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SUMMARY 

The sequential process production system has not solved by itself 

the continuity of the flow of items through the system. Many production 

systems that are effective have been developed without being completely 

understood. A more complete understanding of production systems be­

havior and, in particular, of those systems involving a sequential pro­

cess is necessary to increase their efficiency. 

The criterion in optimizing a production system is the cost of pro­

duction. The variation of cycle times and the breakdown in the series of 

operations, both decrease the output rate while the intermediate inven­

tories have the purpose of improving the efficiency of the system. A 

balance between the value of the improvement achieved by the use of in­

termediate inventories and the cost of this improvement is the objective. 

It is very difficult to analyze sequential process systems by for­

mal mathematical means. The present status of the theory does not permit 

a general solution of intermediate inventories between operations in se­

quential processes. A simulation approach is presented in order to ana­

lyze and design storage facilities in the sequence of operations. A com­

puter model, using the General Purpose Systems Simulator (GPSS-II), which 

simulates the behavior of the system is developed for the purpose of 

showing what the design of a sequential process should be. 

The application of such techniques which are relatively new to 

industry can assist in the development of even more efficient production 

systems and such studies are essential for a complete understanding and 
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development of production control systems. 

Numerical results for 2, 4, 6, 10, and 20 operations in series at 

various intermediate capacities are presented and analyzed. The simu­

lation approach developed is not restricted to any particular form of 

probability distributions; however, for the particular production system 

simulated, the production time, setting time, and interval time between 

breakdowns for all operations have exponential distributions. 
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CHAPTER I 

INTRODUCTION 

Cost and effectiveness are important variables in the analysis and 

design of production systems. There are many studies related to this 

field; some are concerned with the applications for particular problems, 

and some deal with various mathematical techniques devoted to analytical 

research. 

In present days it is very common to find industries where the 

arrangement of machinery, materials, and men is governed by the product 

to be made, i.e., there is a sequential process involved in which the 

manufacturing operations are subject to interdependence among the ele­

ments of the systems, and to conditions which may vary according to the 

design or according to probabilistic patterns. The analysis and design 

of such production systems are very critical tasks. A primary problem 

is the allocation of space and storage equipment at all intermediate 

phases of the manufacturing process to which the efficiency of the sys­

tem, and, consequently, the cost of production is related. The number 

of operations and variation of cycle times of each operation are also 

important variables in production systems. 

There exists a variety of techniques for designing balanced pro­

duction lines; however, these techniques in general assume the operation 

times of the various operations as being fixed numbers. They also gen­

erally assume that no breakdowns will occur in the various operations. 
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When a sequence of operations constitutes a production system, the 

entire system becomes interdependent in the sense that any delay caused 

by the variation of cycle times or breakdowns at any operation can dis­

rupt the entire system. This can basically happen in two ways: first, 

if the succeeding operation is not free when a prior operation finishes 

an item, and there is no space between the two work stations in which 

to dispose the finished material, then a delay will occur because the 

operation cannot undertake more work until the path is cleared; and, 

second, if an operation is free to process another item and there is no 

new item coming from the preceding operation available, a delay will also 

occur. The consequence in both cases is lost production time. 

The delay which can occur because of these conditions will decrease 

the output rate. The flow of items through the system is measured by the 

rate of production. The occurrence of delays will interrupt the flow of 

items as well as affect the number of items produced by the entire sys­

tem per unit of time. 

There are two main reasons for which a delay can occur in a pro­

duction line. The most important factor affecting the output rate is the 

cycle time of the various operations, which may be fixed or variable ac­

cording to the properties of the particular operation. In fact, consid­

erable variation in the cycle time from one item to the next may be in­

evitable. In general, the cycle time follows a probability distribution 

and the question arises how this variation should be taken into account 

in the design of the system. 

Another factor of importance in determining delays, or, in other 

words, the efficiency of a sequential process, is the occurrence of 
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breakdowns which are characteristic of each stage. The interval time be­

tween breakdowns for each operation and the setting time in the case of 

breakdowns are also characterized by probability distributions. 

An interruption at any point of the system affects the rest of the 

operations. To avoid discontinuity, a continuous supply of materials 

must be assured for any operation. These considerations imply that pro­

vision should be made for a substantial intermediate inventory between 

operations. Its purpose is to reduce the impact of cycle time variations 

and breakdowns characteristic of each operation on the output rate. 

The major problems in the analysis and design of a sequential pro­

cess system are the number and location of the intermediate inventories 

between the various operations, and the size of these pulsating stores. 

There are several theoretical attempts reported in the literature 

for analyzing and designing production systems in which intermediate 

storages are involved. A mathematical approach, more specifically a 

queueing theory approach, has been used by some authors. Basically, a 

queueing process is centered around a service system which has one or 

more service facilities. The elements of a queueing process are: the 

input source, queue, service facilities, and the service discipline. In 

fact, the problem of a sequential process with intermediate inventories 

can be looked upon as a queue system in which the server is the operating 

unit which removes an item from storage, and where the items in storage 

comprise the waiting line. This concept is illustrated in Figure 1. 

The basic problem in the manufacturing system represented by a 

queueing process is the probability that the queue will exceed or under­

pass a specified length (corresponding to the intermediate inventory) 
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~1 

Queue (Storage) Stage j (Operation j) 

INPUT OUTPUT Customers (Items) e, = 
mean cycle time 

L _l 
Figure 1. The Queueing Process. 
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and the output rate. 
The queueing theory requires that the arrival rate must be expo­

nentially distributed and the service rate constant or exponentially dis­
tributed. These constraints together with the requirements that the ar­
rival rate of items into the line be independent of the service rate, 
that is the rate with which they are removed, are the most* serious limi­
tations in treating the production problem with queueing theory. 

It must also be said that the variation of cycle times and setting 
times (caused by breakdowns) involve probabilistic events which make any 
formal mathematical formulation of the problem very difficult. 

Another approach in evaluating the effects of these chance fluc­
tuations is that of systems simulation. The description of the system by 
a simulation model allows to measure the effect of changing one or more 
variables in the system. 

The objective of a systems simulation approach is not just to de­
rive a solution from a mathematical model of the process, but rather to 
provide a means of observing the behavior of the elements of the system 
when conditions vary. 

Because of the interdependence between the various operations in 
a sequential process system, a simulation study points out the way to 
make the components of a system work together in the best possible way. 
Mize and Cox^ point out the following phases as adequate in describing 
a systems analysis study: 

1. Formulating the problem. 
2 . Constructing the model to represent the system under study. 
3 . Deriving a solution from the model. 
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4. Testing the model and the solution derived from it. 

5. Establishing controls over the solution. 

6. Putting the solution to work: implementation. 

For the purpose of this study the main emphasis shall be on the 

phases 1 through 3, since the main interest is to present an approach to 

the analysis and design of sequential process production systems rather 

than to develop a definite solution for a particular system. A systems 

simulation approach is developed and presented to analyze and design pro­

duction systems which involve a sequence of operations. The various pro­

perties of the system are studied so that the substituted process can be 

designed to reproduce them. Because the number of samples to be observed 

is very large and the system involves several probability distributions 

which must be observed simultaneously, a computer model is developed and 

simulated for the purpose of deciding what the design of any sequential 

process should be. Rather than constraining the system variables to 

particular probability distributions or unrealistic assumptions, a simu­

lator which can handle a general sequential process production system is 

designed. 

Several special purpose computer languages have been developed 

which make simulation programming easier and more comprehensive. In 

particular, the General Purpose Systems Simulator (GPSS-II), developed 

by IBM Corporation is a part of the approach used. The reason for using 

the General Purpose Systems Simulator as the simulation language is due 

to its characteristics which are summarized below. 

The General Purpose Systems Simulator is one of the most widely 

used simulation languages designed specificially for modeling queueing 
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systems. The General Purpose Systems Simulator is a block-oriented lan­

guage and the general correspondence between the elements of the produc­

tion system under consideration and the terminology used in the computer 

language is as follows: 

System type: Sequential process production system with 

intermediate inventories. 

Transaction: Item to be produced. 

Facility: Operation (machine and operator). 

Storage: Intermediate inventory. 

Logic switch: Operation free or not, and storage space 

available or not. 

To use the General Purpose Systems Simulator as the simulation lan­

guage, the structure of a general sequential process production system 

with intermediate inventories is presented in the form of a block dia­

gram with a fixed set of predetermined block types. 

The criterion of effectiveness used is the output rate of the sys­

tem. In the ideal case when the production line is perfectly balanced 

with constant cycle times and the system is not susceptible to breakdowns, 

then the output rate would be one item per cycle time, where the cycle 

time is the same for all operations. Since in real systems the cycle 

times are continuous variables which vary to some extent about a central 

value and as there are breakdowns, the production rate will be lower than 

in the hypothetical case of a perfectly balanced line and no breakdowns. 

As a consequence the output rate (production rate) measures the efficiency 

of the system with respect to the ideal hypothetical system. A coeffi­

cient of utilization (p) is defined in order to relate the mean output 
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rate and the mean operations rate. 

The cost of a production system has to be primarily considered when 

determining its proper design. First, providing too much efficiency (high 

utilization) by increasing the intermediate inventories would involve ex­

cessive cost. Second, not providing enough inventories would cause a low 

utilization rate of the equipment and a low output rate, aYid consequently 

an excessive cost of low utilization. Therefore, the ultimate goal is to 

achieve an economic balance between the cost of intermediate inventories 

and the cost of low utilization of the system. The underlying objective 

of the present study is to determine the level of intermediate inven­

tories which minimizes the total of the average cost of utilization of 

the system and the cost of intermediate inventories. The conceptual 

solution is shown in Figure 2. 

The objective of this investigation is to develop a systems simu­

lation approach for analyzing and designing production lines with variable 

cycle times and subject to breakdowns. In particular, the effect of the 

number of operations and the amount of internal inventory capacity are 

formulated especially to represent a sequential process production system, 

however the results obtained also have considerable relevance for design­

ing similar systems. 

Many names have been given to material-in-process which is in 

either permanent or temporary storage within the system. In this study 

the material in storage between the various "operations" shall be called 

"intermediate inventory." In addition, the work "operation" shall be 

used to describe "work station." Also, the word "cycle time" shall be 

used to indicate the production time of any operation, and the word "break­

down" to indicate "stoppage or interruption." 
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Figure 2. Conceptual Solution for the Production Sys­tem Design Problem. 
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CHAPTER II 

LITERATURE SURVEY 

Considerable work has been done in the area of sequential process 

systems and in the evaluation of the effectiveness of internal inventories, 

especially using formal mathematical analysis. It is of pertinent im­

portance to discuss only that research which has investigated the eval­

uation of production systems involving a sequential process and espec­

ially the effect of intermediate inventories on the efficiency of produc­

tion systems subject to variable operation times and breakdowns. 

9 

Hunt in a pioneering investigation applied a queueing theory ap­

proach to a problem involving a sequence of operations which must be per­

formed on the units to be serviced. Hunt assumed Poisson arrivals and ex­

ponential service times. Breakdowns were not considered. Blocking is 

allowed and four cases are considered: 

Case 1. Infinite queues are allowed in front of each service 

facility. 

Case 2. No queues are allowed, with the exception that the first 

stage may have an infinite queue. 

Case 3. Finite queues are allowed in front of each stage, with 

the exception that the first stage may have an infinite queue. 

Case 4. No queues and no vacant facilities are allowed, with the 

exception that the first stage may have an infinite queue; the line moves 

all at once, as a unit. 
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HUNT USES THE MAXIMUM P O S S I B L E UTILIZATION IN THE STEADY STATE 

(RATIO OF MEAN ARRIVAL RATE TO MEAN SERVICE TIME) AND THE AVERAGE NUMBER 

OF UNITS IN THE SYSTEM AS AN EVALUATION OF THE SYSTEM. 

IN THE F I R S T CASE NO BLOCKING CAN OCCUR AND THE OUTPUT EQUALS THE 

INPUT IN THE STEADY STATE WHICH REQUIRES THAT THE ARRIVAL RATE I S LESS 

THAN OR EQUAL TO THE MEAN SERVICE RATE. HENCE, ACCORDING TO HUNT, THE 

MAXIMUM P O S S I B L E UTILIZATION IN THIS CASE I S UNITY. 

IN THE INVESTIGATION OF THE SECOND CASE AN EXPRESSION I S DERIVED 

FOR THE MAXIMUM POSSIBLE UTILIZATION FOR TWO AND THREE OPERATIONS IN S E R I E S 

WITH UNEQUAL SERVICE RATES, AS FOLLOWS: 

_ _ MEAN ARRIVAL RATE 
P ~ Y MEAN SERVICE RATE 

I F Y^ = MEAN SERVICE RATE AT THE I — STATION, THEN: 

Y 2 ( Y N + Y 2 ) 
FOR TWO STAGES: p m a x = ^ - — Y 

Y-J + Y - J Y 2 + Y 2 

N 

FOR THREE STAGES: p m a x = ^ 

WHERE, 
4 3 3 2 2 2 

N = Y 2 Y 3 ( Y 2 + U 3 ) ( Y 1 + 2 Y ^ 2 + 3 Y 1 Y 3 "H^V^ + 4 Y L Y 2 Y 3 + 

2 2 2 2 3 2 2 
+ 3 Y 1 Y 3 + Y - | Y 2 Y 3 + ^ Y ^ G + Y L Y 3 + Y 2 + Y 3 Y 2 ^ 

5 2 2 
D = Y - | ( Y 2 + Y 2 Y 3 + Y 3 ) 

+ Y | ( 2 Y 3 + 5 Y 2 Y 3 + 5 Y 2 Y 3 + 3 Y 2 ) 

3 4 3 2 2 2 4 
+ Y - | ( Y 2 + 5 Y 2 Y 3 + 8 Y 2 Y 3 + 7 Y 2 Y 3 + 3 Y 3 J 

2 4 3 2 2 2 4 5 
+ Y - J ( Y 2 U 3 + 5 Y 2 Y 3 + 8 Y 2 Y 3 + 5 Y 2 Y 3 + Y 3 ) 
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4 2 
1 ( y2 y3 + 

p 3 3 , 
5y 2y 3 + 

2 4 
5y 2y 3 

9 3 4 . 2y 2y 3 + 2 5, 
y 2y 3J 

The third case is more realistic and is the one treated in the 

present investigation. The expression for the maximum possible utiliza­

tion in the case of different service rates and for two stations is given 

by 

, q+1 q+|. 

max q+2 q+2 

where (q-lj is the length of the queue allowed in front of the second 

station. 

Hunt points out that the fourth case can be treated in exactly the 

same manner as the previous cases. The problem has been solved completely 

/ for two stages, and a comparison is given with cases I and 2. 

Hunt's investigation does not derive any general expression for 

n stations in series except in the first case and shows the difficulty 

of treating the problem by formal mathematical analysis. 
2 6 

Weber developed a model to describe the effects of varying the 

amount and location of storage space between a group of operations arranged 

in series and subject to breakdowns. The model assumes that service and 

repair times are exponentially distributed and that the time between 

breakdowns follows a Poisson distribution. In spite of the fact that 

Weber develops a procedure for writing the specific expressions for any 

specified number of machines, no general expressions were derived when 

there are three or more machines. It is also worthwhile to note the 
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following statement: 
The rapidly increasing complexity of the expressions as the size 
of the system increases suggests that economical application 
of the results may be limited to fairly simple systems. 
Hutchinson̂  investigated in-process storage units on continuous 

production lines as a method for minimizing what he called "Balance and 
Delay Losses" and the associated production line costs. The evaluation 
of in-process storages is based on the measure of "Lost Time," defined 
as "Balance Loss" plus the expected value of "Delay Loss:" 

First a lost time measure is shown for production lines with no 
in-process storages and then the same measure is developed for production 
lines with intermediate storages by appropriate modifications to the 
measure. 

Hutchinson assumes the cycle times of the various stages as con­
stant and considers the "Balance Loss" as the "lost" time because the 
difference between a cycle time and the maximum cycle time. An expres­
sion for finding the balance loss is given. To find the delay loss, which 
occurs because of stoppages, a Monte Carlo procedure was developed. The 
final expression for the lost time is given and finally converted to an 
economic measure. The expression of the lost time is: 

LT = BL + DL 

max 
n C - J C max l 

n + E(DL) 
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where, 

M w = total working minutes per shift, 

C = cycle time for the "bottle neck" operation in minutes max J r 

per unit; 
t h 

C< = cycle time for the i — operation in minutes per unit, and 

DL = delay loss. 

Hutchinson assumes that the occurrence of downtime on the produc­

tion line is independent of the time interval between occurrence of down­

time. Besides, it is assumed that the number of units in the in-process 

storage at the beginning of each shift is zero. The lost time measure 

is developed for the production line with intermediate storage for only 

two operations with one intermediate storage and the data used to deter­

mine the distribution for working interval, operation down and downtime 

interval are empirical. 

The variation of cycle times, which are considered constant by 

Hutchinson, is in fact a cause of great losses. There are several limi­

tations in the application of this procedure, mainly to the design of pro­

duction lines. 

Barten constructed a simulator to allow the determination of the 

effect of the storage space between sequential operations on the produc­

tion rate. For the cases in which there are 2, 4, 6, and 10 operations 

with intermediate inventories the effect on production rate is given. 

The effect of what Barten calls queue length (number of operations) on 

delay time for queues of 4, 6, and 10 operations is shown. The simulator 

flow chart for the case of two operations is presented. Barten does 

not consider breakdowns and assumes that cycle times are normally dis­

tributed. For the cases considered, a general formula for optimum 
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storage capacity is developed based upon a general delay function inferred 

from the simulator runs. 
g 

Hillier and Boling consider a sequential process system where 

each channel (operation) has an exponential or Erlang service time and a 

finite queue. The queue before the first stage is never empty, which 

means that there is never a shortage of material for the first operation. 

The number of customers in the system and the steady-state mean output 

rate are the measures for which a computationally procedure is described. 

Also for the case of exponential holding times, a procedure which is said 

to be exceptionally efficient by the authors is developed tor approximat­

ing the mean output rate. The authors demonstrate that this procedure 

provides a good approximation for most cases and that it is computationally 

feasible for large problems, respected the assumptions made. Numerical 

results are also presented. 

In spite of the fact that numerous problems dealing with produc­

tion systems, especially those involving a sequential process, have been 

considered in the literature, none of the procedures permit a study of 

production systems involving a sequence of operations considering both 

the variation of cycle times and breakdowns for the general case of any 

number of operations and without constraining the system to particular 

probability distributions. 

The simulation approach developed here makes no restrictions with 

regard to probability distributions and allows for the occurrence of 

breakdowns. 
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CHAPTER III 

MODEL FORMULATION 

The model used to represent a sequential process production system 

was selected to depict the case in which operations are subject to varia­

tion of cycle times and breakdowns. There is no attempt to develop a 

model yielding universal and general results but rather to point out an 

approach in analyzing and designing a sequential process system. The 

model is designed to indicate the relative effect of intermediate inven­

tories between operations on the performance of the production system sub­

ject to variable cycle times and breakdowns occurring in each operation. 

The series arrangement of operations as shown in Figure 3 and 

consists of a sequence of a number of operation facilities such that an 

item must go through one facility after another in a particular sequence 

before the final product is obtained. 

The system under consideration may well be a sub-system of a larger 

system. For purposes of analysis it is sometimes convenient to subdivide 

large systems into subsystems. 

In a production system involving a series arrangement of operations, 

the transfer of items from one operation to the next one may be done in 

one of the following two ways: 

(1) There is no allowance for intermediate storages in which 

each operation is completely dependent on every other one. 

(2) The item is disposed in a storage between the operations. In 



N. 1 2 

1 
l 

INPUT 
1 ? 2 1 1 n-1 N n n-1 n 

OUTPUT 

Figure 3 . Series Arrangement of Operation Facilities. 
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fact, the first case may be considered as a particular case of the present 

one, in which the storage between operations has zero dimension. It can 

also be stated that the space provided for storages between operations 

ranges from zero to infinity. Infinite storage is the ideal from the 

point of view of time. However, it is impossible in reality and hence 

of little interest. In this case, every operation would operate indepen­

dently of every other one. The output rate of such a system would be in­

dependent of cycle time variations and the total number of operations, 

and it would be determined by the cycle time of the last operation. 

The case of finite storage capacity is more realistic. In general, 

production layouts allow at least some storage. There is, however, a 

question of how inventory investment should be balanced between these 

various intermediate inventories. The number of items in storage is a 

function of variables affecting the rate with which material is put into 

and taken out of the intermediate area. However, the rate with which 

material is put into the storage and taken out, is a function of many 

other variables representing an extremely complex system. 

The upper limit of an intermediate inventory is any number c, de­

pendent on physical and economical constraints. The model here developed 

considers all cases, i.e., all storage status from zero to c. 

Figure 4 illustrates a sequential process with n operations and 

(n-1)) intermediate storages. The analysis and design of such a system 

requires the development of a model in order to point out how the time-

based variables affect the problem and their interdependences. The sys­

tem is dynamic in nature and involves continuous changes. 

The ideal system should provide a smooth output without interrup-



Figure 4. Sequential Process System with n Operations and (n-1) Intermediate 
Storages. 
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tions. It is important to note again that a discontinuity may happen 

in the flow of items through the system because of cycle time variations 

and breakdowns. The production efficiency and as well the production 

cost are dependent upon the rate of flow of items through the process. 

This rate of flow may be altered by using intermediate inventories, which, 

on the other hand, means an increase in the cost of facilities and in la­

bor to provide additional items. 

In the system shown in Figure 4, any operation 0. which has just 
j 

completed an item(i-l) may face two situations: 

(1) Storage S, is full (or the storage capacity is zero) and 

the operation 0 J +i is working on an item. In this case, there is no place 

to dispose the item (i-1) finished by operation 0. and a delay will occur 
J 

because this operation cannot undertake more work until the path is cleared. 

This condition shall be called "blocking" and is one reason for delay. 

(2) In the case that there is no restriction in storage S , and 
J 0 is ready to begin to work on the next item i, it may happen that stor-j 

age S - , is empty and so operation 0^ must wait until operation 0. •. 

places an item into storage S, •>. However, it may happen that operation 

vJ ' 
0, -j is waiting for an item to be produced by operation 0 _ 2 because 

storage S^_ 2 is empty. This condition may continue up to operation 0-j, 

which never has to wait because unlimited storage of raw material (input) 

is available. 

The question turns out to be how long the operation 0 . will be 
J 

delayed. This delay will depend exactly on the previous and on the next 

storage status. 
It may still happen that operation 0-, or any other operation, is 
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down because of a breakdown. This fact, if it happens on operation 0. 

will also delay the production of an item until facility j is repaired. 

If the breakdown is occurring in another operation, the delay may be 

transferred to operation 0j some time later either because storage 

will be full or storage S. -, will be empty. 
J ' 

In the system described in this study there are n operations and 

(n-1) intermediate storages. It is assumed that: 

( 1 ) The space provided for intermediate inventories between op­

erations is a finite one. 

( 2 ) The number of items available for the first operation 0-| is 

unlimited. Hence no runouts will happen in this initial supply. This 

assumption is consistent with the real production system. 

(3) The space provided after the last operation 0 n is such that 

it will never be full. Hence the last operation will never be blocked. 

(4) There is no inspection in the line so that items cannot leave 

the system except at the terminal point. Thus only a final inspection 
is allowed. 

(5) The production system is balanced. 

A consequence of the above assumptions is that all sequential op­

erations from O 2 to 0 n could be delayed because of material shortages. 

In addition, all operations from 0-| to 0-j could be delayed because the 

storage following the operation is full preventing the depositing of a 

completed item. 

Measure of Effectiveness 

Estimating the efficiency of a production system is necessary in 
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planning a new system or in order to obtain an objective judgement of the 

capacity of the equipment available. The overall objective is to minimize 

the production cost by means of an economic balance between the cost of 

intermediate inventories and the cost of the utilization of the system. 

The purpose of this study is to show how to determine the level of inter­

mediate inventories which minimizes the total average cost of maintaining 

intermediate inventories and the average cost of delays which cause a 

lower output rate. The coefficient of utilization (p) shall be defined 

as: 

p = — , where 
y 

A = mean output rate, and 

y = mean operation rate. 

The Mathematical Model 

A mathematical model shall point out the behavior of the time-

based variables and their relationships as well as their effect on the 

system. The following notation shall be followed: 

8. . = total cycle time taken by operation 0- to make item i; it 
J»' J 

includes the time to receive item i from storage S j _ ^ , 

position, work on, eject the item and transport it to 

storage S j . 

R. • = the independent operation time of operation 0. on item i. J»i J 

W- • = the delay time spent by operation 0. waiting for item it 
J»' J 

to work upon. 

F. - = the delay time spent by operation .0. waiting for a space 
J»' J 

at storage S- to deposit the finished item i. 
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B- J = the delay time spent by operation 0- because of a breakdown during the time it was working on or waiting for item i. This time corresponds to the setting time, which is a chance variable characteristic of each stage. The total cycle time of any operation 0- on item i shall be, thus: 
j 

9. . = R . . + W. . + F . . + B . . J,i J,i J»i J,i CM 
where W, B, and F represent delays. It is possible to state that: 

9j,i= f(Rj,i'delays)-
The analysis shows that R. . is in fact independent of any other 

J»i 
operation and is a characteristic of operation 0- itself. W- . is the 

J J»i 
delay occurred because when operation 0- finished item (i-1) it had to 

J 

wait for the completion of item i by operation 0. -.. This delay is de-
J ' pendent on all production rates and delays occurred in operations 0-j through CK_.|. B. . is also an independent variable, characteristic of each stage J»i and is another factor of importance in determining the efficiency of a sequential process. Setting times are taken here to represent breakdowns, which follow a probability distribution. The measure of effectiveness (p) requires the knowledge of the output rate. To compute the output rate it is necessary to know the total cycle time of the last operation for all items i, i.e., e . for n, i i=l, ,m. It shall be assumed here that: 
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where Y. . is the sum of two independet variables and the delay time spent when operation 0. cannot undertake another item because it cannot 

vJ 
deposit finished item i in storage Sy Hence, e. . = Y . . + w. • (i) j,i j,i j,i v y 

where W. . is a dependent variable. 
The output rate of the operation 0. •., i.e., the number of items 

vJ ' 
delivered by operation 0. during the period of time t is determined by the independent rate Rj_-|» Bj_-j which is also an independent variable, by and Ŵ. The larger the value of j (i.e.9 the number of operations pre­ceding operation 0-)» tne greater the probability of delays occurring at operation 0-. The larger the capacities of the intermediate inven-tories between operations the smaller the probability of occurring delays Consequently, the output rate of the system: m 

I

 6n i i=l nsl is a function of the following variables: (1) Independent production rates of the various operations. (2) Breakdowns occurring at the various operations. (3) Number of operations. (4) Capacities of the intermediate inventories in the system 
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The mean output time can be computed as follows: 
m m m 
A . Vi , A Wn,1 

m m m 
The value of w"n ̂  can be said to be solely dependent upon the state of input storage S -| being empty or not. Thus consideration must be given to the factors that determine the state of any particular intermed­iate inventory in the system. The state of any intermediate inventory Sj is determined by the rate with which items are put into the storage by the, oepration 0. and the rate with which they are removed by operation 

j 
°j.r Hence, 

Wn,i = 0n-l,i " Yn,i-1 
where W . is the delay time spent by the last operation for an item i 

2 upon which to work. This expression is considered by Barten with the difference that he does not include breakdowns in the value of Y. However, w"n ̂  may assume a real value only if the storage Sn_-| preceding operation 0n is void at the time when operation 0p is ready to begin work on item i. Thus, 
Vi - <9n-l,-1 " Vi-1} p ( V n - l } ( 1 ) 

where p(V̂-j) is the state probability of an intermediate inventory, and should represent the probability that at the time when operation 0n is ready to begin to work on item i, the last storage S -| is void. 
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The relationship between the storage state probabilities and the independent production rates and setting times can be seen by developing the expression p(-j): 
ri-1 

where p(V1 ,) = p(6 , • > Y . ,) p(V1"T) p(vil]) = P(en.lji.1 >Yn>1.2) p(v̂) 
Repeating the multiplication for all items i produced, it is obtained: 

p ( V n - l J = ^ p ( 9n-l,i-k +l > Yn,i-k> 

Substituting: 
n-l,i n-l,i n-l,i 

into equation (1) it is obtained: 
n,i (Vl,i + Wn-l,1> - Yn,i-1 

P(Vn.-,) (la) 

where, W n-l,i = (en-2,i " Vl,i-1> P(Vn-2) 
substituting the above result into equation (la), it is obtained: 

r n,i V l , i + (V2,i-Vl,i-l)P(C2»-Yn,i-l P<Vn-l> <e> 
where, 
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'n 9 •? = Yn 9 -I + Wn 9 i 
n-̂ .i n-£si n-£,i 

n,i 

and substituting the above result into equation (2), it is obtained: 

Yn-l, i +< Yn-2, i + Wn-2,rVl,i-l> P(Vn-2»-Yn,i-l) P<Vn-l> <2a> 

Repeating this substitution for all n operations in the system: 

' n . r f V l . r V i - l ' P<Vn-l>+<Yn-2,rYn-l,i-l> P<C2) ? ^ ) * - - * 

+ ( Y l , r Y2 , i - l ) P(Vl)-"P(Vn-l) 

or 

'n,1 = X (Yn-j,i " Vj +l,1-l) ^ P<Vi-k> <"> 

where it is shown that the delay time spent by the last operation waiting 
for an item i is dependent on: 

(1) The independent production rates. 
(2) The independent setting times. 
(3) The number of operations. 
(4) The state of the intermediate capacities. 
The expression (II) points out that the main problem is to deter­

mine the probabilistic terms. The present status of queueing theory does 
not permit the general solution for this problem. 

The probability that an intermediate inventory with capacity c is 
full, is implicit in the value of Y because it includes the delay time 
spent due to the blocking effect. 
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All values W •, for i=l, ,m should be computed in order to 
n j i 

obtain the mean output rate A. 
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CHAPTER IV 

THE SIMULATION 

The decision-maker determines the policies to guide the design of 

the system in order to transform a set of inputs into a set os outputs 

which have economic value. 

Rather than trying to solve analytically the model developed in 

the previous chapter, a simulation approach shall be used to analyze and 

design the system. The simulation study can be applied not only to the 

design of a new system but also in the cases in which a change must be 

made in the structure of an existing system or an evaluation is needed 

of a system already working. 

The important properties of the system shall be determined and 

analyzed so that it is possible to experiment with alternative policies. 

The behavior of the system shall be described according to the mathe­

matical model developed previously, so that the attributes of the vari­

ous components of the system and their relationships can be represented 

by a simulated model. 

The simulation procedure willpermit the consideration of changes 

in the state of the system through simulated time and under rules of op­

eration. These rules may vary so that alternative policies can be con­

sidered without experimenting with the physical system or solving the 

mathematical model by pure mathematical tools. The procedure to be fol­

lowed in analyzing and designing the production system shall follow the 
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flow chart shown in Figure 5. 
The number of samples to be observed and the amount of computa­

tions to be used in the simulation of a system which involves two or more 

operations and the number of trials necessary suggest that a computer 

model shall be used. 

The expression: 

V i = V i + V i ( I ) 

shows that the mean output time and hence the output rate (A) is dependent 

on the independent production times, setting times and delay times spent 

by the last operation in waiting for an item to work on. It is assumed 

that unlimited space is provided after the last operation so that no 

"blocking11 will occur with relation to this operation. 

Hence, in order to measure the output rate (A), the simulator must: 

(1) Determine the independent production time spent by the last 

operation on each item i, i=l,....,m. 

(2) Determine the time spent by the last operation with setting 

times because of breakdowns. 

(3) Determine the waiting times. 

The waiting time is a dependent variable whose behavior is ex­

plained by equation (II): 

Analysis of System Properties 

n-1 
n-j ,i - Y n-j+1,i-l (II) 
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Figure 5. General Procedure of the Simulation Approach 
to the Analysis and Design of the Production 
System. 
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The waiting time of the last operation is dependent on the pre­

vious operations and the capacities of the intermediate inventories. 

Thus, in order to compute W ., the simulator must accomplish the 
n, i 

following steps: 

(1) Determine all previous production times and setting times of 

all operations, including the waiting time caused by blocking. 

(2) Determine the state probabilities of the intermediate inven­

tories, i.e., determine the current status of all intermediate inventories. 

This means the determination of the amount of items in each intermediate 

storage after each item is produced by operation 0̂  or operation 0^ 

begins to work on one. 

(3) Compute the delay time for all operations 0. located between 

j 
the last storage and the first non void storage with relation to item i. 

The delay W . on last operation is influenced by any delay on item i 

in each operation which is succeeding the first non void storage counting 

from the last storage at the time when the last operation is ready to 

work on item i. In order to determine W . it is necessary thus to de-

n, i 
termine the first non-void storage counting from the last one S- | . 

All variables must have their status reproduced by the simulator. 

An analysis of the variables on which the system is dependent shows that: 

(1) The number of operations for a specific design is constant. 

(2) The capacity of intermediate inventories is a fixed variable 

for each design. It is the variable which will differentiate the dif­

ferent designs of the system in the present case. The different policies 
adopted by the analyst shall be concerned with the dimension of the in­ternal storages. 
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(3) The production time of operation 0. on item i, i.e., R. . is 

a random variable which varies both with j and i. The nature of this 

variation, however, has to be analyzed so that the simulator can repro­

duce its behavior. The simulator described here shall be able to handle 

any kind of probability distribution. 

(4) The setting time which is characteristic of each stage is also 

a random variable. It is a factor of importance in the determination of 

the efficiency of the sequential process system. Setting times are taken 

here to represent breakdowns. The simulation model developed in this 

study makes also no restriction with respect to the kind of probability 

distribution followed either by the interval time between consecutive 

breakdowns or the setting times. 

The consequence of variation in production times even if the mean 

/ value of the production times is equal (R. . does not vary with j ) , is 

that there may be time spent by the various operations waiting for an 

item to work on. The existence of intermediate inventories is supposed 

to minimize the lost time because of delays of this kind. The increase 

in the storage capacities means a decrease in the probability that the 

state of any storage at any time is of emptiness. 

It is apparent that a simulation of the system behavior requires 

the determination of the following probability distributions: 

(1) Probability distribution of the production times for all 

operations. 

(2) Probability distribution of the setting times for all 

operations. 

(3) Probability distribution of the interval time between sue-
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cessive breakdowns for all operations. 

The Simulator 

It has already been shown that there is an overlapping between 

queueing systems and sequential process production systems. A queueing 

process consists of the following basic elements: the input source, 

queue, service facilities, and service discipline. The main characteris­

tic of a queueing system is that there are units (generally called cus­

tomers) requiring service and that they must wait for service or the 

operations (service facilities) stand idle and wait for units (customers). 

The input source of the production system under consideration is 

infinite and the arrival time distribution is governed by the first op­

eration. A new unit enters the system instantaneously when the first 

operation comes free. The units stay in the system until finished ("pa­

tient" customers), because an inspection at the end of the production 

line is considered. 

The queue refers to the units in a storage waiting for service. 

The queue is in this case finite because the capacities of the various 

storages are limited. When no intermediate inventories are allowed at 

all the permissible queue is of zero length. 

The service facilities, commonly known as service channels, are 

disposed in a series arrangement. Hence a unit that comes in the system 

must go through one operation after another in a particular sequence be­

fore it is finished. The production time service has already been dis­

cussed and it has been shown to follow a probabilistic distribution. 

The General Purpose Systems Simulator (GPSS-II) is a computer 
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programming language designed specifically for modeling queueing systems. 

The system simulated has its structure described by the use of block dia­

grams in which a unique symbol system is used. The basic units, in the 

present case the items, have their movement through the system simulated. 

The General Purpose Systems Simulator uses a variable time incremental 

method by which computer running time is saved when the simulation is 

static for long period of clock time. 

Figure 6 shows a general computer block diagram for the case of 

two operations and one intermediate storage in order show the behavior 

of the system. This block diagram assumes the availability of computer 

subroutines for generating stochastic variates having known probability 

distributions. The simulation for the case of two operations is very 

simple. However, the complexity of this flow diagram increases with the 

number of operations. 

The steps followed by this flow diagram are the following: 
(1) All required informations about the number of operations, 

capacities of intermediate storages and probability distributions are 
read. 

(2) By comparing the accumulated times for operations 0-j and 0 2 , 

respectively T-j and T2, the lowest accumulated time is determined which 

will represent the event just occurred, i.e., if an item has been fin­

ished at 0-| or 0 2 or both. 

(3) For the operation which just finihsed an item, a new operation 

time and setting time (in the case breakdown occurs) are determined and 

added to the time T., which corresponds to the accumulated time for the 

j 
given operation. It may occur that the accumulated time for both op-
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Figure 6. A Simulator Flow Chart for the Case of n=2 
Operations (concluded). 
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erations are equal because of delays or chance. 

(4) By comparing the new values T-j and T2 the operation finishing 

first is determined (next event). 

(5) In the case operation O-j will finish first the status of the 

storage is examined to verify if it is full or not. If the storage is not 

full the operation can proceed with no delay and the status of the storage 

is adjusted. If the storage is full then a delay will occur and it is com­

puted by taking the difference between the accumulated times, in which 

the storage state probabilities are implicit. 

(6) In the case operation 0 2 finishes first, the storage is ex­

amined. If it is not void, operation 0 2 proceeds normally and the status 

of the storage is adjusted. If the storage is void a delay will occur, 

in which case it is computed. 

The structure of the system for n operations employing the Gen­

eral Purpose Systems Simulator block types does not require any change 

for different values of n, except for the parameters values and functions 

coordinates. 

The General Purpose Systems Simulator block diagram is presented 

in a logical way so that its clarity is not affected. A more sophis­

ticated block diagram could be developed. However, that is not the pur­

pose of this investigation. 

It is possible to divide the simulator in three sections: 

(1) The section consisting of the simulation of the operations 

and the flow of items through the sequence of operations, which is pre­

sented in Figure 7. 

(2) The section representing the simulation of breakdowns in each 
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gure 7. A GENERAL PURPOSE SYSTEMS SIMULATOR Flow Chart for a 
Simulation Model of a Sequential Process Production 
System of n Operations Subject to Breakdowns. (It is 
assumed that initial conditions are satisfied). 
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operation. 

(3) The section representing the simulation of the initial con­

ditions. 

The service on an item (transaction) commences instantaneously 

when a unit arrives at an empty operation; and units are transferred from 

one operation to the next storage or operation after the completion of 

the service unless it is delayed because there is no space where to de­

posit the finished unit. 

The simulation of the breakdowns is accomplished by the creation 

of transactions, which interrupt the normal operation. The time between 

the generation of consecutive transactions to represent the breakdowns 

follows a probability distribution. The time a transaction stays in 

an INTERRUPT block also follows a probability distribution. 

The simulator used to obtain the solution of the sequential process 

production system with limited intermediate inventory operates in the fol­

lowing manner: 

(1) The items generator is the common origin for all items to be 

processed through the n operations, except of those items which are placed 

at the intermediate inventories during an extra-time. A transaction 

(item) is nerated by a GENERATE block and enters the process instan­

taneously as the first operation 0-j becomes free. 

(2) When the item enters the different operations, i.e., in a 

HOLD block, then a time for each of them is selected from the given pro­

bability distribution. 

(3) These times are added to the current sum of all previous op­

eration times, which is based in the variable time increment method. 
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(4) The event occurring first is determined, i.e., the operation 

which will finish an item first is"determined. 

(5) If the storage S., succeeding operation 0. which just fin-

j J 

ished to work on item i is full or if the storage Sj_-j preceeding the op­

eration is empty, then a delay will occur. This delay is computed by the 

program and the operation 0- will proceed as soon as an item is removed 
from storage S., in the case it was full or as soon as an item is put in j 
the storage S. •,, in the case it was empty. 

(6) The status of each intermediate inventory is controlled 

through the STORAGE block by a counter keeping the storage contents. 

(7) Every time an item is finished by the last operation 0 n it 

is eliminated through the TERMINATE block and a record of the number of 

items finished is kept by the program. 

(8) The simulation of breakdowns is accomplished by a generator 

of breakdowns (transactions). The transactions generated which repre­

sent the breakdowns enter an INTERRUPT block, interrupting the operation 

for a period of time also generated according to the probability distri­

bution followed by the setting times. 

(9) Before the production system starts to work all storages are 

filled up, which is also accomplished by the generation of transactions 

representing the extra-items. 

(10) The process continues until the total time for which the sys­

tem should work is over or until the finished items counter contains a 

quantity equal to the number of items to be produced (sample size). 
An example of the computer program is presented in the Appendix. 

The simulation experiments were completed on an Univac-1108. 
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The mean cycle time of the last operation is computed by dividing 

the clock time by the number of finished items. Several runs were per­

formed for a particular and hypothetical production system varying both 

the number of operations and the intermediate storage capacities. The 

analysis of the systems behavior is the subject of the following chapter 
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CHAPTER V 

ANALYSIS OF THE RESULTS 

The operations downtime caused by the delays and breakdowns and 

on the other hand the maintenance of intermediate inventories between 

operations can be reduced to cost as a common denominator. The cost of 

a design improvement must be compared with the value of the improvement. 

The system simulation allows an evaluation of the improvement 

whose cost must be compared with its value. In the production system 

under consideration the objective is to achieve an economic equilibrium 

between the cost of increasing intermediate inventories, changing the 

number of operations, diminishing the variation of cycle times or the fre­

quency of breakdowns and the cost of the system utilization. 

The simulation contributes with the information that is required 

for determining the behavior of the cost as a function of the coefficient 

of utilization. 

There are many studies related to the behavior of the chance vari­

ables present in the system. The computer model developed is not restrict­

ed to particular probability distribution. However, in the system simu­

lated for the purpose of this study it is assumed that the production 

times of all operations are exponentially distributed and have the same 

mean value (u = 100' units of time). It has been found that the probabil­

ity distribution followed by both, the interval time between breakdowns 

and setting times, is often of the exponential form. Hence these dis-
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tributions are also considered as of the exponential form (mean value of 

setting times = 200 units of time; mean value of interval time betweerl 

breakdowns = 100,000 units of time). 

The experimental design is based on the gradual increase of the 

number of operations in the system; in this way 2, 4, 6, 10 and 20 op­

erations in sequence were considered. For each case the capacity of in­

termediate inventories varies from zero to 15 units. 

In this study the emphasis has been to present a possible approach 

to the analysis and design of sequential process production systems rather 

than a specific solution to such a problem. For the same reason no ser-

4 
ious attempt was made in what Conway calls strategic and tactical plann­

ing in simulation; the main emphasis is on the approach. 

Analysis of the Effect of Intermediate Inventories 

To illustrate the results obtained, the summary of the values of 

the coefficient of utilization (p) for the hypothetical system is pre­

sented in Table 1. Each value of p corresponds to one simulation run. 

It should be recalled that the simulated system has the following charac­

teristics: 

(1) Production time for all operations has exponential distribu­

tion. 

(2) Setting time for al1 operations has exponential distribution. 

(3) Interval time between breakdowns for all operations has ex­

ponential distribution. 

Since graphs illustrate functional behavior more vividly than ta­

bles, the coefficient of utilization as a function of the intermediate 
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Table 1. Simulated Results for the Coefficient of Utilization ( p ) . 

c/n 2 4 6 10 20 

0 0=67 0.50 0.46 0.42 0.39 

1 0.76 0,62 0.58 0.54 0.53 

2 0.81 0.69 0.64 0.62 0.61 

3 0.85 0.74 0.71 0.67 0.66 

4 0.86 0.77 0.76 0.72 0.71 

6 0.88 0.82 0.81 0.79 0.77 

15 0,95 0.92 0.91 0.90 0.89 
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inventories capacities is plotted in Figure 8 for the various number of 

operations. 

The graphs show that the dependent function increases with the 

capacity of intermediate inventories and tends to the limit of one. 

It is worthwhile to notice that the function is discrete; however, 

as a matter of convenience it can be considered continuous as shown in 

Figure 9. 
It is difficult to justify a generalization from the results ob­

tained from this simulation study. For the particular system, however 

the behavior of the coefficient of utilization (p\) as function of the 

capacity of storages can be seen. The result of primary interest is that 

p increases with c. On the other hand, p will have its value remaining 

almost unchanged after a certain value of c, and approaching the limit 

of one as c increases. 

It is also noticeable that the curves of p as a function of c are 

different for the various number of operations. 

The role of the simulation in this problem is to furnish data as 

to the variation of the coefficient of utilization for different inter­

mediate inventory capacities. Given these data and the cost of system 

idleness, and of the maintenance of storages, the total cost per unit of 

output can be determined for each assignment and the minimum found. There 

is much that can be done in this respect with a formula that shows the 

variation of p as a function of c. Considering: 

C-j = cost of utilization of the system per unit, 

C2 = cost of intermediate inventories per unit, and 

CT = total cost per unit, 



Figure 8. Coefficient of Utilization (p) for Various Number of Operations at 
Various Intermediate Inventory Capacities. (Discrete Function). 

^4 



Figure 9. Coefficient of Utilization (p) for Various Number of Operations at 
Various Intermediate Inventory Capacities. (Continuous Function). 

oo 
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hence 

cT = c1 + c2 
It can be noticed that C-| is a function of p. However, p is a 

function of c. Hence both, C-| and Ĉ * can be expressed in terms of c, 

allowing the determination of c for which Cj is minimum. 

It should be observed that c can only assume integer values. 

The principal difficulty is that it is often impossible to attach 

a specific dollar figure to the cost factors. This does not invalidate 

such a study because at least an approximate behavior pattern can be 

found and thus be very helpful to the analysis and design of the system. 

The Number of Operations and the Coefficient of Utilization 

The simulation was performed on sequences of 2, 4, 6, 10 and 20 

operations. It can be seen that p decreases with the number of opera­

tions n if the capacity is held the same. This is to be concluded from 

Equation II. The delay on the last operation is a function of the state 

probabilities of the last storage, which turns to be a function of the 

rate with which items are put in and taken out. However, the operation 

0n_i is dependent on storage Sn_2 and so on. It can be seen that by in­

creasing the number of operations the probability that the last storage 

is empty increases in frequency. 

This difference decreases with the capacity of the intermediate 

storages because it diminishes the probability that a storage is void. 

In fact, as the storage capacity increases it can store a greater quan­

tity so that any operation can use the items stored in the preceeding 

storage. 
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The capacity required to nullify the effect of the number of oper­

ations is in the neighborhood of 15 units and varies with the range of 

the operation times. 

If the system were not balanced the effect of the intermediate 

storages would be different and probably the capacity required to produce 

the same effect would also be different. 

The variation of p with the number of operations is shown in Fig­

ure 10. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

It was the purpose of this study to develop a simulation approach 

to the analysis and design of sequential process production systems for 

the general case when any number of operations are arranged in series 

and subject to variation in the independent production times and to 

breakdowns. The simulation permits the measure of the coefficient of 

utilization in order to evaluate the performance of a particular system 

and the effect of intermediate inventories on this performance. 

A mathematical model was formulated in order to analyze the be­

havior of the system. In addition, a computer model, using the General 

Purpose Systems Simulator (GPSS-II) was developed in order to simulate 

the system. An analysis of the results was presented to point out the 

effect of intermediate inventories and the number of operations on the 

system performance. A procedure for analyzing the effect of costs related 

to the intermediate inventories on the design of the system was developed. 

The following conclusions can be derived from this study: 

(1) The simulation approach presented is not restricted to sys­

tem of machines in the strict sense; it may be applied to any system in 

which operations are arranged in series or a combination of series. There 

is no restriction with respect to the probability distribution of opera­

tion times, setting times or the probability distribution of the time 
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interval between breakdowns occurring in each operation. The breakdowns 

may be interpreted as any type of interruption and the setting times sim­

ply mean the times taken to restore operation. 

(2) All the computer runs performed for the purpose of this study 

took less than 3 minutes. 

(3) Features which limit the application of the method developed 

include the availability of an electronic computer suitable for the Gen­

eral Purpose Systems Simulator. Two other features which limit the use­

fulness of this approach are the knowledge of the various probability 

distributions and the costs involved. However, these are not serious 

limitations since the analyst may be more interested in the behavior 

of the system than in determining specific values. 

(4) There are natural difficulties in this approach which are in-
4 

herent to the technique of simulation as pointed out by Conway and Gins-

berg . The principal problem in the analysis of results obtained from 

a simulation of the system is in estimating how precise the results are 

and how to make them more precise. The observations taken during a simu­

lation are usually an autocorrelate, stochastic time series, which com­

plicates the determination of the variability of results. There are 

several alternative methods in avoiding the autocorrelation and some au­

thors consider a number of tactical questions that arise in the execu­

tion of simulated experiments on a digital computer. 

Recommendations 

(1) Additional research is needed for the development of univer­

sal expressions which may correlate the various factors affecting the co-
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efficient of utilization. 

(2) Additional simulation studies may result in the determination 

of general rules which may be applicable to all systems involving sequen­

tial processes. 

(3) Further investigations with respect to the probability dis­

tributions involved in this kind of study should add considerably to the 

value of the approach. 

(4) It is also recommended that an exact solution for the evalu­

ation of the effect of intermediate inventories be developed because it 

would make possible a determination of the accuracy of the simulation 

approach. 

4 
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APPENDIX 

An example of the General Purpose Systems Simulator (GPSS-II) 

program for n=6 and c = 4. 



JOB FLOW * * *• * * SIMULATION OF A SEQUENTIAL; PROCESS PRODUCTION SYSTEM * * NUMBER OF OPERATIONS N»6 * * CAPACITY OF INTERMEDIATE INVENTORIES C*4 w FUNCTION TO DETERMINE CYCLE TInES# SETTING TIMES AND TIME INTERVAL BETWEEN BREAKDOWNS* RANDOM MODE w 
I 

FUNCTION RN1 C2A 0*0 0 .1 «1Q4 ,2 •222 ,3 .355 .4 .509 • 5 .69 .6 •915 .7 1.2 .75 1.38 .8 1*6 .84 1.83 #88 2.12 • 9 2.3 .92 2.52 ,94 2.81 .95 2.99 .96 3.2 •97 3.5 • 98 
^ . 

3.9 .99 4,6 ,995 5.3 .998 6.2 .999 7.0 •9997 8,0 W 
* -

FUNCTIONS TO DETERMINE THE INITIAL CONDITIONS w 
2 

FUNCTION N660 C2 0 1 5 6 3 FUNCTION N610 05 3 2 7 3 11 4 15, 5 19 6 * FUNCTION TO DETERMINE THE PATH AFTER BLOCK 60 w 
4 

FUNCTION PI 02 1 * * • 90 99999970 



* 
* 
if 

SIMULATION OF THE FLOW OF ITEMS THROUGH THE SYSTEM 
10 GENERATE 21 1000 20 I 0 
20 GATE NU6 30 30 ASSIGN 1 K6 40 40 ASSIGN 2 KlOO 50 50 ASSIGN 3 VI 60 60 HOLD *1 FN 4 *2 FNl 70 STORE *l -80 0 0 80 GATE NU*3 90 90 LOOP 1 40 100 100 TABULATE I 110 1X0 

* 
TERMINATE R 

* SIMULATION OF BREAKDOWNS 
310 GENERATE 21 BOTH 312 500 100000FN1 
312 COMPARE N310 G Ki 315 315 INTERRUPT 1 500 200 FNl 
320 GENERATE 21 BOTH 322 500 100000FN1 
322 COMPARE N320 G Kl 325 325 INTERRUPT 2 500 200 FNl 

W 
330 

GENERATE 21 BOTH 332 500 100000FN1 
332 COMPARE N330 G Kl 335 335 INTERRUPT 3 500 200 FNl 
340 GENERATE 21 BOTH 342 500 100000FN1 
342 COMPARE N340 G Kl 345 345 INTERRUPT 4 500 200 FNl 
350 GENERATE 21 BOTH 352 500 100000FN1 
352 COMPARE N350 G Kl 355 



355 INTERRUPT 5 500 200 FNl 
360 
362 
365 

GENERATE 
COMPARE 
INTERRUPT 

21 
N360 
6 

G Ki 
BOTH 362 

365 
500 

500 100000FN1 
200 FNl 

500 
510 

TABULATE 
TERMINATE 

2 510 

SIMULATION OP THE INITIAL CONDITIONS 
600 
610 
620 

ORIGINATE 
ASSIGN 
ASSIGN 

1 
3 

20 
FN3 
VI 

610 
620 
70 

1 0 

650 
660 
670 
680 
690 

ORIGINATE 
ASSIGN 
ASSIGN 
INTERRUPT 
TERMINATE 

1 
4 
*1 

6 
FN2 
V2 

660 
670 
680 
690 

I 0 

*4 0 

1 
2 

TABLES 
TABLE 
TABLE 

Ml 
Ml 

0 50 
0 20 

100 
100 

1 
2 

VARIABLES 
VARIABLE 
VARIABLE 

P1*K1 
K21-C1 

2 
3 

CAPACITIES 
CAPACITY 
CAPACITY 

4 
4 



4 CAPACITY 4 
5 CAPACITY 4 
6 CAPACITY 4 

* 
* CONTROL OF THE SAMPLE SIZE 

START 1000 
END 

cn 
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