Future Branches — Beyond Speculative
Execution

Bill Appelbe!, Raja Das?, and Reid Harmon?

! Department of Computer Science, RMIT, Melbourne, Victoria 3001, Australia
2 College of Computing, Georgia Institute of Technology Atlanta, GA 30327, USA

Abstract. Speculative execution of conditional branches has a high
hardware cost, is limited by dynamic branch prediction accuracies, and
does not scale well for increasingly superscalar architectures.

Future branches are additional branch instructions that overcome the
performance bottleneck of conventional branches. Future branch instruc-
tions includes a branch source address (the location of the impending
conditional branch) as well as the branch target. The branch actually
occurs when the program counter reaches the source address. If a future
branch is executed before instruction fetching reaches the branch source,
then there are no pipeline stalls or prediction necessary.

Benchmark micro-architecture simulation studies show that at high su-
perscalarities, losses to speculative execution consistently are higher than
10%, and these losses can be avoided by future branches. In addition, a
hardware implementation of future branches for the PowerPC 604 has a
very modest cost.

1 Introduction

Studies have shown that from 1.6% to 22% of instructions executed are branches
or conditional branches, with most non-scientific programs much closer to 22%.
A branch instruction interrupts the instruction pipeline unless the branch target
address, and the instructions at that address, are known before the branch in-
struction is decoded, and the direction of a conditional branch is known. Branch
caches enable the branch target address and subsequent instructions to be de-
termined with high probability at a modest hardware cost [9]. By contrast, de-
termining the direction of a conditional branch with high probability is far more
difficult. Most modern superscalar processors use speculative execution, in which
the direction of the branch is predicted dynamically using a history of previous
branch directions.

Studies of the prediction accuracy of processors with sophisticated dynamic
branch prediction show prediction accuracies around 90% for non-scientific ap-
plications (e.g., Ultra SPARC [11]: SPECint 88%, SPECfloat 94% [11]; Power
620 [9]: SPEC composite 90%). Performance analysis of the Pentium (at most
two-way superscalar, but with sophisticated branch prediction), show that on
several of the SPEC benchmarks the overhead of incorrect branch prediction is
between 5% and 8% of overall execution time [2]. Research continues into more

sophisticated mechanisms for using branch histories to improve branch predic-
tion accuracy, but gains tend to be slight[6] and increase hardware costs further.

Aside from its high hardware cost and imprecision, another fundamental
problem with speculative execution is that it does not scale well with increas-
ingly superscalar processors. The frequency of branch instruction fetches and
predictions per cycle is proportional to the mean IPC (Instructions Per Cy-
cle executed). In addition, highly superscalar processors need large instruction
buffers to be able to find more ILP (Instruction Level Parallelism). This increases
the mean number of cycles between a conditional branch fetch (prediction) and
execution (determining the branch outcome). This implies that the number of
cycles lost to a missed prediction should increase with increasing superscalarity.

% loss due to branch misprediction

Superscalarity

Fig. 1. Cycles Lost to Branch Misprediction v. Superscalarity

Figure 1 plots the percentage of cycles lost to speculative execution against
increasing superscalarity for 8 of the SPEC95 benchmarks, using the DLX micro-
architecture simulator described in the next section. Loses flatten out at a super-
scalarity of 3 or 4 because these benchmarks have limited available ILP. Bench-
marks which have “unpredictable” branches, (go, li, and ijpeg), have losses due
to branch misprediction which increase rapidly with increasing superscalarity
until ILP is exhausted.

Decoupling the branch decision from the branch itself has been used in many

architectures, ranging from those which have separate instructions for computing
the branch condition to branch instructions with a variable number of delay
slots[4]. However, these have the limitation that the computation of a branch
condition (direction) and the branch itself must be close together. This usually
limits placing the instructions that evaluate the branch condition in the same
basic block as the branch instruction itself.

To avoid dynamic branch prediction or pipeline stalls, the branch condition
must be evaluated before the branch instruction is fetched. To ensure this, the
distance between the branch condition’s instructions and the actual branch in-
struction (in instructions fetched), must then exceed the size of the instruction
or reorder buffer (of fetched instructions which are awaiting execution and re-
tirement). Modern superscalar processors have instruction buffers of up to 50
instructions, which far exceeds the mean size of basic blocks. Hence any effective
scheme for evaluating branch conditions before branch instructions must be able
to move the branch condition far ahead of the branch itself, outside its basic
block.

Future branches encode both the branch source address (when the branch will
occur) together with the branch target address (where the branch will go to) in
a single instruction. Future branches allows a branch condition to be evaluated
anywhere in a program, subject to just two constraints:

— Data and control dependencies must be preserved (using program transfor-
mations such as code hoisting for the branch condition[1])
— Future branches for the same source address must be executed in order

The remainder of this paper gives performance results for future branch in-
structions, followed by an outline of an architecture definition for future branch
instructions, and hardware design for incorporation in the PowerPC 604.

2 Simulation Studies

Determining the effectiveness of future branches requires both an implementa-
tion of future branches in “hardware” and a compiler that can transform regular
conditional branches in source programs into future branch instructions for the
target hardware. Instead of a hardware implementation, we extended a micro-
architecture simulator, and have incorporated algorithms for generating future
branches into a compiler toolkit called GiL based upon gec.

Future branches can be added to almost any instruction set architecture. For
the simulation studies we used the DLX instruction-set[5], as we had access to
a reconfigurable micro-architecture simulator for DLX, SuperDLX from McGill
university. We have extensively modified the simulator so that it now includes
features such as: future branches, oracle branches (100% accurate speculative
execution), and a reconfigurable multilevel cache simulator. latency of all func-
tional units to be specified.

2.1 Compiling for Future Branches

To compare future branches with oracle or speculative execution, it is necessary
to transform the program to use future branches. At the source level, most
branches are predictable well before we reach them. In a classic for loop a
programmer can easily determine whether the next iteration will be taken at
the start of the current iteration. If the for loop test is I <= N, then if I <=
N-1 at the start of the iteration we know that the next iteration will be taken.

In practice, many loops and branches within loops are far more difficult to
predict many instructions beforehand. To implement future branches, we have
modified GiL, based upon gec, to support dependence analysis and have imple-
mented a simple algorithm to recognize when a branch can be converted to a
future branch. We analyzed 27 files in the gec distribution looking for branches
whose predicate can be trivially hoisted: all the virtual registers needed for its
evaluation are defined ezactly once within the loop it belongs to. A trivially
hoistable conditional branch can always be moved to the start of the body of
the loop containing it.

Total number of conditional branches (4497
Total number of unconditional branches|2270
Not trivially hoistable 764

Table 1. Branch distribution in GCC

Table 1 shows the distribution of branches in the files we have analyzed. Only
about one seventh of the branches are not trivially hoistable. Many of the non
hoistable branches could be hoisted by a better algorithm3

Hoisting a branch may increase the size of the program or the number of
registers needed. However, analysis of the same same branches in gce showed that
more than 60% of the conditional branches required hoisting 3 instructions or
less, and more than 85% of conditional branches required hoisting 6 instructions
or less.

Analysis of a suite of C benchmarks indicates that only .2% (espresso) to 5%
(gce, spice) of branches are for a relative distance of more than 256 instructions?.
Hence both the relative source and target address can be encoded in a 16 bit
displacement common to many instruction sets.

% Hand inspection has revealed that the reason why most branches are not trivially
hoistable is that one definition is inside a conditional. The branch is usually still
hoistable, to a point just after the conditional. To recognize this we need ¢ functions
and SSA form.

* Branches for longer distances can always use a branch to an unconditional branch.
Further, many architectures can support a larger branch address space.

Thus, it appears that the majority of conditional branches can be hoisted
significantly earlier in the instruction stream and hence converted to future
branches. However, there are overheads in hoisting branches that imply that
future branches will will never equal the performance of an oracle branch pre-
diction unit:

— A few branches cannot be hoisted®. Fortunately, such cases are not common
in practice.

— Hoisting branches may require copying registers

— Hoisted branches require unbranches, or future branch cancelation, on some
exits

2.2 Speculative Execution vs Future Branches

Our compiler cannot yet generate future branch instructions for large bench-
marks. Hence we have resorted to hand-coded assembler implementation of fu-
ture branches. Our hand-coded implementations focuses upon two benchmarks:
Livermore Loops #24 and the procedure essen_parts of the SPEC benchmark
espresso’

Table 2 summarizes the results for LL #24 (Superscalarity means the number

of fetch and decode units, for this benchmark there were two of all other units).

Superscalarity |Speculative Branch Depth Future |Percentage

2 3 4 o0 ||Branches Speedup
3 578 541 541 541 516 4.8%
4 543 526 490 490 428 14.5%
5 528 514 498 490 428 14.5%

Table 2. Cycles Required to Execute Benchmark LL #24

As Table 2 shows, the use of Future Branches resulted in significant perfor-
mance improvement, despite a speculative branch prediction accuracy of 83.2%.
Table 2 also illustrates the need for increasingly deep, and expensive, branch
prediction at higher superscalarity. The performance gain using future branches
is a little surprising because of the four extra instructions in the inner loop of
the future branched version. The extra instructions are needed because the inner
condition loop condition is a recurrence”.

5 It is not very difficult to construct a pathological case in which no branch can be
hoisted, as all the computation in a routine is devoted to determining a branch
outcome[1]. However, even in these cases, future branches can be used similarly to
static branch prediction

6 We first used LL #24 as it was the shortest benchmark; we used the routine es-
sen_parts in espresso as most time was spent in this routine, as measured by gprof

" The test in each iteration is dependent upon the test result in the previous iteration

The essen_parts routine is a much larger benchmark than LL #24. The rou-
tine was about 50 lines of hand-optimized C, corresponding to about 500 lines of
DLX assembler. It contained 3 loops, 10 if statements, and 4 goto’s. We obtained
the times for this routine by extracting them from the SuperDLX log files for
the first call to essen_parts (timing from execution of the entry to subroutine
return) for a 4-way superscalar processor.

Table 3 summarizes the results for essen_parts.

Superscalarity | Non-SpeculativeSpeculative Branch Depth Oracle| Future
00 || Branches

3 | 293 | 208 | 122 | 172

Table 3. Cycles Required to Execute essen_partsin espresso

In this case, the future branched version was about 17% percent faster than
the speculatively executed version. Other runs and calls of essen_parts gave sim-
ilar results. It is interesting to note that every one of the branches in essen_parts
could be converted to future branches, despite the convoluted C code. No effort
whatsoever was spent trying to hand optimize the future branch assembler code
to skew the results (life has many more worthwhile challenges).

3 Future Branch Instructions

The future branch instructions proposed in this section are extensions of the
PowerPC instruction set. We have also designed future branches for the Motorola
88110 instruction set[7].

The PowerPC instruction set supports four different branch instructions [12]
[8] including unconditional branch b, branch conditional be, branch conditional
to counter register bectr, and branch conditional to link register belr. Of these
instructions, just the b and bc instructions are considered here for use with
future branching because the future branch mechanism described in this paper
presently only supports branches with immediate targets. The bectr and beclr
instructions branch to a target contained in a register and are far less commonly
used than immediate targets.

The additional instructions to support future branching are the fb (future
branch unconditional), fbc (future branch conditional), and ufb (undo future
branch). The fb instruction is the future branch counterpart to the b instruc-
tion, and the fbc instruction is the counterpart to the bc instruction. The ufb
instruction has no corresponding PowerPC branch instruction as it is unique to
the future branch design. Figure 2 illustrates the structure of the future branch
instructions.

The fb instruction is a modification of the PowerPC b instruction. The fb in-
struction includes an additional Source field not found in the b instruction. that

fbc

’ OPCD ‘ BO ‘ BI ‘ Source Target(BD)
6 bits 5 bits 5 bits 7 bits 9 bits
b
’ OPCD ‘ Source ‘ Target(LI) LAA‘ L[#
6 bits 7 bits 17 bits 1 bit each
ufb
’ OPCD ‘ Source ‘ unused

6 bits 7 bits

Fig. 2. PowerPC Future Branch Instructions

tells where the corresponding b instruction will be, relative to the fb instruction.
The displacement is encoded in seven bits which provide for +64 instruction
displacement (+ 256 bytes). Thus the compiler can place the b instruction and
fb instructions up to 64 instructions apart in either the forward or reverse di-
rection. The Target field of the fb instruction (which corresponds to LI field in
PowerPC b instruction) is reduced from 24 bits in the b instruction to 17 bits
in the fb instruction. This provides for a displacement of +64K instructions.
Displacements larger than 64K instructions will not be able to take advantage
of the fb instruction. It is important to note that in the future branch imple-
mentation, the Target displacement is calculated relative to the fb instruction
not the branch source. This implementation was adopted to speed up the target
address calculation in the decode stage of the processor pipeline (See Section 3).
As Figure 2 shows, the AA (absolute address) and LK (branch and link) bits
were retained for the fb instruction. This was done to make the fb instruction
fully compatible with the b instruction except for the target range.

The fbc instruction is the conditional branch counterpart instruction in the
future branch design. The fbc instruction is very similar to the bc instruction.
The major differences are the lack of the AA and LK fields, the 7-bit source
field, and a reduced width Target field (BD in the PowerPC bc instruction). The
BO (branch condition) and BI (condition register bit index) fields are identical
to the PowerPC bc instruction [12] [8]. These two fields determine the branch
predicate.

The Source field encodes the relative distance to the corresponding bec in-
struction as did the Source field in the fb instruction. The 7-bit Source provides
the future branch mechanism with & 64 instructions displacement between the

future branch instruction (fbe) and the branch source instruction (be). The Tar-
get (BD) field in this instruction is reduced from the 14 bits provided in the
PowerPC bc instruction to 9 bits. This allows the fbc instruction to be paired
with conditional branches that are & 256 instructions from the fbc instruction.
This amounts to a significant reduction in displacement range for the conditional
branch (£ 256 instructions vs. + 32 K instructions), but the benchmarks that
we have run indicate that 95% of all branches fall in this range and can thus use
future branches without code motion or other tricks. As in the fb instruction, the
displacement calculation is relative to the fbc instruction not the be instruction.
The AA and LK fields of the bc instruction are omitted from the fbc instruction.
This was done to maximize the sizes of the Source and Target fields so as to in-
crease the source and target range of the fbc instruction. The elimination of the
AA and LK fields means that the compiler can not generate future branches for
bc instructions that use absolute addressing or store subroutine return addresses
in the link register.

The ufb instruction is a mechanism for the compiler to specify removal of
future branch entries from the PBT (Pending Branch Table). This is handled
by calculating a Source value using the 8-bit Source field. The source is used to
index the PBT and remove the corresponding entry. Eight bits are used for the
source of the ufb instruction to increase the range of the ufb instruction. This is in
case the execution of the program has proceeded more than 64 instructions from
the future branch source instruction when the ufb instruction is encountered.

4 Future Branch Hardware Implementation

The implementation of the future branch hardware is based on the hardware
used in the Power PC 604 processor [9]. Thus our implementation of future
branches for the PowerPC instruction set tries to exploit the existing 604 hard-
ware rather than modifying it extensively. Obviously, this is by no means the
only way to implement future branching for the 604 or other processors (we also
developed an implementation for the 88110). This implementation was simply
chosen as a reference point. Further details of the implementation are available

from ftp://ftp.cc.gatech.edu/pub/people/bill /papers/fo-hardware.ps.

4.1 PowerPC 604 Instruction Pipeline

The PowerPC 604 pipeline [9] was used in developing the future branch hard-
ware implementation. Figure 3 shows the 604 pipeline and what future branch
processing occurs at each stage.

The following list identifies the future branch processing that takes place at
each stage in the processor pipeline.

— Fetch
e Comparison of the Pending Branch Table entries with the Fetch Counter
e Modify Fetch Counter on Correct Comparisons

Fetch Decode Dispatch Execute Complete

FB Entry in PBT FB Predicate Known

FB Source Detected and Fetch Address Register (FAR) Updated

Fig. 3. PowerPC Instruction Pipeline with Future Branches

— Decode

e Future Branch Source Calculation

e Future Branch Target Calculation

e Modify Pending Branch Table
— Dispatch

e Future Branch Instruction Sent to EX unit or Reservation Station
— Execute

e Future Branch Predicate Calculated

e Pending Branch Table entry Modified to Reflect Calculation

The PBT entry (Section 4.2) is made at the end of the Decode cycle. This
creates a gap of up to 8 instructions between the fetch of the future branch
instruction and the updating of the PBT. This requires that at a minimum, the
compiler hoist the branch instruction 8 instructions above the original branch
source. This is required so that the PBT modifications that result from exe-
cuting the future branch instruction are present in the PBT before the branch
arrives. The decode stage is treated in greater detail later. Eight instructions are
adequate only for unconditional future branches fb since predicate calculation
must be done for conditional future branches.

The predicate is not known until at least the fourth cycle after fetching the
future branch instruction, which means that the compiler must hoist the future
branch at least 16 instructions (worst case) before the branch source for the
predicate to be available. If the predicate is not available when the source is
fetched, the branch prediction mechanisms of the PowerPC 604 will take over
(BTAC, BHT)[9].

During the Fetch stage, the Fetch Address Register (FAR) is being com-
pared with the entries in the PBT. When a match is indicated, the FAR is
modified based on the outcome of the branch. If the future branch predicate
has already been calculated, the FAR is modified and instructions are fetched
non-speculatively. If, however, the predicate has not yet completed, the BTAC
entry is used to predict the outcome of the branch. The fetch counter is still
modified based on this prediction, but the instructions are fetched speculatively.
The Fetch stage is treated in greater detail later.

4.2 Pending Branch Table

The PBT contains the results of executing a future branch instruction (fbe,
or fb). The PBT is fully associative and contains, at this time, an unspecified
number of entries (the number of entries limits the number of pending future
branches, but the compiler determines this statically, and a dozen entries seems
more than adequate for benchmarks we have studied). Figure 4 details one such
entry in the PBT.

PBT Entry

Source Target P |C|V

Fig. 4. Pending Branch Table

The Source entry is the absolute address of the branch source instruction.
The branch source instruction is the actual branch instruction (b, bc) that cor-
responds to the future branch instruction that made the cache entry. The Source
entry is made during the Decode stage of the pipeline. Likewise, the Target entry
is the absolute address of the branch target, and it is also entered into the cache
during the Decode stage.

The P bit (Prediction) indicates whether the branch is taken or not. If the
P bit is set, the branch Target is the address of the instruction that follows the
branch source instruction. If the P bit is clear, the instruction executed after
the branch source is the instruction at the next sequential address in program
memory. The C bit (Calculated) indicates whether the P bit is a predicted or
calculated value. If the C bit is set, the value of the P bit is a value that was
obtained by evaluating the predicate conditions. If the C bit is clear, the P bit
is a prediction. In this implementation using the PowerPC 604 architecture, a
cleared C bit defers the branching decision to the BTAC (Branch Target Address
Cache). The V bit (Valid) simply indicates whether the entry in the cache is valid
or not. A set V bit indicates a valid entry. The ufb instruction clears the V bit
for the specified entry as the means of removing the future branch instruction
from the cache. Entries with a cleared bit that match the Source field are ignored
unless the BTAC indicates that the instruction is a branch.

4.3 Fetch Using Pending Branch Table

The entries in the PBT specify the addresses of branch instructions that will be
encountered later in the flow of instructions. These addresses (Source fields in the
PBT) are being compared with the Fetch Address Register (FAR) every cycle

From Decode From EX

hit Source ‘ Target ‘ P ‘ C ‘
t ——t
I I I I
BTAC | | | [Tttt ittt E-a--E
N [L N
I I I I
| L
hit
Branch
Decision
Logic
L=
=
FAR
Icache
op
Jr
To Fetch Buffer

Normal Incrcmcn@

Fig. 5. Future Branch Fetch

to determine whether the branch for which the entry applies has been fetched.
Figure 5 illustrates the hardware required for future branch fetching.

The entries in the PBT are checked every time an instruction block is fetched
from the I-cache.

If there is a hit, the Target, Predicted bit (P), Calculated bit (C), and Valid
bit (V) are presented as output from the cache. The three bit values (P, C, and
V) are presented to the Branch Decision Logic, which ultimately decides the
outcome of the branch for the next instruction fetch cycle. At the same time,

the Branch Target Address Cache (BTAC) is being accessed, and the indication
of a hit or miss is sent to the Branch Decision Logic. If the C bit and V bit are
set, this means that the future branch instruction has completed the predicate
calculation, and the fetch unit should fetch next at either the Target or the next
sequential instruction. The decision about whether to take the Target path or the
next instruction is decided based on the P bit. In either case, the instruction fetch
hardware can continue fetching and the instructions fetched are not speculative.

If the V bit is not set than this means that the fetched block may not contain
a branch instruction (no valid PBT Entry). In this case the hit/miss indication of
the BTAC is used to make this determination (as in the case of a branch with no
corresponding future branch instruction). If the BTAC indicates a taken branch,
then the BTAC target address is used rather than the one in the PBT as that
entry is invalid (the V bit selects which target address to use).

If the V bit is set, but the C bit is not, this means that the future branch
instruction (fbc) has not yet finished the predicate calculation (D-cache miss
delay, etc.). In this case, in order to keep up with the processing rate, the next
instruction block will have to be fetched speculatively using the BTAC. If the
BTAC hits, the branch is taken, and if the BTAC misses, the next sequential
instruction is taken.

We have throughly tested a similar implementation of future branches in the
DLX micro-architecture simulator. The only modification we found necessary
was allowing for up to four conditional branches to be pending for the same
target address. PBT entries have four (Target, P, C, and V) fields for each
Source, and two 2-bit counters indicating the current and next available Target
entry.

4.4 Hardware Cost

The hardware costs presented here are based on the PowerPC 604 implemen-
tation, and they are compared with the existing hardware of the PowerPC 604
Microprocessor.

We estimate a transistor count for our implementation to be 30,000. This
includes all the additional hardware added to the existing 604, but it does not
include hardware that is used in future branching but already exists in the 604
(e.g., BTAC). We estimate that these transistors would occupy 6.5 mm? using a
.5 micron process. Using data on the 604 die [9] size (approximately 196 mm?,
our future branch implementation would use an additional 3.3% of the existing
604 die area. We believe that these estimates are conservative, and that the
actual future branch implementation would require even less real estate than
calculated above.

5 Conclusion and Future Work

Our analysis has shown that the traditional approaches to avoiding branch de-
lays, speculative execution, does not scale with increasingly superscalar architec-
tures. Future branches represent a simple but radical departure from traditional

approaches to improving performance of branch instructions. The concept is
compatible with almost any instruction set architecture, and is simpler, and
with optimizing compiler technology offers higher performance than speculative
execution.

Although this paper has demonstrated the feasibility of future branches from
architecture, hardware, and compiler viewpoints, there are many open questions
and unresolved issues that we are actively addressing at present, including;:

— How do oracle, speculative, and future branch execution compare across
larger benchmark suites?

— What is the optimum number of entries in a future branch cache?

— Should future branch targets be prefetched from the instruction cache, and
how do future branches affect the design of instruction caches, etc.

— What hardware support is needed for saving future branch state, and what
is its cost in cycles?

— What is the interplay between future branch instructions, register allocation,
and instruction scheduling in a compiler?

References

1. Bill Appelbe, Reid Harmon, Phil May, Scott Wills, and Maurizio Vitale. Hoist-
ing branch conditions — improving super-scalar processor performance. In Eighth
Workshop on Languages and Compilers for Parallel Computing, 1995.

2. M. Bekerman and A. Mendelson. A Performance Analysis of Pentium Processor
Systems. IEEE Micro, 15(5):72-83, October 1995.

3. Sreeram Duvvuru and Siamak Arya. Evaluation of a Branch Target Address Cache.

4. J. R. Goodman, J. T. Hseih, K. Liou, A. R. Pleszkun, P.B. Schechter, and H. C.
Young. Pipe: A vlsi decoupled architecture. In Proceedings of The Twelfth Annual
Symposium on Computer Architecture, pages 20-27, 1989.

5. John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, Inc., San Mateo, California, 1990.

6. Stuart Sechrest, Chih-Chieh Lee, and Trevor Mudge. Correlation and aliasing in
dynamic branch predictors. In Proceedings of The 23nd Annual Symposium on
Computer Architecture, pages 22-31, 1996.

7. Motorola Semiconductor Products Sector. MC88110 Second Generation RISC Mi-
croprocessor Users Manual. Motorola, Inc., Phoenix, Arizona, 1991.

8. Motorola Semiconductor Products Sector. PowerPC 601 RISC Processor Users
Manual. Motorola, Inc., Phoenix, Arizona, 1993.

9. S. Peter Song and Marvin Denman. The PowerPC 604 Microprocessor. [FEFE
Micro, pages 817, October 1994.

10. Tom Thompson and Bob Ryan. PowerPC 620 Soars. BYTEF, pages 113-120,
November 1994.

11. Peter Wayner. SPARC Strikes Back. BYTE, pages 105-112, November 1994.

12. Shlomo Weiss and James E. Smith. POWER and PowerPC. Morgan Kauffman,

San Francisco, California, 1994.

This article was processed using the INTpX macro package with LLNCS style

