
THEORETICAL RESULTS AND APPLICATIONS
RELATED TO DIMENSION REDUCTION

A Thesis
Presented to

The Academic Faculty

by

Jie Chen

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology
December 2007



THEORETICAL RESULTS AND APPLICATIONS
RELATED TO DIMENSION REDUCTION

Approved by:

Professor Xiaoming Huo, Advisor
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Nicoleta Serban
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Jeff Wu
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Minqiang Li
College of Management
Georgia Institute of Technology

Professor Shijie Deng
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Date Approved: 29 October 2007



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Professor Xiaoming Huo

for his great help and support during my graduate studies. His patience and insight

make it a pleasure to work with him. Thanks are also due to other members of

my committee, Professor Jeff Wu, Shijie Deng, Nicoleta Serban and Minqiang Li. I

am also very grateful to my parents, Jiqiu Chen and Wenhui Liu, for their love and

support over these four and a half years. Finally, I most cordially thank my husband,

Jin Liu, who has been a tremendous source of encouragement in the past several

years. Without him, the life in the U.S. would have been more tough and pale.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II THEORETICAL RESULTS ON SPARSE REPRESENTATIONS OF MUL-
TIPLE MEASUREMENT VECTORS . . . . . . . . . . . . . . . . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Minimizing the `0 Norm . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Uniqueness in `0-norm Minimization . . . . . . . . . . . . . 10

2.2.3 Mutual Incoherence and µ1/2(G) . . . . . . . . . . . . . . . 15

2.3 Minimizing the `1 Norm . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Uniqueness under the `1 Norm . . . . . . . . . . . . . . . . 18

2.3.3 Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.4 Comparison between SMV and MMV . . . . . . . . . . . . 21

2.4 Orthogonal Matching Pursuit . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 OMP Algorithm for MMV . . . . . . . . . . . . . . . . . . . 22

2.4.2 Matrix Norm Preparation . . . . . . . . . . . . . . . . . . . 23

2.4.3 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 Exact Recovery of OMPMMV and (P1) . . . . . . . . . . . 26

iv



2.5.2 Comparison of Different Vector Norms in (P1) . . . . . . . 27

2.5.3 Comparison of Different Vector Norms in OMPMMV . . . . 27

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.1 Better Vector Norms in MMV? . . . . . . . . . . . . . . . . 30

2.6.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.3 Other Numerical Approaches . . . . . . . . . . . . . . . . . 33

2.6.4 Probability, Random Matrices . . . . . . . . . . . . . . . . . 33

2.6.5 Related Publications . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

III HARDNESS ON NUMERICAL REALIZATION OF SOME PENALIZED
LIKELIHOOD ESTIMATORS . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Penalty Functions and Known NP-hardness Results . . . . . . . . . 37

3.4 General NP-Hardness for PLS Estimators . . . . . . . . . . . . . . 38

3.5 Least Absolute Deviation Regression . . . . . . . . . . . . . . . . . 41

3.6 A Problem Related to Machine Learning and Data Mining . . . . . 42

3.7 Other Penalized Likelihood Estimators . . . . . . . . . . . . . . . . 44

3.8 Oracle Property and Local Minimizers . . . . . . . . . . . . . . . . 44

3.9 Proofs Associated with Chapter III . . . . . . . . . . . . . . . . . . 45

3.9.1 Proof of Theorem 3.4.1 . . . . . . . . . . . . . . . . . . . . 45

3.9.2 Justifications Related to C3 and C4 . . . . . . . . . . . . . 48

3.9.3 Proof of “First Derivative is Zero” . . . . . . . . . . . . . . 49

3.9.4 Proof of Theorem 3.4.3 . . . . . . . . . . . . . . . . . . . . 49

3.9.5 Proof of Theorem 3.6.1 . . . . . . . . . . . . . . . . . . . . 52

IV ELECTRICITY PRICE CURVE MODELING BY MANIFOLD LEARN-
ING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Manifold Learning Algorithm . . . . . . . . . . . . . . . . . . . . . 59

v



4.2.1 Introduction to Manifold Learning . . . . . . . . . . . . . . 59

4.2.2 Locally Linear Embedding (LLE) . . . . . . . . . . . . . . . 60

4.2.3 LLE Reconstruction . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Modeling of Electricity Price Curves with Manifold Learning . . . . 63

4.3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 Manifold Learning by LLE . . . . . . . . . . . . . . . . . . 67

4.3.3 Analysis of Major Factors of Electricity Price Curve Dynam-
ics with Low-Dimensional Feature Vectors . . . . . . . . . . 68

4.3.4 Parameter Setting and Sensitivity Analysis . . . . . . . . . 72

4.4 Prediction of Electricity Price Curves . . . . . . . . . . . . . . . . . 73

4.4.1 Prediction Method . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.2 The Definition of Weekly Average Prediction Error . . . . . 78

4.4.3 Prediction of Electricity Price Curves . . . . . . . . . . . . . 79

4.5 Some Discussions about Modeling and Prediction . . . . . . . . . . 84

4.5.1 Modeling and Prediction with New Historical Price Curves . 84

4.5.2 Weekday and Weekend Effect . . . . . . . . . . . . . . . . . 85

4.5.3 Effects of Other Factors, e.g., Katrina and Rita Hit and
Higher Prices for Natural Gas . . . . . . . . . . . . . . . . . 85

4.5.4 Restriction of Our Method . . . . . . . . . . . . . . . . . . 86

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

V A HESSIAN REGULARIZED NONLINEAR TIME-SERIES MODEL (HRM) 89

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Numerical Approximation to Hessian . . . . . . . . . . . . . . . . . 91

5.2.1 Null Space of Matrix M . . . . . . . . . . . . . . . . . . . . 94

5.2.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 A Convergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Choice of Penalty Parameter λ . . . . . . . . . . . . . . . . . . . . 99

5.5 Fast Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

vi



5.6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6.1 Simulations Regarding the Convergence Theorem . . . . . . 102

5.6.2 Adoption of the Generalized Cross Validation Principle . . . 103

5.6.3 Synthetic Examples . . . . . . . . . . . . . . . . . . . . . . 106

5.6.4 Real Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.8 Appendix: Derivation for Generalized Cross Validation . . . . . . . 115

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

vii



LIST OF TABLES

1 The TRE of different reconstruction methods . . . . . . . . . . . . . 68

2 The one of the four-dimensional coordinates which has the maximum
absolute correlation coefficient with the mean (standard deviation,
range, skewness and kurtosis) of log prices in a day in embedded four-
dimensional space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 Comparison of WPEd(%) of one-day-ahead predictions for 12 weeks. . 81

4 Comparison of σd(%) of one-day-ahead predictions for 12 weeks. . . . 81

5 Comparison of WPEw(%) of one-week-ahead predictions for 12 weeks 82

6 Comparison of σw(%) of one-week-ahead predictions for 12 weeks . . 83

7 Comparison of WPEm(%) of one-month-ahead predictions for 12 weeks 83

8 Comparison of σm(%) of one-month-ahead predictions for 12 weeks . 84

9 Prediction error under an FAR model. . . . . . . . . . . . . . . . . . 109

10 Prediction error for a TAR model. . . . . . . . . . . . . . . . . . . . . 110

11 Prediction error under two nonlinear models. . . . . . . . . . . . . . . 111

12 Prediction Errors for Sunspot Data. . . . . . . . . . . . . . . . . . . . 113

13 Prediction Errors for Blowfly Data. . . . . . . . . . . . . . . . . . . . 115

viii



LIST OF FIGURES

1 (a) First experiment of exact recovery, in which A ∈ Rm×n, X0 ∈
Rn×L,m = 20, n = 30, L = 5, where entries of matrices A and X0 are
independently sampled from N(0, 1). Symbol ∗ is marked at 1. For the
OMPMMV, the ⊕ is marked at N = 4; while for (P1), ª is marked at
N = 3. (b) We now have matrix A = [I, H] where matrix A ∈ R16×32

and sub-matrix H is a 16 by 16 Hadamard matrix. Matrix I is a 16 by
16 identity matrix. Matrix X0 is chosen in the same way, with L equal
to 3 and N being the number of nonzero rows. In this case, symbol
∗ is marked at N = 2. Symbols ⊕ and ª are at N = 4 and N = 3
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 (a) Consider the case A ∈ Rm×n, X0 ∈ Rn×L, m=20, n=30, L=5,
where entries of matrices A and X0 are independently sampled from
N(0, 1). The theoretical upper bound for the equivalence is 1. Let Ni,
i = 1,∞ denote the largest value of N when the solutions of (P1)
with m(·) being the `i norm are identical with matrix X0 among all of
the 1000 simulations. We have N1 = N∞ = 3. (b) We now consider
matrix A = [I, H] where submatrix H is a 16 by 16 Hadamard matrix
and submatrix I is a 16 by 16 identity matrix. We have L = 3. The
theoretical upper bound for equivalence is 2. We obtain N1 = N∞ = 3. 29

3 (a) We consider A ∈ Rm×n, X0 ∈ Rn×L,m = 20, n = 30, L = 5,
where entries of matrices A and X0 are independently sampled from
N(0, 1). The theoretical upper bound for equivalence is 1. Notation
Ni, i = 1, 2,∞, denotes the largest value of N while OMPMMV with
`i norm in step 2)-a) finds the original X0 among all the 1000 trials.
We have N1 = N2 = N∞ = 2. (b) We have matrix A = [I, H] where
submatrix H is a 16 by 16 Hadamard matrix and submatrix I is a 16
by 16 identity matrix. We have L = 3. The theoretical upper bound
for equivalence is 2. We obtain N1 = N2 = 6 and N∞ = 5. . . . . . . 31

4 The conceptual flowchart of the model. . . . . . . . . . . . . . . . . . 59

5 Day-ahead LBMPs from Feb 6, 2003 to Feb 5, 2005 in the Capital Zone
of NYISO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Embedded three-dimensional manifold without any outlier preprocess-
ing(but with log transform and LLP smoothing). “∗” indicates the day
with outliers—Jan 24, 2005. . . . . . . . . . . . . . . . . . . . . . . . 65

7 Embedded three-dimensional manifold after log transform, outlier pre-
processing and LLP smoothing. . . . . . . . . . . . . . . . . . . . . . 66

8 Coordinates of the embedded 4-dim manifold. . . . . . . . . . . . . . 69

ix



9 The coordinate-wise average of the actual price curves in each cluster,
where clustering is based on low-dimensional feature vectors. . . . . 71

10 Distribution of clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

11 The sensitivity of TRE to the intrinsic dimension (data length = 731
days, number of the nearest neighbors = 23). . . . . . . . . . . . . . . 73

12 The sensitivity of TRE to the number of the nearest neighbors (data
length = 731 days, intrinsic dimension = 4). . . . . . . . . . . . . . . 74

13 The sensitivity of TRE to the length of the calibration data (intrinsic
dimension = 4, number of the nearest neighbors = 23). . . . . . . . . 74

14 The simulated four time series with 500 data points. The data gener-
ation mechanism is described in Section 5.6.1. . . . . . . . . . . . . . 104

15 The trend of
∑n−p

i=1 min[(f ′i)
2, cnσ

2]/n and
∑n−p

i=1 (f ′i)
2/n as n is increas-

ing. The length of time series n ranges from 200 to 3000. In order to
compare two quantities more clearly, we normalize the two quantity
sequences by deviding their maximal values, respectively . . . . . . . 105

16 The functions GCV(·)and MSE(·) of the four time series. The GCV
and MSE achieves minima at (0.3317, 0.3015), (0.4397, 0.3266), (0.0044, 0.0036)
and (0.5151, 0.5528) respectively in the above four cases. The minima
are marked with circles. For comparison, the maximal values of func-
tions GCV and MSE are normalized to 1. . . . . . . . . . . . . . . . . 106

x



SUMMARY

To overcome the curse of dimensionality, dimension reduction is important

and necessary for understanding the underlying phenomena in a variety of fields.

Dimension reduction is the transformation of high-dimensional data into a meaningful

representation in the low-dimensional space. It can be further classified into feature

selection and feature extraction. In this thesis, which is composed of four projects, the

first two focus on feature selection, and the last two concentrate on feature extraction.

The content of the thesis is as follows. The first project presents several efficient

methods for the sparse representation of a multiple measurement vector (MMV);

some theoretical properties of the algorithms are also discussed. The second project

introduces the NP-hardness problem for penalized likelihood estimators, including

penalized least squares estimators, penalized least absolute deviation regression and

penalized support vector machines. The third project focuses on the application of

manifold learning in the analysis and prediction of 24-hour electricity price curves.

The last project proposes a new hessian regularized nonlinear time-series model for

prediction in time series.

Main contributions in this thesis are the following:

• Several new theorems regarding the sparse representation in MMV are proved.

Their implication in computation is demonstrated through simulations.

• NP-hardness regarding penalized likelihood estimators is new.

• The application of manifold learning approach to electricity price prediction is,

to the best of our knowledge, the first time.

xi



• A new hessian regularized nonlinear time-series model is proposed, and its ad-

vantages over other nonlinear time-series models are illustrated.
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CHAPTER I

INTRODUCTION

1.1 Motivation

An information overload in most sciences has been caused by the advances in data

collection and storage capabilities during the past decades. Researchers working in a

variety of domains, e.g., engineering, astronomy, biology, remote sensing, economics,

and consumer transactions, face larger and larger amount of observations and sim-

ulations on a daily basis. Such data sets, in contrast with traditional smaller data

sets studied extensively in the past, present new challenges in data analysis. Tradi-

tional statistical methods break down partly because of the increase in the number

of observations, but mostly due to the increase in the number of variables associated

with each observation. The dimension of the data is the number of variables that are

measured on each observation [44].

Therefore, it is useful and necessary to reduce the dimension of the data to a

manageable size. Meanwhile, the original information should be kept as much as

possible. After that, the reduced-dimensional data are feeded into the processing

system.

The problem of dimension reduction can be more formally stated as the transfor-

mation of high-dimensional data into a meaningful representation of reduced dimen-

sionality, under the assumption that the sample actually lies, at least approximately,

on a manifold (nonlinear in general) of smaller dimensions than the original data

space. The dimensionality of the representation in the smaller dimensional space is

called the intrinsic dimensionality of the data. There are several good reviews and

surveys on dimension reduction in the literature [61, 109, 10, 44].
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Dimension reduction is important in many domains, e.g., classification, visualiza-

tion, and compression of high-dimensional data, as the curse of dimensionality is an

undesired property of high-dimensional space. The curse of the dimensionality refers

to the fact that the sample size needed to estimate a function of several variables to a

given degree of accuracy (i.e., to get a reasonably low-variance estimate) grows expo-

nentially with the number of variables. A way to avoid the curse of the dimensionality

is to reduce the input dimension of the function to be estimated [10].

In statistics, dimension reduction is the process of reducing the number of random

variables under consideration, and can be divided into feature selection and feature

extraction. Feature selection is the technique that is commonly used for selecting a

subset of relevant features for building robust learning models. Feature extraction

is applying a mapping of the high-dimensional space into a space of fewer dimen-

sions. This means that the original feature space is transformed by applying a linear

or nonlinear transformation. In this work, Chapter 2 and Chapter 3 belong to fea-

ture selection problems, while Chapter 4 and Chapter 5 present feature extraction

problems.

1.2 Contributions

The main contribution of this work is that we studied some important theoretical

properties of the sparse representation problem and penalized likelihood estimators.

We also explore the applications of dimension reduction in time series analysis and

prediction. The contribution of each of the four projects in the thesis is as follows.

• In Chapter 2, the sparse representation of a multiple measurement vector (MMV)

is studied. It is a relatively new problem in the sparse representation, and the

theoretical analysis is lacking. In this chapter, some known results of SMV are

generalized to MMV. Some of these new results take advantages of additional

information in the formulation of MMV. Two computational efficient methods,

2



`1-norm approach and orthogonal matching pursuit (OMP), have been proposed

to replace the original `0-norm problem. Several new theorems regarding find-

ing the sparest representation in MMV are proved. Simulations show that the

predictions made by the proved theorems tend to be very conservative; this is

consistent with some recent advances in probabilistic analysis based on random

matrix theory.

• Chapter 3 presents that for several existing types of penalty functions, the corre-

sponding penalized least squares estimations, penalized least absolute deviation

regressions and penalized support vector machines are NP-hard problems. Our

NP-hardness results do not oppose the principle of penalized likelihood estima-

tors. Instead, our results forewarn a misuse of penalized likelihood estimators:

i.e., one should not attempt to find the global extremum(a) in numerical imple-

mentations. The correct way to utilize the penalized likelihood estimator is the

following: starting with a consistent estimator (e.g., the maximum likelihood

estimator), then modifying it via optimizing the penalized likelihood function

locally.

• Chapter 4 proposes a novel nonparametric approach for modeling electricity

price curves. Analysis on the intrinsic dimensionality of an electricity price

curve is offered. The resulting analysis sheds light on identifying major fac-

tors governing the price curve dynamics. The forecast accuracy of our model

compares favorably against that of the ARIMA type models in one-day ahead

prediction, and is much better in prediction over longer horizons such as one

week or one month.

• Chapter 5 introduces a new hessian regularized nonlinear time-series model for

prediction in time series. The approach is especially powerful when the num-

ber of dependent variables is greater than three, which can not be handled by

3



natural cubic spline and thin plate spline. Moreover, our approach is nonlinear

and nonparametric, and does not enforce any specific structure on the model.

Compared to local polynomial regression models, which are pure local methods,

the great advantage of our method is that the penalty term of hessian functional

can also take into account of the global properties of the data. Both the theo-

retical and simulation results provide a strong verification and support of our

model.

1.3 Outline of the Thesis

The thesis is organized by four projects.

• Chapter 2 presents several efficient methods for the sparse representation of a

multiple measurement vector (MMV). We consider the uniqueness under both

an `0-norm like criterion and an `1-norm like criterion. The consequent equiva-

lence between the `0-norm approach and the `1-norm approach indicates a com-

putationally efficient way of finding the sparsest representation in a redundant

dictionary. For greedy algorithms, it is proven that under certain conditions,

orthogonal matching pursuit (OMP) can find the sparsest representation of an

MMV with computational efficiency, just like in SMV. Simulations show that

the predictions made by the proved theorems tend to be very conservative.

• Chapter 3 shows that with a class of penalty functions, numerical problems

associated with the implementation of the penalized least squares estimators

are equivalent to the exact cover by 3-sets problem, which belongs to a class

of NP-hard problems. We then extend this NP-hardness result to the cases

of penalized least absolute deviation regression and penalized support vector

machines. We discuss the practical implication of our results. In particular, we

emphasize that the oracle property of a penalized likelihood estimator requires a

local extremum, instead of a global extremum. Hence the penalized likelihood

4



estimators are still favorable; however, one should not attempt to find their

global extrema.

• Chapter 4 applies manifold-based dimension reduction to electricity price curve

modeling. LLE is demonstrated to be an efficient method for extracting the

intrinsic low-dimensional structure of electricity price curves. Using price data

taken from the NYISO, we find that there exists a low-dimensional manifold

representation of the day-ahead price curve in NYPP, and specifically, the di-

mension of the manifold is around four. The interpretation of each dimension

and the cluster analysis in the low-dimensional space are given to analyze the

main factors of the price curve dynamics. The sensitivity of the parameters is

also analyzed. Numerical experiments show that our prediction preforms well

for the short-term prediction, and our method also facilitates medium-term

prediction, which is difficult, even infeasible for other methods.

• Chapter 5 introduces a numerical approach for prediction in time series, for

which the underlying model is nonlinear and nonparametric. Comparing to

other existing methods in nonlinear time series, our assumption on the un-

derlying model is the most general: we only require that the Hessian of the

underlying function is integrable. The main idea in our method is to mini-

mize a functional, which is made by the classical residual sum of squares plus a

penalty term which is an algorithmic parameter (λ) multiplying with the inte-

grated Hessian of the underlying function. This approach adopts the philosophy

of regularization. The integrated Hessian can serve as a smoothness measure of

the underlying function. We develop a numerical approximation to the above

functional, hence the methodology becomes applicable to real data. In simula-

tions, we compare our method with other state-of-the-art algorithms in nonlin-

ear time series, namely threshold autoregressive (TAR), additive autoregressive
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(AAR), functional coefficient autoregressive (FAR), local polynomial regression,

etc. The result is very satisfactory: if the underlying model is consistent with

one of other models, the performance of our algorithm is comparable; if the

underlying model is inconsistent with other models, our algorithm can outper-

form. We also provide some theoretical analysis on when our method performs

well. A discussion on fast computation is given as well.
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CHAPTER II

THEORETICAL RESULTS ON SPARSE

REPRESENTATIONS OF MULTIPLE MEASUREMENT

VECTORS

2.1 Introduction

The problem of finding sparse representations of multiple measurement vectors (MMV)

in a redundant dictionary was motivated by a neuro-magnetic inverse problem that

arises in Magnetoencephalography (MEG) – a modality of imaging the possible acti-

vation regions in the brain. We refer to Cotter et al., [22, 92], and a historic paper

[51] for more details and other potential applications. The problem of MMV can

also be considered as how to achieve sparse representations for SMVs simultaneously

[106, 107, 104]. In this chapter, we focus on the theoretical development of the MMV

problem, instead of its applications.

Given a multiple measurement vector B and a dictionary A, an MMV problem

solves the system of equations,

AX = B,

where A ∈ Rm×n, X ∈ Rn×L, and B ∈ Rm×L. Each column of the matrix A is

associated with an atom. A set of all atoms is called a dictionary (see Mallat’s book

[80]), which is denoted by Ω. A sparse representation means that matrix X (or a

vector, if one has an SMV: L = 1) has a small number of rows that contain nonzero

entries. A mathematical definition of the sparsity of a matrix X will be provided

later.

A redundant dictionary simply means that m < n. Usually, we have m ¿ n and
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L < m. As we mentioned earlier, when L = 1, we have the case of a single measure-

ment vector (SMV). Matrices X and B can be rewritten as X = [x(1), x(2), . . . , x(L)],

B = [b(1), b(2), . . . , b(L)], where x(l)’s and b(l)’s, 1 ≤ l ≤ L, are column vectors. Ev-

idently, the system of equations AX = B can be rewritten as Ax(l) = b(l), where

l = 1, . . . , L. For simplicity, we assume that the columns of A have been normalized;

hence all the diagonal entries of the Gram matrix G = AT A are equal to ones and all

the off-diagonal entries are in the interval [−1, 1].

In the case of SMV, there are abundant results on the sparsest representations in

a redundant dictionary. We refer to [34, 33, 36, 43, 30, 53, 46]. The introduction of

Donoho, Elad, and Temlyakov [31] gives a comprehensive depiction on many impor-

tant applications. In MMV, we replace x and b by the upper-case letters, X and B,

emphasizing that they are matrices instead of column vectors.

In SMV, the sparsity of a representation is defined as the `0 quasi-norm of the vec-

tor x, which is denoted by ‖x‖0. The quantity ‖x‖0 is simply the number of nonzero

elements in the vector x. Without loss of accuracy, for simplicity, throughout this

chapter, we will call the quantity ‖x‖0 an `0-norm, instead of an `0-quasi-norm; sim-

ilarly, we will say an `0-norm like criterion, instead of an `0-quasi-norm like criterion.

The sparsest representation in SMV is the solution to the following optimization

problem:

(Q0): min ‖x‖0, subject to Ax = b.

The above problem can be convexified as a minimizing-the-`1-norm problem,

(Q1): min ‖x‖1, subject to Ax = b,

where ‖x‖1 is the sum of the absolute values of the entries of vector x, i.e., for

x = [x1, x2, . . . , xn]T , we have ‖x‖1 =
∑n

i=1 |xi|. Readers may compare the objective

functions in (Q0) and (Q1). Note that (Q1) can be solved via linear programming.

The problem (Q0) is essentially a combinatorial optimization problem, which in
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general is difficult to solve. We hope that the solution to problem (Q1) is, in some

situations, close enough to the solution to (Q0). The equivalence of the solutions

between (Q0) and (Q1) has been proved under various conditions, and the more

recent work was done by many researchers including Donoho and Elad [30], Tropp

[103], and Fuchs [46]. Evidently, the equivalence between the two solutions is very

important in computing the sparsest representation in SMV. In this chapter, we

extend the corresponding theorems from SMV to MMV.

Another way to obtain a sparse representation is through a greedy algorithm,

e.g., orthogonal matching pursuit (OMP). It has been proved by Donoho, Elad, and

Temlyakov [31] and Tropp [103] independently that under certain conditions, the

OMP can find the sparsest representation of the signal. In this chapter, we extend

this theory to MMV too.

In the present chapter, we consider a noiseless case: an SMV, b, or an MMV, B,

is a linear combination of atoms without noise, i.e., b = Ax or B = AX. It will be a

different mathematical problem when additive noise is considered in the formulation.

For noisy cases, we refer to [31, 103, 105] for results in SMV and [107, 104] for results

in MMV.

In our generalization from SMV to MMV, it is shown that the generalization

can be very broad: the inner vector norm can be any vector norm in a Euclidean

space. Moreover in the case of minimizing-the-`0-norm, less stringent requirements

to guarantee uniqueness can be derived, compared to those for SMV.

The rest of the chapter is organized as follows. Section 2.2 describes the uniqueness

of the solutions to the minimizing-the-`0-norm problems. Section 2.3 describes the

situations in which the solutions to the minimizing-the-`1-norm problems are identical

with the solutions to the minimizing-the-`0-norm problems. Section 2.4 describes the

property of the sparsest representations that are computed from a greedy algorithm

– OMP. Conditions under which OMP gives the sparsest representations are given.
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Section 2.5 describes some simulations, which indicate that the theoretical bounds are

conservative. Section 2.6 gives the discussion on related works, possible extensions,

and future research topics. Section 2.7 makes some concluding remarks.

2.2 Minimizing the `0 Norm

2.2.1 Formulation

We describe our formulation of MMV. The following quantity is the number of rows

(in a matrix X) that contain nonzero entry(ies):

R(X) = ‖(m(xi))n×1‖0 ,

where xi ∈ RL is the transpose of the ith row of the matrix X, i.e., X = [x1, x2, · · · , xn]T ,

m(·) is any vector norm in RL, and vector (m(xi))n×1 has the ith entry equal to

m(xi), 1 ≤ i ≤ n. Symbol R stands for a sparsity rank. A noiseless sparse represen-

tation problem in MMV can be written as

(P0): min R(X), subject to AX = B.

Readers can compare this with (Q0). In fact, if L = 1, the above optimization

problem becomes (Q0).

In general, solving (P0) requires enumerating all the subsets of set {1, 2, . . . , n}.
The complexity of such a subset-search algorithm grows exponentially with the dic-

tionary size n.

2.2.2 Uniqueness in `0-norm Minimization

We restrict our attention to the case when the solution to (P0) is unique. It is

provable that having sufficient sparsity is a sufficient condition for the solution (i.e.

representation) to be the unique sparsest one. We give some conditions under which

the solution to the problem (P0) is unique. This is a necessary preparation for a

subsequent result, i.e., equivalence of solutions between the `0-norm minimization

problem and the `1-norm minimization problem.

10



The following generalizes the result of Donoho and Elad [30] to MMV. We start

with the concept of Spark [71].

Definition 2.2.1 (Spark) Given a matrix A, the quantity Spark, which is denoted

by Spark(A) (or σ), is the smallest possible integer such that there exist σ columns

of matrix A that are linearly dependent.

In [30], Spark(A)/2 is a threshold of the sparsity: if the signal is made by less

than Spark(A)/2 atoms, or in other words, if the signal is a linear combination of less

than Spark(A)/2 columns of matrix A, then the solution to (P0) is exactly the atoms

that are included in this linear combination. For MMV, with the above mentioned

R(·), we can draw the following conclusion. It is interesting that the result holds for

any vector norm m(·).

Theorem 2.2.2 Matrix X will be the unique solution of the problem (P0), if B =

AX and

R(X) < Spark(A)/2.

Compared with the SMV cases, the above theorem has the same upper bound.

Remark 2.2.3 From the known results in SMV, Theorem 2.2.2 can be proved as a

direct extension. The argument is as follows. If R(X) < Spark(A)/2, obviously

‖X(j)‖0 < Spark(A)/2, 1 ≤ j ≤ L, where X(j) is the jth column of matrix X. Hence

the solution to the following optimization problem

min ‖Y (j)‖0, subject to: AY (j) = B(j), j = 1, 2, . . . , L,

where Y ∈ Rn×L and Y (j) is the jth column of Y, should give exactly the jth column

of matrix X; Recall B(j) is the jth column of matrix B. This renders the fact that X

is the unique solution to (P0).
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Readers can easily derive a rigorous proof by following the above idea. Next, we

present a different proof, which we think is more straightforward.

Proof. Suppose matrices X1 and X2 ∈ Rn×L are the solutions to (P0) with

property max{R(X1),R(X2)} < Spark(A)/2. We have

R(X1 −X2) ≤ R(X1) +R(X2) < Spark(A). (2.1)

On the other hand, because 0 = A(X1 − X2), if we consider (X1 − X2)
(1), which

is the first column of matrix X1 − X2, we have 0 = A(X1 − X2)
(1). It leads to

‖(X1 − X2)
(1)‖0 ≥ Spark(A). Therefore, we have R(X1 − X2) ≥ Spark(A), which

contradicts (2.1). This contradiction proves the theorem. 2

If we are willing to consider the additional feature of matrix B – to take advantage

of the MMV formulation – a more general condition can be derived. A precedent is

Lemma 1 in Cotter et al. [22]. The following result is more general.

Theorem 2.2.4 Let Rank(B) denote the rank of matrix B. Apparently Rank(B) ≤
L. Matrix X will be the unique solution to the problem (P0), if B = AX and

R(X) < [Spark(A)− 1 + Rank(B)]/2.

Proof. Recall B ∈ Rm×L. Suppose we have B = AX1 = AX2, where X1, X2 ∈
Rn×L, and X1 6= X2. Let d(Null(B)) denote the dimension of the (right) null space

of matrix B: {x : Bx = 0}. Similarly, d(Null(X1)) and d(Null(X2)) denote the

dimensions of the (right) null spaces of matrices X1 and X2. We have

d(Null(X1)) ≤ d(Null(B)),

and

d(Null(X2)) ≤ d(Null(B)).
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Recall Rank(B) denotes the rank of matrix B. Similarly let Rank(X1) and Rank(X2)

denote the ranks of matrices X1 and X2. We have

Rank(X1) ≥ Rank(B), (2.2)

and

Rank(X2) ≥ Rank(B). (2.3)

Consider a matrix [A1, A12, A2], where submatrix [A1, A12] is made by the columns of

matrix A that correspond to the nonzero rows of matrix X1 and submatrix [A12, A2] is

made by the columns of matrix A that correspond to the nonzero rows of matrix X2.

Let r1 and r2 denote the numbers of nonzero rows in matrices X1 and X2 respectively.

Note that matrix A12 corresponds to columns where matrices X1 and X2 have nonzero

rows simultaneously. Let r12 denote the number of columns of matrix A12. Matrix X11

(resp. Matrix X22) consists of the nonzero rows of matrix X1 (resp. X2) corresponding

to A1 (resp. A2). Matrix X12 (resp. Matrix X21) consists of the nonzero rows of X1

(resp. X2) corresponding to the columns in A12. We have

B = [A1, A12] ·




X11

X12


 = [A12, A2] ·




X21

X22




and

0 = A(X1 −X2) = [A1, A12, A2] ·




X11

X12 −X21

−X22




. (2.4)

From (2.4), we have

d(Null([A1, A12, A2])) ≥ Rank(




X11

X12 −X21

−X22




). (2.5)

13



It is easy to see

Rank(




X11

X12 −X21

−X22




)

≥ max{Rank(X11), Rank(X22)}. (2.6)

Without loss of generality, we consider X11 only. It is easy to see that

d(Null(X11)) ≤ d(Null(X1)) + r12. (2.7)

The above is true because if we consider two systems of linear equations: for variable

y, X1 · y = 0 or X11 · y = 0; the former has r12 more constrains, so its solution

space(the null space of matrix X1) is at most reduced by r12 dimensions, which is

(2.7). Inequality (2.7) immediately leads to

Rank(X1)− r12 ≤ Rank(X11). (2.8)

Combining (2.5), (2.6), (2.8), and one of (2.2) and (2.3), we have

d(Null([A1, A12, A2])) ≥ Rank(B)− r12. (2.9)

By the definition of Spark, we have

Rank([A1, A12, A2])

≥ Spark([A1, A12, A2])− 1

≥ Spark(A)− 1. (2.10)

Combining all the above, we have

r1 + r2 − r12 = #Cols([A1, A12, A2])

= Rank([A1, A12, A2])

+d(Null([A1, A12, A2]))

≥ Spark(A)− 1

+Rank(B)− r12.
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Hence r1 + r2 ≥ Spark(A)− 1 + Rank(B). The last inequality is based on (2.9) and

(2.10). It is easy to see that the above proves the theorem. 2

It turns out that to study the theoretical property of the `0-norm approach, we only

need the fact that m(x) = 0 if and only if x = ~0, where ~0 is an all zero vector in RL.

It is evident that Theorem 2.2.2 is a special case of Theorem 2.2.4, as Rank(B) ≥ 1.

For the upper bound of Theorem 2.2.4, it is conceptually interesting to ask whether

the rank of matrix B can be replaced with the rank of matrix X. Because B = AX,

it is evident that Null(X) ⊂ Null(B). Hence d(Null(X)) ≤ d(Null(B)). Therefore,

Rank(X) ≥ Rank(B). Given this, it is not clear how to utilize the existing approach

to generate an upper bound that is based on Rank(X). Further exploitation in this

direction will be a future research topic.

2.2.3 Mutual Incoherence and µ1/2(G)

A difficulty associated with an upper bound with Spark(A) is that the quantity Spark

is hard to calculate, as pointed out by Donoho and Elad [30]. Up to now, there is no

good algorithm to compute Spark(A) besides enumerating all the possible subsets.

For practical use, we introduce other quantities: mutual incoherence and µ1/2(G).

These quantities have appeared in previous papers, e.g., [33, 36, 30]. They provide

upper bounds that are lower than the one that is built on Spark. However, these

quantities are easy to compute.

Definition 2.2.5 Mutual incoherence (denoted by M) is the maximum absolute inner

product between two column vectors of matrix A, i.e.,

M = M(A) = max
1≤i,j≤n,i6=j

|G(i, j)|,

where G(i, j) is the (i, j)th entry of the Gram matrix G: G = AT A.
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Note that quantities M and Spark have the following relation, which has been

proved in Donoho and Elad [30, Theorem 7]:

Spark(A) ≥ (1 + 1/M).

Therefore, an upper bound with Spark(A) is better. In fact, the above inequality

together with Theorem 2.2.4 gives a one-line proof of the following corollary. We omit

the proof.

Corollary 2.2.6 If B = AX and

R(X) < (M−1 + Rank(B))/2,

then matrix X is the unique solution to the problem (P0).

We consider another quantity.

Definition 2.2.7 For a Gram matrix G, which is symmetric, let µ1/2(G) denote the

smallest number m, such that the sum of a collection of m off-diagonal magnitudes

in a single row or column of the Gram matrix G is at least 1/2.

In [30, Theorem 6 and Section 4.2], we can find the following relation: Spark(A) ≥
2µ1/2(G) + 1. Combining with Theorem 2.2.4, we immediately have the following.

Corollary 2.2.8 If B = AX and

R(X) < µ1/2(G) + Rank(B)/2,

then matrix X is the unique solution to the problem (P0).

We conclude our analysis of the uniqueness in the minimizing-the-`0-norm ap-

proach.
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2.3 Minimizing the `1 Norm

2.3.1 Formulation

Recall that we have defined a sparsity rank of matrix X ∈ Rn×L,

R(X) = ‖(m(xi))n×1‖0

where m(xi) is a vector norm in RL. In this section, we consider a relaxation to the

above quantity.

We consider the following function as a relaxation of the quantity R(X):

Relax(X) = ‖(m(xi))n×1‖1.

Note that the only difference between R(X) and Relax(X) is that the outside `0

norm is replaced by an `1 norm. The corresponding optimization problem becomes

(P1): min Relax(X), subject to B = AX.

The above formulation includes many known works. For example, in Tropp [104],

m(·) is the `∞ norm; in Malioutov et al. [79], m(·) is the `2 norm.

Besides the `1 norm, other functions of X have been proposed as objective func-

tions. In the pioneer works on MMV [22, 93, 69], the following diversity measure on

sparsity was proposed:

J (p,q)(x) =
n∑

i=1

(‖x(i)‖q)
p, 0 ≤ p ≤ 1, q ≥ 1,

where p and q are parameters, vector x(i) is the ith row of matrix X. The norm

of a row is given by ‖x(i)‖q = (
∑L

j=1 |xij|q)1/q. An algorithm, which was named

M-FOCUSS is proposed to minimize the above objective [22]. The M-FOCUSS, for

q = 2, p ≤ 1, is an iterative algorithm that uses the idea of Lagrange multipliers.

A disadvantage of the above objective function is that it could have more than one

local minima, e.g., when p < 1. An iterative algorithm could be trapped by a local

minimum. With p = 1 in the above objective, we obtain the `1-norm minimization

problem (P1) with `q norm inside.
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2.3.2 Uniqueness under the `1 Norm

We consider an optimal solution to the problem (P1). Let B = AX∗, where X∗ is

the optimal solution to the problem (P0). Let S be an index set that contains the

rows of X∗ where m(x∗i ) > 0. Here x∗i denotes the ith row of matrix X∗. Let AS

denote a matrix that is made by the columns of A with indices from S. We can write

B = ASX∗
S, where matrix X∗

S is made by the nonzero rows of X∗. Without loss of

generality, we can assume that AS is of full column rank; otherwise, the number of

nonzero rows of X∗ can be reduced, which contradicts the optimality. We define the

generalized inverse of AS to be A+
S = (AT

SAS)−1AT
S . Based on the fact that AS is

of full column rank, the generalized inverse is well defined. We present a sufficient

condition of the sparsity of X∗ in the following.

Theorem 2.3.1 A sufficient condition for X∗ to be the unique solution to (P1) is

that

‖A+
S Aj‖1 < 1, ∀j /∈ S. (3.11)

Note that the above is the Exact Recovery Condition in Tropp’s [103]. See also

[46]. It turns out that it is also a sufficient condition for the uniqueness under the

`1-norm for MMV, with an arbitrary inner vector norm m(·). Readers may want to

revisit the formulation of (P1).

As a preparation for the proof of theorem 2.3.1, the following is a well-known

result for norms in the Euclidean space. We present it without a proof.

Proposition 2.3.2 For a linear combination
∑k

i=1 cixi, where ci ∈ R, xi ∈ RL, and

k is an integer, for any norm m(·) in RL, we have

m

(
k∑

i=1

cixi

)
≤

k∑
i=1

|ci| ·m(xi).
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Proof of theorem 2.3.1. Suppose there are two representations: B = ASX∗
S =

AS′YS′ , where S 6= S ′ and set S ′ includes the indices of the nonzero rows of the matrix

Y ∈ Rn×L. We only need to show that

Relax(X∗) < Relax(Y ). (3.12)

Recall

Relax(X∗) = ‖(m(x∗i ))n×1‖1 =
n∑

i=1

m(x∗i ) =
∑
i∈S

m(x∗i ).

Because X∗
S = (A+

S AS′)YS′ , we have

x∗i =
∑

k

(A+
S AS′)ik(YS′)k,

where(A+
S AS′)ik is the (i, k)th entry of the matrix A+

S AS′ , and (YS′)k is the kth row

of YS′ . Note that the above is a linear combination. From Proposition 2.3.2, we have

m(x∗i ) ≤
∑

k

|(A+
S AS′)ik|m((YS′)k).

Taking
∑

i on both sides, we have

∑
i

m(x∗i ) ≤
∑

i

∑

k

|(A+
S AS′)ik|m((YS′)k) <

∑

k

m(Yk).

The last inequality is based on two facts (see Acknowledgement). The first fact is

that S ′ contains at least one column that does not appear in S. Otherwise, S ′ would

be a strict subset of S, which contradicts the minimality of S. Therefore, there must

exist some k, such that
∑

i |(A+
S AS′)ik| < 1, based on (3.11). The other fact is that

‖A+
S Aj‖1 ≤ 1 for every column j in matrix A. Hence we prove (3.12). 2

2.3.3 Equivalence

In [103, Theorem B and Corollary 3.6], we know whenever one of the following con-

ditions is satisfied:

R(X∗) < (1 + 1/M)/2 (3.13)
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or

R(X∗) < µ1/2(G), (3.14)

maxj /∈S ‖A+
S Aj‖1 < 1 holds for any signal with R(X∗) atoms in its optimal represen-

tation. Therefore, according to Theorem 2.3.1, when (3.13) or (3.14) holds, X∗ is the

unique solution to (P1).

On the other hand, according to [30], we have the following relation: Spark(A)/2 >

µ1/2(G) ≥ 1
2M

. Thus, according to Theorem 2.2.2, if B = AX and R(X) <

(1 + 1/M)/2 or R(X) < µ1/2(G), X is the unique sparest solution to (P0), i.e.,

X = X∗.

From all the above, we have the following theorem.

Theorem 2.3.3 (Equivalence) For a dictionary A with Gram matrix G = AT A.

If AX = B and

R(X) < (1 + 1/M)/2

or

R(X) < µ1/2(G),

then matrix X is the unique solution to (P1). And this solution is identical with the

solution to (P0).

Note that our condition of equivalence in the above theorem is identical with

the one in SMV. Recall that by taking into account of the property of matrix B,

a stronger uniqueness condition is achieved in the `0-like norm. The difficulty in

getting a stronger equivalence condition for MMV is that the uniqueness of the `1-

norm approach does not seem to depend on the matrices B or X.

It is interesting to realize that the proof of SMV still works for any norm m(·) in

RL.
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2.3.4 Comparison between SMV and MMV

In the minimizing-the-`0-norm problem, by taking advantage of the formulation of

MMV, we can raise the upper bound in the uniqueness condition from Spark(A)/2

to [Spark(A)− 1 + Rank(B)]/2.

There is no evidence that between condition R(x) < Spark(A)/2 and condition

maxj /∈S ‖A+
S Aj‖1 < 1, one is able to dominate the other. In principle, if maxj /∈S ‖A+

S Aj‖1

< 1 and Spark(A)/2 < R(x) < [Spark(A)−1+Rank(B)]/2, we can claim the equiv-

alence between `0-norm and `1-norm for MMV, and this is not achievable by simply

concatenating SMV problems.

Here is another difference between an MMV problem and an SMV problem. Note

that if we find the sparsest representation for B under the condition in Theorem 2.3.1,

we do not have enough evidence that each column of X∗ can be obtained by solving

an SMV problem for each column of B. The reason is that from maxj /∈S ‖A+
S Aj‖1 < 1,

where S consists of the atoms in the optimal representation of matrix B, it is not

necessary to have maxj /∈Si
‖A+

Si
Aj‖1 < 1, where Si consists of the atoms in the optimal

representation of vector b(i). This is because the number of the atoms in the optimal

representation of vector b(i) may be less than the number of the atoms in the optimal

representation of matrix B. In summary, the uniqueness conditions under the `1-norm

differ between in the formulation of an MMV and in the formulation of a combination

of several SMVs. (The description here is speculative and consequently raises an open

question: What can we say about the relationship between the set S and the group

of sets {Si}? We leave this question to be studied in the future.)

2.4 Orthogonal Matching Pursuit

Matching pursuit (MP) [81] is proposed as an efficient numerical method to decom-

pose a signal. As an improvement of MP, orthogonal matching pursuit (OMP) [24, 90]
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has been introduced. OMP overcomes some drawbacks of MP. Unfortunately, coun-

terexamples show that both methods could be trapped by the initial selection of a

‘bad’ atom, see Chen et al. [15]. For the MMV problem, many variants of OMP have

been proposed. A subset of them are [22, 106, 107, 73, 74, 78, 99].

For this section, we propose our OMP with an `q(q ≥ 1) norm of the inner product.

Note that in MMV, the inner product becomes a vector. A condition that guarantees

the exact recovery of OMP is derived. This condition is identical to the corresponding

Exact Recovery Condition in SMV, see [103]. Again, it is interesting to see that an

existing condition holds for a large class of vector norms.

2.4.1 OMP Algorithm for MMV

An OMP in MMV, which is denoted by OMPMMV, works as follows.

Orthogonal Matching Pursuit for MMV (OMPMMV)

1. Initialization: residual R0 = B and subset S0 = ∅.

2. At the tth iteration:

(a) Choose the atom akt , which satisfies akt = argmaxak
‖zk‖q, where zk =

RT
t−1ak and q ≥ 1;

(b) Let St = [St−1, akt ], and X∗ = argminX‖StX −B‖2
F , yt = StX

∗;

(c) Set Rt = B − yt.

Readers can find that except taking the `q-norm of the vector zk in step 2)-a), the

remaining components in the above algorithm are standard in an OMP.

In [106, 107], Tropp et al. proposed `1 norm in step 2)-a). In [73, 74, 78, 99],

`2 and `∞ are proposed for weak matching pursuit and weak orthogonal matching

pursuit for the MMV problem. In [22], `2 norm is applied. We will prove that, when

the coefficient matrix of B is very sparse, no matter what the `q norm is, an OMP

with the `q norm in 2)-a) can recover the sparsest representation.
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2.4.2 Matrix Norm Preparation

Before providing the proof, we introduce some necessary notations and results that

will be used in this section.

Definition 2.4.1 The (p, q) matrix (or operator) norm of A is defined as

‖A‖p,q = max
x 6=0

‖Ax‖q

‖x‖p

= max
‖x‖p=1

‖Ax‖q.

Several of the (p, q) matrix norms can be computed easily, see also [49, 107].

Lemma 2.4.2 Consider matrix A.

1. The (1, q) matrix norm is the maximum `q norm of the columns of A.

2. The (2, 2) matrix norm is the maximum singular value of A.

3. The (p,∞) norm is the maximum `p′ norm of the rows of A, where 1/p+1/p′ =

1.

The following property regarding (p, q) matrix norm can be easily derived from

the definitions or results mentioned above.

Lemma 2.4.3 For matrix A, we have

1. ‖Ax‖q ≤ ‖A‖p,q · ‖x‖p, and

2. ‖AT‖∞,∞ = ‖A‖1,1.

In particular, the (p,∞) matrix norm has the following property.

Lemma 2.4.4 For matrices A and B, and p > 0, we have

‖AB‖p,∞ ≤ ‖A‖∞,∞‖B‖p,∞.
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Proof. The following are direct applications of some previous results.

‖AB‖p,∞ = max
‖x‖p=1

‖A(Bx)‖∞
≤ max

‖x‖p=1
‖A‖∞,∞‖(Bx)‖∞

= ‖A‖∞,∞ max
‖x‖p=1

‖(Bx)‖∞
= ‖A‖∞,∞‖B‖p,∞.

We prove the lemma. 2

2.4.3 Main Result

Note that OMP never chooses the same atom twice because the residual is orthogonal

to the atoms that have already been selected. If at each step, OMP selects the atoms

in the optimal representation, after R(X∗) steps, the residual must become zero, and

the algorithm stops. Note that since we only consider the noiseless formulation, we

are allowed to use such an idealistic argument.

According to our notation, in step 2)-a) in OMPMMV, we have maxak
‖zk‖q =

maxak
‖aT

k Rt−1‖q = ‖AT Rt−1‖p,∞, where 1/p+1/q = 1. Thus at (t+1)th step, we can

select the atom in the optimal representation if and only if ‖AT
SRt‖p,∞ > ‖AT

S̄
Rt‖p,∞,

where S̄ is the complement of S in the dictionary Ω. Following this idea, we have the

following theorem with the same notations used in the previous sections.

Theorem 2.4.5 A sufficient condition for OMPMMV to recover a representation of

matrix B associated with atom indices S is

max
j /∈S

‖A+
S Aj‖1 < 1.

Readers can see that the above is again the Exact Recovery Condition in [103].

In fact, readers can see that the following proof is modified from the corresponding

proof in [103].
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Proof. At each iteration t,

ρt =
‖AT

SRt‖p,∞
‖AT

S̄
Rt‖p,∞

=
‖AT

SRt‖p,∞
‖AT

S̄
(A+

S )T AT
SRt‖p,∞

≥ 1

‖AT
S̄
(A+

S )T‖∞,∞
.

In the above, we use the equality

Rt = (A+
S )T AT

SRt. (4.15)

Recall (A+
S )T AT

S = AS(AT
SAS)−1AT

S , which is a projection matrix to the subspace

spanned by the columns of matrix AS. Because AS is the optimal set, the columns

of Rt is in the subspace spanned by the columns of AS. Hence we have (4.15).

To pick the atom in the optimal representation, we want ρt > 1, that is ‖AT
S̄
(A+

S )T‖∞,∞

< 1. Moreover, we have

‖AT
S̄ (A+

S )T‖∞,∞ = ‖(A+
S )AS̄‖1,1 = max

j∈S̄
‖A+

S Aj‖1 < 1.

This completes the proof. 2

Applying the same argument that has been used in the `1-norm, we have the

following corollary.

Corollary 2.4.6 If AX = B and

R(X) < (1 + 1/M)/2

or

R(X) < µ1/2(G),

matrix X is the unique sparsest solution to (P0), and OMPMMV can recover this

representation exactly.
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Compared with Theorem 2.4.5, the conditions in the above corollary are much

easier to check. We can calculate matrix X through OMPMMV first, and then check

if such a matrix X satisfies the conditions.

2.5 Simulation

2.5.1 Exact Recovery of OMPMMV and (P1)

Simulations are conducted to bring insights on when OMPMMV and (P1) can exactly

find the original signal. Two experiments are conducted. In the first experiment,

matrix A ∈ Rm×n has dimensions m = 20 and n = 30. We set L = 5 and m(·) = `1.

The entries of matrix A are independently sampled from the standard normal N(0, 1).

We compute the multiple measurement vector, B, using B = AX0, where the N

nonzero rows of matrix X0 ∈ R30×5 are randomly chosen, and the values of the

nonzero entries of matrix X0 are assigned again by independently sampling from the

standard normal distribution. The value of N is ranged from 1 to d(1+1/M)/2e+15.

For each generated pairs of matrices B and A, matrix X is solved via both OMPMMV

with `2 norm and (P1) with `1 norm. The solution X is compared with the original

matrix X0. If X ≡ X0, an ‘exact recovery’ is obtained. The above simulation is

executed for 1000 times for the same matrix A. The proportion of exact recoveries

among 1, 000 times of simulation via OMPMMV (resp. (P1)) for the N nonzero rows

of matrix X0 is reported as ‘the empirical probability of exact recovery’ for the value

N via OMPMMV (resp. (P1)) in Figure 1(a). We observed that the OMPMMV

performs slightly better. Symbol ∗ indicates where the theoretical upper bound for

uniqueness is (i.e., b(1 + 1/M)/2c). In the figures, it is not very evident where the

above proportions are equal to 1 – the proportions of exact recoveries are very close to

1, but not 1. We introduce two symbols to indicate the positions when the proportion

are exactly equal to 1: symbol ⊕ indicates the largest value of N while OMPMMV

finds the original X0 among all simulations; symbol ª indicates the largest value of
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N while the solutions of (P1) are identical with matrix X0 for all simulations.

In the second experiment, matrix A is generated by concatenating two orthonor-

mal bases: [I,H], where matrix I is an identity matrix and matrix H is a Hadamard

matrix. We choose m = 16 and n = 32. Matrix X0 has L = 3 columns. All the

other settings are the same as in the first experiment. Again, we observe that the

OMPMMV performs slightly better.

In both cases, we observe that the exact recovery can occur when the value of

N is above the theoretical threshold (b(1 + 1/M)/2c) that is given in this chapter.

Based on this, we say that the theoretical upper bound is pessimistic.

2.5.2 Comparison of Different Vector Norms in (P1)

The settings in the subsection are the same as those in the last subsection. In this

subsection, we do the simulation for the `1 norm method with different m(·) norms.

Firstly, for matrix A randomly generated from Normal(0, 1), where m = 30, n =

20, L = 5, we do the simulation for m(·) = `1 and m(·) = `∞, respectively, and draw

their empirical probabilities of exact recoveries on one plot. See the results in Figure

2 (a). Secondly, for A = [I,H], where sub-matrix H is a 16 by 16 Hadamard matrix,

matrix I is a 16 by 16 identity matrix, and L = 3, we do the same simulation as

above. See the results in Figure 2 (b).

From the simulations, we see that the curves in each plot are similar. This might

imply that for the method of `1 norm , there is no significant difference among different

inside vector norms.

2.5.3 Comparison of Different Vector Norms in OMPMMV

The settings in this subsection are the same as those in the previous subsections.

In this subsection, we do the simulation for the OMPMMV method with different `q

norms. Firstly, for matrix A whose entries are randomly generated from Normal(0, 1),

where m = 30, n = 20, L = 5, we do the simulation for `1, `2 and `∞, respectively, and
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Figure 1: (a) First experiment of exact recovery, in which A ∈ Rm×n, X0 ∈
Rn×L,m = 20, n = 30, L = 5, where entries of matrices A and X0 are indepen-
dently sampled from N(0, 1). Symbol ∗ is marked at 1. For the OMPMMV, the ⊕ is
marked at N = 4; while for (P1), ª is marked at N = 3. (b) We now have matrix
A = [I, H] where matrix A ∈ R16×32 and sub-matrix H is a 16 by 16 Hadamard
matrix. Matrix I is a 16 by 16 identity matrix. Matrix X0 is chosen in the same way,
with L equal to 3 and N being the number of nonzero rows. In this case, symbol ∗ is
marked at N = 2. Symbols ⊕ and ª are at N = 4 and N = 3 respectively.
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Figure 2: (a) Consider the case A ∈ Rm×n, X0 ∈ Rn×L, m=20, n=30, L=5, where
entries of matrices A and X0 are independently sampled from N(0, 1). The theoretical
upper bound for the equivalence is 1. Let Ni, i = 1,∞ denote the largest value of
N when the solutions of (P1) with m(·) being the `i norm are identical with matrix
X0 among all of the 1000 simulations. We have N1 = N∞ = 3. (b) We now consider
matrix A = [I, H] where submatrix H is a 16 by 16 Hadamard matrix and submatrix
I is a 16 by 16 identity matrix. We have L = 3. The theoretical upper bound for
equivalence is 2. We obtain N1 = N∞ = 3.
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draw their empirical probabilities of exact recoveries on one plot. See the results in

Figure 3 (a). Secondly, for A = [I, H], where sub-matrix H is a 16 by 16 Hadamard

matrix, I is a 16 by 16 identity matrix, and L = 3, we do the same simulation as

above. Results are shown in Figure 3 (b).

From the simulations, we see that the curves in each plot are similar. This might

demonstrate that for the same method (`1 norm or OMP), among different vector

norms, there is no significant difference.

2.6 Discussion

2.6.1 Better Vector Norms in MMV?

In both sparsity rank R(X) and its relaxation Relax(X) of matrix X ∈ Rn×L, we

choose an arbitrary norm in RL. One logic question is whether or not one norm

can consistently outperform another norm. To be more specific, we introduce the

following dominance concept.

Definition 2.6.1 (Dominance) . We say that a norm m1(x) is dominated by a

norm m2(x) in RL, if and only if for any x, y ∈ RL, m1(x) < m1(y) leads to m2(x) <

m2(y).

If norm m2 dominates norm m1, then m2 should always be used. The reason is

as following. Denote two relaxations Relax1(X) =
∑n

i=1 m1(xi) and Relax2(X) =

∑n
i=1 m2(xi). Whenever (P1) with relaxation Relax1(X) finds the unique sparest so-

lution, i.e., Relax1(X
∗) < Relax1(Y ) for any other Y , (P1) with relaxation Relax2(X)

finds the unique sparsest solution too, i.e., Relax2(X
∗) < Relax2(Y ) for any other Y .

For norms in a Euclidean space, the following result demonstrates that no norm

can dominate another. The only special case is that they are equivalent.

Lemma 2.6.2 If norm m2 dominates norm m1, then there exists a constant C > 0,

such that m1(x) = C ·m2(x),∀x ∈ RL.
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Figure 3: (a) We consider A ∈ Rm×n, X0 ∈ Rn×L,m = 20, n = 30, L = 5, where
entries of matrices A and X0 are independently sampled from N(0, 1). The theoretical
upper bound for equivalence is 1. Notation Ni, i = 1, 2,∞, denotes the largest value
of N while OMPMMV with `i norm in step 2)-a) finds the original X0 among all the
1000 trials. We have N1 = N2 = N∞ = 2. (b) We have matrix A = [I,H] where
submatrix H is a 16 by 16 Hadamard matrix and submatrix I is a 16 by 16 identity
matrix. We have L = 3. The theoretical upper bound for equivalence is 2. We obtain
N1 = N2 = 6 and N∞ = 5.
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Proof. First of all, for any pair x, y ∈ RL satisfying m1(x) = m1(y), we prove

that m2(x) = m2(y). This can be seen from the following. It is easy to see that for

τ > 0,

m1((1− τ)y < m1(x) < m1((1 + τ)y).

From the dominance, we have

m2((1− τ)y < m2(x) < m2((1 + τ)y).

Let τ → 0, we have m2(x) = m2(y).

In the second step, we choose a special x0 ∈ RL, such that m1(x0) = 1. Because

m1

(
1

m1(y)
y

)
= 1 = m1(x0),

we have

m2

(
1

m1(y)
y

)
= m2(x0).

Hence

m2(y) = m1(y) ·m2(x0).

Note that m2(x0) is a constant, we have proved the lemma. 2

Note our notion of “equivalent” differs from some uses in the literature, e.g., [57,

page 269]. More specifically, the result such as Theorem 5.4.4 in [57] is typically

associated with the equivalence. The foregoing lemma is similar to some description

in the Section 5.5 of [57]; however, we failed to find a direct reference.

The above demonstrates that there is no optimal relaxation when SMV is gener-

alized to MMV. Note that we consider the optimality in the worst case. If we know

some properties about X or B, some norms may work better than other norms in

function Relax(X), e.g., on statistical average. We leave it as an open question.
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2.6.2 Simulation

In the simulation, we verify the criterion of ‘exact recovery’, instead of the sparsest

representation as formulated in (P0). exact recovery in many applications is a more

interesting problem. On the other hand, this approach seems to be adopted by most

publications in the field – perhaps due to the numerical difficulty to verify the most

sparsity.

2.6.3 Other Numerical Approaches

The work of Couvreur and Bresler [23] on backward elimination and related analysis

has strong similarity with some of the results that we developed here for MMV.

Short papers [55, 54] proposed various heuristics to achieve sparse representations

. They give a flavor on algorithms that have been adopted in signal processing.

2.6.4 Probability, Random Matrices

Recently, in the case of SMV, some very inspiring new results are obtained. Recall in

SMV, we have b = Ax0, where A ∈ Rm×n, x0 ∈ Rn, and b ∈ Rm, m < n. Donoho in

[29] shows that when ‖x0‖0 = O(n) and the matrix A is random, with the probability

nearly equal to 1, the minimizing `1 norm approach (i.e., (Q1)) gives the solution

being equal to x0.

In general, the upper bounds that are given in this chapter are lower than O(n).

The cases that are considered here are the worst cases. It is shown that these worst-

case results are extremely conservative.

A similar result regarding noisy data was reported in [28]. At the same time, E.

Candès gave several talks with similar results, based on his joint work with T. Tao

and J. Romberg [9].

There are interesting developments in the random matrix. Recall that the mutual

incoherence, M , has been used in several upper bounds of underlying sparsity, for both

uniqueness and equivalence. Roughly, the upper bounds are ∼ M−1/2. Historically,
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it is of particular interest to study the case when matrix A is a concatenation of

two orthogonal square matrices: A = [O1, O2], where matrices O1, O2 are orthogonal.

Apparently the mutual incoherence is the maximum magnitude of the entries of matrix

OT
1 O2. Jiang in [64] derived the asymptotic distribution of this quantity. Basically, if

O1 ∈ Rn×n, he proved that M−1/2 is almost surely between 1
2
√

6

√
n

log n
and 1

4

√
n

log n
.

In another work of Jiang [63], the limit distribution of the maximal off diagonal

entry in a correlation matrix was derived. It can have similar applications as the

above result in analyzing the behavior of M−1/2 in other scenarios.

We would like to point out that the worst case analysis (which eventually produces

M−1/2) is not powerful enough to produce the probabilistic results that are stated

at the beginning of this subsection.

2.6.5 Related Publications

Some preliminary results in this chapter was reported in a conference paper [11] and

a manuscript [12]. The latter was downloadable online. This chapter is an extensive

revision of [12].

2.7 Conclusion

We showed that most of the results on sparse representations of simple measure-

ment vectors can be generalized to the case of multiple measurement vectors. Our

generalization is broad: the inside norm m(·) in (P0) and (P1) can be any vector

norm.

When additional information is available in multiple measurement vectors, better

upper bounds for uniqueness in (P0) (and hopefully for equivalence, referring to our

discussion) become possible. An incarnation of this is Theorem 2.2.4.

We showed that a greedy algorithm – OMP – under certain conditions, can achieve

the sparsest representation, just like the result in SMV. We realize that the general-

ization can be achieved in a broad sense; more specifically, the inner vector norm in
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the step 2)-a) of OMPMMV can be `q norm for any q ≥ 1.

These results provide useful insights in designing numerical solutions to find the

sparse representations of multiple measurement vectors.
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CHAPTER III

HARDNESS ON NUMERICAL REALIZATION OF SOME

PENALIZED LIKELIHOOD ESTIMATORS

3.1 Introduction

Penalized least squares estimators are well presented and advocated in statistics,

see, e.g., [38, 1, 39]. We show that for several existing types of penalty functions,

the corresponding penalized least squares problems are equivalent to the exact cover

by 3-sets problem, which belongs to an NP-hard class [47]. No polynomial-time

numerical solution is available by now. We then extend the NP-hardness results

to penalized least absolute deviation regression and a problem that is derived from

penalized support vector machines. The proof of NP-hardness is preceded by [85] and

some recent works [62, 86]. However, the proofs in this chapter require much more

involved techniques.

Our NP-hardness result does not oppose the principle of penalized likelihood es-

timators. Instead, our results forewarn a misuse of penalized likelihood estimators:

i.e., one should not attempt to find the global extremum(a) in numerical implemen-

tations. It was proven by Fan and Li [38] that the oracle property of a penalized

likelihood estimator just requires a local extremum. The correct way to utilizing pe-

nalized likelihood estimator is the following: starting with a consistent estimator (e.g.,

the maximum likelihood estimator), then modifying it via optimizing the penalized

likelihood function locally.

The rest of the chapter is organized as follows. Section 3.2 presents a formulation

of the penalized least squares estimation. Section 3.3 describes some well-adopted
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penalty functions and known NP-hardness results. Section 3.4 establishes the NP-

hardness for penalized least squares estimators in a general way. Specific results

regarding each class of penalty functions are given as corollaries. Section 3.5 extends

the NP-hardness to regression with least absolute deviations. Section 3.6 extends the

NP-hardness to penalized support vector machines. Section 3.7 discuss other possible

penalized likelihood estimators and conjecture on their NP-hardness. Section 3.8

gives some literature points on the oracle property of penalized likelihood estimators,

emphasizing their requirement of local extremum (instead of a global extremum).

We discuss the practical implication of the NP-hardness of the penalized likelihood

estimators in Section 3.8.

3.2 Problem Formulation

Consider linear regression model, y = Φx + ε, where y ∈ Rm, Φ ∈ Rm×n, x ∈ Rn,

and ε ∈ Rm. Vectors y, x, and ε are called responses, coefficients, and random

errors respectively. Matrix Φ is called the model matrix. The penalized least squares

estimator is the solution to the following optimization problem:

(PLS) min
x

‖y − Φx‖2
2 + λ0

n∑
i=1

p(|xi|),

where term ‖ · ‖2
2 corresponds to the residual sum of squares, λ0 is a prescribed

algorithmic parameter, penalty function p(·) maps nonnegative value to nonnegative

value (p : R+ → R+), and xi is the ith entry of the coefficient vector x.

3.3 Penalty Functions and Known NP-hardness Results

Some choices of p are listed below. We always assume x ≥ 0.

• `0 penalty: p(x) = I(x 6= 0), where I(·) is the indicator function.

• `1 penalty: p(x) = |x|; Lasso [101] and its variants utilize this penalty function.

• Ridge regression: p(x) = x2.
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• More generally, for 0 < c < 2, bridge regression [45] takes p(x) = xc.

• Hard-threshold penalty [35]: p(x; λ) = λ2 − [(λ − |x|)+]2, where λ (λ > 0) is

another algorithmic parameter. This penalty function is smoother than the `0

penalty function.

• Nikolova penalty [87]: p(x) = x
1+x

.

• Finally, the smoothly clipped absolute deviation (SCAD) penalty [38]: for λ >

0, a > 1,

p(x) =





λx, if 0 ≤ x < λ;

−(x2 − 2aλx + λ2)/[2(a− 1)], if λ ≤ x < aλ;

(a + 1)λ2/2, if x ≥ aλ.

As one can see, penalized least squares covers many problems in model selection

and estimation. It is well-known that when the model matrix Φ is orthogonal, the

solutions to the above problems are trivial: just apply some univariate operators. It is

shown in [62, 86] that for generic model matrix Φ, when the `0 penalty is chosen, the

problem is NP-hard. The proof of Huo and Ni [62] utilizes the result of Natarajan [85],

which states that sparse approximate solutions (SAS) to linear system are equivalent

to the exact cover by 3-sets (X3C) problem, which is known to be NP-hard [47].

Huo and Ni [62] apply the principle of Lagrange multiplier to establish the relation

between the `0 penalized PLS and SAS; hence prove the NP-hardness. It remained

open whether a more general PLS is NP-hard.

3.4 General NP-Hardness for PLS Estimators

In this chapter, we establish the following theorem.

Theorem 3.4.1 (NP-Hardness of PLS) For general model matrix Φ, problem (PLS)

is NP-hard if the penalty function p(·) (p : R+ → R+) satisfies the following four con-

ditions.
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C1. p(0) = 0 and function p(x), x ≥ 0, is monotone increasing: ∀0 ≤ x1 <

x2, p(x1) ≤ p(x2).

C2. There exists τ0 > 0 and a constant c > 0, such that ∀0 ≤ x < τ0, we have

p(x) ≥ p(τ0)− c(τ0 − x)2.

C3. For the aforementioned τ0, if x1, x2 < τ0, then p(x1) + p(x2) ≥ p(x1 + x2).

C4. ∀0 ≤ x < τ0, p(x) + p(τ0 − x) > p(τ0).

A proof is given in Section 3.9.1. Note in most cases of PLS, we have p(0) = 0 and

function p(·) is monotone increasing. Hence C1 is satisfied. Condition C3 is satisfied

if function p(x) is concave in [0, 2τ0]. Condition C4 holds if function p(x) is strictly

concave for point 0 and point τ0. See Section 3.9.2 for a brief justification.

For the penalty functions in `0 penalty, bridge regression with 0 < c < 1, Hard-

threshold, Nikolova penalty, and SCAD, one can easily see that C3 and C4 hold.

Condition C2 is less intuitive. However, it is important to ensure the NP-hardness.

Recall that in Fan and Li [38], p′(|x|) = 0 for large |x| is a sufficient condition for the

unbiasedness of a PLS estimator. On the other hand, if p′(|x|) = 0 for |x| larger than

a positive value, it is possible to find a quadratic function, y = p(τ0) − c(τ0 − x)2,

which is below penalty function y = p(x) for 0 ≤ x < τ0 with positive constants

τ0 and c. For `0, hard-threshold, and SCAD penalties, one can verify C2 with the

following values for τ0 and c.

• For the `0 penalty, one takes τ0 = 1 and c = 1.

• For the hard-threshold penalty, one may take τ0 = λ and c = 1.

• For the SCAD penalty, one takes τ0 = aλ and c = 1
2(a−1)

.

From the above, we immediately have the following.
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Corollary 3.4.2 For the penalties in `0, hard-threshold, and SCAD, the implemen-

tation of PLS lead to NP-hard problems.

Note that the result of NP-hardness in Huo and Ni [62] becomes a special case.

It is well known that the `1 penalty leads to linear programming problems. It is

also well know that ridge regression and bridge regression with c ≥ 1 lead to convex

optimization problems, hence they have polynomial time solutions.

Solely based on Theorem 3.4.1, we can not establish the NP-hardness for the PLS

problem with Nikolova penalty function or bridge regression with 0 < c < 1. One can

not establish C2 for the Nikolova penalty; neither can we for the bridge regression

with 0 < c < 1. The derivatives of both penalty functions converge to zero as the

variable goes to the positive infinity. In Section 3.9.3, it is shown that if C2 holds,

then p′(τ0) = 0.

For bridge regression with 0 < c < 1, we conjecture that the related PLS problem

is NP-hard. However, we do not establish a proof in the present chapter. In part,

it is found that p′(x) = c · xc−1 → +∞, as x → 0. In all the cases that we have

proved so far, we have p′(x) upper bounded in interval [0, τ0). At the same time, the

gradient of the objective function in (PLS) becomes instable (going to infinities) as

some elements of x converge to 0. Hence we believe it is hard to numerically realize

a bridge regression with 0 < c < 1. Furthermore, it is shown in [1] and [38] that such

a bridge regression is not continuous.

The following theorem will be used to establish the NP-hardness related to the

Nikolova penalty. A proof is given in Section 3.9.4.

Theorem 3.4.3 Assume the model matrix Φ is of full row rank. For continuous

penalty function p(x) that satisfies condition C1 and is strictly concave within interval

(0,∞). Suppose penalty function p(x) satisfies the Lipschitz condition: there exists

a constant C1 > 0 such that |p(x1) − p(x2)| ≤ C1|x1 − x2| for any 0 < x1, x2 < ∞.

Then the corresponding PLS problem is NP-hard.
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For the PLS estimators with Nikolova penalty, it is observed that

p′(x) = (1 + x)−2 ⇒ 0 < p′(x) ≤ 1, ∀x ∈ [0, +∞).

Evidently, the Lipschitz condition holds. We immediately have the following.

Corollary 3.4.4 Assume the model matrix Φ is of full row rank. For a PLS estimator

with Nikolova penalty, the corresponding optimization problem is NP-hard.

3.5 Least Absolute Deviation Regression

It is interesting to know that when the quadratic term ‖y − Φx‖2
2 in (PLS) is re-

placed by a sum of the absolute values of the residuals (i.e., ‖y − Φx‖1), for several

penalty functions, the corresponding optimization problems are NP-hard. The proof

of NP-hardness is nearly identical with the proof of Theorem 3.4.1. Recall that these

problems are associated with the least absolute deviations (LAD) regression [48, 4].

We consider

(PLAD) min
x

‖y − Φx‖1 + λ0

n∑
i=1

p(|xi|),

where all the notations are predefined. We have the following theorem.

Theorem 3.5.1 (NP-hardness for Penalized LAD) For general model matrix Φ,

problem (PLAD) is NP-hard if the penalty function p(·) (p : R+ → R+) satisfies the

following three conditions:

D1. p(0) = 0 and function p(x), x ≥ 0, is monotone increasing: ∀0 ≤ x1 <

x2, p(x1) ≤ p(x2).

D2. There exists a constant τ0 > 0, such that function p(x) is concave in the interval

[0, 2τ0].

D3. ∀0 ≤ x < τ0, p(x) + p(τ0 − x) > p(τ0).
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It is easy to verify that for the function p(x) in `0 penalty, bridge regression with

0 < c < 1, hard-threshold, Nikolova penalty, and SCAD, the conditions in the above

theorem are satisfied. Hence we immediately have the following.

Corollary 3.5.2 If the penalty function is chosen according to the `0 penalty, bridge

regression with 0 < c < 1, hard-threshold, Nikolova penalty, or SCAD, the resulting

problem as in (PLAD) is NP-hard.

We explain why the proof of Theorem 3.5.1 will be an easy extension from the

proof of Theorem 3.4.1. First of all, note that conditions D1 and D3 in Theorem 3.5.1

are identical with the conditions C1 and C4 in Theorem 3.4.1. Moreover, given D2,

it is easy to verify that a condition like C3 is satisfied, referring to the discussion in

Section 3.9.2. Finally, given D2, for 0 < x < τ0, we have

p(x) ≥ x

τ0

p(τ0) +
τ0 − x

τ0

p(0)

=
x

τ0

p(τ0)

= p(τ0)− p(τ0)

τ0

(τ0 − x);

i.e., a condition like C2 is satisfied. As an exercise, readers can verify that the proof

of Theorem 3.4.1 in Section 3.9.1 can be modified to prove the Theorem 3.5.1.

3.6 A Problem Related to Machine Learning and Data Min-
ing

The following problem is rooted in machine learning and data mining [39, Section

6.4]. We consider

(PSVM) min
β

n∑
i=1

[1− yi(x
T
i β)]+ + λ0

d∑
j=1

p(|βj|),

where (xi, yi),xi ∈ Rd, yi ∈ {−1, 1}, i = 1, 2, . . . , n, are training data; coefficient

vector β ∈ Rd has elements βj, j = 1, 2, . . . , d; function [·]+ corresponds to the hinge

42



loss and only takes nonnegative value:

[x]+ =





x, if x ≥ 0,

0, if x < 0;

constant λ0 is an algorithmic parameter; function p(·) is the previously mentioned

penalty function. In 1-norm support vector machine ([116] and references therein),

we have p(β) = |β|; while in ordinary support vector machine, we have p(β) = β2.

We will show that for a class of penalty function p(·), the problem (PSVM) is

NP-hard. The proof of this NP-hardness result bears strong similarity with the proof

of Theorem 3.4.1. However, it is not a direct extension. In the proof, several steps

require slightly different treatment. We provide a complete proof in Section 3.9.5.

Theorem 3.6.1 (Penalized Support Vector Machines) For a general training

data (xi, yi), i = 1, 2, . . . , n, the problem (PSVM) is NP-hard if there exists a constant

τ0 > 0, such that

λ0 ≤ 3/p(τ0) (6.16)

and (for this τ0) the penalty function p(·) (p : R+ → R+) satisfies the three conditions

(D1-D3) in Theorem 3.5.1.

We now discuss when we can apply the above theorem. Recall the penalty func-

tions that are described in Section 3.3.

• For the `0 penalty, due to the concave condition D3, we must choose τ0 > 0.

Hence p(τ0) ≡ 1. Hence the above theorem only applies when λ0 ≤ 3.

• For the bridge regression with 0 < c < 1, we can choose τ0 to be any value

in interval (0,∞). Hence p(τ0) takes any value between 0 and +∞. Hence

Theorem 3.6.1 applies for any λ0 > 0.

• For hard-threshold, one can choose τ0 > 0. Because p(τ0) takes any value in

interval (0, λ2), the above theorem applies for any λ0 > 0.
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• For the Nikolova penalty, one can choose τ0 > 0. The possible values of p(τ0)

form interval (0, 1). Hence Theorem 3.6.1 applies for any λ0 > 0.

• For SCAD, we must choose τ0 > λ. We have λ2 < p(τ0) ≤ a+1
2

λ2. Hence

Theorem 3.6.1 applies when λ0 < 3/λ2.

Corollary 3.6.2 For a penalty function and its corresponding domain of the param-

eter λ0 that is specified in the foregoing list, the problem (PSVM) is NP-hard.

3.7 Other Penalized Likelihood Estimators

One can see that when the penalty functions, pλt,j
(·), are identical, the sparse covari-

ance matrix estimation problem [39, Equation (6.7)] is a PLS problem. Hence the

NP-hardness result for PLS applies.

We have considered a subset of penalized likelihood estimators. There are other

penalized likelihood estimators, e.g., a penalized likelihood estimator in logistic re-

gression [39, Example 1] and a penalized likelihood estimator in Poisson log-linear

regression [39, Example 2]. We conjecture that the corresponding optimization prob-

lems are NP-hard. However, this chapter does not provide a proof.

3.8 Oracle Property and Local Minimizers

It would be wrong to think that the NP-hardness results in this chapter are against

the use of penalized likelihood estimators. In fact, in [38], the authors have pointed

out that the corresponding optimization problems are hard. Moreover, authors of [38]

showed that a local extremum of the penalized likelihood possess the oracle property.

The oracle property is one of the most interesting theoretical properties. The NP-

hardness results of this chapter simply demonstrate that it will be a misinterpretation

of the penalized likelihood principle if someone tries to find the global extremum(a).

The computational issue of penalized likelihood estimators are further discussed in
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[58], in which the authors correctly pointed out the difficulty of optimizing the pe-

nalized likelihood function.

The account of oracle property (for a local minimizer) in [38] is inspiring. Further

technical analysis is reported in [40]. Another recent discovery on the oracle property

of Lasso (in fact, a modified version) is reported in [117]. They have a common flavor:

starting from a consistent estimator, adjust the estimator by either optimizing the

penalized likelihood function locally or modifying the weights in the penalty function

of Lasso. It will be interesting to exploit the connection between these approaches.

In particular, can we provide a unified condition on when such a local adjustment

will lead to oracle property? We leave it as a topic of future research.

3.9 Proofs Associated with Chapter III

3.9.1 Proof of Theorem 3.4.1

It is known that the exact cover by 3-sets (X3C) is NP-hard [47]. Let S denote a set

with m elements. Let C denote a collection of 3-element subsets of S. The X3C is

[85]: Does C contain an exact cover for S; i.e., a subcollection Ĉ of C such that every

element of S occurs exactly once in Ĉ. Without loss of generality, we assume that m

is divisible by 3; otherwise X3C can never be done.

Let f(x) denote the objective function in (PLS); i.e., f(x) = ‖y−Φx‖2
2+λ0

∑n
i=1 p(|xi|).

We will show that for a pair of (Φ, y), there exists a constant M , such that f(x) ≤ M

if and only if there is a solution to X3C. Hence if (PLS) is not NP-hard, then X3C is

not either; such a contradiction leads to the NP-hardness of (PLS).

We now construct Φ and y. The number of columns in Φ is equal to the number

of subsets in C. Let φj (1 ≤ j ≤ |C|) denote the jth column of the matrix Φ. We

assign: for 1 ≤ i ≤ m, (φj)i =
√

c(λ0 + 1)/3 if the ith element of S appears in the

jth 3-subset in C; and (φj)i = 0, otherwise. Here (φj)i is the ith entry of vector φj.

Apparently, we have n = |C|, the size of C. Let y = τ0

√
c(λ0 + 1)/3 · 1m×1, where
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1m×1 is an all-one vector.

Suppose X3C has a solution. We create vector x∗ as: (x∗)i = τ0, if the ith 3-

element subset in C is used in the solution to X3C; and (x∗)i = 0, otherwise. Here

(x∗)i denotes the ith entry of vector x∗. One can easily verify that y = Φx∗. Hence

we have f(x∗) = m
3
λ0p(τ0).

Now assign M = m
3
λ0p(τ0). We show that if there exists x′ satisfying f(x′) ≤

M , then we must have x′ to be a solution of the X3C problem. Recalling that x∗

corresponds to a solution to X3C as described above, if the solution to the X3C

problem is not unique, it is possible that x′ and x∗ are not identical.

For 1 ≤ k ≤ m, Let Ωk denote a set of indices (of C) corresponding to the nonzero

entries in the kth row of matrix Φ. Given y = Φx∗, it is evident that there is exactly

one j ∈ Ωk, such that x∗j = τ0; while for other j ∈ Ωk, we should have x∗j = 0. We

will need the following lemma.

Lemma 3.9.1 Suppose p(·) satisfies condition C1-C4. For 1 ≤ k ≤ m, the following

strict inequality holds if at least one side of it is not equal to zero:

1

3

∑
i∈Ωk

[p(|x∗i |)− p(|x′i|)] < λ−1
0 · (λ0 + 1)c

3

[∑
i∈Ωk

(x∗i − x′i)

]2

. (9.17)

Before giving the proof of the above lemma, we first introduce the following lemma

which will be used in the proof of Lemma 3.9.1 and the proofs of other theorems in

the chapter.

Lemma 3.9.2 If τ0 ≤
∑

i∈Ωk
|x′i| and |Ωk| > 1 , we have p(τ0) <

∑
i∈Ωk

p(|x′i|).

Proof of Lemma 3.9.2. Let c1 =
∑

i∈Ωk
|x′i| ≥ τ0, we have

p(τ0) = p(
τ0

c1

∑
i∈Ωk

|x′i|)
C3,C4
<

∑
i∈Ωk

p(
τ0

c1

|x′i|) ≤
∑
i∈Ωk

p(|x′i|).

Hence, Lemma 3.9.2 holds. 2

Proof of Lemma 3.9.1. We prove this lemma in two cases.
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In the first case, we suppose that the right hand side of (9.17) is nonzero. Hence

the right hand side is always positive. The (9.17) holds trivially if the left hand side

is nonpositive. If the left hand side of (9.17) is positive, we have

1
3

∑
i∈Ωk

[p(|x∗i |)− p(|x′i|)]
(λ0+1)c

3
[
∑

i∈Ωk
(x∗i − x′i)]2

=
p(τ0)−

∑
i∈Ωk

p(|x′i|)
(λ0 + 1)c(τ0 −

∑
i∈Ωk

x′i)2

C3≤ p(τ0)− p(
∑

i∈Ωk
|x′i|)

(λ0 + 1)c(τ0 −
∑

i∈Ωk
x′i)2

≤ p(τ0)− p(
∑

i∈Ωk
|x′i|)

(λ0 + 1)c(τ0 −
∑

i∈Ωk
|x′i|)2

C2≤ (1 + λ0)
−1 < λ−1

0 .

Note in all the three inequalities, we implicitly utilizes

p(τ0) >
∑
i∈Ωk

p(|x′i|). (9.18)

By using Lemma 3.9.2, we have τ0 >
∑

i∈Ωk
|x′i|. Then the first equality holds by

condition C3, and the last inequality holds by condition C2.

In the second case, we assume that the right hand side of (9.17) is zero, we have

τ0 =
∑

i∈Ωk
x′i. From the assumption of our lemma, the left hand side can not be zero

simultaneously. Condition C1 and Lemma 3.9.2 demonstrate that the left hand side

can only be negative: first, we have

p(τ0) = p(|
∑
i∈Ωk

x′i|)
C1≤ p(

∑
i∈Ωk

|x′i|);

Thus, τ0 ≤
∑

i∈Ωk
|x′i|. With Lemma 3.9.2, it is easy to see (9.17) holds. 2

Given the definition of Ωk, it is not hard to see that

n∑
i=1

[p(|x∗i |)− p(|x′i|)] =
m∑

k=1

1

3

∑
i∈Ωk

[p(|x∗i |)− p(|x′i|)]. (9.19)
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From the construction of Φ, it is not hard to verify the following:

‖y − Φx′‖2
2 = ‖Φx∗ − Φx′‖2

2

= ‖Φ(x∗ − x′)‖2
2

=
m∑

k=1

(λ0 + 1)c

3
[
∑
i∈Ωk

(x∗i − x′i)]
2. (9.20)

Combine Lemma 3.9.1 with (9.19) and (9.20), we have

n∑
i=1

p(|x∗i |)−
n∑

i=1

p(|x′i|) ≤ λ−1
0 ‖y − Φx′‖2

2;

and the equality holds if and only if the two sides of (9.17) are equal to zero for every

k, 1 ≤ k ≤ m. Note the above is equivalent to M = f(x∗) ≤ f(x′). Recall f(x′) ≤ M ,

we must have f(x′) = M and ∀k, p(τ0) =
∑

i∈Ωk
p(|x′i|) and τ0 =

∑
i∈Ωk

x′i. Utilizing

Lemma 3.9.2, one can show that within set {x′i : i ∈ Ωk}, we must have exactly one

element that is equal to τ0 and the rest are zeros. Given the design of x∗, it is not

hard to see that x′ corresponds to another solution to X3C. (Note the solutions to

X3C is not necessarily unique.)

From all the above, the theorem is proved.

3.9.2 Justifications Related to C3 and C4

Recall function p(x) is concave in [0, 2τ0]. Hence for x1, x2 < τ0, we have, for 0 ≤ λ ≤
1,

p[λx1 + (1− λ)x2] ≥ λp(x1) + (1− λ)p(x2),

Therefore, we have

p(xi) ≥ xi

x1 + x2

p(x1 + x2) +
x{3−i}
x1 + x2

p(0), i = 1, 2.

Adding the above two and using p(0) = 0, we have

p(x1) + p(x2) ≥ p(x1 + x2).

The above is condition C3. The justification regarding C4 is nearly identical.
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3.9.3 Proof of “First Derivative is Zero”

Recall p(x), x ≥ 0, is nondecreasing; hence p′(x) ≥ 0. On the other hand, it is obvious

that when C2 holds, we have

f(x)
∆
= p(x)− p(τ0) + c(τ0 − x)2 ≥ 0, for 0 ≤ x ≤ τ0,

and f(τ0) = 0; hence f ′(τ0) ≤ 0, which leads to p′(τ0) ≤ 0. From all the above, we

have that p′(τ0) = 0.

3.9.4 Proof of Theorem 3.4.3

Let

f(x) = ‖y − Φx‖2
2 + λ0

n∑
i=1

p(|xi|),

where p(x) is the penalty function as in (PLS). Consider a truncated version of the

penalty function:

pt(x; N) =





p(x), 0 ≤ x ≤ N,

p(N), x > N,

where N is a positive constant. Correspondingly, we define

ft(x; N) = ‖y − Φx‖2
2 + λ0

n∑
i=1

pt(|xi|; N).

Minimizing the f(x) in Rn is the original PLS optimization problem; while minimizing

f(x; N) with a prefixed N is its truncated version. Applying Theorem 3.4.1, it is not

hard to see that the latter is NP-hard. We omit some obvious details here.

If we can show that for a constant N ′ that is large enough, the two problems have

identical solutions, then we prove that the PLS problem with the original penalty is

NP-hard.

We will show below that the solutions to the aforementioned problems are upper

bounded by a constant; hence by choosing N ′ as this upper bound, the two problems

are identical.
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Let x0 be the minimizer of either objective f(x) or ft(x; N). Without loss of

generality, assume x0 is the minimizer of ft(x; N). Note the same argument will

apply to objective f(x) as well. We have ∀a ∈ Rn,

ft(x0 + a; N) ≥ ft(x0; N).

From the definition of ft(·; N), we have

‖y − Φ(x0 + a)‖2
2 + λ0

n∑
i=1

pt[|(x0 + a)i|; N ] ≥ ‖y − Φx0‖2
2 + λ0

n∑
i=1

pt[|(x0)i|; N ],

where (·)i denotes the ith element of a vector. Simplifying the above, we have

aT ΦT Φa + 2(xT
0 ΦT Φ− yT Φ)a (9.21)

+λ0

n∑
i=1

{pt[|(x0 + a)i|; N ]− pt[|(x0)i|; N ]} ≥ 0.

We will need the following inequality, which is presented in a lemma.

Lemma 3.9.3 For 1 ≤ i ≤ n, we have

|(ΦT Φx0 − ΦT y)i| ≤ 1

2
λ0C1,

where C1 is the Lipschitz constant that is given in the theorem statement.

Proof. For 1 ≤ i ≤ n, within vector a, we set every entry except ai to be equal to 0.

From (9.21), we have ∀ai,

T1a
2
i + 2T2ai + λ0[pt(|T3 + ai|; N)− pt(|T3|; N)] ≥ 0, (9.22)

where T1 = (ΦT Φ)ii, T2 = (ΦT Φx0−ΦT y)i, and T3 = (x0)i. Without loss of generality,

in the following argument, we assume that ai > 0. Readers can verify that a trivially

modified argument holds when ai < 0. Replacing ai with −ai in (9.22), we have

T1a
2
i − 2T2ai + λ0[pt(|T3 − ai|; N)− pt(|T3|; N)] ≥ 0. (9.23)
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Given the definition of pt(·, N) and the Lipschitz property of p(·), it is easy to see

that function pt(·; N) also satisfies the Lipschitz condition: for ai 6= 0,

∣∣∣∣
pt(|α + ai|; N)− pt(|α|; N)

ai

∣∣∣∣ < C1,

where α is an arbitrary real number. From (9.22), we have

T2 ≥ −1

2
T1ai − 1

2
λ0

pt(|T3 + ai|; N)− pt(|T3|; N)

ai

≥ −1

2
T1ai − 1

2
λ0C1. (9.24)

Similarly from (9.23), we have

T2 ≤ 1

2
T1ai +

1

2
λ0

pt(|T3 − ai|; N)− pt(|T3|; N)

ai

≤ 1

2
T1ai +

1

2
λ0C1. (9.25)

Letting ai → 0, combining (9.24) and (9.25), we have |T2| ≤ 1
2
λ0C1. 2

Let v = ΦT Φx0 − ΦT y, the above leads to the following:

‖x0‖∞ ≤ ‖x0‖2

≤ ‖(ΦT Φ)−1ΦT y‖2 + sup
‖v‖∞< 1

2
λ0C1

‖(ΦT Φ)−1v‖2

≤ ‖(ΦT Φ)−1ΦT y‖2 +

√
n1

2
λ0C1

µmin(ΦT Φ)
.

where µmin(·) is the smallest eigenvalue of the matrix. Note the last term is a constant,

which is determined by Φ, y, λ0, and C1. By taking N ′ to be the above constant, the

above establishes the equivalence between the PLS problem with the original penalty

function and the PLS problem with the truncated penalty function. Because the

PLS problem with the truncated penalty function is NP-hard, we conclude that the

PLS problem with the original penalty function is NP-hard as well. The theorem is

proved.
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3.9.5 Proof of Theorem 3.6.1

Similar to the proof in Section 3.9.1, we will show that if problem (PSVM) is not

NP-hard, neither is the exact cover by 3-sets problem. (Recall that the exact cover

by 3-sets problem is denoted by X3C.) Because we know that X3C is NP-hard, so is

the (PSVM). The proof is again constructive.

Let matrix Φ = diag(y1, y2, . . . , yn)X, where diag(y1, y2, . . . , yn) is a diagonal ma-

trix with diagonal entries y1, y2, . . . , yn and that

X =




xT
1

xT
2

...

xT
n




.

Note Φ ∈ Rn×d. For any given matrix Φ, one can find a (non-unique) set of data

(xi, yi), i = 1, 2, . . . , n, such that the above holds.

Let f(β) = ‖1n − Φβ‖+ + λ0

∑d
j=1 p(|βj|), where 1n ∈ Rn×1 is an all-one vector,

and for vector x = (x1, x2, . . . , xn)T ∈ Rn, we have ‖x‖+ =
∑n

i=1(xi)+. It is evident

that problem (PSVM) is equivalent to

min
β

f(β). (9.26)

We now construct a matrix Φ. Let S be a set with n elements. Without loss of

generality, we assume that n is divisible by 3. Let C denotes a collection of 3-element

subsets of S. (Recall that the S and C are used in Section 3.9.1.) Each column

of matrix Φ (denoted by φk, 1 ≤ k ≤ |C|) corresponds to a subset in collection C.

Moreover, we have (φk)i = 1/τ0 if and only if the ith element of S is in the kth

subset of C. Assume Ĉ ⊂ C corresponds to an exact cover of S by 3-sets. For vector

β∗ ∈ R|C|, we have β∗k = τ0 if and only if k ∈ Ĉ; the rest of β∗k ’s are equal to zero.

Evidently, we have 1n = Φβ∗ and f(β∗) = λ0

∑|C|
j=1 p(|β∗j |) = λ0

n
3
p(τ0). We will show

that f(β∗) is a global minimum of f(β). Moreover, any global solution of (9.26)
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corresponds to an exact cover by 3-sets. Hence the NP-hardness of X3C will lead to

the NP-hardness of (9.26), and then (PSVM).

Let Ωk, 1 ≤ k ≤ n, to be the same subset of indices of C that is defined in Section

3.9.1 (right before Lemma 3.9.1). For any other β′ ∈ R|C|, we establish the following

lemma.

Lemma 3.9.4 For any k, 1 ≤ k ≤ n, we have

1

3

∑
j∈Ωk

λ0[p(|β∗j |)− p(|β′j|)] ≤
1

τ0

‖
∑
j∈Ωk

(β∗j − β′j)‖+; (9.27)

and the inequality is strict unless both sides of the inequality are equal to zero.

Proof. We consider two cases:

• Case 1: when the right hand side of (9.27) is positive, and

• Case 2: when the right hand side of (9.27) is equal to zero.

Note the right hand side of (9.27) is nonnegative, the above two cases cover all

possibilities.

In case 1, we have

‖τ0 −
∑
j∈Ωk

β′j‖+ > 0 ⇒ τ0 >
∑
j∈Ωk

β′j.

Using Lemma 3.9.2, we can show that we only need to consider the case when any

partial sum of quantities |β′j|, j ∈ Ωk, must be less than τ0. Because otherwise, the

left hand side of (9.27) is no more than zero; hence the lemma holds.

Note condition D3 is identical with condition C4. We will show that the following

is true: ∀0 < x < τ0,

p(x) > p(τ0)− p(τ0)

τ0

(τ0 − x) =
p(τ0)

τ0

x. (9.28)

To see the above, recall that at the end of Section 3.5, we have proved that when

condition D2 holds, we have

p(x) ≥ p(τ0)− p(τ0)

τ0

(τ0 − x).

53



Without loss of generality, let us assume that x < 1
2
τ0. Recall condition D3 (p(x) +

p(τ0 − x) > p(τ0)). If p(x) = p(τ0)− p(τ0)
τ0

(τ0 − x) = p(τ0)
τ0

x, we have

p(τ0 − x) > p(τ0)− p(τ0)

τ0

x =
p(τ0)

τ0

(τ0 − x).

The three points 0 < x < τ0 − x form a counterexample of the concavity condition.

Similarly, when x > 1
2
τ0, a counterexample will be found (with three points τ0 − x <

x < τ0). The counterexample demonstrates that (9.28) holds.

Utilizing the above results, we have

left hand side of (9.27)

right hand side of (9.27)
=

λ0τ0

3

p(τ0)−
∑

j∈Ωk
p(|β′j|)

‖τ0 −
∑

j∈Ωk
β′j‖+

C3≤ λ0τ0

3

p(τ0)− p(
∑

j∈Ωk
|β′j|)

τ0 −
∑

j∈Ωk
|β′j|

(9.28)
<

λ0τ0

3

p(τ0)

τ0

(6.16)

≤ 1.

Hence (9.27) holds with strict inequality.

For case 2, we have τ0 −
∑

j∈Ωk
β′j ≤ 0. Hence we have

τ0 ≤
∑
j∈Ωk

β′j ≤
∑
j∈Ωk

|β′j|.

Using Lemma 3.9.2, we have

p(τ0) ≤
∑
j∈Ωk

p(|β′j|).

The above indicates that the left hand side of (9.27) is no more than zero. Hence

(9.27) holds. 2

We show that β∗ minimizes the function f(β). Similar to the argument in Section

3.9.1, we add up inequalities (9.27) for all k, 1 ≤ k ≤ n. We have

f(β∗) ≤ f(β′).
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The above is true for every β′; hence β∗ is a minimizer.

Now we show that the minimum of function f(β) is achieved when β corresponds

to an exact cover by 3-sets. Suppose we have f(β∗) = f(β′). Based on Lemma 3.9.4,

both sides of inequality (9.27) must be equal to zero for any k, 1 ≤ k ≤ n. That is,

∀1 ≤ k ≤ n, we have

p(τ0) =
∑
j∈Ωk

p(|β′j|), (9.29)

and

τ0 ≤
∑
j∈Ωk

β′j. (9.30)

From (9.30), we have τ0 ≤
∑

j∈Ωk
|β′j|. By Lemma 3.9.2, we have p(τ0) <

∑
j∈Ωk

p(|β′j|)
when |Ωk| > 1. Thus, the equality in (9.29) holds if and only if for each k, 1 ≤ k ≤ n,

there is exactly one j, j ∈ Ωk, such that β′j = τ0 and the rest of β′j′ ’s (j′ ∈ Ωk) are

equal to zero. Evidently, β′ corresponds to another solution to X3C.

From all the above, we prove the theorem.
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CHAPTER IV

ELECTRICITY PRICE CURVE MODELING BY

MANIFOLD LEARNING

4.1 Introduction

In the competitive electricity wholesale markets, market participants, including power

generators and merchants alike, strive to maximize their profits through prudent trad-

ing and effective risk management against adverse price movements. A key to the

success of market participants is to model the electricity price dynamics well and cap-

ture their characteristics realistically. One strand of research on modeling electricity

price processes focuses on the aspect of derivative pricing and asset valuation which

investigates the electricity spot and forward price models in a risk-neutral world (e.g.,

[65, 26, 77]). Another research strand concerns the modeling of electricity prices in

the physical world, which offers price forecasts for assisting with physical trading

and operational decision-making. An accurate short-term price forecast over a time

horizon of hours helps market participants to devise their bidding strategies in the

auction-based pool-type markets and to allocate generation capacity optimally among

different markets. The medium-term forecast with a time horizon spanning days to

months is useful for balance sheet calculations and risk management applications [82].

In the second research strand of power price modeling, there is an abundant lit-

erature on forecasting spot or short-term electricity prices, especially the day-ahead

prices ([25, 88, 21, 20, 50, 67, 27, 83]). Typically, the electricity prices are treated

as hourly univariate time series and then modeled by parametric models, includ-

ing ARIMA processes and their variants ([88, 21, 20]), regime-switching or hidden
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Markov processes ([50, 83]), Levy processes [27], hybrid price models combining sta-

tistical modeling with fundamental supply-demand modeling ([25]), or nonparametric

models such as the artificial neural networks ([91, 98, 114]). While spot price mod-

eling is important, successful trading and risk management operations in electricity

markets also require knowledge on an electricity price curve consisting of prices of

electricity delivered at a sequence of future times instead of only at the spot. For in-

stance, in order to maximize the market value of generation assets, power generators

would need to base their physical trading decisions over how much power to sell in the

next day and in the long-term contract markets on both the short-term price forecast

for electricity delivered in the next 24 hours and the electricity forward price with

maturity ranging from weeks to years. The non-storable nature of electricity makes

the electrons delivered at different time points essentially different commodities. The

current market price (or spot price) of electricity may have little correlation with that

of electricity delivered a few months in the future. Thus, it is imperative to be able to

model the electricity price curve as a whole. There is not much literature on modeling

electricity price curves. Paper [2] proposes a parametric forward price curve model

for the Nordic market, which does not model the movements of the expected future

level of a forward curve. A recent paper [76] employs a weighted average of nearest

neighbors approach to model and forecast the day-ahead price curve. These works of-

fer little insight on understanding the main drivers of the price curve dynamics. This

chapter contributes to this strand of research by proposing a novel nonparametric

approach for modeling electricity price curves. Analysis on the intrinsic dimension

of an electricity price curve is offered, which sheds light on identifying major factors

governing the price curve dynamics. The forecast accuracy of our model compares

favorably against that of the ARX and ARIMA model in one-day-ahead price pre-

dictions. In addition, our model has a great advantage on the predictions in a longer

horizon from days to weeks over other models.
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In general, the task of analytically modeling the dynamics of such a price curve

is daunting, because the curve is a high-dimensional subject. Each price point on

the curve essentially represents one dimension of uncertainty. To reduce the dimen-

sion of modeling a price curve and identify the major random factors influencing

the curve dynamics, Principle Component Analysis (PCA) is proposed and has been

widely applied in the real-world data analysis for industrial practices. As PCA is

mainly suited for extracting the linear factors of a data set, it does not appear to

perform well in fitting electricity price curves with a linear factor model in a low-

dimensional space. However, the following intuition suggests that there shall exist

a low-dimensional structure capturing the majority of randomness in the electric-

ity price curve dynamics. Take the day-ahead electricity price curve as an example.

While electricity delivered in the next 24 hours are different commodities, the corre-

sponding prices all result from equilibrating the fundamental supply and demand for

electricity. The common set of demand and supply conditions in all 24 hours hints

a possible nonlinear representation of the 24-dimensional price curve in a space of

lower dimension. A natural extension to the PCA approach is to consider the man-

ifold learning methods, which are designed to analyze intrinsic nonlinear structures

and features of high-dimensional price curves in the low-dimensional space. After

obtaining the low-dimensional manifold representation of price curves, price forecasts

are made by first predicting each dimension coordinate of the manifold and then uti-

lizing a reconstruction method to map the forecasts back to the original price space.

The conceptual flowchart of our modeling approach is illustrated by Fig. 4. Our

major contribution is to establish an effective approach for modeling energy forward

price curves, and set up the entire framework in Fig. 4. The other major contribution

is to identify the nonlinear intrinsic low-dimensional structure of price curves. The

resulting analysis reveals the primary drivers of the price curve dynamics and facil-

itates accurate price forecasts. This work also enables the application of standard
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times series models such as Holt-Winters in the forecast step from box 1 to box 2.

Figure 4: The conceptual flowchart of the model.

In this chapter, locally linear embedding (LLE) and LLE reconstruction are adopted

for manifold learning and reconstruction. The study of the intrinsic dimension and

embedded manifold indicates that there does exist a low-dimensional manifold with

the intrinsic dimension around four for day-ahead electricity price curves in the New

York Power Pool (known as NYPP).

The rest of the chapter is organized as follows. Section II describes a manifold

based method LLE and the corresponding reconstruction method. In Section III, LLE

and LLE reconstruction are applied to model and analyze the day-ahead electricity

price curves in NYPP. Section IV presents the results of the electricity price curve

predictions based on manifold learning. Section V discusses about the extensions and

restrictions of our modeling and prediction. Section VI concludes.

4.2 Manifold Learning Algorithm

4.2.1 Introduction to Manifold Learning

Manifold learning is a new and promising nonparametric dimension reduction ap-

proach. Many high-dimensional data sets that are encountered in real-world appli-

cations can be modeled as sets of points lying close to a low-dimensional manifold.
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Given a set of data points x1, x2, · · · , xN ∈ RD, we can assume that they are sampled

from a manifold with noise, i.e.,

xi = f(yi) + εi, i = 1, · · · , N (2.31)

where yi ∈ Rd, d ¿ D and εi is noise. Integer d is also called the intrinsic dimension.

The manifold based methodology offers a way to find the embedded low-dimensional

feature vectors yi from the high-dimensional data points xi.

Many nonparametric methods are created for nonlinear manifold learning, includ-

ing multidimensional scaling (MDS) [6, 70], locally linear embedding (LLE) [95, 96],

Isomap [100], Laplacian eigenmaps [3], Hessian eigenmaps [32], local tangent space

alignment (LTSA) [115], and diffusion maps [84]. Survey [61] gives a review on the

above methods.

Among various manifold based methods, we find that locally linear embedding

(LLE) works well in modeling electricity price curves. Our purpose is two-fold: to ana-

lyze the features of electricity price curves and predict the price curve at a future time.

The reconstruction of high-dimensional forecasted price curves from low-dimensional

predictions is a significant step for forecasting. Through extensive computational

experiments, we conclude that LLE reconstruction is more efficient relative to other

reconstruction methods for our purpose. Moreover, LLE and LLE-reconstruction are

fast and easy to implement. In next two subsections, we introduce the algorithms of

LLE and LLE reconstruction, respectively.

4.2.2 Locally Linear Embedding (LLE)

Given a set of data points x1, x2, · · · , xN ∈ RD in the high-dimensional space, we are

looking for the embedded low-dimensional feature vectors y1, y2, · · · , yN ∈ Rd. LLE

is a nonparametric method that works as follows [95, 96]:

1. Identify the k nearest neighbors based on Euclidean distance for each data point
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xi, 1 ≤ i ≤ N . Let Ni denote the set of the indices of the k nearest neighbors

of xi.

2. Find the optimal local convex combination of the k nearest neighbors to rep-

resent each data point xi. That is, the following objective function (2.32) is

minimized and the weights wij of the convex combinations are calculated.

E(w) =
N∑

i=1

‖xi −
∑
j∈Ni

wijxj‖2. (2.32)

where ‖ · ‖ is the l2 norm and
∑

j∈Ni
wij = 1.

The weight wij indicates the contribution of the jth data point to the representa-

tion of the ith data point. The optimal weights can be solved as a constrained

least squares problem, which is finally converted into a problem of solving a

linear system of equation.

3. Find the low-dimensional feature vectors yi, 1 ≤ i ≤ N , which have the optimal

local convex representations with weights wij obtained from the last step. That

is, yi’s are computed by minimizing the following objective function:

Φ(y) =
N∑

i=1

‖yi −
∑
j∈Ni

wijyj‖2. (2.33)

It can be shown that solving the above minimization problem (2.33) is equiv-

alent to solving an eigenvector problem with a sparse N × N matrix. The d

eigenvectors associated with the d smallest nonzero eigenvalues of the matrix

comprise the d-dimensional coordinates of yi’s. Thus, the coordinates of yi’s are

orthogonal.

LLE does not impose any probabilistic model on the data; However, it implicitly

assumes the convexity of the manifold. It can be seen later that this assumption is

satisfied by the electricity price data.
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4.2.3 LLE Reconstruction

Given a new feature vector in the embedded low-dimensional space, the reconstruction

method is used to find its counterpart in the high-dimensional space based on the

calibration data set. Reconstruction accuracy is critical for the application of manifold

learning in the prediction. There are a limited number of reconstruction methods

in the literature. For a specific linear manifold, the reconstruction can be easily

made by PCA. For a nonlinear manifold, LLE reconstruction, which is derived in the

similar manner as LLE, is introduced in [95]. LTSA reconstruction and nonparametric

regression reconstruction are introduced in [115]. Among all these reconstruction

methods, LLE reconstruction has the best performance for the electricity data. This

is an important reason for us to choose LLE and LLE reconstruction in this chapter.

Suppose low-dimensional feature vectors y1, y2, · · · , yN , have been obtained through

LLE in the previous subsection. Denote the new low-dimensional feature vector as

y0. LLE reconstruction is applied to find the approximation x̂0 of the original data

point x0 in the high-dimensional space based on x1 · · · , xN and y1, · · · , yN . There are

three steps for LLE reconstruction:

1. Identify the k nearest neighbors of the new feature vector y0 among y1, · · · , yN .

Let N0 denote the set of the indices of the k nearest neighbors of y0.

2. The weights of the local optimal convex combination wj are calculated by min-

imizing

E(w) = ‖y0 −
∑
j∈N0

wjyj‖2. (2.34)

subject to the sum-to-one constraint,
∑

j∈N0
wj = 1.

3. Date point x̂0 is reconstructed by x̂0 =
∑

j∈N0
wjxj.

Remark: Solving optimization problems (2.32) and (2.34) is equivalent to solving

a linear system of equations. When there are more neighbors than the high dimension
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or the low dimension, i.e., k > D or k > d, the coefficient matrix associated with the

system of linear equations is singular, which means that the solution is not unique.

This issue is solved by adding an identity matrix multiplied with a small constant to

the coefficient matrix [95]. We adopt this approach here.

Suppose x
(j)
0 , 1 ≤ j ≤ D, is the jth component of vector x0. The reconstruction

error (RE) of x0 is defined as

RE(x0) =
1

D

D∑
j=1

|x(j)
0 − x̂

(j)
0 |

x
(j)
0

(2.35)

The reconstruction error of the entire calibration data set (TRE)1 is defined as

TRE =
1

N ×D

N∑
i=1

D∑
j=1

|x(j)
i − x̂

(j)
i |

x
(j)
i

(2.36)

by regarding each yi as a new feature vector y0.

4.3 Modeling of Electricity Price Curves with Manifold Learn-
ing

The data of the day-ahead market locational based marginal prices (LBMPs) and

integrated real-time actual load of electricity in the Capital Zone of the New York In-

dependent System Operator (NYISO) are collected and predicted in this chapter. The

data are available online (www.nyiso.com/public/market data/pricing data.jsp). In

this section, two years (731 days) of price data from Feb 6, 2003 to Feb 5, 2005 are

used as an illustration of modeling the electricity price curves by manifold based

methodology. Fig. 5(a) plots the hourly day-ahead LBMPs during this period, where

the electricity prices are treated as a univariate time series with 24×731 hourly prices.

Fig. 5(b), 5(c) and 5(d) illustrates the mean, standard deviation and skewness of 24

hourly log prices in each day after outlier processing.

The section is organized as follows. First, the data are preprocessed with log

transform, outlier processing and LLP smoothing, and then the results of the manifold

1When the TRE is calculated, yi itself is not included in its k nearest neighbors.
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Figure 5: Day-ahead LBMPs from Feb 6, 2003 to Feb 5, 2005 in the Capital Zone
of NYISO.

learning and reconstruction are illustrated. Next, the major factors of electricity

price curve dynamics are analyzed with low-dimensional feature vectors. Finally, the

parameter selections and the sensitivity of reconstruction error to those parameters

are analyzed.

4.3.1 Preprocessing

4.3.1.1 Log Transform

The logarithmic (log) transforms of the electricity prices are taken before the man-

ifold learning. There are several advantages to deal with the log prices. First, the

electricity prices are well known to have the non-constant variance, and log transform

can make the prices less volatile. The log transform also enhances the efficiency of

manifolding learning, by making the embedded manifold more uniformly distributed

in the low-dimensional space and the reconstruction error of the entire calibration

data set (TRE) reduced. Moreover, the log transform has the interpretation of the

returns to someone holding the asset.
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Figure 6: Embedded three-dimensional manifold without any outlier preprocess-
ing(but with log transform and LLP smoothing). “∗” indicates the day with outliers—
Jan 24, 2005.

4.3.1.2 Outlier Processing

Outliers in this chapter are defined as the electricity price spikes that are extremely

different from the prices in the neighborhood. To deal with the outliers, we replace the

prices in the day with outliers by the average of the prices in the days right before and

right after. We remove the outliers because the embedded low-dimensional manifold

is supposed to extract the primary features of the entire data set, rather than the

individual and local features such as extreme price spikes. The efficiency of manifold

learning is improved after outlier processing. Moreover, outliers, which represent

rarely occurring phenomena in the past, often have very small probability to occur in

the near future, so the processing of outliers does not severely affect the prediction of

the near-term regular prices.

In the illustrated data set, only one extreme spike is identified on the right of Fig.

5(a), which belongs to Jan 24, 2005. In the low-dimensional manifold, the days of

outliers can also be detected by the points that stand far away from the other points.

Fig. 6 shows that the point corresponding to Jan 24, 2005 lies out of the main cloud
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Figure 7: Embedded three-dimensional manifold after log transform, outlier prepro-
cessing and LLP smoothing.

of the points on the embedded three-dimensional manifold. Thus, we regard Jan 24,

2005 as a day with outliers. Fig. 7 shows that the low-dimensional manifold after

removing the outliers is more uniformly distributed.

4.3.1.3 LLP Smoothing

The noise in (2.31) can contaminate the learning of the embedded manifold and

the estimation of the intrinsic dimension. Therefore, locally linear projection (LLP)

([60, 59, 61]) is recommended to smooth the manifold and reduce the noise. The

description of the algorithm is given as follows:

ALGORITHM: LLP

For each observation xi, i = 1, 2, · · · , N ,

1. Find the k-nearest neighbors of xi. The neighbors are denoted by x̃1, x̃2, · · · , x̃k.

2. Use PCA or SVD to identify the linear subspace that contains most of the

information in the vectors x̃1, x̃2, · · · , x̃k. Suppose the linear subspace is Ai. Let

k0 denote the assumed dimension of the embedded manifold. Then subspace Ai
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can be viewed as a linear subspace spanned by the singular vectors associated

with the largest k0 singular values.

3. Project xi into the linear subspace Ai and let x̌i, i = 1, · · · , N , denote the

projected points.

After denoising, the efficiency of manifold learning is enhanced, and the TRE is

reduced. For the illustrated data set with the intrinsic dimension being four, the

TRE is 3.89% after LLP smoothing, compared to 4.41% without LLP smoothing.

The choice of the two parameters in LLP, the dimension of the linear space and the

number of the nearest neighbors, will be discussed in detail in subsection D.

4.3.2 Manifold Learning by LLE

Each price curve with 24 hourly prices in a day is considered as an observation, so the

dimension of the high-dimensional space D is 24. The intrinsic dimension d is set to

be four. The number of the nearest neighbors k for LLP smoothing, LLE, and LLE

reconstruction is selected to be a common number 23 for all the numerical studies.

The details of the parameter selections are discussed in subsection D. Due to the

ease of visualization in a three-dimensional space, all the low-dimensional manifolds

are plotted with the intrinsic dimension being three. We apply LLE to the denoised

data x̌i, i = 1, · · · , N , which are obtained after LLP smoothing. Fig. 7 provides the

plot of the embedded three-dimensional manifold. As the low-dimensional manifold

is nearly convex and uniformly distributed, LLE is an appropriate manifold based

method. Fig. 8 plots the time series of each coordinates of the feature vectors in the

embedded four-dimensional manifold.

Table 1 shows the TRE of different reconstruction methods. LLE reconstruction

has the minimum reconstruction error among all the methods. LTSA reconstruction

has a very large TRE, because it is an extrapolation-like method, and the recon-

struction of some of the price curves has very large errors. Therefore, LLE and LLE
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Table 1: The TRE of different reconstruction methods

Reconstruction method TRE(%)

LLE and LLE reconstruction 3.89

PCA and PCA reconstruction 4.26

LTSA and LTSA reconstruction 4.55 ×106

LLE and nonparametric regression reconstruction 4.77

reconstruction are selected to model the electricity price dynamics.

4.3.3 Analysis of Major Factors of Electricity Price Curve Dynamics with
Low-Dimensional Feature Vectors

The interpretation of each dimension in the low-dimensional space and the cluster

analysis to the low-dimensional feature vectors reveal the major drivers of the price

curve dynamics, which suggests that our prediction methods in the next section based

on the modeling of price curves with manifold learning are reasonable.

4.3.3.1 Interpretation of Each Dimension in the Low-Dimensional Space

There are some interesting interpretations for the first three coordinates of the fea-

ture vectors in the low-dimensional space. For each price curve, we can calculate the

mean, standard deviation, range, skewness and kurtosis of the 24 hourly log prices.

The sequence of each coordinates of the low-dimensional feature vectors comprises

a time series. The correlation between each time series and mean log prices (stan-

dard deviation, range, skewness and kurtosis) is calculated. Table 2 shows the one

of the four-dimensional coordinates, which have the maximum absolute correlation

with mean log prices (standard deviation, range, skewness and kurtosis), and the

corresponding correlation coefficients. The comparison between Fig. 5 and Fig. 8

gives more intuition about the correlations. It is found that the first coordinates

have a very high correlation coefficient 0.9964 with the mean log prices within each

day, and the second coordinates are highly correlated with the standard deviation of
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Figure 8: Coordinates of the embedded 4-dim manifold.

Table 2: The one of the four-dimensional coordinates which has the maximum
absolute correlation coefficient with the mean (standard deviation, range, skewness
and kurtosis) of log prices in a day in embedded four-dimensional space.

Mean Std. Dev. Range Skewness Kurtosis

Coordinate 1st 2nd 2nd 2nd 3rd

Correlation Coefficient 0.9964 0.7073 0.5141 -0.5646 0.2611

the log prices in a day with a correlation coefficient 0.7073. This also means that

the second coordinates contain some other information besides standard deviation,

and Table 2 demonstrates that the second coordinates are also correlated, but not

significantly, with range and skewness. The third coordinates show both weekly and

yearly seasonality in Fig. 8. Weekly seasonality is well known for electricity prices.

Yearly seasonality may be caused by the shape change of the price curves over the

year. The shape of price curves is often unimodal in the summer and bimodal in the

winter.
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4.3.3.2 Cluster Analysis

The yearly seasonality of the electricity price curves can be clearly demonstrated by

the cluster analysis of low-dimensional feature vectors.

Cluster analysis [56] (also known as data segmentation) groups or segments a

collection of objects into subsets (i.e., clusters), such that those within each cluster

are more closely related to each other than those assigned to different clusters.

The K-means clustering algorithm is one of the mostly used iterative clustering

methods. Assume that there are K clusters. The algorithm begins with a guess of

the K cluster centers. Then, the algorithm iterates between the following two steps

until convergence. The first step is to identify the closest cluster center for each data

point based on some distance metric. The second step is to replace each cluster center

with the coordinate-wise average of all the data points that are the closest to it.

For the electricity price data, we apply K-means clustering with Euclidean distance

to the low-dimensional feature vectors that are obtained from manifold learning.

The number of clusters is set to be three, as the yearly seasonality can be clearly

illustrated with three clusters. The coordinate-wise average of price curves in each

cluster is plotted in Fig. 9. The distribution of clusters is illustrated in the first

graph of Fig. 10, where x axis is the date of the price curves, and y axis is the

corresponding clusters. The two graphs show that the first cluster represents the price

curves from the summer, which are featured with unimodal shape, and the second

cluster represents the ones from the winter, which are characterized with bimodal

shape. The price curves in the third cluster reveal the transition from unimodal

shape to bimodal shape. The average price curves in the 3 clusters closely resemble

the typical load shapes observed in summer, winter, and rest-of-year, respectively.

The second graph of Fig. 10 shows the distribution of clusters by applying K-

means clustering with correlation distance to the high-dimensional price curves. The

two graphs in Fig. 10 have the similar patterns, which gives a good illustration that
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Figure 9: The coordinate-wise average of the actual price curves in each cluster,
where clustering is based on low-dimensional feature vectors.
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Figure 10: Distribution of clusters.
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low-dimensional feature vectors capture the major factors of the price curve dynamics.

4.3.4 Parameter Setting and Sensitivity Analysis

The selections of several parameters, including the number of intrinsic dimensions, the

number of the nearest neighbors and the length of the calibration data, are discussed

in this subsection.

4.3.4.1 Intrinsic Dimension

Intrinsic dimension d is an important parameter of manifold learning. Papers [75]

and [110] provide several approaches of estimating the intrinsic dimension. In [75],

the maximum likelihood estimator of the intrinsic dimension is established. In [110],

the intrinsic dimension is estimated based on a nearest neighbor algorithm. Without

LLP smoothing, the two methods show that the intrinsic dimension is some value

between four and five. Thus, it is reasonable to set the dimension of the linear space

as four in LLP smoothing. After LLP smoothing, the intrinsic dimension is reduced

to a value between three and four. The numerical experiments indicate that LLP

smoothing can not only denoise, but also improve the efficiency of estimating the

intrinsic dimension.

Another empirical way of estimating the intrinsic dimension is to analyze the

sensitivity of the TRE to the different values of the intrinsic dimension. Fig. 11 shows

that the TRE is a decreasing function of the intrinsic dimension with a increasing

slope. The slope of the curve in the figure has a dramatic change when the intrinsic

dimension is around four. Therefore, we choose the intrinsic dimension as four in this

chapter.

4.3.4.2 The Number of the Nearest Neighbors

The plot of the TRE against the number of the nearest neighbors is used to select the

appropriate number of the nearest neighbors. Fig. 12 indicates the TRE first falls

72



1 2 3 4 5 6 7 8 9 10
3

4

5

6

7

8

9

Intrinsic dimension

T
R

E
(%

)

Figure 11: The sensitivity of TRE to the intrinsic dimension (data length = 731
days, number of the nearest neighbors = 23).

steeply when the number of the nearest neighbors is small, and then remains steady

when the number of the nearest neighbors is greater than 22. We set the number of

the nearest neighbors to be 23 for all the numerical studies. This is only one of the

many choices as the reconstruction error is not sensitive to the number of the nearest

neighbors within a range.

4.3.4.3 The Length of the Calibration Data

The plot of the TRE against the length of the calibration data in Fig. 13 illustrates

that the TRE is not very sensitive to the data length. Two years of data are applied

to the manifold learning, and it helps to study whether there is yearly seasonality.

4.4 Prediction of Electricity Price Curves

The prediction of future electricity price curves is an important issue in the electricity

price market, because accurate predictions enable market participants to increase

their profit by trading energy and hedge the potential risk successfully. However, it

is difficult to make accurate predictions for the electricity prices due to their multiple
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Figure 12: The sensitivity of TRE to the number of the nearest neighbors (data
length = 731 days, intrinsic dimension = 4).
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Figure 13: The sensitivity of TRE to the length of the calibration data (intrinsic
dimension = 4, number of the nearest neighbors = 23).
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seasonalities—daily and weekly seasonality. The speciality of the electricity price

data often results in complicated models to forecast future electricity prices, which

are often overfitting and fail to make accurate predictions in a longer horizon. Our

method converts the hourly electricity price time series with multiple seasonalities

into several time series with only weekly seasonality by manifold learning. After

conversion, each data point in the new time series represents a day rather than an

hour. The simplification of the new time series makes the longer horizon prediction

easier and more accurate. Therefore, our method has an advantage in the longer

horizon prediction over many other prediction methods.

A large amount of existing forecasting methods focus on one-day-ahead price

predictions, i.e., the horizon of prediction is one day (24 hours). Two articles [82]

and [19] give a good review on many prediction methods, and make a comparison on

their performance. In this chapter, we compare our prediction methods with three

models —ARIMA, ARX and the naive method. The ARIMA model [21] and the

naive method are pure time series methods. The ARX model (also called dynamic

regression model) includes the explanatory variable, load, and is suggested to be the

best model in [19] and one of the best models in [82].

The longer horizon prediction has not drawn much attention so far. However, it

also plays an important role in biding strategy and risk management. Our numerical

results show that our prediction methods not only generate competent results in

forecasting one-day-ahead price curves, but also produce more accurate predictions

for one-week-ahead and one-month-ahead price curves, compared to ARX, ARIMA

and the naive method. Moreover, as the new time series generated by manifold

learning are simple, it is very easy to identify the time series models or utilize some

nonparametric forecasting techniques. Our prediction methods also allow larger size

of data for model calibration and incorporate more past information, but the size of

the calibration data for ARIMA and ARX is often restricted to be several months.
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4.4.1 Prediction Method

In our prediction method, we first make the prediction in the low-dimensional space,

and then reconstruct the predicted price curves in the high-dimensional space from

the low-dimensional prediction. There are three steps in detail:

1. Learn the low-dimensional manifold of electricity price curves with LLE. The

sequence of each coordinates of the low-dimensional feature vectors comprises

a time series.

2. Predict each time series in the low-dimensional space via univariate time series

forecasting. Three prediction methods are applied: the Holt-Winters algorithm

(HW) [7], the structural model (STR) [7] and the seasonal decomposition of

time series by loess (STL) [16]. Each data point in the time series represents

one day, so for the one-week-ahead (one-day-ahead or one-month-ahead) price

curve predictions, seven (one or 28) data points are forecasted for each time

series.

3. Reconstruct the predicted price curves in the high-dimensional space from the

predictions in low-dimensional space with LLE reconstruction.

The first and third step have been described in the previous sections. In the

second step, we make the univariate time series forecasting for each coordinates of

the feature vectors rather than making the multivariate time series forecasting for all

the time series in the low-dimensional space, because the coordinates are orthogonal

to each other.

There are a variety of methods of univariate time series forecasting, among which

Holt-Winters algorithm, structural model and STL are selected. Both the Holt-

Winters algorithm and structural model are pure time series prediction methods

(models), and do not require any model identification as in ARIMA. The STL method
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can involve the explanatory variable in the prediction. All the prediction methods

can be easily and fast implemented in statistical software R. The following is some

brief description of the three prediction methods.

4.4.1.1 Holt-Winters Algorithm(HW)

In Holt-Winters filtering, seasonals and trends are computed by exponentially weighted

moving averages. In our numerical experiments, Holt-Winters algorithm is executed

with starting period equal to 7 days and 14 days respectively. This choice is due to

the weekly effect of the electricity prices.

4.4.1.2 Structural Models (STR)

Structural time series model is a (linear Gaussian) state-space model for (univariate)

time series based on a decomposition of the series into a number of components—

trend, seasonal and noise.

4.4.1.3 Seasonal Decomposition of Time Series by Loess (STL)

The STL method can involve explanatory variables in the prediction. As the effect

of temperature is usually embodied in electricity loads, only load is utilized as an

exploratory variable. We first learn the manifold with the intrinsic dimension four for

both prices and loads, and then decompose each time series in the low-dimensional

space of price and load curves into seasonal, trend and irregular components using

loess. Let Pi,t and Zi,t denote the trend 2of the ith coordinates of the feature vectors

for prices and loads at time t. Then, we regress Pi,t on Zi,t and the lagged Pi,t with

the lag three. As the relationship between prices and loads are dynamic, the history

data we applied to train the model are 70 days. The model is written as:

Pi,t = β0 + β1Zi,t + β2Pi,t−1 + β3Pi,t−2 + β4Pi,t−3 + εt

2trend window=5
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4.4.2 The Definition of Weekly Average Prediction Error

To assess the predictive accuracy of our methodology, three weekly average predic-

tion errors are defined for one-day-ahead, one-week-ahead and one-month-ahead price

predictions, respectively.

4.4.2.1 Weekly Average One-Day-Ahead Prediction Error

For the ith day of a certain week, i = 1, · · · , 7, the calibration data are set to be the

two-year data right before this day, and then one-day-ahead predictions are made,

i.e., the horizon of the prediction is one day. The predictions are denoted as x̂(i,1),

which is a 24-dimensional vector. The one-day-ahead prediction error for the ith day

is defined as

WPE
(i)
d =

1

24

‖x(i,1) − x̂(i,1)‖1

x̄d
(i)

where x̄d
(i) is the average of the actual electricity prices on the ith day. ‖ · ‖1 is the

L1 norm of a vector, which is the sum of the absolute values of all the components in

the vector.

The weekly average one-day-ahead prediction error is defined as

WPEd =
1

7

7∑
i=1

WPE
(i)
d

4.4.2.2 Weekly Average One-Week-Ahead Prediction Error

For the ith day of a certain week, i = 1, · · · , 7, the calibration data are set to be the

two-year data right before this day, and then one-week-ahead predictions are made,

i.e., the horizon of the prediction is one week. The jth-day-ahead predictions are

denoted as x̂(i,j), j = 1, · · · , 7. The one-week-ahead prediction error for the ith day

is defined as

WPE(i)
w =

1

7× 24

7∑
j=1

‖x(i,j) − x̂(i,j)‖1

x̄w
(i)

where x̄w
(i) is the average of the actual electricity prices of the one-week-ahead predic-

tions.
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The weekly average one-week-ahead prediction error is defined as

WPEw =
1

7

7∑
i=1

WPE(i)
w

4.4.2.3 Weekly Average One-Month-Ahead Prediction Error

For the ith day of a certain week, i = 1, · · · , 7, the calibration data are set to be

the two-year data right before this day, and then one-month-ahead (28-days-ahead)

predictions are made, i.e., the horizon of the prediction is one month. The jth-

day-ahead predictions are denoted as x̂(i,j), j = 1, · · · , 28. The one-month-ahead

prediction error for the ith day is defined as

WPE(i)
m =

1

28× 24

28∑
j=1

‖x(i,j) − x̂(i,j)‖1

x̄m
(i)

where x̄m
(i) is the average of the actual electricity prices of the one-month-ahead pre-

dictions.

The weekly average one-month-ahead prediction error is defined as

WPEm =
1

7

7∑
i=1

WPE(i)
m

We define σd, σw and σm as the standard deviations of WPE
(i)
d , WPE(i)

w and

WPE(i)
m , respectively.

4.4.3 Prediction of Electricity Price Curves

Our numerical experiments are based on 12 weeks from February 2005 to January

2006, which consist of the second week of each month. Three weekly average pre-

diction errors as defined above are calculated for each week, respectively. For each

data set, the same parameter values taken from the previous section are used. The

number of the nearest neighbors and the intrinsic dimension are set to be 23 and 4,

respectively. Only one day, Jan 24, 2005, is identified with outliers. As we only have

the forecasts of loads for six future days from the NYISO website, the weekly average
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one-week-ahead prediction error for STL and ARX is actually the weekly average

six-days-ahead prediction error.

Table 3 and 4 provides the weekly average one-day-ahead prediction errors for

the 12 weeks and their standard deviations. Our prediction methods—Holt-Winters,

structural model and STL—are compared with ARX, ARIMA and the naive method.

The details of the ARIMA and ARX model are in Appendix A and B. The naive

predictions of a certain week are given by the actual prices of the previous week.

Holt-Winters and structural model outperform all the other methods. It seems that

involving the exploratory variable does not necessarily improve the prediction accu-

racy. STL performs slightly worse than Holt-Winters and structural model, and ARX

also has less accuracy than ARIMA. This is not consistent with the results in [19]

and [82], where ARX has better performance than ARIMA. A potential cause is that

the predictions of loads are not precise, or the correlation between loads and prices

is not high enough in NYPP.

In Table 5 and 6, the weekly average one-week-ahead prediction errors for the 12

weeks and their standard deviations are presented. All of our prediction methods

outperform ARX, ARIMA, and the naive method. The ARIMA model acts even

worse than the naive method for one-week-ahead predictions. Since the ARIMA

model is a very complicated model with multiple seasonalities, it is often overfitting

and makes the longer horizon predictions less accurate. The ARX model is a little

simpler and given more information by the load forecasts, so it performs better than

ARIMA. However, both ARX and ARIMA need to predict 168 data points for one-

week-ahead predictions, while our prediction methods only need to predict seven data

points for each time series. Therefore, our prediction methods have a great advantage

in the longer horizon predictions. Among Holt-Winters, structural model and STL,

STL has slightly worse performance than other two, and structural model is the most

accurate.
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Table 3: Comparison of WPEd(%) of one-day-ahead predictions for 12 weeks.

date HW7∗ HW14 STR STL ARIMA ARX Naive

02/06/05 ∼ 02/12/05 7.14 6.97 7.34 7.07 7.94 6.58 15.99

03/06/05 ∼ 03/12/05 6.29 5.82 5.48 6.03 5.66 8.02 9.81

04/03/05 ∼ 04/09/05 6.54 7.11 6.59 7.73 6.10 6.25 12.38

05/08/05 ∼ 05/14/05 6.45 6.00 6.22 7.39 7.47 6.17 5.89

06/05/05 ∼ 06/11/05 9.87 9.38 9.86 9.01 9.85 11.95 31.46

07/03/05 ∼ 07/09/05 7.79 8.46 7.55 7.07 7.38 6.06 17.90

08/07/05 ∼ 08/13/05 5.16 5.17 5.42 8.56 6.05 7.03 13.09

09/04/05 ∼ 09/10/05 6.98 8.14 7.55 7.75 7.20 5.58 14.55

10/02/05 ∼ 10/08/05 6.15 6.08 6.45 6.63 6.37 6.36 9.64

11/06/05 ∼ 11/12/05 6.71 6.65 6.11 6.30 5.91 5.41 18.78

12/04/05 ∼ 12/10/05 8.66 8.84 8.96 7.95 8.47 12.75 26.95

01/08/06 ∼ 01/14/06 8.63 8.72 8.26 9.28 10.49 8.17 15.61

mean 7.20 7.28 7.15 7.56 7.41 7.53 16.00

*HW7 and HW14 stand for Holt-Winter algorithm with starting period equal to 7
days and 14 days respectively.

Table 4: Comparison of σd(%) of one-day-ahead predictions for 12 weeks.

date HW7 HW14 STR STL ARIMA ARX Naive

02/06/05 ∼ 02/12/05 3.03 3.34 3.10 2.21 4.58 2.28 4.66

03/06/05 ∼ 03/12/05 1.89 1.96 1.81 2.21 2.16 3.15 5.67

04/03/05 ∼ 04/09/05 2.24 2.88 2.34 2.76 1.83 3.13 3.33

05/08/05 ∼ 05/14/05 3.86 3.36 3.47 3.34 4.07 2.54 1.40

06/05/05 ∼ 06/11/05 3.31 3.36 4.03 2.53 4.31 6.13 5.62

07/03/05 ∼ 07/09/05 3.62 4.68 3.73 4.01 3.37 2.15 8.79

08/07/05 ∼ 08/13/05 1.65 1.53 2.28 3.59 3.01 2.63 4.37

09/04/05 ∼ 09/10/05 3.68 3.59 3.09 3.83 4.48 2.16 8.38

10/02/05 ∼ 10/08/05 2.27 2.02 2.26 3.36 2.18 3.06 4.45

11/06/05 ∼ 11/12/05 2.57 2.41 2.60 2.57 2.36 3.08 7.06

12/04/05 ∼ 12/10/05 4.14 4.27 3.69 2.36 2.80 6.62 10.55

01/08/06 ∼ 01/14/06 4.61 4.42 3.73 3.93 5.79 4.49 4.71

mean 3.07 3.15 3.01 3.06 3.41 3.45 5.75
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Table 5: Comparison of WPEw(%) of one-week-ahead predictions for 12 weeks

date HW7 HW14 STR STL ARIMA ARX Naive

02/06/05 ∼ 02/12/05 8.31 8.33 7.65 8.28 14.57 9.00 12.19

03/06/05 ∼ 03/12/05 10.85 10.59 10.19 12.57 13.28 15.30 12.33

04/03/05 ∼ 04/09/05 11.03 10.88 10.53 11.74 10.68 11.46 14.59

05/08/05 ∼ 05/14/05 7.55 7.15 7.36 6.89 14.21 6.16 6.71

06/05/05 ∼ 06/11/05 15.58 15.23 13.88 11.39 21.64 19.49 26.68

07/03/05 ∼ 07/09/05 10.85 10.04 10.41 9.60 14.63 7.03 14.44

08/07/05 ∼ 08/13/05 6.82 7.09 6.42 12.87 9.49 9.14 10.28

09/04/05 ∼ 09/10/05 7.46 7.95 7.31 8.52 10.36 6.86 13.17

10/02/05 ∼ 10/08/05 9.78 9.60 10.11 8.97 11.84 8.30 11.57

11/06/05 ∼ 11/12/05 9.45 9.44 8.99 9.42 11.24 9.00 15.18

12/04/05 ∼ 12/10/05 12.94 13.09 13.30 11.55 21.78 22.92 23.94

01/08/06 ∼ 01/14/06 13.95 14.08 13.28 15.00 26.01 16.37 11.52

mean 10.38 10.29 9.95 10.57 14.98 11.75 14.38

The proposed method can be applied to forecast prices in a longer horizon than

one week, e.g., two weeks or even one month. As there are only a few methods

associated with one-month-ahead price predictions, we apply three naive methods to

compare with. The first naive method takes the last month prices in the calibration

data set as the predictions. The second method repeats the last week prices four

times, and the third one replicates the prices of last two weeks twice, respectively, as

the predictions. Table 7 and 8 provide the weekly average prediction errors of the

one-month-ahead price predictions for the 12 weeks and their standard deviations.

The notations—naive1, naive2 and naive3—stand for the three naive methods. From

the comparison, the proposed methods outperform all the naive methods. We notice

that the total stand deviation of the structural model is larger than that of the naive

methods, and it is mainly due to an inaccurate prediction for one day in week five.

Thus, Holt-Winters algorithm has the best performance among all the methods for

one-month-ahead price predictions.
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Table 6: Comparison of σw(%) of one-week-ahead predictions for 12 weeks

date HW7 HW14 STR STL ARIMA ARX Naive

02/06/05 ∼ 02/12/05 1.32 1.66 1.14 1.85 7.06 2.62 2.35

03/06/05 ∼ 03/12/05 3.80 3.73 3.86 3.88 7.06 2.22 1.18

04/03/05 ∼ 04/09/05 3.12 3.48 3.41 2.90 3.50 4.18 2.47

05/08/05 ∼ 05/14/05 3.45 3.13 3.50 1.99 6.28 1.82 0.88

06/05/05 ∼ 06/11/05 5.91 6.10 6.46 4.64 10.30 8.18 4.75

07/03/05 ∼ 07/09/05 3.10 3.44 3.43 1.94 5.51 0.55 1.50

08/07/05 ∼ 08/13/05 1.02 0.95 1.40 3.10 3.77 2.60 1.48

09/04/05 ∼ 09/10/05 3.19 2.96 2.33 2.75 4.88 1.17 2.28

10/02/05 ∼ 10/08/05 2.06 1.73 2.01 4.32 5.50 3.11 1.34

11/06/05 ∼ 11/12/05 2.17 2.42 2.30 2.40 3.92 2.14 3.05

12/04/05 ∼ 12/10/05 4.88 4.41 5.17 4.53 13.77 4.47 4.65

01/08/06 ∼ 01/14/06 3.25 3.37 2.15 6.15 11.60 3.70 2.66

mean 3.11 3.12 3.10 3.37 6.93 3.06 2.38

Table 7: Comparison of WPEm(%) of one-month-ahead predictions for 12 weeks

date HW7 HW14 STR Naive1 Naive2 Naive3

02/06/05 ∼ 02/12/05 8.87 9.32 9.42 29.63 12.07 25.72

03/06/05 ∼ 03/12/05 12.52 12.07 12.16 17.17 13.71 14.39

04/03/05 ∼ 04/09/05 17.62 17.28 16.51 14.96 15.96 14.20

05/08/05 ∼ 05/14/05 12.00 11.81 11.93 13.62 11.52 12.04

06/05/05 ∼ 06/11/05 16.67 16.71 25.48 24.37 23.93 27.55

07/03/05 ∼ 07/09/05 15.88 15.58 16.72 16.99 13.63 13.91

08/07/05 ∼ 08/13/05 10.70 10.69 11.36 12.96 12.84 15.21

09/04/05 ∼ 09/10/05 14.53 14.21 13.74 19.48 15.91 18.95

10/02/05 ∼ 10/08/05 18.22 18.40 19.96 19.70 17.10 19.67

11/06/05 ∼ 11/12/05 13.98 13.79 14.58 31.93 18.35 28.49

12/04/05 ∼ 12/10/05 18.99 18.87 19.48 30.00 26.17 27.64

01/08/06 ∼ 01/14/06 13.08 13.11 12.04 31.80 14.27 14.99

mean 14.42 14.32 15.28 21.88 16.29 19.40
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Table 8: Comparison of σm(%) of one-month-ahead predictions for 12 weeks

date HW7 HW14 STR Naive1 Naive2 Naive3

02/06/05 ∼ 02/12/05 1.13 1.55 2.63 0.18 2.79 6.82

03/06/05 ∼ 03/12/05 3.64 3.33 4.11 0.47 0.46 1.01

04/03/05 ∼ 04/09/05 3.02 2.06 3.49 0.46 2.25 1.08

05/08/05 ∼ 05/14/05 1.22 1.18 1.22 0.40 1.38 0.65

06/05/05 ∼ 06/11/05 4.59 4.28 25.41 0.36 5.96 0.62

07/03/05 ∼ 07/09/05 3.95 4.50 3.58 1.15 2.90 0.89

08/07/05 ∼ 08/13/05 0.35 0.36 1.03 0.62 1.24 0.58

09/04/05 ∼ 09/10/05 3.22 3.82 2.82 0.92 0.50 0.46

10/02/05 ∼ 10/08/05 4.20 4.01 6.80 0.80 2.77 1.95

11/06/05 ∼ 11/12/05 1.09 1.21 1.62 1.51 3.47 3.77

12/04/05 ∼ 12/10/05 2.40 2.21 3.29 0.54 4.33 1.82

01/08/06 ∼ 01/14/06 6.04 6.25 3.44 4.16 1.83 1.76

mean 2.90 2.90 4.95 0.96 2.49 1.78

In summary, our prediction methods without a exploratory variable—Holt-Winters

and structural model—outperform all of ARX, ARIMA and the naive method in

both one-day-ahead and one-week-ahead predictions. STL is competent with ARX

and ARIMA in one-day-ahead predictions, and performs better in one-week-ahead

predictions. Our prediction methods have a great advantage in the longer horizon

predictions spanning days to weeks.

4.5 Some Discussions about Modeling and Prediction

In this section, we discuss about some extensions of our modeling and prediction of

electricity price curves. The restriction of our method is also discussed.

4.5.1 Modeling and Prediction with New Historical Price Curves

It is not necessary to build a new model whenever new historical price curves are

coming. Denote the new historical price curve as x0. The procedure of computing

the low-dimensional feature vector of x0 is as follows.
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1. Identify the k nearest neighbors of the new data point x0 among x1, · · · , xN .

Let N0 denote the set of the indices of the k nearest neighbors of x0.

2. Compute the linear weights wj which best reconstruct x0 from its neighbors,

i.e., minimize the following objective function,

E(w) = ‖x0 −
∑
j∈N0

wjxj‖2, (5.37)

subject to the sum-to-one constraint,
∑

j∈N0
wj = 1.

3. The low-dimensional feature vector y0 is computed by y0 =
∑

j∈N0
wjyj.

For the prediction of each dimension in the low-dimensional space, the original pre-

diction models can still be employed. Therefore, our modeling and prediction of

electricity price curves can be utilized online for real forecasting.

4.5.2 Weekday and Weekend Effect

Electricity price has different daily profiles, in particular, weekdays verses weekend.

To detect the significance of the weekday and weekend effect, we can add the dummy

variables, e.g., Saturday and Sunday, into our prediction method in the same fashion

as electricity loads. We did the numerical experiments, but the prediction results are

almost the same as those without the dummy variables. The reason may be that the

effect of weekdays and weekend is mostly captured by the weekly seasonal and the

effect of electricity loads.

4.5.3 Effects of Other Factors, e.g., Katrina and Rita Hit and Higher
Prices for Natural Gas

Our prediction method can be extended to incorporate other factors which affect the

price curve dynamics. For the irregularly occurring event, e.g., Katrina and Rita hits,

the invention analysis can be considered in the prediction in low-dimensional space.

For the effect of the high prices of natural gas, our prediction method can include the
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natural gas price in the same manner as it does with the electricity load. Exploration

along these directions is left for future research.

4.5.4 Restriction of Our Method

Our model captures the price spike aspect of the electricity price curves but does

not focus on the prediction of the extreme spikes that are likely caused by one-of-

a-kind events. For instance, the historical data set used for calibrating the forward

price curve model in the New York area from Feb 2003 to Jan 2006 includes all price

spikes but one outlier. This implies that the calibrated forward price curve model

is capable of predicting price spikes that are of certain stationarity nature. As for

the extreme spikes resulting from one-of-a-kind events, they shall not be viewed as

being sampled from an embedded low-dimensional intrinsic manifold structure, thus

they can be removed from the calibration data set. However, if such extreme price

spikes were caused by changes to the fundamental structure of aggregate supply and

demand, then the intrinsic dimension of the low-dimensional manifold would change

accordingly, and yield a different set of major factors of the price dynamics in a

low-dimensional space.

4.6 Conclusion

We apply manifold-based dimension reduction to electricity price curve modeling.

LLE is demonstrated to be an efficient method for extracting the intrinsic low-

dimensional structure of electricity price curves. Using price data taken from the

NYISO, we find that there exists a low-dimensional manifold representation of the

day-ahead price curve in NYPP, and specifically, the dimension of the manifold is

around four. The interpretation of each dimension and the cluster analysis in the

low-dimensional space are given to analyze the main factors of the price curve dynam-

ics. Numerical experiments show that our prediction preforms well for the short-term

prediction, and our method also facilitates medium-term prediction, which is difficult,
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even infeasible for other methods.

4.7 Appendix

Appendix A

The procedure of identifying ARIMA model follows paper [21]. The history data we

applied to train the model are 90 days. The model is as follows 3,

(1− φ1B
1 − φ2B

2)

×(1− φ23B
23 − φ24B

24 − φ47B
47 − φ48B

48

−φ72B
72 − φ96B

96 − φ120B
120 − φ144B

144

×(1− φ168B
168 − φ336B

336 − φ504B
504)

×(1−B)(1− φ24B
24)(1− φ168B

168)log(pricet)

= c + (1− θ1B
1 − θ2B

2 − θ3B
3 − θ4B

4 − θ5B
5)

×(1− θ24B
24 − θ48B

48)

×(1− θ168B
168 − θ336B

336 − θ504B
504)εt.

The model estimation and prediction is implemented through the SCA system.

Appendix B

The ARX model with explanatory variable load follows paper [19]. The history data

we applied to train the model are 45 days, as the relationship between prices and

3Occasionally, we slightly change the model when it does not converge.

87



loads is dynamic. The model is as follows,

log(pricet) = c + (u1B
1 + u2B

2 + u3B
3 + u24B

24

+u25B
25 + u48B

48 + u49B
49 + u72B

72 + u73B
73

+u96B
96 + u97B

97 + u120B
120 + u121B

121 + u144B
144

+u145B
145 + u168B

168 + u169B
169 + u192B

192

+u193B
193)log(pricet) + (v1B

1 + v2B
2 + v3B

3

+v24B
24 + v25B

25 + v48B
48 + v49B

49 + v72B
72

+v73B
73 + v96B

96 + v97B
97 + v120B

120 + v121B
121

+v144B
144 + v145B

145 + v168B
168 + v169B

169

+v192B
192 + v193B

193)log(loadt) + εt.

The model estimation and prediction are implemented in MATLAB.
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CHAPTER V

A HESSIAN REGULARIZED NONLINEAR TIME-SERIES

MODEL (HRM)

5.1 Introduction

Consider a univariate time series X1, X2, · · · , Xn, n ≥ 1. A nonlinear data generation

mechanism can be written as

Xt = f(Xt−1, · · · , Xt−p) + εt, (1.38)

for p + 1 ≤ t ≤ n, and i.i.d. εt’s. We assume that E(εt|Xt−1, · · · , Xt−p) = 0.

Function f has p variables. We assume that f has square integrable second partial

derivatives. To simplify the notation, denote Zt−1 = (Xt−1, · · · , Xt−p)
T ∈ Rp; vector

z = (z1, · · · , zp)
T ∈ Rp is a generic p-dimensional vector. Let fij(z) = ∂2f(z)

∂zi∂zj
. Recall

the integrated Hessian of function f is defined as

Hf =

∫

Ω

∑
i,j

|fij(z)|2dz,

where subset Ω ⊂ R is the support of function f . Because f has square integrable

second derivatives, we have Hf < ∞.

Model (1.38) encompasses many nonlinear time-series models. Readers can com-

pare it with models, e.g., functional coefficient autoregressive model [14], functional

coefficient autoregressive model and its adaptive version [8, 42], threshold autore-

gressive model, multivariate local polynomial regression model [37, 17, 18] and many

more. Book [41] provides an excellent overview. [Note some of these models may not

satisfy the condition of Hf < ∞. For example, the threshold autoregressive model

does not have second derivative on the boundary. This analytical shortcoming does

not prevent us from developing a numerical approximation.]
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We assume that Ω ⊂ Rp is compact. Let F = {f : Hf < ∞, and support f ⊂ Ω}.
The estimated f̂ is the minimizer of the following objective function:

min
f∈F

N∑
t=p+1

[Xt − f(Zt−1)]
2 + λHf. (1.39)

Adding a penalty term Hf is a standard approach in regularization. Function Hf is

called “bending energy” in deriving the thin-plate spline [111]. Note that if p = 1,

then the minimizer in (1.39) is the natural cubic spline, whose knots are at Zt’s,

p ≤ t ≤ n − 1. In this sense, our approach can be considered as an extension of the

natural cubic spline to high dimension. Also note that if p = 2 or 3, then the solution

to (1.39) is the thin plate spline [111]. However, the reproducible kernel Hilbert space

approach in [111] does not provide analytical solutions for p ≥ 4 [52, Section 7.9].

Rather than finding the analytical solution for problem (1.39), which may not

uniquely exist for p ≥ 4, we propose a hessian regularized nonlinear time-series model

(HRM) in this chapter, for which a numerical approximation to integrated hessian

functional is given and a solution through local method is suggested. Theoretical

results with respect to the convergence of our solution and the choice of the penalty

function λ are introduced. We also discuss a fast computing approach to our model.

Our simulations not only verify the theoretical results, but also show the powerful

predictability of our model by the comparison with many other models.

An alternative penalty is the Laplacian:

Lf =

∫

Ω

∑
i

|fii(z)|2dz.

The difference between the Hessian (Hf) and Laplacian (Lf) is that the latter does

not consider the cross terms. It is known thatHf is translation and rotation invariant,

while Lf is not. Hence, we prefer the Hessian. Another interesting alternative is to

consider a modified function: ∫

Ω

∑
i,j

|fij(z)|dz. (1.40)
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Note the above penalty function uses sum of absolute values, instead of sum of squares.

Penalty function (1.40) may have some nice property. However, it is known that

minimizing the sum of absolute values (i.e., the `1 norm) is much more computational

demanding than minimizing the sum of squares (i.e., the `2 norm). A penalty function

like (1.40) has been explored in triograms [68].

We discuss more about the solutions to problem (1.39). If we are willing to

impose boundary conditions to f , using the integration-by-part argument that has

been utilized for natural cubic spline, we can argue that f is the “unique” minimizer,

subject to a biharmonic function addition, if f interpolates at every point.

The rest of this chapter is organized as follows. Section 5.2 derives a numerical

approximation to the functional, given an analytical solution is not available. Sec-

tion 5.3 derives a theorem that reveals some conditions under which our proposed

method should work. Section 5.4 discusses issues related to how to choose an optimal

value of λ. Section 5.5 introduces a fast computing approach. Section 5.6 presents

numerical results for some simulations and real data analysis. Section 5.7 comes to

the conclusion.

5.2 Numerical Approximation to Hessian

Problem (1.39) does not have an analytical solution, unless in special cases (i.e., when

p = 1, natural cubic spline; when p = 2, 3, thin plate spline). We propose a numerical

approach that mimics problem (1.39). The key idea is to introduce a least squares

estimator of the Hessian matrix Hf(Zt−1) at locations Zt−1, t = p + 1, p + 2, · · · , n.

Because Zt’s are random variables, we slightly modify the original hessian func-

tional Hf , so that the density function of Zt’s can be involved. The new hessian

functional is: ∫

Ω

∑
i,j

|fij(z)|2g(z)dz, (2.41)

where g(z) is the density function of z. Actually, Hf is a special case of (2.41), if z
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is uniformly distributed. Thus, objective function (1.39) becomes

min
f∈F

N∑
t=p+1

[Xt − f(Zt−1)]
2 + λ

∫

Ω

∑
i,j

|fij(z)|2g(z)dz (2.42)

An unbiased estimator of functional (2.41) is 1
n−p

∑n
t=p+1 ‖Hf(Zt−1)‖2

F , where ‖·‖F

denotes the Frobenius norm (or Euclidean norm) of a matrix. Therefore, a numerical

approximation of problem (2.42) is

min
f∈F

N∑
t=p+1

[Xt − f(Zt−1)]
2 + λ

n∑
t=p+1

‖Hf(Zt−1)‖2
F . (2.43)

Recall we have Zt−1 = (Xt−1, · · · , Xt−p)
T ∈ Rp. Consider a set V = {Zt−1, p+1 ≤

t ≤ n} is a collection of (n − p) p-dimensional vectors. Assume V0 = Zt−1, for

p + 1 ≤ t ≤ n. Let Vi, i = 1, 2, · · · , k, denote the k (k ≥ 1) nearest neighbors of V0,

while Vi ∈ V . Let V̄ = 1
k+1

∑k
i=0 Vi, i.e., V̄ is the average of the k + 1 vectors. A

Taylor expansion at point V̄ generates the following approximation

f(Vi) ≈ f(V̄) + (Vi − V̄)TJ f(V̄) +
1

2
(Vi − V̄)THf(V̄)(Vi − V̄),

i = 0, 1, · · · , k,

where f(V̄) is the value of function f at location V̄, J f(V̄) is the Jacobian at V̄, and

Hf(V̄) is the Hessian matrix at V̄. Note we have J f(V̄) ∈ Rp and Hf(V̄) ∈ Rp×p.

If f is analytical, then the above approximation is close. A matrix version of the

above approximation is

f∗ ≈ 1k+1 · c + V · J +
1

2
C ·H, (2.44)

where

f∗ = (f(V0), f(V1), · · · , f(Vk))
T ∈ Rk+1,

1k+1 = (1, · · · , 1)T ∈ Rk+1,

c is a constant; the ith (1 ≤ i ≤ k+1) row of matrix V, V ∈ R(k+1)×p, is (Vi−1−V̄)T ;

vector J ∈ Rp is the Jacobian (Ji = fi(V̄)) at V̄. The ith row of matrix C, C ∈
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R(k+1)× p2+p
2 , is V1[(Vi − V̄)(Vi − V̄)T ], where for an arbitrary column vector x =

(x1, x2, . . . , xp)
T , we define V1[x · xT ] = (x2

1, x
2
2, . . . , x

2
p,
√

2x1x2, . . . ,
√

2x1xp,
√

2x2x3,

. . . ,
√

2x2xp, . . . ,
√

2xp−1xp) ∈ R p2+p
2 . Vector H is a vectorization with respect to the

Hessian matrix at V̄, after eliminating identical entries: H = V2[Hf(V̄)], where for a

symmetric matrix S = (Sij) ∈ Rp×p, we have V2[S] = (S11, S22, . . . , Spp,
√

2S12,
√

2S13,

. . . ,
√

2S1p,
√

2S23, . . . ,
√

2S2p, . . . ,
√

2Sp−1,p)
T . It is a standard exercise to verify that

1TV = 0.

A partial implementation of QR-decomposition (via, e.g., a modified Gram-Schmidt

algorithm) can produce

[
1k+1 V 1

2
C

]
=

[
Q1 Q2

]



R11 R12

0 I(p2+p)/2


 , (2.45)

where columns of Q1 ∈ R(k+1)×(p+1) are orthonormal (QT
1 Q1 = Ip+1), and columns of

Q2 ∈ R(k+1)× p2+p
2 are orthogonal to the columns of Q1 (i.e., QT

2 Q1 = 0).

From (2.44), we have

QT
2 f∗ =

(
0 QT

2 Q2

)



R11 R12

0 I(p2+p)/2







c

J

H




= QT
2 Q2H.

Hence, a least-squares estimator of H is

Ĥ = (QT
2 Q2)

+QT
2 f∗,

where (·)+ denotes a pseudo-inverse of a matrix.

For the local Hessian matrix, we have

‖Ĥf(Zt−1)‖2
F = ‖Ĥ‖2

2 = ĤT Ĥ

= (f∗)TQ2(Q
T
2 Q2)

+(QT
2 Q2)

+QT
2 f∗.

93



To construct the matrix form of (2.43), we introduce the following notation:

Kt−1 = Q2(Q
T
2 Q2)

+(QT
2 Q2)

+QT
2 .

We also bring in a selection matrix St−1, p + 1 ≤ t ≤ n. Matrix St−1,St−1 ∈
R(k+1)×(n−p), is made by two possible components: 0 and 1. For V0,V1, · · · ,Vk

and Zp, · · · ,Zn−1 that are defined before, St−1 satisfies

(V0,V1, · · · ,Vk) = (Zp,Zp+1, · · · ,Zn−1)S
T
t−1,∀t.

Apparently we have f∗ = St−1f , where f = (f(Zp), f(Zp+1), · · · , f(Zn−1))
T . We have

n∑
t=p+1

‖Ĥf(Zt−1)‖2
F =

n−1∑
t=p

(fTST
t KtStf).

Let M = (ST
p , · · · ,ST

n−1)diag{Kp,Kp+1, · · · ,Kn−1}




Sp

...

Sn−1




, we have

n∑
t=p+1

‖Ĥf(Zt−1)‖2
F = fTMf ,

which is a quadratic function of f .

Problem (2.43) becomes

min
f
‖Y − f‖2

2 + λfTMf ,

where variable f ∈ Rn−p, vector Y = (Xp+1, · · · , Xn)T ∈ Rn−p, and M is derived

before. The least squares estimator of f becomes

f̂ = (In−p + λ ·M)−1 ·Y. (2.46)

5.2.1 Null Space of Matrix M

The estimator in (2.46) requires inverting an (n− p)× (n− p) matrix, which can be

challenging. It is easy to verify that matrix M is positive-semidefinite. Moreover,
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matrix M has eigenvalue 0, whose multiplicity is at least p + 1, conditioning that the

following matrix is of full column rank:



1 ZT
p

...
...

1 ZT
n−1




.

As a matter of fact, every column of the above matrix solves the equation M · x = 0.

5.2.2 Prediction

We would like to estimate f(Z) at a new point Z ∈ Rp. First we identify the k + 1

(k ≥ 1) nearest neighbors of Z for the vectors in the set V . The reason for choosing

the k + 1 instead of k nearest neighbors is that we want a similar expression in the

prediction step as in the estimation step. Recall V contains all the p-dimensional

vectors generated by a scanning window going through the time series. Without

loss of generality, let V1,V2, · · · ,Vk+1 denote the k + 1 nearest neighbors. Let V̄

denote the average: V̄ = 1
k+1

∑k+1
i=1 Vi. Recall J f(V̄) denotes the Jacobian at V̄,

and Hf(V̄) denotes the Hessian matrix at V̄. A second order approximation via

Taylor expansion at point V̄ yields

f(Vi)− f(V̄) = (Vi − V̄)TJ f(V̄) +
1

2
(Vi − V̄)THf(V̄)(Vi − V̄).

Recall f̂(V1), · · · , f̂(Vk+1) are the fitted values at V1, · · · ,Vk+1. Similar to the

analysis in establishing the least squares estimators for Hessian, we have the following

equation:



f̂(V1)

...

f̂(Vk+1)




= 1k+1f(V̄) +




(V1 − V̄)T

...

(Vk+1 − V̄)T



J f(V̄) (2.47)

+
1

2




V1[(V1 − V̄)(V1 − V̄)T ]

...

V1[(Vk+1 − V̄)(Vk+1 − V̄)T ]



V2[Hf(V̄)],
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where vectorization operators V1(·) and V2(·) have been defined earlier. Note f(V̄)

is a scalar, vector J f(V̄) is p-dimensional, and matrix Hf(V̄) contains p(p + 1)/2

unknown variables. If we have

k ≥ p +
p(p + 1)

2
=

1

2
(p + 1)(p + 2),

then least squares estimators can be established for f(V̄),J f(V̄) and Hf(V̄) on the

right hand side of (2.47). Hence, an estimated value of f(·) at Z is

f̂(Z) = f̂(V̄) + (Z− V̄)T Ĵ f(V̄) +
1

2
(Z− V̄)T Ĥf(V̄)(Z− V̄). (2.48)

A variation of the above is to ignore the quadratic terms in the right hand sides

of (2.47) and (2.48). Hence instead of a quadratic prediction, we adopt a linear

prediction, where the first order approximation via Taylor expansion is applied, and

the least squares estimators are established for f(V̄) and J f(V̄). Thus, the prediction

of f(·) at Z is

f̂(Z) = f̂(V̄) + (Z− V̄)T Ĵ f(V̄).

The simulation results show that the linear prediction is more robust than the

quadratic prediction. Thus, in our numerical experiments, only the linear prediction

is utilized.

5.3 A Convergence Theorem

We have introduced a numerical approximation to (2.42). A question is that when

there is an underlying function f , which is analytical, whether our estimator f̂ will

indeed converge to this underlying function. In this section, we study quantity ‖f̂n −
f‖2

2/n, where f̂n is the same as f̂ but with a subscript to integrate the length of the

time series n, and vector f is the true value of the function at Zt’s. We will show

that ‖f̂n − f‖2
2/n → 0 is true under certain conditions that only depend on matrix

M and underlying function f(·). These conditions can be verified numerically, hence
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can be checked in simulations. Our conditions are analogous to the conditions for

Sobolev space, which has played an important role in determining the optimal rate

of estimation within a certain functional class [66].

Recall

f̂n = (In−p + λnM)−1Y,

Consequently, we have

f̂n − f = (I + λnM)−1f − f + (I + λnM)−1ε.

where ε = (εp+1, · · · , εn)T .

Let M = UTDU, the eigenvalue decomposition of matrix M. Denote D =

diag{d1, · · · , dn−p}. Let f ′i = (Uf)i and ε′i = (Uε)i.

Lemma 5.3.1 There exists a constant cn (e.g. cn = 2 log n), such that for εi
iid∼

N(0, σ2),

Pr{|ε′i|2 < cnσ2,∀i} → 1, as n →∞.

The above is a well-known property of normally distributed random variables.

We have the following inequality:

1

2
‖f̂n − f‖2

2 ≤
n−p∑
i=1

(λndi)
2(f ′i)

2 + (ε′i)
2

(1 + λndi)2

≤
n−p∑
i=1

(λndi)
2(f ′i)

2 + cnσ2

(1 + λndi)2
.

The last inequality utilizes the preceding lemma. We consider a function: for α ≥ 0.

g(α) =
α2(f ′i)

2 + cnσ
2

(1 + α)2
.

The following can be verified through elementary calculation.

1. g(0) = cnσ2, g(∞) = (f ′i)
2.

2. When 0 < α < cnσ2

(f ′i)2
, we have g′(α) < 0; when α > cnσ2

(f ′i)2
, we have g′(α) > 0.
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3. The minimum point is g( cnσ
(f ′i)2

) =
(cnσ2)(f ′i)

2

(f ′i)2+cnσ2 .

4. If (f ′i)
2 < cnσ

2 and α > 1
γ

cnσ2

(f ′i)2
, where γ ≥ 1, we have g(α) < γ(f ′i)

2.

5. If cnσ2 < (f ′i)
2 and α < γ cnσ2

(f ′i)2
, where γ ≥ 1, we have g(α) < γ · cnσ

2.

Consider two quantities:

an = max
i

{
cnσ

2

(f ′i)2
· 1

di

: for i such that (f ′i)
2 < cnσ2

}
,

bn = min
i

{
cnσ2

(f ′i)2
· 1

di

: for i such that (f ′i)
2 > cnσ

2

}
.

It won’t be interesting if an ≤ bn. We suppose that

γn =

√
an

bn

≥ 1.

We pick λn = an

γn
= bn · γn =

√
anbn. We have the following main result.

Theorem 5.3.2 For the aforementioned λn, we have

1

2
‖f̂n − f‖2

2 ≤ γn ·
n−p∑
i=1

min[(f ′i)
2, cnσ

2].

The proof is an application of the preceding analysis.

Remark. It is known that
∑n−p

i=1 (f ′i)
2/n = O(1), i.e., such a quantity tends to be

a constant. If sequence (f ′i)
2 decay, (for example, analogous to the behavior of `p

norm), then
∑n−p

i=1 min[(f ′i)
2, cnσ2] could have lower order than O(n). It is possible

that n−1γn

∑n−p
i=1 min[(f ′i)

2, cnσ2] → 0. Conditions under which the above holds can

be a delicate problem. In simulated examples, in almost all the cases, we observe

that the sequence |f ′i | (after being sorted at a decreasing order) decays like an inverse

polynomial (i.e., x−β for β > 0). From the above theorem, our algorithm will work in

those situations. Section 5.6.1 provides some examples where
∑n−p

i=1 min[(f ′i)
2, cnσ

2]/n

does decay with the increasing n.
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5.4 Choice of Penalty Parameter λ

In Section 5.3, a theoretically appropriation λn is provided. However, in practice,

the underlying function f(·) is not available; hence one can not utilize the theoretical

formula. Generalized cross validation can be adopted. Consider the generalized cross

validation function GCV(λ):

GCV(λ) =
1

n− p

n∑

k=p+1

(
Xk − f̂λ(Zk−1)

1− 1
n−p

Tr(A(λ))

)2

, (4.49)

where A(λ) = (In−p + λM)−1. The optimal value of the penalty parameter λ can

be estimated by minimizing the above GCV function. The justification is relatively

straightforward and is relegated to Appendix 5.8.

The derivation of the GCV function uses an approximation, because the numerical

approximation of Hessian functional is applied. The following provides more justifica-

tion on applying generalized cross validation here. To facilitate the following analysis,

let us recall some notations. Recall that the eigenvalue decomposition of matrix M

is M = UTDU, where D = diag{d1, · · · , dn−p}, and 0 ≤ d1 ≤ d2 ≤ · · · ≤ dn−p.

Recall that ε′i = (Uε)i. We define y′i = (UY)i. Note vectors f ,Y, ε have been used in

Section 5.3. If we know the true value of the function at every point (i.e., f is known),

then the mean square error as a function of λ is

MSE(λ) =
1

n− p
‖f −A(λ)Y‖2

2 (4.50)

=
1

n− p
‖[I−A(λ)]Y − ε‖2

2

=
1

n− p
{‖[I−A(λ)]Y‖2

2 + ‖ε‖2
2 − 2εT [I−A(λ)]Y}

=
1

n− p
[λ2h1(λ) + ‖ε‖2

2 − 2λh2(λ)],

where

h1(λ) =
∑

i

d2
i (y

′
i)

2

(1 + λdi)2
,
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and

h2(λ) =
∑

i

di · ε′i · y′i
1 + λdi

.

On the other hand, for GCV, we have

GCV(λ) = (n− p)
h1(λ)

[h3(λ)]2
, (4.51)

where

h3(λ) =
∑

i

di

1 + λdi

.

Hopefully, one can establish a quantitative connection between the minimizer of

(4.50) and the minimizer of (4.51). This chapter has not pursued further. Note that

if factor ε′i · y′i can be treated as a constant, there is a strong similarity between h2(λ)

and h3(λ). In simulations, we plot GCV(λ) and MSE(λ) for multiple examples. In

almost all the cases, we observe that the minimum of the two function are close. This

in some sense validates the use of GCV to choose λ. More details are given in Section

5.6.2.

5.5 Fast Computing

Recall that our estimate has the form f̂ = (I+λM)−1Y. Such a solution bears strong

similarity with the solution to the smoothing spline [52, Section 2.3]. It is well known

that for smoothing spline, by taking advantage of a band matrix, fast computing is

feasible ([52, Section 2.3.3] and [94]). A similar analysis can be developed for our

method. It is not hard to observe that

(I + λM)f̂ = Y.

Denoting

B = diag{Kp, · · · ,Kn−1},

S =




Sp

...

Sn−1




,
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and r = BSf̂ , we have

f̂ = Y − λMf̂

= Y − λSTBSf̂

= Y − λST r. (5.52)

The above leads to

B−1r = Sf̂ = SY − λSST r,

which is equivalent to

(B−1 + λSST )r = SY. (5.53)

Matrix B−1 is blocky diagonal with (k + 1)× (k + 1) diagonal submatrices. If matrix

SST is a blocky band matrix, then the standard technique in manipulating band

matrices [52, Section 2.6] can be adopted. Hence an O(nk2) algorithm is available to

find r via (5.53). Our estimate f̂ then can be obtained via (5.52). Overall complexity

is still O(nk2).

Unfortunately, in the previous algorithm, matrix SST is not guaranteed to be a

blocky band matrix. One can propose a modified version of our algorithm to facilitate

fast computation. We discuss two possible approaches. Recall we are considering

modeling Xt = f(Zt−1)+εt, p+1 ≤ t ≤ n. Let {P (p+1), · · · , P (n)} be a permutation

of p + 1, · · · , n − 1, n. It is equivalent to consider modeling with dataset XP (t) =

f(ZP (t)−1)+εP (t), p+1 ≤ t ≤ n. Now we consider the distance matrix {Dij}(n−p)×(n−p),

where Dij = ‖Zi+p−1 − Zj+p−1‖2, i.e., the `2-distance (Euclidean distance). It is

evident that Dii = 0. For a fixed permutation P , define D̃ij(P ) = ‖ZP (i+p)−1 −
ZP (j+p)−1‖2.

Approach One: Find permutation P such that the quantity

max{D̃ij(P ) : |i− j| ≤ k} (5.54)

is minimized. Then “the k nearest neighbors” of Zt are specified to be the k closest

101



elements of P (t) in the sequence {P (p+1), · · · , P (n)}. One can verify that the matrix

SST is a blocky band matrix.

Approach Two: A drawback of Approach One is that the permutation P may

not be found easily. A compromise is to use some heuristic iterative algorithm to

minimize the quantity in (5.54), and then still use the k nearest neighbors in the

Euclidean distance. Hopefully, the off-diagonal submatrix of SST becomes a zero

matrix when it is far away from the diagonal. An example of such an algorithm is

the Jacobi’s method to find eigenvalues and eigenvectors [72]. The simulation study

and further research is left as future work.

5.6 Numerical Experiments

5.6.1 Simulations Regarding the Convergence Theorem

The following model is utilized to generate four times series:

Xt = f(Xt−1, Xt−2, Xt−3, Xt−4) + εt, for t ≥ 5,

where εt
i.i.d.∼ N(0, σ2), where σ = 1 for the first two time series, σ = 0.2 for the third

time series, and σ = 0.8 for the last time series. Under the previous formulation,

these are the cases when p = 4. The function f(Xt−1, Xt−2, Xt−3, Xt−4) is defined as:

• in the first time series, we have

f(x1, x2, x3, x4) = a1 + a2 + a3 + a4,

where

a1 = −x2e
−x2

2/2,

a2 =
x1

1 + x2
2

cos(1.5x2),

a3 =
4x3

1 + 0.8x2
3

,

a4 =
e3(x4−2)

1 + e3(x4−2)
;
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• in the second time series, we have

f(x1, x2, x3, x4) =
2x1

1 + 0.8x2
1

− 2x2

1 + 0.8x2
2

+
2x3

1 + 0.8x2
3

− 2x4

1 + 0.8x2
4

;

• in the third time series, we have

f(x1, x2, x3, x4) = a1x1 + a2x2 + a1x3 + a2x4, (6.55)

where

a1 = 0.2 + (0.3 + x1)e
−4x2

1 ,

a2 = −0.4− (0.7 + 1.3x1)e
−4x2

1 ;

• in the last time series, we have

f(x1, x2, x3, x4) =
0.25x4

1 + 1.2x2
1

− 0.4x1

1 + 0.6x2
2

+
0.5x2

1 + 0.8x2
3

− 0.75x3

1 + x2
4

+
e1.5(x4−2)

1 + e3(x4−2)
.

The simulated time series can be seen in Fig. 14.

For each time series model, time series with the different length ranging from

200 to 3000 are generated. The increment of the length of time series is 200 data

points each time. Two quantities
∑n−p

i=1 min[(f ′i)
2, cnσ2]/n and

∑n−p
i=1 (f ′i)

2/n are cal-

culated, and illustrated for each time series in Fig.151. Quantity
∑n−p

i=1 (f ′i)
2/n fluc-

tuates around a constant with the different length of time series, while quantity

∑n−p
i=1 min[(f ′i)

2, cnσ
2]/n appears to decay as the length of the time series is increasing.

The above observation verifies our conjecture to some degree: although
∑n−p

i=1 (f ′i)
2/n

tends to be a constant,
∑n−p

i=1 min[(f ′i)
2, cnσ2]/n could have lower order, i.e., it is

possible that n−1γn

∑n−p
i=1 min[(f ′i)

2, cnσ2] → 0.

5.6.2 Adoption of the Generalized Cross Validation Principle

Using simulations of the four time series in the last section, we study the relation

between the minimizers of GCV(·) and MSE(·). Since the data generation mechanism

1Without normalization,
∑n−p

i=1 min[(f ′i)
2, cnσ2]/n is always smaller than

∑n−p
i=1 (f ′i)

2/n.
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Figure 14: The simulated four time series with 500 data points. The data generation
mechanism is described in Section 5.6.1.
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Figure 15: The trend of
∑n−p

i=1 min[(f ′i)
2, cnσ2]/n and

∑n−p
i=1 (f ′i)

2/n as n is increas-
ing. The length of time series n ranges from 200 to 3000. In order to compare two
quantities more clearly, we normalize the two quantity sequences by deviding their
maximal values, respectively .
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is known, we can plot MSE(λ) for a range of values for λ. Function MSE(·) is plotted

against GCV(·) in Fig. 16. It is evident that the minimizer of GCV also renders a

small value of MSE, which can be considered as a validation of using GCV function

to choose optimal λ.

Time Series 1 : MSE(λ) vs. GCV(λ) Time Series 2 : MSE(λ) vs. GCV(λ)
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Time Series 3 : MSE(λ) vs. GCV(λ) Time Series 4 : MSE(λ) vs. GCV(λ)
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Figure 16: The functions GCV(·)and MSE(·) of the four time series. The GCV
and MSE achieves minima at (0.3317, 0.3015), (0.4397, 0.3266), (0.0044, 0.0036) and
(0.5151, 0.5528) respectively in the above four cases. The minima are marked with
circles. For comparison, the maximal values of functions GCV and MSE are normal-
ized to 1.

5.6.3 Synthetic Examples

This section contains three parts. The first two parts consist of simulation mod-

els, which are chosen from functional coefficient autoregressive model (FAR) and

threshold autoregressive model (TAR), respectively. The last part consists of two
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simulation models, which are nonlinear models and belong to none of FAR, TAR

or additive autoregressive model (AAR). For each of the model, three types of pre-

diction errors—one-step prediction errors, iterative two-step prediction errors, and

direct two-step prediction errors—are computed for AAR, FAR, TAR, AR, Loess,

Locpoly and our method. The difference between iterative two-step prediction and

direct two-step prediction can be found in [41, Section 8.3.6]. The following is a brief

introduction of the models we applied for comparison.

• AAR(p): additive nonlinear autoregressive model with the embedding dimen-

sion p. The formula is

Xt = f1(Xt−1) + ... + fp(Xt−p) + εt.

• FAR(p, d): functional coefficient autoregressive model [14] with p lags and Xt−d

being the model dependent variable (see [41, page 318] for additional details).

The formula is

Xt = f1(Xt−d)Xt−1 + · · ·+ fp(Xt−d)Xt−p + εt.

• AR(p): autoregressive model with p lags.

• TAR(p1, p1; d): threshold autoregressive model [102, Section 3.3], where p1 and

p2 are autoregressive orders for low and high regime respectively, and d is the

time delay or time lag for the threshold variable. The formula is

Xt =





b10 + b11Xt−1 + · · ·+ b1p1Xt−p1 + εt, if Xt−d ≤ c,

b20 + b21Xt−1 + · · ·+ b2p2Xt−p2 + εt, if Xt−d > c.

• Loess(p)(or Lowess(p)): locally weighted scatterplot smoothing with p covari-

ates [17, 18]. It is a local polynomial regression with tricubic weighting.

• Locpoly(p): multivariate local polynomial regression with Epanechnikov kernel.

p is the number of covariates [37, 113, 89].
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All the models listed above, other than AR model, are nonlinear models. For Loess,

Locpoly and our model, the first order (linear) prediction is utilized for all the nu-

merical experiments.

In each experiment for each model, we produce 300 simulations. In each simu-

lation, a time series with length 602 is generated from the simulation model. We

make the one-step and two-step predictions based on the first 600 data points, and

then calculate the three types of prediction errors by comparing with the observed

values, i.e., the last two generated data points. The mean, median, and standard

deviation of the absolute prediction errors are computed over the 300 simulations for

the each type of prediction errors. [The statistics are denoted by mean, median, std

respectively in the tables of this section.] The mean square prediction error (MSPE)

for each type of prediction errors is also calculated. In all the simulations, we fix the

number of the nearest neighbors in our method as k = 20.

The software for FAR was downloaded from

http://orfe.princeton.edu/∼jqfan/fan/nls.html. (A supplement of [41].)

Implementation of TAR and AAR is based on an online software package that is

downloadable at

http://cran.r-project.org/src/contrib/Descriptions/tsDyn.html. (Maintainer:

Antonio, Fabio Di Narzo.)

Implementation of Locpoly is based on an online software package that is download-

able at

http://cran.r-project.org/src/contrib/Descriptions/JLLprod.html. (Main-

tainer: David Tomás, Jacho-Chávez.)

Implementation of AR can be found in the Matlab system identification toolbox , and

Loess is implemented based on the function “loess” in standard R package “stats”.
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5.6.3.1 A Functional Coefficient Autoregressive Model

The first model is model (6.55), an FAR model. The model is initialized with X0 =

X1 = X2 = X3 = 2, and the first 100 data points are warm-up period.

Table 9: Prediction error under an FAR model.
HRM AAR(4) FAR(4,1)

1-s Ite Dir 1-s Ite 1-s Ite Dir
mean 0.16 0.18 0.18 0.19 0.20 0.16 0.17 0.20
median 0.13 0.15 0.15 0.16 0.17 0.14 0.14 0.17
std 0.12 0.13 0.14 0.15 0.15 0.12 0.13 0.15
MSPE 0.04 0.05 0.05 0.06 0.06 0.04 0.05 0.06

AR(4) Loess(4) Locpoly(4)

1-s Dir 1-s Ite 1-s Ite
mean 0.60 0.57 0.19 0.20 0.18 0.19
median 0.53 0.45 0.16 0.17 0.14 0.15
std 0.43 0.43 0.15 0.15 0.15 0.14
MSPE 0.54 0.51 0.06 0.06 0.05 0.06

Table 9 shows that there is no significant difference between our method (HRM)

and the method specific for FAR model. “1-s” stands for one-step prediction; “Ite”

stands for iterative two-step prediction; “Dir” stands for direct two-step prediction.

Among nonlinear ones, FAR and our model gives the most accurate performance for

this example. Linear AR model does not fit the nonlinear situation very well.

5.6.3.2 A Threshold Autoregressive Model

The second model is TAR model,

Xt =





0.62 + 1.25Xt−1 − 0.43Xt−2 + 0.3Xt−3 − 0.2Xt−4 + εt, if Xt−2 ≤ 2.25,

2.25 + 1.52Xt−1 − 1.24Xt−2 − 1.25Xt−3 + 0.4Xt−4 + εt, if Xt−2 > 2.25,

where {εt} are i.i.d. from N(0, 1.52). The model is initialized with X0 = X1 = X2 =

X3 = 0, and the first 100 data points are warm-up period.

From Table 10, we can see that TAR outperforms all other methods. This is not

surprising given the data generation mechanism. Because TAR may be considered as

a special case of FAR, FAR(4,2) is applied for the example. Our method performs
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Table 10: Prediction error for a TAR model.
HRM AAR(4) TAR(4,4;2)

1-s Ite Dir 1-s Ite 1-s Ite
mean 1.42 2.30 2.31 1.39 2.30 1.25 2.14
median 1.10 1.87 1.94 1.10 1.85 1.03 1.72
std 1.32 1.90 1.95 1.27 1.84 1.00 1.55
MSPE 3.75 8.89 9.15 3.55 8.63 2.59 6.98

FAR(4,2) AR(4) Loess(4) Locpoly(4)

1-s Ite Dir 1-s Ite 1-s Ite 1-s Ite
mean 1.45 2.43 2.48 3.76 6.08 2.16 4.45 1.69 2.49
median 1.15 1.81 1.82 2.62 4.14 1.79 3.57 1.30 2.00
std 1.23 2.01 2.38 4.07 6.79 1.72 3.36 1.53 2.07
MSPE 3.60 9.95 11.84 30.66 82.94 7.61 31.10 5.20 10.46

similarly to AAR and FAR. Loess and Locpoly have the worst performance among the

nonlinear methods. Once again linear AR model does not fit the nonlinear situation

well.

One reason for the underperformance of our method possibly is the discontinuity of

the underlying model on boundaries. Recall our method assumes that the underlying

function f is differentiable, and we penalize on its Hessian. It will be interesting

to further study the dependence of our method on the regularity of the underlying

model.

5.6.3.3 Other More Generic Models

The above two examples show that even when the data are generated from a perfect

model, e.g. AAR, TAR, or FAR, our method still produce comparable prediction

results with the original generating model.

The third model is

Xt = −Xt−4e
−2X2

t−3 +
1

1 + 4X2
t−2

cos(1.5Xt−1)Xt−1 (6.56)

+
Xt−3

1 + 4X2
t−1

+
e1.5(Xt−4−1)

1 + e1.5(Xt−4−1)
+ εt,

where {εt} are i.i.d. from N(0, 0.52). The model is initialized with Xj ∼ N(0, 0.22),

where j = 0, · · · , 3, and the first 100 data points are warm-up period. The fourth
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model is

Xt = [0.2 + (0.3 + Xt−3)e
−4X2

t−4 ]Xt−1 (6.57)

+[−0.4− (0.7 + 1.3Xt−3)e
−4X2

t−4 ]Xt−2 + εt,

where {εt} are i.i.d. from N(0, 0.52). The model is initialized with Xj ∼ N(0, 1),

where j = 0, · · · , 3, and the first 100 data points are warm-up period.

Table 11: Prediction error under two nonlinear models.

(a) Under model (6.56)
HRM AAR(4) AR(4) Loess(4) Locpoly(4)

1-s Ite Dir 1-s Ite 1-s Dir 1-s Ite 1-s Ite
mean 0.47 0.56 0.56 0.52 0.64 0.95 0.89 0.58 0.62 0.46 0.59
median 0.39 0.41 0.43 0.44 0.53 0.82 0.76 0.47 0.50 0.38 0.44
std 0.35 0.55 0.52 0.40 0.58 0.73 0.69 0.45 0.56 0.35 0.56
MSPE 0.34 0.62 0.58 0.43 0.74 1.43 1.26 0.54 0.70 0.33 0.66

FAR(4,1) FAR(4,2) FAR(4,3) FAR(4,4)

1-s Ite Dir 1-s Ite Dir 1-s Ite Dir 1-s Ite Dir
mean 0.51 1.00 0.62 0.59 0.97 0.63 0.56 1.03 0.58 0.57 1.00 0.59
median 0.41 0.82 0.48 0.49 0.81 0.51 0.44 0.92 0.46 0.45 0.81 0.48
std 0.39 0.78 0.63 0.47 0.77 0.53 0.55 0.77 0.50 0.45 0.75 0.55
MSPE 0.42 1.61 0.79 0.57 1.54 0.67 0.62 1.66 0.58 0.53 1.56 0.65

(b) Under model (6.57)
HRM AAR(4) AR(4) Loess(4) Locpoly(4)

1-s Ite Dir 1-s Ite 1-s Dir 1-s Ite 1-s Ite
mean 0.52 0.49 0.52 0.65 0.53 0.82 0.71 1.53 1.12 0.52 0.48
median 0.40 0.37 0.36 0.48 0.39 0.57 0.52 0.61 0.54 0.40 0.38
std 0.81 0.50 0.74 1.08 0.52 1.08 0.69 5.71 2.71 0.90 0.45
MSPE 0.92 0.48 0.82 1.59 0.54 1.85 0.97 34.85 8.54 1.09 0.43

FAR(4,1) FAR(4,2) FAR(4,3) FAR(4,4)

1-s Ite Dir 1-s Ite Dir 1-s Ite Dir 1-s Ite Dir
mean 0.64 0.61 0.62 0.80 0.56 0.52 0.61 0.54 0.60 0.67 0.58 0.56
median 0.47 0.43 0.42 0.46 0.39 0.40 0.44 0.41 0.42 0.48 0.42 0.38
std 1.00 0.94 0.98 3.33 0.80 0.55 0.89 0.60 0.65 1.10 0.60 0.63
MSPE 1.42 1.25 1.35 11.69 0.94 0.57 1.16 0.65 0.77 1.65 0.70 0.71

The above two examples are nonlinear and can not be included by AAR, FAR, or

TAR. Table 11 demonstrates that our method outperforms all these three methods
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in both one-step and iterative two-step predictions.

All of Loess, Locpoly and our method are nonlinear models, and do not require

any specific model structure. Although all these three methods are local approaches,

the great advantage of our method is that the penalty term of hessian functional

can also take into account of the global properties of the data. For the above four

examples, Loess always has the worst performance among the three. Occasionally,

our method and Locpoly have the comparable performance, e.g., for the one-step

prediction in the third example, but our method often performs better than Locpoly,

e.g., in the first two examples.

The third and fourth example illustrate the flexibility of our method, as our

method does not enforce any specific structure on the model. For some cases when the

data are not generated from a perfect model, e.g. AAR, TAR, or FAR, our method

can generate more accurate prediction results than the other models.

5.6.4 Real Datasets

We apply our method to some well-studied datasets. Comparison with other reported

works is carried out. In many cases, we outperform models that are used by other

researchers.

5.6.4.1 Sunspot Data

Sunspot data is well studied in the literature ([41, 14] and many more). Table 8.5 in

[41] summarizes results for several previous models, including:

• FAR-1, a functional coefficient autoregressive model fitted via local polynomial

methods, as specified by equation (8.19) together with Figure 8.5 in [41];

• FAR-2, a functional coefficient autoregressive model fitted by Chen and Tsay

(1993) [14], with exact formula given in (8.18) in [41];

• TAR, a threshold autoregressive model that is specified in (8.20) in [41].
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In all the above models, the number of lags is p = 8. In our model, we choose p = 6.

(We choose p = 6 because the GCV and prediction errors seem to be stabilized at

this point.) The number of the nearest neighbors k = 29 is chosen by minimizing the

aforementioned generalized cross validation function GCV(·) as a function of both λ

and k.

Table 12 presents prediction errors of our method (column HRM) together with

errors of the above three methods (copied from [41, Table 8.5]). Our method gen-

erates the smallest one-step average absolute prediction error. Our average absolute

prediction error of two-step prediction is slightly worse than FAR-1. However, we

still outperform FAR-2 and TAR. Note the above is achieved by using six (instead of

eight) predictors in our method.

Table 12: Prediction Errors for Sunspot Data.

HRM FAR-1 FAR-2 TAR
Year 1-s Ite 1-s Ite 1-s Ite 1-s Ite
1980 1.5 1.5 1.4 1.4 13.8 13.8 5.5 5.5
1981 7.8 9.1 11.4 10.4 0.0 3.8 1.3 0.0
1982 9.6 14.1 15.7 20.7 10.0 16.4 19.5 22.1
1983 8.1 4.0 10.3 0.7 3.3 0.8 4.8 6.5
1984 3.3 1.0 1.0 1.5 3.8 5.6 14.8 15.9
1985 10.3 8.1 2.6 3.4 4.6 1.7 0.2 2.7
1986 0.4 7.3 3.1 0.7 1.3 2.5 5.5 5.4
1987 9.5 9.1 12.3 13.1 21.7 23.6 0.7 17.5
AAPE 6.3 6.8 7.2 6.5 7.3 8.3 6.6 9.5

5.6.4.2 Blowfly Data

We apply our method to the blowfly data. It is known that the first 206 data points

are nonlinear, and the remaining data points are almost linear [108]. Thus we use

the first 195 data points as training data, then make postsample prediction for data

point 196 to 210. The results are reported in Table 13.

Other four models are compared. A threshold autoregressive model TAR(1, 3; 8)

113



is suggested in [102, page 337], We apply the model with the same order but refit the

model (column TAR), because the original model is applied to a different segment

of the time series. To verify the order of the TAR model for our training data, We

automatically select the best order of the TAR model with respect to the pooled AIC

criteria, using the “selectSETAR” procedure in R package “tsDyn”. By fixing the

threshold variable as the 8th lag, TAR(2, 3; 8) is selected. As the second variable

in the lower regime is not significant, it means that TAR(1, 3; 8) is almost same as

TAR(2, 3; 8).

The second and third models are functional coefficient autoregressive (FAR) mod-

els with different number of dependent variables:

• FAR–1: Xt = f0(Xt−8) + f1(Xt−8)Xt−1 + f2(Xt−8)Xt−2 + f3(Xt−8)Xt−3 + εt.

• FAR–2: Xt = f0(Xt−8) + f1(Xt−8)Xt−1 + f2(Xt−8)Xt−2 + f3(Xt−8)Xt−3 +

f4(Xt−8)Xt−4 + εt.

A similar model with two dependent variables is given in [112]. Note that the above

FAR–1 model corresponds to the TAR model given in [102]. Moreover, we observe

that more dependent variables can dramatically reduce the prediction errors of the

FAR model for our training data. The fourth one is a standard autoregressive model

with 8 lags.

For comparison, applying our algorithm, we fit the following generic model,

Xt = f(Xt−1, Xt−2, Xt−3, Xt−4, Xt−8) + ε.

The number of the nearest neighbors k = 21 is chosen by minimizing GCV function.

From Table 13, it is observed that when our model is applied, both the average one-

step prediction error and the average two-step prediction error are better than those

of four competing methods. This example once again demonstrates the powerfulness

of our algorithm in time series prediction.

114



Table 13: Prediction Errors for Blowfly Data.

HRM TAR(1,3;8) FAR–1 FAR–2 AR(8)

obs. 1-s Ite 1-s Ite 1-s Ite 1-s Ite 1-s Ite
196 0.040 0.196 0.048 0.175 0.112 0.236 0.089 0.227 0.003 0.266
197 0.052 0.008 0.035 0.031 0.012 0.174 0.009 0.139 0.075 0.144
198 0.004 0.076 0.014 0.033 0.062 0.081 0.057 0.071 0.087 0.078
199 0.010 0.003 0.015 0.035 0.029 0.125 0.023 0.113 0.031 0.117
200 0.078 0.061 0.092 0.113 0.097 0.142 0.090 0.126 0.066 0.033
201 0.136 0.261 0.163 0.290 0.129 0.266 0.138 0.257 0.271 0.241
202 0.049 0.240 0.063 0.287 0.060 0.215 0.071 0.232 0.322 0.410
203 0.000 0.040 0.081 0.004 0.045 0.024 0.047 0.033 0.121 0.442
204 0.108 0.107 0.071 0.040 0.082 0.032 0.063 0.011 0.051 0.416
205 0.046 0.158 0.036 0.134 0.031 0.114 0.012 0.077 0.088 0.199
206 0.180 0.130 0.175 0.124 0.177 0.146 0.159 0.147 0.208 0.167
207 0.234 0.016 0.298 0.059 0.186 0.018 0.192 0.038 0.040 0.039
208 0.007 0.286 0.033 0.441 0.028 0.176 0.019 0.190 0.210 0.078
209 0.081 0.090 0.107 0.061 0.099 0.139 0.055 0.081 0.167 0.174
210 0.111 0.210 0.154 0.301 0.134 0.290 0.148 0.235 0.350 0.114
Ave. 0.076 0.126 0.092 0.142 0.086 0.145 0.078 0.132 0.139 0.195

5.7 Conclusion

We introduce a hessian regularized nonlinear time-series model for prediction in time

series. The approach is especially powerful when the number of dependent variables

is greater than three, which can not be handled by natural cubic spline and thin

plate spline. Moreover, our approach is nonlinear and nonparametric, and does not

enforce any specific structure on the model. Both the theoretical and simulation

results provide a strong verification and support of our model.

5.8 Appendix: Derivation for Generalized Cross Valida-
tion

The derivation of the GCV function is as follows. We first establish the leave-one-out

theorem. Then we demonstrate that (4.49) gives a reasonable approximation to the

leave-one-out cross validation error.
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Theorem 5.8.1 Suppose that

f̂λ = arg min
f

n∑
t=p+1

(Xt − f(Zt−1))
2 + λHf, (8.58)

and

hλ(k, X̃k) = arg min
f

∑

t 6=k

(Xt − f(Zt−1))
2 + (X̃k − f(Zk−1))

2 + λHf,

Denote f̂
[k]
λ as the optimal solution of f after leaving kth observation out, i.e.

f̂
[k]
λ = arg minf

∑
t 6=k(Xt − f(Zt−1))

2 + λHf, then we have

f̂
[k]
λ = hλ(k, f̂

[k]
λ (Zk−1)).

Proof. The following has been used in deriving leave-one-out theorem in other situa-

tions, such as for smoothing splines and for regression. We have

Lk(f)
def.
=

∑

t 6=k

(Xt − f(Zt−1))
2 + (f̂

[k]
λ (Zk−1)− f(Zk−1))

2 + λHf

≥
∑

t 6=k

(Xt − f(Zt−1))
2 + λHf

≥
∑

t 6=k

(Xt − f̂
[k]
λ (Zk−1))

2 + λHf

def.
= Lk(f̂

[k]
λ (Zk−1)).

2

Suppose the solution of problem (8.58) is a linear estimator, i.e.,

(f̂λ(Zp), · · · , f̂λ(Zn−1))
T = A(λ)(Xp+1, · · · , Xn)T .

Meanwhile, according to theorem 5.8.1, we have

(f̂
[k]
λ (Zp), · · · , f̂

[k]
λ (Zn−1))

T = A(λ)(Xp+1, · · · , Xk−1, f̂
[k]
λ (Zk−1), Xk+1, · · · , Xn)T .
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Thus, we have

Xk − f̂
[k]
λ (Zk−1) =

Xk − f̂λ(Zk−1)
Xk−f̂λ(Zk−1)

Xk−f̂
[k]
λ (Zk−1)

=
Xk − f̂λ(Zk−1)

1− f̂λ(Zk−1)−f̂
[k]
λ (Zk−1)

Xk−f̂
[k]
λ (Zk−1)

=
Xk − f̂λ(Zk−1)

1− akk(λ)
,

where akk(λ) is (k−p, k−p)th element of matrix A(λ). Thus, GCV function satisfies

GCV(λ) =
1

n− p

n∑

k=p+1

(Xk − f̂
[k]
λ (Zk−1))

2

=
1

n− p

n∑

k=p+1

(
Xk − f̂λ(Zk−1)

1− akk(λ)

)2

.

As the above function is not stable when akk(λ) = 1, we replace akk(λ) with

1
n−p

∑n
k=p+1 akk(λ), i.e., 1

n−p
tr(A(λ)). Therefore, the final GCV function is (4.49).
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