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SUMMARY 

Advances in imaging techniques and numerical methods have made it possible to 

investigate the in vivo biomechanics of the cardiovascular system on a patient-specific 

level. For the four key components in a patient-specific biomechanical analysis 

(geometries, loading and boundary conditions, material hyperelastic properties and 

material failure properties), patient-specific geometries and physiological loading 

conditions can be obtained at a high level of spatial and temporal resolutions from clinical 

diagnostic imaging tools, such as CT scans, and blood pressure measurements, 

respectively. However, accurate identification of the unknown in vivo patient-specific 

hyperelastic properties, which are nonlinear and anisotropic, has been a challenging 

problem in the field of cardiovascular biomechanics for several decades. Furthermore, 

since patient-specific failure properties cannot be obtained noninvasively from clinical 

images, an accurate failure metric that incorporates uncertainties of failure properties, 

needs to be developed for patient-specific biomechanical assessment. Therefore, the 

objective of this thesis was to develop a novel computational framework to identify in vivo 

patient-specific hyperleastic properties for biomechanical risk assessment of ascending 

thoracic aortic aneurysm (ATAA). A novel inverse method was developed for in vivo 

hyperleastic property identification from clinical 3D CT images. A machine learning (ML) 

approach was investigated for fast in vivo material property identification (i.e., within 

seconds). To assess ATAA risk, a novel probabilistic and anisotropic failure metric was 

derived by using uniaxial failure testing data. For validation, risk assessment methods were 

compared using matching CT images and tissue samples of additional patients.



 1 

CHAPTER 1. INTRODUCTION 

1.1 Ascending Thoracic Aortic Aneurysm (ATAA) 

The aorta is the largest artery that is responsible for carrying oxygen-rich blood away 

from the heart to the rest of body. Aortic aneurysm occurs when the aortic wall becomes 

weakened and enlarges. Aortic aneurysm that occurs in the chest area is known as thoracic 

aortic aneurysm (TAA). TAA can involve aortic root, ascending aorta, aortic arch, or 

descending aorta. As shown in Figure 1, ascending thoracic aortic aneurysm (ATAA) and 

descending thoracic aortic aneurysm (DTAA) are two common types of TAA. TAA is a 

lethal disease, which may lead to aortic rupture or dissection. Aortic rupture is the rupture 

or breakage of the aorta, which is an extremely dangerous condition. Aortic dissection 

occurs when a tear in the inner layer of the aorta produces a crack that propagates between 

the layers in the aortic wall. This separation can weaken the aorta by creating a false lumen 

(FL) where blood can flow, increasing risk of aortic rupture [1]. In addition, the formation 

of a pressurized FL can compress the true lumen (TL) until collapse, resulting in 

malperfusion [2]. The five-year survival in TAA patients left untreated is 54% [3]. 
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Figure 1.1 - Thoracic aortic aneurysm (TAA). Left: ascending thoracic aortic 

aneurysm (ATAA); right: descending thoracic aortic aneurysm (DTAA), adopted 

from uvahealth.com.  

TAA grows on average at 0.10 cm per year. The descending aorta grows faster than 

the ascending aorta at 0.19 versus 0.07 cm per year. Also the larger the aorta the faster it 

grows [4]. Symptoms are rare with this disease: for about 95% of patients, the first 

symptom is often death [5]. Rupture and dissection can be avoided through elective 

surgical repair; however, identifying individuals at risk is challenging.  

ATAA is also linked with familial inherited pattern [6]: aortic growth rate was 

highest for the familial group (0.21cm per year), intermediate for the sporadic group (0.16 

cm per year), and lowest for the Marfan group (0.1 cm per year). Furthermore, familial 

ATAA patients tended to be younger at presentation than sporadic aneurysm patients. 

ATAA had negative association with systemic atherosclerosis [7]. By scoring 

calcification of each coronary artery and aortic segment, aneurysms and dissection were 

found to be associated with decreased systemic atherosclerosis. But the mechanism behind 
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the phenomena remained speculative. Aortic stenosis presented a significant added risk of 

rupture or dissection for patients with aneurysmal disease in the setting of bicuspid aortic 

valve (BAV) [8]. 

1.1.1 Diagnosis and Treatment 

The diagnosis of an ascending aortic aneurysm is often made on computed 

tomography (CT) scans or magnetic resonance imaging (MRI). Strict blood pressure 

control can help prevent progression of the aneurysm in many patients with small ATAAs, 

which is frequently achieved by beta-blockers. Currently, the clinical decision whether to 

electively repair a TAA [9] is mainly based on the aortic size. Elective, preemptive surgical 

repair restored life expectancy to normal. In an open chest surgery, TAA is repaired by 

removing the aneurysmal section of the aorta and replacing it with a synthetic graft, which 

is sewn into place. For connective tissue disorders such as the Marfan syndrome, aortic 

root replacement is typically performed. The native aortic valve may be replaced by a 

mechanical or biological valve. In an endovascular surgery, the endovascular graft can 

reinforce the aneurysmal section of the aorta to prevent TAA rupture. Endovascular repair 

is promising [10], but long-term safety remains unproven [11].  
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Figure 1.2 - ATAA before and after repair (adapted from www.healio.com) 

1.1.2 The Current Diameter Criterion is not a Perfect Predictor of ATAA Risk 

The aortic size is a strong predictor of rupture, dissection, and mortality [3]. The 

incidence of dissection or rupture increased with aneurysm size [9]. Hinge points in the 

aortic size were identified at which rupture or dissection occurred. At size greater than 6.0 

cm, the odds ratio for rupture or dissection increased sharply. Thus, intervention was 

recommended for the ascending aorta at the size of 5.5cm and for the descending aorta at 

6.5cm [4]. A relative aortic size index (ASI) which was calculated as aortic diameter 

divided by body surface area was introduced to predict aneurysm rupture more accurately 

[12]. In risk/benefit analysis, the accumulated data strongly supported a policy of 

preemptive surgical extirpation of the asymptomatic aneurysmal thoracic aorta to prevent 

rupture and dissection [4]. 
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Currently, the clinical surgery criterion is primarily based on the aortic size and 

classifies an ATAA as high risk if the (maximum) diameter is larger than 5.5cm [9, 12]. 

This diameter-based decision rule can be explained by mechanical analysis of a simplified 

aorta as a straight tube with a uniform diameter, where the hoop stress is proportional to 

the diameter, and it uses the simple rupture criterion: as the diameter increases, the hoop 

stress will eventually exceed the strength of the aorta tissue, resulting in tissue failure.  

Not surprisingly, the aortic size-based criterion has been shown to be an unreliable 

indicator of patient risk [13, 14], which may not accurately reflect a patient’s risk: some 

aneurysms at smaller diameters (e.g., < 4cm) can and do rupture [13].  

1.2 Biomechanical Testing of Aortic Tissues 

Biomechanical tests are typically performed to characterize aortic tissue properties, 

which usually include uniaxial testing, biaxial testing, and bulge inflation testing. In this 

thesis, uniaxial tests and planar biaxial tests were performed to obtain mechanical 

properties of human aortic tissues. Thus, their testing setups and methods are briefly 

summarized here.  

1.2.1 Uniaxial Testing 

In a typical uniaxial test, the sample is trimmed into dog bone-shaped specimen. 

Thickness values are measured at three locations in the narrow portion. An average 

thickness can be calculated for the undeformed cross-section area. The uniaxial tests can 

be conducted at room temperature. Optical markers are placed on the narrow portion of the 

specimens for optical strain measurements. The axial force can be measured using a load 
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cell. During the test, fine grit sandpaper can be placed between the tissue and the clamps 

to avoid slippage. The specimen is quasi-statically stretched to failure at a constant 

displacement rate, which is shown in Figure 1.3. The specimen needs to be continuously 

hydrated with phosphate buffered normal saline (PBS) solution to allow for optimal tissue 

hydration during testing. Displacement between the markers can be obtained by tracking 

the optical markers using image analysis. The stress and strain can be calculated from the 

force and displacement measurements. 

 

Figure 1.3 - Uniaxial testing of aortic wall tissue. The specimen is quasi-statically 

stretched until failure. 

Uniaxial tests are typically performed to obtain hyperplastic responses and failure 

strengths of the aortic wall. Many aortic tissue rupture studies [15-24] revealed that 

hyperplastic and failure properties of the aortic wall are anisotropic. Significant difference 

was found between the circumferential and axial wall strengths [15-24]. 

1.2.2 Planar Biaxial Testing 
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Planar biaxial test is a technique to investigate mechanical behaviour of soft tissue. 

The tissue undergoes different paths of strain/stress in the planar biaxial test.  Figure 1.4 

illustrates a typical setup of biaxial testing. Planar biaxial tests are performed on a square 

specimen of planar soft tissue, which has a side length of about 10-25 mm. Optical markers 

are placed on the central region of the specimens for optical strain measurements. The 

specimen is mounted on to the biaxial device using suture attachments, which allows the 

edges to expand freely in the lateral direction [25]. During the planar biaxial tests, the 

specimen completely immersed in PBS (pH 7.4) at body (37 °C) temperature. The central 

testing region, where the optical markers are attached to, must be sufficiently small and 

located away from the outer edges to remove the boundary effects [25]. Thus, in the central 

testing region the stress and strain fields are generally considered homogeneous. The two-

dimensional (2D) strain can be calculated from the displacement of the markers. 

 

Figure 1.4 - Setup of the planar biaxial test. The specimen is mounted on to the biaxial 

device using four suture attachments. 
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2D strain field in the central testing region can be computed using finite element 

(FE) interpolation. Briefly, using linear shape/interpolation functions, the displacement and 

reference nodal positions can be interpolated to a continuous function. Next, the 

displacement gradient tensor can be obtained by taking derivatives of displacement with 

respect to reference nodal positions, Finally, the deformation gradient and Green strain 

tensors are computed. 

For a 2D four node quadrilateral element, the shape functions map the reference 

configuration to a master element and interpolate the discrete reference coordinates. 

Considering counterclockwise order of the nodes, the shape functions for the four nodes 

are 

Node 1: 𝜙1(𝑟, 𝑠) =
1

4
(1 + 𝑟)(1 + 𝑠) 

Node 2: 𝜙2(𝑟, 𝑠) =
1

4
(1 − 𝑟)(1 + 𝑠) 

Node 3: 𝜙3(𝑟, 𝑠) =
1

4
(1 − 𝑟)(1 − 𝑠) 

Node 4: 𝜙4(𝑟, 𝑠) =
1

4
(1 + 𝑟)(1 − 𝑠) (1.1) 

where 𝑟 and 𝑠 are coordinates in the master element. Therefore, for any points inside the 

quadrilateral element, the coordinates 𝑋 and 𝑌 of reference configuration are 

𝑋(𝑟, 𝑠) = 𝜙1(𝑟, 𝑠)𝑋1 + 𝜙2(𝑟, 𝑠)𝑋2 + 𝜙3(𝑟, 𝑠)𝑋3 + 𝜙4(𝑟, 𝑠)𝑋4 (1.2) 



 9 

𝑌(𝑟, 𝑠) = 𝜙1(𝑟, 𝑠)𝑌1 + 𝜙2(𝑟, 𝑠)𝑌2 + 𝜙3(𝑟, 𝑠)𝑌3 + 𝜙4(𝑟, 𝑠)𝑌4 

where 𝑋𝑖 and 𝑌𝑖 denotes the coordinates of 𝑖th node. Similar equations hold for 

displacement 𝑢 and 𝑣 are 

𝑢(𝑟, 𝑠) = 𝜙1(𝑟, 𝑠)𝑢1 + 𝜙2(𝑟, 𝑠)𝑢2 + 𝜙3(𝑟, 𝑠)𝑢3 + 𝜙4(𝑟, 𝑠)𝑢4 

𝑣(𝑟, 𝑠) = 𝜙1(𝑟, 𝑠)𝑣1 + 𝜙2(𝑟, 𝑠)𝑣2 + 𝜙3(𝑟, 𝑠)𝑣3 + 𝜙4(𝑟, 𝑠)𝑣4 (1.3) 

Apply the chain rule, one can compute a component of displacement gradient tensor using 

𝜕𝑢

𝜕𝑋
=

𝜕𝑢

𝜕𝑟

𝜕𝑟

𝜕𝑋
+

𝜕𝑢

𝜕𝑠

𝜕𝑠

𝜕𝑋
 

𝜕𝑢

𝜕𝑌
=

𝜕𝑢

𝜕𝑟

𝜕𝑟

𝜕𝑌
+

𝜕𝑢

𝜕𝑠

𝜕𝑠

𝜕𝑌
 

(1.4) 

Similar equations exist for 
𝜕𝑣

𝜕𝑋
 and 

𝜕𝑣

𝜕𝑌
, and the displacement gradient 𝑯 in 2-D form can be 

obtained as 

𝑯 = [

𝜕𝑢

𝜕𝑋

𝜕𝑢

𝜕𝑌
𝜕𝑣

𝜕𝑋

𝜕𝑣

𝜕𝑌

] = [

𝜕𝑢

𝜕𝑟

𝜕𝑢

𝜕𝑠
𝜕𝑣

𝜕𝑟

𝜕𝑣

𝜕𝑠

] [

𝜕𝑟

𝜕𝑋

𝜕𝑟

𝜕𝑌
𝜕𝑠

𝜕𝑋

𝜕𝑠

𝜕𝑌

] = [

𝜕𝑢

𝜕𝑟

𝜕𝑢

𝜕𝑠
𝜕𝑣

𝜕𝑟

𝜕𝑣

𝜕𝑠

] [

𝜕𝑋

𝜕𝑟

𝜕𝑋

𝜕𝑠
𝜕𝑌

𝜕𝑟

𝜕𝑌

𝜕𝑠

]

−1

 (1.5) 

For the derivatives in the matrix, considering that 𝑢𝑖, 𝑣𝑖, 𝑋𝑖 and 𝑌𝑖 are constant, the 

derivatives are 
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𝜕𝑢

𝜕𝑟
=

1

4
[(1 + 𝑠)𝑢1 − (1 + 𝑠)𝑢2 − (1 − 𝑠)𝑢3 + (1 − 𝑠)𝑢4] 

𝜕𝑢

𝜕𝑠
=

1

4
[(1 + 𝑟)𝑢1 + (1 − 𝑟)𝑢2 − (1 − 𝑟)𝑢3 − (1 + 𝑟)𝑢4] 

𝜕𝑣

𝜕𝑟
=

1

4
[(1 + 𝑠)𝑣1 − (1 + 𝑠)𝑣2 − (1 − 𝑠)𝑣3 + (1 − 𝑠)𝑣4] 

𝜕𝑣

𝜕𝑠
=

1

4
[(1 + 𝑟)𝑣1 + (1 − 𝑟)𝑣2 − (1 − 𝑟)𝑣3 − (1 + 𝑟)𝑣4] 

𝜕𝑋

𝜕𝑟
=

1

4
[(1 + 𝑠)𝑋1 − (1 + 𝑠)𝑋2 − (1 − 𝑠)𝑋3 + (1 − 𝑠)𝑋4] 

𝜕𝑋

𝜕𝑠
=

1

4
[(1 + 𝑟)𝑋1 + (1 − 𝑟)𝑋2 − (1 − 𝑟)𝑋3 − (1 + 𝑟)𝑋4] 

𝜕𝑌

𝜕𝑟
=

1

4
[(1 + 𝑠)𝑌1 − (1 + 𝑠)𝑌2 − (1 − 𝑠)𝑌3 + (1 − 𝑠)𝑌4] 

𝜕𝑌

𝜕𝑠
=

1

4
[(1 + 𝑟)𝑌1 + (1 − 𝑟)𝑌2 − (1 − 𝑟)𝑌3 − (1 + 𝑟)𝑌4] (1.6) 

By using above equations, the displacement gradient can be computed. The deformation 

gradient tensor 𝑭 can be computed using 

𝑭 = 𝑯 + 𝑰 (1.7) 

where  𝑰 is identity tensor. Using incompressibility condition, the three-dimensional (3D) 

deformation gradient tensor can be obtained. Since the nominal stress 𝑵 can be directly 



 11 

calculated from the force measurements and tissue thickness, the second Piola-Kirchhoff 

stress 𝑺 can be obtained using 

𝑺 = 𝑵𝑭−𝑇 (1.8) 

Planar biaxial tests have been used to study hyperleastic properties of aortic tissues. 

In a study [15], Planar biaxial tests were performed to investigate and compare the 

mechanical properties of aortic tissues from 55 ATAA patients with and without 

concomitant bicuspid aortic valve (BAV) or bovine aortic arch (BAA). It was found that 

the BAV samples were stiffer than both ATAA and BAA samples, and the BAA samples 

were similar to the ATAA samples. In another study [26], age-related biaxial 

biomechanical behavior of human abdominal aortic tissue was investigated. The results 

suggested an age-dependent shift in the mechanical response of this tissue. 

1.2.3 Bulge Inflation Testing 

Bulge inflation test is another type of test to study both hyperelastic and failure 

behaviors of aortic tissues[27, 28].  In the bulge inflation test, tissue sample is cut into a 

square-shaped specimen. The specimen is then clamped in an inflation device forming a 

hermetically sealed cavity in which a fluid (typically water) is injected at a controllable 

rate. In the meanwhile, the fluid pressure is measured and recorded. Deformation can be 

obtained by using digital image correlation [17, 29, 30]. The tests provides full-field 

displacement data and can be used to characterize localized mechanical properties of aortic 

tissues. 
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As an example, Duprey et al [31] investigated biaxial rupture properties of ATAA 

tissues using bulge inflation tests, which demonstrated significantly different rupture stress 

and stretch compared to those from the uniaxial tests. Specifically, the rupture stretch 𝜆𝑟𝑢𝑝 

in the bulge inflation test is significantly lower than the uniaxial 𝜆𝑟𝑢𝑝 in both 

circumferential and axial directions. However, in contrast to planar biaxial tests that has 

controllable paths of stresses, circumferential and axial stresses are equal in the bulge 

inflation test.  

1.3 Hyperelastic and Failure Modeling of Aortic Tissues 

1.3.1 Hyperelastic Modelling 

Constitutive modeling of soft tissues is often achieved by specifying the strain 

energy density 𝑊 as a function of deformation gradient 𝑊(𝑭), where 𝑭 represents the 

deformation gradient tensor.  

Soft biological tissues, such as the aortic wall, comprise bundles of collagen fibers 

embedded in a ground matrix and can be regarded as fiber-reinforced composites. The 

deformation gradient 𝑭 can be multiplicatively decomposed into  

𝑭 = (𝐽1/3𝑰)𝑭̅ (1.9) 

where 𝐽 is the determinant of 𝑭, and 𝑰 is the identity tensor. 𝑭̅ represents the volume-

preserving (isochoric) part of the deformation gradient, while (𝐽1/3𝑰) represents the 

volumetric part. The right Cauchy-Green tensor 𝑪 and its isochoric counterpart 𝑪̅ is defined 

as  
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𝑪 = 𝑭𝑇𝑭  

𝑪̅ = 𝑭̅𝑇𝑭̅ (1.10) 

For nearly incompressible (slightly compressible) material, the total strain energy 

function 𝑊 can be additively split into isochoric 𝑊𝑖𝑠𝑜 and volumetric 𝑊𝑣𝑜𝑙 parts, according 

to 

𝑊(𝑪, 𝒂0𝑖)  = 𝑊𝑖𝑠𝑜(𝑪̅)  + 𝑊𝑣𝑜𝑙(𝐽) (1.11) 

The strain energy density function 𝑊𝑖𝑠𝑜 is usually formulated based on strain invariants of 

the isochoric right Cauchy-Green tensor, 𝑪̅. The first two isochoric strain invariants 𝐼1̅ and 

𝐼2̅ are defined as 

𝐼1̅ = 𝑡𝑟(𝑪̅) 

𝐼2̅ =
1

2
[𝐼1̅

2
− 𝑡𝑟(𝑪̅2)] 

(1.12) 

Isotropic hyperelastic model, such as the Demiray model [32], was used to model 

soft tissues. In the Demiray model, 𝑊𝑖𝑠𝑜 takes the form 

𝑊𝑖𝑠𝑜 = 𝐷1{exp[𝐷2(𝐼1̅ − 3)] − 1} (1.13) 

where 𝐷1 and 𝐷2 are material parameters. However, the hyperelastic properties of the aortic 

wall is anisotropic. 
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Microstructurally-motivated constitutive models have become increasingly utilized 

for anisotropic hyperelastic response of soft tissues, in which the contributions of the 

matrix and collagen fibers to 𝑊𝑖𝑠𝑜 can be modeled separately. Here, we consider a subclass 

of anisotropic responses, in which the strain energy density depends on four strain 

invariants: 𝐼1̅, 𝐼2̅, 𝐼4̅ and 𝐼6̅. For a fiber-reinforced composite material with two families of 

fibers, 𝐼4̅ and 𝐼6̅ are two additional pseudo-invariants that describes deformations in the 

preferred fiber directions 

𝐼4̅ = 𝒂01 ∙ (𝑪̅𝒂01) 

 𝐼6̅ = 𝒂02 ∙ (𝑪̅𝒂02) (1.14) 

where unit vectors 𝒂01 and 𝒂02 characterize two fiber directions in the reference 

configuration. These two fiber directions are often assumed to be symmetric about an axis.  

𝒂01 = (𝑐𝑜𝑠 𝜃 , 𝑠𝑖𝑛 𝜃 , 0) and 𝒂02 = (𝑐𝑜𝑠 𝜃 ,− 𝑠𝑖𝑛 𝜃 , 0), where 𝜃 is the angle between the 

fiber direction and the axis of symmetry. Typically, the circumferential axis of the aorta 

was used as reference. Thus, 𝐼4̅ and 𝐼6̅ are equal to squares of the stretches in the fiber 

directions. In the work by Holzapfel et al. [33], the total strain energy density function 𝑊 

can be additively split into isotropic and anisotropic parts. The isotropic matrix material is 

characterized by strain energy function of the neo-Hookean type. To account for the strong 

stiffening effect of the collagen fiber recruitment, an exponential function is employed. 

𝑊𝑖𝑠𝑜 is given by 
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𝑊𝑖𝑠𝑜 = 𝜇(𝐼1̅ − 3) +
𝑘1

2𝑘2
∑ {exp[𝑘2(𝐼𝑘̅ − 1)2] − 1}

𝑘=4,6

 (1.15) 

where 𝜇 is a material parameter to describe the matrix response. 𝑘1 is a positive material 

parameter that has the same unit of stress, while 𝑘2 is a unitless material parameter. For the 

volumetric part 𝑊𝑣𝑜𝑙, the following function is used in Abaqus 

𝑊𝑣𝑜𝑙 =
1

𝐷
[
𝐽2 − 1

2
− 𝑙𝑛 𝐽] (1.16) 

where 𝐷 is a constant that enforces material incompressibility. 

The Holzapfel-Gasser-Ogden model [33] has been extended to other forms. Using 

the generalized structural tensor (GST), Gasser et al. [34] constructed the following 

isochoric contribution of the strain energy density function 

𝑊𝑖𝑠𝑜 = 𝜇(𝐼1̅ − 3) +
𝑘1

2𝑘2
∑ [𝑒𝑥𝑝{𝑘2[𝜅𝐼1 + (1 − 3𝜅)𝐼𝑘 − 1]2} − 1]

𝑘=4,6

 (1.17) 

where 𝜅 is a parameter describing dispersion of the fiber orientation. This model is known 

as the Gasser-Ogden-Holzapfel (GOH) model, which has five constitutive parameters, 𝜇, 

𝑘1, 𝑘2, 𝜅 and 𝜃. 

The stress-strain relation can be derived by differentiating the strain energy density 

𝑊. The Cauchy stress can be calculated using [35] 
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𝝈 = 𝝈𝑣𝑜𝑙 + 𝝈𝑖𝑠𝑜 = 𝑝𝑰 + 𝐽−1𝑭̅𝐷𝑒𝑣(𝑺̅)𝑭̅𝑇 (1.18) 

where 𝝈𝑣𝑜𝑙 and 𝝈𝑖𝑠𝑜denotes the volumetric and isochoric contribution respectively, 𝑝 is the 

hydrostatic pressure 𝑝 = 𝑑𝑊𝑣𝑜𝑙(𝐽)/𝑑𝐽, 𝑰 is the identity tensor. 𝑺̅ can be expressed by 𝑺̅ =

2𝜕𝑊𝑖𝑠𝑜(𝑪̅)/𝜕𝑪̅ and 𝐷𝑒𝑣(∎) = (∎) − (1/3)[(∎): 𝑪]𝑪−1.  

In our recent study, we have proposed a physics-informed machine learning (ML) 

model for constitutive modeling of the aortic tissues (APPENDIX B). Application of ML 

methods are introduced in Section 1.6. 

1.3.2 Failure Modelling 

Isotropic failure criteria such as the von Mises stress criterion have been widely 

adopted in the computational failure analysis of the aortic wall [36-38]. Similar to the 

maximum shear (Tresca) criterion, the von Mises stress is a classical metric in determining 

yielding of metal materials due to shear stress in the octahedral plane [39]. The von Mises 

criterion may not be appropriate for soft biological tissue. The exact failure mechanisms of 

soft tissue remain unclear and experimental findings suggest that the failure is likely 

governed by maximum normal stress [27, 40, 41]. The maximum principal stress is another 

isotropic failure criterion commonly used for the aortic wall [41-43]. However, 

experimental investigations have demonstrated a significant difference of wall strengths in 

the circumferential and axial directions of aortic tissues [15-18]. It is impossible to 

incorporate the anisotropic failure properties into an isotropic failure metric, such as the 

von Mises stress or the maximum principal stress. 
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Material failure criteria of engineered fiber-reinforced composites, which are 

usually made up of unidirectional fiber-reinforced laminae [44-47], have been extensively 

studied. These composites often exhibit directional-dependent (anisotropic) strength. 

Among them, the Tsai-Hill criterion [48, 49] and the Hashin-Rotem criterion [50] are two 

well-known models to characterize anisotropic failure properties of engineered fiber-

reinforced composites without fiber dispersion. In these criteria, stress components in the 

current coordinates need to be transformed onto the material axes to determine failure. 

Since engineered composites usually undergo non-rotational, infinitesimal deformation 

before failure, the material axes are often considered to be fixed [45], i.e., independent of 

deformation. However, the failure criteria assuming fixed material axes may not be valid 

for the aortic tissues undergoing finite deformation [51]. Recently, Korenczuk et al. [52] 

applied the Tsai-Hill failure theory to model an anisotropic failure of porcine abdominal 

aortas. The authors found that the Tsai-Hill criterion, although not able to capture all 

aspects of tissue failure, performed much better than the von Mises stress criterion [52].  

Several anisotropic failure criteria have been utilized for engineered fiber-

reinforced composite materials. For the Tsai-Hill criterion [48, 49], the failure metric Λ 

takes the form of: 

𝛬 = (
𝜎𝜃𝜃

𝑋
)
2

+ (
𝜎𝑧𝑧

𝑌
)
2

− (
𝜎𝜃𝜃

𝑋
) (

𝜎𝑧𝑧

𝑋
) + (

𝜏𝜃𝑧

𝑆
)
2

 (1.19) 

where 𝜎θθ, 𝜎zz and 𝜏θz denotes the normal stress in the fiber direction, transverse 

normal stress and in-plane shear stress, respectively. 𝑋, 𝑌 and 𝑆 are fiber tensile, transverse 

tensile and in-plane shear strengths, respectively, which are the model parameters to be 
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determined. When 𝛬 = 1, failure is predicted. The Tsai-Hill criterion is interactive, i.e., it 

is assumed that all stress components simultaneously contribute to the failure of the 

composite.  

The Hashin-Rotem criterion [50] is another widely used anisotropic failure criterion 

which incorporates two separate failure modes: 

                              𝛬𝑓 =
𝜎𝜃𝜃

𝑋
                                  fiber failure 

𝛬𝑚 = (
𝜎𝑧𝑧

𝑌
)
2

+ (
𝜏𝜃𝑧

𝑆
)
2

             matrix failure (1.20) 

The model parameters 𝑋, 𝑌 and 𝑆 have similar meanings to those in the Tsai-Hill model. 

The combined failure metric 𝛬 can be determined by 𝛬 = 𝑚𝑎𝑥(𝛬𝑓 , 𝛬𝑚). Failure can be 

predicted when 𝛬 reaches 1. 

For both the Tsai-Hill and the Hashin-Rotem model,  𝑋 and 𝑌 can be determined 

from uniaxial failure stresses in the fiber and transverse directions, respectively. In order 

to find 𝑆, other mechanical tests, e.g., off-axis tension tests, needs to be performed. Off-

axis tests are uniaxial tests along different angles w.r.t to the material axis (i.e., fiber 

direction). The uniaxial stress in the loading axis needs to be transformed onto the material 

axis to determine failure using Eqn. (1.19) and (1.20), therefore, a set of transformed stress 

states can be obtained in the off-axis tension tests. Using the Tsai-Hill model, the off-axis 

uniaxial strength 𝑋𝜃𝜃 can be expressed as 
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𝑋𝜃𝜃(𝜃) = 1 √
𝑐𝑜𝑠4 𝜃

𝑋2
+

𝑠𝑖𝑛4 𝜃

𝑌2
−

𝑠𝑖𝑛2 𝜃 𝑐𝑜𝑠2 𝜃

𝑋2
+

𝑠𝑖𝑛2 𝜃 𝑐𝑜𝑠2 𝜃

𝑆2
⁄  (1.21) 

where 𝜃 is the angle between the fiber direction and the loading axis. Similarly, for the 

Hashin-Rotem criterion, the off-axis uniaxial strengths for fiber and matrix failure are 

       𝑋𝜃𝜃,𝑓(𝜃) =
𝑋

𝑐𝑜𝑠2 𝜃
                                           fiber failure 

𝑋𝜃𝜃,𝑚(𝜃) = 1 √
𝑠𝑖𝑛4 𝜃

𝑌2 +
𝑠𝑖𝑛2 𝜃 𝑐𝑜𝑠2 𝜃

𝑆2⁄               matrix failure 
(1.22) 

and 𝑋𝜃𝜃(𝜃) = min (𝑋𝜃𝜃,𝑓(𝜃), 𝑋𝜃𝜃,𝑚(𝜃)).  Since many soft biological tissues can be 

considered as fiber-reinforced composites  (e.g., collagen fiber in the media layer of the 

arterial wall are mostly circumferentially oriented), traditional anisotropic failure criteria 

without fiber dispersion may be directly used to approximate the anisotropic failure 

properties of soft biological tissues [52].  

Micromechanics model, such as the one proposed by Li and Holzapfel [53], may 

be developed to model hyperelastic and failure properties simultaneously with a common 

description of fiber dispersion. In this type of model, the failure/damage is related to 

stress/stretch of each individual fiber using a specific hyperelastic constitutive model, the 

damage parameters and hyperelastic parameters are coupled, which requires damage and 

hyperelastic parameters to be identified simultaneously using one set of testing data (e.g. 

uniaxial data). As shown by experimental works [15, 31], ATAA tissues demonstrate a 

slightly anisotropic stress-strain response in the elastic deformation region, but the 
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anisotropy in terms of uniaxial strength and failure is much more significant (e.g., 

circumferential strength is almost double of the axial strength [31]). The slightly 

anisotropic hyperelastic response may be explained by helically arranged fiber structure in 

the intima and adventitial layer [54-56], while failure properties of the intact aortic wall 

may be predominantly determined by the media layer, which has nearly circumferentially-

oriented fibers. It could be difficult to consolidate different degrees of anisotropy using the 

same fiber dispersion pdf. Therefore, failure modeling using such an approach [53] is very 

challenging and requires more validations, e.g., using off-axis testing data.  

1.4 Biomechanical Assessment of ATAA Risk 

1.4.1 Biomechanical Risk Assessment is Promising  

Biomechanical ATAA risk assessment hold promise. By performing patient-

specific finite element analysis (FEA), Martin et al. [57] obtained clinical CT imaging data 

and tissue mechanical testing data from 27 matching ATAA patients. ATAA inflation and 

rupture were simulated using FE models of the 27 patients. The aortic size index was 

sufficient for identifying the patients with the lowest rupture risk, but insufficient for 

stratifying between patients at moderate and high risk. The results support the use of 

biomechanical metrics such as peak systolic wall stress and tension-strain modulus for 

assessment of ATAA rupture risk. Trabelsi et al. [30] conducted a similar study to 

investigate the patient-specific wall stress distribution of ATAA and the retrospective 

rupture risk for each patient. Preoperative CT images of 5 ATAA patients were obtained 

during elective surgeries to generate FE models. Hyperelastic and rupture properties of 
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each patient were obtained using bulge inflation tests. Biomechanical and diameter based 

rupture risk assessments were found to be weakly corelated. 

By comparing the performance of computational fluid dynamics (CFD) and fluid–

structure interaction (FSI) simulations with four-dimensional (4D) flow magnetic 

resonance imaging (MRI) data, Pons et al. [58] evaluated the capability of fluid dynamics 

predictors to assess risk of aneurysm dilation. Significant difference was found between 

stable and dilating patients using the FSI-derived predictors. 

For abdominal aortic aneurysm (AAA), the benefit of biomechanical risk 

assessment has been shown using clinical data of ruptured and intact aneurysms. In a 

multicenter retrospective study by Gasser et al. [59], finite element (FE) models were used 

to predict peak wall stress (PWS) and peak wall rupture index (PWRI) of 203 non-ruptured 

and 40 ruptured AAA patients. Significant difference between the non-ruptured and 

ruptured group was found using PWS- and PWRI-adjusted diameter, which showed that 

these biomechanical indices are very promising. In a retrospective study, Polzer et al. [60] 

compared biomechanical indices for 19 ruptured and 24 intact AAA. It was shown that the 

biomechanical indices are more sensitive than diameter in predicting rupture of 

asymptomatic AAA. In a prospective multicenter clinical study [61], Doyle et al. followed 

up 295 AAA patients, rupture occurred in 13 patients and 102 patient underwent repairs. It 

was found that a biomechanical index is a strong independent predictor of AAA rupture or 

repair. 

Opposite to the promising results, a retrospective study [62] suggested no added 

value of biomechanical indices for AAA risk assessment. However, in their biomechanical 
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model, the imaged-derived configuration was directly pressurized without proper 

consideration of zero-pressure configuration and pre-stress, which may result in inaccurate 

stress calculation. 

1.4.2 In Vivo Hyperelastic Properties are the Biggest Unknown 

Among the three key components necessary for an engineering stress analysis, i.e., 

geometries, material properties, and loading/boundary conditions, the in vivo material 

properties are clearly the biggest unknown. Indeed, accurate estimation of in vivo 

mechanical properties of the aortic wall, which is nonlinear and anisotropic, has been a 

challenging problem in the field of cardiovascular biomechanics for several decades. 

It has been shown that high in vivo stiffness of ATAA may be correlated with 

increased rupture risk. Martin et al. [63] proposed a predictive analytical model for ATAA 

risk on a patient-specific level by analysing planar biaxial and uniaxial testing data of 50 

ATAA patients. Based on simplification of ATAA shape and assumptions of circumneutral 

to axial stress ratio, ATAA pressure-diameter response and the aortic wall yield and failure 

responses were predicted [63]. No significant corelation was found between systolic 

diameter and the predicted risk metrics of the ATAA patients. The analysis results 

indicated that high pressure-strain modulus (decreased tissue compliance) is a significant 

risk factor for ATAA rupture. Later, Duprey et al. [31] performed a similar study using 

bulge inflation testing data of 31 ATAA patients. Linearized stiffness in the physiological 

range was derived from the bulge inflation tests. The authors showed that the stiff 

aneurysms are prone to rupture, consistent with results of Martin et al. [63].  
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Since aneurysm rupture/dissection usually occurs under elevated arterial pressures 

(e.g., about 300mmHg) brought on by extreme emotional or physical stress [64], patient-

specific ATAA rupture analysis could benefit from estimating the full in vivo hyperelastic 

properties, which, consequently, can be utilized to predict ATAA mechanical response at 

various loading conditions.  

1.4.3 Failure Metric Plays a Critical Role in Biomechanical Assessment 

To assess patient-specific ATAA rupture/dissection risk, numerically computed 

stresses (circumferential, axial and shear) on the aortic wall need to be converted into a 

scalar-valued failure metric. Therefore, an accurate failure metric plays a critical role in 

biomechanical ATAA risk assessment [1]. 

Isotropic material failure metrics, such as the von Mises stress equivalent stress [36, 

37, 65], have been widely adopted in biomechanical risk assessment of aortic aneurysms. 

Another popular failure metric is the rupture potential index (RPI) [66], which is obtained 

by dividing an isotropic wall stress (e.g., maximum principal stress [67]) by wall strength. 

These isotropic criteria may not be appropriate for aortic tissues [52], because the aortic 

wall strengths in the circumferential and axial directions are significantly different, which 

has been revealed by many experimental studies [15-17, 21, 68, 69]. To incorporate 

direction-dependent failure properties, anisotropic failure metric needs to be applied. The 

Tsai–Hill (TH) criterion [48] is a well-known anisotropic failure model that was originally 

developed for engineered fiber-reinforced composites. Recently, Korenczuket al. [52] 

applied the TH failure metric to characterize the failure of porcine abdominal aortas, and 
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the authors found that the anisotropic TH metric performed much better than the isotropic 

von Mises stress metric [52].  

To perform patient-specific biomechanical assessment, parameters of a failure 

metric (e.g., wall strength in the RPI) need to be determined. However, patient-specific 

failure properties (i.e., aortic wall strengths) can only be accurately determined using 

invasive and destructive tests, and these tests clearly cannot be performed for patients 

whose ATAAs are still intact. Some studies suggested to use deterministic approaches [67, 

70-72]. For instance, Geest et al. [73] proposed a linear regression model to estimate wall 

strength of abdominal aortic aneurysm (AAA) from patient parameters (age, gender, 

maximum dimeter, family history and smoking status) and local parameters (local 

intraluminal thrombus (ILT) thickness and local diameter). However, large variability in 

aortic wall strength has been revealed by many experimental works [15, 17, 21, 68], which 

indicate that the predictive capability of the deterministic approach is limited [73]. 

Recently, a probabilistic rupture risk index (PRRI) [74] was proposed for biomechanical 

risk assessment of AAA leveraging an uncertainty quantification (UQ) framework [75]. 

The PRRI incorporates a probability distribution of the wall strength, and it offers a 

physical meaning: PRRI represents the probability of failure. However, the PRRI was 

developed based on the isotropic maximum principal stress, ignoring the fact that the wall 

strengths are direction dependent.  

Biomechanical assessment using PRRI was referred to as a high-fidelity model 

[60]. The wall thickness, which is the input to the FE simulations, was treated as a source 

of uncertainties in their approach [74]. However, in the UQ framework, sampling-based 

approaches like Monte Carlo are typically needed to quantify the uncertainties of the FE 
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output (i.e. peak wall stress) propagated from the uncertainties of the FE inputs (i.e., wall 

thickness and material parameters), which often results in high computational cost [76-78].  

1.5 Existing Methods for Mechanical Property Identification 

1.5.1 Methods to Identify Ex Vivo Material Properties 

Identification of the material parameters of a particular constitutive model often 

employs inverse techniques. In such methods [79, 80], the identification of constitutive 

parameters of the material is often obtained based on boundary conditions and 

displacement/strain fields, measured experimentally. An inverse approach, known as the 

virtual field method [81], has been developed for extracting homogenous [82] and 

heterogeneous constitutive parameters from ex vivo full-field measurement data [83] of 

blood vessels whose reference configurations are unloaded. However, the configuration of 

in vivo imaging data is always loaded, which makes it challenging to identify the 

constitutive parameters from in vivo loaded geometries.  

1.5.2 In Vivo Identification Methods using Simplified Geometries or Material Models 

Since the unloaded state of arteries is unknown, it is challenging to inversely 

estimate hyperelastic constitutive parameters from in vivo deformed geometries. To 

simplify such inverse computation, the geometry of arteries is often assumed as a perfect 

tube. Based on this assumption, Schulze-Bauer and Holzapfel [84] estimated Fung-type 

material parameters, Masson et al, Olsson and Klarbring, Stålhand [85-88] estimated 

material parameters using the constitutive model proposed by Holzapfel et al [33] and 
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geometrical parameters, Astrand et al. [89] and Smoljkić et al [90] identified the Gasser–

Ogden-Holzapfel (GOH) model [34] parameters.  

Recently, some studies [31, 63] derived linearized stiffness from ex vivo biaxial 

tests and showed that the stiff aneurysms are prone to rupture. This linearized metric can 

provide a simple and clinically-relevant way to roughly predict diameter/stretch-based 

rupture potential. For instance, Liu et al. [91],  Zhang et al. [92] and Franquet et al. [93] 

developed methods to identify linear elastic material parameters from in vivo images. The 

distribution of linearized stiffness has been measured on ATAA from multiphase CT scans 

[94, 95].  

Other types of simplifications were also used in the literature. For instance, Trabelsi 

et al. [96] proposed a multiple linear regression-based method to estimate the constitutive 

parameters by assuming a linear relation between the volume of the aorta and the 

constitutive parameters of the Demiray model. Zeinali-Davarani et al. [97] evaluated local 

wall thickness and material anisotropy of the human aorta, while other constitutive 

parameters were determined through biaxial tests. However, rupture analysis may benefit 

more from identification of nonlinear hyperelastic properties. 

1.5.3 FE Updating Methods for In Vivo Material Property Identification 

To account for the irregularity of patient-specific geometries, inverse FE 

simulations are often used in the identification of in vivo hyperelastic properties from multi-

phase clinical images. Optimization-based FE-updating approaches were proposed, in 

which the optimal set of material parameters is identified by updating the material 

parameters in the FE simulations to minimize a pre-defined error function. Beefily, in vivo 
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material properties are identified by: (1) recovering or estimating the unpressurized 

geometry, (2) deforming the geometry in FE simulations with in vivo loading and boundary 

conditions with the estimated constitutive parameters, and (3) by using certain optimization 

methods, the estimated constitutive parameters will be adjusted, and optimal parameters 

will be identified such that some physical measurements (e.g. strain/displacement) are 

matched between the simulated, deformed configuration and the in vivo loaded 

configuration.   

Using these strategies, Liu et al [98] estimated parameters of the modified Mooney-

Rivlin model from carotid artery MRI data. The optimization problem can be much more 

challenging when estimating anisotropic model parameters, since different hyperelastic 

parameters are coupled nonlinearly in their contributions to the structural response. Wittek 

et al [99, 100] developed two approaches to identify in vivo GOH model parameters of the 

abdominal aorta from 4D ultrasound data based on mixed stochastic-deterministic 

optimization. A total of 7400 iterations [99] and 43,500–86,900 iterations [100] were 

needed to reach the optimal set of parameters in their approaches, resulting in a 

computational time of 1~2 weeks. Such high computational cost could inhibit a practical 

use of the methods, particularly in a clinical setting requiring fast feedback to clinicians. 

To expedite the identification process, we have recently proposed the multi-resolution 

direct search (MRDS) approach [101] (APPENDIX A), which was designed to improve 

the searching algorithm, and the computation time was reduced to 1~2 days with less than 

1000 iterations. However, these studies [99-101] relied on only numerically-generated data 

to validate the approaches. Experimental validations are needed to verify the assumptions 

of these approaches. 
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1.6 Application of Machine Learning (ML) in Biomechanics 

Recently, machine learning (ML) techniques, in particular Deep Learning (DL) 

techniques [102] utilizing deep neural networks (DNN), have garnered enormous attention 

in the field of artificial intelligence and have led to revolutionary breakthroughs in many 

applications [102-109]. In the biomechanics field, ML approaches have been used as 

nonlinear function approximators to establish complex multi-dimensional relationships. 

ML surrogate models have also been developed to enable fast biomechanical computation.  

1.6.1 ML Models as Nonlinear Function Approximators 

ML models can be used as nonlinear function approximators to construct complex 

multi-dimensional dependencies. The applications of machine learning (ML) techniques 

on the mechanics problems can be traced back to the 1990s [110], when neural networks 

were first introduced to traditional mechanics fields for constitutive modeling [111] and 

elastic-plastic fracture mechanics [112]. The pioneering work by Huber and Tsakmakis 

[113, 114], determined certain constitutive parameters from the spherical indentation data 

using neural networks. The classical problem can be characterized by the load-depth 

trajectory, some manually selected features (e.g. depth at a given load level) were sufficient 

to produce a good predictive capability. 

ML approaches have been developed for biomechanical analysis. For instance, Luo 

and co-workers [115] developed ML classifiers to infer strength of ascending thoracic 

aneurysm from elastic properties, Cilla and co-workers proposed ML techniques for 

obtaining the GOH model parameters from uniaxial data [116]. Jiang et al. [117] proposed 

a DL model to predict the evolution of AAAs by using follow-up dataset.  
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Our group has been working on applying ML techniques to the field of 

biomechanics. In our recent work [118], a DL model was developed to estimate the elastic 

properties of chemically-treated collagenous tissues directly from noninvasive microscopy 

images. Glutaraldehyde-treated bovine pericardium (GLBP) tissue, widely used in the 

fabrication of bioprosthetic heart valves and vascular patches, was chosen to develop a 

representative application. The DL model was designed and trained to process second 

harmonic generation (SHG) images of collagen networks in GLBP tissue samples, and 

directly predict the nonlinear anisotropic stress-strain responses of the GLBP tissues. We 

have proposed a physics-informed ML model for constitutive modeling of the aortic tissues 

(APPENDIX B). The ML-constitutive model employs a hierarchical learning strategy by 

following the steps: (1) establishing constitutive laws to describe general characteristic 

behaviors of a class of materials; (2) determining constitutive parameters for an individual 

subject. The trained NNMat model may be directly adopted for a different subject without 

re-training the class parameters, and only the subject parameters are considered as 

constitutive parameters. The NNMat model was trained, cross-validated and tested using 

biaxial testing data of 63 ATAA tissue samples, the results demonstrated that the NNMat 

model has a significantly better performance than the Holzapfel-Gasser-Ogden model. 
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Figure 1.5 - DL model for estimation of nonlinear anisotropic stress-strain responses 

of chemically-treated collagenous tissues directly from noninvasive microscopy 

images [118]. 

1.6.2 ML Models as Surrogates for Computational Biomechanical Analysis  

When trained with sufficient data, ML models may serve as fast surrogates of 

computational biomechanical models, the latter is often associated with long simulation 

time and numerical convergence issues.  

In a recent study [119], we designed and trained a DL model to take aorta geometry 

as input and directly output the aortic wall stress distributions, bypassing the FEA 

calculation process. The trained DL-model can predict the stress distributions in seconds 

with average errors of 0.492% in the von Mises stress distribution (Figure 1.6). DL model 

can also be used to learn from CFD results and make fast predictions [120].  
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Figure 1.6 - Stress distributions computed from the FE model and DL model [119].   

Inverse problems in biomechanics often involve iteratively performing simulations, 

which are often computationally expensive. ML model can fundamentally change this 

dilemma by building a direct mapping between inputs and outputs. For instance, the 

unpressurized geometry is often solved using iterative schemes such as the backward 

displacement method [121], which has a long computation time and can suffer from 

numerical convergence issues. We have developed a ML-model [122] to estimate the 

unpressurized geometry of human thoracic aorta by given two pressurized geometries at 

two different blood pressure levels. 
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1.7 Motivation of the Study 

Advances in imaging techniques and numerical methods have made it possible to 

investigate the in vivo biomechanics of the cardiovascular system on a patient-specific 

level. For the four key components in a biomechanical analysis (geometries, loading and 

boundary conditions, material hyperelastic properties and material failure properties), 

patient-specific geometries (e.g., anatomic structures of the aorta) and physiological 

loading conditions (i.e., diastolic and systolic pressures) can be obtained at a high level of 

spatial and temporal resolutions from clinical diagnostic imaging tools, such as CT scans, 

and hemodynamic measurements, respectively [123]. However, the in vivo material 

hyperelastic and failure properties, which vary significantly among patients, are clearly the 

biggest unknown. Indeed, accurate identification of in vivo nonlinear and anisotropic 

hyperelastic properties of the aortic wall has been a challenging problem in the field of 

cardiovascular biomechanics for several decades. Furthermore, since patient-specific 

failure properties cannot be obtained noninvasively from clinical images, an accurate 

failure metric that incorporates uncertainties of failure properties, needs to be developed 

for patient-specific biomechanical assessment. 

1.7.1 Objectives of This Study 

The overall goal of this thesis was to develop a novel computational framework to 

identify in vivo patient-specific material properties for biomechanical ATAA risk 

assessment. To accomplish the goals, the objectives of the thesis are: 

1) Develop and validate a novel inverse approach for identification of in vivo 

nonlinear anisotropic hyperelastic properties of thoracic aorta from two-phase 3D CT 
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images. A new inverse method was developed to identify material properties of the thoracic 

aorta. Numerical validations were performed using four ATAA patient geometries. Clinical 

3D gated CT images and surgically-removed aortic wall tissue samples of two ATAA 

patients were obtained. Planar biaxial tests were performed on the tissue samples for 

validation. 

2) Investigate machine learning (ML) approach for fast and accurate identification 

of in vivo material hyperleastic properties. A ML approach was developed as a surrogate 

of the inverse method to rapidly (i.e., within seconds) estimate ATAA material properties. 

Neural network was designed to take as input two-phase aorta geometries and directly 

output the material parameters.  

3) Develop a probabilistic and anisotropic failure metric for ATAA risk assessment. 

An anisotropic failure criterion was validated for aortic tissues using off-axis testing data 

of 4 porcine aortas and 2 human ATAAs. Based on the anisotropic failure criterion, an 

anisotropic failure probability (FP) metric was developed using uniaxial failure testing data 

of 84 ATAA patients. Using the identified hyperelastic properties of the two ATAA 

patients in the 1st objective, FE simulations were performed to estimate the FP under 

elevated blood pressure. 

4) Investigate ATAA risk assessment methods. CT images and matching tissue 

samples were collected from additional 41 ATAA patients. “Ground-truth” retrospective 

risk scores were numerically-reconstructed using planar biaxial and uniaxial testing data 

of the 41 patients. Different risk stratification methods are compared using the “ground-

truth” risk data. 
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1.7.2 Significance of This Study 

Current computational models ATAA risk assessment have limited clinical 

translatability, which can be attributed to one of the major bottlenecks of current 

technologies: the unknown material hyperleastic properties and material failure properties. 

It has been shown that these material properties can vary greatly among individuals. 

Therefore, the unknown in vivo patient-specific hyperelastic properties must be 

noninvasively identified in order to perform accurate patient-specific analysis. Failure 

properties can only be accurately obtained via invasive and destructive tests; therefore, 

uncertainties of the failure properties need to be quantified and incorporated in the failure 

metric for accurate patient-specific ATAA risk assessment. 

Fortunately, the in vivo aorta deformation under physiological loading conditions 

can be recorded by multi-phase image modalities such as multi-phase ECG gated CT scans. 

Two-phase (diastole and systole) aorta geometries and the corresponding blood pressure 

levels are obtainable. However, direct measurements of in vivo aortic wall extensibility can 

only provide insight on ATAA mechanical responses within the imaged physiologic range 

[124] (usually between 80mmHg~120mmHg), whereas aneurysm rupture/dissection 

usually occurs under elevated arterial pressures (e.g., about 300mmHg) brought on by 

extreme emotional or physical stress [64]. It has been shown that the stress distributions 

can be significantly altered under supra-physiological pressure [57]. Thus, the full in vivo 

elastic properties need to be noninvasively estimated using a constitutive model, which, 

consequently, can be utilized to predict patient-specific ATAA mechanical response at 

various loading conditions.   
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To facilitate personalized biomechanical analysis of ATAA rupture, a novel 

efficient inverse method for identification of the in vivo patient-specific material 

parameters is needed without compromising accuracy, and the validity of such method has 

to be proved by experimental evidences. A potential paradigm-changing solution to the 

bottleneck associated with the patient-specific modeling is to incorporate ML algorithms 

to expedite the procedure of in vivo material property identification. To accurately and 

reliably access ATAA risk, anisotropy of the failure properties needs to be taken into 

consideration, and uncertainty of the failure properties needs to be quantified and 

incorporated using a probabilistic failure metric. The benefits of identifying patient-

specific hyperelatsic properties and using probabilistic failure metric need to be 

demonstrated by comparing different risk assessment methods. 

In this thesis, novel methods were developed to identify in vivo tissue mechanical 

properties from clinical multi-phase CT data in a fast and accurate manner. An anisotropic 

failure criterion was investigated. Probability distribution of the failure properties was 

quantified using a probabilistic model. Different risk assessment methods were compared 

to show promises of the developed computational framework. These methods may enable 

accurate patient-specific computational analysis of vessel functions, such as ATAA risk 

analyses for clinical ATAA surgical evaluation. The methods developed in this thesis could 

be applied to other similar tissue structures (such as veins and lymphatic systems) with 

modifications. 
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CHAPTER 2. STATIC DETERMINACY OF THE AORTIC 

WALL 

 It is well known that nonlinear material properties and residual 

deformations/stresses alter the mechanical behavior of arteries, e.g. the pressure-diameter 

curves. In an effort to enable personalized analysis of the aortic wall stress, nonlinear 

iterative approaches have been developed to incorporate experimentally-derived material 

properties and residual deformations into in vivo loaded geometries in FE simulations. Yet, 

the difficulty in obtaining patient-specific material properties and residual deformations 

has become one of the biggest challenges in the personalized biomechanical analysis. 

Fortunately, static determinacy offers an appealing prospect that allows for the calculation 

of arterial wall stress without patient-specific material properties. The aortic wall stress can 

be computed using forward analysis by enforcing an extremely stiff material property as 

penalty treatment, which is referred to as the forward penalty approach. However, the effect 

of the residual deformations on static determinacy is still unclear, which is often stated as 

a limitation in patient-specific analysis. In this chapter, static determinacy of ATAA is 

investigated with respect to material properties and residual deformations. By comparing 

the predicted stresses from 1) a traditional iterative approach with nonlinear material 

properties and residual deformations and 2) the forward penalty approach, we demonstrate 

that the transmural mean stress is approximately the same for the two approaches and can 

be readily obtained from in vivo clinical images without knowing the patient-specific 

material properties and residual deformations. Computation of patient-specific mean stress 

can be greatly simplified by using the forward penalty approach, which may be clinically 
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valuable. Static determinacy severs as a basis for the development of inverse approach in 

CHAPTER 3. 

The remaining sections are organized as follows. In Section 2.1, the principle of static 

determinacy is introduced. In Section 2.2, the theoretical arguments are described, and the 

validity is shown by analytical examples. FE models with patient-specific geometries are 

demonstrated in Section 2.3. In Section 2.4, discussion are presented. Some of the results 

of this chapter is published in [125, 126]. 

2.1 Background 

Nonlinear material properties and residual deformations/stresses [127, 128] have 

been shown to significantly affect the physiological wall stress distributions [33, 129-132]. 

To incorporate the nonlinear material properties and residual deformations in arteries, 

traditional forward analysis uses a thick-walled model starting from the stress-free 

reference configuration. Then deformation relations, constitutive laws and equilibrium 

equations are utilized to solve the boundary value problem. However, when applying this 

conventional approach to obtain patient-specific stress fields from the in vivo loaded 

geometries in clinical images, one has to first determine the unknown material parameters 

and residual deformations, which are required in the thick-walled FE models. Some studies 

have suggested the use of experimentally-determined material and residual deformation 

parameters [133, 134]. However, using residual deformations and material properties that 

are not patient-specific is a clear limitation.  

Fortunately, for a specific type of biological membrane structures such as the aorta, 

the wall stress is nearly insensitive to the variation of material properties. This property is 
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called static determinacy, i.e. the external force (pressure) along the geometry can be used 

to directly compute the internal tension/stress. This is because the vessel wall can be seen 

as locally in a plane stress state [135], the solution of the equilibrium is weakly sensitive 

to the material properties. The aorta is shown to be approximately statically determinate 

[136]. Thus, its stress distribution can be directly obtained by a forward penalty method 

[136, 137] which enforces an extremely stiff material property as penalty treatment. The 

computation of the thin-walled stress can be greatly simplified by this forward approach. 

However, due to the assumption of no bending stiffness in the membrane elements, the 

self-equilibrium residual deformations are inadmissible to the thin-walled models, which 

is often stated as a limitation of such models. 

In this chapter, validity of static determinacy for ATAA is examined. By comparing 

the predicted stresses from 1) a traditional iterative approach with nonlinear material 

properties and residual deformations (thick-walled model) and 2) the forward penalty 

approach (thin-walled model), we demonstrate that the transmural mean stress (i.e., 

averaged stress through the thickness) is approximately the same for the two approaches. 

Thus, the transmural mean stress can be readily obtained from in vivo clinical images using 

the forward penalty approach without knowing the patient-specific material properties and 

residual deformations.  

2.2 Theoretical and Analytical Arguments 

One prominent example of static determinacy is the use of Laplace law to compute 

the wall hoop stress by assuming a perfect cylindrical shape of the aorta.  
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σ𝜃𝜃 =
𝑃𝑎

𝑡
 (2.1) 

where σ𝜃𝜃 is the hoop stress in the thin-walled tube, 𝑃 is the pressure, 𝑎 is the inner radius, 

and 𝑡 is the in vivo wall thickness. The material properties are not involved in this equation, 

and stress is directly calculated using the static force equilibrium. Opposite to the middle 

radius value used in [138], we emphasize that inner radius should be used as the blood 

pressure is applied to the inner surface of the aorta.  

It is well known that material properties and residual stresses alter the mechanical 

response of arteries, e.g. the pressure-diameter curves [33]. Nonetheless, from the static 

determinacy prospective, for the in vivo loaded configuration, the equilibrium between the 

resultant force and the external pressure load should always hold, and thus, the stress 

resultant (tension) should be insensitive to the material parameters and residual 

deformations. This implies that no matter how the aorta is internally balanced or residually 

stressed, the wall tension can always be computed only using the static equilibrium. 

Therefore, when the wall thickness is given, the simple thin-walled model would be 

sufficient in determining the transmural mean stress. 

In the following subsections 2.2.1 and 2.2.2, we demonstrate that the mean hoop 

stress is independent of material properties and residual deformations (realized by the 

opening angle method or the layer specific 3D residual deformation).  

2.2.1 Different Opening Angles and Material Models 
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In this subsection, we use an analytical example to demonstrate that the mean hoop 

stress is insensitive to the change of material properties and opening angles. We assume 

that the residual stress can be described by the opening angle and that the aorta can be 

modelled as a perfect tube.  

Starting from the cut-open, stress-free configuration, summarizing from [33] and 

[133], the total deformation gradient tensor of the tube taking into account the residual 

stress, 𝑭𝑡𝑜𝑡𝑎𝑙, can be obtained as  

𝑭𝑡𝑜𝑡𝑎𝑙(𝑟) =
𝑟𝑘

[𝐴2 + 𝑘
𝑙
𝐿

(𝑟2 − 𝑎2)]

1
2

𝒆𝜃 ⊗ 𝑬𝛩 +
𝑙

𝐿
𝒆𝑧 ⊗ 𝑬𝑍

+
𝐿

𝑟𝑘𝑙
[𝐴2 + 𝑘

𝑙

𝐿
(𝑟2 − 𝑎2)]

1
2
𝒆𝑟 ⊗ 𝑬𝑅 

(2.2) 

where 𝑟 ∈ [𝑎, 𝑏],  𝑎 and 𝑏 are the inner and outer radii of the in vivo deformed geometry. 

𝑘, defined as 𝑘 =
2𝜋

2𝜋−𝛼
, is used to describe the opening angle 𝛼. 𝐴 and 𝐵 are the inner and 

outer radii of the stress-free geometry. 𝐿 and 𝑙 are the axial length of the aorta segment in 

the stress-free and deformed geometry, respectively.  𝑬𝛩, 𝑬𝑍 and 𝑬𝑅 and 𝒆𝜃, 𝒆𝑧 and 𝒆𝑟 are 

the unit basis vectors for the stress-free and deformed geometry respectively. To make the 

solution simple, the constitutive relation of the aorta tissue is first modelled using the 

isotropic neo-Hookean model. The strain energy function 𝑊 is 

𝑊 =
1

2
𝜇(𝐼1 − 3) (2.3) 
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where 𝜇 is the shear modulus and 𝐼1 is the first invariant. To solve for the in vivo stress 

when systolic blood pressure (𝑃 = 104𝑚𝑚𝐻𝑔) [57] is present, we utilize the stress 

equilibrium equation, which can be expressed in the radial equation 

𝑑σ𝑟𝑟

𝑑𝑟
=

1

𝑟
(σ𝑟𝑟 − σ𝜃𝜃) (2.4) 

where σ𝜃𝜃 and σ𝑟𝑟 are the stresses in the circumferential and radial direction respectively. 

Eqn. (2.4) can be reduced to 
𝑑σ𝑟𝑟

𝑑𝑟
=

𝜇 

𝑟
(𝜆𝜃

2 − 𝜆𝑟
2) [139], with 𝜆𝜃and 𝜆𝑟 referring to the 

stretches in the circumferential and radial directions, respectively. By solving the 

equilibrium Eqn. (2.4), together with the traction continuity condition σ𝑟𝑟(𝑎) = −𝑃, we 

are able to obtain the radial stress [139] 

σ𝑟𝑟(𝑟) = −𝑃 + 𝜇 [
𝑘

𝜆𝑧
log (

𝜆𝑟𝜆𝑧𝑟𝑘

𝐴
) −

1

𝑘𝜆𝑧
log (

𝑟

𝑎
) +

1

2
(𝜆𝑟

2 −
1

𝑘𝜆𝑧
)(

𝑎2 − 𝑟2

𝑎2
)] (2.5) 

where 𝜆𝑧 is the stretch in the axial direction. The hoop stress is then calculated using 

σ𝜃𝜃(𝑟) = σ𝑟𝑟(𝑟) + 𝜇(𝜆𝜃
2 − 𝜆𝑟

2) (2.6) 

The geometry of the aorta in clinical images is always in the in vivo deformed state, from 

which the opening angle is not measurable. To this end, we fixed the inner and outer radii 

of the in vivo deformed geometry, 𝑎 and 𝑏, for all scenarios and vary the opening angle 

from 0 to 330 degree. For a certain opening angle 𝛼, the inner and outer radii 𝐴 and 𝐵 of 
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the cut-open sectors are solved using the boundary condition σ𝑟𝑟(𝑏) = 0 and the 

assumption of incompressibility 𝑏2 = 𝑎2 +
1

𝑘𝜆𝑧
(𝐵2 − 𝐴2). Related parameters are listed in 

Table 2.1 and values of 𝐴 and 𝐵 are shown in Table 2.2. The transmural mean hoop stress 

is defined as 

σ̅𝜃𝜃 =
1

𝑏 − 𝑎
∫ 𝜎𝜃𝜃𝑑𝑟

𝑏

𝑎

 (2.7) 

Table 2.1 - The parameters used in the opening angle method. 

inner radius 𝑎 

(mm) 

outer radius 𝑏 

(mm) 

residual axial 

stretch 𝑙/𝐿 

systolic pressure 

(mmHg) 

shear modulus 𝜇 

(kPa) 

24.5a 26b 1.2c 104a 67.68a 

a from [57], 𝑎 and systolic pressure are from clinical recorded data, 𝜇 was fitted using 

biaxial experiment of patient “BAV17” with coefficient of determination of 0.8656; b based 

on mean value of deformed wall thickness in [140]; c approximated from [141] which refers 

to the residual axial stretch. We assume there is no axial stretch caused by in vivo loading 

conditions 

Table 2.2 - The inner and outer radii A and B of the stress-free configurations 

corresponding to various opening angles α. 

neo-Hookean Model 

𝛼(°) 0 60 90 120 180 270 330 

𝐴(𝑚𝑚) 11.55 14.20 15.96 18.16 24.77 51.23 157.10 

𝐵(𝑚𝑚) 14.98 17.62 19.39 21.59 28.20 54.67 160.54 

Gasser-Ogden-Holzapfel (GOH) Model 

𝛼(°) 0 60 90 120 180 270 330 

𝐴(𝑚𝑚) 18.25 22.12 24.70 27.93 37.63 76.43 231.66 

𝐵(𝑚𝑚) 20.59 24.46 27.04 30.26 39.97 78.77 234.00 

The results are shown in Figure 2.1 (left). The mean hoop stress computed from 

Eqn. (2.7) is exactly the same as the thin-walled hoop stress calculated using Eqn. (2.1). 
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Unsurprisingly, if we rewrite Eqn. (2.4) as 𝜎𝜃𝜃 =
𝑑

𝑑𝑟
(𝑟𝜎𝑟𝑟) and therefore 𝜎𝜃𝜃 =

1

𝑏−𝑎
∫ 𝑑(𝑟𝜎𝑟𝑟)

𝑏

𝑎
=

𝑏𝜎𝑟𝑟(𝑏)−𝑎𝜎𝑟𝑟(𝑎)

𝑡
=

𝑃𝑎

𝑡
, which is exactly the same formula as the Laplace 

law. In addition, as shown in Figure 2.1 (right), the adoption of an anisotropic constitutive 

model [34] (described in Section 2.3.3, parameters shown in Table 2.3) would not affect 

the static determinacy. Here, small opening angles may be unusual to observe in 

experiment [142], they are presented here for illustrative purpose. 

 

Figure 2.1 - The transmural mean, thin-walled and thick-walled hoop stresses across 

the wall thickness. In the left figure, thick-walled hoop stresses were computed using 

neo-Hookean model, while in the right figure, GOH model was used. Transmural 

mean hoop stress remains the same for all scenarios, thus only one line is plotted. 

Table 2.3 - GOH material parameters of the patient “BAV17” extracted from [57]. 

Coefficient of determination of the curve fitting is 0.9551. 

C10(𝑘𝑃𝑎) k1(𝑘𝑃𝑎) k2 κ 𝜃(°) 

27.91 512.56 0.00 0.31 90.00 

2.2.2 Layer-Specific Three-Dimensional Residual Deformation 

As a step forward, Holzapfel and Ogden [139] proposed a layer-specific three-

dimensional residual stress model, in which the residual deformations (stretching and 

bending) of the three layers (intima, media and adventitia) from [143] were encompassed 

Neo-Hookean Gasser-Ogden-Holzapfel (GOH)
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and the residual stresses were calculated using the isotropic neo-Hookean model. In this 

section, we first replicate the stress distribution in [139] by using the original parameters 

of geometry, material and residual deformations. Next, physiological pressure is applied to 

the residually-stressed aorta.  

The deformation gradient tensors for intima (I), media (M) and adventitia (A) [133] 

are  

𝑭𝑅𝑆
(𝐼)(𝑟(𝐼)) =

𝑟(𝐼)𝑘(𝐼)

[𝐴(𝐼)2 + 𝑘(𝐼) 𝑙
𝐿(𝐼) (𝑟(𝐼)2 − 𝑎(𝐼)2)]

1
2

𝒆𝜃 ⊗ 𝑬𝛩 +
𝑙

𝐿(𝐼)
𝒆𝑧 ⊗ 𝑬𝑍

+
𝐿(𝐼)

𝑟(𝐼)𝑘(𝐼)𝑙
[𝐴(𝐼)2 + 𝑘(𝐼)

𝑙

𝐿(𝐼)
(𝑟(𝐼)2 − 𝑎(𝐼)2)]

1
2
𝒆𝑟 ⊗ 𝑬𝑅 

𝑭𝑅𝑆
(𝑀)

(𝑟(𝑀)) =
𝑟(𝑀)𝛽

𝐿(𝑀)
𝒆𝜃 ⊗ 𝑬𝑍 +

𝑙(𝑀)𝑘(𝑀)

𝜋 [𝐴(𝑀)2 +
𝛽𝑙(𝑀)𝑘(𝑀)

𝜋𝐿(𝑀) (𝑏(𝑀)2 − 𝑟(𝑀)2)]

1
2

𝒆𝑧

⊗ 𝑬𝛩 +
𝜋𝐿(𝑀)

𝑟(𝑀)𝛽𝑙(𝑀)𝑘(𝑀)
[𝐴(𝑀)2 +

𝛽𝑙(𝑀)𝑘(𝑀)

𝜋𝐿(𝑀)
(𝑏(𝑀)2 − 𝑟(𝑀)2)]

1
2

𝒆𝑟

⊗ 𝑬𝑅 

𝑭𝑅𝑆
(𝐴)

(𝑟(𝐴)) =
𝜋𝑟(𝐴)

𝐿2
(𝐴)

𝒆𝜃 ⊗ 𝑬𝑋2
+

𝑙

𝐿3
(𝐴)

𝒆𝑧 ⊗ 𝑬𝑋3
+

𝐿2
(𝐴)

𝐿3
(𝐴)

𝜋𝑟(𝐴)𝑙
𝒆𝑟 ⊗ 𝑬𝑋1

 
(2.8) 

The definitions and values of the parameters are referred to [139]. Values of the related 

parameters are listed in Table 2.4. 
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Table 2.4 - Material and residual deformation parameters from [139, 143]. In 

addition, 𝒍 = 𝟐. 𝟒𝟖𝒎𝒎, 𝒃(𝑰) = 𝒂(𝑴) and 𝒃(𝑴) = 𝒂(𝑨) can be calculated according to 

[139]. 

Intima Media Adventitia 

𝐴(𝐼) = 7.50𝑚𝑚 

𝐵(𝐼) = 7.76𝑚𝑚 

𝐿(𝐼) = 2.58𝑚𝑚 

𝑘(𝐼) = 1.19 

𝑎(𝐼) = 5.61𝑚𝑚 

𝜇(𝐼) = 39.8kPa 

𝐴(𝑀) = 8.41𝑚𝑚 

𝐵(𝑀) = 8.99𝑚𝑚 

𝐿(𝑀) = 2.52𝑚𝑚 

𝑘(𝑀) = 2.79 

𝜇(𝑀) = 31.4kPa 

𝐿1
(𝐴)

= 0.21𝑚𝑚 

𝐿2
(𝐴)

= 18.35𝑚𝑚 

𝐿3
(𝐴)

= 2.29𝑚𝑚 

𝑏(𝐴) = 7.05𝑚𝑚 

𝜇(𝐴) = 17.3kPa 

Similar to the procedures for the opening angle method, the hoop stress can be 

computed using the equilibrium equation and the boundary conditions. Interested readers 

are referred to [139] for details. A diastolic pressure (𝑃 = 80𝑚𝑚𝐻𝑔) is applied to the inner 

surface of the aorta, and we assume no axial stretch caused by in vivo loading conditions. 

The residual axial stretches have been incorporated in the deformation gradient tensors of 

each layer. The transmural mean hoop stress for the three-layer composite is defined as 

σ̅𝜃𝜃 =
1

𝑏(𝐴) − 𝑎(𝐼)
∑ ∫ 𝜎𝜃𝜃

(𝑖)
𝑑𝑟

𝑏(𝑖)

𝑎(𝑖)

 

𝑖=𝐼,𝑀,𝐴

 (2.9) 

As depicted in Figure 2.2, the mean hoop stress is identical to the thin-walled hoop stress.  
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Figure 2.2 - The transmural mean, thin-walled and layer-specific hoop stress 

distributions in the three layer composite wall when 0 and 80 mmHg pressures are 

applied. 

2.3 Finite Element Analyses Incorporating Patient-Specific Material Properties 

and Residual Deformations 

In this section, irregularities of patient-specific geometries are taken into account 

using FE analyses. The forward penalty approach is described in Section 2.3.1. In Section 

2.3.2, nonlinear FE with patient-specific material properties were performed on 4 ATAA 

geometries to verify the validity of static determinacy with respect to material properties. 

Static determinacy with respect to residual deformations was investigated in Section 2.3.3 

using a real patient geometry.  

2.3.1 The Forward Penalty Approach 

The prediction of the in vivo stress of the aortic wall has been relied on the recovery 

of the unloaded state and the incorporation of residual deformations, which requires the 

use of iterative techniques [134]. A simple and effective forward penalty approach [136, 

137] has been recently proposed to predict the in vivo thin-walled stress without knowing 
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the material properties. In statically determinate structures, the stress is independent of the 

material properties, it would be legitimate to assume an extremely stiff property, so that 

the deformation/change of shape from the unloaded configuration to the loaded 

configuration is infinitesimal/negligible. This allows us to use the in vivo configuration as 

the unloaded configuration for the forward penalty analysis because the deformation is 

infinitesimal. Please do not confuse the unloaded configuration for forward penalty 

analysis with the actual unloaded configuration. In our forward penalty approach, an 

artificially stiff material property (i.e. Young’s modulus 𝐸 = 2 × 104𝐺𝑃𝑎) is assigned to 

the aortic wall, realizing a penalty treatment to enforce a nearly rigid condition [137]. When 

the in vivo pressure is applied to the in vivo, image-derived geometry, the deformation 

would be infinitesimal due to the high stiffness of the material. The correct in vivo thin-

walled stress field is readily obtained in this forward analysis due to the fact that the aortic 

wall is approximately statically determinate. This stress computation approach was shown 

as effective as iterative approach [137]. Please note that the forward penalty method does 

not rely on realistic material property or deformation to achieve the correct stress field. 

Thus the approach cannot be used for predicting material property nor deformation. 

2.3.2 Nonlinear FE Simulations with Patient-Specific Material Properties 

The aortic tissue is described by the Gasser-Ogden-Holzapfel (GOH) model [34]. 

In this model, tissues are assumed to be composed of a matrix material with two families 

of embedded fibers, each of which has a preferred direction. The fiber directions can be 

mathematically described using two unit vectors. The strain energy function can be 

expressed by 
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𝑊 = 𝐶10(𝑰̅1 − 3) +
𝑘1

2𝑘2
∑[𝑒𝑥𝑝{𝑘2[𝜅𝑰1 + (1 − 3𝜅)𝑰4𝑖 − 1]2} − 1]

2

𝑖=1

+
1

𝐷
[
𝐽2 − 1

2

− ln 𝐽] (2.10) 

where 𝐶10, 𝑘1, 𝑘2, 𝜅 and 𝜃 are material parameters. 𝐶10 is material parameter to describe 

the matrix material. 𝑘1 is a positive material parameter that has the same dimension of 

stress, while 𝑘2 is a dimensionless parameter. The deviatoric strain invariant 𝑰1 is used to 

characterize the matrix material; and the deviatoric strain invariant 𝑰4𝑖 is used to 

characterize the fiber families. 𝑰4𝑖 is equal to squares of the stretches in the fiber 

directions. 𝜅 is used as a dispersion parameter describing the distribution of fiber 

orientation. When 𝜅 = 0, the fibers are perfectly aligned. When 𝜅 = 0.33, the fibers are 

randomly distributed, and the material becomes isotropic. The parameter 𝜃 defines the 

angle between mean local fiber direction and the circumferential axis of the local 

coordinate system. Please refer to [34, 144] for detailed definitions. The parameter 𝐷 

enforces the nearly incompressibility and is fixed to be 1 × 10−4.   

To examine the validity of static determinacy for ATAA, 4 ATAA geometries from 

a previous study [57] was used. Patient-specific GOH parameters were determined from 

biaxial tests [15]. The unpressurized geometries were obtained using the improved 

backward displacement method [140]. The stress fields can be computed using the 

unpressurized geometries and nonlinear finite deformation FE with the patient-specific 

material properties. Using the forward penalty approach with a stiff material (𝐸 =

2 × 104 𝐺𝑃𝑎 and 𝜈 = 0.49), the stress fields can be obtained on the image-derived 

geometries. We compared the stress fields computed from nonlinear finite deformation FE 
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with patient-specific material parameters, to the stress fields computed from forward 

penalty approach. As shown in Figure 2.3, the scalar-valued von Mises stress fields are 

visualized at the pressure level of 120mmHg. Mean absolute percentage error (MAPE) was 

calculated for the ATAA patients (named as ATAA1, ATAA2, ATAA3, and ATAA4), 

which is in the range of 6% ~ 10%. Here, residual deformation was not incorporated in the 

nonlinear FE models, and the stress fields with transmural variations were directly 

compared. The MAPE may be reduced by using transmural mean stress for the comparison. 

The results demonstrate that the forward penalty approach can produce the correct stress 

field with an acceptable accuracy.  
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Figure 2.3 - Comparison of von Mises stress computed using nonlinear FE with 

patient-specific material properties (a), (c), (e) and (g) and that computed from 

forward penalty approach (b), (d), (f) and (h). Pressure=120mmHg. Mean absolute 

percentage error (MAPE) for geometries ATAA1 ((a)&(b)), ATAA2 ((c)&(d)), 

ATAA3 ((e)&(f)) and ATAA4 ((g)&(h)) are obtained by taking the nonlinear FE 

computed stress as “true” value. 

2.3.3 Nonlinear FE Simulations Incorporating Different Opening Angles 
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A CT-derived geometry from the ATAA patient [57] were used. The inner surface 

of the aortic wall was divided into 4,950 M3D4 membrane elements in ABAQUS, using 

our previously developed remeshing algorithm [140]. Mesh sensitivity analysis was 

performed in previous work [57]. Due to partial volume effect, the wall thickness is 

difficult to infer from CT images, therefore a constant deformed thickness of 1.5 mm was 

assumed based on our previous work [140]. Sensitivity analyses with respect to the wall 

thickness were carried out later in this section. Next, the membrane mesh was extruded 

outwardly to create two solid meshes (C3D8 elements) with 8 and 9 layers. For the FE 

models, the axial direction (𝑧𝑧) was defined using the center line of the aorta geometry. 

Then, the outward normal direction (𝑟𝑟) of each membrane element in the inner surface of 

the aortic wall was obtained. The hoop direction (𝜃𝜃) was defined by taking cross product 

of the axial and outward normal directions. 

For the forward penalty approach, the same solid meshes were used, the thin-walled 

stress fields were computed by averaging the stress field across the wall thickness. It is also 

feasible to directly use membrane elements (inner surface of the aortic wall) for the 

computation of thin-walled stresses, details are discussed in Section 2.4. 

The generalized pre-stressing algorithm (GPA) [133, 145] is implemented in 

ABAQUS to predict the in vivo stress distribution with both the residual deformations and 

the pre-stresses incorporated. In GPA, the total deformation gradient 𝑭𝑡 is stored as a 

history variable for each integration point. 𝑭𝑡 is updated based on the incremental 

deformation gradient ∆𝑭 resulting from the prescribed load and boundary conditions.  
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𝑭𝑡+1 = ∆𝑭𝑭𝑡 (2.11) 

The incremental deformation gradient of the residual stress ∆𝑭𝑅𝑆 is first iteratively applied 

to the image-derived geometry and stored in 𝑭𝑡. Next, the incremental deformation 

gradient of the pre-stress ∆𝑭𝑃𝑆 resulting from the in vivo blood pressure is incrementally 

applied and stored in 𝑭𝑡. Thus, deformation gradient tensors associated with the residual 

stress 𝑭𝑅𝑆 and the pre-stress 𝑭𝑃𝑆 are accounted sequentially. The GPA is implemented in 

the ABAQUS user subroutine UMAT. The implementation was validated by comparing 

the analytical and FE results as in [133]. 

The thick-walled solid elements were first utilized to encompass the opening angle. 

Various values of the opening angle were incorporated through the GPA. Small opening 

angles may be unusual to observe in experiments, they are shown here for illustration 

purposes. The aorta was modelled as a single layer wall. This assumption may be relevant 

to abdominal aneurysmal tissue since collagen structure becomes nearly homogenous 

across the entire wall [146]. For ascending aortic aneurysms, collagen organization may be 

different in different layers [147]. The GOH model (Eqn. (2.10)) was used as the 

constitutive law, and the material parameters (shown in Table 2.3) were determined from 

fitting the biaxial data from [57] of the particular patient. The incompressibility parameter 

𝐷 is fixed to be 1 × 10−5.  

Transmural mean hoop stress (𝜎𝜃𝜃) was computed using Eqn. (2.7), the remaining 

in-plane components (𝜎𝑧𝑧 and 𝜎𝜃𝑧) were obtained similarly by taking average with respect 

to the thickness. Mean absolute error (MAE) and mean absolute percentage error (MAPE) 
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were used to compare the transmural mean stresses of the thin-walled and thick-walled 

models: 

𝑀𝐴𝐸(σ̅𝑖) =
1

𝑁
∑|σ̅𝑖,𝑛

(𝑡ℎ𝑖𝑛) − σ̅𝑖,𝑛
(𝑡ℎ𝑖𝑐𝑘)|,

𝑁

𝑛=1

  

𝑀𝐴𝑃𝐸(σ̅𝑖) =
1

𝑁
∑ |

σ̅𝑖,𝑛
(𝑡ℎ𝑖𝑛) − σ̅𝑖,𝑛

(𝑡ℎ𝑖𝑐𝑘)

σ̅𝑖,𝑛
(𝑡ℎ𝑖𝑐𝑘)

|

𝑁

𝑛=1

 
(2.12) 

where σ̅𝑖,𝑛
(𝑡ℎ𝑖𝑛) and σ̅𝑖,𝑛

(𝑡ℎ𝑖𝑐𝑘) are the transmural mean stress predicted by the thin-walled 

and thick-walled models respectively. 𝑖 denotes a scalar-valued in-plane component (𝜃𝜃 or 

𝑧𝑧) or an equivalent stress.  𝑛 is an element index for the thin-walled model and 𝑁 is the 

number of elements. Scalar-valued von Mises equivalent stress distributions computed 

using the in-plane stresses (𝜎𝜃𝜃, 𝜎𝑧𝑧 and 𝜎𝜃𝑧) are shown in Figure 2.4 (row 1 and row 4), 

more detailed views of von Mises stress distributions in a hoop are demonstrated in Figure 

2.5. The transmural mean von Mises stress 𝜎𝑉𝑀 was computed using the in-plane mean 

stresses (𝜎𝜃𝜃, 𝜎𝑧𝑧 and 𝜎𝜃𝑧). As can be seen in Figure 2.4 (row 2 and row 5), the transmural 

mean von Mises stress fields are almost identical for various opening angles and the 

forward penalty approach. The mean values, standard deviations (SD), MAEs and MAPEs 

of 𝜎𝜃𝜃, 𝜎𝑧𝑧 and 𝜎𝑉𝑀 are shown in Table 2.5. It can be observed that 𝜎𝜃𝜃, 𝜎𝑧𝑧 and 𝜎𝑉𝑀 have 

good agreements for the forward penalty approach and various opening angles. 
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Figure 2.4 - Predicted results using the forward penalty approach and the GPA 

approach with different opening angles: (1) von Mises stress distribution in the 

dissected view (row 1 and row 4), (2) the transmural mean von Mises stress (row 2 

and row 5), and (3) the signed transmural percentage error (row 3 and row 6). 
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Figure 2.5 - von Mises stress distribution in an aortic hoop using the forward penalty 

approach and the iterative approach (GPA) with different opening angles. 

To study the sensitivity of the MAPE of the transmural mean von Mises stress with 

respect to the thickness, three representative thickness values (1mm, 2mm and 3mm) were 

chosen with 𝛼 = 120°. The results are summarized in Table 2.6. Note that this opening 

angle value is chosen because the corresponding stress distribution is close to homogenized 

state in the FE simulation, and this value may not be consistent with the average value 

obtained from experiment [142]. We also notice that opening angle values are widely 

distributed according to [142], 120 degree can be considered as a feasible value.  

In order to quantify the transmural variation, we define a signed transmural 

percentage error (STPE), corresponding to the 𝑛th thin-walled element, as 

Forward Penalty, Transmural Mean
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𝑆𝑇𝑃𝐸(𝑛)

= 𝑠𝑖𝑔𝑛[𝜎𝑉𝑀,𝑛
(𝑡ℎ𝑖𝑐𝑘)(𝑎𝑛)

− 𝜎𝑉𝑀,𝑛
(𝑡ℎ𝑖𝑐𝑘)(𝑏𝑛)]

1

𝑏𝑛 − 𝑎𝑛
∫ |

𝜎𝑉𝑀,𝑛
(𝑡ℎ𝑖𝑐𝑘)(𝑟) − σ̅𝑉𝑀,𝑛

(𝑡ℎ𝑖𝑐𝑘)

σ̅𝑉𝑀,𝑛
(𝑡ℎ𝑖𝑐𝑘)

| 𝑑𝑟
𝑏𝑛

𝑎𝑛

 
(2.13) 

where 𝒂𝒏 and 𝒃𝒏 represent the inner and outer radii respectively, and 𝒓 is the radius. 

Table 2.5 - The mean values, standard deviations (SD), MAEs and MAPEs in terms 

of the in-plane mean stresses (𝝈̅𝜽𝜽 and 𝝈̅𝒛𝒛) and transmural mean von Mises stress 

(𝝈̅𝑽𝑴). 

  𝜎𝜃𝜃 𝜎𝑧𝑧 𝜎𝑉𝑀 

forward penalty mean±SD (kPa) 143.8±50.0 70.0±34.1 128.7±45.4 

𝛼 = 0° 

mean±SD (kPa) 143.4±50.1 69.7±31.2 127.4±45.7 

MAE (kPa) 1.1 4.7 1.6 

MAPE 0.73% 9.00% 1.33% 

𝛼 = 60° 

mean±SD (kPa) 143.4±50.2 69.6±31.2 127.5±45.8 

MAE (kPa) 1.1 4.8 1.6 

MAPE 0.74% 8.97% 1.34% 

𝛼 = 90° 

mean±SD (kPa) 143.4±50.2 69.6±31.2 127.5±45.8 

MAE (kPa) 1.2 4.8 1.6 

MAPE 0.74% 8.96% 1.34% 

𝛼 = 120° 

mean±SD (kPa) 143.4±50.2 69.5±31.2 127.5±45.8 

MAE (kPa) 1.2 4.8 1.6 

MAPE 0.75% 8.94% 1.35% 

𝛼 = 180° 

mean±SD (kPa) 143.5±50.3 69.3±31.2 127.5±45.9 

MAE (kPa) 1.2 4.8 1.7 

MAPE 0.76% 8.90% 1.35% 

𝛼 = 270° 

mean±SD (kPa) 143.5±50.3 69.2±31.2 127.6±46.0 

MAE (kPa) 1.2 4.7 1.6 

MAPE 0.78% 8.83% 1.37% 

𝛼 = 330° 

mean±SD (kPa) 143.5±50.4 69.0±31.2 127.6±46.0 

MAE (kPa) 1.2 4.7 1.7 

MAPE 0.79% 8.77% 1.38% 
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Table 2.6 - Sensitivity of MAPE w.r.t. the thickness. 

Wall thickness (mm) 1.0 2.0 3.0 

MAPE of 𝜎𝑉𝑀 1.36% 1.31% 1.05% 

The sign is given based on the difference between the inner and outer wall von Mises stress. 

If the inner wall stress is greater than the outer, the STPE is positive, otherwise the STPE 

is negative. 

From Figure 2.4 (row 3 and row 6), with increased opening angle, the mean signed 

transmural percentage error (MSTPE) changes from positive to negative. The probability 

density functions (PDFs) of the STPE are plotted in Figure 2.6.  The PDFs are fitted using 

the Gaussian distribution. It can be observed that the PDF shifts leftward with the increase 

of the opening angle. 

 

Figure 2.6 - The probability density function (PDF) of the STPE is shown in the 

histogram and fitted using the Gaussian distribution (left) and fitted PDFs 

correspond to different opening angles (right). 

2.3.4 Nonlinear FE Simulations Incorporating Layer-Specific Three-Dimensional 

Residual Deformations 
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For the layer-specific three-dimensional residual deformations, the deformation 

gradient tensors 𝑭𝑅𝑆
(𝑖) (𝑖 = 𝐼,𝑀, 𝐴) of Section 2.2.2 was incorporated in a FE simulation 

using the GPA. The ratio of intima, media and adventitia (18.53%, 45.56%, 35.91%) and 

the layer-specific GOH parameters (shown in Table 2.7) were taken from the median 

experimental value for human thoracic aortas in [51]. Layer-specific material parameter 

data for ATAA is also available in [22, 147]. The geometrical parameters determining the 

residual deformation of abdominal aorta from [139], same as Section 2.2.2 (Table 2.4), 

were directly used for the ATAA patient. [142] documented layer-specific residual stretch 

and opening angle data for ATAA. Unfortunately, it is not compatible with the current 

three-dimensional residual stress model [139]. Specifically, Holzapfel and Ogden [139] 

considered different geometries of reference configurations for different layers and would 

need more complicated experimental setups.  

Table 2.7 - Layer-specific GOH material parameters from [51]. 

 C10 (𝑘𝑃𝑎) k1(𝑘𝑃𝑎) k2 κ 𝜃(°) 

Intima 17 4340 13.32 0.20 46.5 

Media 14 140 11.90 0.21 38.4 

Adventitia 10 390 6.79 0.23 52.3 

Regardless of the discrepancy of the von Mises stress in the thickness direction 

(Figure 2.7, first row), the transmural mean von Mises stress field predicted by the forward 

penalty approach and the GPA are, again, almost identical, with a MAPE of 5.89% (Figure 

2.7, second row). Since the details of transmural distribution of von Mises stress is not 

clearly shown in the first row of Figure 2.7, we use Figure 2.8 to show von Mises stress 

distributions in a hoop predicted by method described in Section 2.3.1 (forward penalty) 
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and Section 2.3.3 (opening angle 𝛼 = 180°) and Section 2.3.4 (layer-specific 3D residual 

deformation), respectively. 

 

Figure 2.7 - Predicted results using the forward penalty approach and the iterative 

approach (GPA) with layer-specific three-dimensional residual deformations: (1) the 

von Mises stress distribution in the dissected view (row 1), (2) the transmural mean 

stress (row 2). 

 

Figure 2.8 - von Mises stress distribution in the aortic hoop using the forward 

approach, the GPA approach (α=180°) and the layer-specific 3D residual 

deformation. 
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2.4 Discussion 

One of the biggest obstacles in the field of biomechanical analysis of the aorta is 

the difficulty in obtaining both the patient-specific material properties and the patient-

specific residual deformations from in vivo clinical images. This study offers an appealing 

prospect that the transmural mean stress (or wall tension) of the aortic wall can be 

computed without knowing the mechanical properties and the residual deformations of the 

aortic tissue. Computation of patient-specific mean stress can be greatly simplified by using 

the forward penalty approach, which may be clinically valuable. In some wall strength tests 

[15, 148], the intact wall is tested without separation of each individual layer, which 

corresponds to the averaged wall strength across the wall thickness, consistent with the 

thin-wall assumption. The mean stress may be used together with the experimentally-

obtained strength to calculate an approximation of rupture risk such as the rupture potential 

index (RPI) [149].  

2.4.1 Comparison with Traditional Iterative Approach with Nonlinear Material 

Properties and Residual Deformations 

Because of the difference in constituents and thus mechanical properties, stress 

distribution may not be uniform in multi-layer models. The iterative approaches such as 

the GPA, may yield detailed results with through-thickness and layer-specific stress 

distributions using multilayered thick-walled models. Therefore, it would be natural to 

combine layer-specific wall stress distribution with available layer-specific wall strength 

data [22] for a more detailed rupture/dissection analysis. Nonetheless, residual 

deformations are shown to be highly patient-specific and axial location-dependent [142]. 
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Elastic properties also exhibit regional [21, 147] and intra-patient [57] variations. Thus, 

such complex patient- and layer-specific residual deformation and elastic property fields 

need to be noninvasively estimated for an accurate modeling prediction of clinical events 

(e.g. rupture). Currently, it is impossible to estimate the layer-specific and heterogeneous 

material and residual deformation parameters simultaneously from in vivo clinical images. 

We admit that stresses within each layer may be more useful than the mean stress for 

predicting some clinical adverse events such as aortic dissection. However, the mean stress 

is clinically valuable too because it is patient-specific, which does not depend on material 

parameters and residual deformations. 

2.4.2 The Transmural Mean Stress is Consistence with Homogenized Stress State 

The inclusion of residual deformation often reduces the hoop stress gradient, and 

thus tends to homogenize the hoop stress distribution in the in vivo deformed configuration 

[33, 128, 130, 132, 150, 151]. This makes the thin-walled stress, or the mean stress more 

physiologically relevant in the sense that it represents the ideal homogenized wall stress in 

single layer models. Homogenized stress state is an assumption for some growth models, 

e.g., [152], and the method proposed in [153] is based on smoothing the stress gradient. In 

this study, the incorporation of opening angles also tends to homogenize the hoop stress 

distribution as shown in Figure 2.1. In Figure 2.4, the MSTPE is close to 0 when 90~180 

degree opening angle is incorporated. However, this value seems to be lower than the 

average value obtained from experiment [142]. This might be due to the assumption of 

uniform material properties and uniform thickness in the computational model, which 

could impact the transmural stress distribution. We also notice that a wide range of opening 

angle is documented in [142], 90~180 degree opening angle can be considered feasible.  
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For comparison purposes, the same solid meshes in Section 2.3.3 were used when 

applying the forward penalty approach in Section 2.3.1. The transmural mean stress can 

also be computed by the forward penalty approach using membrane elements. For various 

opening angles when using membrane elements, the ranges of MAPEs are 

[3.03%, 3.09%], [27.37%, 27.65%] and [4.44%, 4.55%] for 𝜎𝜃𝜃, 𝜎𝑧𝑧 and 𝜎𝑉𝑀, 

respectively. 

2.4.3 Static Determinacy of Axial/Longitudinal Stress 

In general, the axial/longitudinal stress 𝜎𝑧𝑧 of a straight tube is statically 

determinate only when the longitudinal force is known. However, in the present study, the 

longitudinal force is unknown since a displacement boundary condition was used: the 

boundary nodes were only allowed to move in the radial directions. Interestingly, as 

demonstrated in Table 2.5, the transmural mean longitudinal stress 𝜎𝑧𝑧 of the ATAA can 

also be approximated by the forward penalty approach. This may be due to the fact that the 

geometry of ATAA is a curved tube, and the longitudinal forces acting on the boundaries 

are balanced with resultant force from in vivo pressure. Longitudinal forces computed using 

the forward penalty method and various opening angles are demonstrated in Figure 2.9. 

Because longitudinal forces for various opening angles are almost identical, thus only when 

𝛼 = 180° is plotted. The ascending aorta has in vivo longitudinal deformations/stretches 

due to the heart movements during cardiac cycles. Such boundary condition is very 

complex and it can be difficult to model in a FE simulation. The in vivo longitudinal 

boundary conditions would significantly impact the longitudinal stress field, which 

warrants further studies in the future. 
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Figure 2.9 - Longitudinal forces computed using the GPA approach (α=180°) and the 

forward penalty approach on the proximal (nodes 0~50) and distal (nodes 51~100) 

boundaries of the ATAA model. The longitudinal forces were summed across the wall 

thickness before plotting. Because longitudinal forces for various opening angles are 

almost identical, thus only when α=180° is plotted. 

2.5 Summary 

To summarize, due to static determinacy, the transmural mean stress in the in vivo 

configuration of the aorta is independent of mechanical properties and residual 

deformations. The forward penalty method, which enforces a rigid condition as the penalty 

treatment, can greatly simplify the computation of the mean stress for patient-specific 

geometries. 
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CHAPTER 3. INVERSE IDENTIFICATION OF IN VIVO 

HYPERELASTIC PROPERTIES OF THE AORTIC WALL 

 Accurate identification of in vivo nonlinear, anisotropic mechanical properties of 

the aortic wall of individual patients remains to be one of the critical challenges in the field 

of cardiovascular biomechanics. Since only the physiologically loaded states of the aorta 

are given from in vivo clinical images, inverse approaches, which take into account of the 

unloaded configuration, are needed for in vivo material parameter identification. Previous 

inverse methods largely relied on either computationally expensive FE models or 

simplifications of the geometry or material models. In the previous chapter, the aortic wall 

was shown to be statically determinate. In this chapter, we investigate a new inverse 

method based on static determinacy of the aortic wall. This approach consists of the 

following two steps: (1) computing an “almost true” stress field from in vivo geometries 

and loading conditions using static determinacy, and (2) building an objective function 

based on the “almost true” stress fields, constitutive equations and deformation relations, 

and identifying the unknown material parameters by minimizing the objective function. 

The method was validated through numerical experiments by using the in vivo data from 

four ascending aortic aneurysm (ATAA) patients. The results demonstrated that the method 

is computationally efficient. Using the novel inverse approach, we identified in vivo aortic 

tissue elastic properties of two ATAA patients from pre-operative gated CT scans. For 

comparison, corresponding surgically-resected aortic wall tissue samples were obtained 

and subjected to planar biaxial tests. Relatively close matches were achieved for the in 

vivo-identified and ex vivo-fitted stress-stretch responses. This novel approach may 
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facilitate the personalized biomechanical analysis of aortic tissues in clinical applications, 

such as TAA rupture risk analysis. It is hoped that further development of this inverse 

approach can enable an accurate identification of the in vivo material parameters from in 

vivo image data. Some of the results of this chapter is published in [125, 154]. 

3.1 Background 

Accurate identification of in vivo nonlinear, anisotropic mechanical properties of 

the vessel wall of individual patients has long been regarded as one of the critical 

challenges in the field of cardiovascular biomechanics [123]. Magnetic resonance imaging 

(MRI) [155], ultrasound [156, 157] and computed tomography (CT) [124] imaging 

techniques have been utilized to perform in vivo wall motion analyses. For example, MRI 

[155] and ultrasound [156, 157] studies of ATAA patients have highlighted disparities 

between the dilated and non-dilated ascending aorta mechanics. However, such direct 

measurements of in vivo aortic wall deformation can only provide insight on ATAA 

mechanical behaviors within the measured physiologic pressure range [124] (usually 

between 80mmHg- 120mmHg), whereas aneurysm rupture/dissection usually occurs under 

elevated arterial pressures (e.g., about 300mmHg) brought on by extreme emotional or 

physical stress [158]. Thus, patient-specific ATAA rupture analysis could benefit from 

estimating the full in vivo elastic properties using a constitutive model, which, 

consequently, can be utilized to predict ATAA mechanical response at various loading 

conditions.  

To exploit the 3D geometries obtained from multi-phase clinical image data, 

previous methods for in vivo material parameter identification largely rely on FE updating 
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schemes. Using FE updating methods, Wittek et al. [99, 100] developed two methods to 

determine GOH material parameters of the human abdominal aorta from in vivo 4D 

ultrasound data [157]. However, numerous iterations were needed to reach the optimal 

solution with a long computing time of 1~2 weeks. Such high computational cost could 

inhibit a practical use of these methods, particularly in a clinical setting requiring rapid 

feedback to clinicians. 

In this chapter, we proposed a new inverse approach based on stress computation 

for the in vivo nonlinear material parameter identification of the aortic wall. This method 

is less computationally expensive. Firstly, we leveraged the fact that the in vivo aortic wall 

stress is approximately statically determinate, which means, for given geometries and 

loading and boundary conditions under a known blood pressure, different material 

parameters and constitutive models will give nearly the same stress field. Therefore, the 

“almost-true” in vivo stress field at any cardiac phase can be obtained by using the forward 

penalty approach with sufficiently stiff material parameters. Secondly, given a constitutive 

model with an initial guess of the material parameters, by using the constitutive equations 

and deformation relation between the two loading states (e.g., diastolic and systolic 

pressures), we applied optimization algorithms to find the “true” material parameters such 

that the difference between the estimated and the “almost-true” stress fields is minimized. 

Since FE simulation is not used iteratively in this optimization process, our approach is 

much faster than the other methods [99, 100] that require numerous iterations of FE 

simulations. The developed inverse method was applied to identify in vivo nonlinear 

anisotropic material properties from clinical 3D gated CT images of two ATAA patients. 

For comparison, corresponding surgically-resected aortic wall tissue samples were 
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obtained and subjected to planar biaxial tests to extract their experimentally-derived 

material properties. The estimated material properties were compared with the 

experimentally-derived material properties. The proposed approach may facilitate the 

subject-specific biomechanics analysis of aortic wall stresses in clinical applications, such 

as TAA rupture risk analysis [57]. 

3.2 The Inverse Method 

3.2.1 Prerequisites and Assumptions 

Our method was formulated based on the following assumptions: (1) In vivo loaded 

geometries of the aorta and blood pressure levels are known at 2 phases, e.g., at diastole 

and systole; (2) Finite element meshes of the geometries at the two phases can be 

constructed with mesh correspondence, i.e., the displacement field from systole to diastole 

is obtainable, similar to the full field measurement [83]; (3) the thickness of the aortic wall 

can be either directly inferred from the clinical images or can be reasonably assumed; and 

(4) the residual stresses are ignored. In the previous chapter, we showed that the transmural 

mean stress is independent of residual deformations. The mesh correspondence condition 

may be satisfied by using 4D (3D+t) ultrasound image data processed with speckle tracking 

algorithms [159], or ECG-gated CT image data processed with surface tracking algorithms 

[160]; the heterogeneous thickness of the aortic wall may be extracted by using CT [161-

163], MR[164] and ultrasound [165, 166] imaging techniques.  

In this thesis, we only considered the homogeneous (average) constitutive behavior 

of the aortic segment and across the wall thickness. However, our approach can be extended 

to heterogeneous tissues since it is not based on the assumption of homogeneity. 
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3.2.2 Constitutive Model 

The anisotropic hyperelastic material model developed by Gasser et al. (Eqn. 

(2.10)) [34] was used to model the constitutive response of aortic wall tissue. Thus, the five 

material parameters, 𝐶10, 𝑘1, 𝑘2, 𝜅, 𝜃, needs to be identified from in vivo geometries and 

blood pressures. In this chapter, the material incompressibility parameter 𝐷 is fixed to 10−4 

during all computations.  

3.2.3 The Workflow for Constitutive Parameter Identification 

The workflow of our material parameter identification process is shown in Figure 

3.1. This approach utilizes the static determinacy of the aortic wall: an “almost-true” stress 

field of the aortic wall can be approximately determined by the geometry and blood 

pressure load, and only weakly depends on material properties. The static determinacy has 

been theoretically justified by Miller and Lu [135] and numerically verified by Lu et al. 

[167] and Joldes et al.[136]. Therefore, given the deformed configurations at the two 

cardiac phases, 𝒙𝒂 at the diastole phase and 𝒙𝒃 at the systole phase, the “almost-true” stress 

of each element 𝑚 of the aortic wall at the two phases, 𝝈̃𝒂
𝑚 and 𝝈̃𝒃

𝑚 , respectively, can be 

calculated by using the forward penalty approach (see Section 2.3.1). In this chapter, we 

use subscript 𝑎 and 𝑏 to denote the diastole and systole respectively, but generally they can 

represent any two loaded phases as long as the pressure levels and geometries are known. 

The relative deformation gradient 𝑭̃𝒂𝒃
𝑚  from the diastolic configuration to the systolic 

configuration can be calculated using the relative displacement field 𝒖𝒂𝒃 between the two 

configurations. As a result, the systolic stress of each element can be estimated by using 

the constitutive model with the candidate parameters and relative deformation gradient. 
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The estimated systolic stress,  𝝈̃𝒃
𝑚,  𝑒𝑠𝑡

, which depends on the constitutive parameters 

(𝐶10,  𝑘1,  𝑘2,  𝜅,  𝜃), can be compared with the “almost-true” systolic stress 𝝈̃𝒃
𝑚, and any 

discrepancy will indicate that the set of candidate parameters are different from the optimal 

“true” parameters and hence need to be adjusted by a nonlinear optimization algorithm.  

 

Figure 3.1 - The flowchart of the material parameter identification process. 

This optimization process can be formulated as follows: the objective is to find a 

set of constitutive parameters (𝐶10, 𝑘1, 𝑘2, 𝜅, 𝜃) that minimize the difference between the 

“almost-true” systolic tress 𝜎̃𝑏,𝑖
𝑚  and the estimated systolic tress 𝜎̃𝑏,𝑖

𝑚,𝑒𝑠𝑡
 for every integration 

point of each element 𝑚, which is defined as 

𝑔𝑒𝑟𝑟 = ∑ ∑[𝜎̃𝑏,𝑖
𝑚 − 𝜎̃𝑏,𝑖

𝑚,𝑒𝑠𝑡(𝐶10, 𝑘1, 𝑘2, 𝜅, 𝜃)]
2

6

𝑖=1

𝑁

𝑚=1

 (3.1) 

where 𝑁 is the number of elements used in the optimization, 𝑖 is the component index of 

the stress tensor in Voigt notation. At element 𝑚, 𝜎̃𝑏,𝑖
𝑚,𝑒𝑠𝑡

 is the component of the estimated 

Diastolic stress

Relative deformation 

gradient 

Systolic stress

Forward penalty approach

Relative displacement 

Data from in vivo image

Estimated systolic stress

Compare and

to adjust 

, 
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systolic stress given a set of candidate constitutive parameters (𝐶10, 𝑘1, 𝑘2, 𝜅, 𝜃). For a type 

of element that has more than one integration point such as C3D8 in the ABAQUS 

(Simulia, RI), we calculated the squared stress-errors at all integration points and sum them 

together as the value of the objective function of Eqn. (3.1).  

 The details of each step in the approach are presented in the following sections. The 

forward penalty approach (Section 2.3.1) that was used for calculating 𝝈̃𝒂
𝑚 and 𝝈̃𝒃

𝑚  is 

described in Section 3.2.4. The method for estimating  𝝈̃𝒃
𝑚,  𝑒𝑠𝑡

 is described in Section 3.2.5. 

The optimization process and the entire workflow are described in Section 3.2.6. To verify 

the approach, numerical experiments were carried out on the data from four ascending 

aortic aneurysm patients in Section 3.3. 

3.2.4  “Almost-True” Stress Computation using the Forward Penalty Approach 

In the previous chapter, it was shown that the aortic wall is statically determinate, 

and the forward penalty approach can be used to compute stress on the aortic wall without 

knowing material properties and residual deformations. Here, the stress computed by static 

determinacy is considered to be “almost-true”, i.e., very close to the true stress in the aortic 

wall. In this study, we selected a very stiff material (𝐸 = 2 × 104 𝐺𝑃𝑎 and 𝜈 = 0.49) for 

the aortic wall to obtain the wall Cauchy stress (Figure 3.1). The static determinacy was 

numerically validated in Section 2.3.2. 

3.2.5 Continuum Mechanics Framework for Systolic Stress Estimation 

In this section, we presented a method using the corotational coordinate frame to 

estimate the systolic stress (𝝈̃𝒃
𝑚,𝑒𝑠𝑡

) given the candidate material parameters 
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(𝐶10, 𝑘1, 𝑘2, 𝜅, 𝜃) of Eqn (2.10). Figure 3.2 illustrates the related variables in the unloaded 

configurations and the two deformed configurations. The diastolic deformation gradient 

𝑭𝒂 contains complete information about rotation and stretch that can be uniquely defined 

via polar decomposition 

𝑭𝒂 = 𝑽𝒂𝑹𝒂 = 𝑹𝒂𝑼𝒂 (3.2) 

where 𝑽𝒂 is the left stretch tensor, 𝑼𝒂 is the right stretch tensor, 𝑹𝒂 is the rotation tensor. 

We defined two coordinate systems CSYSI and CSYSII, where CSYSI refers to a fixed 

Cartesian coordinate system, and CSYSII is the coordinate system corotated with the 

diastolic rotation 𝑹𝒂. Let 𝛺0 be the unloaded configuration and 𝛺0
′  be the corotated 

unloaded configuration obtained by applying the diastolic rotation 𝑹𝒂 on 𝛺0. 𝛺𝑎 and 𝛺𝑏 

are the diastolic and systolic configurations respectively.  
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Figure 3.2 - Deformation measures that map the unloaded configuration 𝜴𝟎, the 

corotated unloaded configuration 𝜴𝟎
′ , the diastolic configuration 𝜴𝒂 and the systolic 

configuration 𝜴𝒃. 

As shown in Figure 3.2, the diastolic deformation gradient 𝑭𝒂, the systolic 

deformation gradient 𝑭𝑩 and the relative deformation gradient 𝑭𝒂𝒃 in CSYSI are defined 

through: 

𝑭𝒂 =
𝜕𝒙𝒂

𝜕𝐗𝟎
, 𝑭𝑩 =

𝜕𝒙𝒃

𝜕𝑿𝟎
, 𝑭𝒂𝒃 =

𝜕𝒙𝒃

𝜕𝒙𝒂
 (3.3) 

where 𝑿𝟎, 𝒙𝒂 and 𝒙𝒃 are coordinate vectors of the unloaded, diastolic and systolic 

configurations respectively, which are defined in CSYSI. Similarly, the deformation tensors 

𝑽̃𝒂, 𝑭̃𝒂𝒃, 𝑭̃𝒃, are measured in CSYSII.  

CSYSI

CSYSII
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Given the diastolic Cauchy stress, we need to first inversely compute the diastolic 

deformation gradient 𝑭𝒂 in order to obtain the systolic deformation gradient. The main 

challenge came from the fact that the symmetric Cauchy stress tensor has only 6 

independent components, which makes it impossible to get a unique solution of the 

diastolic deformation gradient 𝑭𝒂 that has 9 independent components. To solve this issue, 

taking advantage of the material objectivity [144, 168],  we have the following restriction 

on the constitutive function ℎ using the corotational frame 

𝝈𝒂 = 𝑹𝒂𝝈̃𝒂𝑹𝒂
𝑇 = ℎ(𝑭𝒂) = 𝑹𝒂ℎ(𝑽̃𝒂)𝑹𝒂

𝑇 (3.4) 

where 𝝈̃𝒂 is the diastolic Cauchy stress observed in CSYSII. Instead of fully computing the 

deformation gradient 𝑭𝒂, knowing the 𝝈̃𝒂, the only quantity we need to explicitly derive is 

the left stretch tensor 𝑽̃𝒂 in CSYSII (the value of  𝑽̃𝒂  is equal to 𝑼𝒂 in CSYSI,  𝑽̃𝒂 =

𝑹𝒂
−1𝑽𝒂𝑹𝒂 = 𝑹𝒂

−1𝑭𝒂 = 𝑼𝒂). According to the chain rule, we can arrive at the relation 

among the deformation gradients 

𝑭̃𝒃 = 𝑭̃𝒂𝒃𝑽̃𝒂 (3.5) 

where 𝑭̃𝒂𝒃 is known. As a result, the systolic Cauchy stress 𝝈̃𝒃 can be correctly recovered 

in CSYSII. 

On account of the nature of strain energy function Ψ(𝑭), i.e. 𝝈 is always expressed 

in terms of deformation in a forward computation, given a deformation gradient, the 

Cauchy stress of a hyperelastic material can be calculated using [35] 
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𝝈 = 𝝈𝑣𝑜𝑙 + 𝝈𝑖𝑠𝑜 = 𝑝𝑰 + 𝐽−1𝑭̅𝐷𝑒𝑣(𝑺̅)𝑭̅𝑇 (3.6) 

where 𝝈𝑣𝑜𝑙 and 𝝈𝑖𝑠𝑜denotes the volumetric and isochoric contribution respectively, 𝑝 is the 

hydrostatic pressure 𝑝 = 𝑑𝑊𝑣𝑜𝑙(𝐽)/𝑑𝐽, 𝑰 is identity. 𝑭̅ is the modified deformation gradient 

calculated by 𝑭̅ = 𝐽−1/3𝑭. 𝑺̅ can be expressed by 𝑺̅ = 2𝜕𝑊𝑖𝑠𝑜(𝑪̅)/𝜕𝑪̅ and 𝐷𝑒𝑣(∎) =

(∎) − (1/3)[(∎): 𝑪]𝑪−1, where the modified right Cauchy-Green deformation tensor 𝑪̅ =

𝐽−2/3𝑪. For fixed constitutive parameters, the stress 𝝈 is essentially a function of 𝑭. If a 

deformation does not have rotation, we can also compute 𝝈 using the above formulations 

by substituting 𝑭 with left stretch tensor 𝑽.  

An inverse computation scheme was introduced to compute the diastolic left stretch 

tensor 𝑽̃𝒂 in the CSYSII. Nonlinear least square optimization was used for the computation 

of 𝑽̃𝒂, with 6 unknowns and as many as the number of equations. The objective function 

was defined by   

𝑓𝑒𝑟𝑟 = ∑[𝜎̃𝑎,𝑖  − 𝜎̃𝑎,𝑖
𝑒𝑠𝑡(𝑽̃𝒂)]

2
   

6

𝑖=1

 (3.7) 

where the stress tensor is represented in Voigt notation. 𝜎̃𝑎,𝑖
𝑒𝑠𝑡 represents the components of 

estimated diastolic stress computed using a guess of 𝑽̃𝒂. The trust region algorithm is used 

and gradients are estimated using finite differences. The optimization was implemented in 

MATLAB (Mathworks, MA), and a numerical validation was performed in Section 0. 

3.2.6 Implementation of the Inverse Method 
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The FE simulations were performed in ABAQUS/Standard 6.14 using the 3D brick 

element C3D8. Since the stress of each integration point in an element outputted from 

ABAQUS is in the local coordinate system associated with the element, the local 

coordinate system of the output diastolic stress 𝝈̃𝒂 of the element is defined as CSYSII. The 

systolic stress of the same element output from ABAQUS was converted to 𝝈̃𝒃 in CSYSII. 

Here, the forward penalty approach was used to obtain 𝝈̃𝒂 and 𝝈̃𝒃 at the two phases. For 

convenience, displacement 𝒖𝒂𝒃 was applied as a boundary condition at every node in 

ABAQUS to obtain the relative deformation gradient, which is output and converted to 

𝑭̃𝒂𝒃 in CSYSII.   

The workflow of the parameter estimation process is depicted in Figure 3.3. The 

inner loop is responsible for the inverse calculation of the left stretch tensor 𝑽̃𝒂 at each 

element, the second loop is repeated for all of the elements, and the outer loop updates 

candidate material parameters in each iteration. The method was implemented in 

MATLAB. We used the finite difference and trust-region-reflective algorithm for the 

optimization, which is “lsqnonlin” in MATLAB.  
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Figure 3.3 - Implementation of the constitutive parameter identification. 
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3.3 Numerical Validations 

The approach was validated by numerical experiments. Clinical cardiac CT image 

data at the systolic phase (assuming 120mmHg systolic pressure) from four de-identified 

patients with ascending aortic aneurysms (ATAA) were chosen for the verification (same 

as Section 2.3.2), whose “true” constitutive parameters were extracted from 7-protocol 

biaxial tensile tests in a previous study [15, 63] by nonlinear regression. The “true” material 

parameters are within the upper and lower bounds, which are also comparable to other 

testing results [51, 169, 170]. The initial value, upper and lower bounds of the constitutive 

parameters are shown in Table 3.1. 

Table 3.1 - Initial value, upper and lower bounds of constitutive parameters. 

 C10 (𝑘𝑃𝑎) k1(𝑘𝑃𝑎) k2 κ 𝜃(°) 

Initial 50 5000 25 1/6 45 

Lower bound 0 0 0 0 0 

Upper bound 100 10000 50 1/3 90 

The geometries of the aorta were reconstructed by using the semi-automatic method 

developed in our previous study [171]. For simplicity, the branches at the aortic arch were 

trimmed. We used the following methods to numerically obtain the “true” geometries and 

stress fields at the diastolic and systolic phases. We assigned experimentally derived 

material parameters [15] to the corresponding geometries. From CT image data, the 

unloaded geometries were recovered by the backward displacement method [121], and they 

were assumed to have a constant wall thickness of 2 mm [57].  The “true” diastolic and 

systolic geometries were obtained from FE simulations by applying diastolic (P=80mmHg) 

and systolic (P=120mmHg) pressures on the unloaded geometries. Thus, this only 

represents an idealized situation where the influence of residual stress is not present in the 
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numerically generated data. Each finite element mesh consists of 10,000 nodes and 4950 

elements. Mesh convergence analysis was performed in our previous work [57], and the 

number of elements is adequate for accurate stress predictions. Mesh correspondence at the 

two phases was automatically established because the two meshes at the two phases were 

deformed from the same mesh at the unloaded state.  

In all FE simulations, constant pressures were applied uniformly to the inner surface 

of the FE models, and the boundary nodes of the models, i.e. the proximal and distal ends 

of the models, were constrained to only allow displacement in the radial direction in the 

local cylindrical coordinate system. The centerline of the aorta was estimated to define the 

axial direction of the local coordinate system, and the radial direction was computed using 

the outward normal direction of the outer surface of the aorta. The local coordinate system 

followed the average rotation of the element [144], the stress of an element was outputted 

in the rotated coordinate system. In the parameter estimation procedure, five layers of 

elements adjacent to the mesh boundaries were excluded in order to avoid the boundary 

layer phenomenon [135]: the influence of material properties is pronounced only in a thin 

layer near the fixed edge; and the stress approaches asymptotically a static solution outside 

the boundary layer. 

3.3.1 Inverse Computation of Diastolic Left Stretch Tensor 

The validation for the inverse computation of  𝑽̃𝒂 was performed by using randomly 

generated 𝑭𝒂 and the “true” material parameters of patient ATAA2 (“BAV17” in 

CHAPTER 2). For the given set of constitutive parameters, the Cauchy stress 𝝈𝒂 = ℎ(𝑭𝒂) 

was computed and rotated to 𝝈̃𝒂 in CSYSII (Figure 3.2). The “true” 𝑽̃𝒂 = 𝑹𝒂
𝑇𝑽𝒂𝑹𝒂 was 
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computed by using polar decomposition and coordinate transformation of 𝑭𝒂. Using the 

inverse computation scheme from Section 3.2.5, we estimated the Cauchy stress and left 

stretch tensor in CSYSII  𝝈̃ 𝒂
𝑒𝑠𝑡  = ℎ( 𝑽̃ 𝒂

𝑒𝑠𝑡 ). The mean errors between the components of 

the estimated 𝑽̃ 𝒂
𝑒𝑠𝑡 and “true” 𝑽̃𝒂 were calculated. The procedure was implemented in 

MATLAB, and it was repeated for numerous randomly generated 𝑭𝒂. As shown in Figure 

3.4, the result demonstrated that the error of the estimated left stretch tensor was negligible, 

and the optimization algorithm worked well for the inverse computation.  

 

Figure 3.4 - Validation of the inverse computation of left stretch tensor 𝑽̃𝒂 using the 

constitutive parameters of patient ATAA2 (𝑪𝟏𝟎,  𝒌𝟏,  𝒌𝟐,  𝜿,  𝜽) =
(𝟐𝟗. 𝟗𝟏, 𝟓𝟏𝟐. 𝟓𝟔, 𝟎. 𝟎𝟎, 𝟎. 𝟑𝟏𝟗𝟎, 𝟗𝟎. 𝟎𝟎). The error is calculated by comparing the 

estimated 𝑽̃ 𝒂
𝒆𝒔𝒕 with “true” 𝑽̃𝒂, the error bars represent the standard deviations. 

3.3.2 Constitutive Parameters Identification 

We applied the method to estimate the material parameters of the four patients 

(ATAA1, ATAA2, ATAA3, and ATAA4). To evaluate the estimation results, in 

MATLAB, we simulated biaxial tensile stretches of 3 protocols using the estimated 

parameters and the “true” parameters, and the stresses and stretches in the circumferential 

and axial directions were compared. 𝜎1 and 𝜆1 denote the circumferential stress and stretch. 
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𝜎2 and 𝜆2 denote the axial stress and stretch. For each patient, we obtained 𝜎1 and 𝜎2 using 

the following 3 protocols: (1) in the circumferential strip biaxial tension, we fixed 𝜆2 = 1 

while increasing 𝜆1; (2) in the equi-biaxial tension, we kept the ratio 𝜆1/𝜆2 = 1; (3) in the 

axial strip biaxial tension, we fixed 𝜆1 = 1 while increasing 𝜆2.  

 During the optimization process, the parameters were converged in iterations from 

the initial values toward the optimal values. An example from patient ATAA2 is shown in 

Figure 3.5. The optimization started from a set of initial parameters representing a very 

stiff material, and gradually the stretch-stress curves converged and approached to the 

“true” curve.  

 

Figure 3.5 - Convergence of the optimization for ATAA2. The solid black line is the 

“true” curve, and the dashed curves correspond to the estimated parameters in each 

iteration. Stress in the circumferential direction is plotted. 

After running the parameter estimation procedure for each patient, the estimated 

material parameters were compared with the “true” parameters, and the result is shown in 

Table 3.2, which demonstrated that the estimated parameters have good agreement with 

number of 

iterations

12

1
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the “true” values, except 𝜃. To evaluate how the difference between the estimated and the 

“true” parameters affects stress and stretch, we plotted the stretch-stress curves from 

numerical experiments in Figure 3.6. The coefficient of determination was calculated to 

measure the discrepancy between the estimated and “true” curves for each patient, as 

shown in Table 3.3. The mean and standard deviation of the systolic stresses are shown in 

Figure 3.7. Close agreements can be clearly seen. In addition, it was observed that the stress 

in the circumferential direction was largest in all cases and approximately twice the axial 

stress; the stress across the thickness and the shear stress were relatively small. 

Table 3.2 - “True” and estimated constitutive parameters of the four patients. 

Patient  C10 (𝑘𝑃𝑎) k1(𝑘𝑃𝑎) k2 κ 𝜃(°) 

ATAA1 
“True” 22.91 3622.72 0.00 0.3216 0.00 

Estimated 10.57 3001.25 1.12 0.3079 35.60 

ATAA2 
“True” 29.91 512.56 0.00 0.3190 90.00 

Estimated 33.52 512.32 0.01 0.3160 86.82 

ATAA3 
“True” 28.82 222.76 4.37 0.2935 0.00 

Estimated 24.23 196.47 3.67 0.2933 22.79 

ATAA4 
“True” 25.41 285.19 11.19 0.3284 0.00 

Estimated 28.42 287.96 12.15 0.3260 40.37 
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Figure 3.6 - Stretch-stress curves in 3-protocol numerical stretch-controlled tensile 

experiments for (1) strip biaxial tension in the circumferential direction (a), (d), (g) 

and (j); (2) equi-biaxial tension (b), (e), (h) and (k); (3) strip biaxial tension in the axial 

direction (c) (f) (i) and (l). The comparison of “true” and estimated curves for one 

patient is in the same row, i.e., (a)(b)(c) for ATAA1, (d)(e)(f) for ATAA2, (g)(h)(i) for 

ATAA3, (j), (k)(l) for ATAA4. 
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Table 3.3 - Coefficient of determination in the stretch-stress curves for the four 

patients. 

Patient 
𝑅2 in protocol 1 𝑅2 in protocol 2 𝑅2 in protocol 3 

𝜎1 𝜎2 𝜎1 𝜎2 𝜎1 𝜎2 

ATAA1 0.987 0.987 0.998 0.988 0.998 0.990 

ATAA2 0.981 0.973 0.989 0.981 0.992 0.985 

ATAA3 0.974 0.995 0.908 0.959 0.781 0.920 

ATAA4 0.968 0.891 0.983 0.967 0.997 0.989 

 

 

Figure 3.7 - Comparison of “true”, “almost-true” (i.e. computed from the forward 

penalty approach), and estimated systolic stress from optimization for patient (a) 

ATAA1, (b) ATAA2, (c) ATAA3 and (d) ATAA4. The error bars represent the 

standard deviation. 

(a) (b)

(c) (d)
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The parameter estimation program was run on a desktop computer with quad-core 

CPU and 32 GB RAM. Table 3.4 shows the computing time cost for each patient. All of 

the computations were done within 2 hours, much faster than other methods reported in the 

literature [99, 100]. 

Table 3.4 - Time spent for the parameter estimation for each patient. 

 ATAA1 ATAA2 ATAA3 ATAA4 

Time cost(min) 56 104 117 84 

3.4 Experimental Validation 

3.4.1 Image Data and Corresponding Tissue Specimens 

With Institutional Review Board (IRB) approvals, aortic tissue specimens from two 

patients (Patient 1: a 67 year-old male; Patient 2: a 68 year-old female) ATAA who 

underwent surgical repair was obtained from the Emory University Hospital, Atlanta, GA. 

The 10-phase preoperative ECG-gated CT data and systolic and diastolic blood pressure 

levels were obtained prior to the intervention. A complete waiver of HIPAA authorization 

and informed consent was granted by the Emory IRB. All data was collected 

retrospectively and de-identified and all methods were performed in accordance with the 

relevant guidelines and regulations. The CT images had a scan matrix size of 256×256, in-

plane pixel size of 0.75mm×0.75mm and slice thickness of 1mm. Unfortunately, only part 

of ATAA of Patient 1 was imaged from the multiphase CT data. For each patient, the 

systolic and diastolic aorta geometries (Figure 3.8, depicted in red) were reconstructed 

following our established protocol [171]. Wall thickness of the aorta can be obtained from 

high resolution CT images according to Shang et al [163]. The thickness values were 
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measured at 16 locations (Figure 3.9) from cross-sectional planes of the ATAA segment 

(Figure 3.8 and Figure 3.9, depicted in yellow) in the systolic phase. For each patient, 

surgically-excised aneurysmal tissue were dissected into 2~3 square-shaped specimens (2 

specimens for Patient 1 and 3 specimens for Patient 2) for biaxial tensile tests. For one 

square-shaped specimen, the wall thickness values were measured at 3 equally-spaced 

locations along the diagonal line.  

 

Figure 3.8 - CT image segmentation of the aorta (red) and ATAA segment (yellow) 

for the two patients. 

Patient 1 Patient 2
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Figure 3.9 - Measuring wall thickness from CT scans. 

After image segmentation, each aorta geometry was represented by a triangular 

mesh. For each patient, since the diastolic aorta geometry Ω𝑑𝑖𝑎 and systolic aorta geometry 

Ω𝑠𝑦𝑠 have different numbers of nodes and elements, the displacement field from diastole 

to systole cannot be directly calculated. To obtain the displacement field, mesh 

correspondence between diastolic and systolic phases needs to be established. Herein, non-

rigid ICP registration [172] and TPS fitting [173] algorithms were applied to find a 

nonlinear coordinate transform 𝑇 from the template geometry Ω𝑑𝑖𝑎 to the target geometry 

Ω𝑠𝑦𝑠, such that the distance between  Ω𝑠𝑦𝑠 and the transformed template geometry 𝑇(Ω𝑑𝑖𝑎) 

is minimized (Figure 3.10 (A)(B)). Please refer to Amberg et al [172] for details of the 

registration method. The geometries of ATAA segment at diastolic phase were remeshed 

with quadrilateral elements (Figure 3.8, yellow) using our previous remeshing algorithm 

[140]. Using the transform 𝑇, the quad ATAA meshes were transformed onto the surface 

of the ATAA segment at systolic phase (Figure 3.10 (C)). Thus, we obtained diastolic and 

systolic quad meshes of the ATAA with mesh correspondence.  
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Figure 3.10 - Surface registration and transform to establish mesh correspondence. 

(A) Diastolic geometry 𝛀𝐝𝐢𝐚 and systolic geometry 𝛀𝐬𝐲𝐬 from image segmentation. (B) 

A nonlinear transform 𝐓 from diastolic to systolic phase was obtained using non-rigid 

ICP registration [172] and thin-plate spline (TPS) fitting [173] algorithms, and 

therefore the distance between  𝛀𝐬𝐲𝐬 and the transformed geometry 𝐓(𝛀𝐝𝐢𝐚) is 

minimized. (C) Diastolic and systolic quad meshes of the ATAA with mesh 

correspondence. 

We assume that the aortic wall is quasi-static at diastole and systole, respectively. 

Using the CT-derived geometries and corresponding blood pressure levels, the inverse 

method based on static determinacy (Section 3.2) was applied to identify in vivo material 

parameters.  

3.4.2 Biaxial Testing Protocols 

Stress-controlled biaxial tensile tests were performed on corresponding surgically-

resected tissue samples of the two patients. Frozen tissue samples were submerged in a 37 

°C water bath until totally defrosted, following the two-stage slow thawing method to 

remove the cryopreserving agent [174]. The samples were trimmed into 2~3 square-shaped 

specimens (2 specimens for Patient 1 and 3 specimens for Patient 2) with a side length of 

20~25 mm. Each specimen was subjected to biaxial tension with the circumferential (θ) 

Image Segmentation Results Find the Nonlinear Transform Quad Meshes with Correspondence

(A) (B) (C)

systole

diastole
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and longitudinal (𝑧) directions aligned with the primary axes of the biaxial test fixture. A 

stress-controlled biaxial testing protocol was used [15, 25]. 𝑵 denotes the nominal stress, 

and the ratio 𝑁θ: 𝑁𝑧 was kept constant. Each tissue specimen was preconditioned for at 

least 40 continuous cycles with 𝑁θ: 𝑁𝑧 = 1: 1 to minimize tissue hysteresis. Seven 

successive protocols were performed using ratios 𝑁θ: 𝑁𝑧 =

0.75: 1, 0.5: 1, 0.3: 1, 1: 1, 1: 0.75, 1: 0.5, 1: 0.3. The GOH model parameters for each 

specimen were obtained by fitting the biaxial stretch-stress response in MATLAB. To 

obtain material parameters that approximately represent an average response, the stretch-

stress data for all specimens from the same patient was fitted simultaneously.    

3.4.3 Wall Thickness and Blood Pressures 

Table 3.5 - Measured wall thickness (mean ± standard deviation) from CT scans and 

surgically-resected tissue. 

Patient Source Wall thickness (mm) 

1 
ex vivo 2.29 ± 0.08 

in vivo 1.57 ± 0.60 

2 
ex vivo 1.95 ± 0.40 

in vivo 1.61 ± 0.37 

Table 3.6 - Diastolic and systolic blood pressure for the two patients. 

Patient Phase Blood pressure (mmHg) 

1 
diastole 95 

systole 149 

2 
diastole 80 

systole 156 

The wall thickness values from in vivo and ex vivo measurements are shown in 

Table 3.5. Diastolic and systolic blood pressures for the two patients are reported in Table 
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3.6. The blood pressure levels were measured at the time of the patients’ visits for CT 

scans. 

3.4.4 In Vivo-Identified and Ex Vivo-Fitted Material Properties 

The inverse approach can be completed in about 1 hour with less than 100 FE 

iterations using a quad-core CPU with 32GB memory. The in vivo-identified and ex vivo-

fitted material parameters are shown in Table 3.7. The coefficient of determination (R2) 

values between the ex vivo-experimental and ex vivo-fitted stress/strain data are also 

reported in Table 3.7. 

Table 3.7 - In vivo-identified and ex vivo-fitted material parameters for the two 

patients. 

Patient Source C10 (𝑘𝑃𝑎) k1(𝑘𝑃𝑎) k2 κ 𝜃(°) R2 

1 

ex vivo all 18.74 100.85 16.67 0.2800 0.00 0.95 

ex vivo 1 19.80 75.40 18.59 0.2809 0.00 0.95 

ex vivo 2 17.44 132.87 13.42 0.2812 0.00 0.96 
 in vivo 3.73 429.37 2.81 0.3208 50.54  

2 

ex vivo all 21.73 669.69 4.97 0.3200 34.28 0.58 

ex vivo 1 16.33 8.05 5.14 0.0000 0.00 0.93 

ex vivo 2 12.78 167.39 0.00 0.3035 90.00 0.96 

ex vivo 3 39.10 1157.64 0.00 0.3199 0.00 0.98 
 in vivo 3.49 913.99 1.20 0.2680 77.09  

 

A more informative way for comparing material properties obtained from the 

inverse method and experiments, is to plot the stress-stretch curves computed from material 

parameters. We use 𝜎θ and 𝜆θ to denote the circumferential stress and stretch, 𝜎z and 𝜆z to 

denote the longitudinal stress and stretch. Thus, stress-stretch curves are plotted using the 

in vivo-identified and ex vivo-fitted material parameters with three 𝜆θ: 𝜆z ratios, namely 
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three protocols: (1) in the circumferential strip biaxial protocol, fixing 𝜆z = 1 while 

increasing 𝜆θ; (2) in the equi-biaxial protocol, keeping the ratio 𝜆θ: 𝜆z = 1: 1; (3) in the 

longitudinal strip biaxial protocol, fixing 𝜆θ = 1 while increasing 𝜆z. The stress-stretch 

curves determined by the estimated parameters were compared with the stress-stretch 

curves derived from biaxial data. As plotted in Figure 3.11, the two specimens of Patient 1 

demonstrate almost identical stretch-stress response, whereas the three tissue specimens of 

Patient 2 show different stress-stretch responses, which indicate that the material properties 

are heterogeneously distributed. MAPE is computed to measure the goodness-of-fit 

between in vivo-identified and ex vivo-fitted average curve (ex vivo-all). For both patients, 

the average response shows relatively good agreements with the identified stretch-stress 

curves. 



 91 

 

Figure 3.11 - Stress-stretch curves determined from the in vivo-identified material 

parameters and ex vivo-fitted material parameters for Patient 1 ((A)~(F)) and Patient 

2 ((G)~(L)). Left column: strip-biaxial protocol in the circumferential direction; 

middle column: equi-biaxial protocol; right column: strip-biaxial protocol in the 

longitudinal direction. First and third rows: circumferential stress, second and fourth 

rows: longitudinal stress. The average response is indicated by 'ex vivo all'. Q1 and 

Q3 denote the 25% and 75% interquartile of in vivo stress range. 

3.5 Discussion 

In this study, we presented a novel inverse method that can estimate the in vivo 

material properties of the aortic wall in a fast and accurate manner. The method utilized 

the fact that the static determinacy can be used to estimate the in vivo stress distributions 

of the loaded aortic wall, provided the in vivo geometry and loading conditions of the aortic 
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wall are known. We built an objective function (Eqn. (3.1)) directly from the constitutive 

equations to iteratively search for the optimal material parameters. The accuracy of the 

method was numerically validated by using four ATAA patient data. The constitutive 

parameters and the aortic wall material responses have been successfully recovered. 

Despite the discrepancy in numerical values of the constitutive parameters, the inverse 

method and experiments achieved relatively good agreement in the biaxial stress-stretch 

curves. 

3.5.1 Computational Cost 

This approach is much less computationally expensive (1-2 hours) than the iterative 

FE simulation based approach [99, 100] (1-2 weeks), because It avoids solving finite 

element problems iteratively. We defined the objective 𝑓𝑒𝑟𝑟 and 𝑔𝑒𝑟𝑟 in terms of stress, and 

the analytical expression of the Jacobian (i.e. derivative of the objective function with 

respect to constitutive parameters) exists, which means the Jacobian can be well 

approximated by finite difference. This probably helps the optimization to converge in a 

relatively small number of iterations, e.g., 12 iterations for patient ATAA2.  

In general, the constitutive parameter optimization problem is nonlinear, 

multivariate and non-convex; and such a problem may exhibit several local optima. 

Jacobian-based optimization methods (e.g. the method used in this approach) may not 

guarantee a global optimum as shown by the difference in parameters in Table 3.2. 

However, using the sub-optimal parameters, we obtained very good material responses and 

wall stress distributions compared to the “true” values, and therefore the sub-optimal 
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parameters are indeed acceptable. Optimization using many initial guesses may improve 

the results, but it will lead to a much longer computing time. 

3.5.2 Discrepancies in Material Properties 

In the numerical validations, the largest error can be observed in the constitutive 

parameter 𝜃, describing the local fiber mean direction, which is possibly caused by the fact 

that the parameter κ derived from biaxial experiment is close to 1/3 (isotropic), and 

therefore 𝜃 does not affect the stress computation. The difference between the “true” stress 

field computed from nonlinear finite deformation FE and the “almost-true” stress field 

computed from the forward penalty approach is clearly visible in Figure 2.3 and Figure 

3.7. This discrepancy probably came from the boundary effects [135]. The restricted 

boundary nodes limited the axial deformation of the aorta model. Although the  “almost-

true” stress alone can be used in many applications, such as  using the stress-based rupture 

potential index as an aneurysm rupture risk predictor [149], different tissue damage and 

failure models exist such as accumulated energy [175, 176], stretch based criterion [31] 

and distensibility [177] which rely on the deformation and thus depend on patient-specific 

material properties. Previous works in our group [57] showed that the failure pressure of 

ascending aortic aneurysm was much higher than the measured systolic pressure, and the 

failure behavior of the aorta were highly correlated with material properties. Thus, patient-

specific material properties enable the analysis of the wall stress at various loading and 

deformation conditions that cannot be recorded by in vivo imaging. 

The discrepancies between the in vivo identified and ex vivo fitted material 

parameter could be attributed to the following sources. (1) The stretch ratios are different 
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under experimental and physiological (diastolic and systolic) conditions, which indicates 

that the biaxial experimental data can only partially capture the physiological conditions. 

A constitutive model that can characterize the biaxial experimental data well may have to 

extrapolate its predication under some physiological conditions. (2) The aorta may 

undergoes rhythmic active contraction in vivo during the cardiac cycle [178]. However, 

active contractions generated by the smooth muscle cells are not considered by the 

constitutive model in this study. The surgically-resected tissues may only demonstrate 

passive ex vivo behavior. This could be a source of discrepancy between the in vivo and ex 

vivo properties. (3) The blood pressure levels were measured at the time of the patients’ 

visits for CT scans. Unfortunately, their blood pressures were not obtained simultaneously 

with the ECG-gated CT scans. (4) The external supports from pulmonary arteries and vena 

cava could alter the stress distribution within the aorta. Since the supporting forces are 

unknown, it could be a source of discrepancy between the ex vivo and in vivo properties. 

Note that there is no rigid (or high stiffness) structure (e.g. rib cage) that contacts the aorta, 

it is likely that the external supports from the pulmonary arteries/vena cava would not have 

significant impact on the loading bearing of the aorta. (5) In the FE simulations, the 

boundary nodes were only allowed to move in the radial directions. (6) Heart motions could 

induce unknown axial forces/stresses in the aorta. However, using the current displacement 

boundary condition, the reaction forces at the proximal and distal ends required for the 

static equilibrium were calculated by the FEA. Because of different pressure loading 

conditions, the boundary forces are different for diastole and systole. Therefore, the axial 

stresses are also different at diastolic and systolic phases and are dependent on the patient-

specific geometry and blood pressure levels.  
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3.5.3 Mesh Correspondence 

The diastolic-to-systolic displacement field, which establishes mesh correspondence 

between diastolic and systolic phases, is often required by the material parameter 

identification schemes such as the virtual field method [82] and the stress-matching [79] 

or strain-matching method [99, 100].  This requirement can be satisfied in ex vivo 

experiments by tracking physical markers or tracking speckle patterns in ultrasound images 

[159]. CT is routinely used for imaging ascending aorta because of its large field of view 

[179]. However, CT images do not have distinct image texture patterns for tracking 

individual points on the aortic wall, and therefore the absence of diastolic-to-systolic 

displacement field poses a critical challenge for material parameter identification using CT 

data. In this study, mesh correspondence was established using the non-rigid ICP 

registration [172] and TPS fitting [173] algorithms. Thus, the mesh correspondence can 

support different identification schemes ([100] and APPENDIX A) and material properties 

can be estimated from the gated CT data. 

The developed inverse method could be applicable to other clinical images with 

motion tracking. Motion tracking using ultrasound images (known as speckle tracking) has 

been applied for left-ventricle (LV) motion analysis and strain measurement. The 2D+t (2-

dimension plus time) speckle tracking was validated using a rabbit heart model and a 

simulated heart which shows an average strain error of 0.08% [180]. Automatic algorithms 

[159, 181-185] for 3D+t LV segmentation and tracking using ultrasound images have been 

developed over the last eight years. As for ultrasound speckle tracking of vessel wall, 

Larsson, et al. [186] performed validation experiments, in which crystal markers were 

implanted on the artery wall in order to obtain the “ground truth” strain measurement. 3D+t 
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ultrasound speckle tracking has been applied to study aortic wall strain of healthy and 

abdominal aortic aneurysms patients in vivo by Karatolios, et al. [187]. By using this 

method to obtain in vivo strain measurement, Wittek et al. [99, 100] developed the FE 

updating approach for in vivo material parameter estimation. For clinical applications, fully 

automatic segmentation and speckle tracking algorithms for the aortic wall are needed, 

which can be developed based on the algorithms for LV segmentation and tracking. 

Because ECG-gated CT are not routinely performed for ATAA, we only acquired 

the multiphase CT data and tissue samples of two patients. In addition, only part of ATAA 

of Patient 1 was imaged from the multiphase CT data, so the identification is restricted on 

a small segment for Patient 1 (Figure 3.8). Hence, the current inverse approach needs more 

validation cases before clinical application.  

3.5.4 Limitations 

In this study, the constitutive parameter identification was based on the following 

two main assumptions. (1) It is known that the aortic tissue properties are heterogeneously 

distributed [21, 147], material properties of the inner curvature region may be different 

from those of the outer curvature region. The wall thickness may also has spatial variation 

across the ATAA, heterogeneity of wall thickness and material heterogeneity could be 

correlated [188]. In the current inverse method, we only considered a simplified case, 

where the averaged in vivo wall thickness was used, and the averaged hyperleastic behavior 

of the aorta segment was identified. The stress-stretch data in this study (Figure 3.11) also 

suggests material heterogeneity. The approach can be extended to heterogeneous thickness 

and constitutive parameters by slightly altering the workflow, i.e., evaluating one objective 
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function 𝑔𝑒𝑟𝑟 for one element or one group of elements at a time. (2) We assume that 

residual stresses have minimal impact on the material parameter identification, since a 

study [189] suggested that the inclusion of residual stress in the model has little effect on 

estimated material properties. CHAPTER 2 also demonstrated that the transmural mean 

stress is independent of the residual stress.  

3.6 Summary 

We proposed a fast and effective method for constitutive parameter estimation of 

the aortic wall by using the in vivo loaded geometries at 2 cardiac phases with known blood 

pressures. For each patient, the method only needs to run infinitesimal linear elastic FE 

simulations (the forward penalty approach) twice to obtain the stress fields at the 2 cardiac 

phases, and the rest of the computation can be run in MATLAB. The inverse computation 

is mainly dependent on solving nonlinear constitutive equations and optimization 

algorithms. Good agreement has been achieved between the estimated and “true” material 

parameters in the numerical verification. The novel inverse approach was applied to pre-

operative gated CT scans of two ATAA patients. For comparison, surgically-resected tissue 

samples were obtained for experimental planar biaxial tests. Relatively close match was 

achieved in terms of the in vivo-identified and ex vivo-fitted stress-stretch response. Our 

results are preliminary but encouraging. It is hoped that further development of this 

approach can enable an accurate identification of the in vivo material properties from gated 

CT data, which currently is a critical challenge in the field of cardiovascular biomechanics.
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CHAPTER 4. MACHINE LEARNING APPROACH FOR FAST IN 

VIVO HYPERELASTIC PROPERTIES IDENTIFICATION  

Patient-specific biomechanical analysis of the aorta requires quantification of the 

in vivo mechanical properties of individual patients. Current inverse approaches have 

attempted to estimate the nonlinear, anisotropic material parameters from in vivo image 

data using certain optimization schemes. In CHAPTER 3, we also developed an 

optimization-based inverse method in which the computationally-expensive FE 

simulations were avoided by building the objective function upon stresses, and the 

computation time was greatly reduced. However, since optimization-based inverse 

methods are inherently limited by their iterative nature, any further improvement of 

computational speed can be difficult. A potential paradigm-changing solution to the 

bottleneck associated with patient-specific computational modeling is to incorporate 

machine learning (ML) algorithms to expedite the procedure of in vivo material parameter 

identification. In this chapter, we developed an ML-based approach to estimate the material 

parameters from three-dimensional aorta geometries obtained at two different blood 

pressure (i.e., systolic and diastolic) levels. Statistical shape model (SSM) was built by 

using ATAA geometries of 25 patients to describe the aorta shape probability distribution. 

The nonlinear relationship between the two loaded shapes and the constitutive parameters 

are established by an ML-model, which was trained and tested using FE simulation datasets 

generated from the SSM model. Cross-validations were used to adjust the ML-model 

structure on a training/validation dataset. The accuracy of the ML-model was examined 

using a testing dataset. Results of this chapter have been published in [140, 190]. 
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4.1 Background 

With advances in medical imaging modalities and computation power, numerical 

simulations of the cardiovascular structure such as the aorta, which utilizes the patient-

specific three-dimensional (3D) geometry, have been increasingly pursued in the past 

decade [123]. Yet, the difficulty in obtaining in vivo patient-specific elastic properties of 

the aortic wall from clinical cardiac images has been one of the biggest obstacles in patient-

specific biomechanical analysis. This has motivated recent efforts to develop inverse 

methods for estimating the in vivo material properties of the aortic wall on a patient-specific 

basis. In these methods, deformations and boundary conditions are used to inversely 

estimate the material parameters of a particular constitutive model. However, the complex 

3D shapes and nonlinear and anisotropic constitutive behavior make this task challenging. 

To fully exploit the 3D geometries reconstructed from medical image data, previous 

methods for in vivo material parameter estimation largely rely on various optimization 

schemes. In these optimization-based inverse methods, an objective/error function is built 

upon the difference between predicted and image-derived physical fields (e.g. coordinates 

of diastolic geometry and diastolic-to-systolic strain field), and then the constitutive 

parameters are iteratively adjusted until the objective function is minimized. Specifically, 

starting from an initial guess of the constitutive parameters, the inverse methods usually 

involve the following steps: (1) recovering an unloaded state from a known loaded state 

(e.g. systole); (2) predicting the desired physical field of another loaded state (e.g. diastole) 

through computational analysis, which is referred by numerically-predicted physical field; 

and (3) the constitutive parameters are iteratively fine-tuned by a nonlinear optimization 

algorithm until the numerically-predicted physical field matches with the image-derived 
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physical field at the loaded state (e.g. diastole).  This optimization process yields the 

optimal constitutive parameters. Using FE updating schemes, Wittek et al. [99, 100] 

developed two methods to determine GOH material parameters of the human abdominal 

aorta from in vivo 4D ultrasound data [157] based on stochastic-deterministic optimization. 

However, numerous iterations were required to find the optimal solution with a long 

computation time of 1~2 weeks. The high computational cost could inhibit a practical 

application of these methods, particularly in a clinical setting requiring fast feedback to 

clinicians. To this end, we have recently proposed two optimization-based methods to 

expedite the estimation process. The multi-resolution direct search (MRDS) approach 

(APPENDIX A) was designed to improve the searching algorithm, and the computation 

time was reduced to 1~2 days with similar CPU and memory. Due to static determinacy, 

given loading and boundary conditions as well as geometry, stress can also be directly 

computed from clinical images (CHAPTER 2). Therefore, we developed a stress-based 

inverse approach (CHAPTER 3), in which the computationally-expensive FE simulations 

were avoided by building the objective function upon stresses, and the optimization was 

completed in approximately 2 hours. However, optimization-based inverse methods are 

inherently limited by their iterative nature, and any further improvement of computational 

speed can be difficult. 

Recently, machine learning (ML) techniques, particularly deep learning (DL) [102, 

191, 192], have garnered enormous attention in the field of artificial intelligence, leading 

to revolutionary breakthroughs in many applications [102-109]. ML-models are capable of 

establishing complex and nonlinear relationship between inputs and outputs. A potential 

paradigm-changing solution to the bottlenecks associated with patient-specific 
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computational modeling is to incorporate ML algorithms to expedite the procedure of in 

vivo material parameter identification. By designing and training an ML-model on a large 

dataset, it may automatically produce the required outputs (constitutive parameters) 

directly from necessary inputs (multi-phase aorta shapes), without the need for costly 

iterative schemes. Thus, once trained, the ML-model can instantaneously predict the 

material parameters. 

 

Figure 4.1 - The proposed machine learning (ML) approach. 

In this chapter, we developed an ML-based approach to identify the material 

parameters of the GOH constitutive model. As depicted in Figure 4.1, the inputs to this 

ML-model are the aorta geometries at two distinct blood pressure levels, namely the 

systolic and diastolic geometries, which were also used by our previous optimization-based 

inverse approaches (CHAPTER 3 and APPENDIX A). Statistical shape model (SSM) was 

built by using ATAA geometries of 25 patients to describe the aorta shape probability 

distribution. An ML-model was built to establish the nonlinear relationship between the 

geometries and the constitutive parameters. The proposed ML-model consists of an 

unsupervised shape encoding module using principal component analysis and a supervised 
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nonlinear mapping module using a neural network. The datasets for training, validation 

and testing were generated from FE simulations by sampling SSM parameter space and 

material parameter space. Cross-validations were used to adjust the neural network 

structure. The accuracy of the ML-model prediction was examined using a testing dataset. 

4.2 Statistical Shape Modeling of the Aorta 

4.2.1 Image Data  

De-identified clinical cardiac CT scans and resected ATAA tissues were obtained 

for a total of 25 patients who underwent elective ATAA repair at Yale-New Haven Hospital 

between the years of 2008 and 2010 [57]. Institutional Review Board approval to review 

de-identified images was obtained for this study. All patients underwent cardiac CT scans 

because of suspected ATAA prior to elective repair. The resolution of the images is 

0.7x0.7x2.5 mm, and the field of view covers the thoracic and abdominal aorta. The ATAA 

tissue elastic and failure properties for the same patients were characterized from surgically 

resected tissues in a previous study [63].  

As shown in Figure 4.2, for each patient, the 3D surface of the aorta was semi-

automatically reconstructed from the clinical CT image data using Avizo software 

(Burlington, MA). The surfaces were then trimmed at the ascending aorta just distal to the 

sinotubular junction on the proximal end and at the descending aorta on the distal end. The 

branch vessels at the arch were removed. The resulting surfaces were meshed to obtain a 

total of 25 aorta shapes in the form of triangle meshes with an arbitrary number of nodes 

and elements. 
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Figure 4.2 - (a) The aorta segmented from a 3D CT image. (b) Trimmed aorta surface 

in gold color. 

4.2.2 Aorta Surface Remeshing and Shape Alignment 

To establish mesh correspondence between different patients and facilitate SSM 

and FE analyses, a remeshing method was developed in order to convert the triangle 

meshes to quad meshes with the same number of nodes and the same nodal connectivity 
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among the elements for all patients. Briefly, given a 3D triangle surface mesh as the input, 

a minimum-stretch based mesh parameterization was performed, resulting in a 2D triangle 

mesh in a rectangular shape of a predefined size. The 2D region was then discretized as a 

2D quad mesh with 5100 nodes and 4950 elements. By using barycentric interpolation 

[193] determined by the 3D surface mesh and the 2D triangle mesh, the 2D quad mesh was 

transformed into the 3D space and the nodes on the top and bottom of the rectangular mesh 

were merged together to yield a 3D tubular surface mesh with 5000 nodes and 4950 

elements.  

After remeshing, each shape was aligned to a common coordinate system by 

Generalized Procrustes Analysis (GPA) [194]. Here, a shape 𝑋(𝑘), indexed by 𝑘,  is a quad 

surface mesh which can be represented by a vector 𝑋(𝑘) = [𝒙1
(𝑘)

, …𝒙𝑛
(𝑘)

, … 𝒙𝑁
(𝑘)

] assembled 

from the coordinates of each point 𝒙𝑛
(𝑘)

 of the mesh with a total number of 𝑁 points (i.e. 

nodes). The alignment process runs in an iterative manner: 1) transform each shape 𝑋(𝑘) to 

the mean shape 𝑋̅ by the similarity transform, where initially one of the training shapes is 

randomly chosen as the mean shape; 2) compute the mean shape from all the transformed 

shapes.  Further details on the remeshing algorithms and shape alignment methods are 

provided in [140]. 

4.2.3 Statistical Shape Model Construction 

 Given the aligned shapes {𝑋(1), . . . , 𝑋(𝑘), … , 𝑋(𝐾)} (𝐾 = 25), a SSM was built by 

principal component analysis (PCA) [195, 196]. PCA can decompose the shapes into a 

mean shape and a set of linearly uncorrelated shape variations which are the principal 
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components, also called the modes of shape variations. Standard PCA starts from 

assembling the covariance matrix 𝑪, given by 

𝑪 =
1

𝐾
∑(𝑿(𝑘) − 𝑿̅)

𝐾

𝑘=1

(𝑿(𝑘) − 𝑿̅)′ (4.1) 

where superscript 𝑘 represents patient index and 𝐾 is the total number of patients. In our 

case, 𝐾 = 25. 𝑿̅ =  
1

𝐾
∑ 𝑿(𝑘)𝐾

𝑘=1  is the mean shape. Then, the eigenvalues and eigenvectors 

of the covariance matrix can be calculated via singular value decomposition. For this 

application, the number of points on each shape, 𝑁 = 5000, is much larger than 𝐾 and the 

rank of the matrix 𝑪 is 𝐾. Singular value decomposition was applied to obtain a subset of 

the eigenvalues and eigenvectors, and the other eigenvalues are all zeros. The SSM was 

constructed with the mean shape 𝑋̅ and the modes of shape variation {𝑉(1), … , 𝑉(𝐾)} and 

the corresponding eigenvalues {𝜇(1), … , 𝜇(𝐾)} which were sorted from largest to smallest. 

4.2.4 Shape Decomposition and Shape Sampling 

 By using the SSM, a shape 𝑿 can be decomposed into (i.e., approximated by) the 

mean shape plus a linear combination of the modes (i.e., shape variation), given by 

𝑿 ≈ 𝑿̅ + ∑𝐶𝑖√𝜇𝑖𝑽𝑖

𝑚

𝑖=1

 (4.2) 
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where 𝑽𝑖 and 𝜇𝑖 are the eigenvectors (i.e. modes of shape variations) and eigenvalues of 

the covariance matrix, respectively. 𝑚 is the number of modes used for approximation. 

Here, the shape 𝑿 has been aligned to the mean shape 𝑿̅. 

A shape 𝑌 can be sampled from the shape distribution, Eqn. (4.2), using a set of 

SSM parameters (𝐶1, . . . , 𝐶𝑚, … , 𝐶𝑀). A large number of sampled shapes can represent the 

shape distribution and are more versatile than the original 25 shapes used in the SSM 

construction. In order to obtain a set of representative shapes, the selected modes must be 

able to explain a large percentage of the total shape variation, defined by 

𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 

𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
=

∑ 𝜆(𝑚)𝑀
𝑚=1

∑ 𝜆(𝑘)𝐾
𝑘=1

 (4.3) 

 To build the SSM, the first three modes were selected (𝑚 = 3) which explains 

80.1% of the total shape variation. The SSM parameters were standardized by their 

standard deviations, for example, (𝐶1, 𝐶2, 𝐶3) = (0,0,0) represents the mean shape and 

(𝐶1, 𝐶2, 𝐶3) = (2,0,0) represents a shape that is 2 standard deviations away from the mean 

shape along the first mode of variation. by using 2 standard deviations, the shapes are, in 

general, significantly differ from each other. Some representative systolic aorta shapes are 

plotted in Figure 4.3. The shapes are color-coded with curvature values obtained from 

Paraview 5.0.0. 
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Figure 4.3 - Systolic aorta shapes corresponding to some representative sets of SSM 

parameters. The shapes are color-coded with curvature values. 

4.3 The ML-Based Inverse Method 

4.3.1 Constitutive Model 

The fiber reinforced hyperelastic model based on the work by Gasser et al. (Eqn. 

(2.10)) [34] was used to model the constitutive response of aortic wall tissue. In this 

chapter, the material incompressibility parameter 𝐷 is fixed to be 5 × 10−4 in the 

subsequent sections to generate training validation and testing datasets. The task for the 

ML-model is to identify the five constitute parameters (𝐶10, 𝑘1, 𝑘2, 𝜅, 𝜃) given the two-

phase aorta shapes. 

4.3.2 Generating the Training/Validation Dataset and the Testing Dataset 

 The proposed ML model will establish a mapping between the inputs (geometries) 

to the outputs (material parameters) based on example input-output pairs. Each input-

output pair consists of two geometries and the corresponding material parameters. To fine-
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tune the ML-model for optimal performance, cross-validation is used in the training phase, 

where the input-output pairs are partitioned into two subsets, called training set and 

validation set. The ML-model is trained on the training set, and its performance is assessed 

using the validation set. After the training phase, the accuracy of the ML-model prediction 

is evaluated on a new set of input-output pairs, i.e., the testing set. 

 In this study, the datasets are gathered from FE simulations. Using statistical 

modeling methods, a large number of material parameter sets are generated from 65 sets 

of experimentally-derived material parameters, and virtual aorta geometries at one 

physiological phase (i.e., systole) are generated from the SSM in Section 4.2.4. The 

diastolic aorta geometries are determined from FE simulations using the virtual systolic 

geometries and the generated material parameters. Finally, the training/validation dataset 

and the testing dataset consist of 15366 and 225 input-output pairs, respectively. The 

detailed procedures to generate the datasets are presented in the following paragraphs. 

 In previous studies [15, 63], we have collected resected ATAA tissue samples of 65 

patients who underwent elective surgeries at Yale-New Haven Hospital, CT,  USA between 

the years of 2008 and 2010, following an IRB-approved protocol. Seven-protocol biaxial 

tension experiments were carried out on the 65 aneurysmal patients, and five material 

parameters of the GOH model were determined by fitting the experimentally-obtained 

stress-strain curves. The material properties of patient 𝑖 was represented by a vector in 

𝒚(𝑖) (𝑖 = 1, 2, … , 65), with its five components corresponding to five GOH parameters, 

and the set 𝒀 contains the 65 vectors. These vectors are visualized in the material parameter 

space in Figure 4.4, which shows that these experimentally-derived parameters are highly 

clustered in certain regions. To uniformly sample the material parameter space, a convex 
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hull of the experimentally-derived parameters was built. The convex hull is essentially a 

set comprised of convex combinations of all vectors in 𝒀, 

𝐶𝑜𝑛𝑣(𝒀) = {𝒚 = ∑𝑎𝑖𝒚
(𝑖)

65

𝑖=1

| 𝒚(𝑖) ∈ 𝒀, 𝑖 = 1, 2, … , 65, 𝑎𝑖 ≥ 0∀𝑖,∑𝑎𝑖

65

𝑖=1

= 1} (4.4) 

where 𝒚 is a vector in the convex hull, and 𝑎𝑖 (𝑖 = 1, 2, … , 65)  are non-negative 

coefficients that sum up to 1. Next, samples were draw from a uniform distribution inside 

the convex hull using the Gibbs sampler [197]. 125 and 15 samples were generated for the 

training/validation set and the testing set, respectively, as shown in Figure 4.4.  

 

Figure 4.4 - Datasets projected in 3D material parameter subspaces. The convex hull 

is plotted in the 3D subspaces for illustrative purpose.] 

 The SSM was built from the 25 real aorta shapes at the systolic phase in Section 

4.2.3. The SSM model describes the probability distribution of aorta shapes among the 

(a)

(d)

(b)

(e)

(c)

(f)
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patient population using 3 modes of variations. As a result, a systolic geometry can be 

represented by a set of SSM parameters (𝐶1, 𝐶2, 𝐶3) described in detail in Section 4.2.4.  

 For the training and validation datasets, a total number of 125 virtual aorta shapes 

at systolic phase were obtained by sampling the SSM parameter space  (𝐶1, 𝐶2, 𝐶3) with 

equally spaced points in the range of -2 to 2 , i.e., within 2 standard deviations of the mean 

shape, as shown in Figure 4.5. Similarly, for the testing dataset, the SSM parameter space 

was sampled within 1.5 standard deviations of the mean shape. Hence, 15 systolic shapes 

were obtained for the testing dataset. The resulting samples in the SSM parameter space 

are plotted in Figure 4.5.  

 

Figure 4.5 - Sampling the SSM parameter spaces. 

The virtual aorta geometries obtained from the SSM parameter space were at the 

systolic phase, which should be in equilibrium with the systolic physiological load. 
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Therefore, the generalized pre-stressing algorithm (GPA, described in Section 2.3.3) [145] 

was utilized to incorporate the pre-stress induced by the systolic pressure (16 kPa). In the 

GPA algorithm, the resulted equilibrium configuration may slightly deviate from the 

original configuration, depending on the step size [145]. The systolic geometries at the 

equilibrium configurations were used by the ML-model in the subsequent sections. Next, 

using a set of material parameters, the virtual aorta geometries at the diastolic phase were 

determined by depressurizing the systolic geometries to the diastolic phase (10 kPa).  

For the training and validation sets, given one of the 125 shapes at the systolic phase 

and one of the 125 sets of material parameters, the virtual aorta geometry at the diastolic 

phase was determined through FE simulation. As shown in Figure 4.6, if a FE simulation 

converges, the input-output pair (systolic and diastolic geometries and a set of material 

parameters) is collected for training/validation. A total of 15,625 cases (125 materials ×125 

shapes) were simulated, out of them, 259 cases were not able to converge. The convergence 

issues might be due to extreme shapes and/or material properties. As a result, 15366 sets 

of geometries with known material parameters were obtained. Similarly, for the testing set, 

225 input-output pairs were generated from 15 systolic geometries and 15 sets of material 

parameters (all converged).  

The GPA algorithm was implemented in ABAQUS user subroutine UMAT. In the 

FE simulations, C3D8H solid elements were used, a uniform wall thickness at the systolic 

phase (1.5 mm) was assumed based on the average value from [140], and pressure was 

applied uniformly to the inner surface of the aorta models. For the FE models, the 

longitudinal direction (𝑧𝑧) was defined using the center line of the aorta geometry. Then, 

the outward normal direction (𝑟𝑟) of each element in the inner surface of the aortic wall 
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was obtained. The circumferential direction (𝜃𝜃) was defined by taking cross product of 

the longitudinal and outward normal directions. The boundary nodes of the aorta models, 

i.e. the proximal and distal ends of the model, were only allowed to move in the radial 

direction defined by the local coordinate system.  

 

Figure 4.6 - The procedure to generate aorta geometries at systole and diastole. The 

number in the parenthesis indicates the testing dataset. 

4.3.3 The Machine Learning Model 

The machine learning model consists of an unsupervised shape encoding module 

and a nonlinear mapping module. The systolic and diastolic shapes are encoded by shape 

codes. The nonlinear mapping between the shape codes and the material parameters is 

established by a neural network.  

 3D geometries are usually represented by FE meshes with a large number of nodes 

and elements. A shape corresponds to a long vector 𝑿 of nodal coordinates. However, 

directly linking the shape 𝑿 to the material parameters by a neural network, although 

possible, can lead to a large number of undetermined parameters that require a very large 

training dataset. A compact representation (i.e. shape code) of a shape can be obtained in 

a shape encoding procedure. PCA [198] is widely adopted as a shape encoding method and 
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an unsupervised learning technique for dimensionality reduction, in which the original data 

can be well approximated by a linear combination of a few principal components. Using 

PCA, the covariance matrix 𝑪, eigenvalues 𝜇𝑖 and eigenvectors 𝑽𝑖 of the training shapes 

can be obtained using Eqn. (4.1) and Eqn. (4.2). Note that shape encoding module cannot 

be replaced by the SSM. Here, the systolic and diastolic shapes in the training and 

validation dataset were encoded by using two shape encoding modules. As mentioned in 

Section 4.3.2, the systolic geometries from GPA were slightly different from the original 

configuration from the SSM, and therefore 3 modes, as used in Section 4.2.4, are not 

enough to capture the shape variations for systolic geometries. For systolic and diastolic 

geometries, the shape code (𝑐𝑖, 𝑖 = 1, … ,𝑚) can be obtained by  

𝑐𝑖 = 𝑽𝑖
𝑇(𝑿 − 𝑿̅)/√𝜇𝑖 (4.5) 

where 𝑽𝑖
𝑇 is the transpose of the column vector 𝑽𝑖. The first 12 modes (𝑚=12) were 

retained for both the systolic and diastolic shape encoding, with the average PCA 

approximation error being less than 0.1%. We denote the systolic shape code as 𝛼𝑖, diastolic 

shape code as 𝛽𝑖, 𝑖 = 1, 2, … , 12. 

The nonlinear mapping module will map the shape codes of the two input shapes 

to the five material parameters, which is equivalent to establishing five nonlinear functions  

𝑦𝑘 = 𝑔𝑘(𝛼1, … , 𝛼12, 𝛽1, … , 𝛽12), 𝑘 = 1, 2, … , 5 (4.6) 
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The inputs are the shape codes 𝛼𝑖 and 𝛽𝑖, 𝑖 = 1, 2, … , 12, for diastolic and systolic 

geometries, respectively. The outputs are 𝑦𝑘 (𝑘 = 1, 2, … , 5), correspond to the five 

material parameters (𝐶10, 𝑘1, 𝑘2, 𝜅, 𝜃).  

Neural network is, in general, flexible and can be used as universal function 

approximation. As shown in Figure 4.7, a neural network is constructed as the nonlinear 

mapping module. It consists of feedforward fully-connected units (neurons). Each unit has 

multiple inputs and a single output. For the 𝑗th unit of the 𝑖th layer, a linear combination of 

the input vector 𝒛𝑖, with weight vector 𝒘𝑗
𝑖 and offset 𝑏𝑗

𝑖, is computed as 

𝑢𝑗
𝑖 = 𝒘𝑗

𝑖𝑇𝒛𝑖 + 𝑏𝑗
𝑖 (4.7) 

where the superscript 𝑖 denote the index of layer, and subscript 𝑗 denote the index of unit 

in the layer. 𝒛𝑖 is a column vector of [𝑧1
𝑖 , 𝑧2

𝑖 , … , 𝑧𝑛𝑖

𝑖 ]
𝑇
, and 𝑛𝑖 is the number of units in the 

𝑖th layer. The weighted sum 𝑢𝑗
𝑖 is nonlinearly transformed into the output 𝑧𝑗

𝑖+1 using an 

activation function. 

𝑧𝑗
𝑖+1 = 𝑓(𝑢𝑗

𝑖) (4.8) 

 

The softplus [199] activation function was used, which is given by 

𝑓(𝑢) = log(1 + 𝑒𝑥𝑝(𝑢)) (4.9) 
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This function is a smooth version of the rectified linear unit (ReLU) [200, 201]. As 

demonstrated in the discussion section, other activation functions can lead to large testing 

errors in our application. The neural network has two hidden layers with the same number 

of softplus units, and the output layer has 5 softplus units. 

The neural network was implemented using Tensorflow [202]. The inputs and 

outputs were normalized using the maximum absolute value of each dimension. 

Consequently, the normalized shape codes are within the range of -1 to 1, and the 

normalized material parameters are within the range of 0 to 1. The mean squared error 

(MSE) was used as the loss function 

𝑀𝑆𝐸 = ∑
1

𝑁
∑(𝑦̅𝑘

(𝑙)
− 𝑦̂̅𝑘

(𝑙)
)
2

𝑁

𝑙=1

5

𝑘=1

 (4.10) 

where 𝑙 is the index for an input-output pair, 𝑁 is the total number of input-output pairs, 

𝑦̅𝑘
(𝑙)

 and 𝑦̂̅𝑘
(𝑙)

represent the 𝑘th actual and predicted normalized material parameters, 

respectively. After the nonlinear mapping, the predicted material parameters were rescaled 

to its original range. The parameters of the neural network were obtained through the 

Adamax optimization algorithm [203]. For detailed theories, please refer to [204]. The 

network structure, i.e., number of hidden layers and number of units was determined 

through cross-validations in Section 4.3.4. 
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Figure 4.7 - The neural network for mapping the shape codes to the material 

parameters. The green dots represent the input layer, and the blue dots represent the 

softplus units in the hidden layers and the output layer of the neural network. 

4.3.4 Training, Adjusting and Testing the ML-Model 

The unsupervised shape encoding module was trained only using the training and 

validation sets, i.e., the mean shape 𝑿̅, eigenvectors 𝑽𝑖 and eigenvalues 𝜇𝑖 of the covariance 

were computed only using the training and validation data. Since shapes in the testing set 

are different from those in the training and validation sets, the testing shape codes were 

obtained from Eqn. (4.5) using 𝑿̅, 𝑽𝑖 and 𝜇𝑖 computed from the training and validation 

sets. 

Using the training/validation dataset, the performance of the nonlinear mapping 

module was assessed through leave-one-out (LOO) cross-validation, and the neural 

network structure was fine-tuned.  As depicted in Figure 4.8, in each round of the LOO 

cross-validation, the data was split into a training set and a validation set, according to the 

material parameters. We pick one set of material parameters (and its corresponding 
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geometries) from the 125 sets from Section 4.3.2 as the validation set, and train the neural 

network on the remaining 124 sets (and its corresponding geometries). An averaged error 

was obtained after repeating this procedure for all the 125 sets of material parameters. 

Hence, the training set never contains the material information used in the validation. 

Similarly, ten-fold cross-validation can be performed by splitting the dataset according to 

sets of material parameters.  

The discrepancy between the actual and predicted material parameters was 

quantified by normalized mean absolute error (NMAE). The absolute error (AE) for the 𝑘th 

material parameter is defined by 

𝐴𝐸𝑘
(𝑙)

= |𝑦𝑘
(𝑙)

− 𝑦̂𝑘
(𝑙)

| (4.11) 

where index 𝑙 and 𝑘 are the same as Eqn. (4.10), 𝑦𝑘
(𝑙)

 and 𝑦̂𝑘
(𝑙)

 represent the 𝑘th actual and 

predicted material parameter, respectively. The NMAE of the 𝑘th material parameter is 

defined by 

𝑁𝑀𝐴𝐸𝑘 =
∑ 𝐴𝐸𝑘

(𝑙)𝑁
𝑙=1

𝑁 (max
𝑙

(𝑦𝑘
(𝑙)

) − min
𝑙

(𝑦𝑘
(𝑙)

))
× 100% (4.12) 

where 𝑁 is defined in Eqn. (4.10). Next, the number of units in each layer was 

adjusted in the range of 32 to 512 to minimize the averaged NMAE in the LOO and ten-

fold cross-validations. Resulting performance for different network structures is 

summarized in Table 4.1 and Table 4.2. We evaluated neural networks with a single hidden 
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layer (32, 64, 128, 256 number of units), they failed to predict the material parameters with 

an acceptable accuracy. Thus, network structure with two hidden layers was used. We first 

kept the number of units in the two hidden layers the same and varied the number of units 

from 32×32 to 512×512. We found that 256×256 gives the smallest averaged NMAE. Next, 

we fixed the number of units in a hidden layer and changed the number of units of the other 

hidden layer. Therefore, we tested 4 additional cases using cross-validations: 128×256, 

512×256, 256×128, 256×512. We found that the 256×256 structure offers the smallest 

averaged NMAE.  Therefore, the final network contains 256 units for each of the two 

hidden layers.  

 

Figure 4.8 - Adjusting the network structure using the leave-one-out (LOO) cross-

validation. 

Table 4.1 - Averaged NMAE (defined in Eqn. (4.12)) of the five material parameters 

w.r.t. network structure in LOO cross-validation (3,000 epochs). 

network 

structure 
C10 k1 k2 κ 𝜃 

32 8.47% 4.94% 8.27% 4.92% 9.55% 

64 8.08% 4.51% 8.03% 4.36% 9.08% 
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128 7.90% 4.25% 7.90% 4.12% 8.78% 

256 7.99% 4.31% 7.84% 4.12% 8.62% 

512 8.00% 4.36% 7.96% 4.23% 8.66% 

32×32 8.33% 3.86% 6.84% 4.30% 7.12% 

64×64 7.65% 3.41% 6.77% 3.88% 6.96% 

128×128 7.58% 3.18% 6.59% 3.60% 6.84% 

256×256 6.92% 2.73% 6.35% 3.24% 6.51% 

512×512 7.07% 2.81% 6.55% 3.21% 6.81% 

128×256 7.60% 3.22% 6.60% 3.58% 7.14% 

512×256 7.80% 3.37% 6.68% 3.84% 7.59% 

256×128 7.07% 3.10% 6.56% 3.45% 6.70% 

256×512 8.72% 8.16% 9.04% 4.30% 10.94% 

Table 4.2 - Averaged NMAE (defined in Eqn. (4.12)) of the five material parameters 

w.r.t. network structure in ten-fold cross-validation (3,000 epochs). 

network 

structure 
C10 k1 k2 κ 𝜃 

32 8.72% 5.38% 8.57% 5.19% 9.80% 

64 8.34% 4.98% 8.24% 4.71% 9.44% 

128 8.16% 4.84% 8.13% 4.38% 9.08% 

256 8.23% 4.42% 8.16% 4.39% 9.07% 

512 8.27% 4.56% 8.21% 4.46% 8.95% 

32×32 9.01% 4.25% 7.38% 4.48% 8.32% 

64×64 8.04% 3.86% 6.82% 4.04% 7.38% 

128×128 7.73% 3.63% 6.75% 3.88% 7.31% 

256×256 7.63% 3.14% 6.46% 3.58% 7.43% 

512×512 7.24% 3.26% 6.97% 3.53% 7.99% 

128×256 7.90% 3.87% 6.92% 3.83% 8.13% 

512×256 8.06% 3.45% 6.93% 3.90% 8.08% 

256×128 7.76% 3.56% 6.60% 3.92% 7.55% 

256×512 8.39% 3.98% 7.06% 4.72% 8.36% 

To evaluate the prediction of the ML-model, i.e., to examine how accurate the 

prediction is compared to FE simulation data, the ML-model was trained on the 

training/validations set and then the trained ML-model was used to predict the material 

parameters using shapes in the testing set as the input (Figure 4.9). The predicted material 

parameters were compared to the actual parameters in the testing set.  
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Figure 4.9 - Evaluating the accuracy using the testing dataset. 

4.4 Validation and Testing Results 

Given a pair of geometries as the inputs, the trained ML-model can output the 

material parameters within one second on a PC with 3.6GHz quad core CPU and 32GB 

RAM. The actual versus predicted material parameters in the testing set are shown in 

Figure 4.10. The ranges of material parameters are resulted from the convex hull in Section 

4.3.2, similar ranges of material parameters were reported in the studies [51, 169], which 

were obtained by fitting the GOH model to uniaxial testing data.  

4.4.1 Actual and Predicted Material Parameters 

We define the normalized standard deviation of absolute error (NSTAE) of the 𝑘th 

material parameter as 
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𝑁𝑆𝑇𝐴𝐸𝑘 =
1

(max
𝑙

(𝑦𝑘
(𝑙)

) − min
𝑙

(𝑦𝑘
(𝑙)

))

√∑ (𝐴𝐸𝑘
(𝑙)

− 𝐴𝐸̅̅ ̅̅
𝑘)

2
𝑁
𝑙=1

𝑁 − 1
× 100% (4.13) 

where 𝐴𝐸̅̅ ̅̅
𝑘 is the averaged absolute error for the 𝑘th material parameter. The NMAE and 

NSTAE for each material parameter in the testing set are reported in Table 4.3. The errors 

indicate that the ML-predicted material parameters are in good agreement with the actual 

material parameters. The errors might be explained by coupling effect (over-

parameterization) of the constitutive model [34], different combinations of material 

parameters may have similar stress-strain response. This nonlinear coupling has resulted 

in identification difficulties in the optimization-based inverse approaches ([99, 100], 

CHAPTER 3, and APPENDIX A). 

Table 4.3 - NMAE and NSTAE of the five material parameters in testing set (10,000 

epochs). 

 C10 k1 k2 κ 𝜃 

NMAE 3.75% 1.38% 6.01% 1.88% 3.74% 

NSTAE 3.51% 1.59% 4.38% 1.89% 4.56% 
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Figure 4.10 - The actual and predicted material parameters. Each point was plotted 

using its actual value as horizontal x-coordinate and the ML-predicted value as the 

vertical y-coordinate. A perfect straight line (y=x) indicates perfect prediction, and 

any deviation from the straight line indicates prediction errors.] 

4.4.2 Actual and Predicted Stress-Stretch Curves 

To further evaluate the estimation results, stress-stretch curves were plotted by 

simulating stretch-controlled biaxial tension in MATLAB by assuming the tissue is loaded 

in the plane stress state and the material is incompressible. We use 𝜎1 and 𝜆1 to denote the 

circumferential stress and stretch, 𝜎2 and 𝜆2 to denote the longitudinal stress and stretch. 

The simulations were based on the following 3 protocols: (1) in the circumferential strip 

biaxial tension, fixing 𝜆2 = 1 while increasing 𝜆1; (2) in the equi-biaxial tension, keeping 

the ratio 𝜆1/𝜆2 = 1; (3) in the longitudinal strip biaxial tension, fixing 𝜆1 = 1 while 

increasing 𝜆2. In total, six stress-stretch curves are generated for each set of constitutive 

parameters. 

(a) (b) (c)

(d) (e)
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 Using the testing dataset, the coefficient of determination (R2) was calculated for 

each curve, and the averaged coefficient of determination of the six curves for each input-

output pair was obtained. The predictions were sorted according to their averaged 

coefficient of determination. The best, median, worst cases are plotted in Figure 4.11, and 

the corresponding actual and predicted material parameters are shown in Table 4.4. Nearly 

matching agreement is achieved for the best cases. For the median case, although the 

discrepancies in the constitutive parameters seem obvious, the six curves still have close 

matches. In the worst case, the results are still acceptable in terms of material parameters, 

and the actual and predicted stress-stretch curves follow the same trends.  

Table 4.4 - The actual and predicted material parameters for the best, median, worst 

cases. 

  C10 (𝑘𝑃𝑎) k1(𝑘𝑃𝑎) k2 κ 𝜃(°) 

Best 
Actual 63.83 1086.31 28.12 0.1553 7.76 

Predicted 64.66 1091.45 28.08 0.1561 7.55 

Median 
Actual 48.60 4207.03 4.76 0.2958 16.46 

Predicted 50.59 4325.85 2.20 0.2963 10.16 

Worst 
Actual 75.15 4683.21 17.53 0.2182 22.05 

Predicted 72.49 4485.17 19.48 0.2096 18.30 
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Figure 4.11 - The actual and predicted stress-stretch curves for the best ((a), (b) and 

(c)), median ((d), (e) and (f)) and worst cases ((g), (h) and (i)).] 

4.5 Discussion 

Optimization-based inverse methods ([99, 100], CHAPTER 3, and APPENDIX A) 

have been extensively used for material parameter identification problems. These methods 

are computationally-expensive. Iterative computations limit the efficiency of these 

approaches, prohibiting their clinical applications. The proposed ML approach can 

fundamentally resolve the challenge on computation cost. The ML-model builds a direct 

linkage between the geometries and the material parameters, bypassing the iterative 

procedures. Once the ML-model is trained, it can be used to make predictions 

(d)

(g)

(a) (b)

(e)

(h)

(c)

(f)

(i)

Actual Actual Predicted Predicted 
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instantaneously and repeatedly, such that in vivo material parameter estimation on any 

patient in real-time can be possible. Although FE simulations are used to generate training, 

validation and testing datasets, which takes approximately 10 days in our exemplary 

application.  It should be noted that a similar amount of time is required to find the optimal 

material parameters for a single patient using nonlinear optimization [99, 100]. The 

proposed ML-model was evaluated using additional testing data, where minor 

discrepancies (with NMAE about 1% to 6%) were achieved between the actual and ML-

predicted material parameters. The close match between the actual and predicted stress-

stretch curves further demonstrates the ML model can predict material constitutive 

responses with high accuracy. As a rough comparison, the previous approaches ([99, 100], 

CHAPTER 3, and APPENDIX A) achieved a similar accuracy with deviation from 0% to 

6% in terms of material parameters using numerically-generated data. However, it is 

infeasible to perform a quantitative comparison among different inverse methods ([99, 

100], CHAPTER 3, and APPENDIX A) as different datasets were used.  

4.5.1 Support Vector Regression (SVR) for Nonlinear Mapping 

We chose neural network for the ML-model because it is highly scalable: it can be 

configured with more layers and units to handle an increasingly large amount of data. Other 

ML-models can also be used for the material parameter identification problem. For 

instance, support vector regression (SVR) with radial basis function (RBF) kernel [205] 

can be applied to our datasets. Utilizing the 𝜈-SVR with fine-tuned parameters (𝐶 = 7, 𝜈 =

0.5, 𝛾 = 0.3, definitions referring to [205]), we were able to predict the material parameters 

with similar accuracy as the neural network. As demonstrated in Table 4.5, the NMAEs of 

the SVR predictions are slightly higher than those of the neural network. 
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Table 4.5 - NMAE and NSTAE of the five material parameters in testing set using 

support vector regression (SVR). 

 C10 k1 k2 κ 𝜃 

NMAE 4.53% 2.35% 5.16% 1.64% 4.26% 

NSTAE 3.35% 2.07% 3.57% 1.57% 5.14% 

Our proposed ML model is not tied to the particular form of the constitutive model 

(Eqn. (2.10)). As long as a constitutive model can be implemented in a FE package, it can 

be used to generate training and testing data. For example, more advanced fiber dispersion 

models [206-208] can be used in our future work to handle fiber tension-compression 

switch.  

4.5.2 Training and Testing Loss for Different Activation Functions 

To determine material parameters of the aortic wall from medical image data, the 

3D geometrical information has to be fully exploited, which cannot be described by using 

a few intuitive features. In our ML-model, the PCA effectively encodes the input complex 

geometries into the shape codes. Next, a neural network (24 inputs - 256 hidden units - 256 

hidden units - 5 output units) with softplus activation function was utilized to establish the 

nonlinear mapping between the shape codes and the material parameters. The comparison 

between the softplus units and other units is illustrated in Figure 4.12. The softplus units 

outperformed the conventional sigmoid and hyperbolic tangent (tanh) units, the ReLU 

[209] and its variant SELU [210]. The softplus units lead to the lowest loss in the testing 

set and thus are more appropriate for this application. 
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Figure 4.12 - MSE loss function for training and testing using softplus and other units. 

4.5.3 Limitations 

Since this study only aims to demonstrate the feasibility of the proposed machine 

learning framework, virtual aorta geometries were used for training and testing our ML-

model. We acknowledge that the numerically-generated data may not represent the actual 

patient geometries and our ML-model has this limitation. Our current ML-model may not 

be able to handle complex situations such as calcifications in the aorta. The following 

assumptions and simplifications were used in data generation to expedite the FE 

simulations: (1) the branches of the aortic arch were trimmed off; (2) a uniform wall 

thickness at the systolic phase (1.5 mm) was assumed based on the average value from 

[140]; (3) the systolic and diastolic pressure were assumed to be 120mmHg and 80 mmHg, 

respectively for all cases; (4) to reduce model complexity, residual stresses were ignored 

according to a study [189] which shows that the residual stresses have minor effects on the 

material parameter identification problem; and (5) homogenously distribution of the 

material properties was assumed, while it is well known that aneurysms have 

heterogeneously distributed material properties. However, we note that these assumptions 
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and simplifications were also present in the previous optimization-based inverse 

approaches ([99, 100], CHAPTER 3, and APPENDIX A). The main advantage of the ML-

based approach is that it can significantly reduce the computation time. These limitations 

can be resolved in future work. For examples, the branches can be re-meshed using existing 

mesh processing method [193], then encoded by additional shape codes. Using MRI [22-

25] or high-resolution CT scans [26], the wall thickness may be measurable for individual 

patient. The full 3D geometries at the two cardiac phases can be encoded using PCA, and 

therefore the thickness field is naturally accommodated. To handle pressure variations, FE 

simulation data at a wide range of systolic and diastolic pressure levels can be generated, 

and the systolic and diastolic pressure can be included as two additional inputs to the neural 

network. To incorporate the residual stresses, a modified GPA algorithm [133] can be 

applied to generate training and testing datasets. 

Although the feasibility of the ML-model is clearly shown, the model is not ready 

for clinical application yet until sufficient real patient geometries are available. When a 

substantial amount of medical image data and experimental testing data are obtained, we 

can update the SSM space and the convex hull, from which a new large training dataset 

can be generated using the framework proposed in this study. The updated ML-model will 

be capable of predicting the material parameters which may provide clinically relevant 

insights, i.e. serving as a basis for patient-specific rupture risk estimation [57]. In case of a 

new patient with extreme aorta shape or material properties, which may cause unreliable 

prediction, a rejection option can be added in the ML-model as in [211]. The enhanced 

ML-model may avoid making predictions on uncommon cases. Those rare cases can be 
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handled by the optimization-based inverse methods ([99, 100], CHAPTER 3, and 

APPENDIX A). 

4.6 Summary 

We have proposed a novel ML approach to estimate the constitutive parameters of 

the aortic wall from in vivo loaded geometries at two cardiac phases with known blood 

pressures. The ML-model is comprised of an unsupervised shape encoding module and a 

supervised nonlinear mapping module. FE simulations were used to generate datasets for 

training, adjusting and testing the ML-model. This novel ML approach can expedite the 

procedure of in vivo material parameter identification: once the ML-model is trained, the 

material parameters can be estimated within one second. 
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CHAPTER 5. PROBABILISTIC AND ANISOTROPIC FAILURE 

METRIC 

 To noninvasively assess risk of aneurysm rupture and dissection, an accurate 

material failure metric of the aortic wall is needed. Previously, deterministic or isotropic 

failure metrics were extensively used for the aortic wall. However, experimental studies 

have shown that aortic wall tensile strengths in circumferential and axial directions are 

significantly different (i.e., anisotropic), and vary greatly among patients with aortic 

aneurysm. In this chapter, we develop a novel probabilistic and anisotropic failure metric 

for risk stratification of ATAA. A well-studied anisotropic failure criterion, the Tsai–Hill 

(TH) theory, was explored to model anisotropic failure properties of aortic tissues. To 

examine fitting capability of the TH criterion, off-axis uniaxial tension tests were 

performed on aortic tissues of 4 porcine individuals and 18 human ATAA patients. The 

TH criterion demonstrates a good fitting capability with the off-axis testing data. Next, 

anisotropic failure property data of 84 ATAA patients was collected from uniaxial tensile 

tests in the circumferential and axial directions. A joint probability distribution of the 

anisotropic failure properties was estimated, and the anisotropic failure probability (FP) 

based on the TH criterion was derived. The novel FP metric, which incorporates 

uncertainty and anisotropy of failure properties, can be evaluated given wall stresses. To 

demonstrate application of the FP metric, by using the in vivo-identified and ex vivo-

derived hyperelastic properties of the two patients obtained from CHAPTER 3, the FP 

metric was computed under elevated blood pressure. Some results of this chapter are 

published in [69] and available in [212]. 
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5.1 Background 

With advances in clinical imaging techniques and computational power in the past 

decade, numerical simulations have been increasingly pursued to gain a better 

understanding of the biomechanical events involved in various complex aortic disease 

conditions, such as rupture and dissection of aortic aneurysm. Using 3D patient-specific 

aorta geometry and physiological blood pressure, aortic wall stresses can be computed 

using FEA. To assess patient-specific ATAA rupture/dissection risk, computed stress 

distributions on the aortic wall are compared with the tensile strengths of the aortic wall, 

by which a scalar-valued failure metric can be obtained. Therefore, an accurate failure 

metric plays a critical role in biomechanical ATAA risk assessment [1]. 

In this work, we developed a novel probabilistic and anisotropic failure metric for 

ATAA risk stratification. Uniaxial tensile tests were performed using aortic tissue samples 

from 84 ATAA patients, from which a two-dimensional (2D) probability distribution of 

the anisotropic wall strengths was obtained. Next, the anisotropic failure probability (FP) 

based on the TH failure theory was derived from the probability distribution of wall 

strength. After the aortic wall stresses are computed from patient-specific biomechanical 

analyses, the novel FP metric can be used for risk classification. Lastly, by using the in 

vivo-identified and ex vivo-derived hyperelastic properties of the two patients obtained 

from CHAPTER 3, the FP metric was evaluated under elevated blood pressure. 

5.2 Anisotropic Failure Criterion 

5.2.1 The Tsai-Hill (TH) criterion 
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In this study, the Tsai-Hill (TH) criterion [48] was used for modeling failure 

properties of the aortic tissues. Applying the TH criterion to the aortic tissue, the failure 

metric 𝛬 takes the following form: 

𝛬 = (
𝜎𝜃𝜃

𝑋
)
2

+ (
𝜎𝑧𝑧

𝑌
)
2

− (
𝜎𝜃𝜃

𝑋
) (

𝜎𝑧𝑧

𝑋
) + (

𝜏𝜃𝑧

𝑆
)
2

 (5.1) 

where 𝜎𝜃𝜃, 𝜎𝑧𝑧 and 𝜏𝜃𝑧 stand for circumferential stress, axial stress and in-plane shear 

stress, respectively. Cauchy stress is used when the TH criterion is applied for finite 

deformation. 𝑋, 𝑌 and 𝑆 are circumferential, axial and in-plane shear strengths, 

respectively, which are the model parameters to be determined. Failure happens when 𝛬 

reaches 1.  

For the TH model,  𝑋 and 𝑌 can be determined from uniaxial failure stresses in the 

circumferential and axial directions, respectively. In order to find 𝑆, off-axis tension tests 

are typically performed. Off-axis tests are uniaxial tests along different angles w.r.t to the 

circumferential axis. The uniaxial stress in the loading axis needs to be transformed onto 

the circumferential/axial direction to determine failure using Eqn. (5.1), therefore, a set of 

transformed stress states can be obtained in the off-axis tension tests. Using the TH model, 

the off-axis uniaxial strength 𝑋𝜃𝜃 can be expressed as 

𝑋𝜃𝜃(𝜃) = 1 √
cos4 𝜃

𝑋2
+

sin4 𝜃

𝑌2
−

sin2 𝜃 cos2 𝜃

𝑋2
+

sin2 𝜃 cos2 𝜃

𝑆2
⁄  (5.2) 
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where 𝜃 is the angle between the fiber (circumferential) direction and the loading axis. 

Since the collagen fiber direction can rotate due to finite deformation (see Figure 5.1(c)) in 

an off-axis uniaxial test, one needs to account for the affine rotation of fiber orientations. 

Hence, 𝜃 corresponds to the deformed fiber direction at the moment of failure.  

5.2.2 Off-Axis Tension Tests 

Porcine and human aortic tissues were utilized for the off-axis tension tests. Fresh 

descending aortas of 4 porcine were harvested from a local slaughterhouse (Holifield 

Farms, Covington, GA), ranging between 1 and 5 years of age. Surgically-resected human 

aortic samples of 18 ATAA patients (13 male, 5 female, age: 66.89 ± 9.26 years) were 

obtained from the Emory Saint Joseph's Hospital with IRB approval. The porcine and 

human aorta samples were cryopreserved in 90%/10% RPMI-1640/DMSO solution upon 

harvest and stored at −80 °C until testing. Frozen tissue samples were slowly defrosted, 

followed by the multi-stage slow thawing method to remove the cryopreserving agent [15, 

174].  

The samples were trimmed into 25×13 mm dog bone-shaped specimens using a 3D 

printed template. Thickness values were measured at three locations in the narrow portion 

for each specimen with a Mitutoyo 7301 rotating thickness gage (Aurora, IL) with an 

accuracy of ±0.01 mm. An average thickness was determined and used in the calculation 

of the undeformed cross-section area. The uniaxial tests were conducted at room 

temperature using a Test Resources 100Q Universal Testing Machine (Shakopee, MN).  

Graphite optical markers were placed on the narrow portion of the specimens for optical 

strain measurements. The axial force was measured by means of a 4.4N load cell (Test 
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Resources SM-500-294) [213]. Fine grit sandpaper was placed between the tissue and the 

clamps to avoid slippage during the test. For each porcine individual, 10 aorta specimens 

with 5 different angles (0°, 45°, 65°, 80° and 90° with respect to the circumferential 

direction) were obtained and subjected to uniaxial tensile tests until failure, from which 

failure stress 𝑋𝜃𝜃 and failure strain can be extracted. The specimens were quasi-statically 

stretched to failure at a constant displacement rate of 5mm/min. The specimens were 

continuously hydrated with 0.9% saline solution to allow for optimal tissue hydration 

during testing [214]. To minimize the effect of axial position on the failure properties, 

uniaxial specimens were made according to the pattern shown in Figure 5.1(a) for porcine 

aortas and Figure 5.1(b) for human samples. The variation of circumferential strength due 

to change of axial position in porcine samples is small (see Figure 5.2). For surgically-

resected human aortic tissue samples, 0°, 45° and 90° uniaxial specimens were obtained 

for all 18 patients (Figure 5.1(b)). Due to a relatively small size of some human tissue 

samples, 65° and 80° test specimens were only cut from two patients (patient 1: a 60-year-

old male, patient 2: a 51-year-old male). 
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Figure 5.1 - Off-axis tension test of the healthy porcine (a) and human ATAA (b) 

aortic samples. (a) Outlines of bog-bone shape specimen geometries on a porcine 

aortic sample. (b) Outlines of bog- bone shape specimen geometries on a human 

ATAA aortic sample. The 65° and 80° specimens were only obtained from two 

patients. (c) Screenshots shows the change of fiber direction during the uniaxial test. 

𝜽̂ denotes the undeformed fiber orientation and 𝜽 is the deformed fiber orientation. 

A and C represent axial and circumferential directions, respectively. 

The testing data were excluded from subsequent analyses if rupture did not occur 

in the middle of the test specimen [215]. We observed that the aortic wall layers, i.e., media 

and adventitia layers, may rupture at different times during the uniaxial tests. Therefore, 

failure was defined by the onset of yielding, i.e., a deviation from the exponential strain-

stress curve, which corresponds to a rupture of any layer. It is worth noting that, during the 

uniaxial test, the fiber directions can affinely rotate due to finite deformation (see Figure 

5.1(c)). Hence, the deformed fiber angle 𝜃 was used in the TH criterion. 
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To verify that the axial positions has little effect on the off-axis uniaxial strength 

𝑋𝜃𝜃, using a descending aorta of another porcine individual (i.e., apart from the 4 porcine 

individuals used in the off-axis tests), uniaxial tests of circumferential (0°) specimens were 

performed following the same pattern (Figure 5.1(a)). The results are summarized in Figure 

5.2, which shows relatively small deviations from the mean circumferential strength. For 

resected human ATAA samples, specimens were obtained from approximately identical 

axial positions, however, material properties could vary in the circumferential direction 

[21]. 

 

Figure 5.2 - Effect of axial position on the circumferential strength. Solid red line 

indicates the mean value of circumferential strength. Blue dashed lines indicate the 

mean ± standard deviation. 

5.2.3 Fitting TH Criterion to Off-Axis Testing Data 

For the 4 porcine aortas, the uniaxial strengths 𝑋𝜃𝜃 versus the deformed fiber 

orientations 𝜃 extracted from the off-axis tests are plotted in Figure 5.3, where the TH 

criterion fits are also shown. The corresponding failure parameters are listed in Table 5.1. 
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In general, the TH criterion predicts a smooth trend. All the three models demonstrated 

good fitting capabilities, as shown by the R2 values.  

 

Figure 5.3 - Uniaxial strength obtained from off-axis tests and failure criteria fits for 

the healthy porcine aortas. (a) to (d) represent porcine individual 1 to 4, respectively. 

Table 5.1 - Failure model parameters and corresponding R2 obtained from fitting off-

axis testing data of the healthy porcine aortas. 

Porcine # 𝑋(𝑀𝑃𝑎) 𝑌(𝑀𝑃𝑎) 𝑆(𝑀𝑃𝑎) R2 

1 3.10 1.73 1.00 0.8580 

2 3.86 1.65 0.97 0.9634 

3 3.08 1.42 1.20 0.9497 

4 2.61 1.35 0.93 0.9856 

To demonstrate that the human ATAA tissues also have similar trend with respect 

to fiber orientation, 0°, 45° and 90° uniaxial specimens of the 18 human ATAA patients 

(a) (b)

(c) (d)
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were subjected to the off-axis tension tests. Boxplot of uniaxial strength 𝑋𝜃𝜃 versus the 

undeformed mean fiber orientations 𝜃 is depicted in Figure 5.4. Using two-sample t-test, 

we found that the circumferential strength 𝑋𝜃𝜃(𝜃 = 0°) is significantly higher than the 

axial strength 𝑋𝜃𝜃(𝜃 = 90°) with 𝑝 < 0.0001. The circumferential strength 𝑋𝜃𝜃(𝜃̂ = 0°) 

is also significantly higher than the 45° strength 𝑋𝜃𝜃(𝜃 = 45°) with significance 𝑝 =

0.0013. In addition, the 45° strength 𝑋𝜃𝜃(𝜃 = 0°) is significantly higher than the axial 

strength 𝑋𝜃𝜃(𝜃̂ = 90°) with 𝑝 = 0.0010. 

  

Figure 5.4 - Boxplot of uniaxial strength of human ATAA tissues in off-axis tests. 

Undeformed mean fiber orientation 𝜽̂ is plotted on the horizontal axis. The red mark 

indicates the median, and the bottom and top edges of the box indicate the 25th and 

75th percentiles, respectively. The whiskers extend to the maximum and minimum of 

𝑿𝜽𝜽. **, ***, **** indicates statistical significance levels of 𝒑 ≤ 𝟎. 𝟎𝟏, 𝒑 ≤ 𝟎. 𝟎𝟎𝟏, 𝒑 ≤
𝟎. 𝟎𝟎𝟎𝟏, respectively. 

Due to small size of the tissue samples, we were only able to obtain the complete 

sets of test specimens of all angles (0°, 45°, 65°, 80° and 90°) from two patients. The 

uniaxial strengths 𝑋𝜃𝜃 versus the deformed fiber orientations 𝜃 are plotted in Figure 5.5 

****
**

***
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for the two human ATAA patients, together with the TH criterion fits. The TH failure 

parameters and corresponding R2 are shown in Table 5.2. The TH model demonstrated 

good fitting capabilities to the off-axis testing data. 

 

Figure 5.5 - Uniaxial strength obtained from off-axis tests and failure criteria fits for 

the human ATAA patients. (a) and (b) represent patient 1 and 2, respectively. 

Table 5.2 - Failure model parameters and corresponding R2 obtained from fitting off-

axis testing data of the human ATAA tissues. 

Porcine # 𝑋(𝑀𝑃𝑎) 𝑌(𝑀𝑃𝑎) 𝑆(𝑀𝑃𝑎) R2 

1 2.73 1.57 0.84 0.9443 

2 1.68 0.55 0.43 0.9652 

5.3 Failure Property Data 

In this study, surgically resected human aortic tissues of 98 ATAA patients (72 

males, 26 females, age: 62.57 ± 12.42 years) were obtained from the Emory Saint Joseph's 

Hospital with IRB approval (including the 18 patients in Section 5.2). The tissue samples 

underwent uniaxial tests (Section 5.3.1) to determine the failure properties. Among the 98 

patients, pre-operative 3D CT images of 14 patients were obtained to reconstruct their 

ATAA geometries. In addition, we obtained surgically resected aortic tissue samples and 

(a) (b)
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corresponding CT images of 27 ATAA patients in a previous study [57] from Yale-New 

Haven Hospital. Uniaxial and biaxial testing were performed for the 27 patients. 

The cohort of 125 (98+27) ATAA patients was divided into two groups: (1) 84 

patients without CT images; and (2) 41 patients with CT images (including 27 patients 

from our previous study [57]). In this chapter, failure property data of the 84 patients in 

Group 1 was used for development of the novel anisotropic and probabilistic failure metric; 

in CHAPTER 6, Group 2 was used to compute the "ground-truth" risks for validation. 

Hence, there is no overlapping between the two groups. 

5.3.1 Uniaxial Testing in the Circumferential and Axial Directions 

Using the similar approach as Section 5.2.2, uniaxial tensile tests were performed 

in the circumferential and axial directions to extract the TH parameters  𝑋 and 𝑌 of the 98 

ATAA tissue samples from Emory (similar uniaxial tests were performed for the 27 

patients in our previous study [57]). Definition of failure is the same as that in Section 

5.2.2. To demonstrate that the wall strength of the human ATAA tissues is anisotropic, 

circumferential (𝑋) and axial (𝑌) strengths of the 125 ATAA patients (Group 1 and Group 

2) are depicted in Figure 5.6 using boxplot. By using two-sample t-test, it is shown that the 

circumferential strength is significantly higher than the axial strength with 𝑝 < 0.0001.  
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Figure 5.6 - Boxplot of uniaxial strengths of human ATAA tissues. The red mark 

indicates the median, and the bottom and top edges of the box indicate the 25th and 

75th percentiles, respectively. The whiskers extend to the maximum and minimum. 

**** indicates statistical significance level 𝒑 ≤ 𝟎. 𝟎𝟎𝟎𝟏. 

5.3.2 Anisotropic Failure Properties 

Results of the uniaxial testing are summarized in Figure 5.7(a) for the two groups. 

Group 1 was used in the subsequent sections to derive the anisotropic and probabilistic 

failure metric. For most of human ATAA samples, we were unable to perform off-axis 

uniaxial tests to obtain 𝑆 due to the limited size of the tissue samples. An average value 

(𝑆 = 0.635𝑀𝑃𝑎) in Section 5.2.3 was used for all patients. The original TH model [48] 

assumes 𝑋 > 𝑌, which is usually the case for unidirectional fiber-reinforced composite. 

For the tested aortic tissue samples, 𝑋 < 𝑌 can be observed for a few patents (see Figure 

5.7(a)). Therefore, in this study, the TH failure metric is modified as 

****
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𝛬 = {
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 (5.3) 

Hence, using the circumferential (𝑋) and axial (𝑌) strengths determined from uniaxial tests, 

the TH failure envelopes (contour line defined by 𝛬 = 1) of the 84 patients in Group 1 can 

be visualized in Figure 5.7(b) using 𝜏𝜃𝑧 = 0.  

 

Figure 5.7 - Uniaxial strengths and failure envelopes. (a) Circumferential (𝑿) and 

axial (𝒀) strengths of the 125 ATAA patients. Among them, 84 patients were used for 

developing the probabilistic metric (Group 1), 41 patients were used for validation 

(Group 2). (b) Tsai-Hill (TH) failure envelopes of the 84 patients in Group 1. 𝝉𝜽𝒛 = 𝟎 

when generating the failure envelopes. 

5.4 Anisotropic and Probabilistic Failure Metric 

A anisotropic probabilistic failure metric is developed in following the steps: (1) 

estimating the probability density function (PDF) of failure parameters 𝑋 and 𝑌 

(circumferential and axial strengths), 𝑓𝑋𝑌, from uniaxial testing data of Group 1; (2) 

deriving PDF of the failure metric 𝛬, 𝑓𝛬, by using the method of random variable 

(a) (b)
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transformation (a.k.a. change of variables technique)  [216]; and (3) calculating the failure 

probability (FP), 𝑃(𝛬 > 1). 

5.4.1 Probability Distribution of Failure Properties 

In this study, the joint PDF 𝑓𝑋𝑌 of the TH model parameters 𝑋 and 𝑌 

(circumferential and axial strengths) is obtained using kernel density estimation (KDE) 

[217, 218], which is a non-parametric model for PDF estimation. The bivariate KDE [219] 

with diagonal bandwidth matrix takes the following form 

𝑓𝑋𝑌(𝑥, 𝑦) =
1

𝑛ℎ1ℎ2
∑𝐾(

𝑥 − 𝑥𝑖

ℎ1
)𝐾(

𝑦 − 𝑦𝑖

ℎ2
)

𝑛

𝑖=1

 (5.4) 

where 𝑥𝑖 and 𝑦𝑖 are samples of the TH model parameters 𝑋 and 𝑌, 𝑛 is the number of 

samples. ℎ1 and ℎ2 represent the bandwidths. 𝐾(∎) is the one-dimensional kernel function. 

In this study, the normal kernel was selected: 

𝐾(𝑢) =
1

√2𝜋
𝑒𝑥𝑝 (−

1

2
𝑢2) (5.5) 

To ensure that the support for the PDF is positive, i.e., ℝ+
𝟐 = {(𝑥, 𝑦) ∈ ℝ𝟐: 𝑥, 𝑦 > 0}𝑐, log 

transformation was used [220].  ℎ1 and ℎ2 were chosen using ten-fold cross validation with 

likelihood function of the 84 patients data (Group 1) in following the steps: (1) ℎ1 and ℎ2 

are evenly sampled on a 2D grid from 0.1 to 0.35 with a total of 10,000 points; (2) using a 

set of  ℎ1 and ℎ2 values, ten-fold cross validation is performed to evaluate the log-

likelihood function; (3) the ℎ1 and ℎ2 that lead to the maximum log-likelihood in the ten-
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fold cross validation were chosen. As a result, ℎ1 = 0.2439𝑀𝑃𝑎 and ℎ2 = 0.2237𝑀𝑃𝑎. 

In Figure 5.8, the joint PDF 𝑓𝑋𝑌 and marginal PDFs 𝑓𝑋 and 𝑓𝑌 are plotted. 

 

Figure 5.8 - The KDE-estimated joint PDF 𝒇𝑿𝒀 and marginal PDFs 𝒇𝑿 and 𝒇𝒀. 

Histograms for marginal distributions are also visualized. 

 To validate the KDE-estimated distribution, goodness-of-fit tests were performed 

using the estimated joint PDF 𝑓𝑋𝑌 and marginal PDFs. The results are summarized in Table 

5.3, 𝑝 =0.9715 was obtained using Chi-square goodness-of-fit test for the joint 

distribution. The null hypothesis is that the data comes from the KDE-estimated 

distribution. For all tests, the null hypothesis cannot be rejected, which indicates the PDFs 

can well describe the data distribution. 
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Table 5.3 - Goodness-of-fit tests for the joint distribution and marginal distributions. 

Null hypothesis: the data comes from the KDE-estimated distribution; alternative 

hypothesis: the data does not come from such distribution. 

type of test 
joint PDF 

𝑓𝑋𝑌 
type of test 

marginal PDF 

𝑓𝑋 

marginal PDF 

𝑓𝑌 

Chi-square 0.9715 

Chi-square 0.6481 0.9449 

Kolmogorov-

Smirnov 
0.5857 0.9346 

Anderson-Darling 0.6432 0.9030 

5.4.2 Failure Probability 

To derive the PDF 𝑓𝛬 of the TH failure metric 𝛬, the method of direct 

transformation [216] is employed. Given the stress states (𝜎𝜃𝜃, 𝜎𝑧𝑧 and 𝜏𝜃𝑧), 𝛬 is a function 

of the random variables, i.e., 𝛬 = 𝛬(𝑋, 𝑌). Since 𝑆 is a fixed constant in this study, we 

define a random variable 𝑊, 

𝑊 = 𝛬 − (
𝜏𝜃𝑧

𝑆
)
2

= 𝑔1(𝑋, 𝑌) = {
(
𝜎𝜃𝜃

𝑋
)
2

+ (
𝜎𝑧𝑧

𝑌
)
2

− (
𝜎𝜃𝜃

𝑋
) (

𝜎𝑧𝑧

𝑋
) , 𝑋 ≥ 𝑌

(
𝜎𝜃𝜃

𝑋
)
2

+ (
𝜎𝑧𝑧

𝑌
)
2

− (
𝜎𝜃𝜃

𝑌
) (

𝜎𝑧𝑧

𝑌
) , 𝑋 < 𝑌

 (5.6) 

Therefore, the probability of failure 𝑃(𝛬 > 1) is equivalent to 𝑃(𝑊 > 1 − (
𝜏𝜃𝑧

𝑆
)
2

). We 

also define a dummy random variable 𝑍 

𝑍 = 𝑔2(𝑋, 𝑌) = {
(
𝜎𝜃𝜃

𝑋
)
2

− (
𝜎𝑧𝑧

𝑌
)
2

− (
𝜎𝜃𝜃

𝑋
) (

𝜎𝑧𝑧

𝑋
) , 𝑋 ≥ 𝑌

(
𝜎𝜃𝜃

𝑋
)
2

− (
𝜎𝑧𝑧

𝑌
)
2

− (
𝜎𝜃𝜃

𝑌
) (

𝜎𝑧𝑧

𝑌
) , 𝑋 < 𝑌

 (5.7) 
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The two functions 𝑔1(𝑋, 𝑌) and 𝑔2(𝑋, 𝑌) transform 𝑋 and 𝑌 to the space of 𝑊 and 

𝑍. Let 𝑎 = {
𝜎𝜃𝜃

2 − 𝜎𝜃𝜃𝜎𝑧𝑧 , 𝑋 ≥ 𝑌

𝜎𝜃𝜃
2          , 𝑋 < 𝑌

, and 𝑏 = {
𝜎𝑧𝑧

2          , 𝑋 ≥ 𝑌

𝜎𝑧𝑧
2 − 𝜎𝜃𝜃𝜎𝑧𝑧 , 𝑋 < 𝑌

, then we can rewrite 

the transformation as 𝑤 = 𝑔1(𝑥, 𝑦) =
𝑎

𝑥2 +
𝑏

𝑦2, and 𝑧 = 𝑔2(𝑥, 𝑦) =
𝑎

𝑥2 −
𝑏

𝑦2, with support 

(𝑥, 𝑦) ∈ ℝ+
𝟐 . Hence, the inverse transformation and its Jacobian can be obtained, i.e., 𝑥 =

𝑔1
−1(𝑤, 𝑧) = (

2𝑎

𝑤+𝑧
)
1/2

, 𝑦 = 𝑔2
−1(𝑤, 𝑧) = (

2𝑏

𝑤−𝑧
)
1/2

, and 𝐽 = |

𝜕𝑥

𝜕𝑤

𝜕𝑥

𝜕𝑧
𝜕𝑦

𝜕𝑤

𝜕𝑦

𝜕𝑧

| =

− [
(𝑎𝑏)1/3

(𝑤+𝑧)(𝑤−𝑧)
]
3/2

.  

When 𝑎 ≠ 0 and 𝑏 ≠ 0, the transformation from (𝑋, 𝑌) to (𝑊, 𝑍) is one-to-one 

because 𝐽 ≠ 0. Using the method of direct transformation [216], the joint PDF of 𝑊 and 

𝑍, 𝑓𝑊𝑍, can be derived using 

𝑓𝑊𝑍(𝑤, 𝑧) = 𝑓𝑋𝑌[𝑔1
−1(𝑤, 𝑧), 𝑔2

−1(𝑤, 𝑧)]|𝐽(𝑤, 𝑧)| (5.8) 

The marginal PDF 𝑓𝑊 can be obtained by 

𝑓𝑊(𝑤) = ∫ 𝑓𝑊𝑍(𝑤, 𝑧)
+∞

−∞

𝑑𝑧 (5.9) 
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Figure 5.9 - The estimated pdf 𝒇𝑾 with given 𝝈𝜽𝜽 and 𝝈𝒛𝒛 values. 

When 𝑎 = 0 or 𝑏 = 0, 𝑓𝑊 can be directly obtained using the method of direct 

transformation for one random variable [216]. If 𝑎 = 0, i.e., 𝑤 = 𝑔(𝑦) =
𝑏

𝑦2, PDF 𝑓𝑊 can 

be derived as 

𝑓𝑊(𝑤) = 𝑓𝑌[𝑔−1(𝑤)] |
𝑑𝑔−1(𝑤)

𝑑𝑤
| (5.10) 

Similarly, if 𝑏 = 0, i.e., 𝑤 = 𝑔(𝑥) =
𝑎

𝑥2
, 𝑓𝑊 can be obtained by 

𝑓𝑊(𝑤) = 𝑓𝑋[𝑔−1(𝑤)] |
𝑑𝑔−1(𝑤)

𝑑𝑤
| (5.11) 

For illustrative purposes, 𝑓𝑊 is plotted in Figure 5.9 by using different values of 

𝜎𝜃𝜃 and 𝜎𝑧𝑧. Once the PDF 𝑓𝑊 is obtained, it is straightforward to compute the failure 

probability (FP) by integration: 
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𝐹𝑃 = 𝑃(𝛬 > 1) = 𝑃 (𝑊 > 1 − (
𝜏𝜃𝑧

𝑆
)
2

) = ∫ 𝑓𝑊(𝑤)
+∞

1−(
𝜏𝜃𝑧
𝑆

)
2

𝑑𝑤 (5.12) 

Given 𝜏𝜃𝑧, FP can be visualized on a 2D plot of 𝜎𝜃𝜃 and 𝜎𝑧𝑧. In Figure 5.10, 2D contour 

plots of FP are generated using representative 𝜏𝜃𝑧 values.  

Given stress states, the value of FP can be obtained via numerical integration. In 

this study, the FP values were pre-computed in a 3D mesh grid of 𝜎𝜃𝜃, 𝜎𝑧𝑧 and 𝜏𝜃𝑧 prior to 

FE simulations. FP under specified stress states can be obtained using 3D interpolations 

from the pre-computed FP values in the grid. 

 

Figure 5.10 - 2D contour of FP in 𝝈𝜽𝜽 − 𝝈𝒛𝒛 plane using (a) 𝝉𝜽𝒛 = 𝟎 and (b) 𝝉𝜽𝒛 =
𝟑𝟎𝟎𝒌𝑷𝒂. 

5.5 ATAA Failure Metric under Elevated Pressure using In Vivo-Identified 

Hyperelastic Properties 

In CHAPTER 3, the inverse identification approach was applied to estimate in vivo 

material parameters of the hyperelastic GOH model (𝐶10, 𝑘1, 𝑘2, 𝜅, 𝜃) from ECG-gated CT 

(a) (b)
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scans of two ATAA patients. Surgically-resected tissue samples of the same patients were 

obtained for ex vivo biaxial testing. Good agreements were achieved for the in vivo-

identified and ex vivo-derived stretch-stress curves.  

Here, systolic geometries of the two patients were reconstructed from the CT images. 

For Patient 1, a large field of view was recorded; therefore, the aortic arch and descending 

aorta were included in the analysis. Using the patient-specific ATAA geometries and blood 

pressures of the two patients, the generalized pre-stressing algorithm (GPA, described in 

Section 2.3.3) is used to incorporate systolic pre-stress into the aortic wall. Next, by using 

patient-specific hyperleastic properties (in vivo-identified and ex vivo-derived), the ATAA 

stress fields were computed under elevated blood pressure, 1.5𝑃𝑠𝑦𝑠. 𝑃𝑠𝑦𝑠 stands for the 

systolic blood pressure for each patient. Consequently, the FP metric was evaluated on the 

ATAA geometries using the in vivo-identified and the averaged ex vivo-derived properties. 

The FP fields on the ATAA geometries are shown in Figure 5.11 for the two patients. 

It can be observed that the in vivo-identified and ex vivo-derived properties have resulted 

in similar distributions of FP metric. For Patient 1, the maximum FP metrics were similar 

using the in vivo-identified and ex vivo-derived hyperelastic properties. The slight 

difference of the maximum FP metrics of Patient 2 may be explained by heterogeneous 

material properties. 
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Figure 5.11 - FP evaluated under elevated blood pressure (1.5𝑷𝒔𝒚𝒔) using in vivo-

identified ((a) and (c)) and ex vivo-derived ((b) and (d)) hyperelastic properties. (a) 

and (b): Patient 1; (c) and (d): Patient 2. 

5.6 Discussion 

In this study, a probabilistic anisotropic failure metric (FP) is proposed for ATAA 

risk stratification. Significant anisotropic failure properties of ATAA tissues have been 

shown in several studies [15, 21, 52, 68, 69], consistent with the testing results obtained in 

this study (see Figure 5.6). By using the TH criterion, anisotropic failure properties are 

embedded in FP. Comparing to the standard TH metric, FP incorporates uncertainties of 

wall strengths, i.e., the distribution of the failure parameters 𝑋 and 𝑌 in the ATAA 

population. To demonstrate application of the FP metric, by using the in vivo-identified 

Max FP=0.0760

Max FP=0.0616 Max FP=0.0761

Max FP=0.0771

Patient 1

1.5Psys=224mmHg

in vivo ex vivo

Patient 2

1.5Psys=234mmHg

(a)

(c)

(b)

(d)

FP
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and ex vivo-derived hyperelastic properties of the two patients obtained from CHAPTER 

3, the FP metric was computed under elevated blood pressure. Our results showed that the 

FP metric distributions are similar by using the in vivo-identified and ex vivo-derived 

properties. To our best knowledge, this is the first study that develops a probabilistic and 

anisotropic failure metric for quantifying failure risk of the aortic wall. 

In the off-axis tension tests, porcine aortic tissues exhibit decreasing uniaxial 

strength from circumferential (0°) to axial (90°) direction, which is in line with a previous 

study by Korenczuk et al. [52]. Our 0°, 45° and 90° off-axis testing results also indicate 

anisotropic failure properties of human ATAA tissues differing with statistical significance 

(𝑝 < 0.05), which was also observed in many aortic tissue rupture studies [15-24]. It is 

noted that the 45° uniaxial strength is higher than the axial (90°) strength but lower than 

the circumferential (0°) strength with statistical significance (𝑝 < 0.05). The Tsai-Hill 

anisotropic criterion demonstrates good fitting capabilities with the off-axis tension test 

data. The fitting capabilities may be further studied using a larger sample size in the future. 

5.6.1 Probabilistic Metric and Uncertainty Quantification 

Polzer and Gasser [74] proposed a probabilistic rupture risk index (PRRI) based on 

isotropic wall strength leveraging an uncertainty quantification (UQ) framework [75]. In 

their  work [74], the wall thickness, which is the input to the FE simulations, was treated 

as a source of uncertainties. However, in the UQ framework, sampling-based approaches 

like Monte Carlo are typically needed to quantify the uncertainties of the FE output (i.e. 

peak wall stress) propagated from the uncertainties of the FE inputs (i.e., wall thickness 

and material parameters), which often results in high computational cost [76-78]. In 
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contrast to PRRI [74] that incorporates uncertainties of both wall strength and wall 

thickness, the proposed probabilistic failure metric (FP) only considers uncertainties of 

anisotropic wall strength, and uncertainties from FE inputs are not involved. Therefore, 

given FE-computed stresses, FP can be derived from experimental uniaxial testing data via 

simple numerical integration. We have recently developed a deep learning (DL) model [75] 

as a fast and accurate surrogate of FE simulation, which can replicate the results of FE 

simulations instantaneously. To incorporate uncertainties originated from FE inputs such 

as wall thickness into FP, the DL model can be used to accelerate the UQ framework. 

5.6.2 Deterministic and Probabilistic Metrics 

Deterministic failure metrics [67, 70-72] were extensively used in the literature to 

assess risk of aortic aneurysms. For example, Geest et al. [73] developed a multiple linear 

regression method to estimate wall strength of abdominal aortic aneurysm (AAA) from 

patient parameters (age, gender, maximum dimeter, family history and smoking status) and 

local parameters (local intraluminal thrombus (ILT) thickness and local diameter). 

However, since aortic wall strength vary greatly among individuals [15, 17, 21, 68], failure 

properties are not fully determined by those patient parameters and local parameters. 

Without incorporation of uncertainties, the predictive capability of the linear regression 

model is limited [73]. Indeed, patient-specific failure properties (i.e., aortic wall strengths) 

can only be accurately determined using invasive and destructive tests, and these tests 

clearly cannot be performed for patients whose ATAAs are still intact.   

In contrast, those patient and local parameters were not used in the PRRI [74]. 

Nonetheless, the PRRI outperformed the deterministic method in a retrospective study [60] 
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of asymptomatic AAA. Therefore, probabilistic metrics, which take into considerations of 

the uncertainties, may be more promising for risk assessment. With more tissue failure 

testing data collected, our developed probabilistic metric FP can be updated and improved, 

e.g., a conditional FP can be built based on patient-specific information (age, gender, 

family history). The conditional FP, which fully incorporates wall strength data and 

patient-specific information, combines the merits of both deterministic and probabilistic 

failure metrics. 

5.6.3 Limitations 

In this study, the samples were not preconditioned. Preconditioning is commonly 

performed for biological tissues, which produces repeatable elastic mechanical response 

[221]. However, the exact mechanisms of preconditioning remain unclear [222], and 

measured tissue properties are dependent on the preconditioning protocols of interest 

[223]. In some studies [51, 224], preconditioning was described by the Mullin’s effect, 

and modeled using damage mechanics models. Therefore, it is suggested that 

preconditioning may not be performed at high loads by which damage could be induced 

[51]. In addition, the stress softening effects may not be adequately removed if 

preconditioning is performed at low strain amplitude [222]. Due to directional and 

subject-specific variability in material properties, e.g. human Patient 2 has a axial failure 

stress of 0.47 MPa, while porcine subject 2 has a circumferential failure stress of 3.88 

MPa, it is difficult to find a consistent preconditioning strain amplitude for all human and 

porcine samples. Therefore, in this study, we did not apply pre-conditioning protocols 

for the sake of consistency in failure data collection. The samples were quasi-statically 

stretched to failure at a constant displacement rate of 5mm/min. It is shown in [225] that, 
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for arterial tissues, the failure properties are independent of the strain rate. We assumed 

that preconditioning has a negligible effect on failure properties, which needs to be 

investigated and verified in future studies. For arterial tissues, stress softening effects 

induced by preconditioning are often small [51] comparing to spinal cord tissues [222]. 

In this study, the cryopreservation was used for tissue storage, which has been shown to 

have no significant effect on the material properties of the arterial wall [174]. 

5.7 Summary 

In this chapter, a novel probabilistic and anisotropic failure metric was developed 

using failure property data from 84 ATAA patients. Off-axis tension tests were performed 

on aortic tissues of 4 porcine individuals and 18 human ATAA patients. The Tsai-Hill (TH) 

failure criterion demonstrates a good fitting capability with the off-axis testing data. The 

novel failure probability (FP) metric, which was derived based on the TH failure criterion, 

incorporates uncertainties of the anisotropic failure properties. Using the two patients’ in 

vivo identification and ex vivo testing data obtained in CHAPTER 3, our results showed 

that the FP metric distributions under elevated blood pressure are similar for the in vivo-

identified and ex vivo-derived properties. 
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CHAPTER 6. COMPARSION OF RISK ASSESSMENT 

METHODS 

 In CHAPTER 5, we developed a novel probabilistic and anisotropic failure metric 

using uniaxial testing data of 84 ATAA. The anisotropic failure probability (FP) metric, 

which incorporates uncertainty in the anisotropic failure properties, can be evaluated after 

the aortic wall stresses are computed from patient-specific biomechanical analysis. In this 

chapter, to compare different risk assessment methods, “ground-truth” risks of additional 

41 ATAA patients were numerically-reconstructed using matching CT images and tissue 

testing data. Performance of different risk stratification methods (e.g., with and without 

patient-specific hyperelastic properties) was compared using p-value and receiver 

operating characteristic (ROC) curve. The results show that: (1) the probabilistic FP metric 

outperforms the deterministic TH metric; and (2) patient-specific hyperelastic properties 

can help to improve the performance of probabilistic FP metric in ATAA risk stratification. 

Some results of this chapter are available in [212]. 

6.1 Background 

 TAA is a lethal disease, which may lead to aortic rupture or dissection: the five-

year survival in patients left untreated is 54% [5]. Currently, the clinical surgery criterion 

is primarily based on the aortic size and classifies an ATAA as high risk if the (maximum) 

diameter is larger than 5.5cm [9, 12], which may not accurately reflect a patient’s risk [13, 

14]: some aneurysms at smaller diameters (e.g., < 4cm) can and do rupture [13]. As ATAA 

rupture and dissection are essentially mechanical events, patient-specific biomechanical 
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assessment, such as structural FEA, can provide a more accurate assessment of ATAA 

rupture/dissection risk [60, 61].  

 To estimate a patient’s risk, patient-specific information (from medical report data 

or clinical preoperative images) before any adverse event may be used, which may include 

geometries from images and blood pressure. Patient-specific wall stress can be computed 

under physiological, hypertensive, or elevated blood pressures. Patient-specific failure 

properties such as wall strengths are not available for biomechanical assessment, as those 

can only be obtained using invasive and destructive testing. Without knowing patient-

specific wall strengths, an accurate failure metric plays a critical role in biomechanical 

ATAA risk assessment [1]. In CHAPTER 5, we developed a novel probabilistic and 

anisotropic failure metric using uniaxial testing data of 84 ATAA. The anisotropic failure 

probability (FP) metric, which incorporates uncertainty in the anisotropic failure 

properties, can be evaluated after the aortic wall stresses are computed from patient-

specific biomechanical analysis. 

 In this chapter, CT scans and corresponding surgically-resected tissues samples of 

additional 41 ATAA patients were obtained.  The tissue samples were mechanically tested 

to obtain the hyperelastic and failure properties (planar biaxial for hyperelastic properties 

and uniaxial for failure properties). The “ground-truth” risks of 41 ATAA patients were 

reconstructed from FE simulations using the CT-reconstructed geometries and tissue 

testing data of the 41 patients.  Using the “ground-truth” data, the following risk assessment 

methods were compared: 1) maximum diameter criterion; 2) maximum failure metric under 

systolic blood pressure; 3) maximum failure metric under elevated blood pressure 

evaluated using one set of hyperelastic properties representing the population-mean 
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response; and 4) maximum failure metric under elevated blood pressure evaluated using 

patient-specific hyperelastic properties. The developed failure probability (FP) metric in 

CHAPTER 5 and a deterministic Tsai-Hill metric were used as the failure metric and the 

results were compared. 

6.2 CT Image and Tissue Testing Data 

In this chapter, the 41 patients in Group 2 were used to numerically reconstruct the 

risk of ATAA. The tissue samples underwent biaxial tests (Section 6.2.1) to determine 

hyperelastic properties, and uniaxial tests (Section 6.2.2) to determine the failure 

properties. Patient characteristics in Group 2 are reported in Table 6.1. 

Table 6.1 - Patient characteristics in Group 2 used for validation. The reconstructed 

failure pressure is obtained in Section 6.3. 

Patient 

# 
Age Gender 

Diameter 

(mm) 

Systolic pressure 

(𝑃𝑠𝑦𝑠, mmHg) 

Reconstructed 

failure pressure 

(𝑃𝑓, mmHg) 

1 76 M 46    130    442 

2 52 M 47    101    426 

3 69 F 47    150    461 

4 66 M 46    131    252 

5 73 M 40    147    658 

6 73 M 47    178    222 

7 69 F 50    138    397 

8 59 M 51    128    239 

9 60 M 48    128    453 

10 59 M 47    119    151 

11 45 M 54    144    336 

12 48 M 52    119    191 

13 48 M 51    105    403 

14 59 M 53    131    414 

15 64 F 49    104    280 

16 62 F 50     75    200 
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Table 6.1 continued 

17 66 M 55    134    272 

18 52 M 48    133    201 

19 56 M 50    128    208 

20 47 M 53     97    202 

21 56 M 46    139    191 

22 57 M 52    136    428 

23 71 M 48    105    242 

24 33 M 41    136    145 

25 44 M 36    155    408 

26 56 F 58    117    262 

27 68 M 52    123    295 

28 65 M 50    138    377 

29 46 F 57    135    190 

30 55 M 52    129    191 

31 57 M 63    132    153 

32 58 M 43    137    267 

33 58 M 48    142    316 

34 68 M 47    139    214 

35 70 M 66    124    141 

36 65 M 51    139    320 

37 44 M 56    153    302 

38 77 F 51    130    195 

39 56 M 49    124    379 

40 31 F 57     93    274 

41 68 M 46    146    286 

6.2.1 Biaxal Testing 

Seven-protocol biaxial tensile tests were performed on the patient tissues in Group 

2. Since the test results for the 27 Yale patients were already available from our previous 

study [57], in this study, we only performed the tests on the tissues of the 14 patients from 

Emory. Briefly, cryopreserved tissue samples were slowly defrosted, and the 

cryopreserving agent was removed using the multi-stage slow thawing method [15, 174]. 

The samples were carefully trimmed into square-shaped specimens with a side length of 
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20~25 mm. Thickness was measured at three locations on the diagonal line of the biaxial 

specimen. An averaged undeformed thickness was recorded. Each specimen was 

subjected to biaxial tensile loadings which aligned with the circumferential and axial 

directions. A stress-controlled biaxial testing protocol was utilized [15]. 𝑵 denotes the first 

nominal stress, and the ratio 𝑁θ: 𝑁𝑧 was kept constant. Each tissue specimen was 

preconditioned for at least 40 continuous cycles with 𝑁θ: 𝑁𝑧 = 1: 1 to minimize tissue 

hysteresis. Seven successive protocols were performed using ratios 𝑁θ: 𝑁𝑧 =

0.75: 1, 0.5: 1, 0.3: 1, 1: 1, 1: 0.75, 1: 0.5, 1: 0.3. The GOH model (Eqn. (2.10)) was used as 

the constitutive law, the incompressibility 𝐷 is a fixed to be 1 × 10−5. The five material 

parameters (𝐶10, 𝑘1, 𝑘2, 𝜅, 𝜃) for an ATAA patient were determined by fitting the GOH 

model to the biaxial data. 

6.2.2 Uniaxial Testing 

In Section 5.3.1, uniaxial tensile tests were performed in the circumferential and axial 

directions to extract the wall strengths (𝑋 and 𝑌) of the 98 Emory ATAA tissue samples in 

the two directions (including the 14 Emory patients in Group 2). The testing results for the 

27 Yale patients were already available from our previous study [57]. Definition of failure 

is the same as that in Section 5.2.2. For the 41 patients in Group 2, the Tsai-Hill (TH) model 

(Eqn. (5.3) was used to describe failure strength using patient-specific parameters 𝑋 and 𝑌. 

6.3 Reconstructing ATAA Risk using Patient-Specific CT Images and Tissue 

Testing Data 

To reconstruct ATAA risk of adverse events (dissection or rupture) for the 41 

patients in Group 2, FE simulations were performed using patient-specific information 
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(geometry, blood pressure, experimentally-measured wall thickness, hyperelastic 

parameters and failure parameters) in Abaqus (Figure 6.1). The patient-specific ATAA 

geometries were segmented from the patients’ pre-operative CT scans using 3D Slicer 

[226], we assume these geometries are in equilibrium under the systolic blood pressure. 

Then, the ATAA surfaces were meshed into quadrilateral elements using our remeshing 

program [140]. Mesh sensitivity analysis was performed in our previous study [57]. To 

estimate the patient-specific wall thickness in the systolic phase, an analytical procedure 

[63] was performed using the experimentally-measured undeformed wall thickness 

assuming 𝜎𝜃𝜃: 𝜎𝑧𝑧 = 1: 2 [63]. Solid meshes of the ATAA systolic geometries with 

C3D8H elements in Abaqus were then obtained by extruding the surface mesh using 

corresponding systolic wall thickness values. 

The generalized pre-stressing algorithm (GPA) [145] was utilized to incorporate 

the pre-stress induced by the systolic pressure into the patient-specific ATAA systolic 

geometries. 

It is observed that ATAA dissection and rupture usually occurs under elevated 

blood pressures brought on by extreme emotional or physical stress [64, 158]. To this end, 

using the patient-specific GOH material parameters, the aorta geometries are pressurized 

under elevated pressure levels until failure is predicted by the patient-specific TH 

parameters measured from uniaxial tests (see Figure 6.1). In the FE simulations, the 

proximal and distal boundaries of the ATAA geometries were only allowed to move in the 

radial direction. To remove boundary effect, three layers of elements adjacent to the 

boundaries were excluded from the failure evaluation.  For a particular patient, the pressure 
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rupture risk (PRR) [63] is used to quantify the risk revealed by the FE simulation, which is 

defined as  

𝑃𝑅𝑅 = 𝑃𝑠𝑦𝑠/𝑃𝑓 (6.1) 

where 𝑃𝑠𝑦𝑠 stands for the patient’s systolic blood pressure and 𝑃𝑓 represents the patient’s 

failure pressure. We define high risk as for patient who has a 𝑃𝑅𝑅 ≥ 0.6 and low risk as 

𝑃𝑅𝑅 < 0.6. According to American Heart Association (AHA)’s blood pressure category 

[227], if 𝑃𝑠𝑦𝑠 is normal,  𝑃𝑓 = 𝑃𝑠𝑦𝑠/0.6 corresponds to the hypertensive crisis (blood 

pressure higher than 180mmHg). Therefore, using 𝑃𝑅𝑅 = 0.6 as threshold, high risk 

patients are prone to adverse events under the hypertensive crisis. The numerically-

reconstructed risks are considered as "ground-truth" for evaluation of the risk stratification 

methods in Section 6.4. 

 

Figure 6.1 - FE simulations to reconstruct ATAA risk. 

6.4 ATAA Risk Stratification Methods 

To estimate a patient’s risk, we can only use information (from medical report data 

or clinical preoperative images) before any adverse event, which may include geometries 
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from images and blood pressure. We note that patient-specific failure information (wall 

strengths and failure pressure) cannot be used in the risk stratification, as those can only be 

obtained using invasive and destructive testing. Using stresses computed from FE 

simulation, predefined failure metric (FP or TH) can be evaluated on the ATAA wall under 

a specified pressure for an individual patient. According to several studies, wall thickness 

may be measured from MRI [228-231] or high resolution CT scans [163]. Hence, in this 

study, the same 3D aortic geometries from Section 6.3 were used for risk stratification, 

representing an ideal scenario in which wall thickness can be measured from images.  

We apply four different methods to classify high (𝑃𝑅𝑅 ≥ 0.6) and low risk (𝑃𝑅𝑅 <

0.6) patients, and method performance is evaluated using p-value and receiver operating 

characteristic (ROC) curve. The following risk stratification methods are investigated: 

1. Maximum diameter criterion/metric. 

2. Maximum failure metric at 𝑃𝑠𝑦𝑠 (hyperelastic properties are not needed). 

3. Maximum failure metric at 1.5𝑃𝑠𝑦𝑠 using one set of hyperelastic properties 

representing the population-mean response. 

4. Maximum failure metric at 1.5𝑃𝑠𝑦𝑠 using patient-specific hyperelastic 

properties. 

The metric in Method 2 to Method 4 is evaluated at a spatial point on the aortic wall. The 

maximum failure metric is the maximum among the metric values from all spatial points 

on the aortic wall. By using static determinacy, the transmurally-mean wall stress can be 

readily obtained from clinical images without knowing the patient-specific hyperelastic 

properties [135, 136] (thoroughly described in CHAPTER 2). Therefore, in Method 2, 
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patient-specific hyperelastic properties are not needed to compute maximum failure metric 

at 𝑃𝑠𝑦𝑠. Failure metric under elevated blood pressure (e.g., 1.5𝑃𝑠𝑦𝑠) may provide more 

valuable insight on the ATAA risk. However, under supra-physiological pressure loads, 

failure metric depends on the patient-specific hyperelastic properties. A study [74] suggests 

to use a population-mean response as a surrogate. Hence, to evaluate this strategy, one 

representative set of hyperelastic properties is used for all patients in Method 3. Patient-

specific hyperelastic properties can be identified from multi-phase clinical images using 

inverse approaches [99, 100] (our inverse method is developed in CHAPTER 3 and 

APPENDIX A). Because ECG-gated CT scans were not performed for the 41 patients in 

Group 2, the inverse method in CHAPTER 3 cannot be applied. To represent an ideal 

scenario in which the hyperelastic material properties are accurately identified from ECG-

gated CT scans, in Method 4, patient-specific GOH parameters fitted from the biaxial tests 

(Section 6.2.1) are used to evaluate the maximum failure metric at 1.5𝑃𝑠𝑦𝑠. 

For comparisons, the probabilistic metric FP (Eqn. (5.12)) and a deterministic TH 

metric (𝛬 in Eqn. (5.3) with typical parameters 𝑋 = 2.5𝑀𝑃𝑎 and 𝑌 = 1.2𝑀𝑃𝑎) are used 

as the failure metric in Method 2 and Method 4.  

3.2 Reconstructed ATAA Risk 

Using the patient-specific imaging and tissue testing data, failure pressure (𝑃𝑓) and 

risk (PRR) were numerically-reconstructed for the 41 ATAA patients in Group 2 and 

considered as "ground-truth" for risk stratification. The reconstructed (𝑃𝑓) is shown in 

Table 6.1 and the PRR is listed in Table 6.2.  
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Table 6.2 - Reconstructed risk (PRR) and failure metrics evaluated by different 

methods (Section 6.4). 

Patient 

# 

Method 2 

(FP) 

Method 3 

(FP) 

Method 4 

(FP) 

Method 2 

(TH) 

Method 4 

(TH) 

Risk 

(PRR) 

1 0.0054 0.0960 0.0922 0.0519 0.1571 0.2944 

2 0.0436 0.1715 0.1412 0.1048 0.2127 0.2373 

3 0.0311 0.1310 0.1596 0.0888 0.2139 0.3251 

4 0.0385 0.2749 0.3350 0.1012 0.3271 0.5200 

5 0.0010 0.0339 0.0224 0.0329 0.0848 0.2236 

6 0.1708 0.4672 0.4416 0.2030 0.4658 0.8003 

7 0.0022 0.0601 0.0392 0.0434 0.0960 0.3477 

8 0.0112 0.1813 0.1750 0.1054 0.2972 0.5366 

9 0.0159 0.1325 0.1279 0.0625 0.1595 0.2829 

10 0.4105 0.2408 0.6849 0.5012 1.0244 0.7859 

11 0.0956 0.3372 0.4444 0.1371 0.4891 0.4290 

12 0.0371 0.0329 0.3790 0.1317 0.4837 0.6245 

13 0.0104 0.0991 0.1315 0.0671 0.1675 0.2606 

14 0.0047 0.1136 0.1449 0.0510 0.1580 0.3167 

15 0.0001 0.0093 0.0148 0.0213 0.0637 0.3714 

16 0.0038 0.0747 0.1077 0.0500 0.1614 0.3759 

17 0.0208 0.2579 0.3149 0.1001 0.3482 0.4926 

18 0.0251 0.2182 0.2834 0.0729 0.2723 0.6627 

19 0.1310 0.4879 0.5801 0.1748 0.6561 0.6152 

20 0.0058 0.1791 0.2325 0.1183 0.3835 0.4796 

21 0.0470 0.2843 0.3010 0.1044 0.2890 0.7287 

22 0.0100 0.1273 0.1076 0.0657 0.1538 0.3176 

23 0.0910 0.2442 0.2884 0.1557 0.3810 0.4330 

24 0.0745 0.5103 0.6349 0.2220 0.8389 0.9393 

25 0.0116 0.0414 0.0389 0.0626 0.0897 0.3800 

26 0.0115 0.1103 0.0969 0.1065 0.2426 0.4473 

27 0.0044 0.0914 0.0945 0.0510 0.1341 0.4163 

28 0.0254 0.2496 0.2160 0.0828 0.2267 0.3583 

29 0.1929 0.0624 0.3067 0.2352 0.3430 0.6792 

30 0.0320 0.2833 0.3067 0.0876 0.3073 0.6895 

31 0.2592 0.6240 0.8115 0.2884 0.8678 0.8948 

32 0.1280 0.4604 0.4085 0.1487 0.3659 0.5327 

33 0.1949 0.4687 0.4188 0.2125 0.4203 0.4399 

34 0.2138 0.0889 0.4364 0.2870 0.5355 0.5800 

35 0.1107 0.3659 0.3301 0.1390 0.3454 0.9478 
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Table 6.2 continued 

36 0.0063 0.0942 0.0902 0.0448 0.1386 0.4346 

37 0.0714 0.3635 0.6713 0.1368 0.6630 0.5061 

38 0.0322 0.2629 0.4181 0.0978 0.4049 0.6664 

39 0.0001 0.0299 0.0102 0.0317 0.0745 0.3268 

40 0.0143 0.1643 0.0933 0.1299 0.2784 0.3395 

41 0.0023 0.0562 0.0371 0.0375 0.0977 0.5106 

6.5 Results 

6.5.1 Comparison of Different Risk Stratification Methods 

The performance of different risk stratification methods (Section 6.4) is assessed 

using the “ground-truth” risk data of 41 ATAA patients in Group 2. For Method 1~4, FP 

of the 41 patients were computed using the patient-specific geometries and systolic blood 

pressures (see Table 6.2). Using the maximum diameter criterion (Method 1: 𝑝 = 0.1677), 

no statistical significance was found between the high and low risk groups. Using the 

maximum FP evaluated at 𝑃𝑠𝑦𝑠, we found a significant difference between the high and low 

risk groups (Method 2: 𝑝 = 0.0117). Difference between high and low risk groups is also 

significant (Method 3: 𝑝 = 0.0070) when using representative hyperelastic properties and 

the maximum FP at 1.5𝑃𝑠𝑦𝑠. Using patient-specific hyperelastic properties and the 

maximum FP at 1.5𝑃𝑠𝑦𝑠, the lowest p-value is achieved (Method 4: 𝑝 = 0.0001) to 

separate the high and low risk groups. The results are shown in Figure 6.2. 
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Figure 6.2 - Distribution of failure metrics for high and low risk patients using 

different stratification methods (Section 6.4). The numerically-reconstructed PRR 

(Section 6.3) is used as the “ground-truth” risk displayed in the horizontal axis. (a) 

Method 1: maximum diameter; (b) Method 2: maximum FP evaluated at 𝑷𝒔𝒚𝒔; (c) 

Method 3: maximum FP evaluated at 𝟏. 𝟓𝑷𝒔𝒚𝒔 using representative hyperelastic 

properties; and (d) Method 4: maximum FP evaluated at 𝟏. 𝟓𝑷𝒔𝒚𝒔 using patient-

specific hyperelastic properties. “one mat” stands for representative hyperelastic 

properties; “P-S mat” stands for patient-specific hyperelastic properties. The red 

mark indicates the median, and the bottom and top edges of the box indicate the 25th 

and 75th percentiles, respectively. The whiskers extend to the maximum and 

minimum. *, **, **** indicates statistical significance levels of 𝒑 ≤ 𝟎. 𝟎𝟓, 𝒑 ≤ 𝟎. 𝟎𝟏, 

𝒑 ≤ 𝟎. 𝟎𝟎𝟎𝟏, respectively. 

ROC curves of the Method 1~ Method 4 are shown in Figure 6.3. The areas under 

the curves (AUC), which reflect the discriminative powers of the failure metrics, are 

0.5489, 0.8448, 0.7644 and 0.8621, respectively, for Method 1~ Method 4. The diameter 

criterion has the lowest AUC, while the highest AUC is achieved by FP evaluated under 
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elevated blood pressure using the patient-specific hyperelastic properties, which highlights 

the potential benefits of incorporating patient-specific hyperelastic properties [99, 100] 

(our inverse method is developed in CHAPTER 3 and APPENDIX A) in the risk 

stratification.  Comparing to FP at 𝑃𝑠𝑦𝑠 without patient-specific hyperelastic properties, the 

performance is not improved by evaluating FP under elevated blood pressure by using a 

representative set of hyperelastic parameters.  

In general, to evaluate a diagnostic method, an AUC of 0.5 suggests no 

discrimination, 0.7 to 0.8 is considered acceptable, and 0.8 to 0.9 is considered excellent 

[232]. 

 

Figure 6.3 - ROC curves of different risk stratification methods. The plots are 

generated using false positive rate (FPR) versus true positive rate (TPR). “one mat” 

stands for representative hyperelastic properties; “P-S mat” stands for patient-

specific hyperelastic properties. AUC for the diameter (Method 1), FP at 𝑷𝒔𝒚𝒔 

(Method 2), FP at 𝟏. 𝟓𝑷𝒔𝒚𝒔 using representative hyperelastic properties (Method 3), 

and FP at 𝟏. 𝟓𝑷𝒔𝒚𝒔 using patient-specific hyperelastic properties (Method 4) are 

0.5489, 0.8448, 0.7644 and 0.8621, respectively. 

6.5.2 Comparison between Probabilistic and Deterministic metrics 
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Method 2 and Method 4 (Section 6.4) can be equipped with the probabilistic metric 

(FP in Eqn. (5.12)) or the deterministic TH metric (𝛬 in Eqn. (5.3) with typical failure 

parameters 𝑋 = 2.5𝑀𝑃𝑎 and 𝑌 = 1.2𝑀𝑃𝑎). FP and TH of the 41 ATAA patients (Group 

2) at 𝑃𝑠𝑦𝑠 and 1.5𝑃𝑠𝑦𝑠 were computed by using the patient-specific geometries and systolic 

blood pressures. The results are shown in Table 6.2. Difference between high and low risk 

groups is significant (𝑝 = 0.0099) using the maximum TH at 𝑃𝑠𝑦𝑠 (Method 2), while 𝑝 =

0.0121 when the same method is used with FP. Using patient-specific hyperelastic 

properties and the maximum TH at 1.5𝑃𝑠𝑦𝑠 (Method 4), the p-value is low (𝑝 = 0.0017). 

The most significant difference was found for FP using Method 4 (𝑝 = 0.0001). The 

results are summarized in Figure 6.4. 
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Figure 6.4 - Distribution of probabilistic (FP) and deterministic (TH) failure metrics 

for high and low risk ATAA. The numerically-reconstructed PRR (Section 6.3) is used 

as the “ground-truth” risk displayed in the horizontal axis. (a) and (b) Method 2: FP 

and TH evaluated at 𝑷𝒔𝒚𝒔; (c) and (d) Method 4: FP and TH evaluated at 𝟏. 𝟓𝑷𝒔𝒚𝒔 

using patient-specific hyperelastic properties. “P-S mat” stands for patient-specific 

hyperelastic properties. The red mark indicates the median, and the bottom and top 

edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers 

extend to the maximum and minimum. *, **, **** indicates statistical significance 

levels of 𝒑 ≤ 𝟎. 𝟎𝟓, 𝒑 ≤ 𝟎. 𝟎𝟏, 𝒑 ≤ 𝟎. 𝟎𝟎𝟎𝟏, respectively. 

 ROC curves of the maximum FP and the maximum TH metrics are demonstrated 

in Figure 6.5 for failure metrics evaluated at 𝑃𝑠𝑦𝑠 (Figure 6.5(a)) and 1.5𝑃𝑠𝑦𝑠 (Figure 6.5(b), 

using patient-specific hyperelastic properties). The AUC is 0.8448, 0.8017, 0.8621 and 

0.8362, respectively, for FP at 𝑃𝑠𝑦𝑠, TH at 𝑃𝑠𝑦𝑠,  FP at 1.5𝑃𝑠𝑦𝑠 and TH at 1.5𝑃𝑠𝑦𝑠. The results 
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indicate that the probabilistic metric FP has a better discriminative power comparing to the 

deterministic metric TH. 

 

Figure 6.5 - ROC curves of diameter criterion, probabilistic (FP) and deterministic 

(TH) failure metrics. The plots are generated using false positive rate (FPR) versus 

true positive rate (TPR). (a) Method 2: FP and TH evaluated at 𝑷𝒔𝒚𝒔; (b) Method 4: 

FP and TH evaluated at 𝟏. 𝟓𝑷𝒔𝒚𝒔 using patient-specific hyperelastic properties. “P-S 

mat” stands for patient-specific hyperelastic properties. AUC for the diameter, FP at 

𝑷𝒔𝒚𝒔, TH at 𝑷𝒔𝒚𝒔,  FP at 𝟏. 𝟓𝑷𝒔𝒚𝒔 and TH at 𝟏. 𝟓𝑷𝒔𝒚𝒔 are 0.5489, 0.8448, 0.8017, 0.8621 

and 0.8362, respectively. 

6.6 Discussion 

Using reconstrued data, this study demonstrated that 1) the performance of FP is 

superior to the standard TH metric with typical failure parameters; and 2) patient-specific 

hyperelastic properties can help to improve the performance of probabilistic FP metric in 

ATAA risk stratification. 

6.6.1 Discriminative Power of Different Risk Assessment Methods 

Using the reconstructed risk of 41 ATAA patients, we found that the biomechanical 

failure metrics have more discriminative power (AUC) than the maximum diameter 

criterion, which is consistent with recent studies [60, 61] investigating real ruptured and 

(a) (b)



 171 

intact cases of abdominal aortic aneurysm (AAA). Using patient-specific hyperelastic 

properties and FP, the highest AUC is achieved (Figure 6.3), which highlights the potential 

benefit of identifying patient-specific hyperelastic properties ([99, 100], CHAPTER 3, and 

APPENDIX A) for risk stratifications. When patient-specific hyperelastic properties are 

not available, no additional benefit was found by assuming representative properties. In 

this case, failure metric can be evaluated on image-derived geometries using static 

determinacy ([135, 136] and CHAPTER 2) without the need of patient-specific 

hyperelastic properties.  In this study, an ideal scenario was investigated, in which the wall 

thickness was assumed to be accurately measured from MRI [22-25] or high-resolution CT 

scans [26]. Hence, AUCs of the failure metrics could be close to the upper limits.  

6.6.2 Limitations 

ATAA is a silent killer, the majority of patients remain asymptomatic until rupture 

or dissection occurs [5], which makes it difficult to obtain clinical CT images of ruptured 

ATAA. Sample size for ruptured AAA is also a challenge , for instance, a ruptured sample 

size of 7 was used by Polzer and Gasser [74]. A prospective study [61] collected 13 

ruptured cases in about 2~3 years of follow up period. In this study, ATAA risks (PRR) 

were retrospectively reconstructed by FE simulation using pre-operative images and tissue 

testing data of 41 patients who underwent elective surgery. These patient-specific images 

and tissue sample are often more accessible from clinics. We may be able to expand our 

validation data size once more CT images and tissue samples are collected.  

In the current work, reconstruction of ATAA risk (PRR) was based on the following 

two assumptions: (1) Wall thickness and material properties were assumed to be 
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homogenous across the ATAA geometry. It is known that the hyperelastic and failure 

properties of aortic wall are regional dependent [21, 147]. The wall thickness may also 

have spatial variations, and heterogeneity of wall thickness and material heterogeneity 

could be correlated [188]. In the FE simulations, a simplified case was considered, where 

the wall thickness was calculated from an averaged experimentally measured value, and 

the experimentally-derived hyperelastic behavior was used for the entire ATAA geometry. 

(2) Residual stresses were not incorporated in the FE simulations. In future studies, residual 

deformation could be taken into considerations by means of the GPA algorithm [133] or 

volumetric growth approach [152]. However, it is worth noting that the mean wall stress 

computed by Method 2 (Section 6.4) is independent of residual stresses (CHAPTER 2). 

6.7 Summary 

In this chapter, numerically-reconstructed risks of additional 41 ATAA patients 

were used to evaluation different risk assessment methods (diameter, with or without 

patient-specific hyperelastic properties). Performance of these methods were compared. 

The probabilistic FP metric outperforms the deterministic TH metric using the 

reconstructed data. The results also revealed potential benefit of identifying patient-specific 

hyperelastic properties in ATAA risk stratification.  
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CHAPTER 7. CONCLUSIONS 

 In this chapter, the main contributions of this thesis are summarized. Clinical 

impacts and future directions related to this thesis are briefly discussed. 

7.1 Summary 

 In CHAPTER 1, the ATAA diagnosis and treatment as well as the current diameter 

criterion were briefly introduced. Next, we introduced experimental biomechanical testing 

methods of ATAA tissues. Hyperelastic and failure models of aortic tissues were discussed. 

Biomechanical ATAA risk assessment methods hold promises. Furthermore, we 

summarized the current state-of-the-art methods to identify material properties. Limitations 

of existing methods for identification of in vivo hyperelastic properties of the aortic wall 

were discussed. We also introduced some of the applications of machine learning 

techniques in the field of biomechanics. The objectives and significance of this thesis were 

outlined. 

 In CHAPTER 2, we demonstrated that, due to static determinacy, the transmural 

mean stress in the in vivo configuration of ATAA is independent of mechanical properties 

and residual deformations. The forward penalty method, which enforces a rigid condition 

as the penalty treatment, can greatly simplify the transmural mean stress computation for 

patient-specific geometries. 

 In CHAPTER 3, we developed a novel inverse method for identification of in vivo 

hyperelastic properties of the aortic wall by using in vivo geometries at 2 cardiac phases 

with known blood pressures. This approach leverages the static determinacy of the aortic 
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wall, and forward penalty method validated in CHAPTER 2 was used to compute 

transmural mean stress in the two phases. Computationally-expensive FE simulations were 

avoided by building the objective function on stress, the inverse method greatly reduces 

the computational cost. Good agreements were achieved in the numerical verification. The 

inverse approach was applied to pre-operative gated CT scans of two ATAA patients. For 

comparison, surgically-resected tissue samples were obtained for experimental planar 

biaxial tests. Relatively close match was achieved in terms of the in vivo-identified and ex 

vivo-fitted stress-stretch response. 

 In CHAPTER 4, we proposed a novel ML approach for fast and accurate 

constitutive parameters of the aortic wall from in vivo systolic and diastolic geometries 

with known blood pressures. The ML-model consists of an unsupervised shape encoding 

module and a supervised nonlinear mapping module. Numerically-generated datasets were 

used for training, validating and testing the ML-model. This novel ML approach can 

expedite the procedure of in vivo material parameter identification: once the ML-model is 

trained, the hyperelastic parameters can be predicted within one second. 

In CHAPTER 5, we developed a novel probabilistic and anisotropic failure metric 

using failure property data from 84 ATAA patients. Off-axis tension tests were performed 

on aortic tissues of 4 porcine individuals and 2 human ATAA patients. The Tsai-Hill (TH) 

failure criterion demonstrates a good fitting capability with the off-axis data. The novel 

failure probability (FP) metric, which was derived based on the TH failure theory, 

incorporates uncertainties of the anisotropic failure properties. Using the two patients’ in 

vivo identification and ex vivo testing data obtained in CHAPTER 3, our results showed 

that the FP metric distributions are similar under elevated blood pressure. 
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In CHAPTER 6, CT images and matching tissue samples were used to numerically 

reconstruct “ground-truth” risk of additional 41 ATAA patients The ground-truth risks 

were used to evaluation different risk assessment methods (diameter, with or without 

patient-specific hyperelastic properties). Discriminative powers of these methods were 

compared. The probabilistic FP metric outperforms the deterministic TH metric using the 

reconstructed data. The results also revealed potential benefit of identifying patient-specific 

hyperelastic properties in ATAA risk stratification. 

The main contributions of this thesis are: 

1) The forward penalty approach for computation of transmural mean stress on the 

aortic wall without knowing patient-specific mechanical properties and residual 

deformations. 

2) A novel inverse method for identification of in vivo hyperplastic properties of the 

aortic wall based on a stress-matching strategy. 

3) Validation of the developed inverse approach using ECG-gated CT scans and 

matching tissue samples. 

4) A ML approach for fast and accurate identification of in vivo hyperplastic 

properties. 

5) A novel probabilistic and anisotropic failure metric based on the Tsai-Hill failure 

theory. 
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5) Comparison of different risk assessment methods using retrospective risks 

reconstructed from CT image data and matching tissue samples. 

7.2 Clinical Relevance 

 In CHAPTER 2, we have shown that the forward penalty approach can be used for 

computation of transmural mean stress on the aortic wall without knowing patient-specific 

mechanical properties and residual deformations. This method greatly simplifies the wall 

stress computation process, and may enable patient-specific wall stress analysis directly 

using ATAA geometries constructed from clinical images. 

 The developed inverse method and ML method in CHAPTER 3 and CHAPTER 4 

may be integrated for in vivo material hyperplastic property identification using multi-

phase clinical images. The ML approach can be applied for fast identification when an 

ATAA shape is similar to the training data; if not, the inverse method can be invoked for 

identification without loss of accuracy. The developed identification approaches can be 

used to evaluate age-dependent in vivo hyperleastic response of ATAA. The approaches 

may facilitate clinical biomechanical TAA risk assessment.  

 The developed probabilistic and anisotropic failure metric in CHAPTER 5 may 

facilitate clinical biomechanical ATAA risk assessment since it incorporates uncertainties 

and anisotropy of the wall strengths. With more data becomes available, the novel failure 

metric may be updated. The failure metric may be upgraded to reflect failure probability 

conditioned on patient-specific information (age, gender, familial history, etc.). 
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 Using numerically-reconstructed ATAA risk, the results in CHAPTER 6 showed 

that the diameter may be an unreliable predictor of ATAA risk. Biomechanical ATAA risk 

assessment can be benefit from fully exploit the clinically-available image data, which 

contains information on patient-specific geometry and hyperelastic properties. ATAA risk 

stratification may benefit from identifying patient-specific hyperelastic properties. 

7.3 Future Directions 

7.3.1 Refinement of the Computational Framework for ATAA Risk Assessment 

Limitations of the current methods may be addressed in future studies. In the 

developed inverse method, we only considered uniform wall thickness of the aorta 

segment. However, it is well known that the wall thickness is non-uniform, which can have 

impact on the wall stress computation. Using MRI [22-25] or high-resolution CT scans 

[26], the wall thickness may be measurable for individual patient. The non-uniform wall 

thickness can be measured from non-contrast and contrast CT scans [233]. Joldes et al. 

[136]combined CT and MRI to extract heterogenous wall thickness of abdominal aorta. In 

future works, methods can be investigated to construct ATAA geometry with non-uniform 

wall thickness. In the current work, to generate training data for the ML model, a uniform 

wall thickness at the systolic phase was used. In future works, using the constructed ATAA 

geometry with non-uniform wall thickness, the full 3D geometries can be encoded, and 

therefore the thickness field will be naturally accommodated in the ML approach. It is 

expected that with the wall thickness accurately determined, the biomechanical ATAA risk 

assessment can significantly outperform the current diameter criterion. 
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In the current methods, we assumed that residual stresses have minimal impact on 

the material parameter identification. In future works, this limitation may be 

accommodated by developing robust methodologies to incorporate residual stresses into 

the computational models. The parameters of the residual stresses can also vary greatly 

among different patients. It might be possible to identify these parameters from clinical 

images, but they may be nonlinearly coupled with the material hyperelastic parameters. It 

is unclear whether simultaneous identification of both residual stress and hyperelastic 

parameters is feasible. The identification of both residual deformation and material 

parameters warrants further investigations. 

In CHAPTER 4, to expedite generation of training, validation and testing data, the 

systolic and diastolic pressure were assumed to be 120mmHg and 80 mmHg, respectively 

for all cases. To handle pressure variations, it may be computationally expensive to 

generate FE simulation data at a wide range of systolic and diastolic pressure levels. In 

future studies, active learning techniques [234] may be used to reduce the computation cost 

for dataset generation. 

7.3.2 Identification of In Vivo Heterogeneous Hyperelastic Properties 

In CHAPTER 3, we developed a novel inverse method for identification of 

homogenous in vivo hyperelastic properties of the aortic wall, while it is well known that 

ATAA has heterogeneously distributed material properties. The approach can be extended 

to heterogeneous identification by slightly altering the workflow, i.e., evaluating one 

objective function 𝑔𝑒𝑟𝑟 for one element or one group of elements at a time. However, 

regularization needs to be added to the objective function to ensure that the identified 



 179 

material parameter field is smooth, which may cause high computational cost using a 

global optimization method. The regularized optimization problem may be solved using 

distributed optimization algorithms such as the alternating direction method of multipliers 

(ADMM) [235]. 

For the ML approach in CHAPTER 4, homogenous distribution of the material 

properties was assumed. The ML approach may be improved for heterogenous 

identification. To encode and decode heterogenous material parameter fields, Low rank 

approximation (LRA) may be used as in [119]. 

7.3.3 Develop and Validate Tissue Failure Criteria with Distributed Fiber Orientations 

In a recent study [69], we proposed a novel stress-based anisotropic failure criterion 

with dispersed fiber orientations. In the new failure criterion, the overall failure metric is 

computed by using angular integration of failure metrics in all directions. Affine rotations 

of fiber orientations due to finite deformation are taken into account in an anisotropic 

hyperelastic constitutive model. To examine fitting capability of the failure criterion, the 

off-axis uniaxial tension testing data (Section 5.2.2) were employed. The dispersed fiber 

failure criterion demonstrates a good fitting capability with the off-axis testing data. As can 

be seen in Figure 7.1 under simulated biaxial stress conditions, the dispersed fiber failure 

criterion predicts a smaller failure envelope comparing to those predicted by the traditional 

anisotropic criteria without fiber dispersion (Tsai-Hill and Hashin-Rotem), which 

highlights the potentially important role of fiber dispersion in the failure of the aortic wall. 

The results suggest that the deformation-dependent fiber orientations may need to be 

considered when wall strength determined from uniaxial tests are used for in vivo 
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biomechanical analysis. In future works, more investigations are needed to determine 

biaxial failure properties of the aortic wall. 

 

Figure 7.1 - Failure envelopes in the 𝝈𝟏𝟏-𝝈𝟐𝟐 plane for the human ATAA patients. (a) 

and (b) represent patient 1 and 2, respectively. Failure parameters are obtained from 

fitting off-axis testing data. 

7.3.4 Evaluate ATAA Risk Assessment Methods using Clinical Data 

For abdominal aortic aneurysm (AAA), biomechanical risk assessments were 

performed using retrospective and prospective clinical data of ruptured and intact 

aneurysms. For instance, Gasser et al. [59] performed FE simulations to predict 

biomechanical indices of 203 non-ruptured and 40 ruptured AAA patients. Significant 

difference between the non-ruptured and ruptured group was found using the 

biomechanical indices. Polzer et al. [60] compared biomechanical indices for 19 ruptured 

and 24 intact AAA in a retrospective study. The authors found that the biomechanical 

indices have more discriminative power than diameter in predicting rupture of 

asymptomatic AAA. Doyle et al. [61] followed up 295 AAA patients in a prospective 

study. The authors found that biomechanical index is a strong independent predictor of 

(a) (b)
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AAA events of rupture or repair. For future works, ATAA risk assessment methods can be 

evaluated retrospectively and prospectively in the same fashion using clinical data. Clinical 

effectiveness and discriminative power of the biomechanical-based models can be 

evaluated; therefore, the future retrospective and prospective may facilitate clinical 

application of biomechanical ATAA risk assessment. 
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APPENDIX A. ESTIMATION OF IN VIVO MECHANICAL 

PROPERTIES OF THE AORTIC WALL: A MULTI-RESOLUTION 

DIRECT SEARCH APPROACH 

The patient-specific biomechanical analysis of the aorta requires in vivo mechanical 

properties of individual patients. Existing approaches for estimating in vivo material 

properties often demand high computational cost and mesh correspondence of the aortic 

wall between different cardiac phases. In this study, we propose a novel multi-resolution 

direct search (MRDS) approach for estimation of the nonlinear, anisotropic constitutive 

parameters of the aortic wall. Based on the finite element (FE) updating scheme, the MRDS 

approach consists of the following three steps: (1) representing constitutive parameters 

with multiple resolutions using principal component analysis (PCA), (2) building links 

between the discretized PCA spaces at different resolutions, and (3) searching the PCA 

spaces in a ‘coarse to fine’ fashion following the links. The estimation of material 

parameters is achieved by minimizing a node-to-surface error function, which does not 

need mesh correspondence. The method was validated through a numerical experiment by 

using the in vivo data from a patient with ascending thoracic aortic aneurysm (ATAA), the 

results show that the number of FE iterations was significantly reduced compared to 

previous methods. The approach was also applied to the in vivo CT data from an aged 

healthy human patient, and using the estimated material parameters, the FE-computed 

geometry was well matched with the image-derived geometry. This novel MRDS approach 

may facilitate the personalized biomechanical analysis of aortic tissues, such as the rupture 



 183 

risk analysis of ATAA, which requires fast feedback to clinicians. Results have been 

published in [101]. 

A.1  Introduction 

With the advancement of clinical cardiac imaging modalities and computational 

tools, patient-specific biomechanical evaluation of aortic disease conditions, such as aortic 

aneurysm dissection and rupture, is getting closer to reality. Among the three key 

components necessary for an engineering biomechanics analysis, i.e., geometries, material 

properties, and loading boundary conditions, the patient-specific in vivo material properties 

is clearly the biggest unknown.  Indeed, accurate estimation of  in vivo mechanical 

properties of the aortic wall, which is nonlinear and anisotropic, has been a challenging 

problem in the field of cardiovascular biomechanics for several decades [123]. 

The methods that use the strain/displacement/stress field measurements to back out 

the material properties of the aortic wall are collectively referred as the inverse method 

[81]. Based on the measurement of in vitro displacement field from an unloaded 

configuration to the loaded state [79, 80], an error function is often defined to quantify the 

discrepancy between the predicted and experimental results. The constitutive parameters, 

used to define the material properties, are inversely identified by minimizing the error 

function using certain iterative schemes. Accordingly, the virtual field method [81] has 

been developed for extracting constitutive parameters from in vitro full-field measurement 

data [82, 83] of blood vessels. However, the unknown unloaded state makes it a challenging 

task to estimate the constitutive parameters from in vivo loaded geometries.  
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To estimate the in vivo mechanical properties, simplifications and assumptions 

were made in several studies. By assuming linear elastic constitutive relations, [91], [92] 

and [93] identified linear elastic material parameters from in vivo images. By assuming a 

perfect cylindrical shape of the arteries, [84] identified Fung-type material parameters, [85-

88] estimated material parameters using the constitutive model proposed in [33] together 

with geometrical parameters, [90] estimated the Gasser–Ogden-Holzapfel (GOH) model 

[34] parameters. [96] proposed a multiple linear regression-based method to estimate the 

constitutive parameters by assuming a linear relation between the volume of the aorta and 

the constitutive parameters of the Demiray model.  

To account for the patient-specific geometries, the FE updating scheme is typically  

used  to estimate in vivo mechanical properties from multi-phase cardiac images, following 

the steps of: (1) recovering the unpressurized geometry, (2) deforming the geometry with 

in vivo loading and boundary conditions and initial candidate constitutive parameters, and 

(3) by using certain optimization methods, the estimated constitutive parameters will be 

iteratively adjusted to ensure certain physical measurements (e.g. strain/displacement) are 

matched between the FE-deformed configuration and the in vivo configuration. This 

optimization process yields the best set of estimated constitutive parameters. Using such 

strategies, [98] determined the modified Moony-Rivlin parameters of the carotid artery 

from 2D slices reconstructed from MRI. [97] evaluated the local wall thickness and 

material anisotropy of the aorta, while the constitutive parameters were determined through 

biaxial tests. [99, 100] developed two methods to determine patient-specific GOH material 

parameters of the human abdominal aorta from in vivo 4D ultrasound strain measurements. 

However, for the FE updating approach, the convexity of the error function is usually not 
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guaranteed, i.e. can have multiple local optima. Different material parameters may be 

nonlinearly coupled in their contributions to the overall mechanical response. To avoid 

stuck in the local optima, mixed stochastic-deterministic optimization methods were used 

by [99, 100]. However, numerous iterations were needed to reach the optimal solution in 

these methods, often resulting in computing time of 1~2 weeks. The high computational 

cost could inhibit the practical use of these methods, particularly in a clinical setting 

requiring rapid feedback to clinicians. 

The full-field displacement measurement, which establishes mesh correspondence 

between different configurations, is often required for the material parameter estimation 

[79, 82, 99, 100]. The in vivo mesh correspondence of the abdominal aorta may be obtained 

using the 4D ultrasound data [159, 187], for which speckle patterns are used. However, the 

4D ultrasound imaging is not routinely used for thoracic aortic wall because of the limited 

field-of-view [179]. The mesh correspondence can be difficult to obtain from CT and MRI. 

Thus, the absence of in vivo mesh correspondence poses a critical challenge for material 

parameter identification.  

In this study, we proposed a multi-resolution direct search (MRDS) approach for 

the in vivo material parameter estimation of the aortic wall by using in vivo loaded 

geometries at two cardiac phases with known blood pressures. This approach is based on 

the general framework of FE updating and the objective is to match the FE deformed 

geometry with the in vivo measured geometry by minimizing a node-to-surface error 

function, which does not require mesh correspondence. The parameter optimization is 

based on the idea of “coarse-to-fine” search, for which multiple level representations of 

material parameters with different resolutions are built using principal component analysis 
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(PCA) prior to the optimization process. The number of FE iterations, compared to 

previous methods [99, 100], is expected to be significantly reduced. The accuracy of the 

method was examined by a numerical verification. 

A.2  Methods 

A.2.1 Prerequisites and Assumptions 

The constitutive parameters of homogeneous (average) mechanical properties of 

the aortic wall segment will be estimated in our approach, which has three main 

assumptions. (1) In vivo loaded geometries of the aorta and blood pressure levels are known 

at 2 phases, e.g., diastole and systole. However, mesh correspondence between the two 

phases is not required (i.e. displacement field can be unknown); (2) Wall thickness of the 

unpressurized geometry is assumed to be a known constant according to our previous 

experiments [57]; and (3) the residual stresses are ignored. The unpressurized geometry is 

assumed to be the reference configuration. 

A.2.2 Constitutive Model 

The Gasser-Ogden-Holzapfel (GOH) model [34] was used to model the mechanical 

response of the aortic wall tissue. In this model, tissues are assumed to be composed of a 

matrix material with two families of embedded fibers, each of which has a preferred 

direction. The fiber directions can be mathematically described using two unit vectors. The 

strain energy function can be expressed by 
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Ψ = 𝐶10(𝑰̅1 − 3) +
𝑘1

2𝑘2
∑[𝑒𝑥𝑝{𝑘2[𝜅𝑰1 + (1 − 3𝜅)𝑰4𝑖 − 1]2} − 1]

2

𝑖=1

 (A.1) 

where 𝐶10 is a material parameter to describe the matrix material. 𝑘1 is a positive material 

parameter that has the same dimension of stress, while 𝑘2 is a dimensionless parameter. 

The deviatoric strain invariant 𝑰1 is used to characterize the matrix material, and the 

deviatoric strain invariant 𝑰4𝑖 is used to characterize the fiber families. 𝑰4𝑖 is equal to 

squares of the stretches in the fiber directions. 𝜅 is used as a dispersion parameter 

describing the distribution of fiber orientation. When 𝜅 = 0, the fibers are perfectly 

aligned. When 𝜅 = 0.33, the fibers are randomly distributed, and the material becomes 

isotropic. The mean fiber directions were assumed symmetric with respect to the 

circumferential axis of the local coordinate system. The parameter 𝜃 defines the angle 

between one of the mean local fiber direction and the circumferential axis of the local 

coordinate system. Thus, the five material parameters in this model need to be identified, 

i.e., (𝐶10, 𝑘1, 𝑘2, 𝜅, 𝜃). The constitutive model is a built-in model in ABAQUS 6.14. Shell 

elements were used to model the aortic wall, by which the incompressibility of the aortic 

wall is enforced. 

A.2.3 Workflow of Constitutive Parameter Estimation 

The workflow for constitutive parameter estimation is illustrated in Figure A.1. 

Briefly, given a set of material parameters, the unpressurized geometry is first recovered 

from the in vivo diastolic geometry using the modified version of backward displacement 

method [121, 140]; and the systolic pressure is applied to the unpressurized geometry in 

FE simulation; then the simulated systolic geometry Ω𝑠𝑦𝑠
𝐹𝐸  is compared with the measured 
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systolic geometry Ω𝑠𝑦𝑠 reconstructed from in vivo image. By using the multi-resolution 

direct search (MRDS) method (to be described below in detail), the constitutive parameters 

are adjusted to minimize the average node-to-surface distance between the measured 

systolic geometry Ω𝑠𝑦𝑠 and FE deformed systolic geometry Ω𝑠𝑦𝑠
𝐹𝐸 .  

 

Figure A.1 - Flow chart of the material parameter estimation process. The backward 

displacement iteration is set to be 10 according to [140] 
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 𝑑𝑖𝑠𝑡(𝑿, Ω) = min
𝒁∈Ω

‖𝒁 − 𝑿‖ (A.2) 

where 𝑿 is the coordinate vector of a node; 𝒁 is a point on the triangulated mesh surface Ω 

(it may be located on a vertex, edge or face). ‖∎‖ denotes 3D Euclidean norm. Through 

optimization, for 𝑿, the shortest distance to the surface Ω can be obtained. Note that the 

order of 𝑿 and Ω matters, i.e., 𝑑𝑖𝑠𝑡(𝑿, Ω) ≠ 𝑑𝑖𝑠𝑡(Ω, 𝑿). This distance measure will be used 

to define an objective function which compares the FE deformed geometry Ω𝑠𝑦𝑠
𝐹𝐸  and the 

measured geometry Ω𝑠𝑦𝑠. 

In order to have the symmetric property, the objective function, which measures 

the average node-to-surface distances between Ω𝑠𝑦𝑠 and Ω𝑠𝑦𝑠
𝐹𝐸 , is defined as 

 

𝜀𝑠𝑦𝑠(Ω𝑠𝑦𝑠, Ω𝑠𝑦𝑠
𝐹𝐸 ) =

1

2𝑁
∑[𝑑𝑖𝑠𝑡(𝑿𝑛

𝐹𝐸 , Ω𝑠𝑦𝑠) + 𝑑𝑖𝑠𝑡(𝑿𝑛, Ω𝑠𝑦𝑠
𝐹𝐸 )]

𝑁

𝑛=1

= 𝜀𝑠𝑦𝑠(Ω𝑠𝑦𝑠
𝐹𝐸 , Ω𝑠𝑦𝑠) (A.3) 

where 𝑿𝑛
𝐹𝐸  is the coordinate vector of the 𝑛th node on Ω𝑠𝑦𝑠

𝐹𝐸 , and 𝑿𝑛 is the coordinate vector 

of the 𝑛th node on Ω𝑠𝑦𝑠;  𝑁 is the number of nodes.  Therefore the mean distance 𝜀𝑠𝑦𝑠 

measures the difference between the measured geometry Ω𝑠𝑦𝑠 and FE deformed geometry 

Ω𝑠𝑦𝑠
𝐹𝐸 . For simplicity, within Eqn. (A.3), 𝑑𝑖𝑠𝑡(𝑿𝑛

𝐹𝐸 , Ω𝑠𝑦𝑠) and 𝑑𝑖𝑠𝑡(𝑿𝑛, Ω𝑠𝑦𝑠
𝐹𝐸 ) have equal 

weights, because Ω𝑠𝑦𝑠 and Ω𝑠𝑦𝑠
𝐹𝐸  have the same number of nodes, which is achieved by 

using the re-meshing algorithm previously developed in our group [140]. For more general 

cases, one may modify the weights for geometries with unequal number of nodes.  

In practice, the surfaces  Ω𝑠𝑦𝑠 and Ω𝑠𝑦𝑠
𝐹𝐸  are first meshed with quadrilateral shell 

elements (S4R in ABAQUS) for FE simulations, then, for the node-to-surface distance 
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calculations, triangulation was performed on the surface such that a quadrilateral element 

is divided into two triangle elements without modifying the nodal coordinates. 

In general, the material parameter optimization problem associated with Eqn. (A.3) 

is nonlinear, multivariate and non-convex; and such a problem may exhibit several local 

optima. Jacobian-based deterministic optimization methods may not guarantee a global 

optimum. Mixed stochastic-deterministic methods are usually used in the literature [99, 

100], where initial values of the material parameters are assigned randomly as the “seeds” 

for the deterministic optimization methods. However, by directly searching in the 

constitutive parameter space, these methods often require numerous iterations and thus 

demand a huge computing time. In this study, we propose a faster approach using the 

MRDS strategy, which can significantly speed up the optimization process. 

A.2.4 The MRDS Strategy 

The key idea of the MRDS approach is to decompose the searching space with 

multiple resolutions, resulting in multiple level representations of the constitutive 

parameters, from coarse to fine. For simplicity, throughout this study, we will use the term 

“level” as the abbreviation of “a level of searching space with a certain resolution”. Rather 

than searching using the gradient of the objective function in the constitutive parameter 

space, the MRDS maps the constitutive parameters into a new space using principal 

component analysis (PCA) and searches in the PCA space at different levels and finds the 

best one. Therefore, to obtain the multiple level representations, the new PCA space must 

be discretized into numerous points with multiple resolutions (a point corresponds to a set 

of material parameters); and the points at one level are sparsely linked to the similar points 
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at adjacent levels; and the links are generated according to the Euclidean distance between 

points. After a search is performed at the current level, the current best point (i.e. a set of 

material parameters) is selected; and then following the links associated with the selected 

point, a new search starts at the next level. As a result, the MRDS method operates on the 

discrete PCA spaces from the first level with the lowest resolution to the last level with the 

highest resolution, and the best parameter-candidate will be identified eventually. 

A.2.4.1 Constitutive Parameter Representations with Multiple Resolutions Using 

Principal Component Analysis 

Following the procedure shown in Figure A.2, in order to obtain the multiple level 

representations of material parameters, of which the stress-stretch curves are uniformly 

distributed, we use stress-stretch curves to represent the constitutive parameters, which 

map the constitutive parameter space to the “stress-stretch curve space”, and then convert 

the “stress-stretch curve space” to a PCA space and sample the PCA space uniformly. 
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Figure A.2 - Procedures to build resolutions and links. 

First, the GOH constitutive parameter space was densely sampled and the 

corresponding stress-stretch curves were generated. To ensure the constitutive parameters 

are physiologically possible, i.e. consistent with the experiment data [51, 57, 169], data 

range constraints were applied on the parameters as shown in Table A.1. Rule-based 

selection criteria, which were fine-tuned to ensure all the parameters extracted from our 

previous experiments [57] were included, were applied on the stress-stretch curves. After 

the sampling and selection processes, a total of 3,409,040 sets of material parameters were 

obtained. For each set of constitutive parameters, the stress-stretch curves were obtained 

by simulating stretch-controlled biaxial tension in MATLAB by assuming the tissue is 

loaded in the plane stress state and the material is incompressible. The simulations were 

based on 3 protocols: (1) in the circumferential strip biaxial tension, fixing 𝜆2 = 1 while 

increasing 𝜆1; (2) in the equi-biaxial tension, keeping the ratio 𝜆1/𝜆2 = 1; (3) in the 
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longitudinal strip biaxial tension, fixing 𝜆1 = 1 while increasing 𝜆2. 𝜆1 and 𝜆2 is increased 

gradually by an interval of 0.01. 𝜎1 and 𝜆1 denote the circumferential stress and stretch. 𝜎2 

and 𝜆2 denote the longitudinal stress and stretch. A total of 6 curves from the 3 protocols 

are generated for each set of material parameters.  

Table A.1 - Upper, lower bounds and increment of constitutive parameters for 

sampling. 

 C10 (𝑘𝑃𝑎) k1(𝑘𝑃𝑎) k2 κ 𝜃(°) 

Lower 

bound 
0 0 0 0 0 

Upper 

bound 
100 10000 50 1/3 90 

Increment 5 50 2.5 1/15 15 

Furthermore, for each set of material parameters, the stress-stretch curves were 

sampled at evenly-spaced discrete stress values (21 stress values for the 𝜎2~𝜆1 curve in 

protocol-1 and the 𝜎1~𝜆2 curve in protocol-3 as the stress level is usually lower in the fixed 

direction than the tensile direction, 41 stress values for the rest of curves), the 

corresponding stretch values were recorded and stacked in a vector. Therefore, for each set 

of material parameters, a vector 𝒀 of 206 stretch values is assembled from the 6 stress-

stretch curves. Thus, there are one-to-one correspondences between the sets of material 

parameters and the assembled vectors. 

Then, PCA [198] was performed on a total of 3,409,040 vectors to obtain a compact 

representation of each vector. Briefly, the PCA is a statistical procedure that uses an 

orthogonal transformation to convert the data to a new coordinate system such that in the 

new space the first coordinate (principal component) accounts for the largest variability in 

the data, and each succeeding component in turn has the highest variance. PCA is a 

https://en.wikipedia.org/wiki/Coordinate_system
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standard technique for dimensionality reduction, in which the original data can be well 

represented (i.e. approximated) by a few principal components in the new space. After 

applying PCA, each vector  𝒀 can be represented by: 

 
𝒀 ≈ 𝒀̅ + ∑𝛼𝑖𝑷𝑪𝑖

𝑚

𝑖=1

 (A.4) 

where 𝒀̅ represents the population mean of the vectors, and 𝑷𝑪1, … , 𝑷𝑪𝑚 are the principal 

components. 𝑚 is the number of principal components used for the approximation. 𝒀̅, m 

and 𝑷𝑪𝑖 are the same for every vector 𝒀.  𝛼1, … , 𝛼𝑚 are the coefficients and different for 

different vector 𝒀, i.e., different material properties, which implies that a set of material 

parameters is now encoded by a set of coefficients. The first 5 principal components (𝑚 =

5) are retained to represent the material properties, which accounts for 98.6% of the overall 

variability, i.e., an approximation error of 1.4%. Therefore each vector 𝒀, corresponding 

to a set of material parameters, can be well represented by a new vector 𝑨 of only 5 

components  𝛼1, … , 𝛼5. The space of the coefficients is called the PCA space, and an axis 

in the PCA space is called PC axis. Therefore, sampling the “stress-stretch curve space” is 

now equivalent to sampling the PCA space. 

Next, we obtained multi-level representations of the PCA space by sampling the 

PCA space with different resolutions (i.e. bin size), from coarse to fine. The “closest-to-

bin-center” algorithm was developed to choose the points at a level of the PCA space. 

Specifically, the PCA space was partitioned into bins (i.e. boxes) with a desirable size at 

each level. Within a particular bin, the algorithm would search for the closest point to the 

center of the bin in the PCA space. 
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 𝑺𝑘 = arg min
𝑨∈bin𝑘

‖𝑨 − 𝑪𝑘‖ (A.5) 

where 𝑘 stands for the index of the bin, 𝑨 represents the coordinate vector of a point in the 

PCA space within the bin𝑘, 𝑪𝑘 is the coordinate vector of the bin center. The closest point 

to the bin center, 𝑺𝑘, will be found.  The PCA space was partitioned at 4 levels also in a 

coarse-to-fine fashion. For the 𝑗th level (𝑗 ≤ 4), the partition was performed only in the sub-

space consisting of PC axes from 𝑷𝑪1 to 𝑷𝑪𝑗+1. For example, for the first level, only the 

𝑷𝑪1~𝑷𝑪2 plane are partitioned, and the bin (i.e. 2D square) center coordinates for higher 

dimensions are set to zeros (i.e. 𝐶𝑘(𝑖) = 0 𝑖𝑓 𝑖 > 2), representing a mean response for the 

higher dimensions. At each level, sampling the PCA space with certain resolution can be 

achieved by controlling the bin size. Therefore, by increasing the number of levels, the 

desired searching accuracy will be achieved. To limit the computing cost, four levels were 

constructed. At the first level, a total of 12 points were selected from the PCA space, which 

corresponds to 12 sets of material parameters. Then, a total of 117, 1197 and 10529 points 

were chosen in the second, third and fourth levels respectively. In Figure A.3, the 4 levels 

as well as the original 3,409,040 data points are plotted in the projections of the PCA space. 

For the first and second levels, the stress-stretch curves obtained by using the 

circumferential strip biaxial protocol are shown in Figure A.4. Therefore, the 

representation of the material parameter space at a level is a set of points in the PCA space. 

A level with a higher (or lower) resolution refers to a point-set with a larger (or smaller) 

number of points, and there are 4 levels, i.e., 4 point-sets, in total. 
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Figure A.3 - Overlay plots of the 4 levels projected in (a) 𝑷𝑪𝟏~𝑷𝑪𝟐 and (b) 𝑷𝑪𝟐~𝑷𝑪𝟑 

plane. 

 

Figure A.4 - The stress-stretch curves in the circumferential strip biaxial protocol for 

the first and second levels. 

Comparison to random sampling in the material parameter space: Although it 

is much simpler to directly sample the material parameter space with the same range 

constraints using a uniform random number generator (e.g. “rand” in MATLAB), 

compared to the procedure in Figure A.2, the resulting stress-stretch curves are distributed 

1st (n=12) 2nd (n=117) 3rd (n=1197) 4th (n=10529) All (n=3409040)

(a) (b)

1st (n=12)

2nd (n=117)

(k
P
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randomly as shown in Figure A.5. Our methods ensure that the stress-stretch curves have 

a nearly uniform distribution at each level. 

 

Figure A.5 -The stress-stretch curves in the circumferential strip biaxial protocol 

obtained by randomly sampling 117 points from the material parameter space. 

A.2.4.2 Links between Adjacent Levels 

When a point (i.e. a set of material parameters) in the current level is selected by 

the MRDS (e.g., point A gives a minimum value of Eqn. (A.3) in the current level), further 

searching needs to be performed at similar points (i.e., with similar material properties) in 

the next level of a higher resolution. Therefore, hierarchy links between the points at 

adjacent levels need to be established to guide the MRDS process. To build these links, we 

followed three intuitive principles: (1) any two points connected by a link should be similar 

(i.e. similar material properties); (2) every point must have at least one link; and (3) a 

tradeoff between the total number of links and computational cost should be made: a large 

number of links can ensure a large search range, but increasing the number of links will 

lead to the increase of computational cost. To follow the first principle, Euclidean distance 

(k
P

a)
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in the PCA space was used to measure the distance (i.e. similarity) between two points, 

and a local neighbor searching method was used to find similar points. For a point A at the 

current level, the 10 nearest points in the next level with higher resolution (forward 

linking), and the 2 nearest points in the previous level with lower resolution (backward 

linking), were identified and linked to point A. Thus, every point in the current level is 

linked to at least two points in adjacent levels, which satisfies the second principle. By 

following the first and the second principles, a network of links were built. To reduce the 

complexity according to the third principle, these links were examined based on the 

following rule: if the distance between two linked points is larger than a threshold (set to 

2), then the link will be removed if not breaking the second principles. After the links are 

established for all levels, a point at a level will be linked to some points (about 20 on 

average from forward and backward linking) at the next level with higher resolution. Thus, 

starting from any point at the first level, the searching can always reach a point at the last 

level through the links, and for each point at the last level, it can always be traced back 

through the links to at least a point at the first level. Figure A.6 shows the links between 

the first two levels in the PCA space. 
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Figure A.6 - Links between the first 2 levels projected in the  𝑷𝑪𝟏~𝑷𝑪𝟐~𝑷𝑪𝟑 space. 

Since MRDS is based on FE updating, searching along a link means performing a 

series of FE simulations to evaluate the goodness of a set of material parameters (Eqn. 

(A.3)). Therefore, by controlling the complicity of the link network, we can control the 

number of FE simulations. Here, the adjustable parameters of the link network are (1) the 

maximum number of nearest points linked between levels and (2) the distance threshold of 

each link. In this study, the parameters have been selected such that on average 12(level 1) 

+ 3(level 2~4) × 20 points (i.e. 72 sets of material parameters) will be evaluated by FEA to 

obtain the final solution, translating to a computational time within 2 days using a quad-

core CPU. 

A.2.4.3 The Searching Algorithm 

The MRDS algorithm starts from the first level by evaluating the 12 points (i.e. 

parameter-candidates), and the best point will be identified by evaluating the objective 

function in Eqn. (A.3). The search starts again at the second level by only evaluating the 

1st (n=12) 2nd (n=117)
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points linked to the best point in the first level. The search will be performed in a similar 

manner for the third and fourth levels. After the search process completes at the fourth 

level, the best point will give the final estimation of the constitutive parameters. 

A.3  Results 

A.3.1 Numerical Validation 

The proposed method was validated in a numerical experiment by using a real 

patient geometry and experimentally-derived material parameters. The clinical cardiac CT 

image data from a patient with ATAA was obtained at Yale-New Haven Hospital (New 

Haven, CT). Institutional Review Broad approval to review de-identified images was 

obtained for this study. The 3D CT image was acquired at the systolic phase, and the 

systolic pressure was equivalent to 120 mmHg. The patient underwent surgical repair and 

the ATAA had been excised. The constitutive parameters of the ATAA tissue from this 

patient were extracted from 7-protocol biaxial tensile tests in a previous study [63]. The 

geometry of the aorta was reconstructed by using the semi-automatic method developed in 

our previous study [171], and the branches at the aortic arch were trimmed. 

For the validation, the following methods were used to obtain the “measured” 

geometries at the diastolic and systolic phases. The unloaded geometry of the aortic wall 

was recovered from the reconstructed geometry from the CT image by using the modified 

backward displacement method [121, 140], for which the experimentally derived material 

parameters were utilized and a constant wall thickness of 2 mm at the unloaded state was 

assumed based on our previous experimental study [57]. The “measured” diastolic and 
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systolic geometries were obtained from FE simulations by applying diastolic (P=80mmHg) 

and systolic (P=120mmHg) pressures on the unloaded geometry. 

In all FE simulations, shell elements S4R in ABAQUS 6.14 and the GOH model 

were used. Constant pressures were applied uniformly to the inner surface of the FE 

models, and the boundary nodes of the models, i.e. the proximal and distal ends of the 

models, were only allowed to move in the radial direction in local cylindrical coordinate 

systems. 

The search process in the validation is shown in Figure A.7. It started from the first 

level, and the material that led to the minimum objective in Eqn. (A.3) was identified and 

linked to candidate materials at the second level. Evaluations of the objective were then 

performed on the linked candidate materials at the second level. The candidate materials 

gradually clustered together in the subsequent levels, and finally, the estimated curve was 

very close to the curve corresponding to experimentally-derived material parameters.  

The experimentally-derived parameters and the estimated parameters in the 

numerical validation are shown in Table A.2, and the corresponding stress-stretch curves 

are depicted in Figure A.8. Although the difference in constitutive parameters is obvious, 

the biaxial stress-stretch curves have good agreement, which is demonstrated by the 

coefficients of determination. The results indicate that the estimated mechanical properties 

resemble the experimentally-derived material response. As shown in Figure A.9, the 

average of node-to-surface distances between the “measured” and estimated systolic 

geometries was 0.0818 mm by using Eqn. (A.3), which means the objective function was 

indeed minimized by the estimated parameters. 
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Figure A.7 - Convergence of estimated material parameters to the experimentally-

derived material parameters using the MRDS method. The equi-biaxial stress-stretch 

curves are plotted in each level from (a) to (d). 

Table A.2 - Experimentally-derived and estimated constitutive parameters in the 

numerical validation. 

 C10 (𝑘𝑃𝑎) k1(𝑘𝑃𝑎) k2 κ 𝜃(°) 

Experiment  29.91 512.56 0.00 0.3190 90 

Estimated 40 350 0.00 0.2667 60 
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Figure A.8 - Stretch-stress curves in the numerical validation for (a) strip biaxial 

tension in the circumferential direction; (b) equi-biaxial tension; (c) strip biaxial 

tension in the longitudinal direction. 

 

Figure A.9 - Comparison of the “measured” and estimated geometries at the systolic 

phase in the numerical validation. 𝜺𝒔𝒚𝒔 is the average of node-to-surface distances 

between the “measured” and estimated systolic geometries. The “measured” 

geometry is displayed in triangle mesh, estimated systolic geometry is displayed in 

quadrilateral shell mesh. 

A.3.2 Estimation of In Vivo Mechanical Properties of an Aged Human Healthy Aorta 
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Full phase cardiac multi-slice CT (MSCT) scans were collected from a patient of 

age 71 at Hartford Hospital (Hartford, CT). Institutional Review Broad approval to review 

de-identified images was obtained for this study. The patient did not have TAA, severe 

aortic stenosis or bicuspid aortic valve. The MSCT examination was performed on a GE 

LightSpeed 64-channel volume computed tomography scanner. The spatial resolution of 

the image data was 0.49×0.49×1.25 mm. Images were obtained with helical scanning and 

ECG gating, encompassing 10 phases over the cardiac cycle. The diastolic and systolic 

geometries were identified and reconstructed semi-automatically [171]. The iterative 

closest point (ICP) algorithm [236, 237] was used to rigidly transform the systolic 

geometry to align with the diastolic geometry. The two geometries were then served as the 

input to the MRDS method. The MRDS method was then applied to estimate the material 

parameters for this healthy patient, and the estimated parameters are listed in Table A.3 

and the stress-stretch curves are plotted in Figure A.10. Figure A.11 shows the comparison 

between the estimated, FE deformed systolic geometry and the systolic geometry 

reconstructed from CT image, and the average of node-to-surface distances was 0.5234 

mm by using Eqn. (A.3). 

Table A.3 - Estimated constitutive parameters for the healthy aorta. 

 C10 (𝑘𝑃𝑎) k1(𝑘𝑃𝑎) k2 κ 𝜃(°) 

Estimated 30 4750 2.5 0.3333 0 
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Figure A.10 - Estimated stress-stretch curves for the healthy aorta for (a) strip biaxial 

tension in the circumferential direction; (b) equi-biaxial tension; (c) strip biaxial 

tension in the longitudinal direction. 

 

Figure A.11 - Comparison of the estimated systolic geometry and the systolic 

geometry from CT image for the healthy aorta. 𝜺𝒔𝒚𝒔 is the average of node-to-surface 

distances between two geometries. The geometry from CT image is displayed in 

triangle mesh, estimated systolic geometry is displayed in quadrilateral shell mesh. 

A.4  Discussion 

Many hyperelastic constitutive models, such as the GOH model [34], have highly 

coupled material parameters, which cause the parameter estimation difficulty known as the 

local optima. Not surprisingly, different combinations of 𝐶10, 𝑘1, 𝑘2, 𝜅 and 𝜃 in the GOH 
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model may provide very similar mechanical responses. For the parameter identification 

methods that search directly on the material parameter space, this coupling among the 

material parameters will result in numerous local optima. On the contrary, in our proposed 

MRDS approach, the PCA space derived from the stress-stretch curves, instead of the 

material parameter space, was used for the search of optimal material properties. Multiple 

level representations of the PCA space were obtained with different resolutions and with 

evenly spaced stress-stretch curves. A large set of stress-stretch curves were generated and 

represented in the PCA space. Candidate material parameters were sampled in the PCA 

space with multiple bin sizes to achieve multi-resolutions, which was done prior to the 

MRDS process. The partition of the PCA space may also be achieved by using other 

clustering methods, such as K-means clustering, but it may not guarantee a uniform 

partition [238]. In this application, the partition method (section 2.4.1) can produce a 

nearly-uniformly distributed centers, covering the entire PCA space. The MRDS approach 

is less computationally expensive than the previous stochastic-deterministic approaches: 

the MRDS took approximately 1~2 days and less than 1000 FE iterations, using a quad-

core CPU with 32GB memory, whereas the previous approaches took about 1~2 weeks and 

7400 iterations [99] or 2 weeks and 43500-86900 iterations [100], using similar computing 

power to ours. 

The PCA effectively encodes each set of material parameters as a point in the PCA 

space, which enables the MRDS approach. Given a new arbitrary set of material 

parameters, the proposed method can always map it to a point in the PCA space. However, 

given a new arbitrary point in PCA space, it is difficult to map it back to a set of material 

parameters. Therefore, a direct search strategy is used in the discretized PCA space instead 
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of gradient-based optimization algorithms which requires the inverse mapping from PCA 

space to material parameter space. It should be noted that it is possible to use machine 

learning methods [102] to establish the inverse mapping, enabling gradient-based 

optimization algorithms in PCA space, which may further improve speed and accuracy and 

will be our future work. 

Despite the discrepancy in constitutive parameters, the biaxial stress-stretch curves 

have been successfully recovered in the numerical validation. Using the proposed 

approach, the in vivo material parameters of an aged human healthy aorta were estimated, 

the difference between the FE deformed geometry and the image-derived geometry was 

about 0.5 mm, approximately the size of a voxel (0.49×0.49×1.25 mm). More accurate 

solution may be obtained if higher resolution images are available.  

A.4.1 Mesh Correspondence 

Generally, the mesh correspondence, or full field displacement measurement, is a 

requirement for both in vivo and in vitro constitutive parameter estimation. In in vitro 

experiments, this is usually achieved by tracking the markers [82]. It can also be fulfilled 

by using 4D ultrasound image data processed with speckle tracking algorithms [159]. 

However, ultrasound imaging has a limited field-of-view [179] and the transthoracic 

ultrasound signal may be reflected by the rib cage and the sternum [239]. The visualization 

of the aortic arch may be hampered by the air-filled trachea in the transesophageal 

echocardiography (TEE) [240]. CT and MRI has been used for imaging thoracic aorta. 

However, the requirement of mesh correspondence may not be satisfied by using clinical 

CT or MRI data because there are no image patterns for tracking individual points on the 
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wall, and the performance of surface matching based tracking methods [160] still needs 

improvement. In the proposed approach, since the objective function is based on the node-

to-surface distance, which does not need mesh correspondence, this approach may be 

suitable for extracting material properties from CT and MRI data.  

Our group have previously developed an inverse method (CHAPTER 3) for 

material parameter identification by using static determinacy [135] and mesh 

correspondence between two loaded configurations. Under the two assumptions, the stress 

field on the in vivo loaded configuration can be estimated by using infinitesimal linear 

FEA, and then be used to speed up the parameter identification process. However, the two 

assumptions of this method significantly limit its potential applications. In this MRDS 

approach, the two assumptions are no longer needed, which is attractive for many potential 

applications. 

A.4.2 Limitations 

CT imaging is usually used for the diagnosis of the aortic aneurysm, especially 

ATAA, which provides more detailed images and much larger field-of-view than 

ultrasound imaging. When the contrast agent is used to enhance visualization in cardiac 

CT imaging, the inner surface of the aorta can be accurately segmented. However, the 

aortic wall under the loaded state is very thin, about 2 pixels in 64-slice CT, and due to 

surrounding tissues and partial volume effect (i.e., blurring effect) [241], it is difficult to 

measure wall thickness field in CT images. Therefore, a constant wall thickness is assumed 

at the unloaded configuration according to our previous experimental results [57]. The 

heterogeneity of the wall thickness may have an impact on the estimation of the constitutive 
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behavior. It has been known that the material properties vary at different locations in the 

thoracic aorta [21, 242, 243]. Indeed, the in vivo geometrical difference between systole 

and diastole may result from either the unknown heterogeneous wall thickness or the 

unknown heterogeneous material properties, making the material parameter estimation 

even more challenging. Here we only consider a simplified scenario, where the 

homogenous wall thickness is assumed, and the constitutive behavior of the aorta segment 

is investigated in an averaged sense. This simplification could probably explain the 

relatively large deviation (0.5mm) observed in Figure A.11. To measure the wall thickness 

field of the aortic wall, it is possible to use the combination of higher resolution CT and 

MRI as suggested in [136]. The wall thickness field can be incorporated in our future work 

to improve the accuracy.  

To simplify the geometry, the supra-aortic branches were carefully trimmed by 

human experts. Based on our previous studies, for the particular ATAA patient that was 

used for numerical validation in this study, the stress and strain results with the branches 

[57] and without the branches [140] did not differ significantly. For the thoracic aorta, there 

are limited data on the axial stretch of humans in the literature. For a mouse model study 

[141], the axial stretch is about 1.1~1.2 for the ascending and proximal thoracic aorta, much 

lower than the abdominal aorta (~1.6). Furthermore, when prescribing the axial stretch, we 

encountered severe FE convergence problems, which is being actively investigated in our 

group. The rigid motion caused by the heart cyclically pulling on the aorta has been 

removed from FEA by using the ICP algorithm [236, 237] as described in Section 3.2. 

The unloaded configuration of the aortic wall is assumed to be stress-free in this 

approach, and thus residual strain/stress is ignored, which is a limitation of this study. 
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Several methods have been developed to incorporate residual stress into patient-specific 

modeling [133, 244, 245]. Typically, the layer-specific material properties are required in 

these models, which is not the setup for this study. In addition, as reported by [189], the 

residual stresses may play a minor role in constitutive parameter estimation when a single 

layer model is used. It is shown in [246] that the residual stretches can vary notably with 

respect to the axial location and it is also correlated with age and gender. By using certain 

optimization schemes as proposed in [247], it might be possible to identify the 

heterogeneous layer-specific residual stress field on a patient-specific basis using in vivo 

images, however, the material properties must have been known as in [247]. In the future 

work, with the wall thickness measurement incorporated, we will explore the possibility of 

estimating residual stresses along with the heterogeneous material properties from in vivo 

clinical images.  

A.5  Conclusion 

We have proposed a novel MRDS approach to estimate the material properties of 

the aortic wall from in vivo loaded geometries at two cardiac phases with known blood 

pressures, which does not require mesh correspondence. To facilitate the MRDS method, 

the material parameter space is transformed into a PCA space, and the PCA space is 

discretized into multiple levels of resolutions. A network of links between adjacent levels 

is established. The MRDS search is achieved by following the links between adjacent 

levels, from coarse to fine. The approach was validated in a numerical experiment by using 

the in vivo data from an ATAA patient. It was also applied to estimate in vivo material 

properties of an aged human healthy aorta, and the minimized distance residual reached 

the image resolution. This novel MRDS approach may facilitate the personalized 
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biomechanical analysis of aortic tissues, such as the rupture risk analysis of ATAA, which 

requires rapid feedback to clinicians. 
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APPENDIX B. A GENERIC PHYSICS-INFORMED NEURAL 

NETWORK-BASED CONSTITUTIVE MODEL FOR SOFT 

BIOLOGICAL TISSUES 

Constitutive modeling is a cornerstone for stress analysis of mechanical behaviors 

of biological soft tissues. Recently, it has been shown that machine learning (ML) 

techniques, trained by supervised learning, are powerful in building a direct linkage 

between input and output, which can be the strain and stress relation in constitutive 

modeling. In this study, we developed a novel generic physics-informed neural network 

material (NNMat) model which employs a hierarchical learning strategy by following the 

steps: (1) establishing constitutive laws to describe general characteristic behaviors of a 

class of materials; (2) determining constitutive parameters for an individual subject. A 

novel neural network structure was proposed which has two sets of parameters: (1) a class 

parameter set for characterizing the general elastic properties; and (2) a subject parameter 

set (three parameters) for describing individual material response. The trained NNMat 

model may be directly adopted for a different subject without re-training the class 

parameters, and only the subject parameters are considered as constitutive parameters. Skip 

connections are utilized in the neural network to facilitate hierarchical learning. A 

convexity constraint was imposed to the NNMat model to ensure that the constitutive 

model is physically relevant. The NNMat model was trained, cross-validated and tested 

using biaxial testing data of 63 ascending thoracic aortic aneurysm (ATAA) tissue samples, 

which was compared to expert-constructed models (Holzapfel-Gasser-Ogden, Gasser-

Ogden-Holzapfel, and four-fiber families) using the same fitting and testing procedure. Our 
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results demonstrated that the NNMat model has a significant better performance in both 

fitting (R2 value of 0.9632 vs 0.9019, p=0.0053) and testing (R2 value of 0.9471 vs 0.8556, 

p=0.0203) than the Holzapfel-Gasser-Ogden model. The proposed NNMat model provides 

a convenient and general methodology for constitutive modeling. Results have been 

published in [248].  

B.1  Introduction 

Constitutive modeling is a cornerstone for stress analysis of mechanical behaviors 

of biological soft tissues [123, 249, 250]. Among the three key components required to 

solve a continuum biomechanics problem, i.e., the geometry (the domain of interest), the 

constitutive relations (how the material responds to applied loads under conditions of 

interest), and the applied loads (or associated boundary conditions), the identification of a 

robust constitutive model is probably the most challenging one to obtain and the key to 

success in this approach [251].  

Currently, the approach to identify a robust constitutive model follows the DEICE 

procedure [130]: 1) Delineation of general characteristic behaviors, 2) Establishment of an 

appropriate theoretical framework, 3) Identification of specific functional forms of the 

constitutive relation, 4) Calculation of the values of the material parameters, and 5) 

Evaluation of the predictive capability of the final constitutive relation. In this approach, a 

domain expert, (i.e., a biomechanicist with years of advanced training), plays a central role 

in the first 3 steps. A classic example is how Dr. Y. C. Fung discovered the famous Green-

strain based, exponential form of the strain-energy function for soft tissues, iconized now 

as the Fung-elastic model [221, 252]. Briefly, Fung  showed that preconditioned soft tissue 
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can be considered pseudo-elastic [221, 252], and the slope of load-deflection curve is 

proportional to the load in uniaxial elongation tests of rabbit mesentery [253]. 

Consequently, an exponential function was used to account for the nonlinearity of the 

stress-strain curve for soft tissues. Indeed, the Green-strain based orthotropic form of the 

strain-energy function constructed by Fung provides excellent fitting capability with 

experimental data. To study biaxial mechanical properties of myocardial tissues, 

Humphrey et al. [254] performed constant invariant biaxial experiments, in which each of 

the strain invariant was independently varied, to infer specific functional forms of strain 

invariant-based constitutive equations. Based on the experimental observations, a 

polynomial form of the strain-energy function was devised [254]. To formulate a 

microstructurally-motivated constitutive model, Holzapfel et al. [33] modeled the arterial 

tissue as bi-layer fiber-reinforced composite, in which the contributions of a ground matrix 

and collagen fibers can be modeled separately in a strain-energy function.  

Constitutive models [32-34, 53, 206-208, 221, 255-257] constructed by 

biomechanics experts have been widely adopted to model mechanical behaviors of soft 

tissues. By following the 3rd and 4th steps of the DEICE procedure, the specific 

formulations of these models usually contain several constitutive parameters that can be 

adjusted to describe constitutive behaviors of an individual subject (e.g. a tissue sample); 

therefore, the expert-constructed models can be used to describe constitutive behavior of a 

new subject (within the same class of materials) without deriving new constitutive 

equations. In addition, these expert-constructed constitutive models demonstrate excellent 

in-sample descriptive/fitting capability (e.g., R2 value is high when fitting to mechanical 
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testing data). However, their out-of-sample predictive capability may be limited when new 

data (i.e., data that are not used in the fitting) is employed to assess their performance [258]. 

Recently, machine learning (ML) techniques, especially deep neural networks have 

led to revolutionary breakthrough in many applications [102-109, 259], including recent 

works [115, 117, 260-263] in the field of biomechanics. Since ML techniques are capable 

of automatically discovering and capturing complex multi-dimensional input-output 

dependencies without the need of manually deriving specific functional forms, we 

hypothesize that a generic ML-based constitutive model can be developed and can have a 

similar, if not better, performance compared to the expert-constructed constitutive models.  

Based on the universal function approximation theorems, a neural network with 

adequate capacities can approximate any continuous function with a small error [264-267]. 

Traditional feedforward fully-connected neural networks (FFNN) have been used to model 

the strain (input) and stress (output) relations [110, 268]. However, such FFNN-based 

model use all of its parameters (a.k.a. weights and biases) to construct the constitutive 

relation for an individual subject, which does not strictly follow the 3rd and 4th steps in the 

DEICE procedure; therefore, it often contains hundreds to thousands of constitutive 

parameters. Compared to an expert-constructed model, a FFNN-based constitutive model 

has three major disadvantages: 1) a large number of constitutive parameters with no 

physical meanings, in contrast to only a few constitutive parameters in an expert-

constructed model. 2) An expert-constructed model can not only delineate and capture the 

general mechanical behaviors of a class of materials, but also can accurately model an 

individual subject (e.g. individual material responses) by fine tuning the constitutive 

parameters. A FFNN-based model, however, cannot capture general characteristic 
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behaviors of a class of materials, i.e., it cannot utilize data from multiple subjects (e.g. 

tissue samples from many patients) for better modeling of an individual subject (e.g. a 

tissue sample from a single patient). The model parameters of FFNN-based models for 

different subjects are completely independent to each other. 3) a FFNN-based model cannot 

guarantee its convexity, which is important for ensuring the model is physically meaningful 

with unambiguous mechanical behaviors [33]. 

In this study, we developed a novel neural network-based material model (NNMat) 

which employs a physics constraint and a hierarchical learning strategy (Figure B.1): (1) 

establishing constitutive laws to describe general characteristic behaviors of a class of 

materials; (2) determining constitutive parameters for an individual subject. These two 

steps are equivalent to 3rd and 4th steps of the DEICE procedure. The neural network 

structure consists of two parameter sets corresponding to the two steps: (1) a “class” 

parameter set for characterizing the general elastic properties of the class of materials; and 

(2) a “subject” parameter set with three parameters for modeling individual material 

response. Skip connections are utilized in the neural network structure to facilitate 

hierarchical learning. Hence, the class parameters can function as the expert-constructed 

constitutive equations, and the NNMat model has only three constitutive parameters. The 

trained NNMat model may be directly adopted for a different subject without re-training 

the class parameters. The predictive capability of the proposed NNMat model is compared 

with the expert-constructed constitutive models (Holzapfel-Gasser-Ogden [33], Gasser-

Ogden-Holzapfel [34], and four-fiber families [257]). 
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Figure B.1 - The proposed machine learning-based constitutive model.  

B.2  Constitutive Modeling of Soft Biological Tissues 

Soft biological tissues comprise bundles of collagen fibers embedded in a ground 

matrix and can be regarded as fiber-reinforced composites. Constitutive modeling of the 

hyperelastic tissues is often achieved by specifying the strain energy density W as a 

function of deformation gradient W(𝐅) , where 𝐅 represents the deformation gradient 

tensor. Microstructurally-motivated constitutive models have become increasingly utilized 

for soft tissues, in which the contributions of the matrix and collagen fibers can be modeled 

separately. In such models, the strain energy density function W is usually formulated 

based on strain invariants of the right Cauchy-Green tensor, 𝑪 = 𝐅𝑇𝐅. In this study, we 

consider a subclass of anisotropic responses, in which the strain energy density depends on 

four strain invariants: 𝐼1, 𝐼2, 𝐼4 and 𝐼6. The first two strain invariants 𝐼1, 𝐼2 are defined as 
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 𝐼1 = 𝑡𝑟(𝑪),    𝐼2 =
1

2
[𝐼1

2 − 𝑡𝑟(𝑪2)] (B.1) 

For a fiber-reinforced composite material with two families of fibers, 𝐼4 and 𝐼6 are 

two additional pseudo-invariants that describes deformations in the preferred fiber 

directions 

 𝐼4 = 𝐚01 ∙ (𝑪𝐚01),    𝐼6 = 𝐚02 ∙ (𝑪𝐚02) (B.2) 

where unit vectors 𝐚01 and 𝐚02 characterize two fiber directions in the reference 

configuration. Typically, these two fiber directions are assumed to be symmetric about an 

axis.  𝐚01 = (cos 𝜃 , sin 𝜃 , 0) and 𝐚02 = (cos 𝜃 ,− sin 𝜃 , 0), where 𝜃 is the angle between 

the fiber direction and the axis of symmetry. In this study, the circumferential axis of the 

aorta was used as reference. Thus, 𝐼4 and 𝐼6 are equal to squares of the stretches in the fiber 

directions.  

The stress-strain relation can be derived by differentiating the strain energy density 

W. For incompressible materials, the second Piola-Kirchhoff stress can be derived as [269]:  

 𝑺 = −𝑝𝑪−1 + 2𝑊1𝑰 + 2𝑊2(𝐼1𝑰 − 𝑪) + 2𝑊4𝐚01 ⊗ 𝐚01 + 2𝑊6𝐚02 ⊗ 𝐚02     (B.3) 

where 𝑰 is the identity tensor, 𝑊𝑘 =
𝜕𝑊

𝜕𝐼𝑘
 , 𝑘 = 1, 2,4, 6 represent the derivatives of strain 

energy with respect to the strain invariants. 𝑝 is the Lagrangian multiplier, which can be 

determined from boundary conditions. To characterize constitutive behavior, the 

relationship between strain invariants 𝐼1, 𝐼2, 𝐼4, 𝐼6 and 𝑊1, 𝑊2, 𝑊4, 𝑊6 needs to be 

established. Four nonlinear functions need to be constructed: 
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 𝑊𝑘 = 𝑓𝑘(𝐼1, 𝐼2, 𝐼4, 𝐼6), 𝑘 = 1, 2, 4, 6  (B.4) 

B.2.1 Expert-Constructed Constitutive Equations 

Many expert-constructed models are available with specific formulations of 𝑊𝑘 

[33, 34, 53, 206-208, 256]. For comparison with our ML-based constitutive model, the 

Holzapfel-Gasser-Ogden (HGO) model [33] with two families of fibers was selected. 

In the work by Holzapfel et al. [33], the total strain energy density function W can 

be additively split into isotropic 𝑊𝑖𝑠𝑜 and anisotropic W𝑎𝑛𝑖𝑠𝑜 parts, according to 

 W(𝐂, 𝐚01, 𝐚02)  = 𝑊𝑖𝑠𝑜(𝐂) + W𝑎𝑛𝑖𝑠𝑜(𝐂, 𝐚01, 𝐚02)    (B.5) 

The isotropic matrix material is characterized by strain energy function of the neo-Hookean 

type 

 W𝑖𝑠𝑜(𝐂) = 𝐶10(𝐼1 − 3) (B.6) 

where 𝐶10 is a material parameter to describe the matrix response. To account for the strong 

stiffening effect of the collagen fiber recruitment, an exponential function is employed. 

The anisotropic contribution is given by 

 W𝑎𝑛𝑖𝑠𝑜(𝐂, 𝐚01, 𝐚02) =
𝑘1

2𝑘2
∑ {𝑒𝑥𝑝[𝑘2(𝐼𝑘 − 1)2] − 1}𝑘=4,6     (B.7) 

where 𝑘1 is a positive material parameter that has the same unit of stress, while 𝑘2 is a 

unitless material parameter. Hence, in the Holzapfel-Gasser-Ogden model [33], the 
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relationship between strain invariants 𝐼1, 𝐼2, 𝐼4, 𝐼6 and strain energy derivatives 𝑊1, 𝑊2, 

𝑊4, 𝑊6 can be obtained as:  

 𝑊1 = 𝐶10 

𝑊2 = 0 

𝑊4 = 𝑘1(𝐼4 − 1)𝑒𝑥𝑝[𝑘2(𝐼4 − 1)2] 

𝑊6 = 𝑘1(𝐼6 − 1)𝑒𝑥𝑝[𝑘2(𝐼6 − 1)2] (B.8) 

The four constitutive parameters {𝐶10, 𝑘1, 𝑘2, 𝜃} can be determined through curve 

fitting to describe material properties of an individual subject. Stress-strain relation can be 

obtained using Eqn. (B.3). 

The Holzapfel-Gasser-Ogden model [33] has been extended to other forms. Using 

the generalized structural tensor (GST), Gasser et al. [34] constructed the following 

anisotropic contribution of the strain energy density function 

 W𝑎𝑛𝑖𝑠𝑜(𝐂, 𝐚01, 𝐚02) =
𝑘1

2𝑘2
∑ [𝑒𝑥𝑝{𝑘2[𝜅𝐼1 + (1 − 3𝜅)𝐼𝑘 − 1]2} − 1]𝑘=4,6     (B.9) 

where 𝜅 is a parameter describing dispersion of the fiber orientation. This model is known 

as the Gasser-Ogden-Holzapfel (GOH) model, which has five constitutive parameters 

{𝐶10, 𝑘1, 𝑘2, 𝜅, 𝜃}. Hu et al. [257] proposed a four-fiber family model, which makes use of 

two additional invariants 𝐼𝜃 = 𝐚𝜃 ∙ (𝑪𝐚𝜃) and 𝐼z = 𝐚𝑧 ∙ (𝑪𝐚𝑧), along the circumferential 

(𝐚𝜃 = (1, 0,0)) and longitudinal (𝐚𝑧 = (0, 1,0)) directions, respectively. The anisotropic 

part of the strain energy density function is  
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 W𝑎𝑛𝑖𝑠𝑜(𝐂, 𝐚01, 𝐚02)

=
𝑘1

4𝑘2
∑ {𝑒𝑥𝑝[𝑘2(𝐼𝑘 − 1)2] − 1}

𝑘=4,6

+
𝑘3

4𝑘4
∑ {𝑒𝑥𝑝[𝑘4(𝐼𝑙 − 1)2] − 1}

𝑙=𝜃,𝑧

 

(B.10) 

Hence, the four-fiber model has six constitutive parameters {𝐶10, 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝜃}. In this 

study, the fitting and predictive capabilities of the Gasser-Ogden-Holzapfel model and the 

four-fiber family model are also demonstrated. 

B.2.2 ML-Based Constitutive Model 

In this study, we developed a generic neural network-based material (NNMat) 

model (Figure B.2) with a novel neural network structure and a novel hierarchical learning 

strategy. The goal of the NNMat model is to establish the nonlinear mapping between 

𝐼1, 𝐼2, 𝐼4, 𝐼6 and 𝑊1,𝑊2,𝑊4,𝑊6 as described in Eqn. (B.4) (𝑊2 may be non-zero). A 

physical constraint is added to the training process to ensure that convexity of the strain 

energy density is achieved by the NNMat model. Following the 3rd and 4th steps of the 

DEICE procedure, the NNMat model employs the hierarchical learning strategy: (1) 

constructing constitutive laws to describe general characteristic behaviors of a class of 

materials; (2) determining constitutive parameters for an individual subject. Therefore, the 

NNMat model has two sets of parameters: (1) a “class” parameter set for characterizing 

hyperelastic properties of the class of materials; and (2) a “subject” parameter set of three 

parameters for fitting mechanical response of an individual subject. NNMat models of 

different subjects will share the same class parameter set, but with different sets of subject 
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parameters. In other words, each individual subject has an individual set of subject 

parameters and shares the same class parameter set with other subjects, assuming these 

subjects are from the same class of material.  

 

Figure B.2 - The novel neural network material model (NNMat) with a physics 

constraint and two parameter-set structures: the class parameter set (blue) and the 

subject parameter set (red), dashed arrows indicate skip connections. The subject 

parameter set consist of three constitutive parameters: {𝒎𝟏,𝒎𝟐, 𝜽}. 

Skip connections are increasingly utilized in deep learning research, e.g., additive 

skip connections in ResNet [270] and concatenative skip connections in DenseNet [271], 

to skip one or more layers in the neural network and connects the output of a previous layer 

to the next layers as the input. It can alleviate the vanishing-gradient problem by 

strengthening feature propagation and encouraging feature reuse [271]. In this study, a 

novel neural network structure with skip connections are proposed for the NNMat model 

to facilitate the hierarchical learning strategy. 
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The structure of the NNMat model is shown in Figure B.2. The class parameter set 

is processed by a fully-connected neural network, and two subject parameters are 

connected to each layer via concatenative skip connections, the subject parameter 𝜃 is 

incorporated in the unit directional vectors in Eqn. (B.2). Therefore, the two subject 

parameters can have contributions to the output of each neuron in the hidden and output 

layers, which parametrizes the nonlinear mapping between 𝐼1, 𝐼2, 𝐼4, 𝐼6 and 𝑊1,𝑊2,𝑊4,𝑊6. 

Comparing to only one subject parameter for one layer, skip connections may introduce 

more interactions between the subject parameters and the hidden/output layers. 

Specifically, the output of the 𝑖th neuron of the 𝑗th layer is a weighted sum of the input 

vector 𝒛𝑗, with weight 𝒘𝑖
𝑗
 and bias 𝑏𝑖

𝑗
. In addition, two subject parameters  𝒎 = [𝑚1, 𝑚2]

𝑇 

are also connected (i.e. input) to each neurons with weight 𝒑𝑖
𝑗
 utilizing concatenative skip 

connections, 

 𝑢𝑖
𝑗
= 𝒘𝑖

𝑗𝑇
𝒛𝑗 + 𝒑𝑖

𝑗𝑇
𝒎 + 𝑏𝑖

𝑗
 (B.11) 

where the superscript 𝑗 represents the layer index, and subscript 𝑖 represents the neuron 

index. 𝒛𝑗 represents the input to the neuron [𝑧1
𝑗
, 𝑧2

𝑗
, … , 𝑧𝑛𝑗

𝑗
]
𝑇

, and 𝑛𝑗  denotes the number of 

neurons in the 𝑗th layer. {𝒘𝑖
𝑗
, 𝑏𝑖

𝑗
, 𝒑𝑖

𝑗
, 𝑖, 𝑗 = 1,2, … } is the class parameter set, which is 

contained in two hidden layers and the output layer, shown in blue color in Figure B.2. The 

linear combination 𝑢𝑖
𝑗
 is nonlinearly transformed into the output 𝑧𝑖

𝑗+1
 (the input to layer 

𝑗 + 1) using the softplus [272] activation function, given by 

 𝑧𝑖
𝑗+1

= log(1 + 𝑒𝑥𝑝(𝑢𝑖
𝑗
)) (B.12) 
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This function is a smooth version of the rectified linear unit (ReLU) [273]. The number of 

softplus units in the three layers are 128, 128 and 4, respectively. Consequently, in total, 

there are 18,188 class parameters {𝒘𝑖
𝑗
, 𝑏𝑖

𝑗
, 𝒑𝑖

𝑗
, 𝑖, 𝑗 = 1,2, … } in the NNMat model. The class 

parameters can function as the expert-constructed constitutive functional forms. Only the 

subject parameters {𝑚1,𝑚2, 𝜃} are considered as constitutive parameters. 

After 𝑊𝑘 are determined from the neural network, the second Piola-Kirchhoff stress 

can be computed using Eqn. (B.3). The discrepancy between the experimental and 

predicted second Piola-Kirchhoff stress was measured by the mean squared error (MSE) 

loss function, 

 

𝐿𝑆 = ∑
1

𝑁
∑(𝑆𝑚

(𝑛)
− 𝑆̂𝑚

(𝑛)
)
2

𝑁

𝑛=1

3

𝑚=1

 (B.13) 

where 𝑛 is the data point index, 𝑁 is the number of data points in the training dataset, 𝑆𝑚
(𝑛)

 

and 𝑆̂𝑚
(𝑛)

denote the 𝑘th predicted and experimental second Piola-Kirchhoff stress, 

respectively. 𝑚 is the in-plane component index in the Voigt notation.  

A physically-relevant strain energy field needs to be convex: the strain energy 

density should be at minimum (zero) when there is no deformation. In addition, since 

Newton’s iterative method is often employed for solving nonlinear equations in 

commercial FE packages, convexity of the strain energy density ensures that the material 

stiffness (Hessian) matrix will be positive definite and well-conditioned, which could 

stabilize the numerical solution [274]. For in-plane components, the Hessian matrix of the 

strain energy function can be expressed as: 
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𝑯 =

[
 
 
 
 
 
 
𝜕𝑆11

𝜕𝐸11

𝜕𝑆11

𝜕𝐸12

𝜕𝑆11

𝜕𝐸22

𝜕𝑆12

𝜕𝐸11

𝜕𝑆12

𝜕𝐸12

𝜕𝑆12

𝜕𝐸22

𝜕𝑆22

𝜕𝐸11

𝜕𝑆22

𝜕𝐸12

𝜕𝑆22

𝜕𝐸22]
 
 
 
 
 
 

 (B.14) 

For the strain energy function 𝑊 = ∫𝑺: 𝑑𝑬 to be path independent, it is required 

that 𝑯 is symmetric. In the NNMat model, symmetry of 𝑯 is enforced by a loss function 

at each data point 𝑛: 

 
𝐿𝑐1
(𝑛)

= |
𝜕𝑆11

𝜕𝐸12
−

𝜕𝑆12

𝜕𝐸11
| + |

𝜕𝑆11

𝜕𝐸22
−

𝜕𝑆22

𝜕𝐸11
| + |

𝜕𝑆12

𝜕𝐸22
−

𝜕𝑆22

𝜕𝐸12
| (B.15) 

Strict convexity requires positive definiteness of 𝑯 to be satisfied for all possible strain 

values, which can be shown for expert-constructed model which has closed form solutions 

[275]. In the NNMat model, convexity of the strain energy density function is enforced by 

an additional loss function that ensures the positive semi-definiteness of Hessian matrix for 

all training stress-strain data points: for all 𝒙 ∈ ℝ3, 𝒙𝑇𝑯𝒙 ≥ 0 needs to be satisfied. Using 

Sylvester's criterion of symmetric matrix, the requirement for positive semi-definiteness is 

that all of the principal minors must be non-negative [276, 277]. Therefore, the positive 

semi-definiteness can be quantified by the following loss function for each data point 𝑛: 

 

𝐿𝑐2
(𝑛)

= ∑ ∑ max (−Δ𝑝,𝑞, 0)

(
3
𝑝
)

𝑞=1

3

𝑝=1

 (B.16) 
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where Δ𝑝,𝑞 denote the 𝑞th principal minor of order 𝑝 (𝑝 = 1,2,3) of the Hessian matrix. 

There are (
3
𝑝
) principal minors of order 𝑝. Hence, the loss function of the convexity 

constraints can be obtained by adding 𝐿𝑐1
(𝑛)

 and 𝐿𝑐2
(𝑛)

 with a weight 𝛼: 

 

𝐿𝑐 =
1

𝑁
∑(𝐿𝑐1

(𝑛)
+ 𝛼𝐿𝑐2

(𝑛)
)

𝑁

𝑛=1

 (B.17) 

Since the loss functions are based on stress and its derivative, Eqn. (B.3) needs to 

be included in the NNMat model for backpropagation, which is the last layer shown in 

yellow color in Figure B.2. The angle 𝜃 which defines the two fiber directions is another 

subject parameter in the NNMat. Hence, three subject parameters {𝑚1,𝑚2, 𝜃} in the 

NNMat model can be adjusted for modeling properties of an individual subject. A bound 

constraint was imposed on the subject parameters to ensure that 𝑚1, 𝑚2 are in the range of 

-1 to 1 and 𝜃 is within -90° to 90°, which is realized by using the hyperbolic tangent 

function: 

 𝑚̂1 = tanh(𝑚1) 

𝑚̂2 = tanh(𝑚2) 

𝜃 = 90° tanh(𝜃) 

(B.18) 

where 𝑚̂1, 𝑚̂2 and 𝜃 represent the normalized parameters.  

Therefore, the combined loss function for training the NNMat model is 
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 𝐿({𝑚1,𝑚2, 𝜃}, {𝒘𝑖
𝑗
, 𝑏𝑖

𝑗
, 𝒑𝑖

𝑗
, 𝑖, 𝑗 = 1,2, … }) = 𝐿𝑆 + 𝛽𝐿𝑐 (B.19) 

where 𝛽 is another weight parameter. In this study, 𝛼 and 𝛽 were chosen using grid search 

in cross validation (Section 3.3). We note that the result may be refined using adaptive grid 

search. Other methods may be used for the hyperparameter optimization, e.g., random 

search [278] and Bayesian optimization [279]. Consequently, the combined loss function 

is a function of the (unknown) parameters in the NNMat model. The goal of training is to 

find the optimal values of the parameters in the NNMat model by minimizing the loss 

function on the training dataset.  

We used a novel hierarchical training strategy to find the optimal parameters of the 

NNMat model. The class and subject parameters are determined in two sequential steps: 

(1) training and (2) fitting, which is equivalent to the 3rd and 4th steps of the DEICE 

procedure. During the model training, the class parameter set {𝒘𝑖
𝑗
, 𝑏𝑖

𝑗
, 𝒑𝑖

𝑗
, 𝑖, 𝑗 = 1,2, … } is 

first optimized across all subjects in the training set, and the subject parameter set 

{𝑚1, 𝑚2, 𝜃} is then only optimized for the corresponding subject. During the model fitting, 

the class parameter set {𝒘𝑖
𝑗
, 𝑏𝑖

𝑗
, 𝒑𝑖

𝑗
, 𝑖, 𝑗 = 1,2, … } is fixed, i.e., it will no longer be updated 

through backpropagation; only the subject parameters {𝑚1, 𝑚2, 𝜃} are updated, which is 

similar to fitting an expert-constructed model. Therefore, the trained NNMat model may 

be directly adopted to a different subject without re-training the class parameters. When 

the trained NNMat model is used to characterize constitutive relation of a new subject, only 

the subject parameters need to be updated/fitted.  
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The NNMat model was implemented in PyTorch 1.0 [280]. Adam algorithm [281] 

was used for optimization to obtain the optimal parameters. Training, fitting and 

validation/testing of the NNMat model was run on a multi-GPU server (10-core CPU with 

128GB RAM, 4×NVIDIA GeForce GTX 1080 Ti GPU). 

B.3  Cross Validation and Testing 

In this study, stress-strain data (63 patients) was split into two sets: a training and 

validation set (57 patients) and a testing set (6 patients). In the training mode, parameters 

in both the class set and subject set are updated. While in the fitting mode, the class 

parameters are fixed and only the three subject parameters are adjusted to optimal for an 

individual subject. For the testing/validation mode, all the parameters are fixed. The 

network structure and hyperparameters, e.g., 𝛼 and 𝛽, were determined through cross 

validation using the training and validation dataset. The performance of the NNMat model 

was evaluated using the additional testing dataset. 

B.3.1 Planar Biaxial Testing Data 

In this study, we demonstrate the capability of the proposed NNMat model by using 

seven-protocol planar biaxial testing data [15] of ATAA tissues from 63 patients/subjects 

that were published previously by our group [15, 63]. Briefly, before planar biaxial testing, 

cryopreserved tissue samples were submerged in a 37 °C water bath until totally defrosted, 

following the two-stage slow thawing method to remove the cryopreservation agent [174]. 

The samples were trimmed into square-shaped specimens with a side length of 20~25 mm. 

Each specimen was subjected to biaxial tension with the circumferential (11) and 

longitudinal (22) directions aligned with the primary axes of the biaxial test fixture. A 
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stress-controlled biaxial testing protocol was used. 𝑵 denotes the nominal stress, and the 

ratio 𝑁11: 𝑁22 was kept constant. Each tissue specimen was preconditioned for at least 40 

continuous cycles with 𝑁11: 𝑁22 = 1: 1 to minimize hysteresis. Seven successive protocols 

were performed using ratios 𝑁11: 𝑁22 = 0.3: 1, 0.5: 1, 0.75: 1, 1: 1, 1: 0.75, 1: 0.5, 1: 0.3. 

Figure B.3 shows representative biaxial testing results of two ATAA samples. Biaxial 

testing data was chosen since it contains hyperelastic properties under various in-plane 

stress ratios, which can be easily split into fitting and testing/validation dataset (i.e., data 

from six stress protocols for fitting the subject parameters and data from one protocol for 

testing/validation). 

 

Figure B.3 - Representative stress-stretch results of the seven-protocol planar biaxial 

testing of two ATAA tissues. Each row represents one patient. (a) and (d): seven 

successive nominal stress ratios. (b) and (e): circumferential stress-stretch data. (c) 

and (f): longitudinal stress-stretch data. 

B.3.2 Fitting and Testing of the Expert-Constructed Models 

Traditionally, for fitting an expert-constructed constitutive model to data, an error 

function is built based on difference between the experimental data and model predictions, 
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and then constitutive parameters can be determined through nonlinear optimization. 

Typically, the model fitting process uses all experimental data (i.e. all seven stress 

protocols), and a coefficient of determination (R2) as an accuracy metric is reported. 

However, since this R2 metric corresponds to the in-sample prediction, the model’s ability 

for out-of-sample prediction cannot be assessed, as shown in Schroeder et al [258]. It is 

also reported [282] that a Fung-type hyperelastic model [283] with good in-sample fitting 

could result in erroneous out-of-sample stress predictions. As a consequence, the particular 

form of the constitutive model [283] needed to be modified by domain experts [282] to 

achieve a reasonable out-of-sample accuracy. 

In this study, the predictive capabilities of the expert-constructed constitutive 

models in Section 2.1 were evaluated using cross validation. For each subject (i.e. a tissue 

sample from a patient), leave-one-out cross validation was performed: for each round, data 

from one stress protocol were selected for testing, and data from the remaining six stress 

protocols were used for fitting the model to obtain constitutive parameters. The process is 

repeated seven times for all protocols for each subject/patient in the testing dataset. 

Therefore, the averaged out-of-sample testing R2 is used to evaluate the model 

performance, which provides a baseline to compare with that of the NNMat model. The 

fitting process was implemented in MATLAB using a nonlinear least square solver. 

B.3.3 Cross Validation and Testing of the ML-based Constitutive Model 

To assess performance of the NNMat model, cross validation was performed at two 

levels using the training and validation dataset of 57 patients. As can be seen in Figure B.4, 

the cross validation procedure consists of an outer loop and an inner loop which correspond 
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to the patient level and stress protocol level, respectively. At the patient level, ten-fold cross 

validation was performed as follows: (1) split the patient data into ten groups, and each 

group contains the data from 5~6 patients; (2) in each round of the ten-fold cross validation, 

select one group for validation and use the remaining nine groups for training. The NNMat 

model parameters in both the class set and subject set are updated during the training stage. 

From the cross validation on a patient level, the performance of the NNMat model can be 

assessed for each individual patient in the training and validation set. 

Similar to Section 3.2, leave-one-out cross validation was carried out for each 

patient on the stress protocol level: data from six protocols were used for fitting the subject 

parameters {𝑚1,𝑚2, 𝜃}, and then data from the remaining one protocol were used for 

assessing the model performance. The capability of the NNMat model to predict stress-

strain response under various in-plane stress ratios can be evaluated. The weights 𝛼 and 𝛽, 

and the number of training epochs were determined during cross validation. 

 

Figure B.4 - Cross validation of the NNMat model on patient level and stress protocol 

level. Ten-fold cross validation was performed for different patient groups. For each 

patient, leave-one-out cross validation was performed with different stress protocols. 
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After the hyperparameters were determined, the NNMat model was trained using 

the training and validation set (57 patients). Using the additional testing dataset of 6 

patients, fitting and testing R2 were evaluated for each patient using the same leave-one-

out fashion on the stress protocol level (see Figure B.5). The averaged testing accuracy was 

used to evaluate performance of the NNMat model. The computing time for training the 

NNMat model is approximately 16~18 hours using the training and validation set (73,614 

stress-strain data points) with 10,000 epochs on a single GPU. Fitting of subject parameters 

for one patient can be completed in less than one minute. Using the trained and fitted 

NNMat model, stress computation can be achieved instantaneously. 

 

Figure B.5 - Evaluating accuracy of the NNMat model using an additional testing 

dataset of 6 patients. 
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Using the training and validation set of 57 patients, grid search was performed to 

select the weights 𝛼 and 𝛽. To reduce computational cost, the number of training epochs 

was set to be 1000 for the gird search. It is convenient to examine the convexity of a strain 

energy density function with respect to two in-plane components of the Green strain 𝐸11 

and 𝐸22 while the shear component 𝐸12 is set to zero [274]. To examine its convexity, using 

the trained and fitted NNMat model, the second Piola-Kirchhoff stress 𝑆11 and 𝑆22 can be 

computed at a series of strain 𝐸11 and 𝐸22 values (-0.1 to 0.5). To evaluate whether the 

convexity condition is satisfied, using Sylvester's criterion [276, 277], we define a 

convexity criterion Ξ for each pair of 𝐸11 and 𝐸22 

 
Ξ(𝐸11, 𝐸22) = max (−

𝜕𝑆11

𝜕𝐸11

𝜕𝑆22

𝜕𝐸22
+

𝜕𝑆11

𝜕𝐸22

𝜕𝑆22

𝜕𝐸11
, 0) +max (−

𝜕𝑆11

𝜕𝐸11
, 0)

+max (−
𝜕𝑆22

𝜕𝐸22
, 0) 

(B.20) 

For all strain values, the percentage of convexity criterion equals to zero (Ξ = 0) 

can be used to quantify convexity of the NNMat model. Therefore, we define a convexity 

index (𝐶𝐼) for a trained and fitted NNMat model 

 
𝐶𝐼 =

1

𝑀
∑∑𝟏𝑐[Ξ(𝐸11, 𝐸22)]

𝐸22𝐸11

 (B.21) 

where 𝑀 represents the total number of 𝐸11 and 𝐸22 values. 𝟏𝑐(Ξ) is an indicator function, 

𝟏𝑐(Ξ) = 1 when Ξ = 0; otherwise, 𝟏𝑐(Ξ) = 0. Hence, for all fitted NNMat models (using 

different patients and protocols in the validation set), the mean 𝐶𝐼 can be used to measure 

the convexity of the NNMat model. The results of grid search are reported in Table B.1. 
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The set of weights, 𝛼 = 0.1 and 𝛽 = 10−5, was selected because it yields good validation 

R2 and an acceptable mean 𝐶𝐼. The small 𝛼 and 𝛽 values may be explained by the fact that 

the values of lost terms are orders of magnitude different. 

Table B.1 - Fitting and validation results obtained from grid search with different α 

and β values. The number of training epochs was set to be 1000. 

(𝛽, 𝛼) Mean fitting R2 Mean validation R2  Mean 𝐶𝐼 

(10-3,1) 0.8280 0.7884 99.43% 

(10-3,0.1) 0.8628 0.8310 94.56% 

(10-3,0.01) 0.8603 0.8204 95.40% 

(10-5,1) 0.8668 0.8397 95.93% 

(10-5,0.1) 0.8765 0.8586 96.08% 

(10-5,0.01) 0.8789 0.8564 95.07% 

(10-7,1) 0.8833 0.8620 95.25% 

(10-7,0.1) 0.8865 0.8645 93.84% 

(10-7,0.01) 0.8872 0.8641 92.90% 

The number of training epochs was then treated as another hyperparameter. The 

NNMat model was cross validated using different number of epochs (1000, 5000, 10000, 

15000), the results are listed in Table B.2. The number of epochs 10000 was chosen 

because it resulted in the best performance. 
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Table B.2 - Fitting and validation results obtained using different number of training 

epochs. 

number of epochs Mean fitting R2 Mean validation R2  Mean 𝐶𝐼 

1000 0.8765 0.8586 96.08% 

5000 0.8998 0.8691 97.40% 

10000 0.9359 0.9139 99.10% 

15000 0.9192 0.8940 96.24% 

B.4.2 Testing 

The NNMat model was trained using the training and validation set of 57 patients. 

The expert-constructed models [33, 34, 257] (Section 2.1) and the trained NNMat model 

(Section 2.2) were fitted to biaxial data of the 6 ATAA patients in the testing set. Typical 

stress-strain results of the NNMat and the HGO model for a representative patient are 

shown in Figure B.6. For comparison, coefficients of determination (R2) were computed 

for model predictions in terms of the Cauchy stress. For this particular patient (patient 59), 

it can be seen that the NNMat model is slightly more accurate than the HGO model. To 

compare the testing results of the NNMat and expert-constructed models, the fitting R2 

(using six protocols) and testing R2 (using one protocol) of the four constitutive models for 

the testing patients are reported Table B.3. The mean and standard deviation of fitting R2 

and testing R2 are shown in Table B.4. It is demonstrated that the NNMat model 

significantly outperforms the HGO model in fitting and predicting the ATAA biaxial data 

(p-value is 0.0053 for fitting and 0.0203 for testing). Power of the t-test is 0.9939 and 

0.8329 for fitting and testing, respectively, which represents the probability that the null 

hypothesis is correctly rejected. The NNMat model has a slightly better performance than 

the GOH model which employs GST for fiber dispersion, but the result is insignificant. 
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The NNMat model has a similar performance comparing to the four-fiber model which 

makes use of two additional invariants.   

 

Figure B.6 - Representative Cauchy stress stretch results of the NNMat model and 

the Holzapfel-Gasser-Ogden model [9] (Section 2.1) in fitting and testing for patient 

59. 

Table B.3 - Fitting and testing R2 predicted by the NNMat model and expert-

constructed models using the testing dataset. 

NNMat (3 parameters) Holzapfel-Gasser-Ogden (4 parameters) 

Patient ID Fitting R2 Testing R2 Patient ID Fitting R2 Testing R2 

58 0.9832 0.9747 58 0.9006 0.8737 

59 0.9755 0.9749 59 0.9303 0.9197 

60 0.9736 0.9511 60 0.9247 0.9171 

61 0.9672 0.9658 61 0.8903 0.8094 

62 0.8902 0.8272 62 0.8475 0.7297 

63 0.9895 0.9891 63 0.9178 0.8838 

Gasser-Ogden- Holzapfel (5 parameters) Four-fiber families (6 parameters) 

Patient ID Fitting R2 Testing R2 Patient ID Fitting R2 Testing R2 

58 0.9683 0.9523 58 0.9710 0.9620 

59 0.9638 0.9491 59 0.9821 0.9784 

60 0.9395 0.9187 60 0.9779 0.9605 

61 0.9422 0.9185 61 0.9767 0.9661 

62 0.8780 0.8103 62 0.8881 0.7803 

63 0.9748 0.9627 63 0.9764 0.9705 
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Table B.4 - Fitting and testing R2 (mean ± standard deviation) obtained by the NNMat 

model and the expert-constructed models. The p-values are computed using Behrens-

Fisher two-sample t-test with the null hypothesis that R2 of the expert-constructed 

model is great than that of the NNMat model. The results indicate that performance 

of the NNMat model is much better than the HGO model. 

Model Fitting R2 p-value Testing R2 p-value 

NNMat 0.9632±0.0366  0.9471±0.0601  

Holzapfel-Gasser-Ogden 0.9019±0.0306 0.0053 0.8556±0.0735 0.0203 

Gasser-Ogden-Holzapfel 0.9445±0.0355 0.1944 0.9186±0.0561 0.2076 

Four-fiber families 0.9620±0.0364 0.4782 0.9363±0.0767 0.3956 

To visualize the convexity of strain energy density function, similar to Section 4.1, 

𝑆11 and 𝑆22 were computed at a series of 𝐸11 and 𝐸22 values (-0.1 to 0.5). The strain energy 

density function can be calculated through trapezoidal numerical integration of 𝑊 =

∫𝑺: 𝑑𝑬. The resulting contours of strain energy function are plotted and examined for each 

patient. Strain energy functions of four representative patients are shown in Figure B.7, 

which are approximately convex (strict convexity was not proved). 𝐶𝐼 values for the fitted 

NNMat models can be evaluated using Eqn. (B.21), the mean 𝐶𝐼 in the testing set is 

100.00%. 
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Figure B.7 - Strain energy density function with respect to E_11 and E_22 with 

E_12=0. Four representative patients are plotted. (a): patient 58, (b): patient 59, (c): 

patient 60 and (d): patient 62. 

B.4.3 Parametric Study 

To study the effect of the two subject parameters 𝒎 = [𝑚1, 𝑚2]
𝑇 on hyperelastic 

properties of the tissue, a trained NNMat model was employed (trained using the training 

and validation set) with 𝜃 = 0°. The parameter space was sampled at various values of 𝑚̂1 

and 𝑚̂2. with an interval of 0.01 in each dimension (from -1 to 1). Note that sampling was 

performed with the normalized parameters (i.e., 𝑚̂1and 𝑚̂2). We evaluated tangent 

modulus 𝑇 =
Δ𝑆𝑖𝑖

Δ𝐸𝑖𝑖
 under low strain (𝐸𝑖𝑖 = 0.1) and high strain (𝐸𝑖𝑖 = 0.5) in the 

circumferential (11) and longitudinal (22) directions. The results are shown in Figure B.8. 

(a)

(c) (d)

(b)
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It can be observed that the high modulus regions are concentrated in the upper right corner 

of the parameter space, where 𝑚̂1and 𝑚̂2 are both at maximum. Thus, the larger 𝑚̂1and 

𝑚̂2 are, the higher stiffness the material is, which is physically meaningful. 

 

Figure B.8 - Contour plots of tangent moduli in the subject parameter space (θ=0°, 

trained using patients 7~63). (a) and (b): circumferential; (c) and (d): longitudinal. 

(a) and (c): tangent modulus at high strain region (0.5); (d) and (d): tangent modulus 

at low strain region (0.1). Units of tangent moduli are in MPa. 

B.5  Discussion 

In this study, a novel generic physics-informed machine learning model was 

proposed for constitutive modeling of soft biological tissues. The proposed NNMat model 

utilizes a hierarchical learning strategy: it can learn from data of multiple subjects to 

(a)

(c)

(b)

(d)
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improve its prediction for individuals. The structure of the NNMat model consists of a class 

parameter set for characterizing hyperelastic properties of a class of materials and a subject 

parameter set (three parameters) for fitting mechanical response of an individual subject. 

In the NNMat model, the subject parameter set is connected to the neural network via skip 

connections to facilitate hierarchical learning. In addition, a novel hierarchical training 

strategy was devised to determine the optimal parameters, which involve the determination 

of common mechanical properties for a class of material (training) and fitting of 

mechanical response of individual subjects (fitting). The modeling process is analogous to 

the DEICE procedure for expert-constructed models. Consequently, the NNMat model 

provides a convenient and general methodology for constitutive modeling of soft biological 

tissues. It inherits advantages of ML approaches: (1) construction of the NNMat model is 

an automatic process and does not involve any manual derivations, and (2) predictive 

capability of the NNMat model with 3 constitutive parameters is, superior to the 4-

parameter HGO model; slightly better than the 5-parameter GOH model with consideration 

of fiber dispersion; and similar to the 6-parameter four-fiber model with two additional 

invariants. It also shares desired properties with the expert-constructed models: (1) only a 

few constitutive (subject) parameters {𝑚1, 𝑚2, 𝜃} are needed for modeling an individual 

sample response; (2) a physics constraint was enforced for convexity of the strain energy 

density function, which ensures that the constitutive relation is physically-relevant and 

numerically stable. Since the NNMat model is differentiable, the elasticity tensor can be 

numerically computed, which makes the model suitable to be intergraded into a FE solver; 

(3) physical meanings of the constitutive (subject) parameters can be analyzed. Although 

training of the NNMat model takes approximately 16~18 hours in our exemplary 
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application. It should be noted that more time and efforts may be required for a domain 

expert to derive constitutive equations [254]. 

The current NNMat model was developed for modeling the hyperelastic properties 

of soft tissues and trained by using planar biaxial data of aortic wall tissues, it may also be 

extended to model history- or rate- dependent constitutive relations. For materials that 

exhibit history dependence, stress/strain history and internal state variables may be 

included as additional input variables. For rate-dependent material behavior, stress/strain 

rate may be incorporated similar to the traditional FFNN models [284, 285].  

B.5.1 Comparison to Traditional FFNN Models 

A constitutive model with a large number of constitutive parameters often results 

in over-parameterization: different combinations of constitutive parameters are nonlinearly 

coupled which can lead to very similar mechanical response. This is undesirable form a 

data fitting perspective, in which the optimization problem is highly nonlinear, multivariate 

and non-convex, which can cause optimization difficulty known as the local optima [99]. 

In this case, the mechanical properties cannot be unambiguously represented by a set of 

constitutive parameters. Therefore, a constitutive model with fewer constitutive parameters 

is always preferred [286, 287]. In contrast to the traditional FFNN models [110, 111, 268, 

284, 285] that have hundreds to thousands of parameters, the proposed NNMat model with 

only three constitutive (subject) parameters is analogous to the expert-constructed models, 

which may be more suitable for practical applications. The NNMat model may also 

facilitate inverse estimation of constitutive parameters from in vivo clinical data, such as 

image-derived aortic wall motions ([99, 100], CHAPTER 3, and APPENDIX), for which 
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only the data within the physiological range can be obtained and therefore the identification 

solution may not be unique if there are too many constitutive parameters in the model. 

B.5.2 Standard Regularization Procedures 

Classically, the bias–variance trade-off, which implies that the model complexity 

must be limited to avoid overfitting, is often considered when training a ML model. In 

many applications, neural network size is significantly larger than data size, and training 

error approaches zero, which would be traditionally considered overfitted. Therefore, 

standard regularization procedures, e.g., weight decay and weight pruning, are often 

employed when training a neural network to prevent overfitting. However, surprisingly, 

the performance of the over-parameterized network on test set can be excellent [288]. This 

could be explained by a “double-descent” risk curve [288], which indicates that once the 

network complexity exceeds a threshold (i.e., being over-parameterized), the test risk starts 

to decrease (i.e. high performance on test set). The choice of whether to regularize the 

model can also depend on the available data size. In this study, the NNMat model has 

18,188 class parameters and 3 subject parameters. In total, our biaxial data consists of 

82,200 strain-stress data points, and there are 73,614 strain-stress data points in the training 

and validation dataset. In addition, it is shown recently that physics constraint may provide 

regularization effect in the physics-informed neural network [289], which may 

significantly reduce the required training data size [290]. Hence, our model may be 

"underfitting" the data, not complex enough. Nevertheless, the NNMat model has good 

fitting and testing performance on the testing data without using standard regularization 

methods. Readers may choose to incorporate standard regularization procedures when 



 243 

implementing their own model, depending on the type of application and available data 

size.   

B.5.3 The NNMat Model is Generic  

It is often necessary to modify the general form of the constitutive relation for 

modeling of a new (structurally different) class of material, e.g. from modeling the arterial 

wall to the passive myocardium [255]. Although the exponential functional form of strain 

energy density has been widely adopted in many expert-constructed constitutive models of 

soft tissues [32-34, 221, 255, 256] to describe the strain stiffening effect due to recruitment 

of collagen fibers following the work by Dr. Y.C. Fung [253], a number of studies [254, 

291, 292] advocated polynomial strain energy functions. In general, the choice of 

constitutive model should be dependent on the type of tissues and loading ranges in specific 

applications, e.g., the exponential function without consideration of damage can lead to 

over-prediction of stress at large strain conditions [51, 53, 169, 293]. Since the proposed 

NNMat model is generic (i.e., not specifically designed for ATAA tissues), we anticipated 

that its network structure can be applied to other tissue behaviors and characteristics, and 

its predictive capability is largely dependent upon the training data provided to it. With 

abundant training data to be collected (larger population, wider loading range) in the future, 

the predictive capability of the NNMat is expected to be improved. 

B.6  Conclusions 

In this study, a physics-informed machine learning model was proposed for 

constitutive modeling of soft biological tissues. A neural network material model (NNMat) 

with novel structure and hierarchical learning strategy is proposed. The NNMat model 
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consist of two parameter sets: the class parameter set for characterizing the general elastic 

properties of a class of materials and the subject parameter set with three parameters for 

individual material response. Skip connections are utilized in the neural network structure 

to facilitate hierarchical learning. The proposed NNMat model can learn from the data of 

multiple subjects to improve its prediction for individuals. Physics constraints were 

enforced for convexity of the strain energy density function. From the tests we performed, 

both in-sample and out-of-sample accuracy metrics of the NNMat model are significantly 

higher than the expert-constructed model. 
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