
A MULTI-UAV TRAJECTORY OPTIMIZATION METHODOLOGY FOR
COMPLEX ENCLOSED ENVIRONMENTS

A Dissertation
Presented to

The Academic Faculty

By

Sarah Barlow

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Aerospace Engineering

Georgia Institute of Technology

May 2019

Copyright c© Sarah Barlow 2019

A MULTI-UAV TRAJECTORY OPTIMIZATION METHODOLOGY FOR
COMPLEX ENCLOSED ENVIRONMENTS

Approved by:

Dr. Dimitri Mavris, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Simon Briceno
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Youngjun Choi
School of Aerospace Engineering
Georgia Institute of Technology

Date Approved: March 25, 2019

TABLE OF CONTENTS

List of Tables . vi

List of Figures . viii

Summary . xii

Chapter 1: Introduction . 1

1.1 Background . 1

1.2 Motivation . 4

Chapter 2: Problem Formulation . 6

2.1 Current Methods . 6

2.2 Traveling Salesman Problem . 10

2.2.1 Model Formulation . 10

2.3 Vehicle Routing Problem . 12

2.3.1 Model Formulation . 13

2.4 UAS-Based Inventory Tracking Solution 15

2.4.1 Model Formulation . 16

Chapter 3: Technical Approach . 24

3.1 Proposed Methodologies . 24

iii

3.1.1 Overall Methodology . 26

3.2 Baseline . 26

3.2.1 Model Formulation . 26

3.2.2 Validation . 28

3.3 Single Stage Algorithm . 29

3.3.1 Model Formulation . 30

3.3.2 Validation . 31

3.4 Min/Max Algorithm . 33

3.4.1 Model Formulation . 34

3.4.2 Validation . 35

3.5 Multi-Depot Algorithm . 37

3.5.1 Model Formulation . 38

3.5.2 Validation . 40

3.6 Model Dimensionality Reduction . 42

Chapter 4: Results Analysis . 46

4.1 Experimental Setup . 46

4.2 Baseline Results . 47

4.3 Single Stage Algorithm Results . 49

4.4 Min/Max Algorithm Results . 52

4.5 Multi-Depot Algorithm Results . 54

4.6 Algorithm Combination Results . 56

4.6.1 Single Stage and Min/Max Algorithm Results 56

iv

4.6.2 Single Stage and Multi-Depot Algorithm Results 58

4.6.3 Min/Max and Multi-Depot Algorithm Results 60

4.6.4 Single Stage, Min/Max and Multi-Depot Algorithm Results 62

4.7 Simulation Comparisons . 64

Chapter 5: Sensitivity Analysis . 69

5.1 Experimental Setup . 69

5.2 Results . 71

Chapter 6: Conclusion . 88

6.1 Future Work . 88

6.2 Conclusion . 89

References . 95

v

LIST OF TABLES

2.1 UAV Trajectory Flight Times [6] . 22

3.1 Subscale Baseline Flight Times . 28

3.2 Subscale Single Stage Flight Times . 32

3.3 Subscale Min/Max Algorithm Flight Times 36

3.4 Subscale Multi-Depot Algorithm Flight Times 41

4.1 Baseline Flight Times . 47

4.2 Single Stage Algorithm Flight Times . 50

4.3 Min/Max Algorithm Flight Times . 53

4.4 Multi-Depot Algorithm Flight Times . 55

4.5 Single Stage & Min/Max Algorithm Flight Times 57

4.6 Single Stage & Multi-Depot Algorithm Flight Times 59

4.7 Min/Max & Multi-Depot Algorithm Flight Times 61

4.8 Single Stage, Min/Max & Multi-Depot Algorithm Flight Times 63

4.9 Results Summary . 66

4.10 Optimization Computation Time . 66

5.1 Design Variables vs. Fleet Size . 72

5.2 Design Variables vs. Optimization Computation Time 73

vi

5.3 Design Variables vs. Mission Time . 73

vii

LIST OF FIGURES

1.1 Commercial UAS Market Growth [4] . 2

2.1 Cellular Decomposition [23] . 7

2.2 Wavefront Algorithm [21] . 7

2.3 Vehicle Routing [22] . 8

2.4 Hamiltonian Cycle [30] . 9

2.5 Subtour Elimination Constraint . 11

2.6 Possible Solution to TSP [35] . 12

2.7 Possible Solution to VRP [47] . 15

2.8 3D Model of Warehouse Section [6] . 21

2.9 Optimal UAS Trajectories [6] . 21

2.10 Optimum UAS Deployment Times for Non-Collision Event [6] 22

2.11 Collision Constraint Graph [6] . 23

3.1 Overall Methodology . 27

3.2 Subscale Baseline Optimal Trajectories . 29

3.3 Subscale Baseline Optimum Deployment Times for Non-Collision Event . . 29

3.4 Single Stage Algorithm High-Level Logic 31

3.5 Subscale Single Stage Algorithm Optimal Trajectories 33

viii

3.6 Subscale Single Stage Algorithm Optimum Deployment Times for Non-
Collision Event . 33

3.7 Subscale Min/Max Algorithm Optimal Trajectories 37

3.8 Subscale Min/Max Algorithm Optimum Deployment Times for Non-Collision
Event . 37

3.9 Subscale Multi-Depot Algorithm Optimal Trajectories 41

3.10 Subscale Multi-Depot Algorithm Optimum Deployment Times for Non-
Collision Event . 42

3.11 Complete Initial Node Network . 43

3.12 Reduced Initial Node Network . 44

3.13 Reduced Edge Generation . 44

3.14 Converted Edge Generation . 45

4.1 Baseline Optimal Trajectories . 48

4.2 Baseline Optimum Deployment Times for Non-Collision Event 49

4.3 Single Stage Algorithm Optimal Trajectories 51

4.4 Single Stage Algorithm Optimum Deployment Times for Non-Collision
Event . 52

4.5 Min/Max Algorithm Optimal Trajectories 53

4.6 Min/Max Algorithm Optimum Deployment Times for Non-Collision Event 54

4.7 Multi-Depot Algorithm Optimal Trajectories 55

4.8 Multi-Depot Algorithm Optimum Deployment Times for Non-Collision
Event . 56

4.9 Single Stage & Min/Max Algorithm Optimal Trajectories 57

4.10 Single Stage & Min/Max Algorithm Optimum Deployment Times for Non-
Collision Event . 58

ix

4.11 Single Stage & Multi-Depot Algorithm Optimal Trajectories 59

4.12 Single Stage & Multi-Depot Algorithm Optimum Deployment Times for
Non-Collision Event . 60

4.13 Min/Max & Multi-Depot Algorithm Optimal Trajectories 61

4.14 Min/Max & Multi-Depot Algorithm Optimum Deployment Times for Non-
Collision Event . 62

4.15 Single Stage, Min/Max & Multi-Depot Algorithm Optimal Trajectories . . . 63

4.16 Single Stage, Min/Max & Multi-Depot Algorithm Optimum Deployment
Times for Non-Collision Event . 64

4.17 Minimum Vehicle Distance Constraint for Individual Algorithms 67

4.18 Minimum Vehicle Distance Constraint for Combined Algorithms 68

5.1 Graph Legend for Figure 5.2 and Figure 5.8 74

5.3 Vehicle Endurance vs. Fleet Size . 74

5.2 Design Variables vs. Feasibility . 75

5.4 Scan Speed vs. Fleet Size . 76

5.5 Cruise Speed vs. Fleet Size . 76

5.6 Volume vs. Fleet Size . 77

5.7 Number of Waypoints vs. Fleet Size . 77

5.8 Design Variables vs. Fleet Size . 78

5.9 Vehicle Endurance vs. Optimization Computation Time 79

5.10 Scan Speed vs. Optimization Computation Time 79

5.11 Cruise Speed vs. Optimization Computation Time 80

5.12 Volume vs. Optimization Computation Time 80

5.13 Number of Waypoints vs. Optimization Computation Time 81

x

5.14 Fleet Size vs. Optimization Computation Time 81

5.15 Design Variables vs. Optimization Computation Time 82

5.16 Vehicle Endurance vs. Mission Time . 83

5.17 Scan Speed vs. Mission Time . 83

5.18 Cruise Speed vs. Mission Time . 84

5.19 Min. Vehicle Distance vs. Mission Time 84

5.20 Volume vs. Mission Time . 85

5.21 Number of Waypoints vs. Mission Time 85

5.22 Fleet Size vs. Mission Time . 86

5.23 Design Variables vs. Mission Time . 87

xi

SUMMARY

Unmanned Aerial Systems (UAS) have become remarkably more popular over the past

decade and demonstrate a continuous upward market trend. They are currently being used

in various military and consumer applications and have recently gained recognition and

potential for commercial purposes as well. As UAS become more accessible and advanced,

they are able to be incorporated into a broader range of applications and provide substantial

operational benefits.

An area that has great potential for UAS involvement are manufacturing and warehouse

environments, as these typically occupy vast spaces. Warehouse logistics and operations

are very complex and could significantly benefit from the integration of UAS. Many com-

panies are already exploring using UAS for performing inventory audits to reduce labor

costs and time, and improve accuracy and safety. To achieve the maximum benefit from

this technology in these environments, multiple vehicles would be essential.

The purpose of this thesis is to optimize the operations of multiple UAS in complex

confined environments such as a warehouse. There are added complexities when working

with multiple vehicles; for example, ensuring that there are no collisions between vehicles.

A great deal of research has been done on vehicle routing and trajectory optimization, but

very little has been done with UAS optimization or path planning through these types of

environments. This thesis further develops these algorithms and focuses in on the impact

UAS involvement could have on warehouse-like operations. The proposed improvements

from the current methods will help uncover the most optimal results by changing the pro-

cess for finding solutions, the criteria under which solutions are ranked, and the opera-

tional/experimental setup.

The existing process begins by finding an optimal set of flyable routes for each UAS and

then takes that set and offsets each UAS deployment time to ensure there are no collisions;

this approach often results in sub-optimal solutions. The updated process that is presented

xii

here calculates the offset deployment time for every set of flyable trajectories and only then

does it choose the optimal routing. This new method will resolve the sub-optimality issues

from the existing approach. Secondly, the current methods rank the optimal solution by

minimizing the total flight time of all the UAS; this value is not the best representation of

the actual overall mission time. Therefore, the highest-ranking solution may not actually

correspond to the shortest overall mission time. The proposed method will seek to minimize

the longest UAV flight time, as this is a better representation of the actual mission time.

Lastly, the current methods have an experimental setup where each vehicle deploys from

and returns to the same depot location. This approach requires additional vehicle setup

time for each vehicle in the solution, prolonging the overall mission time. It also increases

the chances of UAVs being in close proximity to one another, which in turn escalates the

risk of collisions. The proposed method explores the benefits of multiple deployment spots

to significantly improve mission times and simplify operations.

These proposed improvements will be assessed based on their degree of impact on

the overall mission time compared to the current methods. They will also be assessed

in comparison to one another and in combination with one another to better understand

the effectiveness and sensitivities of the presented changes. The best combination will be

further analyzed through a design of experiments by varying several inputs and examining

the resulting fleet size, computation time, and overall mission time.

The main contributions of this thesis are:

• A new trajectory optimization algorithm which can be applied to multi-UAV use

cases in confined and complex environments

• A method for reducing the dimensionality and complexity of a warehouse model

which simplifies the computational expense of larger-scale problems

• A diverse set of parameter initialization combinations and corresponding response

trends and feasibility

xiii

CHAPTER 1

INTRODUCTION

The concept of Unmanned Aerial Systems (UAS) has been around since the late 1800s

and since then, UAS have continuously gained significant popularity and technological

advancements, especially in the last few decades [1]. Unmanned Aerial Vehicles (UAV)

were, at first, just a notion thought up by Nikola Tesla. He believed in the possibilities of

engineering vehicles which could be controlled from afar and potentially used in combat

situations. He constructed a prototype of a radio-controlled boat in 1898 and stated that the

same technology could be applied to other vehicle types, such as unmanned aircraft. While

working on this invention, Tesla additionally uncovered the possibilities of controlling sev-

eral vehicles simultaneously and thus, envisioned an entire fleet of ”flying machines” [2].

Nikola Tesla’s visions opened the floodgates for UAS development.

1.1 Background

Over the past century, UAVs have been used for numerous military applications and have

recently reached consumer and commercial markets. The total UAS market size is currently

around $20.71 billion and is expected to reach $52.30 billion by 2025 [3]. Within this, the

commercial UAS market is around $0.882 billion and is expected to grow to $2.034 bil-

lion by 2022 [4]. This market growth, which can be seen in Figure 1.1, can be attributed

to many factors, including new UAS regulations which became effective in August 2016,

a decrease in component costs, allowing UAS to become more affordable, and advance-

ments in technology, enabling integration into a wider range of applications. On the other

hand, this market growth could be hindered by safety concerns surrounding the operation

of UAS, security or privacy issues, strict government regulations, and the scarcity of air

traffic management systems [4].

1

Figure 1.1: Commercial UAS Market Growth [4]

UAVs range in size from small consumer products to large military defense vehicles.

Significant enhancements have been made to UAS technology that enables these vehicles

to fly faster, longer, have more stability and control, and even carry payloads. Improve-

ments on batteries have equipped UAS with higher endurance. This extended battery life

allows vehicles to fly longer ranges before needing to recharge. UAS are remote piloted

to deploy, fly a mission, and land within their endurance range [1]. As technology con-

tinues to advance and UAS become more accessible, the feasibility and benefits of the

integration of these vehicles will drastically expand, as they will be enabled to support a

plethora of new operations [5]. Some of the operations currently being considered and ex-

plored are site surveying, terrain mapping, natural disaster monitoring, package delivery,

wildlife preservation, search and rescue missions, traffic management, and manufactur-

ing/warehouse inventory tracking [3]. With improved sensing technology that has become

more readily available, the smaller UAS are safely able to reach new areas and can even

begin venturing indoors [1]. Indoor use of UAVs evades the barriers of government/FAA

regulations, which allows for more design freedom. Typically, the use cases surrounding

UAS occur in outdoor settings, but manufacturing and warehouse environments pose an

interesting indoor use case due to their vast sizes. Inside the massive warehouse and man-

ufacturing spaces there exists very complex logistics and operations, where UAVs could

2

prove to be advantageous.

Large manufacturing and warehouse environments routinely and frequently perform

inventory audits to track the products, supplies, and equipment they have on hand. It is

important to keep an accurate count because much of the inventory is expensive or may be

needed to fulfill customer orders. The current typical process of performing one of these

audits consists of workers manually scanning each and every item. This proves to be a very

time consuming and labor intense practice which is extremely prone to human error due to

the constant repetition [6] [7]. In one study, performing an inventory audit of a 26m by 24m

section of a warehouse takes workers approximately 40 hours to complete with only about

90% accuracy [8]. Due to the extensive time this process takes, it is impossible to maintain

real-time or even remotely close to real-time inventory data. There are also several hazards

which pose safety risks to the workers involved in the current inventory tracking method

[9]. Warehouse and manufacturing environments typically house dangerous heavy machin-

ery, minimal air conditioning due to their immense size, very loud surroundings, and items

stacked high and stored on very tall shelves [6]. Growing demands to stay competitive, im-

prove customer satisfaction, improve warehouse safety, and increase cost and time savings

create a need for more efficient and accurate processes [10] [11].

Some companies with large warehouses, such as Amazon, Walmart, and Ikea, have

begun exploring the benefits of incorporating UAS into their business models [10]. UAS

platforms have also begun exploring the possibilities of expanding and accommodating to

these types of environments by packaging together the necessary technologies that a UAV

may need to be fit for such a task. Some of these integrated systems include Infinium Scan

and EyeSee, which are UAS platforms designed specifically for warehouse environments

and inventory tracking [12]. These platforms do not incorporate the path planning and

mission planning that are necessary for this technology to be as successful and beneficial

as possible [13]. The rising interest in assimilating UAVs in manufacturing and warehouse

environments is the motivation to further understand the operations of the two components

3

when coupled together.

1.2 Motivation

As discussed, warehouse environments are prone to significant challenges, such as dan-

gerous working conditions, inaccuracies in inventory counts, and lengthy time-consuming

processes. Assumptions can be made that the assimilation of UAVs into the inventory au-

dit mission will decrease the need for employees to continuously climb to high shelves

and reduce their time spent in these laborious conditions with dangerous machinery. Ad-

ditional assumptions can be made that inventory accuracy will be strengthened with UAV

involvement as the process will no longer be vulnerable to human error. The final metric

to explore is the reduction of inventory audit mission time with the incorporation of UAS

technology. As the easiest metric to quantify, mission time will be used to assess the bene-

fit of UAVs within warehouse-like enviornments. Overall, the integration of UAS in these

environments could provide substantial labor cost and time savings, while also improving

employee safety and count accuracy with closer to real-time data and fewer missed items.

A typical consumer quadcopter UAV has an endurance ranging from 10 to 30 minutes

[1] and the average Walmart warehouse ranges between 93,000 to 149,000 square meters

with shelves reaching 11 meters high [14]. The floor area of a 93,000 square meter ware-

house could fit approximately 17 football fields. These vast manufacturing and warehouse

spaces, coupled with short endurance vehicles, supports the need for a multi-UAV scenario.

Multiple UAVs would be able to cover larger areas and reduce mission times even further

than a single vehicle. Adding in additional vehicles creates other complexities that need to

be addressed, which motivates the need to figure out how to safely and efficiently deploy

and operate multiple vehicles at the same time within these confined environments. It is

essential to figure out the best coordination and operations of UAVs to tackle the entire

warehouse layout to achieve the maximum benefit from this technology.

Due to the complexities of warehouse areas, the solution to this problem could be ap-

4

plied to other confined or enclosed environments with few modifications, helping to fill the

gap in UAV operations in such environments.

All of this information leads to the following overall goal:

Research Objective: Improve/optimize the total mission time of multiple UAVs

performing a warehouse inventory for safety, cost, and efficiency.

The proposed approach for accomplishing this is through a multi-vehicle trajectory opti-

mization algorithm [15] [16] [17].

5

CHAPTER 2

PROBLEM FORMULATION

2.1 Current Methods

There are many trajectory generation techniques that exist to help solve coverage path plan-

ning problems. Several methods were studied to determine the best method for handling

the complex enclosed environment UAV use case [18] [19]. First, cellular decomposition,

which consists of breaking an area down into smaller subsections (cells) around obstacles

using a variety of techniques, such as triangular, trapezoidal, morse, or boustrophedon de-

composition. Each of these smaller areas become much simpler to solve and can then be

routed to other adjacent cells to complete the coverage path planning problem [20] [21].

Figure 2.1 depicts the cellular decomposition method. Next, a wavefront algorithm was

investigated. This method involves locating a starting node and an ending node and then

propagating a wave outwards, labeling each of the nodes based on distance. Using these

labels, a path can be created through the entire area; this is shown in Figure 2.2. Lastly,

the technique of vehicle routing was examined. This method consisted of a depot and a

set of waypoints, which all needed to be visited to complete the entire area [22]. A de-

piction of vehicle routing can be seen in Figure 2.3. The vehicle routing technique is used

for the warehouse inventory tracking problem, as this method can easily handle the three

dimensional environment as well as the specific waypoints that need to be reached to scan

shelves/products.

6

Figure 2.1: Cellular Decomposition [23]

Figure 2.2: Wavefront Algorithm [21]

7

Figure 2.3: Vehicle Routing [22]

Extensive research has been done on vehicle routing problems, the most famous being

the Traveling Salesman Problem, discussed in Section 2.2. Several algorithms have been

created for a wide variety of routing problems [24]. Research involving multiple vehicle

path planning is reasonably available, but of that research, the prevalence of UAS is scarce

[25]. Additionally, investigations surrounding single or multi-UAV operations within ware-

house/manufacturing or other similar environments is virtually nonexistent. There exist

several trajectory optimization algorithms which can be modified or enhanced to fit the

needs of UAS technology and warehouse/manufacturing organization.

These algorithms share some very important foundations. Each of the constructed mod-

els form a Hamiltonian Cycle. Within graph theory, this is accomplished when each node

in a graph is passed through exactly once, thereby connecting the entire graph. An exam-

ple of a Hamiltonian Cycle is depicted in Figure 2.4. These models can be either directed

(asymmetric) or undirected (symmetric) graphs [26]. In a directed graph, an edge connect-

ing two nodes can only travel in one direction, or the path from the one node to another

is not equivalent if the order visited was reversed. For undirected graphs, the opposite is

8

true, the order in which nodes are visited does not matter as the values are the same in

either direction [27]. The formulation of undirected graphs is the focus for the UAS trajec-

tory problem. Hamiltonian Cycles are classified as NP-complete because once a solution

is found, it is verifiable that all nodes have been visited exactly once. On the other hand,

the algorithms created for optimized vehicle routing are classified as NP-hard because, as

the number of nodes in a graph increases, the solution’s optimality cannot be verified in a

finite amount of time [28]. These problems become very computationally expensive as the

size increases [29].

Figure 2.4: Hamiltonian Cycle [30]

The current methods explored here are all defined by complete undirected graphs, G =

(N ,A). Where N is the set of vertices, or nodes, in the graph, N = {0, 1, 2, . . . , n}, and

A is the set of edges, or arcs, that connect the nodes, A = {(i, j) : i, j ∈ N , i 6= j}.

There is then an associated cost set analogous to the edge set, C = (ci,j), this cost can be

defined by several different parameters depending on the problem, such as distance, time,

labor/operation cost, etc.. In an undirected/symmetric graph, ci,j = cj,i [31]. These graphs

are created through each optimization algorithm.

Optimization algorithms consist of three main components: decision variables, con-

straints and an objective/cost function. The three in combination define an algorithm that

9

assigns the best values to the design variables based on the goal of the objective function,

typically minimizing or maximizing, while adhering to the constraints of the problem.

2.2 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a widely discussed phenomenon in combinato-

rial optimization, a subsection of operations research [27]. The TSP is so popular because

its concept can easily be applied in many different capacities, such as the production of in-

tegrated circuits (ICs) and printed circuit boards (PCBs), shift scheduling, computer wiring,

genome mapping, package delivery routes, and many more [31] [32]. The goal of the TSP

is to find the shortest path, or tour, that a salesman should take through a given set of cities,

where each city is visited exactly once and the salesman returns back to the originating

point, or depot, upon completion of the tour. Therefore, the objective function of this prob-

lem is to minimize cost, where the cost is equivalent to the length of the tour [31] [32]

[33].

2.2.1 Model Formulation

The following are the variables used in the Dantzig et al. TSP model [34]:

xi,j: Binary decision variable, where:

xi,j =

 1, if an edge from i to j appears in the optimal tour

0, otherwise

ci,j: Cost associated with traveling from city i to city j

The TSP is setup as follows:

Minimize
∑
i<j

ci,jxi,j (2.1)

10

Subject to the following constraints:

∑
i<k

xi,k +
∑
j>k

xk,j = 2 (k ∈ N) (2.2)

∑
i,j∈S

xi,j ≤ |S| − 1 (S ⊂ N , 3 ≤ |S| ≤ n− 3) (2.3)

xi,j = 0 or 1 ((i, j) ∈ A) (2.4)

The objective function, equation (2.1), seeks to minimize the cost of the tour. Equations

(2.2), (2.3), and (2.4) impose the degree, subtour elimination, and integrality constraints,

respectively [31]. The subtour elimination constraint ensures that the tour created is fully

connected, such that the salesman cannot just ”appear” in a city, a visual representation of

this can be seen in Figure 2.5.

Figure 2.5: Subtour Elimination Constraint

The solved TSP model has assigned values to the decision variable, xi,j , corresponding

to the optimal tour route. An example of a solved TSP model is shown in Figure 2.6.

11

Figure 2.6: Possible Solution to TSP [35]

While the TSP is a very extensive and powerful model, it is computationally expensive

and would need several modifications in order to be applied to the warehouse inventory

problem [36] [37]. The main issue is that the TSP only formulates one tour for the one

salesman that is traveling, whereas the warehouse problem requires a fleet of UAS, so

each vehicle would need its own path. The TSP is a great baseline for understanding the

generalities of a UAS trajectory optimization.

2.3 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) generalizes the Traveling Salesman Problem. Similar

to the TSP, the objective is to minimize the cost of the tours [38] [39]. The VRP has

numerous variations, which can change the variable setup, the applied constraints, or the

objective function [40] [41]. Some of the variants include [42] [43] [44]:

• Capacitated Vehicle Routing Problem (CVRP): Vehicle load cannot exceed its ca-

pacity

• Vehicle Routing Problem with Time Windows: Nodes must be visited within a spec-

ified time frame

12

• Distance-Constrained Vehicle Routing Problem (DVRP): Vehicle cannot exceed its

maximum range

• Multiple Vehicle Routing Problem (mVRP): Multiple tours are created, one for each

vehicle

The variations above are all subject to each node being visited exactly once by only one

vehicle, and each vehicle starting and ending its tour at the depot [43] [45]. The most

relevant deviations to model the UAS inventory audit problem are the DVRP and the mVRP.

2.3.1 Model Formulation

Developed by Kara [46], the following is a formulation of an arc based Multi-Vehicle

Distance-Constrained Vehicle Routing Problem (mDVRP), beginning with the model’s

variables:

xi,j: Binary decision variable, where:

xi,j =

 1, if an edge from nodei to node j appears in the optimal tour

0, otherwise

yi,j: flow variable, where:

yi,j =

 total distance traveled from the depot to node j through i, if xi,j = 1

0, otherwise

di,j: Distance associated with traveling from node i to node j

m: Number of identical vehicles

D: Maximum distance each vehicle can travel

Objective Function:

Minimize

n∑
i=0

n∑
j=0

di,jxi,j (2.5)

13

Subject to the following constraints:

n∑
i=1

x0,i = m (2.6)

n∑
i=1

xi,0 = m (2.7)

n∑
i=0

xi,j = 1 (j = 1, 2, . . . , n) (2.8)

n∑
j=0

xi,j = 1 (i = 1, 2, . . . , n) (2.9)

xi,j ∈ {0, 1} (∀(i, j)) (2.10)
n∑

j=0,j 6=i

yi,j −
n∑

j=0,j 6=i

yj,i −
n∑

j=0

di,jxi,j = 0 (i = 1, 2, . . . , n) (2.11)

y0,i = d0,ix0,i (i = 1, 2, . . . , n) (2.12)

yi,j ≤ (D − dj,0)xi,j (j 6= 0, (i, j) ∈ A) (2.13)

yi,0 ≤ Dxi,0 (i = 1, 2, . . . , n) (2.14)

yi,j ≥ (d0,i + di,j)xi,j (i 6= 0, (i, j) ∈ A) (2.15)

Equations (2.6) and (2.7) ensure that m vehicles leave and return to the depot node, node

0. Equations (2.8) and (2.9) impose the degree constraints so that each node is visited once

by only one vehicle. Equation (2.10) is the integrality constraint. Subtours are eliminated

with equation (2.11); this is enforced on each vehicle’s individual tour. Equations (2.12),

(2.13), (2.14), and (2.15) introduce the distance constraints, ensuring that 0 ≤ yi,j ≤ D

[46]. Once solved, Figure 2.7 shows an example of how these tours may appear graphically.

14

Figure 2.7: Possible Solution to VRP [47]

The VRP modeled by Kara [46], will be the basis of the formulated algorithm. This

method encompasses the multi-vehicle aspect as well as the required distance constraints.

On the other hand, this method needs modifications to deal with the complexities of UAV

operations and warehouse layouts. The VRP discussed here does not consider potential

collisions between vehicles, which is essential in creating operational UAV trajectories for

confined environments.

2.4 UAS-Based Inventory Tracking Solution

One current model exists that aims to optimize UAS trajectories in warehouse/manufacturing

environments. Formulated by Choi et al. [6], this method consists of two separate op-

timization problems, forming a two-stage process. At a high level, the first stage finds

the optimum set of flyable trajectories and the minimum number of UAVs needed for a

given network to minimize the overall mission time. The results of this are then fed into

the second stage, which computes the optimal offset deployment time of each UAV flying

within their respective trajectories, ensuring that any potential collisions between vehicles

are avoided, while total mission time is still minimized [6].

This first stage of this algorithm creates an undirected or symmetrical graph using

Mixed-Integer Linear Programming (MILP) techniques [46].

15

When looking at the logic behind the two-stage process of this algorithm, a few ques-

tions arise:

• Why not perform these stages simultaneously?

• Does the optimal solution from stage 1 always correspond to the optimum solution

from stage 2?

These questions lead to the first main research question:

Research Question 1: How can the existing algorithm be modified to streamline the

optimization process and does this modification improve the mission time?

2.4.1 Model Formulation

The algorithm defined by Choi et al. [6] for the first stage of this process, is based on the

Kara et al. [46] VRP discussed earlier and is modified to the following:

xi,j,k: Binary decision variable, where:

xi,j,k =

 1, if an edge from node i to node j appears in the optimal tour for vehicle k

0, otherwise

yi,j,k: Flow variable, where:

yi,j,k =

 total flight time from the depot to node j through i by vehicle k, if xi,j,k = 1

0, otherwise

Ti,j: Flight time associated with traveling from node i to node j)

V : Set of identical vehicles

E: Maximum endurance time of each UAS

ts: Setup time for each UAS

16

To optimize the multi-UAV trajectories, this algorithm formulates the following objec-

tive function that minimizes total mission time including total flight time and setup time of

each UAV:

Objective Function:

Minimize
∑
k∈V

∑
i∈N

∑
j∈N

Ti,jxi,j,k +
∑
k∈V

tsx0,h,k (h 6= 0, h ∈ N) (2.16)

Subject to the following constraints:

∑
k∈V

∑
j∈N

xi,j,k = 1 (i 6= 0, i ∈ N) (2.17)

∑
j∈N

x0,j,k = 1 (k ∈ V) (2.18)

∑
i∈N

xi,0,k = 1 (k ∈ V) (2.19)

∑
i∈N

xi,h,k −
∑
j∈N

xh,j,k = 0 (h 6= 0, h ∈ N , k ∈ V) (2.20)

∑
j∈N

yi,j,k −
∑
j∈N

yj,i,k −
∑
j∈N

Ti,jxi,j,k = 0 (i ∈ N , k ∈ V) (2.21)

y0,j,k = T0,jx0,j,k (j 6= 0, j ∈ N , k ∈ V) (2.22)

yi,j,k ≤ (E − Tj,0)xi,j,k (j 6= 0, (i, j) ∈ A, k ∈ V) (2.23)

yi,0,k ≤ Exi,0,k (i 6= 0, i ∈ N , k ∈ V) (2.24)

yi,j,k ≥ (T0,i + Ti,j)xi,j,k (i 6= 0, (i, j) ∈ A, k ∈ V) (2.25)

In this model, equation (2.17) ensures each node is visited only once by only one vehi-

cle. Equations (2.18) and (2.19) guarantee that each UAS deploys and lands at the depot,

node 0. Equation (2.20) forces every vehicle to leave each node that it has entered. Elimi-

nation of subtours is accomplished with equation (2.21) and the endurance constraints are

defined by equations (2.22), (2.23), (2.24), and (2.25) [6].

17

The objective function defined in this model (2.16) sums the mission time (flight time

+ setup time) of each vehicle and then seeks to minimize this value. It appears that this

function does not represent the actual mission time of the whole process as the vehicles will

have overlaps in their flying times. Therefore, this objective function poses the following

concern:

• Does the current objective function produce the optimum results for minimizing the

overall mission time?

This uncertainty leads to the formation of the second research question:

Research Question 2: What modifications can be made to the existing objective

function in order to represent the overall mission time of a task performed by multiple

vehicles?

The first stage of the algorithm results in the optimum set of feasible trajectories, which

are then taken over to the second stage in the process. Currently, the UAVs deploy every

ts seconds, meaning the 5th UAV will deploy after 5ts seconds. In a perfect world, these

would be the most optimal times for the vehicles to deploy because the setup time defines

the minimum deployment offset between each UAS. However, in a warehouse environment

further investigation needs to be done to ensure the UAVs will not crash into one another

throughout their flights.

Stage 2 of this algorithm [6] calculates the position of each vehicle at very small inter-

vals of time and ensures there is always a minimum distance between any two UAVs. If a

potential collision is detected, meaning any two vehicles are too close, then one of those ve-

hicles delays its deployment by a set amount of time. Then, the process repeats, continually

delaying vehicles, until there are no risks of collisions. Once this is complete, the process

stores the vehicle deployment and offset times and begins again, this time changing the

18

sequence in which each trajectory is flown. In the end, the algorithm determines the opti-

mal trajectory sequence and each UAV deployment time ensuring the shortest collision-free

mission.

This algorithm was tested on a 3D model of a section of a warehouse, shown in Fig-

ure 2.8. Assuming the following initialization:

• UAS Platform: DJI Phantom 4

• ts = 120 seconds

• E = 25 minutes

• Scan speed = 0.3 m/s

• Cruise speed = 1 m/s

• Relative Tolerance = 0.05

• Min. Vehicle Distance = 3 meters

The cruise speed is used whenever the vehicle is traveling between shelves and the scan

speed is used when the UAV is flying along the length of a shelf to track the inventory.

The relative tolerance defines the value at which to suspend the optimization activities

and is calculated as follows:

Rel. Tol. =

∣∣∣∣Incumbent Sol.− Lower Bound

Incumbent Sol.

∣∣∣∣ (2.26)

The results of the first stage optimization produced a set of five trajectories which would be

assigned to a fleet of five UAVs, these trajectories can be seen in Figure 2.9. This first stage

optimization algorithm has an approximate computation time of one day (86,400 seconds).

Table 2.1 shows the flight time required to complete each of the five trajectories and each

one satisfies the endurance constraint. It is important to note that the times in Table 2.1

19

correspond only to the UAV flight time required to complete a certain route and does not

include the setup or deployment offset time for that vehicle, as that is not a factor when

verifying the endurance constraint. However, they are factors when looking at the total

mission time.

Results of stage 2 can be seen in Figure 2.10. This graph shows the whole mission,

specifically the time when each UAS takes-off and lands. The last UAS lands 79 minutes

and 13 seconds after the mission begins, defining the overall mission time [6]. Using

these deployment times, a non-collision event is guaranteed; shown by the graph in Figure

2.11. This graph shows the smallest distance between two vehicles at every given point

in time throughout the duration of the mission when more than one vehicle is in the air

at the same time. It also shows that those vehicle separations never cross the potential

collision constraint of 3 meters. All of these factors lead to the result that an inventory audit

performed by UAVs in the modeled warehouse would take about 80 minutes to complete

safely based on the current algorithm [6].

After looking at the results of this model, understanding the computational iterations

that it involves, and seeing the significant offsets required to avoid collisions, the final

research question is posed:

Research Question 3: How can the operational setup be transformed to simplify and

improve the algorithm and results?

20

Figure 2.8: 3D Model of Warehouse Section [6]

Figure 2.9: Optimal UAS Trajectories [6]

21

Table 2.1: UAV Trajectory Flight Times [6]

UAV # Required Flight Time

1 24 min 12 sec

2 23 min 34 sec

3 24 min 4 sec

4 24 min 12 sec

5 24 min 12 sec

Figure 2.10: Optimum UAS Deployment Times for Non-Collision Event [6]

22

Figure 2.11: Collision Constraint Graph [6]

23

CHAPTER 3

TECHNICAL APPROACH

3.1 Proposed Methodologies

To improve the sub-optimal results and address the research questions raised from the

multi-UAV inventory tracking scenario conveyed by Choi et al. [6], three possible im-

provements are introduced. First, a new algorithm logic which seeks to minimize the total

mission time once collision avoidance has been ensured rather than having separate pro-

cesses. A single stage algorithm logic will be explored to streamline the optimization

process. Next, an objective function that seeks to minimize the maximum UAV mission

time rather than minimizing the total of all UAV mission times [48] [49] [50]. Last, an

operational setup consisting of multiple deployment locations instead of only one, which

enables larger overlaps in flight times and initial vehicle separations [41] [49] [51] [52]

[53]. Beginning as conceptual ideas, these methodologies are suggested, formulated, and

tested in order to tackle and resolve the gaps within the current methods and further im-

prove the mission time required for a fleet of UAVs performing an inventory count. They

are compared against the existing model as the baseline.

The baseline, as well as the three proposed methods, and collision avoidance algorithm

are mathematically modeled and programmed with Python. These models use Gurobi as

the optimization solver.

In order to test the proposed modifications, a subscale experimental setup is created to

simplify computation time and analysis of the initial results. This sample inventory tracking

environment contains only two rows of shelves each with only two levels to store products.

The shelves are 26 meters long, 1 meter wide, 3 meters tall, and spaced 3 meters apart from

each other. The following are additional model parameters:

24

• Vehicle Endurance: 20 minutes

• Setup Time: 2 minutes

• Cruise Speed: 0.2 m/s

• Min. Vehicle Distance: 3 meters

For simplification, a scanning speed is not used for the initial experiments. No relative

tolerance is needed to cut off the optimization solution for a problem of this size as it solves

within reasonable time (approximately <30 seconds).

As nodes are placed in this subscale model, a flight time matrix, Ti,j , is created using

the distance between nodes i and j and the vehicle’s cruise speed. An exception to these

calculations occurs if the path from i to j cuts through one of the shelves, as this is un-

realistic. Therefore, the corresponding connection i, j is removed as a possibility for the

model.

Following these subscale experiments, hypotheses will be formed on the three method-

ologies and then tested on a realistic warehouse model. Due to the large and complex

nature of the warehouse model, an approach for reducing the dimensionality of the prob-

lem is explored to simplify computation. As the proposed methods delve into separate

aspects of the optimization problem, they do not conflict, and therefore will also be studied

in combination with one another during the full model analysis to see if further mission

time improvements surface. The optimization computation times for each method will also

be analyzed in the larger warehouse simulations.

The best resulting method will then be run through a sensitivity analysis with a varying

range of input parameters to determine the robustness and versatility of the algorithm.

These experiments aim to show improvements upon the existing method and answer

the research questions that were raised during the initial investigation into this problem.

25

3.1.1 Overall Methodology

The following methodology, shown in Figure 3.1, is an high-level overview of the steps

preformed for this thesis.

3.2 Baseline

For later comparison and evaluation of the proposed modifications, the existing algorithm

[6] is solved as the baseline, using the newly defined experimental setup. The baseline is

necessary to understand the impact of suggested methods.

3.2.1 Model Formulation

The subscale baseline follows the two stage logic defined by Choi et al. [6]. The first

stage minimizes the total mission time of all vehicles with objective function, (2.16), and

is subject to (2.17), (2.18), (2.19), (2.20), (2.21), (2.22), (2.23), (2.24), and (2.25).

The formulation of the second stage or collision avoidance algorithm, defines variables

as the following:

Q: Set of trajectory sequences

Tq: Mission time for trajectory sequence q

distmin: Minimum distance required between vehicles

dist(k,m,t): Distance between vehicles k and m at time t

This algorithm utilizes the following objective function which seeks to find the trajec-

tory sequence with the minimum mission time once a non-collision event has been guaran-

teed:

Objective Function:

Minimize Tq (∀(q ∈ Q)) (3.1)

26

D
es

ig
n

 o
f

Ex
p

e
ri

m
en

ts
 t

o

Ex
p

lo
re

 P
ar

am
et

e
r

Se
n

si
ti

vi
ti

es

Fu
ll-

Sc
al

e
Ex

p
e

ri
m

en
t

o
n

A
lg

o
ri

th
m

 C
o

m
b

in
at

io
n

s

Fu
ll-

Sc
al

e
Ex

p
e

ri
m

en
t

o
n

In
d

iv
id

u
al

 A
lg

o
ri

th
m

s

R
ed

u
ce

 D
im

en
si

o
n

al
it

y
o

f
Fu

ll
-

Sc
al

e
M

o
d

el

Su
b

sc
al

e
 E

xp
er

im
en

t

Es
ta

b
lis

h
 P

ro
p

o
se

d

m
o

d
if

ic
at

io
n

s

C
re

at
e

 t
h

e
C

o
lli

si
o

n
 A

vo
id

an
ce

A
lg

o
ri

th
m

Es
ta

b
lis

h
 t

h
e

B
as

e
lin

e
 B

as
e

d
 o

n

Ex
is

ti
n

g
M

et
h

o
d

Fi
gu

re
3.

1:
O

ve
ra

ll
M

et
ho

do
lo

gy

27

Subject to the following constraints:

distk,m,t ≥ distmin (k,m ∈ V , k 6= m) (3.2)

The second stage of this algorithm calculates the position of each vehicle at very small

intervals of time and ensures there is always a minimum distance between any two UAVs

with constraint (3.2). The algorithm determines the optimal trajectory sequence and each

UAV deployment times to ensure the shortest collision-free mission defined by (3.1).

3.2.2 Validation

The baseline results are shown in Table 3.1, Figure 3.2, and Figure 3.3.

Table 3.1: Subscale Baseline Flight Times

UAV # Required Flight Time

1 10 min 7 sec

2 10 min 7 sec

28

Figure 3.2: Subscale Baseline Optimal Trajectories

Figure 3.3: Subscale Baseline Optimum Deployment Times for Non-Collision Event

3.3 Single Stage Algorithm

To address Research Question 1, a new algorithm logic aims to integrate the two stages

of the existing UAV routing algorithm [6] into one coherent system. Recall, the first stage

of Choi’s et al. method finds the optimum set of feasible trajectories through a warehouse

environment for a fleet of UAVs to minimize the mission time. The second stage takes this

optimum trajectory set and calculates the minimum offset time of each vehicle to ensure a

non-collision event. The new logic transforms this two-stage process into just one. The new

29

method will intermittently calculate the time offset for every feasible trajectory set, rather

than just the optimal solution. Therefore, each feasible trajectory set will be packaged with

its associated deployment time offsets to avoid collisions. The algorithm will then choose

the optimal trajectory set based on this new package of information to minimize the mission

time. Since the existing method does not choose the optimum trajectory set based on actual

vehicle deployment times, the shortest mission time cannot be guaranteed.

3.3.1 Model Formulation

The single stage algorithm minimizes the total mission time:

Minimize
∑
k∈V

∑
i∈N

∑
j∈N

Ti,jxi,j,k +
∑
k∈V

tsx0,h,k, (h 6= 0, h ∈ N) (3.3)

Subject to: (2.17), (2.18), (2.19), (2.20), (2.21), (2.22), (2.23), (2.24), and (2.25).

The single stage algorithm uses the same formulation of collision avoidance calcula-

tions for each feasible trajectory set with equation (3.1) and constrained by (3.2).

The difference from Choi’s et al. algorithm lies within the logic flow of the process; in-

stead of focusing on the optimal solution from stage 1, the new method uses every feasible

solution. Within the optimization algorithm, the proposed method uses a callback func-

tion, which intermittently routes each feasible trajectory set found by the optimizer, to a

function that executes the collision avoidance algorithm in order to obtain the non-collision

deployment times and new total mission time. The single stage algorithm seeks to find the

minimum mission time once collision-free event is ensured. A high-level visual of this new

logic is shown in Figure 3.4.

30

Figure 3.4: Single Stage Algorithm High-Level Logic

3.3.2 Validation

The expected benefit of performing the proposed logic change is the possible improvement

of the overall mission time. If the optimal solution from stage 1 of the existing approach

[6] happens to correspond to the optimal solution found in the new algorithm, then the

results of the two models will be the same, but the latter will provide more confidence

having exhausted more options. Alternatively, if the solutions of the two models do not

correspond to one another, it is because a different trajectory set was selected by the new

algorithm as it proved to be superior once collision avoidance offset times were calculated.

Running the proposed single stage algorithm resulted in Table 3.2, Figure 3.5, and

Figure 3.6. When comparing the resulting flight times of the new method in Table 3.2

to the results of the baseline in Table 3.1, the baseline produces a lower cost trajectory

set, which is why it was selected as the optimal set. This comparison is done prior to the

offset calculations. The results in Figure 3.6 show the overall mission of the trajectory

set selected by the single stage algorithm. From this graph, it is shown that the resulting

overall mission time from the proposed method is 846 seconds or 14 minutes and 6 seconds,

whereas, from Figure 3.3, the baseline overall mission time was 1025 seconds or 17 minutes

and 5 seconds. Therefore, the new method’s trajectories, depicted in Figure 3.5, provide a

significantly reduced overall mission time.

Remember Research Question 1: How can the existing algorithm be modified to

31

streamline the optimization process and does this modification improve the mission

time? This question was raised due to the inefficiencies and uncertainties of the two-stage

UAS-Based Inventory Tracking Solution [6]. A new algorithm logic is offered to satisfy

these concerns:

Hypothesis 1: The use of a callback function, to connect the trajectory optimization

and collision avoidance algorithm, calculates the deployment time-offsets, needed to

avoid collisions on all feasible trajectory sets. Using the single stage methodology, a

multi-vehicle problem established within a confined environment, where collisions are

probable, will result in the same or improved total mission time for a full-scale

experiment when compared to the two-stage logic flow.

Table 3.2: Subscale Single Stage Flight Times

UAV # Required Flight Time

1 10 min 11 sec

2 10 min 7 sec

32

Figure 3.5: Subscale Single Stage Algorithm Optimal Trajectories

Figure 3.6: Subscale Single Stage Algorithm Optimum Deployment Times for
Non-Collision Event

3.4 Min/Max Algorithm

The min/max algorithm aims to change the existing objective function, (2.16), which min-

imizes the sum total of each vehicles flight time, to a function that represents the total

mission time. The proposed objective function will minimize the mission time of the vehi-

cle with the maximum mission time. Since all of the vehicle’s mission times start at t = 0,

33

this min/max problem will seek to minimize the mission time of the vehicle that lands last,

thus minimizing the entire mission time. The vehicle with the maximum mission time is

representative of the entire mission time because when that vehicle lands, the mission is

complete. The goal of incorporating a min/max objective function is to have a better rep-

resentation of the overall mission time. Often this method is used when seeking to evenly

distribute the path lengths of each route, for example balancing the assignments of truck

delivery drivers [49] [54].

3.4.1 Model Formulation

In addition to adding the min/max capability, a new variable needs to be introduced to

ensure the optimum fleet size is selected. The method for doing this in the existing model

will no longer be reliable in this new setup. The existing approach minimizes the fleet

size through the objective function, (2.16), by adding in the setup times for each vehicle.

Therefore, the more vehicles in the fleet, the greater the sum of all the vehicle flight times

and setup times. Since the goal is to minimize that value, the smallest allowable fleet size

will be used.

In the new formulation, the objective function will not be summing all of the vehicle

mission times, but rather looking for the largest one in the set to minimize. With this, it

means that increasing the fleet size would potentially result in a shorter overall mission

time. In some cases, this may be beneficial, therefore, instead of minimizing fleet size,

this new formulation optimizes it. The new model does so by creating a fleet acquisition

cost. Therefore, each vehicle added to the system results in a greater fleet cost, or penalty

to the system. For this model, the fleet acquisition cost increases by f seconds per vehicle,

F = fv. The acquisition cost is mapped to an time value in order to correspond with the

units of the objective function. The value of f can change to fit the needs of a problem

by determining the required amount of time savings which would be worth acquiring an

extra vehicle. The optimization, rather than minimization of fleet size, occurs when the

34

overall mission time involving v vehicles is at least f seconds longer than if it involved

v + 1 vehicles. Overall, this method tries to minimize fleet size, unless there is a sufficient

benefit to increase it, which is also known as a penalty function.

The proposed min/max objective function is formulated as follows:

Min(Max(
∑
i∈N

∑
j∈N

Ti,jxi,j,k + ts + F)) (k ∈ V) (3.4)

Subject to: (2.17), (2.18), (2.19), (2.20), (2.21), (2.22), (2.23), (2.24), and (2.25).

To examine the impacts of this new objective function, the two-stage process remains

the same with collision avoidance being calculated with equation (3.1) and subject to (3.2).

3.4.2 Validation

The expected results of changing the objective function from equation (2.16) to equation

(3.4) is obtaining an accurate representative of the overall mission time. The proposed

objective function, (3.4), aims to minimize the maximum mission time from the set of all

UAV mission times. The mission time for each UAV is its required setup time and its

required flight time.

Looking at the baseline results in Table 3.1, the mission times for the two UAVs, prior

to the collision offset calculation, are 12 minutes and 7 seconds and 14 minutes and 7 sec-

onds, respectively, when you add in the associated setup times. Similarly, from the results

of the min/max model in Table 3.3, with the setup times added in, the mission times for the

two vehicles are 12 minutes and 33 seconds and 14 minutes and 5 seconds. The trajectories

associated with these times can be seen in Figure 3.7. Therefore, the baseline would have

an actual mission time of 14 minutes and 7 seconds before considering collisions and the

new approach’s mission time would be 14 minutes and 5 seconds before collision consid-

eration as well. Even though this difference is minimal, the new objective function, (3.4),

35

still shows an improvement from the previous method. Once the collision-avoidance off-

set is calculated, the difference between the baseline and the min/max algorithm becomes

significantly evident, as can be seen when comparing Figure 3.3 and Figure 3.8.

Recall Research Question 2: What modifications can be made to the existing ob-

jective function in order to represent the overall mission time of a task performed

by multiple vehicles? This question was raised because the current method’s objective

function for multiple vehicles is not measuring the actual total mission time but rather the

mission time of each UAS added together. Therefore, a new objective function was defined

to remedy this:

Hypothesis 2: Defining the objective function of the trajectory optimization as a

min/max problem will be representative of the overall mission time and therefore,

obtain a shorter mission time in the full-scale problem than minimizing the total

mission time of all UAVs.

Table 3.3: Subscale Min/Max Algorithm Flight Times

UAV # Required Flight Time

1 10 min 33 sec

2 10 min 5 sec

36

Figure 3.7: Subscale Min/Max Algorithm Optimal Trajectories

Figure 3.8: Subscale Min/Max Algorithm Optimum Deployment Times for Non-Collision
Event

3.5 Multi-Depot Algorithm

A multiple deployment location setup aims to find a better way to handle the operations

of this mission. Multiple depots reduce the offset times because each vehicle can begin

its setup at t = 0; this reduction decreases the overall mission time. Additionally, with

each vehicle deploying from separate locations, their trajectories may have fewer collision

points since they are initially spread out. Lessening the possibility of accidents allows the

vehicles to have larger overlaps in their flight times because fewer deployment offsets will

be required. This has two main benefits, further minimization of the overall mission time

37

and fewer computational iterations to resolve potential collision points.

3.5.1 Model Formulation

The multi-depot method will also require the fleet acquisition cost within the objective

function because with each vehicle having the potential to deploy at the same time, there

would be no significant penalty for incorporating additional vehicles.

The multi-depot algorithm is defined by the graph, G = (N ,A). Where N is the set

of vertices, or nodes, in the graph. These nodes are broken down into two subsets, D and

W , where N = D ∪ W . D represents the set of depot nodes and W represents the set

of waypoint nodes. D = {0, 1, . . . , d}, W = {d + 1, d + 2, . . . , w} and A is the set of

edges, or arcs, that connect the nodes, A = {(i, j) : i, j ∈ N , if i ∈ D then j /∈ D, if j ∈

D then i /∈ D, i 6= j}. There is then an associated cost set analogous to the edge set,

C = (ci,j), this cost is defined by the flight time between nodes (i, j).

The following sets up the multi-depot optimization model variables:

xi,j,k: Binary decision variable, where:

xi,j,k =

 1, if the edge appears in the optimal tour

0, otherwise

yi,j,k: flow variable, where:

yi,j,k =

 Time from depot to j through i, if xi,j,k = 1

0, otherwise

Ti,j: Flight time from node i to node j

V: Set of identical vehicles

E: Maximum endurance time of each UAV

ts: Setup time for each UAV

F : Fleet acquisition cost

D: Set of depots

38

W: Set of waypoints

The multi-depot objective function is formulated as follows, by minimizing the total

flight time, setup time of each vehicle, and the fleet acquisition cost:

Objective Function:

Minimize
∑
k∈V

∑
i∈N

∑
j∈N

Ti,jxi,j,k +
∑
k∈V

ts + F (3.5)

Subject to the following constraints:

∑
k∈V

∑
j∈N

xi,j,k = 1 (i 6= j, i ∈ W) (3.6)

∑
k∈V

∑
i∈N

xi,j,k = 1 (i 6= j, j ∈ W) (3.7)

∑
i∈D

∑
j∈W

xi,j,k = 1 (k ∈ V) (3.8)

∑
j∈D

∑
i∈W

xi,j,k = 1 (k ∈ V) (3.9)

∑
k∈V

∑
j∈W

xi,j,k ≤ 1 (i ∈ D) (3.10)

∑
k∈V

∑
i∈W

xi,j,k ≤ 1 (j ∈ D) (3.11)

∑
j∈N

yi,j,k −
∑
j∈N

yj,i,k −
∑
j∈N

Ti,jxi,j,k = 0 (i ∈ W , k ∈ V) (3.12)

yi,j,k = Ti,jxi,j,k (i ∈ D, j ∈ W , k ∈ V) (3.13)

yi,j,k ≤ (E − Tj,h)xi,j,k (i ∈ N , h ∈ D, j ∈ W , k ∈ V) (3.14)

yi,j,k ≤ Exi,j,k (i ∈ W , j ∈ D, k ∈ V) (3.15)

yi,j,k ≥ (Th,i + Ti,j)xi,j,k (h ∈ D, i ∈ W , j ∈ W , k ∈ V) (3.16)

39

Equation (3.6) and (3.7) ensure each node is visited once by exactly one vehicle. Equa-

tion (3.8) and (3.9) make sure every vehicle starts and ends their route at an unoccupied

depot location. While constraints (3.10) and (3.11) ensure that at most only one vehicle

can deploy from and land at each depot. Subtours are eliminated with equation (3.12) and

the endurance constraints are applied with equations (3.13) through (3.16).

Collision avoidance offsets are determined with equation (3.1) subject to constraint

(3.2).

3.5.2 Validation

The results of the multi-depot algorithm can be seen in Table 3.4 and in Figures 3.9 and

3.10. These show significant improvement from the baseline results because the vehicles

are able to overlap their entire mission times and initially begin their routes with ample

separation to reduce the risk of collisions. Thereby resulting in an overall mission time of

11 minutes and 7 seconds for the new method, compared to the 17 minutes and 5 seconds

mission time for the baseline.

After exploring this model’s formulation, a drawback is evident in the operational setup.

Each vehicle deploys from the same location, thus resulting in initial vehicle offsets, ex-

tending the overall mission time, as well as large overlaps in trajectory paths, increasing

the vulnerability to potential collisions.

Lastly, Research Question 3: How can the operational setup be transformed to

simplify and improve the algorithm and results? This question was raised to see if

the environmental setup could be altered to achieve better results. Thus, the following

operation is proposed:

Hypothesis 3: Deploying the UAVs from multiple depots, rather than a single depot,

will significantly reduce the overall mission time in the full-size model because the

40

vehicles will have greater overlaps in flight times with the ability to deploy

simultaneously.

Table 3.4: Subscale Multi-Depot Algorithm Flight Times

UAV # Required Flight Time

1 9 min 7 sec

2 9 min 7 sec

Figure 3.9: Subscale Multi-Depot Algorithm Optimal Trajectories

41

Figure 3.10: Subscale Multi-Depot Algorithm Optimum Deployment Times for
Non-Collision Event

3.6 Model Dimensionality Reduction

In addition to the three new methodologies, a model dimensionality reduction is also intro-

duced. This serves to reduce computation time and complexity, as these are exponentially

related to the number of variables within a model. Figure 3.11 shows the full-scale ware-

house environment and the complete initial node network, which consists of 1 depot node

(red) and 180 waypoint nodes (blue and green). A model of this size requires significant

computing power as the decision variables are defined as the connections (xi,j,k) and flow

(yi,j,k) between these nodes.

The model is reduced by removing the green nodes from Figure 3.11, resulting in the

reduced initial node network shown in Figure 3.12. This new network contains 1 depot

node (red) and 45 waypoint nodes (blue). The optimization methodologies will create

tours through this new simplified node network and then convert the paths to the complete

network representation for collision avoidance. For example, Figure 3.13 shows a possi-

ble reduced network connection (yellow path), between node A and node B. Similar to

the subscale model, each edge has an associated cost or weight. Previously, this weight

corresponded to the flight time between the two nodes. In the new model, an assumption

is made that once a waypoint node is visited by a vehicle, that vehicle must travel down

the length of that shelf and also return along the shelf directly above. This imaginary path

(purple) can be visualized in Figure 3.14. The weight or cost of the path from node A to

42

node B in the reduced model (yellow path) is equivalent to the flight time of the converted

path (purple path). This conversion is used to generate each vehicles full trajectory and is

also necessary for the collision avoidance algorithm. It is important to note that this model

reduction now creates a directed graph, where ci,j 6= cj,i. From Figure 3.14, the path from

A to B would have a slightly different flight time than the path from B to A. The reduction

of nodes in this model will greatly simplify the trajectory optimization algorithms.

Figure 3.11: Complete Initial Node Network

43

Figure 3.12: Reduced Initial Node Network

Figure 3.13: Reduced Edge Generation

44

Figure 3.14: Converted Edge Generation

45

CHAPTER 4

RESULTS ANALYSIS

4.1 Experimental Setup

A warehouse environment, shown in Figure 2.8, is set up to test the capabilities of each

proposed model individually and also combined. The experiment utilizes a fleet of homo-

geneous vehicles, in this case, the DJI Phantom 4. The simulations assume the following

information:

• Vehicle Endurance: 25 minutes

• Setup Time: 2 minutes

• Vehicle Acquisition Cost: 3 minutes

• Cruise Speed: 1 m/s

• Scan Speed: 0.3 m/s

• Relative Tolerance: 0.005

• Min. Vehicle Distance: 3 meters

An operational assumption is also made; the UAV’s are capturing images of the product

tags which contain unique identifiers to process through an image recognition algorithm to

obtain an accurate inventory. At the slow scanning speed, the time to capture a clear image

is negligible. The above values, with the exception of the vehicle acquisition cost and

the relative tolerance, are assumed from the experiment run within the existing method by

Choi et al. [6]. These values are used to formulate a point solution to test and evaluate

the proposed methods and hypotheses and uncover the best methodology combination to

proceed with further testing on a range of input parameters.

46

4.2 Baseline Results

Similar to the subscale experiments laid out in Chapter 3, the UAS-Based Inventory Track-

ing Solution formulation developed by Choi et al. [6] is used as the baseline, although this

time with the addition of the model dimensionality reduction defined in Section 3.6. These

results will be useful for comparison with the new model formulations and results. The

first stage of the optimization algorithm results in the five UAV trajectories shown in Fig-

ure 4.1, with corresponding flight times shown in Table 4.1. In the second stage, collision

avoidance algorithm offsets the deployment of the five vehicles and the results can be seen

in Figure 4.2. The baseline has a total mission time of 41 minutes and 7.8 seconds to run

an inventory audit in this warehouse section.

Table 4.1: Baseline Flight Times

UAV # Required Flight Time

1 24 min 2.1 sec

2 23 min 40.5 sec

3 23 min 31 sec

4 23 min 59.4 sec

5 23 min 53.8 sec

47

Figure 4.1: Baseline Optimal Trajectories

48

Figure 4.2: Baseline Optimum Deployment Times for Non-Collision Event

4.3 Single Stage Algorithm Results

The results of running the single stage algorithm can be viewed in Table 4.2, Figure 4.3,

and Figure 4.4. The resulting mission time for this algorithm was 35 minutes and 32.2

seconds. Compared to the baseline, this shows a 14.6% reduction in the overall mission

time to complete an inventory audit with the new methodology. The two-stage logic only

calculates the deployment offsets for the optimal trajectory set of stage 1. From these

results, it is clear that one of the other feasible (but not necessarily optimal) trajectory

sets from the optimization process had fewer collision points and therefore fewer offsets,

leading to a significantly reduced mission time. As a reminder, Hypothesis 1: The use

of a callback function, to connect the trajectory optimization and collision avoidance

49

algorithm, calculates the deployment time-offsets, needed to avoid collisions on all

feasible trajectory sets. Using the single stage methodology, a multi-vehicle problem

established within a confined environment, where collisions are probable, will result

in the same or improved total mission time for a full-scale experiment when compared

to the two-stage logic flow. The results laid out in this section permits the acceptance of

Hypothesis 1.

Table 4.2: Single Stage Algorithm Flight Times

UAV # Required Flight Time

1 24 min 6.2 sec

2 24 min 2.5 sec

3 23 min 41.1 sec

4 24 min 9.2 sec

5 24 min 2.2 sec

50

Figure 4.3: Single Stage Algorithm Optimal Trajectories

51

Figure 4.4: Single Stage Algorithm Optimum Deployment Times for Non-Collision Event

4.4 Min/Max Algorithm Results

Vehicle flight times and the associated trajectories for the min/max problem are shown in

Table 4.3 and Figure 4.5, respectively. The collision avoidance algorithm produced the

deployment offsets seen in Figure 4.6 with a final mission time of 42 minutes and 12.1

seconds. Consequently, incorporating a min/max objective function actually increased the

overall mission time compared to the baseline. The argument that the min/max objective

function is representative of the overall mission time only holds true before accounting for

vehicle offsets and collision avoidance. Once the offset deployment times are calculated,

the min/max algorithm trajectories could have more potential for collisions resulting in a

longer mission time. Recall, Hypothesis 2: Defining the objective function of the trajec-

52

tory optimization as a min/max problem will be representative of the overall mission

time and therefore, obtain a shorter mission time in the full-scale problem than min-

imizing the total mission time of all UAVs. The collision avoidance considerations and

the min/max results depicted prompts the rejection of Hypothesis 2.

Table 4.3: Min/Max Algorithm Flight Times

UAV # Required Flight Time

1 24 min 1.4 sec

2 23 min 49 sec

3 24 min 1.5 sec

4 23 min 45.5 sec

5 23 min 54.1 sec

Figure 4.5: Min/Max Algorithm Optimal Trajectories

53

Figure 4.6: Min/Max Algorithm Optimum Deployment Times for Non-Collision Event

4.5 Multi-Depot Algorithm Results

The multi-depot operational setup resulted in shorter vehicle flight times, laid out in Table

4.4. Visualization of these trajectories can be found in Figure 4.7. Collision avoidance

algorithm results are shown in Figure 4.8. This methodology had a resulting mission time

of 33 minutes and 15.6 seconds, a 21.2% mission time reduction from the baseline. The

ability to remove the initial vehicle offsets and allow for a preliminary separation barrier

between vehicles has a large impact on decreasing the overall mission time. Remember,

Hypothesis 3: Deploying the UAVs from multiple depots, rather than a single depot,

will significantly reduce the overall mission time in the full-size model because the

vehicles will have greater overlaps in flight times with the ability to deploy simul-

54

taneously. Substantial mission time savings with the multi-depot algorithm enables the

acceptance of Hypothesis 3.

Table 4.4: Multi-Depot Algorithm Flight Times

UAV # Required Flight Time

1 23 min 25.8 sec

2 23 min 29 sec

3 23 min 16.9 sec

4 23 min 21.1 sec

5 23 min 22.6 sec

Figure 4.7: Multi-Depot Algorithm Optimal Trajectories

55

Figure 4.8: Multi-Depot Algorithm Optimum Deployment Times for Non-Collision Event

4.6 Algorithm Combination Results

After running the algorithms individually, they are also simulated in combination with one

another to see if further mission time improvements are observed. The results of these

combinations are laid out within this section and the analysis and comparison between

simulations is discussed in Section 4.7.

4.6.1 Single Stage and Min/Max Algorithm Results

Combining the single stage algorithm with the min/max objective function produced the

results shown in Table 4.5, Figure 4.9, and Figure 4.10.

56

Table 4.5: Single Stage & Min/Max Algorithm Flight Times

UAV # Required Flight Time

1 23 min 53 sec

2 23 min 53.2 sec

3 24 min 1.8 sec

4 23 min 51.6 sec

5 24 min 1.9 sec

Figure 4.9: Single Stage & Min/Max Algorithm Optimal Trajectories

57

Figure 4.10: Single Stage & Min/Max Algorithm Optimum Deployment Times for
Non-Collision Event

4.6.2 Single Stage and Multi-Depot Algorithm Results

Next, the single stage algorithm was packaged with the multi-depot setup and formulated

Table 4.6, Figure 4.11, and Figure 4.12.

58

Table 4.6: Single Stage & Multi-Depot Algorithm Flight Times

UAV # Required Flight Time

1 23 min 33 sec

2 23 min 17.6 sec

3 23 min 17.3 sec

4 23 min 35.5 sec

5 23 min 27 sec

Figure 4.11: Single Stage & Multi-Depot Algorithm Optimal Trajectories

59

Figure 4.12: Single Stage & Multi-Depot Algorithm Optimum Deployment Times for
Non-Collision Event

4.6.3 Min/Max and Multi-Depot Algorithm Results

The min/max and multi-depot algorithms were merged together to create the results in

Table 4.7, Figure 4.13, and Figure 4.14.

60

Table 4.7: Min/Max & Multi-Depot Algorithm Flight Times

UAV # Required Flight Time

1 23 min 22.9 sec

2 23 min 24.6 sec

3 23 min 18.8 sec

4 23 min 21.7 sec

5 23 min 22.9 sec

Figure 4.13: Min/Max & Multi-Depot Algorithm Optimal Trajectories

61

Figure 4.14: Min/Max & Multi-Depot Algorithm Optimum Deployment Times for
Non-Collision Event

4.6.4 Single Stage, Min/Max and Multi-Depot Algorithm Results

Finally, all three methods were fused with the simulation results portrayed in Table 4.8,

Figure 4.15, and Figure 4.16.

62

Table 4.8: Single Stage, Min/Max & Multi-Depot Algorithm Flight Times

UAV # Required Flight Time

1 23 min 26.6 sec

2 23 min 24.6 sec

3 23 min 18.8 sec

4 23 min 26 sec

5 23 min 22.9 sec

Figure 4.15: Single Stage, Min/Max & Multi-Depot Algorithm Optimal Trajectories

63

Figure 4.16: Single Stage, Min/Max & Multi-Depot Algorithm Optimum Deployment
Times for Non-Collision Event

4.7 Simulation Comparisons

As discussed, each of the considered improvements was simulated individually, as well as

in combination with one another, and then compared to the baseline results. The summary

of inventory audit mission times and percent difference from the baseline for each exper-

iment is organized in Table 4.9. Figure 4.17 and Figure 4.18 depicts each simulation’s

adherence to the minimum distance constraint between any two vehicles during the entire

mission.

Comparing the results of the individual methods described in sections 3.3, 3.4, and 3.5

for the warehouse inventory test case; the use of multiple deployment locations shows the

largest reduction in the overall mission time, -21.2% from the baseline.

64

The use of the single stage method appeared to significantly improve the results of the

baseline, as well as improving the results of the min/max and multi-depot methods. In fact,

the best overall mission time of 28 minutes and 16 seconds (-37.1% from the baseline)

resulted from using the multi-depot operational setup in combination with the single stage

logic. The trajectories and offset times for this combination are shown in Figure 4.11 and

4.12, respectively.

Table 4.10 organizes the optimization computation time for each method. It is important

to note that these computation times only correspond to the trajectory generation compu-

tation times and do not include the collision avoidance algorithm computation times. The

collision avoidance computing time is dependent on the number of feasible trajectory sets

that are required to be solved for each methodology. The notable decrease in computation

time compared to the previous method is a result of the model dimensionality reduction

discussed in Section 3.6. Due to the efficiency of the new algorithm, parallel computing

resources were not needed to execute the simulations, as was necessary for the previous

method.

Comparisons between the results of the previous method and the new algorithm results

are not justified due to initial differences in the models. The main difference was the initial

node network setup that involved the dimensionality reduction in the new model. As a

result of the increased efficiency of the new model, the optimization process was able to

run closer to completion, with a cutoff tolerance of 0.005, rather than the previous model

which had a tolerance of 0.05. These differences would not allow for accurate assessments

of the proposed changes, which warranted the need for a baseline.

65

Table 4.9: Results Summary

Simulation Description Mission Time % Diff

0 UAS-Based Inventory Tracking Solution [6] 79 min 13 sec N/A

1 Baseline 41 min 7.8 sec 0%

2 Single Stage 35 min 32.2 sec -14.6%

3 Min//Max 42 min 12.1 sec +2.6%

4 Multi-Depot 33 min 15.6 sec -21.2%

5 Single Stage & Min/Max 36 min 50.9 sec -11.0%

6 Single Stage & Multi-Depot 28 min 16 sec -37.1%

7 Min/Max & Multi-Depot 35 min 42.9 sec -14.1%

8 Single Stage, Min/Max & Multi-Depot 30 min 40.2 sec -29.1%

Table 4.10: Optimization Computation Time

Simulation Description Computation Time

0 UAS-Based Inventory Tracking Solution [6] ≈ 86,400 sec

1 Baseline 828 sec

2 Single Stage 828 sec

3 Min//Max 424 sec

4 Multi-Depot 789 sec

5 Single Stage & Min/Max 424 sec

6 Single Stage & Multi-Depot 789 sec

7 Min/Max & Multi-Depot 7174 sec

8 Single Stage, Min/Max & Multi-Depot 7174 sec

66

Fi
gu

re
4.

17
:M

in
im

um
V

eh
ic

le
D

is
ta

nc
e

C
on

st
ra

in
tf

or
In

di
vi

du
al

A
lg

or
ith

m
s

67

Fi
gu

re
4.

18
:M

in
im

um
V

eh
ic

le
D

is
ta

nc
e

C
on

st
ra

in
tf

or
C

om
bi

ne
d

A
lg

or
ith

m
s

68

CHAPTER 5

SENSITIVITY ANALYSIS

The results of the point solution simulations from chapter 4 concluded with the single stage

and multi-depot algorithm combination providing the best overall mission time. To further

examine this algorithm, a sensitivity analysis is set up with a range of design parameters

to test on the single stage/multi-depot combination. This experiment is established to show

boundaries of this algorithm and to explore different input combinations, rather than point

solutions in order to predict possible outcomes.

This experiment, once again, used a homogeneous fleet of vehicles, although, many

vehicle parameters were manipulated throughout, such as vehicle endurance, scan speed,

and cruise speed. Varying these parameters will help establish the requirements a vehicle

must meet to complete a given configuration. Therefore, the warehouse geometry is also

altered to address some different warehouse sizes and to better understand the limitations

of an environment. For the collision avoidance algorithm, the minimum vehicle separation

distance is varied, as the size of vehicles may require different separations. For the most

part, the values for each design parameter were chosen to be greater than and less than the

values used for the point solution discussed in chapter 4.

Three responses of the algorithm will be analyzed: fleet size, optimization computation

time, and mission time. Fleet size and mission time were chosen as they are the quanti-

ties being optimized within the algorithm and will be impacted by the various parameter

changes. The computation time is tested because it helps demonstrate the efficiency of the

new algorithm.

5.1 Experimental Setup

Fixed Parameters:

69

• Setup Time: 2 minutes

• Vehicle Acquisition Cost: 3 minutes

• Relative Tolerance: 0.005

• Optimization Computation Time Limit: 1 hour

• Max. Fleet Size: 10 vehicles

Design Parameters:

• Vehicle Endurance: 20, 25, or 30 minutes

• Cruise Speed: 1, 2, or 3 m/s

• Scan Speed: 0.1, 0.2, or 0.3 m/s

• Min. Vehicle Distance: 1, 3, or 5 meters

• Warehouse Volume:

– Shelf Length: 10, 25, or 40 meters

– Number of Waypoints:

∗ Number of Rows of Shelves: 5, 10, or 15 rows

∗ Number of Shelves per Row: 4, 10, or 16 shelves

Design Responses:

• Fleet Size

• Optimization Computation Time

• Mission Time

70

A full-factorial design of experiments is created with the seven 3-level factors listed

above. This resulted in a total of 2,187 iterations. Each iteration terminates when the

model is results in a feasible solution or is determined to be infeasible. In addition to a

model being physically infeasible, in order to simplify computation time and expense, a

model is also declared infeasible if it exceeds the one hour computation time limit without

finding a solution or if the fleet size exceeds 10 vehicles.

5.2 Results

The goal of this sensitivity analysis was to examine the effects of varying different input

parameters on the overall results and robustness of the algorithm.

In the first graph, Figure 5.2, different combination of design variable inputs were ex-

amined to understand the feasible limits of this algorithm. This graph compared vehicle

endurance, scan speed, cruise speed, and warehouse volume, which was a function of the

shelf length, number of rows, and number of shelves. The only input which is unaccounted

for in this graph is the minimum vehicle distance, as this design variable does not play

a role in model feasibility since it only impacts the collision avoidance part of the algo-

rithm. Figure 5.1 shows the legend for this first graph. From Figure 5.2, it can be seen that

the feasible region grows as the scan speed and vehicle endurance increase. Conversely,

the feasible region grows as the warehouse volume decreases and the cruise speed shows

minimal effect on the feasibility of the algorithm. This minimal effect is likely due to the

significantly smaller amount of mission time spent in the cruise speed regions rather than

the scan speed areas. Logically, these results make sense. The largest impacts appear to

stem from the scan speed and warehouse volume. Therefore, if using a scan speed of 0.1

m/s, the volume must stay below 2,000 m3. A scan speed of 0.3 m/s, would require a

volume less than 7,000 m3. Finally, a scan speed of 0.5 m/s, would need a warehouse less

than 11,000 m3 in size to be feasible. For this sensitivity analysis and model, any volumes

above 11,000 m3 returned infeasible.

71

The graphs shown in Figure 5.3 to Figure 5.7 begin to explore the sensitivity of the

fleet size from the varying parameters. When examining the fleet size, the entire design

space (feasible and infeasible) is investigated. Table 5.1 concisely describes the relationship

between these values. In Figure 5.8, the endurance, scan speed, and volume parameters are

combined to help facilitate the prediction of fleet size for given inputs.

Table 5.1: Design Variables vs. Fleet Size

Input Correlation

Vehicle Endurance Weak Negative

Scan Speed Strong Negative

Cruise Speed None

Volume Strong Positive

Number of Waypoints Strong Positive

Next, the optimization computation time is examined with the graphs in Figure 5.9 to

Figure 5.14. These graphs have narrowed down the design space to only show the feasible

options, as the time limit constraint skews the data trends. Table 5.2 concisely describes

the relationship between these values. In Figure 5.15, the number of waypoints, endurance,

and scan speed parameters are combined to help facilitate the computation time prediction

for specified inputs.

72

Table 5.2: Design Variables vs. Optimization Computation Time

Input Correlation

Vehicle Endurance None

Scan Speed None

Cruise Speed None

Volume None

Number of Waypoints Strong Positive up to 50 waypoints

Fleet Size Weak Positive

Finally, the mission time output is studied through the graphs in Figure 5.16 to Fig-

ure 5.22. Once again, these graphs only show the feasible design points as the infeasible

missions times are non-existent. Table 5.3 concisely describes the relationship between

these values. In Figure 5.23, the minimum vehicle distance, endurance, and scan speed

variables are combined in a single graph to aid in predicting the overall mission time for

given inputs.

Table 5.3: Design Variables vs. Mission Time

Input Correlation

Vehicle Endurance Weak Positive

Scan Speed Weak Negative

Cruise Speed None

Min. Vehicle Distance Strong Positive

Volume None

Number of Waypoints None

Fleet Size Weak Positive

73

Figure 5.1: Graph Legend for Figure 5.2 and Figure 5.8

Figure 5.3: Vehicle Endurance vs. Fleet Size

74

Fi
gu

re
5.

2:
D

es
ig

n
V

ar
ia

bl
es

vs
.F

ea
si

bi
lit

y

75

Figure 5.4: Scan Speed vs. Fleet Size

Figure 5.5: Cruise Speed vs. Fleet Size

76

Figure 5.6: Volume vs. Fleet Size

Figure 5.7: Number of Waypoints vs. Fleet Size

77

Fi
gu

re
5.

8:
D

es
ig

n
V

ar
ia

bl
es

vs
.F

le
et

Si
ze

78

Figure 5.9: Vehicle Endurance vs. Optimization Computation Time

Figure 5.10: Scan Speed vs. Optimization Computation Time

79

Figure 5.11: Cruise Speed vs. Optimization Computation Time

Figure 5.12: Volume vs. Optimization Computation Time

80

Figure 5.13: Number of Waypoints vs. Optimization Computation Time

Figure 5.14: Fleet Size vs. Optimization Computation Time

81

Fi
gu

re
5.

15
:D

es
ig

n
V

ar
ia

bl
es

vs
.O

pt
im

iz
at

io
n

C
om

pu
ta

tio
n

Ti
m

e

82

Figure 5.16: Vehicle Endurance vs. Mission Time

Figure 5.17: Scan Speed vs. Mission Time

83

Figure 5.18: Cruise Speed vs. Mission Time

Figure 5.19: Min. Vehicle Distance vs. Mission Time

84

Figure 5.20: Volume vs. Mission Time

Figure 5.21: Number of Waypoints vs. Mission Time

85

Figure 5.22: Fleet Size vs. Mission Time

86

Fi
gu

re
5.

23
:D

es
ig

n
V

ar
ia

bl
es

vs
.M

is
si

on
Ti

m
e

87

CHAPTER 6

CONCLUSION

6.1 Future Work

Future work on this problem may include further analysis of these methods through testing

on a wide variety of experimental setups or other UAV applications and use cases. Ex-

plorations of different warehouse layouts and sizes or other confined environment models,

such as search and rescue scenarios, could provide interesting insight to these algorithms.

This algorithm would also benefit from having an initial capability to create dynamic or

undefined models. This would help account for uncertainties within the environment and

versatility of the algorithm [55] [56] [57], thus stepping closer to real-world application.

Full warehouse environments, like those mentioned in section 1.2, would require an

additional component to obtain feasible results with the presented algorithm. Due to the

massive size of entire warehouses, they will need to be divided into smaller and more man-

ageable areas to accommodate the vehicle endurance and computation time restrictions.

Utilizing graph partitioning techniques, such as those discussed in [58] [59] [60], would fa-

cilitate this process and allow for optimal integration with the new trajectory optimization.

Additional model reductions could be investigated for even further improvement to the

algorithms efficiency. One avenue could be exploring the possibility of having two cameras

on each vehicle with the ability to capture and track the products on parallel but opposite

shelves in an aisle at the same time. This may not only reduce computational complexity,

but also reduce fleet sizes and mission times as well.

88

6.2 Conclusion

Overall, a new multi-UAV trajectory optimization methodology for UAS operations in con-

fined environment was introduced. As a practical example, a UAS-based inventory track-

ing problem was used. To optimally and safely operate multi-UAVs, multiple optimization

problems using the single stage logic, min/max objective function, and multi-depot oper-

ational setup were proposed to improve an existing optimization framework. Numerical

simulations were conducted to compare the baseline method and new proposed optimiza-

tion methods. Significant benefits were observed from the single stage and multi-depot

methods, whereas, the min/max objective function was not beneficial for reducing mission

time in the warehouse inventory tracking use case. The outcomes from the individual al-

gorithms became further enhanced when the combined algorithm results showed that the

single stage logic in combination with the multi-depot operational setup proved to have the

largest impact on reducing the overall mission time.

The single stage/multi-depot algorithm combination was analyzed with a range of in-

put parameters to show how the algorithm responds to variance. It was observed that the

vehicle’s scan speed along with the warehouse volume played the most significant role in

determining model feasibility. The fleet size response was most sensitive to the warehouse

geometry parameters. The optimization computation time appeared to only be impacted by

the number of waypoints and the fleet size. Lastly, the overall mission time saw the greatest

influence from the minimum vehicle separation distance to avoid collisions.

The overall research objective to improve and optimize the total mission time of multi-

ple UAVs performing a warehouse inventory audit was addressed with the work completed

in this thesis. This work will be presented at the 2019 International Conference on Un-

manned Aircraft Systems (ICUAS) [61]. The main contributions of this thesis lies within

the following:

• A new trajectory optimization algorithm which can be applied to multi-UAV use

89

cases in confined and complex environments

• A method for reducing the dimensionality and complexity of a warehouse model

which simplifies the computational expense of larger-scale problems

• A diverse set of parameter initialization combinations and corresponding response

trends and feasibility

90

REFERENCES

[1] Y. Choi, Y. Choi, S. Briceno, and D. N. Mavris, “Three-dimensional UAS trajec-
tory optimization for remote sensing in an irregular terrain environment,” in 2018
International Conference on Unmanned Aircraft Systems (ICUAS), 2018, pp. 1101–
1108.

[2] W. B. Carlson, Tesla Inventor of the Electrical Age. Princeton University Press, 2013.

[3] Global unmanned aerial vehicle (UAV) market 2018-2025 - focus on UAV platforms,
UAV payloads, UAV GCS, UAV data links, UAV launch and recovery systems, 2018.

[4] “Global $2+ billion commercial drones (rotary blade drones, hybrid drones, nano
drones fixed wing drones) market 2017-2022,” BioMedReports, 2017.

[5] D. Zhang, Y. Xu, and X. Yao, “An improved path planning algorithm for unmanned
aerial vehicle based on rrt-connect,” in 2018 37th Chinese Control Conference (CCC),
2018, pp. 4854–4858.

[6] Y. Choi, M. Martel, S. Briceno, and D. Mavris, “Multi-UAV trajectory optimiza-
tion and deep learning-based imagery analysis for a UAS-based inventory tracking
solution,” AIAA SciTech 2019 Forum, 2019.

[7] Y. Geng, Y. Li, and A. Lim, “A very large-scale neighborhood search approach to
capacitated warehouse routing problem,” in 17th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI’05), 2005, 8 pp.–65.

[8] Steelcase site survey, 2018.

[9] 2017 survey of occupational injuries illnesses, 2018.

[10] Watch out Amazon: Wal-Mart prepping drone delivery service, seeking fed’s ap-
proval, 2015.

[11] Asset tracking and inventory management solutions market to be worth US $30.59bn
by 2026 - tmr, 2018.

[12] T. Jackson, “The flying drones that can scan packages night and day,” BBC News,
2017.

[13] H. G. Zhu, H. Xin, and C. W. Zheng, “Research on UAV path planning,” Applied
Mechanics and Materials, vol. 58-60, p. 2351, Jun. 2011.

91

[14] “Walmart Distribution Center Network USA — MWPVL,” 2018.

[15] P. Gun, A. Hill, and R. Vujanic, Multi-vehicle trajectory optimisation on road net-
works, 2018.

[16] A. Alves Neto, D. G. Macharet, M. F. Campos, and M., “On the generation of tra-
jectories for multiple UAVs in environments with obstacles,” Journal of Intelligent
Robotic Systems, vol. 57, no. 1-4, pp. 123–141, Jan. 2010.

[17] Y. Chen, J. Yu, X. Su, and G. Luo, “Path planning for multi-UAV formation,” Journal
of Intelligent Robotic Systems, vol. 77, no. 1, pp. 229–246, Jan. 2015.

[18] J. Chen, F. Ye, and T. Jiang, “Path planning under obstacle-avoidance constraints
based on ant colony optimization algorithm,” in 2017 IEEE 17th International Con-
ference on Communication Technology (ICCT), 2017, pp. 1434–1438.

[19] Z. He and L. Zhao, “The comparison of four UAV path planning algorithms based
on geometry search algorithm,” in 2017 9th International Conference on Intelligent
Human-Machine Systems and Cybernetics (IHMSC), vol. 2, 2017, pp. 33–36.

[20] L. D. Seneviratne, K. W-S, and S. W. E. Earles, “Triangulation-based path plan-
ning for a mobile robot,” Proceedings of the Institution of Mechanical Engineers,
vol. 211, no. 5, p. 365, 1997.

[21] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,”
Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1258 –1276, 2013.

[22] C. Prodhon and C. Prins, “Metaheuristics for vehicle routing problems,” in Meta-
heuristics, P. Siarry, Ed. Cham: Springer International Publishing, 2016, pp. 407–
437, ISBN: 978-3-319-45403-0.

[23] Homework 3. Trapezoidal Cell Decomposition and Coverage.

[24] A. Becker and A. Paul, A framework for vehicle routing approximation schemes in
trees, 2019.

[25] A. Sathyan, N. Boone, and K. Cohen, “Comparison of approximate approaches to
solving the travelling salesman problem and its application to UAV swarming,” Inter-
national Journal of Unmanned Systems Engineering., vol. 3, no. 1, pp. 1–16, 2015.

[26] P. Toth and D. Vigo, “Models, relaxations and exact approaches for the capacitated
vehicle routing problem,” Discrete Applied Mathematics, vol. 123, no. 1, pp. 487
–512, 2002.

92

[27] G. Laporte, “A concise guide to the traveling salesman problem,” The Journal of the
Operational Research Society, vol. 61, no. 1, pp. 35–40, Jan. 2010.

[28] J. F. Puget, “No, The TSP Isn’t NP Complete,” 2013.

[29] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,” Management
Science (pre-1986), vol. 6, no. 1, p. 80, Oct. 1959.

[30] “Hamiltonian Cycle: Simple Definition and Example,” 2017.

[31] R. Matai, S. Singh, and M. L. Mittal, “Traveling salesman problem: An overview of
applications, formulations, and solution approaches,” in Traveling Salesman Prob-
lem, D. Davendra, Ed., Rijeka: IntechOpen, 2010, ch. 1.

[32] F. Nuriyeva and G. Kizilates, “A new heuristic algorithm for multiple traveling sales-
man problem,” TWMS Journal of Applied and Engineering Mathematics, vol. 7,
no. 1, pp. 101–109, 2017.

[33] F. Lam and A. Newman, “Traveling salesman path problems,” Mathematical Pro-
gramming, vol. 113, no. 1, pp. 39–59, May 2008.

[34] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale traveling-salesman
problem,” Journal of the Operations Research Society of America, vol. 2, no. 4,
pp. 393–410, 1954.

[35] “The Traveling Salesman Problem with integer programming and Gurobi,” 2018.

[36] C. A. Feinstein, The computational complexity of the traveling salesman problem,
2012.

[37] C. H. Papadimitriou and K. Steiglitz, “On the complexity of local search for the
traveling salesman problem,” SIAM Journal on Computing, vol. 6, no. 1, pp. 76–8,
Mar. 1977.

[38] G. Laporte, “Fifty years of vehicle routing,” Transportation Science, vol. 43, no. 4,
pp. 408–416, Nov. 2009.

[39] Y. Z. Mehrjerdi, “Multiple-criteria decision-making combined with vrp: A catego-
rized bibliographic study,” International Journal of Supply and Operations Manage-
ment, vol. 2, no. 2, pp. 798–820, 2015.

[40] F. Alonso, M. J. Alvarez, and J. E. Beasley, “A tabu search algorithm for the periodic
vehicle routing problem with multiple vehicle trips and accessibility restrictions,”
The Journal of the Operational Research Society, vol. 59, no. 7, pp. 963–976, Jul.
2008.

93

[41] R. Lahyani, L. C. Coelho, and J. Renaud, “Alternative formulations and improved
bounds for the multi-depot fleet size and mix vehicle routing problem,” OR Spec-
trum, vol. 40, no. 1, pp. 125–157, Jan. 2018.

[42] Z. Zhang, Y. S. Yao, and J. H. Zhang, “Algorithm evolution from traveling salesman
problem to vehicle routing problem,” Applied Mechanics and Materials, vol. 411-
414, p. 1872, Sep. 2013.

[43] S. Almoustafa, “Distance-constrained vehicle routing problem: Exact and approxi-
mate solution (mathematical programming),” PhD thesis, 2013, p. 1.

[44] C.-L. Li, D. Simchi-Levi, and M. Desrochers, “On the distance constrained vehicle
routing problem,” Operations research, vol. 40, no. 4, p. 790, 1992.

[45] K. Karagul, “A novel constructive routing algorithm for fleet size and mix vehicle
routing problem,” International Journal of Combinatorial Optimization Problems
and Informatics, vol. 5, no. 2, pp. 58–73, 2014.

[46] I. Kara, “Arc based integer programming formulations for the distance constrained
vehicle routing problem,” in 3rd IEEE International Symposium on Logistics and
Industrial Informatics, 2011, pp. 33–38.

[47] P. Sharma, “Any R packages to solve Vehicle Routing Problem?,” 2010.

[48] C. Y. Ren, “Study on improved tabu search algorithm for min-max vehicle routing
problem,” Applied Mechanics and Materials, vol. 87, p. 178, Aug. 2011.

[49] X. Wang, B. Golden, and E. Wasil, “The min-max multi-depot vehicle routing prob-
lem: Heuristics and computational results,” The Journal of the Operational Research
Society, vol. 66, no. 9, pp. 1430–1441, Sep. 2015.

[50] C. Y. Ren, “Applying genetic algorithm for min-max vehicle routing problem,” Ap-
plied Mechanics and Materials, vol. 97-98, p. 640, Sep. 2011.

[51] M. Mirabi, N. Shokri, and A. Sadeghieh, “Modeling and solving the multi-depot
vehicle routing problem with time window by considering the flexible end depot in
each route,” International Journal of Supply and Operations Management, vol. 3,
no. 3, pp. 1373–1390, 2016.

[52] P. Stodola, “Using metaheuristics on the multi-depot vehicle routing problem with
modified optimization criterion,” Algorithms, vol. 11, no. 5, p. 74, 2018.

[53] A. G. Kek, R. L. Cheu, and Q. Meng, “Distance-constrained capacitated vehicle
routing problems with flexible assignment of start and end depots,” Mathematical
and Computer Modelling, vol. 47, no. 1, pp. 140 –152, 2008.

94

[54] D. Applegate, W. Cook, S. Dash, and A. Rohe, “Solution of a min-max vehicle
routing problem,” INFORMS Journal on Computing, vol. 14, no. 2, p. 132, 2002.

[55] M. Yao and M. Zhao, “Unmanned aerial vehicle dynamic path planning in an uncer-
tain environment,” Robotica, vol. 33, no. 3, pp. 611–621, Mar. 2015.

[56] H. Cicibas, K. A. Demir, and N. Arica, “Comparison of 3d versus 4d path planning
for unmanned aerial vehicles,” Defence Science Journal, vol. 66, no. 6, pp. 651–664,
2016.

[57] H.-m. Zhang and M.-l. Li, “Rapid path planning algorithm for mobile robot in
dynamic environment,” Advances in Mechanical Engineering, vol. 9, no. 12, Dec.
2017.

[58] C. Sakouhi, A. Khaldi, and H. B. Ghezal, An overview of recent graph partitioning
algorithms, 2018.

[59] C. Xu and G. Hong-mei, An approximation algorithm for graph k-partitioning, 2012.

[60] A. S. Muttipati and P. Padmaja, “Analysis of large graph partitioning and frequent
subgraph mining on graph data,” International Journal of Advanced Research in
Computer Science, vol. 6, no. 7, Sep. 2015.

[61] S. Barlow, Y. Choi, S. Briceno, and D. N. Mavris, “A multi-UAV trajectory opti-
mization methodology for complex enclosed environments,” in 2019 International
Conference on Unmanned Aircraft Systems (ICUAS), 2019.

95

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Introduction
	Background
	Motivation

	Problem Formulation
	Current Methods
	Traveling Salesman Problem
	Model Formulation

	Vehicle Routing Problem
	Model Formulation

	UAS-Based Inventory Tracking Solution
	Model Formulation

	Technical Approach
	Proposed Methodologies
	Overall Methodology

	Baseline
	Model Formulation
	Validation

	Single Stage Algorithm
	Model Formulation
	Validation

	Min/Max Algorithm
	Model Formulation
	Validation

	Multi-Depot Algorithm
	Model Formulation
	Validation

	Model Dimensionality Reduction

	Results Analysis
	Experimental Setup
	Baseline Results
	Single Stage Algorithm Results
	Min/Max Algorithm Results
	Multi-Depot Algorithm Results
	Algorithm Combination Results
	Single Stage and Min/Max Algorithm Results
	Single Stage and Multi-Depot Algorithm Results
	Min/Max and Multi-Depot Algorithm Results
	Single Stage, Min/Max and Multi-Depot Algorithm Results

	Simulation Comparisons

	Sensitivity Analysis
	Experimental Setup
	Results

	Conclusion
	Future Work
	Conclusion

	References

