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SUMMARY 

 

Additions of boron in modified titanium alloys and Ti-B composites result in the 

in situ formation during high temperature processing of TiB reinforcement phases that 

improve the mechanical properties and wear resistance of unreinforced titanium alloys, 

while still utilizing the high strength-to-weight ratio and excellent corrosion resistance of 

titanium.  Several boron-modified titanium alloys and Ti-B composites in a Ti-6Al-4V 

matrix have been investigated to determine the effect of processing parameters on the 

TiB reinforcement phases and resultant microstructures and mechanical properties.  

Using optical microscopy, scanning electron microscopy, conventional characterization 

techniques, and newly developed methodologies for three-dimensional visualization, the 

microstructures of these Ti-B materials have been studied.  Observations included a 

similar anisotropic whisker morphology with roughly hexagonal cross-sections among all 

TiB phases; alignment of all TiB phases with extrusion, with the extent of alignment 

affected by thermomechanical processing parameters; brittle fracture behavior of TiB 

whiskers, with fracture down the length of whiskers not aligned in the tensile direction 

and across the width of whiskers aligned in the tensile direction; and discoveries of the 

anisotropic morphologies of the coarse primary TiB phase and the sub-micron 

precipitated TiB phase.  It has been observed that extruded boron-modified alloys with 

compositions in the hypoeutectic regime of the quaternary system of titanium, alloying 

elements aluminum and vanadium, and boron, containing a unimodal size distribution of 

eutectic TiB whiskers, significantly improve the strength and stiffness compared to 

unreinforced Ti-6Al-4V alloy while also demonstrating tensile elongation to failure 

 xvii



within the fracture-critical limits required for aerospace structural applications.  Materials 

design methodologies have been developed using Ti-B materials, and they show promise 

for predicting the effects of processing parameters and the resultant microstructures and 

mechanical properties for boron-modified titanium alloys and Ti-B composites optimized 

for a variety of commercial and industrial applications.   
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CHAPTER 1                                                                       

PROBLEM FORMULATION AND RESEARCH OBJECTIVES 

 

 In the development of titanium alloys and composite materials, the addition of 

boron has emerged as an effective way to provide significant improvements to important 

properties including strength, stiffness, and wear resistance.  Innovations made with Ti-B 

materials to this point have resulted from conventional metallurgical techniques that have 

been similarly used to create other metal alloys and composites.  The TiB reinforcement 

phase in boron-modified titanium, however, is unique in that it forms in situ during 

processing.  In addition, Ti-B materials have been formed using a wide variety of 

processing methods and conditions, and with a range of initial constituent materials. 

 The complexity of the microstructures of Ti-B materials, along with the variety of 

processing schemes and the in situ formation of TiB, mean that traditional research and 

development methods are insufficient for complete and accurate application of these 

alloys and composites.  The viability of different processing methods have been verified, 

and the mechanical properties of many of these Ti-B materials have been studied, but an 

in-depth understanding of the relationships between the microstructure, processing, and 

resultant properties has required further investigation.  To design a Ti-B material with a 

desired set of properties, it is essential to know how the processing methods affect the 

microstructure, and how the microstructure affects the properties of interest.  This is 

especially of relevance for Ti-B materials because sufficient processing flexibility exists 

for the generation of a wide range of different microstructures. 
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 The focus of this research has been to investigate the microstructures of Ti-B 

materials, and determine the relationships between the microstructure, processing 

methods, and resultant properties.  It is hoped that this work will result in more efficient 

materials design of Ti-B modified alloys and composites.  More specifically, research 

objectives included: 

 

1. Unbiased quantitative characterization and representation of the  

microstructures of Ti-B materials utilizing conventional and newly developed 

stereological methods on two-dimensional (2D) examples. 

2. Creation of digital three-dimensional (3D) microstructures of Ti-B materials 

using serial sectioning techniques. 

3. Determining the relationships between the processing methods of these 

materials and the critical aspects of the microstructures with respect to the 

resultant mechanical properties of interest. 

4. Developing the foundation for the methods to be developed for the simulation 

of real microstructures and the creation of virtual microstructures to be used in 

materials design of Ti-B modified alloys and composites. 

 

 The results of this work have provided the groundwork for a modern and efficient 

materials design methodology combining traditional metallurgical techniques with 

computer simulations, a vast improvement over what has historically been a haphazard, 

trial-and-error materials development approach.  In addition, knowledge gained and 

 2



discoveries made during this research will help with the implementation of Ti-B materials 

in a variety of commercial and industrial applications. 
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CHAPTER 2                                                                       

BACKGROUND AND LITERATURE REVIEW 

2.1  Introduction 

 The high strength-to-weight ratio and excellent corrosion resistance of titanium 

began to garner interest in the metal soon after World War II, following the invention and 

development of the commercial Kroll production process.  However, the poor wear 

resistance and relatively low modulus of pure titanium and early alloys spawned research 

into titanium-based modified alloys and metal matrix composite materials (MMCs) to 

improve the overall mechanical properties.  With the development of discontinuously 

reinforced titanium matrix MMCs (also known as DRTi composites), and modified alloys 

containing titanium boride whiskers, it has been shown that adding even relatively small 

additions of boron to conventional titanium alloys can provide significant improvements 

to important properties, including strength, stiffness, wear resistance, and microstructural 

stability. 

 The in situ formation of TiB reinforcement has been achieved using a variety of 

processing methods and numerous initial constituent compositions [1].  Titanium MMCs 

with TiB whisker reinforcement and boron-modified titanium alloys are already in some 

commercial use in the aerospace and automotive industries and for some sporting goods 

applications, and show promise for a further variety of applications in these fields as well 

as for the biomedical industry.  Ti-B materials are beginning to compete with steel alloys, 

particularly in applications where the superior corrosion resistance and lighter weight are 

important.  Cost factors, however, are preventing most commercial interests from looking 
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into further development of Ti-B alloys and composites, with the traditional research and 

development methods too complex for the economic viability of a change in material.  

Further understanding of Ti-B materials, providing for a more efficient materials 

development scheme, will make the upgrade from steel a legitimate design option. 

2.2  Titanium Alloys and Composites 

 Titanium was a lab curiosity until the mid-1940s, when Kroll developed a 

commercial production process, reducing titanium tetrachloride (TiCl4) with magnesium.  

The metal’s high strength-to-weight ratio and excellent corrosion resistance led to 

research into titanium use as an alternative to steel and aluminum.  By the late 1950s, 

titanium was dubbed the “wonder metal”.  The excellent mechanical properties of 

titanium alloys showed promise, but the high costs led to development mostly in 

aerospace applications, particularly the SR-71 reconnaissance jet and the F-22 fighter jet, 

with approximately 45 percent of the latter constructed from titanium alloys and MMCs 

[2, 3]. 

 The poor wear resistance and relatively low modulus of early unreinforced 

titanium alloys led to the development of titanium matrix MMCs.  Early work on 

titanium MMCs used the lessons learned from research and development of aluminum 

matrix MMCs, utilizing similar reinforcement choices and production processes.  

Significant early work by NASA and the aerospace industry, the military, and Formula 1 

auto racing teams unfortunately was not published or studied in detail beyond the 

projects’ specific scope. 

 Research into Ti-B alloys and composites began in the late 1950s, but commercial 

applications were not established until the 1980s [4].  Prior composite reinforcements, 
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including Al2O3, SiC, Si3N4, and B4C, that had proven compatible in other metal matrices 

such as steel and aluminum alloys, were found to be unsuitable in titanium alloys due to 

the reactivity of molten titanium.  Adding boron, forming Ti-B modified alloys and 

composites, proved to be compatible with conventional processing techniques developed 

for unreinforced titanium alloys. 

 Metal matrix composites have become a class of established engineering materials 

relatively recently, and there is no simple definition for MMCs that is generally accepted 

within the materials community [5].  Recent efforts to establish a consensus have 

proposed that MMCs are materials where the reinforcement remains distinct throughout 

the process history.  Therefore, Ti-B materials that have hypereutectic compositions are 

best classified as discontinuously reinforced titanium MMCs; Ti-B materials with 

hypoeutectic compositions are considered boron-modified titanium alloys, because unlike 

MMCs they have microstructures, processing, and property combinations similar to 

alloys without boron [6].  In a similar attempt to standardize the terminology in the field, 

the organizers of the 2005 conference “A Workshop on Titanium Alloys Modified with 

Boron” have proposed that the term “Ti-B materials” be used for both titanium MMCs 

with TiB reinforcement and for boron-modified titanium alloys, materials that have 

previously been referred to in published literature as “Ti-TiB”, “Ti/TiB”, “TMC”, “TiB 

dispersed titanium composite”, “TiB/Ti”, and “TiB reinforced titanium MMC”. 

2.2.1  Ti-6Al-4V Alloy 

 The most widely used titanium alloy is Ti-6Al-4V, which accounts for more than 

half of the overall worldwide titanium tonnage [1].  It is considered the “workhorse of the 

titanium industry” [7].  The aluminum addition stabilizes the hcp α phase, which 
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increases the overall strength of the resultant alloy.  The vanadium addition introduces 

bcc β phase into the α matrix, increasing ductility and fracture toughness.  Ti-6Al-4V is 

considered an α-rich α+β alloy. 

 Ti-6Al-4V allows for a wide spectrum of mechanical property combinations 

depending on the thermomechanical processing (TMP) history [8].  The β-transus 

temperature, where the phase transformation α+β → β takes place, is the critical 

parameter for TMP of this alloy, and has been reported to be approximately 1000°C [9].  

Entirely different microstructures evolve depending on whether the alloy is processed 

above or below this temperature.  For what is known as β or primary processing, above 

the β-transus, the microstructure consists of lamellar colonies of α and β in large β grains 

of approximately 200 μm, and the resultant alloy has high strength and fracture 

toughness.  For α+β or secondary processing, below the β-transus, the resultant alloy has 

an equiaxed microstructure, with excellent ductility and resistance to crack initiation 

under low-cycle fatigue loading.  Recent research has begun efforts to develop rigorous 

methods for quantifying the important features of these complex microstructures [10]. 

 Oxygen content also affects the mechanical properties of the alloy, with the 

element acting as an α stabilizer.  The standard grade, used for strength-critical 

applications, contains 0.16-0.20 wt % O.  The extra-low interstitial (ELI) grade, used for 

toughness-critical applications, contains 0.10-0.13 wt % O. 

 Although Ti-6Al-4V has a high strength-to-weight ratio, there are some poor 

mechanical properties associated with the alloy.  Along with other titanium alloys, it has 

notoriously poor tribological properties, including wear and abrasion resistance [11].  Ti-

6Al-4V also has poor high temperature properties, softening at 300°C, although this does 
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allow for superplastic forming (SPF), which is now a well-established commercial 

process for this alloy [1].  Extreme reactivity restricts casting of the alloy, and it forms 

reaction products with SiC, Al2O3, Si3N4, and B4C.  Molten titanium also poorly wets 

nearly all commercial reinforcements. 

2.2.2  TiB Reinforcement 

 Lack of compatibility with traditional metal matrix composite reinforcements led 

researchers to examine other material options.  The Ti-B binary phase system was a 

viable choice, as shown in the Ti-B phase diagram in Figure 2.1 [12].  Boron is 

essentially insoluble in titanium, leading to a stable TiB intermetallic phase which forms 

from a eutectic reaction.  The phase diagram also predicts that small amounts of boron in 

titanium will form a relatively high volume fraction of TiB. 
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Figure 2.1  Ti-B binary alloy phase diagram [12]. 

  

 

 Significant studies have been conducted investigating the thermodynamics and 

kinetics of the Ti-B system [13, 14].  It has been shown that TiB is stable only in a 

titanium matrix, due to the thermodynamics of the reactions forming TiB from titanium 

and TiB2, with TiB more stable than TiB2 only when excess moles of titanium are 

present.  TiB forms in situ from the addition of either titanium and boron or titanium and 

TiB2, and can form both primary and eutectic phases from the eutectic reaction as well as 

precipitate a sub-micron phase from the supersaturation of boron in titanium.  Previous 

studies suggested that the morphology of the primary phase was faceted, equiaxed 
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clusters, while the morphology of the eutectic phase was a more desirable needle-like 

whisker [15, 16].  TiB has a linear coefficient of thermal expansion approximately the 

same as that of titanium, which is ideal for processing and applications at elevated 

temperatures.  Once formed in the titanium matrix, the TiB phases show in situ growth at 

a parabolic rate. 

 The crystal structure of titanium monoboride, TiB, is an orthorhombic unit cell, 

shown in Figure 2.2.  Its stable form is the orthorhombic B27 structure (FeB type), 

characterized by zigzag chains of boron atoms parallel to the [010] direction, with each 

boron atom lying at the center of a trigonal prism of six titanium atoms [17].  It has an 

anisotropic axis of growth along the [010] direction, which corresponds to the closest 

spacing of planes [18].  The crystal structure of TiB2 is hcp, and is shown in Figure 2.3. 
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Figure 2.2  The crystal structure of TiB [19]. 
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Figure 2.3  The crystal structure of TiB2 [20]. 

 

 The stable form of TiB is shown as single-crystal needles, with the aspect ratio 

typically between 4 and 10.  There is also a metastable form, having a Bf structure and in 

the form of relatively fine needles with a high defect density of stacking faults, with the 

relationship between the B27 and Bf structures exactly analogous to the relationship 

between hcp and fcc atomic structures [21, 22].  Typical TiB whiskers have a roughly 

hexagonal cross-section.  Studies have observed whisker alignment with deformation, 

showing promise for controlled anisotropy of Ti-B modified alloys and composites [23]. 

 The microstructure of Ti-B modified alloys and composites is typically a fine-

grained equiaxed matrix microstructure with TiB particles uniformly distributed 

throughout the matrix.  The interface between the titanium matrix and the TiB phase is 

nearly perfect – it is in thermodynamic equilibrium, it is a coherent phase boundary, it is 
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atomically flat, and studies have shown there is no evidence of a chemical reaction zone 

[24-27].  It has also been shown that the TiB whiskers effectively pin the grain 

boundaries of the titanium alloy matrix so that a fine grain structure is retained even well 

above the β-transus and after cooling back into the α+β phase field [28, 29]. 

2.2.3  Ti-B Modified Alloy and Composite Mechanical Properties 

 Because TiB is stable only within a titanium matrix, accurate determination of the 

mechanical properties is a goal of current research.  Several studies have attempted to 

determine the properties of both the TiB phase alone and the overall modified alloys and 

composites.  Consensus in the field of the properties of TiB remains a goal of these 

investigations. 

 Gorsse and Miracle observed a significant strengthening effect of TiB 

reinforcement in Ti-6Al-4V-TiB composites [30, 31].  They determined the elastic 

modulus of compacted 20 volume percent TiB MMC, E = 161 GPa; extruded 20% TiB 

MMC, E = 168 GPa; and extruded 40% TiB MMC, E = 199 GPa, which approaches the 

elastic modulus of standard steel alloys.  The elastic modulus of unreinforced Ti-6Al-4V 

alloy is approximately 110 GPa.  They also used the Halpin-Tsai model in an attempt to 

extract the elastic modulus for TiB, and to determine the influence of the orientation of 

the TiB whisker reinforcement.  They calculated the elastic modulus of TiB in the 

longitudinal direction, EL = 450 GPa; in the transverse direction, ET = 514 GPa; and an 

overall elastic modulus E = 482 GPa. 

 Atri, Ravi Chandran, and Jha observed that dynamic elastic and shear modulus 

values increased with increasing TiB volume fraction in Ti-B composites with high TiB 

whisker content (30-83 vol.%) [32].  Using the technique of impulse excitation of 
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vibration, combined with the Halpin-Tsai prediction method, they calculated the elastic 

modulus of TiB whiskers to be 371 GPa, and the shear modulus to be 140 GPa. 

 Constantinides, Ravi Chandran, Ulm, and Van Vliet developed a grid indentation 

analysis technique in an attempt to determine the elastic modulus of TiB in Ti-B 

composites [33].  They used massive array nanoindentation on reaction hot sintered Ti-B 

composite materials to generate statistical average mechanical properties.  Their methods 

estimated the elastic modulus of TiB whiskers to be 406 GPa. 

 Soboyejo, Shen, and Srivatsan studied fatigue crack nucleation and growth in cast 

and extruded Ti-6Al-4V-TiB composite [34].  They observed crack initiation at 

approximately 20% of total fatigue life, meaning that crack growth components dominate 

the fatigue life of the composite.  They also observed crack blunting by the β phase of the 

titanium alloy matrix.  During cyclic loading, a single dominant crack did not evolve.  

They found that fatigue crack growth rates in the unreinforced alloy are comparable to 

the rates of the composite in middle and high ΔK regimes, but in the lower ΔK regime, 

the Ti-B composite exhibited faster crack growth rates than the alloy.  The composite 

also showed evidence of strain softening to failure, with the fracture surfaces essentially 

ductile.  They observed that dislocations pile up at the Ti-TiB interface until debonding 

occurs around the TiB inclusions.  Overall, they determined that there is no fatigue 

motivation for the use of Ti-B composites. 

 Research at DERA by Godfrey, Wisbey, Goodwin, Bagnall, and Ward-Close 

investigated the tensile properties of Ti-6Al-4V-TiB composites [35].  They showed that 

above 0.5 wt.% boron added to Ti-6Al-4V alloy, both tensile strength and ductility 

decrease as the boron content increases.  Samples with larger amounts of boron showed 
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brittle intergranular fracture, with boride particles observed on the fracture surface.  Heat 

treatment at 1050°C improved the ductility of the composite, due to increased β phase in 

the matrix.  They also observed that extrusion of the composite, aligning the TiB 

whiskers in the working direction, improved the tensile properties. 

 Gorsse and Miracle produced extruded 20 vol.% TiB composite, and found the 

ultimate tensile strength (UTS) improved more than 30% from the unreinforced Ti-6Al-

4V alloy [30].  They observed significant whisker damage in the composite samples, but 

no debonding, with cracks propagating through the TiB whiskers preferentially along the 

whisker axis.  Strength and tensile ductility were limited by the presence of TiB 

aggregates which could play the role of crack initiator at low strain, and should be 

eliminated with improved powder processing. 

 Research at the Air Force Research Laboratory (AFRL) headed by Boehlert has 

investigated tensile deformation of boron-modified Ti-6Al-4V alloy by performing  in 

situ scanning electron microscopy (SEM) tensile tests at both room temperature and 

elevated temperature [36].  They observed tensile deformation evolution to fracture, with 

the TiB phase taking a load-sharing role in the mechanical behavior of the material.  They 

concluded that the boron addition, and resultant in situ formation of TiB, significantly 

strengthens the Ti-6Al-4V alloy without changing the fracture mode. 

 Alman and Hawk studied the wear resistance of titanium matrix composites, and 

found that adding TiB2 to the titanium matrix, forming in situ TiB and TiBB2 phases, was 

effective in improving wear resistance over the unreinforced alloy [11].  They found that 

the composite possessed significantly lower wear coefficients than the unreinforced 

titanium alloy, with TiB-reinforced titanium composite more wear resistant than TiC-
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reinforced titanium composite which was also examined.  They observed that strong 

interfacial bonding between the titanium matrix and the TiB whisker reinforcement 

prevents preferential pullout of either of the phases during abrasion. 

 Several studies have examined the creep behavior of Ti-B composites [37-39].  

High-temperature deformation characteristics are important for various hot processing 

techniques, and for load-bearing structural applications at elevated temperatures.  

Important factors in the creep behavior of Ti-B modified alloys and composites are the 

titanium matrix microstructure (α-β transition), and TiB whisker alignment/orientation.  

The studies found that at low temperature and high stress, TiB whiskers act as a strong 

barrier to dislocation movement, and are sites of dislocation pileup.  At high temperature 

and low stress, the matrix phase transformation from bcc β to hcp α results in a reduced 

retardation effect of the TiB reinforcement, essentially rendering the TiB whiskers 

irrelevant in the creep behavior of the composite.  In general, it was found that matrix 

grain refinement, whisker-dislocation interactions, and the load/stress transfer to the 

whiskers leads to the Ti-B composite having much better creep resistance than the 

unreinforced titanium alloy. 

 A summary of published data for the mechanical properties of titanium, TiB, and 

TiB2 is shown in Table 2.1.  Multiple values are listed for properties that vary in the 

literature. 
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Table 2.1  Published data for the mechanical properties of titanium, TiB, and TiB2. 

  E CTE Tm ρ HV hardness

Ti 110 GPa 9x10-6/K 1813 K  
1900 K 4.5 g/cm3 130 2.8 GPa 

TiB 482 GPa 
370 GPa 

8.6x10-6/K 
6.2x10-6/K 2500 K 4.51 g/cm3 

4.56 g/cm3
>1100  
1800 

27-28 
GPa 

TiB2 550 GPa 8.1x10-6/K 3193 K  
3600 K 

4.5 - 4.62 
g/cm3 3400 22.5-35.7 

GPa 
 

2.2.4  Ti-B Modified Alloy and Composite Processing 

 A wide variety of processing methods have proven successful in producing Ti-B 

modified alloys and composites [14, 15, 21, 26, 28, 35, 38-51].  There has been extensive 

published work demonstrating that Ti-B materials can be produced using standard 

powder metallurgy (P/M) techniques, including pre-alloying, mechanical alloying, 

blended elemental P/M, hot isostatic pressing (HIP), direct powder extrusion, 

functionally graded material (FGM), laser cladding, reaction sintering, and self-

propagating high-temperature synthesis (SHS).  Conventional ingot metallurgy 

techniques, including vacuum arc remelting, induction skull melting, and vacuum 

induction melting have been published as well.  Rapid solidification techniques, such as 

gas atomization and ribbon melt spinning have also produced Ti-B alloys and 

composites.  In addition, secondary hot forming techniques, including extrusion, 

swaging, rolling, and forging, have been used in the Ti-B material production process. 

 The Center for the Accelerated Maturation of Materials (CAMM) at the Ohio 

State University, under the direction of Fraser, has conducted research investigating the 

production of Ti-B alloys and composites using the laser-engineered net-shaping 

(LENS™) process [16, 27, 52].  In this technique, a high-powered laser is used to melt 
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successive layers of powder metal feedstock according to a CAD design.  The group has 

produced Ti-B materials with refined and homogeneous microstructures. 

 A promising characteristic of Ti-B alloy and composite processing is realignment 

of the TiB whisker reinforcement, allowing for the possibility of the processing methods 

to take advantage of anisotropy of the microstructure for particular applications.  Schuh 

and Dunand observed gradual alignment of TiB whiskers during tensile deformation by 

transformation and superplasticity between 840 and 1030°C [23].  The TiB whiskers 

aligned along the external loading axis, showing no evidence of whisker fracture or 

interfacial debonding during reorientation.  Tamirisakandala, Vedam, and Bhat published 

processing maps (strain rate versus temperature), for hot working of Ti-B composites [1].  

Other published work has observed TiB whisker alignment from hot extrusion, forging, 

and swaging. 

2.2.5  Ti-B Modified Alloy and Composite Applications 

 The high strength-to-weight ratio, excellent corrosion resistance, and improved 

high temperature properties compared to the unreinforced alloy have made Ti-B modified 

alloys and composites an increasingly viable choice for applications within the 

automotive industry.  Froes, Friedrich, Kiese, and Bergoint analyzed the potential for 

titanium alloy and composite use in automobiles, and concluded that the main obstacle to 

increased titanium use is cost versus steel [53].  Currently, a titanium-based part will cost 

more than 10 times that of a comparable steel part, and this needs to be reduced to 

approximately twice that of steel in order to see cost-performance benefits to justify a 

material switch.  Their study noted the use of Ti-B composite connecting rods in the 

Volkswagen CCO diesel concept vehicle, where the reduced weight of the titanium 
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composite part leads to significantly reduced noise, vibration, and harshness (NVH), and 

quieter engine performance in the vehicle that has a fuel economy of 250 miles per gallon 

(mpg). 

 Significant research into Ti-B composites has been conducted at Toyota Central 

Research and Development Laboratories by Saito [41, 54-58].  Toyota started 

development of a cost-effective powder metallurgy forging process in the late 1980s, and 

since 1998 the company has produced Ti-20 vol.% TiB composite intake and exhaust 

engine valves for the Altezza, which is sold in the United States as the Lexus IS.  These 

Ti-B composite valves replaced a 21-4N heat-resistant steel alloy part, resulting in a 40% 

lighter valve weight.  With the composite valves installed, maximum engine revolutions 

increased by 700 rpm, high-rev engine noise decreased by 30%, reduction of friction 

decreased camshaft driving torque by 20%, and overall fuel economy improved by 1-2 

mpg. 

 Although relatively little of the research has been published, titanium matrix 

alloys and composites have been developed for the aerospace industry over the last half-

century.  Ti-B composite was used in the nozzle actuator piston rod for the Pratt & 

Whitney F-119 engine developed in 1995 for the F-22 fighter jet, and in the nozzle link 

for the General Electric F-110 engine developed in 1999 for the F-16 fighter jet [59].  In 

the industry, Ti-B modified alloys and composites are currently being considered as 

potential candidates for aerospace structural components requiring high strength, high 

stiffness, and low density; to replace high-strength steels due to Ti-B materials’ superior 

wear and corrosion resistance; and for elevated temperature applications where standard 

unreinforced titanium alloys are unsuitable [40].  For fracture-critical aerospace 

 19



applications, a minimum of 7% tensile elongation to failure is required by structural 

designers [6]. 

 Dynamet Technology has developed a powder metallurgy cold and hot isostatic 

pressing (CHIP) process to produce a range of products for sporting goods and 

biomedical applications [60-62].  Marketed as CermeTi®, they produce Ti-6Al-4V-based 

composites with either TiB or TiC reinforcement.  They have produced golf driver 

inserts, as well as knife blades and hockey skate blades, where the lighter weight and 

improved corrosion resistance over a traditional steel part are particularly useful. 

 Titanium alloys and composites with boron are now being considered for use in 

certain biomedical applications.  Research has investigated using titanium modified 

alloys and composites for load-bearing biomedical implants, such as femoral ball and 

lumbar disc replacements [1].  The matrix would be a Ti-Al-Fe alloy, since vanadium is 

toxic in vivo, but Ti-5.5Al-1Fe has been deemed a suitable substitute for Ti-6Al-4V.  In 

addition to its corrosion resistance, high strength-to-weight ratio, biocompatibility, and 

osseo-integration, titanium alloys and composites do not obscure soft-tissue magnetic 

resonance imaging (MRI), unlike stainless steel and cobalt-chrome alloys.  Ti-B materials 

have also been studied to determine their suitability for near-net shape dental castings 

used in dental applications such as implants and restorative castings [63]. 

2.3  Stereology, Image Analysis, and Microstructural Simulation 

 Completed research has involved conventional stereology and image analysis 

techniques to gain information about the three-dimensional microstructure of Ti-B 

modified alloys and composites from two-dimensional metallographic sections [64-66].  

These techniques were developed to help quantify a microstructure.  Geometrically, a 
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microstructure is an ensemble of volumes, internal surfaces, lines, and points in three-

dimensional space.  Each microstructural feature, such as a particle, grain, or pore, has 

associated with it size, shape, volume, surface area, curvature, etc., and location.  All of 

these facets of microstructural geometry affect the mechanical and physical properties of 

materials.  Quantitative metallographic and stereological methods have been developed 

(and continue to be developed) for the estimation of microstructural properties. 

 Stereology involves the estimation of the properties of three-dimensional 

microstructural features through unbiased sampling of the three-dimensional 

microstructural space using geometric test probes such as planes, lines, or points.  

Computer processing, digital imaging, and image analysis software have automated 

processes that were originally developed to be measured and calculated by hand, and 

have allowed much larger amounts of information to be gathered to determine the 

characteristics of a given microstructure.  There is still, however, a gap in the 

understanding of how the microstructural characteristics relate to the overall properties of 

a material. 

 The two-point correlation function is a method to quantitatively describe a 

microstructure [67].  This function, denoted as <P11(r)>, is defined as the average 

probability that both of the end points of a randomly located and oriented straight line of 

length r are contained in particles of phase 1.  Both ends of the straight line need not be in 

the same particle, only of the same particulate phase.  Similarly, the two-point correlation 

function <P22(r)> is the average probability that both of the end points of a randomly 

located and oriented straight line of length r are contained in the matrix of phase 2; and 

<P12(r)> is the average probability that the first end point lies in the particles (phase 1), 
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and the second end point lies in the matrix (phase 2), or vice versa.  These correlation 

functions are governed by the metric microstructural parameters such as volume fraction, 

as well as by the spatial arrangement of microstructural features and their spatial 

correlations.  In general, two-point correlation functions are direction dependent, and 

their orientation-averaged mean values are also of interest. 

 Two-point correlation function data have been used to quantify microstructural 

heterogeneities and particle clustering.  This data can also be used for modeling the 

mechanical response of a microstructure using statistical mechanics-based approaches 

[68-71].  Two-point correlation functions and the microstructural parameters extracted 

from such data can be used in the development of computer simulated microstructures, 

also known as digital microstructures, that are statistically similar to the actual 

microstructures [72, 73].  These digital microstructures can then be implemented in finite 

element (FE) or other computational software to model the mechanical response of the 

material [74, 75]. 

 Visualization, characterization, and representation of three-dimensional 

microstructures are of particular interest for understanding and modeling processing-

microstructure-properties relationships [76].  A two-dimensional metallographic section 

does not contain all of the information concerning the true three-dimensional geometry of 

the microstructure.  As a result, an efficient and unbiased montage serial sectioning 

technique has been developed for the reconstruction of large volume (~several mm3), 

high resolution (~1 μm), three-dimensional microstructures.  To generate a large volume 

of three-dimensional microstructure at high resolution, a small microstructural volume is 

reconstructed, and then many contiguous small volumes surrounding it are also 
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reconstructed, their boundaries are perfectly matched, and they are digitally stitched 

together to generate a large microstructural volume [77-79]. 

 It is effectively a stack of aligned serial sections, which constitutes a volume 

image data set similar to those in x-ray computed tomography and magnetic resonance 

imaging (MRI).  Therefore, the same three-dimensional microstructure visualization 

techniques are applicable.  The three-dimensional microstructural visualization can be 

achieved either by volume rendering or by surface rendering.  Volume rendered images 

can be used as representative volume elements (RVEs) for finite element-based 

computations [80].  Surface rendering involves the rendering of the iso-surface of the 

region of interest (ROI) from the volume data, whereas volume rendering is the rendering 

of all volume data by specifying opacity and color of each voxel (3D pixel).  Surface 

rendering leads to a reduction in the size of the data set because only the surface data are 

retained.  Surface rendering requires the fitting of a surface in the volume data.  

Numerous algorithms are available for surface rendering, including the contour 

connecting algorithm and the marching cube algorithm [81, 82].  Surface rendering is 

useful for examination of the structure of the reinforcement phase in a composite 

material. 

 For approximately the same metallographic effort, montage-based serial 

sectioning yields a microstructural volume containing a large number of features (such as 

pores, grains, or particles), which can provide a sufficiently large statistical sample for 

the study of topological aspects of microstructure.  Recently, montage serial sectioning 

has been implemented in a completely automated serial sectioning system that utilizes a 

robotic arm to move a specimen back and forth between the metallographic equipment 
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(polishing, etching, etc.), and an optical microscope to generate the montage serial 

sections [83]. 
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CHAPTER 3                                                                       

PRE-ALLOYED BORON-MODIFIED Ti-6Al-4V ALLOYS 

3.1  Introduction 

 An emerging and potential method used to produce Ti-B materials is powder 

metallurgy (P/M) using pre-alloyed (PA) Ti-B powder.  Pre-alloying is a rapid 

solidification process where an alloy melt is rapidly solidified into an alloy powder by 

inert gas atomization.  The PA powder can then be processed using conventional powder 

metallurgy processes, including outgassing to remove any volatile impurities and 

compaction by techniques such as hot isostatic pressing (HIP) to produce near-net shape 

products or billet preforms.  These billet preforms can then be subjected to 

thermomechanical processing (TMP) methods such as forging, rolling, or extrusion to 

manufacture wrought products. 

 The PA processing approach offers the advantage of producing relatively finer 

length-scale microstructural features due to shorter times for growth during rapid 

solidification of the alloy melt into the PA powder [6].  In addition, in boron-modified 

titanium alloys, the PA approach can produce supersaturated boron due to non-

equilibrium cooling conditions.  This supersaturated boron can then be forced out of the 

titanium alloy matrix through subsequent thermal exposure to form a sub-micron 

precipitated TiB phase via a solid state process. 

 In this research, samples of boron-modified titanium alloys produced from PA 

powder were examined to study the effects of composition and processing on the 

resultant microstructures and mechanical properties.  One alloy was produced with a 
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composition near the eutectic limit, slightly into the hypereutectic regime, while a second 

alloy was produced in the hypoeutectic regime.  Samples from each alloy also underwent 

extrusion to investigate the effect of that TMP wrought process. 

3.2  Hypereutectic Pre-Alloyed Boron-Modified Ti-6Al-4V Alloy 

 Samples of pre-alloyed Ti-6Al-4V-1.6B alloys were examined, both in the as-

compacted condition and following extrusion.  This composition is close to the eutectic 

point in the quaternary system of titanium, alloying elements aluminum and vanadium, 

and boron, which preliminary research by the Institute for Metal Physics, Ukraine, has 

shown to be approximately 1.56 wt.% boron [84].  The studies of these samples focused 

on both the primary and eutectic phases of TiB. 

3.2.1  Materials and Processing Details 

 Pre-alloyed powder of boron-modified Ti-6Al-4V was produced at Crucible 

Research Corporation, Pittsburgh, Pennsylvania.  In this process, the melting procedure 

involved induction skull (made of titanium) melting of appropriate amounts of the raw 

materials (titanium, Al-V master alloy, and TiB2), in a water-cooled copper crucible.  

Boron additions to the melt were contributed in the form of TiB2, which dissolves in the 

liquid melt and forms TiB during solidification by the in situ eutectic phase 

transformation reaction Ti + TiB2 → 2TiB.  The liquid melt was then rapidly solidified 

using inert gas atomization to produce Ti-6Al-4V-1.6B powder.  The resultant chemical 

composition of the powder was 6.13Al, 4.16V, 1.53B, 0.19O, 0.15C, 0.053Fe, and the 

balance 87.79Ti (all amounts in weight percent).  The atomized powder was then sieved 

to obtain -100 mesh size (average particle size of 150 μm). 
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 Colleagues at the Air Force Research Laboratory, Wright-Patterson Air Force 

Base, Ohio, then received the pre-alloyed powder for further P/M processing.  The Ti-

6Al-4V-1.6B powder was packed inside a thick-walled (6.35 mm) can of Ti-6Al-4V, 

vacuum outgassed at 300°C for 24 hours, and sealed.  The can was coated with glass for 

lubrication and environmental protection, heated to 1200°C, soaked for 1 hour, and then 

blind-die compacted in an extrusion chamber heated to 260°C.  The billet height was 

reduced by about 30% at a ram speed of 6.35 mm/s.  The compact was then held at a 

pressure of 1400 MPa for 180 seconds and subsequently air-cooled to room temperature.  

A second billet blind die compacted by the same method was subsequently hot extruded, 

heated to 1100°C and soaked for 1 hour prior to extrusion through a circular die with an 

extrusion reduction ratio of 16.5:1, at a ram speed of 6.35 mm/s, and air-cooled to room 

temperature.  Specimens were then sectioned from the compacted billet and extruded rod. 

3.2.2  Optical Microscopy and Quantitative Characterization 

Specimens of the compacted billet and extruded rod were mounted in 

thermoplastic using standard techniques for metallography.  Conventional sample 

preparation techniques developed for unreinforced metal alloys were not suitable for Ti-B 

materials, and led to sample damage when TiB whiskers detached from the material and 

created deep grooves and scratches across the matrix during polishing.  Suitable grinding 

and polishing schemes were developed for Ti-B modified alloys and composites, taking 

into account the hardness differences between the relatively soft Ti-6Al-4V alloy matrix 

and the relatively hard TiB whisker reinforcement.  Using these metallographic 

techniques, a final surface finish of 0.05 μm, suitable for optical microscopy, was 

obtained. 
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Samples were examined using a Carl Zeiss, Inc. Axiovert 200 MAT optical 

microscopy system with AxioVision image analysis software.  For each sample, 

“montages” of a large number of contiguous microstructural fields were constructed by 

digitally stitching together adjacent fields of view (FOV) imaged at a high magnification.  

The basic principles for large-area high-resolution montage construction are described in 

detail by Louis, Tewari, and Gokhale [72, 85, 86]. 

In the present work, the montages were created using the automated AxioVision 

digital image analysis system that utilizes the image cross correlation function-based 

technique for matching the borders between contiguous microstructural fields.  For these 

samples, each montage is a microstructural image of a large area (~1.75 mm2), having a 

high resolution (~0.5 μm).  Figure 3.1a shows one such montage of 195 fields of view of 

compacted Ti-6Al-4V-1.6B alloy.  The image has been compressed for display.  Each 

region of this montage has the high resolution of the images shown in Figures 3.1b and c. 
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Figure 3.1 (a) Montage of 195 fields of view of compacted Ti-6Al-4V-1.6B modified 

alloy covering an area of approximately 1.75 mm2, created by matching contiguous 

microstructural fields captured at a resolution of approximately 0.5 μm.  The montage is 

digitally compressed for presentation.  Each field of view in the montage has been 

captured at the resolution of the images shown in (b) and (c).  (b) Field of view showing 

eutectic TiB whiskers.  (c) Field of view showing both eutectic TiB whiskers and a coarse 

primary TiB particle. 

 

 

The micrographs show TiB whiskers randomly dispersed and oriented in a Ti-

6Al-4V matrix.  In these figures, the TiB phases are a darker gray than the titanium 

matrix.  Montages were taken from different regions and different samples of each alloy 

specimen to ensure that observations were performed on representative examples of the 

microstructures.  The particles of primary phase TiB are noticeably coarser than the 

eutectic TiB whiskers, but are similarly randomly dispersed and oriented. 
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A montage from the extruded sample of Ti-6Al-4V-1.6B alloy is shown in Figure 

3.2.  The extrusion direction is normal to the plane of the micrograph.  As in the 

micrographs of the compacted boron-modified alloy, the TiB particles are seen as dark 

gray in a gray matrix of Ti-6Al-4V alloy.  Coarser primary TiB particles are seen in the 

material, along with eutectic TiB whiskers. 

 

Figure 3.2  Montage of the microstructure of extruded Ti-6Al-4V-1.6B alloy.  The 

extrusion direction is normal to the plane of the micrograph. 

 
 
 Images of the microstructure of the extruded Ti-6Al-4V-1.6B alloy at higher 

magnification are shown in Figures 3.3 and 3.4.  Figure 3.3 shows only the eutectic TiB 
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phase, and confirms alignment of this phase following extrusion that was previously 

observed [23].  The roughly hexagonal cross-section of the eutectic TiB whiskers is also 

seen [87].  Figure 3.4 shows a particle of the coarser primary TiB phase along with other 

eutectic TiB whiskers.  This primary particle suggests a roughly hexagonal cross-section 

and morphology similar to the finer eutectic TiB whiskers, although this observation is 

difficult to confirm solely from analysis of two-dimensional metallographic sections. 

 

 

Figure 3.3  Microstructure of extruded Ti-6Al-4V-1.6B alloy showing eutectic TiB 

whiskers mostly aligned with the extrusion direction normal to the micrograph. 
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Figure 3.4  Microstructure of extruded Ti-6Al-4V-1.6B alloy showing a coarse primary 

TiB particle along with finer eutectic TiB whiskers mostly aligned with the extrusion 

direction normal to the micrograph. 

  
 
 Microstructural data for these compacted and extruded Ti-6Al-4V-1.6B alloy 

samples were calculated using conventional two-dimensional stereology techniques.  For 

the extruded alloy, measurements were made on montages in the plane parallel as well as 

on montages in the plane normal to the extrusion direction.  Average values are shown in 

Table 3.1, but these results do not take into account the size difference between the 

eutectic and primary TiB phases or the stochastic nature of microstructures.  Overall, it 

was found that the eutectic TiB whiskers typically had a length of approximately 25-40 

μm and a width of approximately 4-6 μm, for an aspect ratio range of between 4.5 and 
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10.  The primary TiB particles, found with much less frequency in these samples (5-10 

primary particles in an area containing more than 20,000 eutectic TiB whiskers), were 

observed to typically have a length of approximately 200-300 μm and a width of 

approximately 30-50 μm, for an aspect ratio range of between 4 and 10.  The overall 

volume fraction of TiB whiskers in these samples is approximately 7%.  In addition, 

although the angular orientation of the TiB whiskers was affected by extrusion, the 

morphology of the TiB phases was not observed to have been affected by extrusion. 

 

Table 3.1  Microstructural data of Ti-6Al-4V-1.6B modified alloy samples calculated 

using standard two-dimensional stereology techniques. 

sample avg length (μm) avg width (μm) aspect ratio volume fraction
compacted 33.27 4.88 6.82 7.24
extruded 34.76 5.05 6.88 6.98  

 

3.2.3  SEM Fractography 

 The potential use of Ti-B materials for aerospace structural components demands 

that the modified alloy or composite be suitable for fracture-critical applications.  A value 

of tensile elongation to failure of a minimum of 7% is often required by structural 

designers in the field [6].  As a result, the fracture behavior of Ti-B materials must be 

fully understood to promote their use in the aerospace industry. 

 Samples of Ti-6Al-4V-1.6B alloy were sectioned from both the compacted billet 

and from the extruded rod, and machined into ¼”-20 round tensile specimens by 

colleagues at the Air Force Research Laboratory.  These specimens then underwent room 

temperature tensile tests according to ASTM standard E8-04 [88].  Tensile test results are 
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shown in Table 3.2.  Both the compacted and extruded specimens showed significant 

improvement over the elastic modulus of unreinforced Ti-6Al-4V alloy of approximately 

110 GPa.  It is also notable that the strength of the extruded specimen is increased 

compared to the compacted alloy, and the elongation to failure is nearly doubled 

compared to the compacted alloy.  Prior to examination of the tensile fracture surfaces 

using scanning electron microscopy (SEM), the specimens underwent ultrasonic cleaning 

in ethanol for 5 minutes. 

 

Table 3.2  Tensile test results of Ti-6Al-4V-1.6B alloy, using ASTM E8-04. 

sample E (GPa) σy (MPa) σuts (MPa) e (%)
compacted 138 1232 1347 2.4
extruded 152 1350 1420 4.0  

 

 The fracture surfaces of the tensile test specimens were examined with a Sirion 

FEI scanning electron microscope, using secondary electron emission.  The fracture 

surface of the compacted Ti-6Al-4V-1.6B alloy specimen is shown in Figures 3.5-3.9.  In 

Figure 3.5, at a magnification of 250X, a jagged fracture surface can be seen, suggesting 

relatively brittle fracture behavior of the modified alloy.  In Figure 3.6, at a magnification 

of 350X, a primary TiB particle significantly thicker and larger than the eutectic TiB 

whiskers can be seen just to the left of the center of the SEM micrograph (circled).  At 

higher magnifications (Figures 3.7-3.9), the fracture surfaces of the eutectic TiB whiskers 

are clearly visible.  Very little, if any, whisker pullout was observed, and fracture has 

taken place predominantly along the length of each whisker.  In addition, the fracture 

surface has a higher TiB content than the bulk material.  The Ti-6Al-4V matrix shows 

ductile failure. 
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Figure 3.5  Fracture surface of compacted Ti-6Al-4V-1.6B modified alloy showing a 

jagged fracture surface, suggesting brittle fracture. 
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Figure 3.6  Fracture surface of compacted Ti-6Al-4V-1.6B modified alloy, with a 

primary TiB particle seen just to the left of the center of the SEM micrograph (circled). 
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Figure 3.7  Fracture surface of compacted Ti-6Al-4V-1.6B modified alloy, showing 

brittle fracture down the length of the eutectic TiB whiskers and ductile fracture of the 

Ti-6Al-4V matrix. 
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Figure 3.8  Fracture surface of compacted Ti-6Al-4V-1.6B modified alloy, showing 

brittle fracture down the length of the eutectic TiB whiskers and ductile fracture of the 

Ti-6Al-4V matrix. 
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Figure 3.9  Fracture surface of compacted Ti-6Al-4V-1.6B modified alloy, showing 

brittle fracture down the length of the eutectic TiB whiskers and ductile fracture of the 

Ti-6Al-4V matrix. 

 

 For the extruded Ti-6Al-4V-1.6B alloy specimen, the extrusion direction is 

parallel to the tensile test direction.  The fracture surface of this specimen is shown in 

Figures 3.10-3.13.  In Figure 3.10, the specimen is seen at a magnification of 250X, 

showing a relatively jagged, brittle fracture surface (although not as brittle as the fracture 

surface of the compacted sample shown in Figure 3.5).  In Figure 3.11, at a magnification 

of 1200X, a primary TiB particle significantly thicker and larger than the eutectic TiB 

whiskers can be seen just to the right of the center of the SEM micrograph (circled).  In 

Figures 3.12 and 3.13, the fracture surface is shown at higher magnifications, and the 
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fracture surfaces of the eutectic TiB whiskers can be clearly seen.  Unlike the compacted 

alloy specimen, fracture of the TiB whiskers is predominantly across the width of the 

whiskers, not down the length of the whiskers.  Very little whisker pullout is observed, 

and the Ti-6Al-4V matrix shows ductile fracture behavior.  As with the compacted 

specimen, the fracture surface has a higher TiB content than the bulk material. 

 

 

Figure 3.10  Fracture surface of extruded Ti-6Al-4V-1.6B modified alloy showing a 

jagged fracture surface, suggesting brittle fracture. 
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Figure 3.11  Fracture surface of extruded Ti-6Al-4V-1.6B modified alloy, with a primary 

TiB particle seen just to the right of the center of the SEM micrograph (circled).  
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Figure 3.12  Fracture surface of extruded Ti-6Al-4V-1.6B modified alloy, showing brittle 

fracture across the width of the eutectic TiB whiskers and ductile fracture of the Ti-6Al-

4V matrix. 
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Figure 3.13  Fracture surface of extruded Ti-6Al-4V-1.6B modified alloy, showing brittle 

fracture across the width of the eutectic TiB whiskers and ductile fracture of the Ti-6Al-

4V matrix. 

 

3.2.4  3D Microstructural Visualization 

 Due to the complexity of the microstructures in Ti-B materials, the information 

gained from two-dimensional microstructural characterization has proved inadequate for 

a thorough understanding of the relationships between the processing, microstructure, and 

properties.  The three-dimensional representation and quantification of the microstructure 

of Ti-B modified alloys and composites would be useful for the characterization, 

modeling, and simulation of these relationships.  The montage serial sectioning technique 

is particularly suitable for microstructures that contain particles or features with 
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significantly different length scales and with small interparticle spaces, which require the 

reconstruction of a large volume of three-dimensional microstructure at a high resolution.  

These large microstructural volume segments are also suitable to be representative 

volume elements (RVEs) in finite element-based simulations to predict the mechanical 

response of the material. 

 A montage serial sectioning technique was applied for the reconstruction and 

visualization of TiB particles in both compacted and extruded boron-modified Ti-6Al-

4V-1.6B alloy samples.  Visualization of the three-dimensional microstructures was used 

to observe the effects of the processing parameters on the morphology, anisotropy, and 

spatial distribution of the TiB particles. 

 In the present work, the montages were created using the automated AxioVision 

digital image analysis system from Carl Zeiss, Inc., that utilizes the image cross 

correlation function-based technique for matching the borders between contiguous 

microstructural fields.  In this study, each montage is a microstructural image of an area 

of approximately 1.75 mm2, having a high resolution of approximately 0.5 μm.  Once the 

montage of the first serial section was created and stored in the computer memory, a 

small thickness of the specimen (approximately 1 μm) was removed by polishing, and 

then a second montage was created at the region exactly below that in the first 

metallographic plane.  This polish-montage-polish procedure was repeated to obtain a 

stack of 75 montage serial sections. 

 Microhardness indents were used to locate the exact region of interest in 

successive serial sections and also to precisely measure the distance between consecutive 

serial sections [77, 89].  An important practical problem in the reconstruction of a three-
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dimensional microstructure from serial sections is that the successive serial sections may 

not be precisely aligned; they may have some translational and rotational displacement 

with respect to each other.  In the present study, due to slight sample adjustment on the 

microscope stage, the montages of consecutive serial sections were often displaced by 

approximately ±10 pixels and ±5 degrees and, therefore, it was essential to precisely 

align successive serial sections.  Alignment can be achieved by locating two common 

points (the microhardness indents were used for this purpose), in two consecutive serial 

sections and translating one image until the first common point is aligned in the two 

images.  Then the image is rotated about this point until the second common point is also 

aligned.  In the present work, this was accomplished using the image analysis software 

KS400 from Carl Zeiss, Inc., in which the images of the montage were digitally 

translated and rotated until they were aligned within ±1 pixel to the respective previous 

sections.    

 The stack of aligned serial sections constituted a volume image data set for three-

dimensional microstructure visualization.  The marching cube algorithm was employed 

for surface rendering of the three-dimensional microstructures, using the image analysis 

software VayTek VoxBlast 3.10 [82].  The effective resolution of the three-dimensional 

microstructures is approximately 1 μm, which is the depth of material removed between 

serial sections.  Measurements on the three-dimensional rendered images were performed 

using the image analysis software Image-Pro Plus 3D Suite 5.1 from Media Cybernetics, 

Inc. 

 The three-dimensional microstructure visualizations were completed using 75 

montage serial sections, with each montage serial section containing 225 contiguous 

 45



microstructural fields imaged at a magnification of 800X.  Therefore, the resulting three-

dimensional data sets are useful for the characterization and visualization of the 

microstructure at fine as well as at coarse length scales. 

 Figure 3.14a shows a stack of 20 aligned montage serial sections of the 

microstructure of the compacted Ti-6Al-4V-1.6B alloy.  This figure shows 16 contiguous 

fields of view cropped from serial sections of 225 contiguous microstructural fields (this 

figure has been digitally compressed for presentation).  Figure 3.14b shows the magnified 

view of the outlined region in Figure 3.14a, where each section is exactly the stack of 

serial sections generated by the single field of view-type classical serial sectioning 

technique [90-95].  This is the magnification at which all microstructural fields of the 

montages have been imaged.  In Figure 3.14b, changes in the sizes of the whiskers at the 

edges of these serial sections, as well as the appearance and disappearance of features in 

successive serial sections, can be observed. 
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Figure 3.14  (a) Stack of 20 montage serial sections for the compacted Ti-6Al-4V-1.6B 

alloy microstructure.  Each serial section in this figure contains 16 contiguous 

microstructural fields.  (b) The magnified view of the outlined region of the stack of 20 

montage serial sections in (a).  This is the resolution of the individual microstructural 

fields.
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 Figure 3.15a shows a stack of 20 aligned montage serial sections of the 

microstructure of the extruded Ti-6Al-4V-1.6B alloy with aligned TiB whiskers.  The 

extrusion direction is perpendicular to the plane of the serial sections in this micrograph.  

This figure shows 16 contiguous fields of view cropped from serial sections of 225 

contiguous microstructural fields (this figure has been digitally compressed for 

presentation).  Figure 3.15b shows the magnified view of the outlined region in Figure 

3.15a.  In Figure 3.15b, as with the compacted alloy, changes in the sizes of the whiskers 

at the edges of these serial sections, as well as the appearance and disappearance of 

features in successive serial sections, can be observed. 
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Figure 3.15  (a) Stack of 20 montage serial sections for the extruded Ti-6Al-4V-1.6B 

alloy microstructure.  Each serial section in this figure contains 16 contiguous 

microstructural fields.  (b) The magnified view of the outlined region of the stack of 20 

montage serial sections in (a).  This is the resolution of the individual microstructural 

fields. 
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 Figure 3.16 shows a volume segment of the surface rendered three-dimensional 

microstructure of the compacted Ti-6Al-4V-1.6B alloy containing only eutectic TiB 

whiskers.  In this rendering, images were digitally segmented to completely remove the 

Ti-6Al-4V matrix and reveal only the TiB phases.  Note that this volume segment is only 

approximately 0.5% of the total microstructure volume collected from the stack of 75 

montage serial sections (to produce the three-dimensional rendering at the resolution of 

the eutectic TiB whiskers).  The TiB whiskers in this microstructure are observed to have 

uniform random angular orientations. 
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Figure 3.16  Small segment of surface rendered three-dimensional microstructure of 

compacted Ti-6Al-4V-1.6B alloy revealing uniform random angular orientation of the 

eutectic TiB whiskers. 

 

 Figure 3.17 shows another volume segment of the surface rendered three-

dimensional microstructure of the compacted alloy specimen that contains both eutectic 

TiB whiskers and a coarse primary TiB particle that is approximately an order of 

magnitude larger than the eutectic TiB whiskers. 
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Figure 3.17 Small segment of surface rendered three-dimensional microstructure of 

compacted Ti-6Al-4V-1.6B alloy, showing both eutectic TiB whiskers and a coarse 

primary TiB particle. 

 

Figure 3.18 shows a segment of the surface rendered three-dimensional 

microstructure of the extruded Ti-6Al-4V-1.6B alloy depicting the spatial distribution of 

anisotropic eutectic TiB whiskers.  This figure clearly shows that the eutectic TiB 

whiskers have anisotropic orientations after extrusion and that the majority of these 
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whiskers are aligned along the extrusion direction, which is the z-axis of the volume 

segment. 

 
Figure 3.18  Small segment of surface rendered three-dimensional microstructure of 

extruded Ti-6Al-4V-1.6B alloy, showing the alignment of the majority of the eutectic 

TiB whiskers along the extrusion direction (which is the z-axis in this figure). 

 

Figure 3.19 shows another volume segment of the surface rendered three-

dimensional microstructure of the extruded Ti-6Al-4V-1.6B alloy that contains 
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anisotropic eutectic TiB whiskers as well as a coarse primary TiB particle in the center of 

the image that is approximately an order of magnitude larger than the eutectic TiB 

whiskers. 

 
Figure 3.19  Small segment of surface rendered three-dimensional microstructure of 

extruded Ti-6Al-4V-1.6B alloy, showing eutectic TiB whiskers around a coarse primary 

TiB particle.  This three-dimensional microstructure shows the alignment of the majority 

of the eutectic TiB whiskers along the extrusion direction (which is the z-axis in this 

figure). 
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 From these visualizations, it can be concluded that plastic deformation during the 

extrusion process gives rise to rigid body rotations of the TiB whiskers, which confirms 

the conclusion reached by Schuh and Dunand on the basis of two-dimensional 

microstructural observations [23].  Although the morphological orientation distribution of 

the eutectic TiB whiskers is different in the compacted microstructure as compared to the 

extruded microstructure, the spatial arrangement of the eutectic TiB whiskers appears to 

be uniform random in the three-dimensional microstructures of both alloys.  Therefore, 

although the extrusion process leads to TiB whisker rotations, it does not give rise to 

spatial clustering of the whiskers. 

 Figure 3.20a shows various three-dimensional views of just the primary TiB 

particle extracted from Figure 3.19.  This primary TiB particle is present in each of the 75 

serial sections of the extruded alloy specimen, and it is truncated by the first and the last 

serial sections.  The part of the volume of this particle contained between the first and the 

last serial sections is approximately 67,000 μm3, the surface area is approximately 12,300 

μm2, and the axial ratio is 3.76, which provide a lower bound on the true volume, surface 

area, and axial ratio of the particle.  Therefore, the primary TiB particle has an elongated 

shape rather than an equiaxed shape as reported in the literature [15, 16].  Figure 3.20b 

shows various three-dimensional views of a single eutectic TiB whisker extracted from 

the volume segment of the surface rendered three-dimensional microstructure of the 

compacted alloy specimen in Figure 3.16.  This eutectic TiB whisker is approximately an 

order of magnitude smaller in size than a primary TiB particle.  While the surface 

rendered primary TiB particles have been truncated by the boundaries of the 75 serial 

sections, the eutectic TiB whisker in Figure 3.20b is whole.  Figure 3.20c shows various 
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three-dimensional views of the coarse primary TiB particle extracted from the three-

dimensional microstructure of the compacted alloy specimen in Figure 3.17.  The 

morphology (elongated shape), and the length scale of the primary TiB particle in the 

compacted alloy (Figure 3.20c) are very similar to the primary TiB particle in the 

extruded alloy (Figure 3.20a).  The primary TiB particle shown in Figures 3.17 and 3.20c 

is present in 65 of the serial sections, and it is truncated by the last serial section.  The 

part of the volume of this particle contained between the first and the last serial sections 

is 53,400 μm3, the surface area is 11,600 μm2, and the axial ratio is 3.29, which is a lower 

bound on the true volume, surface area, and axial ratio of the particle. 

 

Figure 3.20  (a) Three-dimensional views of the primary TiB particle extracted from the 

surface rendered three-dimensional microstructure of the extruded Ti-6Al-4V-1.6B alloy 

sample shown in Figure 3.19.  (b) Three-dimensional views of a eutectic TiB whisker 

extracted from the surface rendered three-dimensional microstructure of the compacted 

Ti-6Al-4V-1.6B alloy sample shown in Figure 3.16.  (c) Three-dimensional views of the 

primary TiB particle extracted from the surface rendered three-dimensional 

microstructure of the compacted Ti-6Al-4V-1.6B alloy shown in Figure 3.17. 
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3.3  Hypoeutectic Pre-Alloyed Boron-Modified Ti-6Al-4V Alloy 

 Samples of pre-alloyed Ti-6Al-4V-1B alloys were examined, both in the as-

compacted condition and following extrusion.  This composition is in the hypoeutectic 

regime of the quaternary system of titanium, alloying elements aluminum and vanadium, 

and boron.  It was expected that only the eutectic TiB whiskers, and no particles of the 

primary TiB phase, were to be found in these alloys.  The absence of the larger primary 

TiB particles was hoped to improve the fracture properties of these alloys while still 

providing an increase in strength as compared to unreinforced Ti-6Al-4V. 

3.3.1  Materials and Processing Details 

 Similarly to the hypereutectic alloy samples, pre-alloyed powder of boron-

modified Ti-6Al-4V was produced at Crucible Research Corporation, Pittsburgh, 

Pennsylvania.  In this process, the melting procedure involved induction skull (made of 

titanium) melting of appropriate amounts of the raw materials (titanium, Al-V master 

alloy, and TiBB2), in a water-cooled copper crucible.  Boron additions to the melt were 

contributed in the form of TiB2, which dissolves in the liquid melt and forms TiB during 

solidification by the in situ eutectic phase transformation reaction Ti + TiB2 → 2TiB.  

The liquid melt was then rapidly solidified using inert gas atomization to produce Ti-6Al-

4V-1B powder.  The atomized powder was then sieved to obtain -100 mesh size (average 

particle size of 150 μm). 

 Colleagues at the Air Force Research Laboratory, Wright-Patterson Air Force 

Base, Ohio, then received the pre-alloyed powder for further P/M processing.  The Ti-

6Al-4V-1B powder was packed inside a thick-walled can of Ti-6Al-4V, vacuum 

outgassed at 300°C for 24 hours, and sealed.  The can was coated with glass for 
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lubrication and environmental protection, heated to 1200°C, soaked for 1 hour, and then 

blind-die compacted in an extrusion chamber heated to 260°C.  The billet height was 

reduced by about 30% at a ram speed of 6.35 mm/s.  The compact was then held at a 

pressure of 1400 MPa for 180 seconds and subsequently air-cooled to room temperature.  

A second billet blind die compacted by the same method was subsequently hot extruded, 

heated to 1100°C and soaked for 1 hour prior to extrusion through a circular die with an 

extrusion reduction ratio of 16.5:1, at a ram speed of 6.35 mm/s, and air-cooled to room 

temperature.  Specimens were then sectioned from the compacted billet and extruded rod. 

3.3.2  Optical Microscopy and Quantitative Characterization 

Specimens of the compacted billet and extruded rod were mounted in 

thermoplastic using standard techniques for metallography.  Suitable grinding and 

polishing schemes developed for Ti-B modified alloys and composites were utilized, 

taking into account the hardness differences between the relatively soft Ti-6Al-4V alloy 

matrix and the relatively hard TiB whisker reinforcement.  Using these metallographic 

techniques, a final surface finish of 0.05 μm was obtained. 

Samples of both compacted and extruded Ti-6Al-4V-1B modified alloy were 

examined using a Carl Zeiss, Inc. Axiovert 200 MAT optical microscopy system with 

AxioVision image analysis software.  For each sample, montages were created using the 

automated AxioVision digital image analysis system that utilizes the image cross 

correlation function-based technique for matching the borders between contiguous 

microstructural fields.  For these samples, each montage is a microstructural image of a 

large area (~1.75 mm2), having a high resolution (~0.5 μm). 
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Figure 3.21 shows one such montage of 195 fields of view of compacted Ti-6Al-

4V-1B alloy.  Figure 3.22 shows a higher magnification image of the compacted alloy 

specimen.  The images have been compressed for display.  These micrographs show 

eutectic TiB whiskers randomly dispersed and oriented in a Ti-6Al-4V matrix.  In these 

figures, the TiB whiskers are a darker gray than the gray titanium matrix.  No coarse 

primary TiB particles were observed.  Montages were taken from different regions and 

different samples of each alloy specimen to ensure that observations were performed on 

representative examples of the microstructures. 
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Figure 3.21  Montage of the microstructure of compacted Ti-6Al-1B alloy showing 

randomly oriented eutectic TiB whiskers.  This micrograph is a montage of 195 fields of 

view covering an area of approximately 1.75 mm2, and has been digitally compressed for 

presentation. 
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Figure 3.22  Microstructure of compacted Ti-6Al-4V-1B alloy showing randomly 

oriented eutectic TiB whiskers. 

 

 A montage from the extruded sample of Ti-6Al-4V-1B alloy is shown in Figure 

3.23.  The extrusion direction is normal to the plane of the micrograph.  As in the 

micrographs of the compacted boron-modified alloy, the eutectic TiB whiskers are seen 

as dark gray in a gray matrix of Ti-6Al-4V alloy.  Coarse primary TiB particles are again 

not observed in the material, as its composition lies in the hypoeutectic regime of the 

alloy system. 
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Figure 3.23  Montage of the microstructure of extruded Ti-6Al-4V-1B alloy.  The 

extrusion direction is normal to the micrograph. 

  

The microstructure of the extruded Ti-6Al-4V-1B alloy at higher magnification is 

shown in Figure 3.24.  Only the eutectic TiB phase is seen, and confirms alignment of 

TiB whiskers following extrusion that was previously observed, although some of the 

TiB whiskers are not completely aligned in the extrusion direction [23].  The roughly 

hexagonal cross-section of the eutectic TiB whiskers is also seen [87]. 

 62



 
Figure 3.24  Microstructure of extruded Ti-6Al-4V-1B alloy showing eutectic TiB 

whiskers mostly aligned with the extrusion direction normal to the micrograph. 

 

 Microstructural data for these compacted and extruded Ti-6Al-4V-1B alloy 

samples were calculated using conventional two-dimensional stereology techniques.  For 

the extruded alloy, measurements were made on montages in the plane parallel as well as 

on montages in the plane normal to the extrusion direction.  Average values are shown in 

Table 3.3, but these results do not take into account the stochastic nature of 

microstructures.  Overall, it was found that the eutectic TiB whiskers typically had a 

length of approximately 20-30 μm and a width of approximately 2.5-6 μm, for an aspect 

ratio range of between 3.3 and 12.  The overall volume fraction of TiB whiskers in these 

samples is approximately 4%.  In addition, although the angular orientation of the TiB 
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whiskers was affected by extrusion, the morphology of the TiB phases was not observed 

to have been affected by extrusion. 

 

Table 3.3  Microstructural data of Ti-6Al-4V-1B modified alloy samples calculated using 

standard two-dimensional stereology techniques. 

sample avg length (μm) avg width (μm) aspect ratio volume fraction
compacted 21.13 3.20 6.60 4.35
extruded 23.41 3.37 6.95 3.98  

 

3.3.3  SEM Fractography 

 To investigate fracture behavior, samples of Ti-6Al-4V-1B alloy were sectioned 

from both the compacted billet and from the extruded rod, and machined into ¼”-20 

round tensile specimens by colleagues at the Air Force Research Laboratory.  These 

specimens then underwent room temperature tensile tests according to ASTM standard 

E8-04 [88].  Tensile test results are shown in Table 3.4.  Note the improvement in tensile 

elongation to failure compared to the hypereutectic alloy specimens (Table 3.2), with the 

extruded sample having an elongation to failure well above the aerospace structural 

design limit of approximately 7% [6].  In addition, these samples also show an 

improvement over the elastic modulus of unreinforced Ti-6Al-4V alloy of approximately 

110 GPa.  Prior to examination of the tensile fracture surfaces using scanning electron 

microscopy (SEM), the specimens underwent ultrasonic cleaning in ethanol for 5 

minutes. 
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Table 3.4  Tensile test results of Ti-6Al-4V-1B alloy, using ASTM E8-04. 

sample E (GPa) σy (MPa) σuts (MPa) e (%)
compacted 127 927 1038 6.2
extruded 143 1078 1214 13.3  

 

 The fracture surfaces of the tensile test specimens were examined with a Sirion 

FEI scanning electron microscope, using secondary electron emission.  The fracture 

surface of the compacted Ti-6Al-4V-1B alloy specimen is shown in Figures 3.25-3.28.  

In Figure 3.25, at a magnification of 120X, a somewhat jagged and ductile fracture 

surface is observed, that appears similar to the fracture surface of the compacted 

hypereutectic specimen shown in Figure 3.5.  At a higher magnification of 250X in 

Figure 3.26, it can clearly be seen that fracture has occurred down the length of the 

eutectic TiB whiskers.  Further evidence of the brittle fracture of eutectic TiB whiskers is 

shown in Figures 3.27 and 3.28.  Very little, if any, whisker pullout was observed.  No 

primary TiB phase was seen in this specimen.  In addition, the fracture surface has a 

higher TiB content than the bulk material, as was similarly observed in the hypereutectic 

specimens.  The Ti-6Al-4V matrix shows ductile failure. 
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Figure 3.25  Fracture surface of compacted Ti-6Al-4V-1B modified alloy showing a 

jagged fracture surface, suggesting brittle fracture. 
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Figure 3.26  Fracture surface of compacted Ti-6Al-4V-1B modified alloy, showing brittle 

fracture down the length of the eutectic TiB whiskers and ductile fracture of the Ti-6Al-

4V matrix. 
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Figure 3.27  Fracture surface of compacted Ti-6Al-4V-1B modified alloy, showing brittle 

fracture down the length of the eutectic TiB whiskers and ductile fracture of the Ti-6Al-

4V matrix. 
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Figure 3.28  Fracture surface of compacted Ti-6Al-4V-1B modified alloy, showing brittle 

fracture down the length of the eutectic TiB whiskers and ductile fracture of the Ti-6Al-

4V matrix. 

 

For the extruded Ti-6Al-4V-1B alloy specimen, the extrusion direction is parallel 

to the tensile test direction.  Fracture behavior of this specimen during tensile testing 

suggested a more ductile fracture compared with the hypereutectic specimens and with 

the compacted Ti-6Al-4V-1B alloy.  The fracture surface of this extruded specimen is 

shown in Figures 3.29-3.34.  In Figure 3.29, the fracture surface is seen at a 

magnification of 250X, showing a relatively ductile fracture surface.  In Figures 3.30 and 

3.31, the fracture surface is shown at higher magnifications, and predominantly ductile 

fracture of the Ti-6Al-4V matrix can be clearly seen.  Unlike the compacted alloy 
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specimen, fracture of the TiB whiskers is predominantly across the width of the whiskers, 

not down the length of the whiskers, as shown in Figures 3.32 and 3.33.  These figures 

also clearly demonstrate the roughly hexagonal cross-section of the eutectic TiB 

whiskers.  Although the majority of TiB whiskers were aligned with the extrusion 

direction and failed across their widths, some misaligned TiB whiskers were observed on 

the fracture surface, and showed brittle fracture down their lengths, as in Figure 3.34. 

 

 

Figure 3.29  Fracture surface of extruded Ti-6Al-4V-1B modified alloy showing a 

relatively ductile fracture behavior. 
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Figure 3.30  Fracture surface of extruded Ti-6Al-4V-1B modified alloy showing 

predominantly ductile fracture behavior of the Ti-6Al-4V matrix. 
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Figure 3.31  Fracture surface of extruded Ti-6Al-4V-1B modified alloy showing 

predominantly ductile fracture behavior of the Ti-6Al-4V matrix. 
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Figure 3.32  Fracture surface of extruded Ti-6Al-4V-1B modified alloy, showing brittle 

fracture across the width of the eutectic TiB whiskers and ductile fracture of the Ti-6Al-

4V matrix. 
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Figure 3.33  Fracture surface of extruded Ti-6Al-4V-1B modified alloy, showing brittle 

fracture across the width of the eutectic TiB whiskers and ductile fracture of the Ti-6Al-

4V matrix. 
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Figure 3.34  Fracture surface of extruded Ti-6Al-4V-1B modified alloy, showing brittle 

fracture down the length of eutectic TiB whiskers misaligned from the extrusion 

direction. 

 

As with the compacted Ti-6Al-4V-1B alloy specimen, very little whisker pullout 

was observed.  Unlike the more brittle hypereutectic and compacted hypoeutectic 

specimens, however, the fracture surface does not seem to have a significantly higher TiB 

content than the bulk material.  It is notable that the strength of the extruded specimen is 

increased compared to the compacted alloy, and the elongation to failure is nearly 

doubled compared to the compacted alloy to a level acceptable for fracture-critical 

aerospace structural applications. 
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3.3.4  3D Microstructural Visualization 

 A montage serial sectioning technique was applied for the reconstruction and 

visualization of TiB particles in both compacted and extruded boron-modified Ti-6Al-

4V-1B alloy samples.  Visualization of the three-dimensional microstructures was used to 

observe the effects of the processing parameters on the morphology, anisotropy, and 

spatial distribution of the TiB particles. 

 In the present work, the montages were created using the automated AxioVision 

digital image analysis system from Carl Zeiss, Inc., that utilizes the image cross 

correlation function-based technique for matching the borders between contiguous 

microstructural fields.  In this study, each montage is a microstructural image of an area 

of approximately 1.75 mm2, having a high resolution of approximately 0.5 μm.  Once the 

montage of the first serial section was created and stored in the computer memory, a 

small thickness of the specimen (approximately 1 μm) was removed by polishing, and 

then a second montage was created at the region exactly below that in the first 

metallographic plane.  This polish-montage-polish procedure was repeated to obtain a 

stack of 75 montage serial sections. 

 Microhardness indents were used to locate the exact region of interest in 

successive serial sections and also to precisely measure the distance between consecutive 

serial sections.  In the present work, alignment was accomplished using the image 

analysis software KS400 from Carl Zeiss, Inc., in which the images of the montage were 

digitally translated and rotated until they were aligned within ±1 pixel to the respective 

previous sections.    
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 The stack of aligned serial sections constituted a volume image data set for three-

dimensional microstructure visualization.  The marching cube algorithm was employed 

for surface rendering of the three-dimensional microstructures, using the image analysis 

software VayTek VoxBlast 3.10 [82].  The effective resolution of the three-dimensional 

microstructures is approximately 1 μm, which is the depth of material removed between 

serial sections. 

 The three-dimensional microstructure visualizations were completed using 75 

montage serial sections, with each montage serial section containing 225 contiguous 

microstructural fields imaged at a magnification of 800X.  Therefore, the resulting three-

dimensional data sets are useful for the characterization and visualization of the 

microstructure at fine as well as at coarse length scales. 

 Figure 3.35a shows a stack of 20 aligned montage serial sections of the 

microstructure of compacted Ti-6Al-4V-1B having isotropic, uniform random eutectic 

TiB whiskers of unimodal length scale.  This figure shows 16 contiguous fields of view 

cropped from serial sections of 225 contiguous microstructural fields (this figure has been 

digitally compressed for presentation).  Figure 3.35b shows the magnified view of the 

outlined region in Figure 3.35a, where each section is exactly the stack of serial sections 

generated by the single field of view-type classical serial sectioning technique [90-95].  

This is the magnification at which all microstructural fields of the montages have been 

imaged.  In Figure 3.35b, changes in the sizes of the whiskers at the edges of these serial 

sections, as well as the appearance and disappearance of features in successive serial 

sections, can be observed. 
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Figure 3.35  (a) Stack of 20 montage serial sections of the compacted Ti-6Al-4V-1B 

microstructure.  Each serial section in this figure contains 16 contiguous microstructural 

fields.  (b) The magnified view of the outlined region of the stack of 20 montage serial 

sections in (a).  This is the resolution of the individual microstructural fields. 
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Figure 3.36a shows a stack of 20 aligned montage serial sections of the 

microstructure of the extruded Ti-6Al-4V-1B alloy with aligned TiB whiskers.  The 

extrusion direction is perpendicular to the plane of the serial sections in this micrograph.  

This figure shows 16 contiguous fields of view cropped from serial sections of 225 

contiguous microstructural fields (this figure has been digitally compressed for 

presentation).  Figure 3.36b shows the magnified view of the outlined region in Figure 

3.36a.  In Figure 3.36b, as with the compacted alloy, changes in the sizes of the whiskers 

at the edges of these serial sections, as well as the appearance and disappearance of 

features in successive serial sections, can be observed. 
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Figure 3.36  (a) Stack of 20 montage serial sections of the extruded Ti-6Al-4V-1B 

microstructure.  The extrusion axis is perpendicular to the serial sections.  Each serial 

section in this figure contains 16 contiguous microstructural fields.  (b) The magnified 

view of the outlined region of the stack of 20 montage serial sections in (a).  This is the 

resolution of the individual microstructural fields. 
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 Figure 3.37 shows a volume segment of the surface rendered three-dimensional 

microstructure of the compacted Ti-6Al-4V-1B alloy.  In this rendering, images were 

digitally segmented to completely remove the Ti-6Al-4V matrix and reveal only the TiB 

whiskers.  Note that this volume segment is only approximately 0.5% of the total 

microstructure volume collected from the stack of 75 montage serial sections (to produce 

the three-dimensional rendering at the resolution of the TiB whiskers).  No primary TiB 

particles were observed in this hypoeutectic alloy, as expected.  The eutectic TiB 

whiskers in this microstructure are observed to have uniform random morphological 

orientations of a single length scale. 

 81



 
Figure 3.37  Small segment of surface rendered three-dimensional microstructure of 

compacted Ti-6Al-4V-1B.  The TiB whiskers have isotropic uniform random orientations 

in this microstructure.  The whisker size distribution is unimodal without any coarse 

primary TiB particles. 

  

 Figure 3.38 shows a volume segment of the surface rendered three-dimensional 

microstructure of the extruded Ti-6Al-4V-1B alloy specimen depicting the spatial 

distribution of the anisotropic eutectic TiB whiskers.  In this reconstructed three-

dimensional microstructure segment, the majority of the eutectic TiB whiskers are 
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aligned along the extrusion direction (which is normal to the top and bottom faces of the 

volume segment), although in the individual two-dimensional sections perpendicular to 

the extrusion direction (Figure 3.36), they appear to have random orientations due to their 

non-circular cross-sections.  Further, this three-dimensional microstructure also reveals 

unimodal size distribution of the eutectic TiB whiskers, and no coarse primary TiB 

particles were observed in this hypoeutectic specimen. 
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Figure 3.38  Small segment of surface rendered three-dimensional microstructure of 

extruded Ti-6Al-4V-1B.  The eutectic TiB whiskers of unimodal distribution have 

anisotropic orientations with the majority of the whiskers aligned parallel to the extrusion 

direction, which is the z-axis of the volume segment. 

 

Figure 3.38 clearly shows that the eutectic TiB whiskers have anisotropic 

orientations after extrusion and that the majority of these whiskers are aligned along the 

extrusion direction, which is the z-axis of the volume segment.  Therefore, it can be 

concluded that plastic deformation during the extrusion process gives rise to rigid body 
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rotations of the eutectic TiB whiskers, which confirms the conclusion reached by Schuh 

and Dunand on the basis of two-dimensional microstructural observations [23].  Although 

the morphological orientation distribution of the eutectic TiB whiskers is different in the 

compacted microstructure as compared to the extruded microstructure, the spatial 

arrangement of the eutectic TiB whiskers appears to be uniformly random in both of the 

three-dimensional microstructures.  Consequently, although the extrusion process leads to 

TiB whisker rotations, as in the hypereutectic specimen it does not give rise to spatial 

clustering of the TiB whiskers. 

Figure 3.39 shows multiple views of a single eutectic TiB whisker extracted from 

the volume segment of the surface rendered three-dimensional microstructure of the 

compacted Ti-6Al-4V-1B microstructure shown in Figure 3.37.  Note that the surface 

“roughness” of the whisker is an artifact of the rendering software; from observations of 

the two-dimensional serial sections, the TiB whisker surfaces are smooth.  The three-

dimensional morphology of the TiB whisker is clearly revealed in this reconstruction and 

is consistent among eutectic TiB whiskers in the microstructures of both the compacted 

and extruded specimens. 
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Figure 3.39  Multiple views of a eutectic TiB whisker extracted from the three-

dimensional microstructure of compacted Ti-6Al-4V-1B alloy. 

 

3.4  Conclusions 

 Samples of boron-modified Ti-6Al-4V alloys were produced using pre-alloyed 

(PA) powder metallurgy processes.  Two compositions were chosen, hypereutectic Ti-

6Al-4V-1.6B and hypoeutectic Ti-6Al-4V-1B, to examine the microstructures in different 

regimes of the quaternary system of titanium, alloying elements aluminum and vanadium, 

and boron.  Samples of each blind die compacted alloy also underwent hot extrusion to 

examine the effect of this type of thermomechanical processing on the microstructures 

and resultant material properties. 
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 The hypereutectic alloy, Ti-6Al-4V-1.6B, showed the presence of two different 

TiB phases, a fine eutectic TiB phase and a coarser primary TiB phase.  From 

observations via optical microscopy and three-dimensional visualization using montage-

based serial sectioning, both phases showed an anisotropic whisker morphology with 

roughly hexagonal cross-sections.  For the primary TiB phase, this conclusion differed 

from previous assumptions about the morphology of this phase, where an equiaxed 

cluster morphology had been suggested. 

 Extrusion of this alloy showed TiB whisker alignment with the extrusion 

direction, with no damage to the TiB phases or change in morphology observed.  

Examination of the tensile fracture surfaces of both compacted and extruded samples 

revealed brittle fracture down the length of TiB whiskers in the compacted sample, and 

across the width of aligned TiB whiskers in the extruded sample (with the TiB whiskers 

aligned by extrusion in the tensile direction).  The Ti-6Al-4V matrix showed relatively 

ductile fracture.  Extrusion improved the yield strength and ultimate tensile strength 

while effectively doubling the tensile elongation to failure.  These samples, however, did 

not meet the fracture-critical properties required for aerospace structural applications. 

 The hypoeutectic alloy, Ti-6Al-4V-1B, showed only the presence of the eutectic 

TiB phase.  No primary TiB was observed, as expected.  The eutectic TiB whiskers in 

this alloy had a similar morphology to those in the hypereutectic alloy, although they 

were present in smaller amounts due to the decreased amount of boron in the composition 

of this alloy. 

 Extrusion of this alloy also showed TiB whisker alignment with the extrusion 

direction, with no damage to the TiB whiskers or change in morphology observed.  
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Examination of the tensile fracture surfaces of both compacted and extruded samples 

again revealed brittle fracture down the length of TiB whiskers in the compacted sample, 

and across the width of aligned TiB whiskers in the extruded sample (with the TiB 

whiskers aligned by extrusion in the tensile direction).  The Ti-6Al-4V matrix showed 

relatively ductile fracture.  Similarly to the hypereutectic alloy, extrusion improved the 

yield strength and ultimate tensile strength while effectively doubling the tensile 

elongation to failure.  The extruded sample of this alloy did meet the fracture-critical 

properties required for aerospace structural applications and significantly improved the 

mechanical properties compared to unreinforced Ti-6Al-4V. 
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CHAPTER 4                                                                       

BLENDED ELEMENTAL Ti-B COMPOSITES 

4.1  Introduction 

 The earliest Ti-B materials produced for potential commercial applications were 

discontinuously reinforced titanium matrix composites (DRTi) utilizing blended 

elemental (BE) powder metallurgy processing.  Research included development of Ti-B 

composite parts for automotive applications by the Toyota Central Research & 

Development Laboratories, as well as development of a cold and hot isostatic pressing 

(CHIP) process by Dynamet Technology, Inc. to produce parts for a variety of industrial 

and commercial applications such as housings and ice hockey skate blades [55, 96-98].  

Very little of the early work, however, focused on fracture-critical applications such as 

aerospace structural components. 

 The BE powder metallurgy process is conducted completely in the solid state [6].  

When this process is used to produce Ti-B composites, powders of the appropriate 

titanium alloy and a boron source are intermixed in either a wet or dry blending process.  

The powder blend is then outgassed and consolidated to prepare a green compact.  This 

compact is then subjected to a reaction heat treatment to convert the boron source (often 

TiB2 or elemental boron) into TiB. 

 The BE process can produce either near-net shapes via compaction, or net shapes 

via compaction and subsequent thermomechanical processing.  The BE approach 

provides the ability to introduce higher amounts of TiB without the formation of coarse 

primary TiB particles than the pre-alloying (PA) process, because the processing is 
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conducted completely in the solid state.  The BE process, however, results in a 

microstructure with coarser features than pre-alloying and other approaches due to long 

times at high temperatures required for TiB conversion.  In addition, there are limited 

options for controlling the conversion reactions. 

   Samples of Ti-B composites produced by the BE process were examined to 

investigate the effect of composition and processing parameters on the microstructure and 

resultant mechanical properties.  There was a focus on studying and characterizing the 

difference between the microstructures of these BE Ti-B composites and the PA boron-

modified titanium alloys.  Also of particular interest was determining suitability for 

fracture-critical aerospace structural applications. 

4.2  Materials and Processing Details 

Ti-B composites produced by the BE process were made by research colleagues at 

at the Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio.  Powders 

of Ti-6Al-4V and commercially pure titanium (CP-Ti) were first produced using inert gas 

atomization by Crucible Research Corporation, Pittsburgh, Pennsylvania.  The boron 

source for these composites, TiBB2 powder, was produced using a continuous chemical 

process by Advanced Ceramics Corporation, Cleveland, Ohio.  The metallic Ti-6Al-4V 

and CP-Ti powders exhibited smooth spherical shapes, while the TiB2 powder was in the 

form of platelets with irregular hexagonal cross-sections [99]. 

Two composites, Ti-6Al-4V-1.7B and Ti-6Al-4V-2.9B, were prepared by 

colleagues at AFRL by blending appropriate amounts of Ti-6Al-4V, CP-Ti, and TiB2 

powders in n-butanol using a Turbula mixer for 24 hours.  The mixture was then dried 

and dry blended for an additional 30 minutes to eliminate any agglomerates.  

 90



Approximately 1 kg of the blended powder mixture was then packed inside a thick-

walled (6.35 mm) can of Ti-6Al-4V (70 mm in diameter and 130 mm in height), vacuum 

outgassed at 300°C for 24 hours, and sealed.  The can was subsequently heated to 

1200°C, soaked for 1 hour, and then blind-die compacted in an extrusion chamber heated 

to 260°C.  The compact was held at a pressure of 1400 MPa for 180 seconds and 

subsequently air-cooled to room temperature.  A height reduction of 30% occurred during 

compaction.  The compacted billet was then subjected to an annealing heat treatment in 

vacuum at 1300°C for 6 hours to ensure that the solid-state in situ reaction Ti + TiB2 → 

2TiB was complete.  The additional CP-Ti blended with the powder mixture ensured that 

the TiB conversion reaction did not result in the depletion of titanium and consequent 

enrichment of aluminum and vanadium in the matrix. 

A second billet of the Ti-6Al-4V-2.9B composite blind die compacted by the 

same method was subsequently hot extruded.  This billet was first heated to 1300°C and 

soaked for 1 hour prior to extrusion through a circular die with an extrusion reduction 

ratio of 10:1, at a ram speed of 4.23 mm/s, and then air-cooled to room temperature.  The 

higher soaking temperature, lower extrusion ratio, and lower ram speed compared to the 

extrusions of the PA boron-modified alloys were chosen to keep the extrusion loads 

within the extrusion press load limits.  Specimens were then sectioned from the 

compacted billets and extruded rod. 

4.3  Optical Microscopy and Quantitative Characterization 

Specimens from the compacted billets and extruded rod were mounted in 

thermoplastic using standard techniques for metallography.  Suitable grinding and 

polishing schemes developed for Ti-B alloys and composites were utilized, taking into 
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account the hardness differences between the relatively soft Ti-6Al-4V alloy matrix and 

the relatively hard TiB whisker reinforcement.  Using these metallographic techniques, a 

final surface finish of 0.05 μm was obtained. 

Samples of compacted Ti-6Al-4V-1.7B composite, and both compacted and 

extruded Ti-6Al-4V-2.9B composite, were examined using a Carl Zeiss, Inc. Axiovert 

200 MAT optical microscopy system with AxioVision image analysis software.  For each 

sample, montages were created using the automated AxioVision digital image analysis 

system that utilizes the image cross correlation function-based technique for matching the 

borders between contiguous microstructural fields.  For these samples, each montage is a 

microstructural image of a large area (~4.75 mm2), having a high resolution (~1 μm). 

Figure 4.1 shows one such montage of 35 fields of view of compacted Ti-6Al-4V-

1.7B composite.  Figure 4.2 shows a higher magnification image of the compacted 

composite specimen.  The images have been compressed for display.  These micrographs 

show TiB whiskers randomly dispersed and oriented in a Ti-6Al-4V matrix.  In these 

figures, the TiB whiskers are a darker gray than the gray titanium matrix, and in Figure 

4.2 the α + β grain structure of the Ti-6Al-4V matrix can be seen.  Montages were taken 

from different regions and different samples of each alloy specimen to ensure that 

observations were performed on representative examples of the microstructures. 
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Figure 4.1  Montage of the microstructure of compacted Ti-6Al-4V-1.7B composite 

showing randomly oriented TiB whiskers.  This micrograph is a montage of 35 fields of 

view covering an area of approximately 4.75 mm2, and has been digitally compressed for 

presentation. 
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Figure 4.2  Microstructure of compacted Ti-6Al-4V-1.7B composite showing randomly 

oriented TiB whiskers. 

 

 A montage of 35 fields of view of the microstructure of the compacted Ti-6Al-

4V-2.9B composite is shown in Figure 4.3.  Figure 4.4 shows a higher magnification 

image of this specimen.  The images have been compressed for display.  Similarly to the 

Ti-6Al-4V-1.7B composite but with a higher volume fraction of TiB reinforcement, these 

micrographs show TiB whiskers randomly dispersed and oriented in a Ti-6Al-4V matrix.  

In these figures, the TiB whiskers are a darker gray than the gray titanium matrix.  In 

Figure 4.4, some damage to the TiB whiskers caused by polishing can be seen as black 

regions on the whiskers. 
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Figure 4.3  Montage of the microstructure of compacted Ti-6Al-4V-2.9B composite 

showing randomly oriented TiB whiskers.  This micrograph is a montage of 35 fields of 

view covering an area of approximately 4.75 mm2, and has been digitally compressed for 

presentation. 
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Figure 4.4  Microstructure of compacted Ti-6Al-4V-2.9B composite showing randomly 

oriented TiB whiskers. 

 

 Figure 4.5 shows a montage of 16 fields of view of the extruded Ti-6Al-4V-2.9B 

composite specimen.  The extrusion direction is perpendicular to the metallographic 

plane, with most TiB whiskers aligned in the extrusion direction.  As in the micrographs 

of the compacted Ti-B composites, the eutectic TiB whiskers are seen as dark gray in a 

gray matrix of Ti-6Al-4V alloy. 
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Figure 4.5  Montage of the microstructure of extruded Ti-6Al-4V-2.9B composite.  The 

extrusion direction is normal to the micrograph. 

 

 The microstructure of the extruded Ti-6Al-4V-2.9B composite at higher 

magnification is shown in Figure 4.6.  The extrusion direction is also normal to the 

metallographic plane.  Alignment of most of the TiB whiskers in the extrusion direction 

is seen, confirming previous observations [23].   The roughly hexagonal cross-section of 

the TiB whiskers is also seen [87].  Some damage to the TiB whiskers caused by 

metallographic polishing is seen as black regions on the dark gray TiB particles. 
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Figure 4.6  Microstructure of extruded Ti-6Al-4V-2.9B composite.  The extrusion 

direction is normal to the micrograph. 

 

 Figure 4.7 shows the microstructure of the extruded Ti-6Al-4V-2.9B composite in 

the metallographic plane parallel to the extrusion direction.  This view further confirms 

that the TiB whiskers are mostly aligned in the extrusion direction.  Some damage to the 

TiB whiskers due to metallographic polishing is seen in this micrograph. 
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Figure 4.7  Microstructure of extruded Ti-6Al-4V-2.9B composite.  The extrusion 

direction is parallel to the micrograph. 

 

Microstructural data for these compacted and extruded Ti-6Al-4V-1.7B and 2.9B 

composite samples were calculated using conventional two-dimensional stereology 

techniques.  For the extruded composite, measurements were made on montages in the 

plane parallel as well as on montages in the plane normal to the extrusion direction.  

Average values are shown in Table 4.1, but these results do not take into account the 

stochastic nature of microstructures.  In the Ti-6Al-4V-1.7B composite, it was found that 

the TiB whiskers typically had a length of approximately 25-50 μm and a width of 

approximately 3-8 μm, for an aspect ratio range of between 3.2 and 16.7.  The overall 

volume fraction of TiB whiskers in this composite is approximately 9%.  In the Ti-6Al-
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4V-2.9B composite, it was found that the TiB whiskers typically had a length of 

approximately 35-60 μm and a width of approximately 4-10 μm, for an aspect ratio range 

of between 3.5 and 15.  The overall volume fraction of TiB whiskers in these samples is 

approximately 17%. 

 

Table 4.1  Microstructural data of Ti-6Al-4V-1.7B and 2.9B composite samples 

calculated using standard two-dimensional stereology techniques. 
sample avg length (μm) avg width (μm) aspect ratio volume fraction

compacted 1.7B 34.11 5.22 6.53 9.30
compacted 2.9B 39.12 5.37 7.28 17.86
extruded 2.9B 48.27 6.12 7.89 16.87  

 

 Although the angular orientation of the TiB whiskers was affected by extrusion, 

the morphology of the TiB phases was not observed to have been affected by extrusion.  

In addition, research colleagues have suggested the presence in these blended elemental 

composites of a second TiB phase with a platelike morphology.  This second phase was 

not observed.  Overall, the TiB whiskers in the BE composites showed a single whisker 

morphology (with roughly hexagonal cross-sections) and a unimodal size distribution. 

4.4  SEM Fractography 

 Established applications of blended elemental Ti-B composite materials include 

use in the automotive and sporting goods industries, where wear resistance and corrosion 

resistance are the important material properties.  For aerospace structural applications, 

however, fracture behavior is a critical material property, and the industry has set a 

structural design limit of tensile elongation to failure of approximately 7% [6].  In this 
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research, the fracture behavior of BE Ti-B composites were investigated to determine 

their suitability for aerospace applications. 

Samples of Ti-6Al-4V-2.9B composite were sectioned from both the compacted 

billet and from the extruded rod, and machined into ¼”-20 round tensile specimens by 

colleagues at the Air Force Research Laboratory.  These specimens then underwent room 

temperature tensile tests according to ASTM standard E8-04 [88].  Tensile test results are 

shown in Table 4.2.  Note the substantial improvement in the elastic modulus over the 

elastic modulus of unreinforced Ti-6Al-4V alloy of approximately 110 GPa.  The 

extruded specimen shows an elastic modulus in the range of steel alloys.  It is also 

notable that, as with the previous boron-modified alloy tensile samples, the strength of 

the extruded specimen is increased compared to the compacted composite, and the 

elongation to failure is nearly doubled compared to the compacted composite.  Prior to 

examination of the tensile fracture surfaces using scanning electron microscopy (SEM), 

the specimens underwent ultrasonic cleaning in ethanol for 5 minutes. 

 

Table 4.2  Tensile test results of Ti-6Al-4V-2.9B composite, using ASTM E8-04. 

sample E (GPa) σy (MPa) σuts (MPa) e (%)
compacted 160 1107 1119 1.5
extruded 200 1189 1331 3.0  

 

 The fracture surfaces of the tensile test specimens were examined with a Sirion 

FEI scanning electron microscope, using secondary electron emission.  The fracture 

surface of the compacted Ti-6Al-4V-2.9B composite specimen is shown in Figures 4.8-

4.10.  In Figure 4.8, at a magnification of 250X, a jagged fracture surface can be seen, 

suggesting brittle fracture behavior of the composite.  Very little, if any, whisker pullout 
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was observed, and fracture has taken place predominantly along the length of each 

whisker.  At higher magnifications (Figures 4.9 and 4.10), however, significant damage 

to the TiB whiskers is clearly visible, which differs from the mostly smooth fracture of 

TiB whiskers observed in the compacted boron-modified alloy specimens.  Overall, the 

fracture surface has a higher TiB content than the bulk material, and the Ti-6Al-4V 

matrix shows ductile failure. 

 

 

Figure 4.8  Fracture surface of compacted Ti-6Al-4V-2.9B composite showing a jagged 

fracture surface, with brittle fracture down the length of the TiB whiskers and ductile 

fracture of the Ti-6Al-4V matrix. 
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Figure 4.9  Fracture surface of compacted Ti-6Al-4V-2.9B composite, showing 

significant damage to the TiB whiskers. 
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Figure 4.10  Fracture surface of compacted Ti-6Al-4V-2.9B composite, showing 

significant damage to the TiB whiskers. 

 

For the extruded Ti-6Al-4V-2.9B composite specimen, the extrusion direction is 

parallel to the tensile test direction.  The fracture surface of this specimen is shown in 

Figures 4.11-4.14.  In Figure 4.11, the specimen is seen at a magnification of 800X, 

showing a predominantly brittle fracture surface.  Unlike the compacted composite 

specimen, fracture of the TiB whiskers is predominantly across the width of the whiskers, 

not down the length of the whiskers, although in Figure 4.12 fracture is observed down 

the length of a TiB whisker misaligned from the extrusion direction.  In Figures 4.13 and 

4.14, the fracture surface is shown at higher magnifications, and the fracture surfaces of 

the TiB whiskers can be clearly seen.  The roughly hexagonal cross-section of TiB 
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whiskers is observed in Figure 4.13, and TiB whisker damage is shown in Figure 4.14.  

Very little whisker pullout is observed, and the Ti-6Al-4V matrix shows ductile fracture 

behavior.  As with the compacted specimen, the fracture surface has a higher TiB content 

than the bulk material. 

 

 

Figure 4.11  Fracture surface of extruded Ti-6Al-4V-2.9B composite showing brittle 

fracture across the width of TiB whiskers aligned in the extrusion direction and ductile 

fracture of the Ti-6Al-4V matrix. 
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Figure 4.12  Fracture surface of extruded Ti-6Al-4V-2.9B composite showing brittle 

fracture down the length of a TiB whisker misaligned from the extrusion direction. 
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Figure 4.13  Fracture surface of extruded Ti-6Al-4V-2.9B composite showing brittle 

fracture across the width of TiB whiskers with roughly hexagonal cross-sections aligned 

with the extrusion direction. 
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Figure 4.14  Fracture surface of extruded Ti-6Al-4V-2.9B composite showing significant 

damage to TiB whiskers aligned with the extrusion direction. 

 

4.5  3D Microstructural Visualization 

 A montage serial sectioning technique was applied for the reconstruction and 

visualization of TiB particles in compacted Ti-6Al-4V-1.7B and 2.9B composite samples.  

Visualization of the three-dimensional microstructures was used to observe the effects of 

the processing parameters on the morphology, anisotropy, and spatial distribution of the 

TiB particles.  In addition, three-dimensional visualization would confirm the absence of 

a second TiB morphology as observed with two-dimensional optical microscopy. 

 In the present work, the montages were created using the automated AxioVision 

digital image analysis system from Carl Zeiss, Inc., that utilizes the image cross 
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correlation function-based technique for matching the borders between contiguous 

microstructural fields.  In this study, each montage is a microstructural image of an area 

of approximately 6.25 mm2, having a high resolution of approximately 0.5 μm.  Once the 

montage of the first serial section was created and stored in the computer memory, a 

small thickness of the specimen (approximately 1.2 μm) was removed by polishing, and 

then a second montage was created at the region exactly below that in the first 

metallographic plane.  This polish-montage-polish procedure was repeated to obtain a 

stack of 75 montage serial sections. 

 Microhardness indents were used to locate the exact region of interest in 

successive serial sections and also to precisely measure the distance between consecutive 

serial sections.  In the present work, alignment was accomplished using the image 

analysis software KS400 from Carl Zeiss, Inc., in which the images of the montage were 

digitally translated and rotated until they were aligned within ±1 pixel to the respective 

previous sections.    

 The stack of aligned serial sections constituted a volume image data set for three-

dimensional microstructure visualization.  The marching cube algorithm was employed 

for surface rendering of the three-dimensional microstructures, using the image analysis 

software VayTek VoxBlast 3.10 [82].  The effective resolution of the three-dimensional 

microstructures is approximately 1.2 μm, which is the depth of material removed 

between serial sections. 

 The three-dimensional microstructure visualizations were completed using 75 

montage serial sections, with each montage serial section containing 49 contiguous 

microstructural fields imaged at a magnification of 200X.  Therefore, the resulting three-
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dimensional data sets are useful for the characterization and visualization of the 

microstructure at fine as well as at coarse length scales. 

 Figure 4.15 shows a volume segment of the surface rendered three-dimensional 

microstructure of the compacted Ti-6Al-4V-1.7B composite.  A volume segment of the 

microstructure of the compacted Ti-6Al-4V-2.9B composite is shown in Figure 4.16.  In 

these renderings, images were digitally segmented to completely remove the Ti-6Al-4V 

matrix and reveal only the TiB whiskers.  Note that for each sample, these volume 

segments are only approximately 1.5% of the total microstructure volume collected from 

the stack of 75 montage serial sections (to produce the three-dimensional rendering at the 

resolution of the TiB whiskers).  The TiB whiskers in both of these microstructures are 

observed to have similarly uniform random morphological orientations of a single length 

scale.  A second platelike morphology was not observed in either composite specimen. 
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Figure 4.15  Small segment of surface rendered three-dimensional microstructure of 

compacted Ti-6Al-4V-1.7B composite revealing uniform random angular orientation of 

the TiB whiskers. 
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Figure 4.16  Small segment of surface rendered three-dimensional microstructure of 

compacted Ti-6Al-4V-2.9B composite revealing uniform random angular orientation of 

the TiB whiskers. 

 

4.6  Conclusions 

 Samples of Ti-B composites were produced utilizing blended elemental (BE) 

powder metallurgy processes.  Unlike pre-alloying, BE processes are conducted entirely 

in the solid state.  Two different compositions were chosen, Ti-6Al-4V-1.7B and Ti-6Al-
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4V-2.9B, and the composites were produced by blind-die compaction.  A sample of the 

Ti-6Al-4V-2.9B composite was also hot extruded. 

 From observations via optical microscopy and three-dimensional visualization 

using montage-based serial sectioning, both Ti-B composites showed microstructures 

containing a unimodal size and morphology distribution of TiB whiskers.  These TiB 

whiskers were somewhat larger on average than the eutectic TiB whiskers seen in the PA 

boron-modified alloys, but smaller than the primary TiB particles in those alloys.  The 

anisotropic whisker morphology with roughly hexagonal cross-sections was similar to the 

eutectic and primary TiB morphologies in the PA boron-modified alloys.  Observation of 

the extruded Ti-6Al-4V-2.9B composite using optical microscopy showed alignment of 

the TiB whiskers with the extrusion direction. 

 Examination of the tensile fracture surfaces of both compacted and extruded 

samples of the Ti-6Al-4V-2.9B composite revealed brittle fracture down the length of 

TiB whiskers in the compacted sample, and across the width of aligned TiB whiskers in 

the extruded sample (with the TiB whiskers aligned by extrusion in the tensile direction).  

The Ti-6Al-4V matrix showed relatively ductile fracture.  Extrusion improved the yield 

strength and ultimate tensile strength while effectively doubling the tensile elongation to 

failure.  These samples, however, did not meet the fracture-critical properties required for 

aerospace structural applications, although the extruded Ti-6Al-4V-2.9B composite 

sample demonstrated an elastic modulus in the range of steel alloys. 
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CHAPTER 5                                                                       

EXTRUDED PRE-ALLOYED Ti-6Al-4V-1B MODIFIED ALLOYS 

5.1  Introduction 

 The performance in tensile and fatigue tests of extruded Ti-6Al-4V-1B modified 

alloy produced using pre-alloyed (PA) powder metallurgy techniques showed promise 

that this particular alloy may be suitable for fracture-critical aerospace structural 

applications.  As shown in Table 3.4, tensile test specimens exceeded the 7% elongation 

to failure requirement for aerospace structural design.  Further study of this boron-

modified alloy, however, is necessary to optimize the processing parameters for 

commercial production of aerospace components. 

 From previous research, it was expected that these Ti-6Al-4V-1B alloy samples 

processed at temperatures below the β transus of the Ti-6Al-4V matrix would contain 

eutectic TiB whiskers as well as the sub-micron precipitated TiB phase in the Ti-6Al-4V 

matrix.  The PA approach can produce supersaturated boron due to non-equilibrium 

cooling conditions, and this supersaturated boron can then be forced out of the titanium 

alloy matrix through subsequent thermal exposure to form the sub-micron precipitated 

TiB phase via a solid state process.  In this research, the effect of the heat treatments on 

the presence of the sub-micron TiB phase, and the extent of alignment of both eutectic 

and sub-micron TiB phases with different extrusion parameters would be investigated. 

 A variety of extruded specimens of Ti-6Al-4V-1B alloy were produced, with the 

same initial composition and pre-alloyed powder metallurgy processing, but with the 

differing extrusion parameters of extrusion temperature and extrusion ratio.  Detailed 
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investigation and characterization of the microstructures of these specimens would 

determine the effects of these processing parameters on the resultant microstructures and 

material properties.  In addition, understanding these effects would hasten the 

development of materials design methodologies for Ti-B modified alloys and composites. 

5.2  Materials and Processing Details 

  Pre-alloyed powder of Ti-6Al-4V-1B modified alloy was produced at Crucible 

Research Corporation, Pittsburgh, Pennsylvania.  In this process, the melting procedure 

involved induction skull (made of titanium) melting of appropriate amounts of the raw 

materials (titanium, Al-V master alloy, and TiB2), in a water-cooled copper crucible.  

Boron additions to the melt were contributed in the form of TiB2, which dissolves in the 

liquid melt and forms TiB during solidification by the in situ eutectic phase 

transformation reaction Ti + TiB2 → 2TiB.  The liquid melt was then rapidly solidified 

using inert gas atomization to produce Ti-6Al-4V-1B powder.  The atomized powder was 

then sieved to obtain -100 mesh size (average particle size of 150 μm). 

 Colleagues at the Air Force Research Laboratory, Wright-Patterson Air Force 

Base, Ohio, then received the pre-alloyed powder for further P/M processing.  The Ti-

6Al-4V-1B powder was packed inside thick-walled cans of Ti-6Al-4V, vacuum 

outgassed at 300°C for 24 hours, and sealed.  Each can was coated with glass for 

lubrication and environmental protection, and then compacted by hot isostatic pressing 

(HIP) at a temperature of 900°C and a pressure of 100 MPa for 3 hours. 

Nine compacts of Ti-6Al-4V-1B alloy were produced for extrusion.  Each 

compact was soaked at its selected extrusion temperature for 1 hour prior to extrusion.  

Following the extrusions, specimens were then sectioned from the extruded rods and 
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machined into ½” diameter round tensile test specimens.  Room temperature tensile tests 

were conducted according to ASTM standard E8-04 [88].  Extrusion parameters and 

tensile test results are shown in Table 5.1. 

 

Table 5.1  Extrusion parameters and tensile test results for extruded Ti-6Al-4V-1B 

modified alloy samples, using ASTM E8-04. 

RT Tensile Properties 
Sample ID 

Extrusion 
Temperature 

(oC) 

Extrusion 
Ratio E 

(GPa) 
YS 

(MPa) 
UTS 

(MPa) 
e 

(%) 
A 1010 8:1 139 1185 1270 4 
B 1010 12:1 142.5 1189 1278 4 
C 1010 16:1 140.5 1182 1273 4.7 
       

D 1057 8:1 142 1161 1245 3.6 
E 1057 12:1 144.5 1204 1294 4 
F 1057 16:1 145 1206 1297 4 
       

G 1104 8:1 140.5 1127 1210 6.1 
H 1104 12:1 140.5 1097 1189 5.9 
I 1104 16:1 141 1096 1187 6.8 

 
 

5.3  Optical Microscopy and Quantitative Characterization 

Samples from the grip sections of the ½” tensile test specimens of the extruded 

Ti-6Al-4V-1B modified alloy were mounted in thermoplastic using standard techniques 

for metallography.  These samples were labeled A-I in accordance with the AFRL tensile 

test procedures.  Suitable grinding and polishing schemes developed for Ti-B alloys and 

composites were utilized, taking into account the hardness differences between the 

relatively soft Ti-6Al-4V alloy matrix and the relatively hard TiB whisker reinforcement.  

Using these metallographic techniques, a final surface finish of 0.05 μm was obtained. 
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The extruded samples of Ti-6Al-4V-1B modified alloy were examined using a 

Carl Zeiss, Inc. Axiovert 200 MAT optical microscopy system with AxioVision image 

analysis software.  For each sample, montages were created using the automated 

AxioVision digital image analysis system that utilizes the image cross correlation 

function-based technique for matching the borders between contiguous microstructural 

fields.  For these samples, each montage is a microstructural image of a large area (~2.05 

mm2), having a high resolution (~0.5 μm). 

Figure 5.1 shows one such montage of 100 fields of view of sample C, and Figure 

5.2 shows a montage of 100 fields of view of sample I.  The images have been 

compressed for display.  These micrographs show eutectic TiB whiskers predominantly 

aligned with the extrusion direction (parallel to the horizontal axis across the 

metallographic planes) in a Ti-6Al-4V matrix.  Observations on all 9 samples showed 

similar microstructures.  In these figures, the TiB whiskers are a darker gray than the gray 

titanium matrix.  No coarse primary TiB particles were observed, as expected.  Montages 

were taken from different regions and different samples of each specimen to ensure that 

observations were performed on representative examples of the microstructures. 
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Figure 5.1  Montage of the microstructure of sample C, an extruded Ti-6Al-4V-1B 

modified alloy.  The extrusion direction is parallel to the horizontal axis of the 

metallographic plane. 
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Figure 5.2  Montage of the microstructure of sample I, an extruded Ti-6Al-4V-1B 

modified alloy.  The extrusion direction is parallel to the horizontal axis of the 

metallographic plane. 

 

 Examination of these microstructures at higher magnifications, however, revealed 

the presence of significant amounts of the sub-micron precipitated TiB phase that were 

not present in the previously studied blind-die compacted Ti-6Al-4V-1B alloy processed 

at temperatures above the β transus of the alloy.  Figure 5.3 shows the microstructure of 

sample C, and Figure 5.4 shows the microstructure of sample I (the other samples showed 

similar microstructures).  The larger gray TiB whiskers are the eutectic phase, and the 

smaller gray TiB particles are the sub-micron phase, named as such because the width of 

these particles are less than 1 μm.  The size of the sub-micron TiB phase is near the limits 
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of the resolution of optical microscopy, and may look slightly out of focus as a result.  

Black particles seen in these micrographs are artifacts from metallographic polishing. 

 

 
Figure 5.3  Microstructure of extruded Ti-6Al-4V-1B sample C, showing eutectic TiB 

whiskers as well as sub-micron precipitated TiB particles.  The extrusion direction is 

parallel to the horizontal axis of the metallographic plane. 
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Figure 5.4  Microstructure of extruded Ti-6Al-4V-1B sample I, showing eutectic TiB 

whiskers as well as sub-micron precipitated TiB particles.  The extrusion direction is 

parallel to the horizontal axis of the metallographic plane. 

 

 Examination of the microstructures with the metallographic plane perpendicular 

to the extrusion direction showed similar alignment with extrusion as was seen in 

previously extruded Ti-B alloys and composites.  High-magnification micrographs of 

sample C and sample I are shown in Figure 5.5 and Figure 5.6, respectively.  The roughly 

hexagonal cross-sections of the eutectic TiB whiskers can be observed, as well as the 

presence of the sub-micron TiB precipitated phase. 
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Figure 5.5  Microstructure of extruded Ti-6Al-4V-1B sample C, showing eutectic TiB 

whiskers as well as sub-micron precipitated TiB particles.  The extrusion direction is 

perpendicular to the metallographic plane. 
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Figure 5.6  Microstructure of extruded Ti-6Al-4V-1B sample I, showing eutectic TiB 

whiskers as well as sub-micron precipitated TiB particles.  The extrusion direction is 

perpendicular to the metallographic plane. 

 

 Unlike the previous Ti-B modified alloys and composites processed using blind 

die compaction, these extruded Ti-6Al-4V-1B alloy samples processed by hot isostatic 

pressing (HIP) showed a small amount of porosity.  No porosity had been seen in earlier 

studies of the blind die compacted materials.  An example of the porosity in these HIP 

and extruded samples is shown in Figure 5.7, showing a pore in the microstructure of 

sample G.  Porosity was observed in all 9 samples. 
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Figure 5.7  Porosity observed in the microstructure of extruded Ti-6Al-4V-1B sample G.  

The extrusion direction is perpendicular to the metallographic plane. 

 

 Discussions with research colleagues at AFRL prior to this study had suggested 

that depending on the cooling rate, up to approximately 2 volume percent of sub-micron 

TiB could precipitate in Ti-6Al-4V-1B modified alloys.  It was believed that sub-micron 

TiB can give rise to Orowan strengthening, but may be detrimental to ductility and 

fatigue in the alloy.  This seems to be confirmed in the tensile behavior of the HIP and 

extruded samples (Table 5.1) when compared with the earlier blind die compacted and 

extruded Ti-6Al-4V-1B specimen (Table 3.4).  The elastic modulus is effectively the 

same, but the presence of sub-micron TiB in the HIP samples increases the yield strength 
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and ultimate tensile strength while significantly decreasing the tensile elongation to 

failure. 

 In addition, research colleagues had suggested that the sub-micron precipitated 

TiB phase did not align with extrusion.  They had believed that the particles were too 

small to see the flow of the Ti-6Al-4V matrix during extrusion (or other 

thermomechanical processing).  The morphology of the sub-micron TiB particles had 

also yet to be definitively determined.  Examination of these samples with optical 

microscopy, however, suggested that the sub-micron TiB particles were predominantly 

aligned with extrusion, and that they had a whisker-like morphology similar to the larger 

particles of other TiB phases.  The limited resolution at the size range of the sub-micron 

TiB particles required investigation using methods to examine the microstructures at 

higher magnifications, such as scanning electron microscopy (SEM). 

 Microstructural data for these extruded Ti-6Al-4V-1B alloy samples were 

calculated using conventional two-dimensional stereology techniques.  Measurements 

were made on montages in the plane parallel as well as on montages in the plane normal 

to the extrusion direction.  Average values for the eutectic TiB whiskers are shown in 

Table 5.2, but these results do not take into account the stochastic nature of 

microstructures.  Overall, it was found that the eutectic TiB whiskers typically had a 

length of approximately 15-30 μm and a width of approximately 2.5-5 μm, for an aspect 

ratio range of between 3 and 12.  The overall volume fraction of eutectic TiB whiskers in 

these samples is between approximately 2 and 4%, with the difference in volume fraction 

likely due to a larger amount of sub-micron precipitated TiB phase in samples with a 

lower measured volume fraction.  In addition, although the angular orientation of the TiB 
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whiskers was affected by extrusion, the morphology of the TiB phases was not observed 

to have been affected by extrusion. 

 

Table 5.2  Microstructural data of extruded Ti-6Al-4V-1B modified alloy samples 

calculated using standard two-dimensional stereology techniques. 

sample avg length (μm) avg width (μm) aspect ratio volume fraction
A 19.38 2.90 6.68 2.53
B 18.97 2.94 6.45 2.00
C 20.73 2.81 7.38 1.83
D 19.88 2.99 6.65 2.35
E 19.79 2.87 6.90 2.26
F 18.95 2.95 6.42 2.45
G 21.42 3.42 6.26 3.74
H 24.01 3.16 7.60 4.03
I 26.11 3.43 7.61 4.24  

 

 The sub-micron precipitated TiB particles could not be accurately measured using 

standard two-dimensional stereology techniques because their size was near the limit of 

the resolution of optical microscopy.  From basic observations, sub-micron TiB particles 

seemed to be 5 μm or less in length, and less than 1 μm in width. 

 The angular orientation of the eutectic TiB whiskers was also calculated using 

conventional two-dimensional stereology techniques.  Measurements were made on 

montages in the plane parallel to the extrusion direction.  Results are shown as the 

percentage of TiB whiskers at orientations relative to the extrusion direction.  The 

angular orientation of TiB whiskers in the low temperature (1010°C) extrusion samples 

A-C are shown in Figure 5.8; the medium temperature (1057°C) extrusion samples D-F 

are shown in Figure 5.9; and the high temperature (1104°C) samples G-I are shown in 

Figure 5.10.  At the low and medium extrusion temperatures, there is a sharper peak 
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around the extrusion axis for the highest extrusion ratio of 16:1.  At the high extrusion 

temperature, there is an overall sharper peak around the extrusion axis for all three 

extrusion ratios.  In general, for the angular orientation of eutectic TiB whiskers, 

microstructures produced at higher extrusion ratios and higher extrusion temperatures 

have a sharper range around the extrusion axis. 
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Figure 5.8  Angular orientation of eutectic TiB whiskers in Ti-6Al-4V-1B alloy samples 

extruded at 1010°C. 

 

 127



medium temp.

0

0.05

0.1

0.15

0.2

0.25

0.3

-4
8

-4
2

-3
6

-3
0

-2
4

-1
8

-1
2 -6 0 6 12 18 24 30 36 42 48

M
or

e

angle (deg)

%

D
E
F

 

Figure 5.9  Angular orientation of eutectic TiB whiskers in Ti-6Al-4V-1B alloy samples 

extruded at 1057°C. 
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Figure 5.10  Angular orientation of eutectic TiB whiskers in Ti-6Al-4V-1B alloy samples 

extruded at 1104°C. 

 

5.4  SEM Characterization 

 In order to observe the microstructures of extruded Ti-6Al-4V-1B modified alloys 

at a higher resolution than is possible with optical microscopy, samples were examined 

using scanning electron microscopy (SEM).  Polished samples underwent SEM 

characterization utilizing a LEO 1550 scanning electron microscope, using secondary 

electron emission.  The focus of this study was the morphology, size, and possible 

extrusion alignment of sub-micron precipitated TiB particles. 

 Figure 5.11 shows the microstructure of sample C, at a magnification of 4000X.  

Figure 5.12 shows the microstructure of sample G, also at a magnification of 4000X.  In 
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both micrographs, the α + β grain structure of the Ti-6Al-4V matrix can be seen, along 

with the larger eutectic TiB whiskers and the sub-micron precipitated TiB phase.  The 

sub-micron TiB particles are thin, but it can be clearly observed that their morphologies 

are similar to the larger eutectic TiB whiskers, and that the sub-micron TiB whiskers are 

predominantly aligned with the extrusion direction, which is parallel to the horizontal 

axis of the micrographs.  The earlier suggestion that the sub-micron TiB phase did not see 

the flow of the Ti-6Al-4V matrix during thermomechanical processing is incorrect.  This 

finding is important for further developing Ti-B modified alloys, where the sub-micron 

TiB whiskers can be useful or detrimental depending on the application, and can 

potentially be tailored to needed amounts depending on the processing methods used. 
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Figure 5.11  Scanning electron micrograph of extruded Ti-6Al-4V-1B sample C, showing 

the whisker morphology and extrusion alignment of sub-micron precipitated TiB 

whiskers. 
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Figure 5.12  Scanning electron micrograph of extruded Ti-6Al-4V-1B sample G, showing 

the whisker morphology and extrusion alignment of sub-micron precipitated TiB 

whiskers. 

 

5.5  3D Microstructural Visualization 

 A montage serial sectioning technique was applied for the reconstruction and 

visualization of TiB particles in extruded Ti-6Al-4V-1B modified alloy samples.  

Visualization of the three-dimensional microstructures was used to observe the effects of 

the processing parameters on the morphology, anisotropy, and spatial distribution of the 

TiB particles.  A particular focus was on the varying amounts of eutectic TiB whiskers 

depending on the processing conditions. 
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 In the present work, the montages were created using the automated AxioVision 

digital image analysis system from Carl Zeiss, Inc., that utilizes the image cross 

correlation function-based technique for matching the borders between contiguous 

microstructural fields.  In this study, each montage is a microstructural image of an area 

of approximately 2.05 mm2, having a high resolution of approximately 0.5 μm.  Once the 

montage of the first serial section was created and stored in the computer memory, a 

small thickness of the specimen (approximately 1 μm) was removed by polishing, and 

then a second montage was created at the region exactly below that in the first 

metallographic plane.  This polish-montage-polish procedure was repeated to obtain a 

stack of 110 montage serial sections. 

 Microhardness indents were used to locate the exact region of interest in 

successive serial sections and also to precisely measure the distance between consecutive 

serial sections.  In the present work, alignment was accomplished using the image 

analysis software KS400 from Carl Zeiss, Inc., in which the images of the montage were 

digitally translated and rotated until they were aligned within ±1 pixel to the respective 

previous sections.    

 The stack of aligned serial sections constituted a volume image data set for three-

dimensional microstructure visualization.  The marching cube algorithm was employed 

for surface rendering of the three-dimensional microstructures, using the image analysis 

software VayTek VoxBlast 3.10 [82].  The effective resolution of the three-dimensional 

microstructures is approximately 1 μm, which is the depth of material removed between 

serial sections. 
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 The three-dimensional microstructure visualizations were completed using 110 

montage serial sections, with each montage serial section containing 100 contiguous 

microstructural fields imaged at a magnification of 500X.  Therefore, the resulting three-

dimensional data sets are useful for the characterization and visualization of the 

microstructure at fine as well as at coarse length scales. 

 Figure 5.13 shows a volume segment of the surface rendered three-dimensional 

microstructure of the extruded Ti-6Al-4V-1B alloy sample C.  A volume segment of the 

microstructure of sample F is shown in Figure 5.14, and a volume segment of the 

microstructure of sample I is shown in Figure 5.15.  In these renderings, images were 

digitally segmented to completely remove the Ti-6Al-4V matrix and reveal only the TiB 

whiskers.  Note that for each sample, these volume segments are only approximately 

0.5% of the total microstructure volume collected from the stack of 110 montage serial 

sections (to produce the three-dimensional rendering at the resolution of the TiB 

whiskers), and are representative of the overall volume of each sample.  All three of these 

samples were extruded with an extrusion ratio of 16:1, at the extrusion temperatures of 

1010°C, 1057°C, and 1104°C, respectively.  The eutectic TiB whiskers show alignment 

with the extrusion direction, which is normal to the top and bottom faces of these volume 

segments.  The small particles in Figures 5.13 and 5.14 seen amongst the larger eutectic 

TiB whiskers are likely some of the sub-micron precipitated TiB phase that are near the 

resolution limit of the optical microscopy used to create the montages rendered in the 

three-dimensional visualization.  For the most part, the sub-micron TiB whiskers are too 

small to be accurately visualized using the montage-based serial sectioning techniques.  

The microstructure of sample I in Figure 5.15 clearly shows a greater amount of eutectic 
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TiB whiskers than the samples extruded at lower temperatures, as suggested from two-

dimensional optical microscopy observations.  All of the samples have identical 

compositions, so this result suggests a coarsening of the eutectic TiB phase from the sub-

micron precipitated TiB phase at temperatures approaching 1100°C.  Samples G and H, 

also extruded like sample I at 1104°C, showed a similar coarsening effect.  These high-

temperature samples, processed above the β transus of the alloy, show microstructures 

very similar to the pre-alloyed Ti-6Al-4V-1B modified alloy previously studied that was 

blind die compacted at 1200°C and then extruded at 1100°C. 
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Figure 5.13  Small segment of surface rendered three-dimensional microstructure of 

extruded Ti-6Al-4V-1B alloy sample C.  The extrusion direction is parallel to the depth 

of the volume segment. 
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Figure 5.14  Small segment of surface rendered three-dimensional microstructure of 

extruded Ti-6Al-4V-1B alloy sample F.  The extrusion direction is parallel to the depth of 

the volume segment. 
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Figure 5.15  Small segment of surface rendered three-dimensional microstructure of 

extruded Ti-6Al-4V-1B alloy sample I.  The extrusion direction is parallel to the depth of 

the volume segment. 

 

5.6  Conclusions 

 Samples of extruded Ti-6Al-4V-1B modified alloy were produced using three 

different extrusion ratios and at three different extrusion temperatures (following 

compaction by hot isostatic pressing (HIP) of pre-alloyed powders), to investigate the 
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effect of these processing parameters on the resultant microstructures and material 

properties.  Optical microscopy and characterization using conventional stereology 

techniques suggested the presence of a sub-micron precipitated TiB phase in addition to 

the eutectic TiB whiskers.  A small amount of porosity was also observed in all of the 

extruded samples.  Measurement of the angular orientation of the eutectic TiB whiskers 

demonstrated a sharper range around the extrusion axis with higher extrusion ratios and 

at higher extrusion temperatures. 

Scanning electron microscopy confirmed the presence of the sub-micron TiB 

precipitated phase, as well as showed a whisker-like morphology and alignment with 

extrusion similar to the larger eutectic TiB whiskers.  These observations are crucial to 

develop accurate materials design methodologies for similar boron-modified titanium 

alloys. 

Montage-based serial sectioning and three-dimensional visualization confirmed 

alignment with extrusion of the eutectic TiB whiskers, as well as significant TiB 

coarsening at extrusion temperatures near 1100°C.  Although the sub-micron TiB 

whiskers are present in all of the extruded Ti-6Al-4V-1B samples, they are present in 

smaller volume fractions in the samples extruded at the highest temperature.  The sub-

micron TiB whiskers improved the yield strength and ultimate tensile strength of these 

alloy samples compared to the previously studied Ti-6Al-4V-1B blind die compacted and 

extruded alloy, but significantly decreased the tensile elongation to failure, a critical 

material property for aerospace structural applications. 
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CHAPTER 6                                                                       

DEVELOPMENT OF MATERIALS DESIGN METHODOLOGIES 

6.1  Introduction 

 With successful research involving Ti-B materials, commercial industry is 

beginning to scale up to production of Ti-B applications.  To enhance this development, 

prediction and modeling of the properties and microstructures of these alloys and 

composites has become increasingly important.  If the relationships between the 

processing, microstructures, and resultant properties can be more thoroughly understood, 

implementation of Ti-B products will more likely be accepted in the aerospace, 

automotive, and biomedical industries. 

 As part of a collaborative effort, research colleagues are developing materials 

design methodologies combining traditional materials characterization and stereology 

techniques with computer simulations and finite element-based analyses.  In this process, 

the microstructure of an existing material will be quantified in terms of a few 

mathematical parameters, both in two and three dimensions.  Then, computer simulated 

virtual microstructures will be created that are statistically similar to the real 

microstructures.  These simulations will be verified using finite element micromechanical 

analyses to determine the global and local constitutive behavior of these microstructures, 

and to ensure they agree with the experimental mechanical behavior of the real material.  

Then, an “atlas” of computer simulated realistic microstructures can be created by 

varying the mathematical parameters that correspond to changes in the processing such as 

composition or spatial orientation.  In this way, a range of potential alloys or composites 
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can be investigated and tested using computer simulations without having to produce a 

large number of different material samples.  This will make the materials development 

process more efficient and less expensive for a range of metals and composites. 

 Characterization and visualization research of Ti-B modified alloys and 

composites is being used to help establish the foundation for these materials design 

techniques.  A particular focus involves aspects of the microstructures such as whisker 

morphology and spatial distribution.  This work, combined with colleagues’ 

investigations of cast magnesium alloys and aluminum matrix composites, will 

demonstrate the robustness of the new methodologies. 

6.2  Simulations of Realistic Microstructures 

 The complexity of the microstructures of Ti-B modified alloys and composites is 

an obstacle towards accurate materials simulation.  Current computer models are utilizing 

oversimplifications of TiB morphologies, assuming the whiskers are round cylinders 

uniformly distributed and oriented in the Ti-6Al-4V matrix [100].  Applying this type of 

incorrect microstructural simulation to finite element analyses will not provide accurate 

predictions of material behavior. 

 In this work, the newly developed techniques for simulations of realistic Ti-B 

microstructures avoid those assumptions by using morphologies from the features of 

interest in the microstructures of real materials.  To create a simulation of a realistic 

microstructure, a large number (~1000) of TiB particle images are digitally removed 

from the original microstructural montages and stored such that the data set is 

representative of the size, shape, and morphology distributions of the TiB particle 

population in the microstructure of the real material.  Next, a simulation of TiB particle 
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centroids (with a specified spatial arrangement and number density), is generated in a 

digitized simulation space where the pixel size is the same as that in the original 

microstructural images from which the TiB particles were removed.  Finally, one TiB 

particle image is selected at random from the set, and placed at one simulated centroid 

point.  The process is repeated until there is a TiB particle image centered on each 

simulated centroid point. 

 The result is a simulated microstructure containing the same TiB whisker 

morphologies as those in a real microstructural image, but (depending on the simulation 

parameters and algorithm), with a different spatial arrangement of the whiskers, different 

TiB volume fraction, average size, number density, anisotropy, etc.  Further details of the 

methodology are given elsewhere [101-103].  The two-point correlation function of the 

TiB whiskers in the simulated microstructure is then computed and compared with the 

experimentally measured two-point correlation function of the TiB whiskers in the real 

microstructure.  Simulation parameters are varied until a satisfactory match between the 

two-point correlation functions of the real and simulated microstructures is achieved. 

 A simulated microstructure with the metallographic plane parallel to the extrusion 

axis corresponding to blind die compacted and extruded pre-alloyed Ti-6Al-4V-1B 

modified alloy is shown in Figure 6.1 [104].  Results shown in Figure 6.2 demonstrate 

that there is a good agreement between the experimental data of the two-point correlation 

function parallel to the extrusion direction for the real microstructure with the 

corresponding two-point correlation function of the simulated microstructure. 
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Figure 6.1  A portion of a simulated microstructure corresponding to the real 

microstructure of extruded pre-alloyed Ti-6Al-4V-1B modified alloy [104]. 
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Figure 6.2  Two-point correlation data parallel to the extrusion direction for both the real 

and simulated microstructures of extruded pre-alloyed Ti-6Al-4V-1B modified alloy 

[104]. 

 

Figure 6.3 depicts a simulated microstructure corresponding to blind die 

compacted Ti-6Al-4V-1B alloy.  Once the simulation model is validated, it is possible to 

generate virtual microstructures of alloys that have been processed differently than those 

from which the original data sets were obtained.  For example, Figure 6.4 is the 

simulation of one such partially anisotropic virtual microstructure that may represent the 

Ti-6Al-4V-1B alloy extruded at a lower extrusion temperature and/or a lower extrusion 

ratio. 
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Figure 6.3  A portion of a simulated microstructure corresponding to the real 

microstructure of compacted pre-alloyed Ti-6Al-4V-1B modified alloy [104]. 
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Figure 6.4  A portion of a simulated, partially anisotropic virtual microstructure that may 

represent a Ti-6Al-4V-1B alloy extruded at lower extrusion temperature and/or a lower 

extrusion ratio than the microstructure depicted in Figure 6.1 [104]. 

 

 The simulated images of the real and virtual microstructures can then be 

implemented in finite element computations to simulate the mechanical response of the 

corresponding real and virtual materials.  Figure 6.5 shows the complementary 

cumulative distributions of local maximum principal stress in the TiB whiskers under 
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tensile loading for the three simulated microstructures shown in Figures 6.1 (extruded), 

6.3 (compacted), and 6.4 (virtual) [105, 106].  In the microstructures of Figures 6.1 and 

6.4, tensile loading is along the extrusion direction.  Such simulations can provide useful 

input for optimization of the processing routes as well as for materials design. 

 
Figure 6.5  The complementary cumulative distributions of local maximum principal 

stress in the TiB whiskers under tensile loading for the three simulated microstructures 

shown in Figures 6.1 (extruded), 6.3 (compacted), and 6.4 (virtual).  In the 

microstructures of Figures 6.1 and 6.4, tensile loading is along the extrusion direction 

[105, 106]. 

 

6.3  Determination of TiB Constitutive Properties 

 Because TiB is stable only within a titanium matrix and forms in situ during high-

temperature processing, accurate determination of the mechanical properties is a focus of 
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current research.  Several studies have attempted to determine the properties of both the 

TiB phase alone and the overall Ti-B modified alloys and composites.  Consensus in the 

field of the properties of TiB remains a goal of these investigations. 

 This situation is a particular problem for finite element micromechanical analyses 

of Ti-B materials.  Accurate input of material constitutive properties is crucial for finite 

element-based micromechanical simulations.  Because the TiB phases are formed in situ, 

macroscopic stress-strain data, such as tensile test results, are not suitable (or often 

available) for micromechanical studies of Ti-B modified alloys and composites.  As a 

result, microindentation coupled with finite element analyses were used to compute the 

elastic modulus of TiB. 

Microindentation provides a continuous record of the variation of indentation load 

as a function of the depth of penetration into the specimen.  From this load-depth curve, 

properties such as the elastic modulus of a material can be calculated.  Microindentation 

was performed on primary TiB particles in extruded pre-alloyed Ti-6Al-4V-1.6B 

modified alloy [106].  An indent is shown in Figure 6.6.  On the same specimen, 15 

indentations (each of 1 μm depth), were placed on different primary TiB whiskers.  The 

resultant load-depth curves are given in Figure 6.7, and show a wide variation in the 

mechanical response, which is problematic for determining the overall constitutive 

properties. 
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Figure 6.6  Microindent of 1 μm depth on a primary TiB whisker in extruded Ti-6Al-4V-

1.6B modified alloy [106]. 
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Figure 6.7  Load-depth curves for 15 microindentations of 1 μm depth on primary TiB 

whiskers in extruded Ti-6Al-4V-1.6B alloy, showing a wide variation in the mechanical 

response [106]. 

 

 In order to determine whether the variation was caused by the microindentation 

apparatus or from the TiB whiskers, multiple indents were placed on the same primary 

TiB whisker, as shown in Figure 6.8.  The three indents showed consistent load-depth 

curves, as shown in Figure 6.9.  This suggests that the variation is not due to the 

apparatus, but is inherent in the different TiB whiskers in the Ti-6Al-4V-1.6B alloy 

specimen. 
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Figure 6.8  Three microindents of 1 μm depth on a primary TiB whisker in extruded Ti-

6Al-4V-1.6B modified alloy [106]. 
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Figure 6.9  Load-depth curves for 3 microindentations of 1 μm depth on the same 

primary TiB whisker in extruded Ti-6Al-4V-1.6B alloy, showing a consistent mechanical 

response [106]. 

 

 It was concluded that the variation in the mechanical response may be attributed 

to the anisotropy of the primary TiB single crystal whiskers.  If indents are placed on TiB 

whiskers at slightly different alignments with respect to the anisotropic crystallographic 

orientation of TiB, there will be different micromechanical responses.  For simplicity of 

the simulations, an averaged isotropic behavior is more practical for micromechanical 

modeling.  The averaged load-depth curve for TiB is shown in Figure 6.10. 
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Figure 6.10  Averaged load-depth curve for microindentations of 1 μm depth on primary 

TiB whiskers in extruded Ti-6Al-4V-1.6B alloy.  This averaged isotropic behavior is 

more practical for micromechanical modeling [106]. 

 

 Following this conclusion, research colleagues developed a finite element 

microindentation model to verify the experimental results.  The TiB whiskers were 

assumed to have averaged elastic properties with a kinematic hardening plastic behavior, 

and the diamond tip indenter was modeled as perfectly elastic.  A comparison of the 

experimental and finite element simulated load-depth curves are shown in Figure 6.11, 

and show good agreement, confirming the elastic modulus of TiB as approximately 410 

GPa. 
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Figure 6.11  Comparison of experimental and simulated load-depth curves for 

microindentations of 1 μm depth on primary TiB whiskers in extruded Ti-6Al-4V-1.6B 

alloy [106]. 

 

6.4  Conclusions 

 Conventional characterization procedures, combined with montage serial 

sectioning and microstructural simulation techniques, are being used to develop new 

methodologies for materials design.  Previous computer prediction models for Ti-B 

materials have been limited by using simplified, unrealistic morphologies and poorly 

assumed constitutive values.  New methodologies, such as computer simulations using 

the morphologies from real microstructures, and microindentation to determine the 
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constitutive properties of TiB phases, are allowing for more accurate predictions of 

material properties.  Overall, Ti-B materials have shown promise for these state of the art 

materials design methodologies. 
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CHAPTER 7                                                                       

RECOMMENDATIONS FOR FUTURE RESEARCH 

 

 Research and development of Ti-B materials over the last decade has shown the 

potential of boron-modified titanium alloys and Ti-B composites in a variety of 

applications for multiple industries.  Significant improvements in critical material 

properties can be made, with a range of available compositions and processing methods.  

Further research is necessary, however, before Ti-B materials can achieve full acceptance 

by commercial industry. 

 This work has investigated the two leading powder metallurgy techniques for 

producing Ti-B materials, pre-alloyed and blended elemental, and examined several 

boron compositions with the Ti-6Al-4V matrix alloy.  A composition just below the 

eutectic point should be studied, to determine the limit of TiB reinforcement that meets 

the fracture-critical standards for aerospace structural applications in extruded boron-

modified Ti-6Al-4V alloys.  Lower boron compositions should also be studied for Ti-B 

materials produced using blended elemental powder metallurgy techniques. 

 In addition to powder metallurgy, Ti-B materials can be produced by ingot 

metallurgy techniques such as casting.  Boron-modified alloys and Ti-B composites 

formed using these methods should be investigated, as these are methods often used by 

industry for large-scale production of titanium alloys.  The effect of a mostly liquid 

processing technique on the alignment of TiB whiskers will need to be more fully 

understood. 
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 The thermomechanical processing (TMP) technique of extrusion was extensively 

studied in this work, showing alignment of TiB whiskers.  Other important TMP 

techniques, such as forging and rolling, should also be studied to determine their effects 

on TiB alignment.  Near-net shape processing methods are important for commercial 

production, and industry acceptance of Ti-B materials is more likely if it can be 

demonstrated that these methods are capable of forming improved titanium alloys and 

composites with TiB reinforcement. 

 Examination of the boron-modified Ti-6Al-4V alloys produced by hot isostatic 

pressing (HIP) in this work showed the presence of a small amount of porosity.  This 

porosity would be detrimental to the material properties of Ti-B materials.  Further 

studies are needed to determine if the TiB reinforcement has an effect on the formation of 

porosity in these alloys, and whether porosity can be eliminated in boron-modified Ti-

6Al-4V alloys produced by HIP. 

 This work focused exclusively on TiB reinforcement in the Ti-6Al-4V alloy 

matrix, the most widely used titanium alloy.  Ti-B materials using other common 

titanium alloys also warrant further investigations.  Particularly for biomedical 

applications, Ti-6Al-4V alloys cannot be used because vanadium is toxic in vivo.  Studies 

are needed to determine if the effects and behavior of TiB reinforcement phases are 

consistent between different titanium alloys. 

 This research, and other work in the field, has shown that heating and cooling 

rates during processing have significant effects on the spatial length scale of the TiB 

reinforcement phases.  This study has shown similar anisotropic whisker morphologies 

amongst all TiB phases, suggesting that greater understanding of the heating and cooling 
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rates in the processing of Ti-B materials will result in improved accuracy in predicting 

the microstructures and resultant mechanical properties.  Optimization of the processing 

techniques for particular applications could be achieved with this insight. 

 While conducting this research, input was provided to colleagues at the Air Force 

Research Laboratory (AFRL) in their development of an automated serial sectioning 

system, Robo-Met.3D [107].  Successful efforts have been made in using this system to 

examine unreinforced metal alloys and other materials that are uniform and relatively 

soft, but boron-modified titanium alloys and Ti-B composites are more complicated due 

to the significant differences in hardness between the titanium alloy matrix and the TiB 

intermetallic reinforcement phases.  Further work on the Robo-Met.3D system, likely in 

conjunction with the metallography industry, is needed before Ti-B materials can be 

successfully serial sectioned with this apparatus.  Automated serial sectioning of Ti-B 

materials, however, would make the study of the microstructures of these modified alloys 

and composites significantly more efficient. 
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CHAPTER 8                                                                       

SUMMARY AND CONCLUSIONS 

 

Specimens of boron-modified Ti-6Al-4V alloys and Ti-B composites were 

studied using conventional characterization techniques, optical microscopy, scanning 

electron microscopy, and newly developed techniques such as montage serial sectioning 

for three-dimensional microstructural visualization.  All samples were produced by 

powder metallurgy processing methods in use for titanium alloys.  Insight was gained 

into how the TiB reinforcement phases are affected by the processing parameters and 

how these phases affect the microstructure and resultant mechanical properties of the 

overall Ti-B material. 

 

Samples of boron-modified Ti-6Al-4V alloys were produced using pre-alloyed 

(PA) powder metallurgy processes.  Two compositions were chosen, hypereutectic Ti-

6Al-4V-1.6B and hypoeutectic Ti-6Al-4V-1B, to examine the microstructures in different 

regimes of the quaternary system of titanium, alloying elements aluminum and vanadium, 

and boron.  Samples of each blind die compacted alloy also underwent hot extrusion to 

examine the effect of this type of thermomechanical processing on the microstructures 

and resultant material properties. 

 The hypereutectic alloy, Ti-6Al-4V-1.6B, showed the presence of two different 

TiB phases, a fine eutectic TiB phase and a coarser primary TiB phase.  From 

observations via optical microscopy and three-dimensional visualization using montage-

based serial sectioning, both phases showed an anisotropic whisker morphology with 
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roughly hexagonal cross-sections.  For the primary TiB phase, this conclusion differed 

from previous assumptions about the morphology of this phase, where an equiaxed 

cluster morphology had been suggested. 

 Extrusion of this alloy showed TiB whisker alignment with the extrusion 

direction, with no damage to the TiB phases or change in morphology observed.  

Examination of the tensile fracture surfaces of both compacted and extruded samples 

revealed brittle fracture down the length of TiB whiskers in the compacted sample, and 

across the width of aligned TiB whiskers in the extruded sample (with the TiB whiskers 

aligned by extrusion in the tensile direction).  The Ti-6Al-4V matrix showed relatively 

ductile fracture.  Extrusion improved the yield strength and ultimate tensile strength 

while effectively doubling the tensile elongation to failure.  These samples, however, did 

not meet the fracture-critical properties required for aerospace structural applications. 

 The hypoeutectic alloy, Ti-6Al-4V-1B, showed only the presence of the eutectic 

TiB phase.  No primary TiB was observed, as expected.  The eutectic TiB whiskers in 

this alloy had a similar morphology to those in the hypereutectic alloy, although they 

were present in smaller amounts due to the decreased amount of boron in the composition 

of this alloy. 

Extrusion of this alloy also showed TiB whisker alignment with the extrusion 

direction, with no damage to the TiB whiskers or change in morphology observed.  

Examination of the tensile fracture surfaces of both compacted and extruded samples 

again revealed brittle fracture down the length of TiB whiskers in the compacted sample, 

and across the width of aligned TiB whiskers in the extruded sample (with the TiB 

whiskers aligned by extrusion in the tensile direction).  The Ti-6Al-4V matrix showed 
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relatively ductile fracture.  Similarly to the hypereutectic alloy, extrusion improved the 

yield strength and ultimate tensile strength while effectively doubling the tensile 

elongation to failure.  The extruded sample of this alloy exceeded the fracture-critical 

properties required for aerospace structural applications while also significantly 

improving the mechanical properties compared to unreinforced Ti-6Al-4V. 

 

Samples of Ti-B composites were produced utilizing blended elemental (BE) 

powder metallurgy processes.  Unlike pre-alloying, BE processes are conducted entirely 

in the solid state.  Two different compositions were chosen, Ti-6Al-4V-1.7B and Ti-6Al-

4V-2.9B, and the composites were produced by blind-die compaction.  A sample of the 

Ti-6Al-4V-2.9B composite was also hot extruded. 

 From observations via optical microscopy and three-dimensional visualization 

using montage-based serial sectioning, both Ti-B composites showed microstructures 

containing a unimodal size and morphology distribution of TiB whiskers.  These TiB 

whiskers were somewhat larger on average than the eutectic TiB whiskers seen in the PA 

boron-modified alloys, but smaller than the primary TiB particles in those alloys.  The 

anisotropic whisker morphology with roughly hexagonal cross-sections was similar to the 

eutectic and primary TiB morphologies in the PA boron-modified alloys.  Observation of 

the extruded Ti-6Al-4V-2.9B composite using optical microscopy showed alignment of 

the TiB whiskers with the extrusion direction. 

Examination of the tensile fracture surfaces of both compacted and extruded 

samples of the Ti-6Al-4V-2.9B composite revealed brittle fracture down the length of 

TiB whiskers in the compacted sample, and across the width of aligned TiB whiskers in 
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the extruded sample (with the TiB whiskers aligned by extrusion in the tensile direction).  

The Ti-6Al-4V matrix showed relatively ductile fracture.  Extrusion improved the yield 

strength and ultimate tensile strength while effectively doubling the tensile elongation to 

failure.  These samples, however, did not meet the fracture-critical properties required for 

aerospace structural applications, although the extruded Ti-6Al-4V-2.9B composite 

sample demonstrated an elastic modulus in the range of steel alloys. 

 

Samples of extruded Ti-6Al-4V-1B modified alloy were produced using three 

different extrusion ratios and at three different extrusion temperatures (following 

compaction by hot isostatic pressing (HIP) of pre-alloyed powders), to investigate the 

effect of these processing parameters on the resultant microstructures and material 

properties.  Optical microscopy and characterization using conventional stereology 

techniques suggested the presence of a sub-micron precipitated TiB phase in addition to 

the eutectic TiB whiskers.  A small amount of porosity was also observed in all of the 

extruded samples.  Measurement of the angular orientation of the eutectic TiB whiskers 

demonstrated a sharper range around the extrusion axis with higher extrusion ratios and 

at higher extrusion temperatures. 

Scanning electron microscopy confirmed the presence of the sub-micron TiB 

precipitated phase, as well as showed a whisker-like morphology and alignment with 

extrusion similar to the larger eutectic TiB whiskers.  These observations are crucial to 

develop accurate materials design methodologies for similar boron-modified titanium 

alloys. 
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Montage-based serial sectioning and three-dimensional visualization confirmed 

alignment with extrusion of the eutectic TiB whiskers, as well as significant TiB 

coarsening at extrusion temperatures near 1100°C.  Although the sub-micron TiB 

whiskers are present in all of the extruded Ti-6Al-4V-1B samples, they are present in 

smaller volume fractions in the samples extruded at the highest temperature, which is 

above the β transus of the alloy.  The sub-micron TiB whiskers improved the yield 

strength and ultimate tensile strength of these alloy samples compared to the previously 

studied Ti-6Al-4V-1B blind die compacted and extruded alloy, but significantly reduced 

the tensile elongation to failure, a critical material property for aerospace structural 

applications. 

 

Conventional characterization procedures, combined with montage serial 

sectioning and microstructural simulation techniques, are being used to develop new 

methodologies for materials design.  Previous computer prediction models for Ti-B 

materials have been limited by using simplified, unrealistic morphologies and assumed 

constitutive values.  New methodologies, such as computer simulations using the 

morphologies from real microstructures, and microindentation to determine the 

constitutive properties of TiB phases, are allowing for more accurate predictions of 

material properties.  Overall, Ti-B materials have shown promise for these state of the art 

materials design methodologies. 
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