
ACCELERATING BIOPHYSICAL NEURAL NETWORK 

SIMULATION WITH REGION OF INTEREST BASED 

APPROXIMATION 
 

 

 

 

 

 

 

 

 

 

 

A Dissertation 

Presented to 

The Academic Faculty 

 

 

 

 

by 

 

 

 

Yun Long 

 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Master in the 

School of Electrical and Computer Engineering 

 

 

 

 

 

 

Georgia Institute of Technology 

April 2019  

 

 

COPYRIGHT © 2019 BY YUN LONG 



ACCELERATING BIOPHYSICAL NEURAL NETWORK 

SIMULATION WITH REGION OF INTEREST BASED 

APPROXIMATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by: 

 

Dr. Saibal Mukhopadhyay, Advisor 

School of ECE 

Georgia Institute of Technology 

 

Dr. Arijit Raychowdhury 

School of ECE 

Georgia Institute of Technology 

 

Dr. Asif Islam Khan 

School of ECE 

Georgia Institute of Technology 

 

 

 

Date Approved:  [04/13, 2019] 



 

iv 

ACKNOWLEDGEMENTS 

First, I would like to especially thank my PhD advisor Dr. Saibal Mukhopadhyay, 

without his guidance and support I would not have the chance to work on these interesting 

topics, to learn how to do research. I also want to thank my PhD proposal committee 

members Dr. Arijit Raychowdhury and Dr. Asif Islam Khan, your suggestions and advises 

are very valuable and indispensable. I also would like to thank Georgia Tech and ECE 

department for providing such a wonderful place to study and work. I also want to say 

thank you to all my lab mates for the generous help during the past four years. 

At last, I want to say thank you to my wife, who give me support and understanding 

all the time. I can’t make it without you. 

Many thanks to you all! 

 

 

 

 

 

 

 

 



 v 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS iv 

LIST OF TABLES vi 

LIST OF FIGURES vii 

SUMMARY ix 

CHAPTER 1. INTRODUCTION 1 

CHAPTER 2. BACKGROUND 4 

2.1 Dynamics of Biophysical Neural Networks 4 
2.1.1 Dynamics of neuron models 4 
2.1.2 Dynamics of synapse models 5 

2.2 Performance Analysis for Different Models 6 

2.3 Prior Works for BNN Simulation Tools Design 8 
2.4 Challenges of BNN Simulation Tools Design 9 

CHAPTER 3. PROBLEM FORMULATION 11 
3.1 The opportunities for ROI based BNN simulation 11 
3.2 Challenges in ROI based BNN Simulation models 12 

CHAPTER 4. ALGORITHMS 14 

4.1 Template based computing 14 

4.2 ROI based approximation 15 
4.3 Parameter tuning 17 

CHAPTER 5. EXPERIMENTAL RESULTS 19 
5.1 Performance analysis without ROI 19 
5.2 Performance analysis with ROI approximation 21 

5.3 Accelerate visual cortex modeling with ROI approximation 22 

CHAPTER 6. CONCLUSION 27 

APPENDIX A. Neuron models 28 

APPENDIX b. synaps models 30 

REFERENCES 32 

 



 vi 

LIST OF TABLES 

Table 1 Parameters for CPU, GPU, and Embedded system. 19 

   

   

 

  



 vii 

LIST OF FIGURES 

Figure 1 The tradeoff between computing efficiency and biophysical 

plausibility. 

2 

Figure 2 General phenomenon for neuron and synapse dynamics with 

different models. (a-c) show neuron membrane potential (Vm) 

trajectories with constant input current considering different neuron 

models; (d-f) show synaptic weight or synaptic current evolution 

considering different synapse dynamics.  (a) Hodgkin-Huxley 

model; (b) Leaky Integrate-and-Fire model; (c) Izhikevich model. 

(d) Short Term Plasticity; (e) Long Term Plasticity (e.g. STDP); and 

(f) Delay type of synapse. PreF and PosF mean pre-synaptic and 

post-synaptic neuron fires, respectively. 

5 

Figure 3 Computing complexity considering combinations of different 

neuron and synapse models. Neuron models include LIF, Izhikevich, 

and HH model; Synapse models include fixed (F), STP (S), LTP (L), 

and Delay (D). 

7 

Figure 4 High-level object-oriented user interface and low-level data layout. 

Demon code is modified from the sample provided by BRIAN 

simulator. 

10 

Figure 5 BNN simulation with (a) homogenous neuron models (all 

biophysical accurate model) and (b) ROI based heterogeneous 

models with biophysical accurate model at concerned region and 

simpler model for the others. 

11 

Figure 6 Template based processing. (a) BNN specifications. (b) Data 

templates. (c) Computing templates. (d) Algorithm for template 

based processing (no ROI). (e) Output results as a raster plot. 

15 

Figure 7 A simple network with 5 neurons. Neurons can switch models 

dynamically between LIF and Izhikevich model according to the 

spiking frequency. 

16 

Figure 8 Computation flow for ROI based adaptive simulation algorithm. 17 

Figure 9 Neurons with different models generate similar spiking frequency 

after parameter tuning. 

18 

Figure 10 Correctness verification and computing speed comparison. Raster 

plot and spiking frequency distribution for (a) our work and (b) 

CARLsim. Insert table lists the speed for different simulators. For 

CPU and GPU implementation, LIF and Izhikevich model are 

20 



 viii 

considered, respectively. Data are measured for BNN containing 103 

neurons and 104 synapses. 

Figure 11 (a) Spiking frequency distribution for all Hodgkin-Huxley scenario. 

(b) Normalized running time for ROI approximation with different 

threshold, inserts are the neuron model map with black for Hodgkin-

Huxley and white for LIF. (c)  Cumulative distribution function 

(CDF) for all Hodgkin-Huxley, ROI approximation, and eliminating 

the less active neurons. 

21 

Figure 14 Spiking frequency map for (a) static input with an image; and (b) 

time-varying input with a video (the spiking frequency is sampled at 

t=0.5s). 

24 

Figure 12 (a) Visual cortex model considering Young-Helmholz theory and 

opponent-process theory. Solid lines represent synaptic connections 

from excitatory pre-neurons. Dash lines represent synaptic 

connections from inhibitory pre-neurons. (b) Static input with an 

image. (c) Time-varying input with video, here we show 4 frames. 

23 

Figure 13 Membrane potential for the neuron in the same location with 

different neuron models 

24 

Figure 15 (a) Voltage-gated ion channel and leakage channel for a neuron cell 

based on Hodgkin-Huxley model. (b) Ion channels conductance 

simulated from Hodgkin-Huxley and ROI approximation. 

25 

Figure 16 Running time for visual cortex simulation. The time step is 0.01 ms 

and we run 20 ms (1000 iterations) biology time. 

26 

 

  



 ix 

SUMMARY 

Modeling the dynamics of biophysical neural network (BNN) is essential to 

understand brain operation and design cognitive systems. Large-scale and biophysically 

plausible BNN modeling requires solving multiple-terms, coupled and non-linear 

differential equations, making simulation computationally complex and memory intensive. 

In this work, an adaptive simulation methodology is presented in which neurons in the 

region of interest (ROI) follow high biological accurate models while the other neurons 

follow computation friendly models. To enable ROI based approximation, we propose a 

generic template based computing algorithm which unifies the data structure and 

computing flow for various neuron models. We implement the algorithms on CPU, GPU 

and embedded platforms, showing 11x speedup with insignificant loss of biological details 

in the region of interest.  
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CHAPTER 1. INTRODUCTION 

Biophysical neural network (BNN) modeling provides an avenue for exploring 

hypotheses about how human brain works and how to realize neuronal coding [1]. 

Moreover, it is a critical step towards developing cognitive system [2], artificial 

intelligence (AI) [3], and emerging computer architecture [4], etc. However, the BNN 

modeling is challenging as the dynamics of neurons and synapses are regulated by 

complex, coupled non-linear differential equations, making it computation intensive. 

Moreover, for BNN simulation, there is a well-known tradeoff between the 

computing efficiency and the biology accuracy. Biologically accurate models always 

require more computation while less computing intensive models normally lack 

biophysical plausibility. For example, Hodgkin-Huxley model [5] presents high degree of 

biological credibility but is very computationally complex. Simplified mathematical 

models, such as leaky integrate-and-fire model (LIF model) and Izhikevich models [6], 

improve the computing efficiency but lack biology accuracy. Figure. 1 shows the tradeoff 

with several commonly used neuron models. 

To accelerate BNN simulation, parallel computing frameworks such as CPU clusters 

and general-purpose graphics processing units (GPGPUs) are being actively explored [7, 

8]. However, the performance is ultimately limited by the algorithm’s ability to leverage 

parallel hardware and the memory bandwidth. There are efforts in developing specialized 

application-specific integrated circuit (ASIC) which provide significant improvements on 

performance and energy efficiency [4, 9]. However, the ASICs normally implement a 

single neuron model, which lack the flexibility to support different types of neuron 
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dynamics. Moreover, programming the ASIC also require specialized knowledge 

compared to standard CPU or GPU based platforms.  

In this work, an adaptive simulation methodology is developed that maintains high 

biological accuracy with more complex neuron models (e.g. Hodgkin-Huxley model) in 

the region of interest (ROI), while simplifys the neuron models (e.g. LIF and Izhikevich 

model) elsewhere to improve the overall computation speed (different models complexity 

are shown in Figure 1). At the interested regions, the ROI based approximation retains all 

the biophysical information such as the sodium (Na+) and potassium (K+) ion channel 

conductance which is missing in LIF and Izhikevich models. In the proposed algorithm, 

the ROI can be statically defined as a specific region or determined dynamically during 

simulation based on factors such as spiking frequency. The key challenge in ROI based 

BNN simulation is the need to solve a system of hybrid neurons where the neuron models 

(i.e. sets of partial differential equations (PDEs)) change over space as well as time. To 

address the preceding challenge, a generic template based computing model is proposed, 

where both data and computing are stored/defined as templates. The proposed template 

 

Figure 1．The tradeoff between computing efficiency and biophysical plausibility. 
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based processing algorithm provides a uniform data structure and computing flow for 

various neuron models. Therefore, models can be easily switched with no programming 

overhead. 

The proposed ROI based computing algorithm is implemented on CPU, GPU and 

embedded system. Our baseline simulator with template based processing (without ROI 

approximation) provides accuracy and performance comparable to the state-of-the-art 

BNN simulators. The effectiveness of ROI based adaptive simulation is demonstrated 

through a visual cortex simulation. The experimental results measured from CPU, GPU, 

and embedded platforms demonstrate 11x speed-up on average with insignificant 

biological accuracy loss in the regions of interest.  
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CHAPTER 2. BACKGROUND  

2.1 Dynamics of Biophysical Neural Networks 

2.1.1 Dynamics of neuron models 

As the basic computational element in BNN, the neuron operates in a “receive-

integrate-send” mode. A neuron receives input signals from 103 - 104 neighborhood 

neurons via its dendrites, and, after integration, sends out the output signals to thousands 

of other neurons via its axons. The signal can be either electrical or chemical depending on 

the neurons and the connection types. The most critical variable in neuron dynamics is 

membrane potential which updates continuously based on the integration of input signals. 

Once the membrane potential reaches a pre-defined threshold, neuron fires and sends 

spikes down to its thousands of post-neurons through axons. 

Numerous efforts have been made during past few decades to model the neuronal 

dynamics. One of the most famous is the Hodgkin-Huxley model (HH model) which was 

developed in 1952 [10]. The general phenomenon of the membrane potential described by 

HH model is shown in Figure 2(a). The HH model explores neuron dynamics and also 

behaviors of voltage-gated ion channels (e.g. sodium and potassium channels) using a set 

of coupled differential equations. However, HH model is computationally complex, 

particularly for simulating large BNNs. On the other hand, the Leaky Integrate-and-Fire 

model (LIF model) is much simpler, but lacks biological plausibility, shown in Figure 2(b). 

To better balance the biological plausibility and the computation efficiency, 

phenomenological spiking models are adopted for BNN simulation. For example, 
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Izhikevich model, shown in Figure 2(c), which has only two Ordinary Differential 

Equations (ODEs) for neuron dynamics, are much more computation friendly than HH 

model yet contains detailed neuronal behaviors that maintains biological plausibility [11]. 

Details of the aforementioned neuron models are presented in appendix. 

2.1.2 Dynamics of synapse models 

As the bridge between the axon of pre-neuron and the dendrite of post-neuron, 

synapse is the key element for both electrical and chemical signal propagation. There are 

 

Figure 2. General phenomenon for neuron and synapse dynamics with different 

models. (a-c) show neuron membrane potential (Vm) trajectories with constant input 

current considering different neuron models; (d-f) show synaptic weight or synaptic 

current evolution considering different synapse dynamics.  (a) Hodgkin-Huxley 

model; (b) Leaky Integrate-and-Fire model; (c) Izhikevich model. (d) Short Term 

Plasticity; (e) Long Term Plasticity (e.g. STDP); and (f) Delay type of synapse. PreF 

and PosF mean pre-synaptic and post-synaptic neuron fires, respectively. 
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mainly two synapse models: the current based (CUBA) model where the transmitted 

current is proportional to synaptic weight and the conductance based (COBA) model where 

the synaptic current depends on the synaptic value as well as  pre-neuron’s membrane 

potential [12]. 

The synapse weight is also time dependent variable, and in most cases, regulated by 

differential equations. In this work, besides the fixed value synapse, we consider three 

different aspects of synapse dynamics. First, Short Term Plasticity (STP) in which the 

synapse weight can dynamically increase or decrease based on pre-neuron’s activity but 

will quickly recovers to its original state with decades of milliseconds, as shown in Figure 

2(d). Second, Long Term Potentiation (LTP) in which the synapse strength can 

permanently (at least in a much longer time period than STP) be changed. Following 

Hebbian theory: “Neurons that fire together, wire together” [13], our simulations utilize 

the Spike-Timing Dependent Plasticity (STDP) that synapse weight potentiates when its 

post-synaptic neuron fires right after its pre-synaptic neuron, and weight depresses when it 

post-synaptic neuron fires right before its pre-synaptic neuron. The STDP phenomenon is 

illustrated in Figure 2(e). Third, Synapse Delay in which the signal propagation get delayed 

when passing through synapses, shown in Figure 2(f). Details of synapse dynamics are 

presented in the appendix. 

2.2 Performance Analysis for Different Models 

Neuron models with detailed biophysical dynamics requires more computation while 

less computationally demanding models tend to be less biologically plausible. Besides 

neuron models, synapse dynamics is also very critical especially when the network has 
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very dense connections (many connections per neuron). Figure 3 shows the computation 

complexity considering different combinations of neuron and synapse models [6, 12, 14]. 

Neuron models includes LIF model, Izhikevich model, and HH model. Each neuron model 

is evaluated under different synapse dynamics including Fixed (F), STP (S), LTP (L), and 

Delay (D). For example, “Izh-F” means the measurement is based on a Izhikevich neuron 

which is connected to fixed type of synapses. The firing rate of all the pre-neurons are 20 

Hz. Data are normalized according to the execution time with LIF neuron model and fixed 

value synaptic connections for better visualization. We observe that with different 

combination of neuron and synapse models, the computing speed could be very different. 

 

Figure 3.  Computing complexity considering combinations of different neuron and 

synapse models. Neuron models include LIF, Izhikevich, and HH model; Synapse 

models include fixed (F), STP (S), LTP (L), and Delay (D). 
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2.3 Prior Works for BNN Simulation Tools Design 

Various software-based simulators have been developed to expedite the simulation 

of BNN [8, 15-22]. The early stages of simulators design mainly utilized CPU and super-

computing cluster for the best performance. For example, NEURON [15] and GENESIS 

[16] offer CPU version with both single node and cluster based computation mode. Later 

on, simulation tools with better user convenience were developed by implementing high-

level language (e.g. Python) based user interface. For example: NEST [17], BRIAN [18], 

PCSIM [19], and PyNN [20]. NEST is a C++ based highly optimized tool which provides 

Python interface. BRIAN is a high flexible tool written in Python which supports both 

standard types of neuron models and user-defined models. PCSIM is similar with NEST 

which has C++ based computation kernel and Python programming language based user 

interface. Different from the above simulators, PyNN is a simulator-independent BNN 

computing platform. With PyNN API and Python, code can run without any modifications 

on different simulators that PyNN supports (currently NEURON, NEST, PCSIM, and 

BRIAN). Recent years, the GPU based simulator design has attracted lots of interests. BNN 

simulation running on an off-the-shelf GPU can achieve more than 10X speedup than the 

most advanced CPU. There are several public available GPU based simulators, such as 

CARLsim [8], NCS6 [21], and HRLSim [22]. CARLsim is a Izhikevich model based, 

highly-optimized, GPU-accelerated BNN simulator which is mainly used to accelerate 

BNN simulation with GPU but also provides non-GPU support. NCS6 is designed to run 

on clusters of multiple CPUs and GPUs. It supports both LIF neuron model and Izhikevich 

neuron model. HRLSim is motivated by the need to support the neuromorphic hardware 
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[23]. It is implemented on a cluster of GPU as an affordable and scalable tool for design, 

real-time simulation, and analysis for large-scale BNN. 

2.4 Challenges of BNN Simulation Tools Design 

Developing of BNN simulation tools faces two main challenges: system flexibility 

and computing efficiency. A simulation framework should be flexible enough to support 

multiple neuron/synapse dynamics. To address this, Object-oriented Programming (OoP) 

can be utilized to enhance the code reusability and system flexibility. In the OoP based 

design, neurons and synapses are instances of respective model classes. Parameters and 

variables for models are encapsulated as attributes and dynamics (ODEs/PDEs) are defined 

as methods inside objects. This approach results in flexibility but sacrifices the computing 

efficiency, which is a critical challenge for large-scale BNN simulation. Some BNN 

simulation tools implement a mixed configuration which has a high-level object-oriented 

interface for flexibility and user convenience, and a low-level procedural kernel utilizing 

the vectorization techniques for computing efficiency [17, 18, 20]. In most cases, the high-

level user interface is presented with an interpreted language such as Python while the 

computing kernel are written by low level language such as C or C++. As shown in Figure 

4, the high-level user interface (Python script) describes a BNN with 1000 LIF neurons; 

Neurons are divided into two groups and randomly connected together with 0.1 connection 

possibility. The corresponding data layout for the network is also shown here. The 

demonstration code is modified from the sample provided by BRIAN simulator [18].  
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Figure 4. High-level object-oriented user interface and low-level data layout. 

Demon code is modified from the sample provided by BRIAN simulator. 

 

P = NeuronGroup(1000, model=‘LIF’, 
threshold=50, reset=-60);  // network size and neuron type 

Pe = P.subgroup(800);  // excitory neuron
Pi  = P.subgroup(200);  // inhibitory neuron
Connect_random(Pe, P, 0.1, weight=1.62);  // connection for excitory neuron
Connect_random(Pi, P, 0.1, weight=-9);  // connection for inhibitory neuron

  V:                        

Excitory neurons Inhibitory neurons

S:

No connection
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CHAPTER 3. PROBLEM FORMULATION 

3.1 The opportunities for ROI based BNN simulation  

Large-scale cortical modeling is one of the most critical scientific challenges in 21st 

century. The cortical simulation facilitates better understanding of human brain, exploring 

hypotheses of neuroscience, and developing human-like artificial intelligence. The central 

nervous system (CNS) of human contains 1011 neurons and 1014 synapses, coupling 

together and regulated by complex neuronal dynamics, which is challenging for simulation 

even with the most powerful supercomputers [1, 4]. On the other hand, it is well known 

that only a small portion of CNS are responsible to functions such as vision, sound, 

and motion control. Modern imaging techniques such as PET (positron-emission 

tomography) and fMRI (functional magnetic resonance imaging) also indicate that neurons 

 

Figure 5. BNN simulation with (a) homogenous neuron models (all biophysical 

accurate model) and (b) ROI based heterogeneous models with biophysical accurate 

model at concerned region and simpler model for the others. 

Neuron with computing friendly neuron model
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in different regions have varying activation levels. This inspires us to develop a ROI based 

approximation algorithm to accelerate cortical simulation where the highly-active or 

critical regions are modeled with biophysical accurate neuron models while the rest are 

modeled with simpler models (Figure. 5).  

3.2 Challenges in ROI based BNN Simulation models 

The ROI based trade-off in accuracy and computation speed is a well-known concept 

in scientific computation. For example, adaptive mesh refinement (AMR) algorithm 

imposes finer sub-grids (denser grids) at the regions that require higher resolution to 

achieve better accuracy. However, unlike the conventional ROI based computations that 

mainly focus on the data-level approximation, the proposed algorithm for ROI based BNN 

simulation is to change the underlying neuron dynamics being solved at each node (i.e. 

model-level approximation). To be more specific, rather than emulating the detailed 

neuronal dynamics with the same model for all the neuron groups (Figure 5(a)), we can 

simplify the simulation by using computing friendly model for the less important regions 

and biophysically accurate model for the critical regions (Figure 5(b)). Therefore, we need 

to simulate a system of coupled differential equations where the equations are not only 

different at different nodes, but also might changes over time (ROI changes over time). 

This is a unique approach for performance-accuracy trade-off in BNN simulation. A few 

of prior works implement heterogeneous simulation where different neuronal dynamics are 

modeled simultaneously [17], however, our approach is to dynamically change the model 

of the neurons, for example, depending on their spiking activity. Moreover, our objective 

is to accelerate the simulation while maintaining the biology accuracy of the interested 

region.  
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In this work, we target on three neuron models: LIF model, Izhikevich model, and 

Hodgkin-Huxley model. We focus on the ROI approximation for neuron dynamics and 

assume synaptic weights are fixed. In the future work, we will implement the ROI 

approximation for synaptic dynamics.  
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CHAPTER 4. ALGORITHMS 

4.1 Template based computing 

We propose a template based computing algorithm where variables (e.g. neuron 

membrane potential) and synaptic weights are stored in data templates, neuron dynamics 

are defined in computing templates. The template based processing allows us to configure 

and simulate a BNN where all the data and computing are represented in a unified form. 

Therefore, ROI based adaptive BNN simulations consisting of different neuron models can 

be easily realized by simply utilizing different data and computing templates.  

An example is used to show how the template based processing works. As shown in 

Figure 6(a), the BNN is utilized for visual cortex simulation, which contains 103 Izhikevich 

neurons and the synapse connectivity is 0.1 (i.e. each neuron has 102 synapses). Figure 6(b) 

shows the corresponding data templates including 𝑉, 𝑈 and synaptic weights. Storing data 

into templates provides a compact data structure and enhance the computing efficiency for 

element-wise functions, especially for parallel computing platforms such as GPU [8].  

The concept of computing template is similar with the computational graph in 

popular deep learning frameworks such as Tensorflow [11]. A computing template consists 

of a series of matrix operations. Each operation in a computing template takes two or more 

data templates (vectors and matrix) as inputs. The computing templates are pre-define 

based on the differential equations in the neuron models. As shown in Figure 6(c), the 

computing templates are defined based on the differential equations of Izhikevich model 

in Figure 6(a).  
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During computing, templates are first generated based on network specifications. 

Then the computing templates are called repeatly to perform matrix operations. The whole 

algorithm is shown in Figure 6(d). Meanwhile, neuron activities such as membrane 

potential and spiking frequency can be recorded for post analyses. As shown in Figure 6(e), 

we plot the recorded spikes (i.e. raster plot) for neurons in the network. 

4.2 ROI based approximation 

Benefiting from the template based computing, the neuron models can be switched 

easily by calling different computing templates, enabling ROI based approximation. As 

mentioned earlier, the ROI can be statistically defined by identifying a spatial region where 

higher accuracy is desired during the simulation. Alternatively, the ROI can be dynamically 

 

Figure 6. Template based processing. (a) BNN specifications. (b) Data templates. (c) 

Computing templates. (d) Algorithm for template based processing (no ROI). (e) 

Output results as a raster plot. 
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defined using certain criteria. For example, the information theory of a rate-based network 

suggests that the more a neuron fires, the more information it propagates [12]. Hence, the 

spiking frequency can be a criterion to keep the ‘busy’ neurons in biological plausible 

model (defined as ROI).  

Figure 7 illustrates the proposed algorithm considering 5 randomly connected neurons, 

and assuming the neuron models can switch between LIF and Izhikevich models (in 

practice, we consider model switching between the LIF and the Hodgkin-Huxley models). 

We first initialize data and computing templates for both models. Then we create a 

regulator vector which contains the spiking frequency for each neuron. During inference, 

system first accesses the regulator vector and determines which model the neuron should 

follow, which data templates and computing templates should be called. For example, if 

we define the model switching threshold to be 20 Hz, the corresponding neuron will follow 

 

Figure 7. A simple network with 5 neurons. Neurons can switch models dynamically 

between LIF and Izhikevich model according to the spiking frequency. 
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Izhikevich model once the spiking frequency is higher than 20 Hz, otherwise it will follow 

LIF model.  

Figure 8 illustrates the computation flow for ROI based adaptive simulation. First, 

during network initialization, data and computing templates for different neuron models 

are created. Second, during computation/inference, computing templates are called and 

neuron spiking frequency are updated with a given time window. After each iteration, 

program checks the regulator vector and determine which model the neuron should follow. 

4.3 Parameter tuning 

Even though the internal neuronal dynamics are different for different neuron models, ROI 

based approximation requires that the output (represented with spikes) of a neuron should 

remain the same after changing models. To acheve this goal, we carefully tune the 

parameters in computing friendly models (i.e. LIF model and Izhikevich model) with the 

 

Figure 8. Computation flow for ROI based adaptive simulation algorithm. 
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Hodgkin-Huxley model as a baseline, to match the spiking frequency for different input 

current. Figure 9 shows the tuned results. The spike frequencies match with each other very 

well in the explored region (The input current scope for Hodgkin-Huxley neuron model is 

0.1 to 1, unit is uA/mm2).   

  

 

Figure 9. Neurons with different models generate similar spiking frequency after 

parameter tuning.  
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CHAPTER 5. EXPERIMENTAL RESULTS 

We implement the proposed BNN simulator on three platforms: CPU, GPU, and 

embedded system, targeting three different application environments. For CPU 

implementation, we use MATLAB since it is highly optimized for matrix-vector operation 

which is the main type of computing for BNN simulation. For GPU implementation, we 

utilize NVIDIA CUDA programming language. For embedded system, we use the popular 

Raspberry Pi, a single-board micro-computer which promotes Python as the main 

programming language. Table I summarizes the parameters for these platforms.  

5.1 Performance analysis without ROI 

First, we compare the accuracy of the proposed BNN simulator (without ROI) with 

state-of-the-art GPU based BNN simulator, CARLsim [8]. Figure 10 (a, b) shows the raster 

plots and spiking frequency distributions measured from CARLsim and our work. The 

network contains 103 Izhikevich neurons and 104 synapses, excitatory and inhibitory 

neurons in a 4:1 ratio [1]. Neurons receive uniformly distributed external input current and 

spikes from the pre-neurons. We observe good match for the spiking pattern and spiking 

Table 1. Parameters for CPU, GPU, and Embedded system. 

 

 

Parameters CPU GPU Embedded system

Name Intel i7-7700k NVIDIA GTX 1080TI
Raspberry PI 3

(ARM Cortex-A53)

RAM 32 GB (DDR4) 11 GB (GDDR5X) 1 GB (DDR3)

Maximum power 75 W 250 W 4.8 W

Maximum 
throughput

320 GFLOPS 11.3 TFLOPS 3.62 GFLOPS

Programming tools MATLAB CUDA Python
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frequency distribution. We further compare the computing speed of our simulator with 

existing simulators: Brian [13], Nest [10], and CARLsim [8]. The first two simulators are 

CPU based and CARLsim implements GPU version. To ensure the best performance, Data 

for these simulators are measured from the sample codes provided by the tools developer. 

As shown in the insert table of Figure 10, our simulator provides the state-of-the-art 

 

Figure 10. Correctness verification and computing speed comparison. Raster plot and 

spiking frequency distribution for (a) our work and (b) CARLsim. Insert table lists 

the speed for different simulators. For CPU and GPU implementation, LIF and 

Izhikevich model are considered, respectively. Data are measured for BNN 

containing 103 neurons and 104 synapses. 

(a)

(b)

Excitory

Excitory

Inhibitory

Inhibitory

Simulator Brian Nest Our work CARLsim Our work

Speed (103 iterations) 1.89s 1.25s 0.46s 0.26s 0.18s

Platform/model CPU/LIF GPU/Izhikevich
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performance compared with prior CPU and GPU based implementation (3.4x and 1.4x 

speedup than other CPU and GPU based simulators, respectively). 

5.2 Performance analysis with ROI approximation 

We first evaluate the proposed ROI approximation computing algorithm with a randomly 

connected BNN containing 104 neurons (all excitatory) and 105 synapses. At the beginning, 

all neurons follow the Hodgkin-Huxley model. The spiking frequency distribution is 

plotted in Figure 11(a). Figure 11(b) shows the running time with different model switching 

threshold (high activity neurons are in Hodgkin-Huxley model, low activity neurons are in 

LIF model). Data are normalized with the running time when all the neurons are switched 

to LIF model. The insert figures in Figure 11(b) show the neuron activities with black 

representing Hodgkin-Huxley and white representing LIF, respectively. Simulation also 

indicates that the spiking frequency distribution after implementing ROI approximation is 

 

Figure 11. (a) Spiking frequency distribution for all Hodgkin-Huxley scenario. (b) 

Normalized running time for ROI approximation with different threshold, inserts are 

the neuron model map with black for Hodgkin-Huxley and white for LIF. (c)  

Cumulative distribution function (CDF) for all Hodgkin-Huxley, ROI 

approximation, and eliminating the less active neurons. 

 

(b) (c)

Mean=125.6 Hz

Standard deviation=14.6 Hz

(a)

12.5% LIF

55.6% LIF

98.3% LIF

84.1% LIF
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almost identical to the Hodgkin-Huxley baseline (blue and red lines in Figure 11(c)). 

However, if we eliminate the less active neuron (disconnect them from the networks), the 

distribution changes a lot (yellow line in Figure 11(c)). We conclude that even though the 

internal dynamics of the unconcerned region is less important, we cannot remove them as 

they are still critical for signal propagation. 

5.3 Accelerate visual cortex modeling with ROI approximation 

With the proposed computing algorithms, we implement the visual cortex modeling 

based on the theories of color vision: Young-Helmholz theory and opponent-process theory 

[14, 15]. Young-Helmholz theory states that there are three types of cone photoreceptors 

that are sensitive to short-wavelength (blue light), medium-wavelength (green light), and 

long-wavelength (red light), respectively. The opponent-process theory states that the cone 

photoreceptors are linked together to form three opposing color pairs: blue/yellow, 

red/green, and black/white.  Activation of one member of the pair inhibits the other. Figure 

12(a) shows the structure of BNN for visual cortex simulation. The neurons in the first 

layer are based on Young-Helmholz theory and are divided into three groups, sensitive to 

blue light, green light, and red light, respectively. The second layer contains four groups of 

opponent-process theory based neurons. The third layer is the output layer, similar with the 

first layer, sensitive to different colors. The connectivity and neuron numbers are specified 

in the figure. Here we assume the output layer as ROI region.  
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We run simulation with two types of input signals: static input using an image and 

time-varying input using a video, as shown in Figure 12(b, c). We plot the spiking 

frequency map for the last group of neurons (sensitive to red color) in the third layer 

considering the BNN with LIF neuron, Izhikevich neuron, Hodgkin-Huxley neuron, and 

ROI approximation (Hodgkin-Huxley for ROI and LIF for the rest). The results are shown 

in Figure 13. Neurons with highest activity are white and neurons with lowest activity are 

black. Note that we flip the light intensity for the video input to intensify the dancer. All  

 

Figure 12. (a) Visual cortex model considering Young-Helmholz theory and 

opponent-process theory. Solid lines represent synaptic connections from excitatory 

pre-neurons. Dash lines represent synaptic connections from inhibitory pre-neurons. 

(b) Static input with an image. (c) Time-varying input with video, here we show 4 

frames. 
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neuron models and ROI approximation can seasonably represent the color sensitivity. 

However, the dynamics of individual neuron are very different. We randomly select a 

 

Figure 14. Spiking frequency map for (a) static input with an image; and (b) time-

varying input with a video (the spiking frequency is sampled at t=0.5s). 

Image

Video
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Figure 13. Membrane potential for the neuron in the same location with different 

neuron models 
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neuron in the ROI (3rd layer) and plot the membrane potential (Figure 14). We observe that 

the ROI based approach matches well with the results from pure Hodgkin-Huxley baseline. 

Moreover, the proposed ROI based approximation fully maintains the biology details 

such as ion channel (Figure 15) conductance in the interested regions. We plot the Na+ and 

K+ channel conductance for Hodgkin-Huxley based simulation and ROI approximation in 

Figure 15. We observe a phase delay between Hodgkin-Huxley and ROI approximation 

which is caused by the minor models output mismatch after the parameter tuning. The 

phase delay can be eliminated by a time shifting.  

Finally, we evaluate the computing speed of the proposed algorithms running on 

different platforms with image and video as BNN input, shown in Figure 16. We observe 

 

Figure 15．(a) Voltage-gated ion channel and leakage channel for a neuron cell 

based on Hodgkin-Huxley model. (b) Ion channels conductance simulated from 

Hodgkin-Huxley and ROI approximation. 

Extracellular

Cytosol

M
e
m

b
ra

n
e

K+ current
            

M
e
m

b
ra

n
e

Na+ current

        
  

           

      
 

Leakage current

           

(a) (b)



 26 

that ROI based approximation can significantly enhance the computing efficiency with an 

average speed up of 11x over the pure Hodgkin-Huxley baseline. Therefore, in comparison 

to prior simulators, the template based ROI approximation computing algorithm achieves 

equivalent speedup of 37x and 16x for CPU (Nest and Brian) and GPU (CARLsim), 

respectively.  

  

 

Figure 16． Running time for visual cortex simulation. The time step is 0.01 ms and 

we run 20 ms (1000 iterations) biology time. 

C
o
m

p
u
ti
n
g
 s

p
e

e
d

 (
s
)

0.01

0.1

1

10

100

1000

10000

CPU GPU Embedded CPU GPU Embedded

Image Video

LIF Izhikevich Hodgkin-Huxley ROI



 27 

CHAPTER 6. CONCLUSION 

This work presents an adaptive BNN simulation methodology that maintains high 

biological accuracy with more complex neuron models in the ROI while simplifies the 

neuron models elsewhere to improve the computation speed. A template based computing 

approach is presented to enable the simulation of heterogeneous BNN with dynamically 

varying neuron model. The proposed template based computing coupled with ROI 

approximation demonstrates more than one order of magnitude speedup over existing BNN 

simulators.  
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APPENDIX A. NEURON MODELS 

For each neuron model, here we present its differential equations and corresponding 

parameters and variables. 

A.1 LIF neuron model 

     

  
  𝛼     𝛽     

                    

 𝛼 and 𝛽are the parameters and      is the variable. 

A.2 Izhikevich neuron model 

  

  
                    

  

  
         

              {
    

       

 ,  ,  ,   are the parameters and     are the variables. 

A.3 Hodgkin-Huxley neuron model 

  

  
 

 

𝐶𝑚
∙ [      

             
     𝑘          ] 

  

  
 𝛼𝑛         𝛽𝑛     

  

  
 𝛼𝑚 𝑉       𝛽𝑚 𝑉   

  

  
 𝛼ℎ 𝑉       𝛽ℎ 𝑉   

𝛼𝑛  
          

   −    𝑣+   
       𝛽ℎ  

 

   −    𝑣+   
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𝛼𝑚  
         

   −    𝑉+   
        𝛽𝑛        −      𝑣+6   
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APPENDIX B. SYNAPS MODELS 

B.1 CUBA and COBA synapse model 

Current based (CUBA) synapse model: 

τ
𝑑𝑉

𝑑𝑡
  𝑉𝑟𝑒𝑠𝑡  𝑉   𝑒𝑥  𝑒𝑥  𝑉𝑟𝑒𝑠𝑡    𝑖𝑛ℎ  𝑖𝑛ℎ  𝑉𝑟𝑒𝑠𝑡  

Conductance based (COBA) synapse model: 

𝜏
𝑑𝑉

𝑑𝑡
  𝑉𝑟𝑒𝑠𝑡  𝑉   𝑒𝑥  𝑒𝑥  𝑉    𝑖𝑛ℎ  𝑖𝑛ℎ  𝑉  

Here 𝑉𝑟𝑒𝑠𝑡  is the resting membrane potential,  𝑒𝑥  and  𝑖𝑛ℎ  are the reversal potential for 

excitatory and inhibitory neurons, respectively.  𝑒𝑥 and  𝑖𝑛ℎ are the synaptic weight. τ is the 

time constant. 

B.2 STP synapse model 

When a neuron fires, its post-synapses are increased: 

 𝑒𝑥   𝑒𝑥  ∆ 𝑒𝑥 

 𝑖𝑛ℎ   𝑖𝑛ℎ  ∆ 𝑖𝑛ℎ 

Otherwise, the value for synapse follows dynamics: 

𝜏𝑒𝑥
  𝑒𝑥

  
   𝑒𝑥  

𝜏𝑖𝑛ℎ

  𝑖𝑛ℎ

  
   𝑖𝑛ℎ 

Here  𝑒𝑥  and  𝑖𝑛ℎ  are the synaptic weights for excitatory and inhibitory pre-neurons, 

respectively. ∆ 𝑒𝑥 and ∆ 𝑖𝑛ℎ are the corresponding perturbation value of synaptic weight. 𝜏𝑒𝑥 

and 𝜏𝑖𝑛ℎ are the time constant, a typical value is 10ms. 

B.3 LTP synapse model 

Long Term Potentiation is modeled with a simplified STDP rules.  

∆ 𝑒𝑥/𝑖𝑛ℎ  𝑊𝑖𝑗  

∆𝑊𝑖𝑗  𝐴+  𝑥𝑝 ( 
𝑥𝑖𝑗

𝜏+
)      𝑜𝑟    𝑥𝑖𝑗    
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∆𝑊𝑖𝑗  𝐴−  𝑥𝑝 ( 
𝑥𝑖𝑗

𝜏−
)      𝑜𝑟    𝑥𝑖𝑗 <   

Here 𝑊𝑖𝑗  is the synaptic weight from neuron   to neuron 𝑗 . 𝐴+ 𝐴− 𝜏+ 𝜏−  are the fitting 

parameters. 𝑥𝑖𝑗 is the relative time window between pre-synaptic spike arrivals and post-

synaptic spikes. 
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