computing speed comparison. Raster plot and

spiking frequency distribution for (a) our work and (b) CARLsim. Insert table lists

the speed for different simulators. For CPU and GPU implementation, LIF and

Izhikevich model are considered, respectively. Data are measured for BNN

containing 103 neurons and 104 synapses.

(a)

(b)

Excitory

Excitory

Inhibitory

Inhibitory

Simulator Brian Nest Our work CARLsim Our work

Speed (103 iterations) 1.89s 1.25s 0.46s 0.26s 0.18s

Platform/model CPU/LIF GPU/Izhikevich

 21

performance compared with prior CPU and GPU based implementation (3.4x and 1.4x

speedup than other CPU and GPU based simulators, respectively).

5.2 Performance analysis with ROI approximation

We first evaluate the proposed ROI approximation computing algorithm with a randomly

connected BNN containing 104 neurons (all excitatory) and 105 synapses. At the beginning,

all neurons follow the Hodgkin-Huxley model. The spiking frequency distribution is

plotted in Figure 11(a). Figure 11(b) shows the running time with different model switching

threshold (high activity neurons are in Hodgkin-Huxley model, low activity neurons are in

LIF model). Data are normalized with the running time when all the neurons are switched

to LIF model. The insert figures in Figure 11(b) show the neuron activities with black

representing Hodgkin-Huxley and white representing LIF, respectively. Simulation also

indicates that the spiking frequency distribution after implementing ROI approximation is

Figure 11. (a) Spiking frequency distribution for all Hodgkin-Huxley scenario. (b)

Normalized running time for ROI approximation with different threshold, inserts are

the neuron model map with black for Hodgkin-Huxley and white for LIF. (c)

Cumulative distribution function (CDF) for all Hodgkin-Huxley, ROI

approximation, and eliminating the less active neurons.

(b) (c)

Mean=125.6 Hz

Standard deviation=14.6 Hz

(a)

12.5% LIF

55.6% LIF

98.3% LIF

84.1% LIF

 22

almost identical to the Hodgkin-Huxley baseline (blue and red lines in Figure 11(c)).

However, if we eliminate the less active neuron (disconnect them from the networks), the

distribution changes a lot (yellow line in Figure 11(c)). We conclude that even though the

internal dynamics of the unconcerned region is less important, we cannot remove them as

they are still critical for signal propagation.

5.3 Accelerate visual cortex modeling with ROI approximation

With the proposed computing algorithms, we implement the visual cortex modeling

based on the theories of color vision: Young-Helmholz theory and opponent-process theory

[14, 15]. Young-Helmholz theory states that there are three types of cone photoreceptors

that are sensitive to short-wavelength (blue light), medium-wavelength (green light), and

long-wavelength (red light), respectively. The opponent-process theory states that the cone

photoreceptors are linked together to form three opposing color pairs: blue/yellow,

red/green, and black/white. Activation of one member of the pair inhibits the other. Figure

12(a) shows the structure of BNN for visual cortex simulation. The neurons in the first

layer are based on Young-Helmholz theory and are divided into three groups, sensitive to

blue light, green light, and red light, respectively. The second layer contains four groups of

opponent-process theory based neurons. The third layer is the output layer, similar with the

first layer, sensitive to different colors. The connectivity and neuron numbers are specified

in the figure. Here we assume the output layer as ROI region.

 23

We run simulation with two types of input signals: static input using an image and

time-varying input using a video, as shown in Figure 12(b, c). We plot the spiking

frequency map for the last group of neurons (sensitive to red color) in the third layer

considering the BNN with LIF neuron, Izhikevich neuron, Hodgkin-Huxley neuron, and

ROI approximation (Hodgkin-Huxley for ROI and LIF for the rest). The results are shown

in Figure 13. Neurons with highest activity are white and neurons with lowest activity are

black. Note that we flip the light intensity for the video input to intensify the dancer. All

Figure 12. (a) Visual cortex model considering Young-Helmholz theory and

opponent-process theory. Solid lines represent synaptic connections from excitatory

pre-neurons. Dash lines represent synaptic connections from inhibitory pre-neurons.

(b) Static input with an image. (c) Time-varying input with video, here we show 4

frames.

Visual signal from thalamus

B

G

R

B Y R

G

B+ Y- B- Y+ G+ R- G- R+

L
a
y
e
r

1
L
a
y
e
r

3
L
a
y
e
r

2

of neurons

256 x 256 x 3

256 x 256 x 4

64 x 64 x 4

Static input (image) Time-varying input (video)

(a)

(b) (c)

t = 0s t = 0.5s t = 1.0s t = 1.5s

 24

neuron models and ROI approximation can seasonably represent the color sensitivity.

However, the dynamics of individual neuron are very different. We randomly select a

Figure 14. Spiking frequency map for (a) static input with an image; and (b) time-

varying input with a video (the spiking frequency is sampled at t=0.5s).

Image

Video

LIF Izhikevich Hodgkin-Huxley ROI

Figure 13. Membrane potential for the neuron in the same location with different

neuron models

Biology time (ms)

M
em

b
ra

n
e

 p
o

te
n

ti
al

 (
m

V
)

 25

neuron in the ROI (3rd layer) and plot the membrane potential (Figure 14). We observe that

the ROI based approach matches well with the results from pure Hodgkin-Huxley baseline.

Moreover, the proposed ROI based approximation fully maintains the biology details

such as ion channel (Figure 15) conductance in the interested regions. We plot the Na+ and

K+ channel conductance for Hodgkin-Huxley based simulation and ROI approximation in

Figure 15. We observe a phase delay between Hodgkin-Huxley and ROI approximation

which is caused by the minor models output mismatch after the parameter tuning. The

phase delay can be eliminated by a time shifting.

Finally, we evaluate the computing speed of the proposed algorithms running on

different platforms with image and video as BNN input, shown in Figure 16. We observe

Figure 15．(a) Voltage-gated ion channel and leakage channel for a neuron cell

based on Hodgkin-Huxley model. (b) Ion channels conductance simulated from

Hodgkin-Huxley and ROI approximation.

Extracellular

Cytosol

M
e
m

b
ra

n
e

K+ current

M
e
m

b
ra

n
e

Na+ current

Leakage current

(a) (b)

 26

that ROI based approximation can significantly enhance the computing efficiency with an

average speed up of 11x over the pure Hodgkin-Huxley baseline. Therefore, in comparison

to prior simulators, the template based ROI approximation computing algorithm achieves

equivalent speedup of 37x and 16x for CPU (Nest and Brian) and GPU (CARLsim),

respectively.

Figure 16． Running time for visual cortex simulation. The time step is 0.01 ms and

we run 20 ms (1000 iterations) biology time.

C
o
m

p
u
ti
n
g
 s

p
e

e
d

 (
s
)

0.01

0.1

1

10

100

1000

10000

CPU GPU Embedded CPU GPU Embedded

Image Video

LIF Izhikevich Hodgkin-Huxley ROI

 27

CHAPTER 6. CONCLUSION

This work presents an adaptive BNN simulation methodology that maintains high

biological accuracy with more complex neuron models in the ROI while simplifies the

neuron models elsewhere to improve the computation speed. A template based computing

approach is presented to enable the simulation of heterogeneous BNN with dynamically

varying neuron model. The proposed template based computing coupled with ROI

approximation demonstrates more than one order of magnitude speedup over existing BNN

simulators.

 28

APPENDIX A. NEURON MODELS

For each neuron model, here we present its differential equations and corresponding

parameters and variables.

A.1 LIF neuron model

 𝛼 𝛽

 𝛼 and 𝛽are the parameters and is the variable.

A.2 Izhikevich neuron model

 {

 , , , are the parameters and are the variables.

A.3 Hodgkin-Huxley neuron model

𝐶𝑚
∙ [

 𝑘]

 𝛼𝑛 𝛽𝑛

 𝛼𝑚 𝑉 𝛽𝑚 𝑉

 𝛼ℎ 𝑉 𝛽ℎ 𝑉

𝛼𝑛

 − 𝑣+
 𝛽ℎ

 − 𝑣+

 29

𝛼𝑚

 − 𝑉+
 𝛽𝑛 − 𝑣+6

 30

APPENDIX B. SYNAPS MODELS

B.1 CUBA and COBA synapse model

Current based (CUBA) synapse model:

τ
𝑑𝑉

𝑑𝑡
 𝑉𝑟𝑒𝑠𝑡 𝑉 𝑒𝑥 𝑒𝑥 𝑉𝑟𝑒𝑠𝑡 𝑖𝑛ℎ 𝑖𝑛ℎ 𝑉𝑟𝑒𝑠𝑡

Conductance based (COBA) synapse model:

𝜏
𝑑𝑉

𝑑𝑡
 𝑉𝑟𝑒𝑠𝑡 𝑉 𝑒𝑥 𝑒𝑥 𝑉 𝑖𝑛ℎ 𝑖𝑛ℎ 𝑉

Here 𝑉𝑟𝑒𝑠𝑡 is the resting membrane potential, 𝑒𝑥 and 𝑖𝑛ℎ are the reversal potential for

excitatory and inhibitory neurons, respectively. 𝑒𝑥 and 𝑖𝑛ℎ are the synaptic weight. τ is the

time constant.

B.2 STP synapse model

When a neuron fires, its post-synapses are increased:

 𝑒𝑥 𝑒𝑥 ∆ 𝑒𝑥

 𝑖𝑛ℎ 𝑖𝑛ℎ ∆ 𝑖𝑛ℎ

Otherwise, the value for synapse follows dynamics:

𝜏𝑒𝑥
 𝑒𝑥

 𝑒𝑥

𝜏𝑖𝑛ℎ

 𝑖𝑛ℎ

 𝑖𝑛ℎ

Here 𝑒𝑥 and 𝑖𝑛ℎ are the synaptic weights for excitatory and inhibitory pre-neurons,

respectively. ∆ 𝑒𝑥 and ∆ 𝑖𝑛ℎ are the corresponding perturbation value of synaptic weight. 𝜏𝑒𝑥

and 𝜏𝑖𝑛ℎ are the time constant, a typical value is 10ms.

B.3 LTP synapse model

Long Term Potentiation is modeled with a simplified STDP rules.

∆ 𝑒𝑥/𝑖𝑛ℎ 𝑊𝑖𝑗

∆𝑊𝑖𝑗 𝐴+ 𝑥𝑝 (
𝑥𝑖𝑗

𝜏+
) 𝑜𝑟 𝑥𝑖𝑗

 31

∆𝑊𝑖𝑗 𝐴− 𝑥𝑝 (
𝑥𝑖𝑗

𝜏−
) 𝑜𝑟 𝑥𝑖𝑗 <

Here 𝑊𝑖𝑗 is the synaptic weight from neuron to neuron 𝑗 . 𝐴+ 𝐴− 𝜏+ 𝜏− are the fitting

parameters. 𝑥𝑖𝑗 is the relative time window between pre-synaptic spike arrivals and post-

synaptic spikes.

 32

REFERENCES

[1] R. Ananthanarayanan, S. K. Esser, H. D. Simon, and D. S. Modha, "The cat is out

of the bag: cortical simulations with 109 neurons, 1013 synapses," in Proceedings

of the Conference on High Performance Computing Networking, Storage and

Analysis, 2009, pp. 1-12.

[2] G. Indiveri, E. Chicca, and R. J. Douglas, "Artificial Cognitive Systems: From

VLSI Networks of Spiking Neurons to Neuromorphic Cognition," Cognitive

Computation, journal article vol. 1, no. 2, pp. 119-127, June 01 2009.

[3] P. U. Diehl and M. Cook, "Unsupervised learning of digit recognition using

spike-timing-dependent plasticity," Frontiers in Computational Neuroscience,

vol. 9, p. 99, 2015.

[4] P. A. Merolla et al., "A million spiking-neuron integrated circuit with a scalable

communication network and interface," Science, vol. 345, no. 6197, pp. 668-673,

2014.

[5] A. L. Hodgkin and A. F. Huxley, "A quantitative description of membrane current

and its application to conduction and excitation in nerve," The Journal of

physiology, vol. 117, no. 4, pp. 500-544, 1952.

[6] E. M. Izhikevich, "Which model to use for cortical spiking neurons?," IEEE

transactions on neural networks, vol. 15, no. 5, pp. 1063-1070, 2004.

[7] R. Brette et al., "Simulation of networks of spiking neurons: a review of tools and

strategies," Journal of computational neuroscience, vol. 23, no. 3, pp. 349-398,

2007.

[8] M. Beyeler, K. D. Carlson, T.-S. Chou, N. Dutt, and J. L. Krichmar, "CARLsim

3: A user-friendly and highly optimized library for the creation of

neurobiologically detailed spiking neural networks," in 2015 International Joint

Conference on Neural Networks (IJCNN), 2015, pp. 1-8: IEEE.

[9] B. V. Benjamin et al., "Neurogrid: A mixed-analog-digital multichip system for

large-scale neural simulations," Proceedings of the IEEE, vol. 102, no. 5, pp. 699-

716, 2014.

[10] A. L. Hodgkin and A. F. Huxley, "A quantitative description of membrane current

and its application to conduction and excitation in nerve," The Journal of

physiology, vol. 117, no. 4, p. 500, 1952.

[11] E. M. Izhikevich, "Simple model of spiking neurons," IEEE Transactions on

neural networks, vol. 14, no. 6, pp. 1569-1572, 2003.

 33

[12] T. P. Vogels and L. F. Abbott, "Signal propagation and logic gating in networks

of integrate-and-fire neurons," Journal of neuroscience, vol. 25, no. 46, pp.

10786-10795, 2005.

[13] D. O. Hebb, The organization of behavior: A neuropsychological theory.

Psychology Press, 2005.

[14] R. Ananthanarayanan, S. K. Esser, H. D. Simon, and D. S. Modha, "The cat is out

of the bag: cortical simulations with 109 neurons, 1013 synapses," in High

Performance Computing Networking, Storage and Analysis, Proceedings of the

Conference on, 2009, pp. 1-12: IEEE.

[15] M. L. Hines and N. T. Carnevale, "The NEURON simulation environment,"

Neural computation, vol. 9, no. 6, pp. 1179-1209, 1997.

[16] M. A. Wilson, U. S. Bhalla, J. D. Uhley, and J. M. Bower, "GENESIS: A system

for simulating neural networks," 1988.

[17] M.-O. Gewaltig and M. Diesmann, "NEST (neural simulation tool),"

Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

[18] D. Goodman and R. Brette, "Brian: a simulator for spiking neural networks in

Python," 2008.

[19] D. Pecevski, T. Natschläger, and K. Schuch, "PCSIM: a parallel simulation

environment for neural circuits fully integrated with Python," ed, 2009.

[20] A. Davison et al., "PyNN: a common interface for neuronal network simulators,"

2009.

[21] R. V. Hoang, D. Tanna, L. C. Jayet Bray, S. M. Dascalu, and F. C. Harris Jr, "A

novel CPU/GPU simulation environment for large-scale biologically realistic

neural modeling," Frontiers in neuroinformatics, vol. 7, p. 19, 2013.

[22] K. Minkovich, C. M. Thibeault, M. J. O'Brien, A. Nogin, Y. Cho, and N.

Srinivasa, "HRLSim: a high performance spiking neural network simulator for

GPGPU clusters," IEEE transactions on neural networks and learning systems,

vol. 25, no. 2, pp. 316-331, 2014.

[23] N. Srinivasa and J. M. Cruz-Albrecht, "Neuromorphic adaptive plastic scalable

electronics: analog learning systems," IEEE pulse, vol. 3, no. 1, pp. 51-56, 2012.

