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SUMMARY 

This research has been aimed at determining the effect of 

"preview," or anticipation, on human control behavior in a pursuit 

tracking task. The methodology used was that of man-machine control 

systems and basic statistical regression theory. 

First, the characteristics of the human controller in pursuit 

tracking have been formulated using control systems theory. Then, 

the human controller element has been identified in the time domain 

based partly on linear statistical regression theory. 

The data base for the study was developed from laboratory 

experiments utilizing an analog computer and various pieces of 

peripheral equipment. Two students served as subjects. 

Based on the experimental results obtained from the investi­

gation, it was first demonstrated that preview in tracking tasks has 

a significant effect on the mean square error for different experi­

mental conditions. Second, the least squares estimates were obtained 

for the impulse response sequences of the human controller. The 

power spectrum for the residual errors in the linear regression 

models has been calculated and Bode diagrams were obtained. Such 

frequency response data for the human controller element did not 

indicate any clear specific pattern for estimating the transfer 

function of the human controller. 

The remnant power spectral density has been estimated and a 

linearity coefficient has been defined and calculated for different 
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frequencies. It seemed from these results that time variant and 

nonlinear characteristics of the human controller are quite signifi­

cant for both subjects used in this study. 
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CHAPTER I 

INTRODUCTION 

Manual control systems are an important and interesting class 

of control systems—important because they are in such common use and 

interesting because they have properties that are highly desirable. 

Of particular interest is the human controller's ability to modify 

his activities to respond appropriately to numerous different possible 

control situations, an ability the effect of which is to make the 

human a distinct and true component of the overall.system. 

Most of the research that has been conducted to study the be­

havior of the human controller has taken the form of tracking study, 

a technique which essentially attempts to describe the relations 

which exist between measures of tracking behavior and task variables, 

and to assess the effect of task variables on performance. Adams [1] 

defines a one-dimensional tracking task as follows: 

An externally driven input signal defines an index of desired 
performance and the operator actuates the control system to 
maintain alignment of the output signal of the control system 
with the input signal. The discrepancy between the two sys­
tems is the error and the operator responds to null the error 
(p. 168). 

There are two types of tracking tasks: pursuit tracking and 

compensatory tracking. The two types are differentiated principally 

by the way in which the tracking information is presented. In pur­

suit tracking, the input signal and the output signal of the control 

system are displayed to the operator separately, and the operator is 
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required to try to match the two signals in order to reduce the error 

between them. In compensatory tracking, however, the error between 

the input and the output of the control system is displayed to the 

operator; the operator does not see the input or the output separately 

and his task is to minimize this error. Figures 1 and 2 show the 

difference between pursuit and compensatory control systems. 

"Preview span" is defined as the distance ahead of time that 

the human controller is able to "see" and respond to the input. Thus, 

at some time t the controller is provided with the input for all 

points in the interval [t, t + T^] where T^ denotes the preview span. 

Immediate examples are vehicular control and pilot studies, such as 

studies on spacecraft altitude control, atmosphere reentry, aircraft 

takeoff, aircraft landing, and submarine depth control, to name just 

a few. Further elaboration of the use of preview in manual control 

systems can be found in Kelley [12] and Warner [36]. 

This research presents the results of experimental studies of 

the effect of preview or anticipation on human performance in a pur­

suit control system. The human controller's task was to follow a 

certain random path both with and without preview, and to try (by 

matching input and output signals) to reduce the error between the 

two signals. The experimental data therefore provided a basic 

description of human controller behavior for these special tasks and 

gave an indication of performance for different values of preview. 

The statistical characteristics of input signal or forcing function, 

output signal of the controlled element, and the output of controller. 
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Figure 1. Pursuit Manual Tracking System 
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Figure 2. Compensatory Manual Tracking System 
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with regard to autocorrelation and crosscorrelation were the principal 

variables studied experimentally. 
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CHAPTER II 

LITERATURE REVIEW 

The literature associated with the effect of preview or antici­

pation on human controller performance is extensive. 

Poulton [ 2 0 ] studied the effect of anticipation span reaction 

time. Two different types of experiments were carried out: in the 

first, a skilled response had occasionally to be altered at a given 

point after a variable warning period; in the second, the subject 

had to react to two auditory signals separated by a short time inter­

val which was systematically changed (the second signal being, 

variously, expected or unexpected). It was found that a subject's 

unreadiness to respond to a signal, as observed by lengthened re­

action time, may be due either to the subject's not having prepared 

himself because he was not expecting the signal, or because he was 

just not able to prepare himself quickly enough. Preparation for 

reacting to the second signal, when both were expected and had to be 

reacted to, was between 0 . 2 and 0.4 seconds. In most cases the re­

action time appeared to be 0 . 2 seconds. These times were shorter 

than the usual reaction time because delay due to incorrect antici­

pation was excluded. Poulton concluded that unreadiness appeared to 

be due to the fact that the subject was simply not expecting the sig­

nal, and that preparation for a signal took longer when a skilled 

response had to be extended than when it had to be stopped. He 
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suggested that so-called "psychological refractoriness" is due to a 

lack of foreperiod in which the subject is able to prepare for the 

next response while making the current one. 

In another set of experiments with two-pointer (pursuit) and 

one-pointer (compensatory) tracking tasks, Poulton [21] showed that 

tracking was more accurate with a two-pointer display than with a 

one-pointer display, and that increased accuracy was associated with 

increased anticipation. Poulton [22] also described the use of 

remembered information in tracking as anticipation. The immediate 

received information concerning the course, speed, and acceleration 

was defined as "speed anticipation." Remembered information concern­

ing the course and its characteristics was defined as "course antici­

pation." In a two-pointer display, course anticipation was regarded 

not by viewing the response point motion, but by recognizing the 

sensory cues provided by his control movements. As a result, one 

had the notion of anticipation where the course was going and the 

recognition of structure as consideration in a model of the con­

troller. 

In yet another experimental study on a type of pursuit track­

ing, Poulton [23] determined the subject's ability to learn and use 

his knowledge of the statistical properties of the input and com­

pared the effectiveness of visual information about a course acquired 

before tracking with that of visual-kinesthetic information obtained 

while tracking. The subject was asked to use a pencil to trace 

courses that consisted of constant slopes separated by sudden dis­

continuities in direction, and was required to meet a time criterion. 
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Half of the courses were patterned, in the sense that they contained 

systematic trends which could be used in prediction; the other 

courses were random. In three conditions vision was restricted (by 

a mask attached to the pencil) to that part of the course near the 

tip of the pencil. In one of the conditions the part of the course 

which had already been traced could also be seen, and in this and 

another condition the course could be studied visually before track­

ing. In the fourth condition there was no restriction on the sub­

ject's vision. Overshooting of a corner dropped when the portion of 

the corner could be predicted either from the sequential structure 

of the previous part of a pattern course or from a knowledge of the 

common statistical properties of the course. Visual information 

acquired before tracking was found to be less effective than visual-

kinesthetic information acquired while tracking. 

In another pursuit tracking experiment, Crossman [4] studied 

the effect of preview on continuous tasks involving pursuit tracking, 

and used information theory to measure human performance. Without 

preview of the course the channel capacity was found to be about 

4 bits per second, whereas with preview the channel capacity im­

proved up to at least 8 bits per second. Based on this study Cross-

man suggested that a human controller system consisted of parts 

arranged serially: a decision mechanism which receives its input 

from display and uses its output to influence an effector mechanism, 

which in turn controls the muscular activity needed to carry out the 

instruction. (In effect, then, the decision mechanism is translating 

the incoming signals into instructions for the effector system.) 
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Citing studies of other investigators, Crossman suggested that the 

decision mechanism has a channel capacity of up to 20 bits per 

second for "compatible" tasks such as tracking with preview, and for 

hand movements he suggested that the channel capacity of the effector 

mechanism will reach 10 bits per second. However, since the two 

mechanisms are in series, the lower capacity of 10 bits per second 

for the whole system is expected. Yet even this lower capacity rate 

was never achieved in the experimental study, and the explanation 

Crossman proposed for this fact was that the subject was sampling 

between the course ahead and the tracking error and then transmitting 

the wrong sampling he was using. Crossman thus suggested that the 

effector mechanism is actually sampling his error at a rate that, 

when multiplied by the bits per sample for hand movements, will pro­

duce up to 10 bits per second. 

Poulton [23] also discussed human performance in making 

skilled movements and considered the results of several compensatory 

and pursuit tracking tasks. Some of these results were related to 

preview tracking tasks. First, it was concluded that a rapid aiming 

movement which was completed in about 0.5 sec cannot contain a volun­

tary correction, since a voluntary movement has a reaction time. 

Furthermore, a rapid aiming movement should not be affected by visual 

monitoring, since there is no time to use this visual information. 

Referring to the work of Gottsdanker [10], Poulton pointed out that 

subjects match the rates at which tracking objects are moving and 

then referred to some work of Elkind [8] to show that this rate-

matching appears at the higher frequencies in the closed-loop 
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transfer function. Based on results of Senders [27] , he claimed 

that the display which provides the greatest amount of information 

about target rates will give the best tracking scores. Finally, he 

recalled from his own work into eye-hand span in simple serial tasks 

that zero-lag tracking occurs when the future track of the target is 

visible for 0.4 seconds ahead. A view of 0.3 seconds results in 

increased lag. 

Subsequently, Poulton [24] studied the effects of postview 

and preview on tracking performance. In this experimental study, 

inputs consisting of both simple and complex sine waves were tracked 

by subjects, and the subjects' view behind and ahead was varied 

systematically in different trials. The results of the experiment 

showed that postview of the course and of the response improved per­

formance because it made the subjects realize the present rates and 

reversals of the course, so that they could learn its structure and 

be able to respond faster and more accurately. Poulton stated that 

although 0.5 seconds of postview was sufficient for information on 

present course velocity and acceleration, a 7-second postview gave 

better results. In a preview condition, 0.5 seconds was sufficient 

to remove the need to predict, but preview seemed especially effec­

tive when the subject saw the next reversal before he reached the 

previous one. The reason for this, Poulton explained, is that the 

subject tends to aim in the course without having to use inter­

mediate targets. 

Kelley [13] has used a fast time model in developing a some­

what complicated "predictor display" for a human controller which 



presents a prediction of future response based upon present con­

troller position and state variable of the position. A fast analog 

model of the controlled process is repetitively clamped with 

"present" state variables of the controlled process as initial con­

ditions to the integrators of the fast model (Figure 3). The model 

is then undamped and, as it quickly runs its course, the response 

is a prediction of the future course of the actual process. This 

is repeated several times within each second. The model's response 

is displayed on an oscilloscope so that the human controller can ob­

serve the predictive response as the model is repetitively recycled 

starting from an updated "now" state and running a certain time into 

the future. Kelley's studies revealed that such predictive displays 

resulted in significant improvement of human tracking performance. 

Sheridan [29] first introduced the notion of an extended con­

volution integral to a human controller in the case of input antici­

pation or preview. In this formulation, the controller's unit im­

pulse response function consists of a nonzero preview component that 

starts prior to the occurrence of the unit impulse as well as a 

memory component that extends throughout the controller's finite 

memory span. The effective convolution limits thus extends from the 

beginning of the preview span to the end of the memory span. This 

extended convolution idea is basic to the model formulation in this 

investigation and will be further elaborated on in the next chapter. 

In an experimental investigation into preview tracking Sheri­

dan et al. [28] considered tracking under three conditions—first, 

without preview; then with preview, but with the stylus constrained 
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Figure 3. Kelley's Prediction Model 
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(placed against the edge of the viewing window); and, lastly, under 

a "self-paced" condition, in which no constraint was set on the 

location of the stylus within the window. Performance indicated, 

as expected, that the controller performed better with preview than 

with no preview. Using the self-pacing preview window, the subject 

either moved the window upstream along the course or kept the pen at 

about the same position, but in any event the result was that the 

subject's performance improved, even in comparison to the preview 

condition. Sheridan therefore suggested that self-pacing with pre­

view facilitates planning ahead. 

A second set of experiments was conducted in which subjects 

performed along successive semicircular arcs of different radii and 

at their own speed. The radius of curvature was a strong determi­

nant of course-following speed. Subjects performed more slowly for 

smaller radii and faster for larger radii. Sheridan and his col­

leagues concluded that the experiment indicated that there is a 

slowing-up at high frequencies and a speeding-up at lower frequencies 

as a means of compressing the bandwidth and permitting generally 

high gain and better closed-loop performance. 

In another set of experiments in which a pursuit tracking 

display was used, Sheridan [28] presented a target t seconds in ad­

vance. It was found that this form of preview was of little use 

beyond t = 1/2 sec, regardless of any controlled precess lag. This 

was explained as an apparent inability to remember the previewed 

function in a continuous "conveyor belt" fashion. 

Stark, Vossius, and Young [32], using a simple instrument 



13 

for measurement of eye movements, demonstrated that changes in the 

characteristics of the target-position signal will have important 

effects on the nature of the biological servomechanism controlling 

the movements. In particular, they suggested that an adaptive pre­

dictor can allow the system to overcome its innate delays upon ex­

posure to a regular input pattern. The experimental data which 

these researchers presented illustrated the striking difference be­

tween predictable and unpredictable input signals. 

Recently, Kvalseth [16] developed an experimental model that 

incorporated preview constraints for serial motor movements involving 

arm rotation. Without preview constraint, the rotary arm movement 

task produced a maximum movement information of 4.7 bit/sec, but 

when preview constraints were imposed the movement information was 

reduced to 3.9 bits/sec (as compared to a marginal preview infor­

mation rate of 12.5). The movement variable was found to account 

for about 70 percent of the total contribution to movement time. 

The error rates were determined to be highest in the no-preview-

constraint case, and were affected by both movement and preview 

information. 

The developments reviewed above can be summarized in two brief 

statements: 

First, most investigators considered a single one-dimensional 

input rather than a complex visual field and an associated visual 

response. As a result, most of the behavioral characteristics 

described are very specialized models of human controller behavior. 

Second, the results obtained from most of the investigators 
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indicate that, for reasonably accurate tracking, only a short preview 

is required. The usefulness of preview is associated with the 

identification of course properties (such as reversals) and with the 

estimation of bandwidth. 

As has been shown, most of the work previously conducted in 

the area of tracking with preview has focused on the psychological 

aspects of the human controller's behavior. In contrast, the re­

search reported in this thesis has employed mathematical modeling 

(along with appropriate experimental procedures) to measure the 

effect of different values of preview on human controller perform­

ance. Derivation of analytic models of the human controller which 

can relate the parameters of his characteristics to different values 

of preview of the input signal has also been attempted, and a measure 

of the degree of linearity for the human controller at different 

frequencies has been obtained. Although transfer functions for the 

human controller have been formulated in a number of compensatory 

tracking studies, a measure for the open loop describing function in 

pursuit tracking was not previously obtained, whereas, in this re­

port, the derivation of impulse response functions and frequency 

response functions corresponding to different preview conditions for 

the human controller in pursuit tracking is presented. That result 

shows that the research described herein has made a distinct and 

new contribution to the area of investigation. 
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CHAPTER III 

MATHEMATICAL BACKGROUND* 

Model Formulation 

The purpose of this chapter is to develop a mathematical 

model of human controller dynamics. Once such a model has been 

formulated, a method for estimating the model parameters will be 

proposed. Subsequent discussions will attempt to analyze experi­

mental findings concerning ways in which these model parameters were 

influenced by changes in the preview or anticipation span of the 

controller input or forcing function. 

The basic man-machine control system in the pursuit case, 

together with an identification of the various system variables and 

elements is given in Figure 4. This diagram shows the human con­

troller as an element of a closed-loop system. If the character­

istics of the human controller for a given task are assumed to be 

capable of quasi-linear description, the mathematical model of the 

human controller will consist of two linear transfer functions plus 

an additional quantity inserted as an input into the system by the 

human controller (see Figure 5). The "remnant" term r(t) , which 

was first used by Tustin [34] in the study of the nature of the 

operator 1s response in manual control, accounts for the nonlinear 

* 
The mathematical formulations in this chapter were developed 

by Dr. T. Kvalseth, School of Industrial and Systems Engineering, 
Georgia Institute of Technology. 
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r 
Human Controller 
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Display 
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Figure 5 . Equivalent Block Diagram of Pursuit System with Linearized Controller 
and time-variant portion of the human controller (S ), whereas 

H 
S and S account for the linear and time-invariant character-
H LX HL Y 
istics of the human controller. 

in the fundamental control situation considered in Figure 5, 
the linear and time-invariant human controller elements S and 

HLX 
S operate on the input x(t) and output y(t), respectively, 
HLY 
whereas the remnant terms r(t) adds to the human controller output 
before it reaches the controls. In the problem at hand, the task 
is to find the characteristics of the human controller—that is to 
say, s = (s , S } and r(t) and some closely related quantities HL HLX HLY from measurements made on observable signals in the loop. In trying to formulate relationships involving the system 
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elements S U T V and S and the signals x(t) , y(t) , and c(t) , the HLX HLY 

general assumption needs to be made that the cross-correlation func­

tion between the forcing function x(t) and the remnant r(t) is zero. 

An examination of Figure 5 will reveal immediate problems encountered 

due to the fact that r(t) is not orthogonal to y(t); that is to say, 

due to the fact that the cross-spectral density of y(t) and r(t) is 

not equal to zero. The solution to this problem is to move the 

human controller component terms outside and into the feedback loop, 

so that the configuration shown as Figure 6 results. 

X(t) 
C (t) 

Controls Controlled 
s Element 
c 

y(t) 
— » . — * 

Figure 6. Alternative Block Diagram of Pursuit System 

Furthermore, if H (f), H (f) , and H_ (f) denote the fre-HY HX CE 

quency response functions corresponding to the unit impulse re­

sponse functions h (t) , h. (t) , and h (t) , and if H (f) is the 
HY HX CE CE 

joint frequency response function of the controls and controlled 

element, then Figure 6 reduces to the diagram shown as Figure 7. 
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Figure 7. Block Diagram of Pursuit System in Frequency 
Response Form 

The following correlation relationships may now be formu­

lated. 

T 
/ X(t)C(t+T)dt R X C(T) r l i m ^ r 

T-k» 

1_ 
2T 

l i m 2T ^ X ( t ) t C L X ( t + T ) + C L Y ( t + T ) + r ( t + T ) ] d t 

<P-K» -T 

L»X LiY 
(3.1) 

where R (T) = 0 for all T by assumption. Furthermore, we have Xr 
that 
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+T +°° 
R (i) --- lim — / X(t) / h (f )X(t+T-t ,)dt'dt XC 2T J

 n - J HX 

+T +°° 
+ lim ~ - / X(t) / h (t ,)Y(t+T-t')dt'dt 2T J

m ' HY 

+°° T 
/ h W Y(t')dt' lim ^ - / X(t) X(t+T-t')dt H X ^ 2T m 

-)-0O 

+ / h (t')dt' lim ±- j X(t) Y(t+T-f)dt 
HY m 2T m 

-- / h H X(f) R^d-t'Jdt' + / h H y(f) R ^ d - f )df 

or 

V ( T > " h H X ( T ) * ^x' 1' + h H Y ( T ) * R X Y ( T ) ( 3 - 2 ) 

Taking Fourier transforms on both sides of equation (3.2) yields 

S X C ( f ) - H H X ( f ) S X X ( f ) + V ( f ) S X Y ( f ) ( 3" 3 ) 

System Identification in the Time Domain 

Let Tp denote the preview span or anticipation span and T^ 

the memory span of the human controller S 0 . For the time being, 
n 

consider that T is finite and fixed. With these effective convolu-m 
tion integral limits, equation (3.2) becomes 

\ C ™ • / h H X ( t ) R X X ( T - t ) d t + ^ h H Y ( t > R X Y ( T - t , d t ( 3- 4 > 

-T +T 0+T p r r 
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where T and T denote trie memory spans relevant to the system rax my 
i , ^ , , T , , (see Figure 5); T denotes the reaction time delay HLX HLY r 

of s„ (T -•' 0.20 sec) . The values of T and T need to be deter-H r mx my 

mined through some trial-and-error calculations, as will be explained 

later on. The next equation, (3.5) may be approximated as 

-N N 
V ( T ) = Z h H X ( p H ) R X X ( T " p h ) h + 1 h H X ( p h ) R X X ( T " p h ) h 

p=-l p=l 

N3 
+ _ h ^ T ^ p h j R ^ T - p h J h (3.5) 

p=l 

where, clearly 

N h = T -T , N h = T , N h = T -T 1 p r 2 mx 3 my r 

Now, for different values qh (q = 0, 1, 2, ..., M) of T, equation 

(3.5) produces the following set of equations. 

-N N 
R x c(qh) = E h H X(ph)R x x[(q-p)h]h + Z h ^ (ph) [ (q-p) h]h 

p=-l p=l 

N3 
+ Z h H Y(T r+ph)R X Y[(q-p)h]h + £c 

P=l 

q = 0, 1, 2, M (3.6) 

If IL (T) , R (T) , and R^ (T) are replaced by their estimates 
XC X X XY 

FL ( T ) , R ( T ) , and R (T) , then, for different values of T , the 
X X XY 

following linear statistical model results. 
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R x x [ ( 0 + l ) h ] R x x[(0+2)h] . . . ^ [ ( O + N ^ h ] 

^[(l+Dh] R x x [ ( 1 + 2 ) h ] ^ X X [ ( 1 + N l ) h ] 

h H X ( " h ) 

h H X ( " 2 h ) 

h ( - N 1 h ) 

f R x x [ ( 0 - l ) h ] ^ x [ ( 0 - 2 ) h ] ... R x x [ ( 0 - N 2 ) h ] l 

R x x [ ( l - l ) h ] R x x [ ( l - 2 ) h ] . . . R x x [ ( l - N 2 ) h ] 

+ h 

[ R X X [ ( M " 1 ) h ] R
x x

[ ( M " 2 ) h ] • * * R X X f M _ N 2 ) h ] 

Kx(h) 

h H X ( 2 h ) 

h H X ( N 2 h ) 

+ h 

R x y [ ( 0 - l ) h ] R x y [ ( 0 - 2 ) h ] ... R x y [ ( 0 - N 3 ) h ] 

R X Y [ ( l - l ) h ] R x y [ ( l - 2 ) h ] . . . R x y [ ( l - N 3 ) h ] 

l X y [ ( M - l ) h ] R X y [ ( M - 2 ) h ] . . . R x y [ ( M - N 3 ) h ] 

h H y ( 0 . 2 + h ) 

h (0.2+2h) 
H i 

h H Y ( 0 . 2 + N 3 h ) 

(3.7) 
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for which the least square estimators and ri can be obtained. 
HX HY 

Once the estimates of the impulse-response functions h. v(t) 
HX 

and h (t) have been obtained as outlined above, the frequency 

response functions H (f) and H (f) may be obtained by the method 
HX HY 

described by Davies [5] on page 184 of System Identification for 

Self-Adaptive Control. 

Accordingly, 

N2 N2 H ( j f ) = h Z h u v(ph) cos(phf) - jh Z h u v(ph) sin(phf) (3.8) HX H a H a p=-N J L P=-N1 

and 

N3 N3 H„ v(jf) = h Z h u v(ph) cos(pfh) - jh Z hi (ph) sin(pfh) (3.9) 
H Y p=l H Y p=l H Y 

As indicated, the reaction-time delay has been left out of 

equation (3.9; for the sake of simplicity may be excluded from 

equations (3.5) , (3.6) , and (3.7). Having obtained the frequency 

response functions H (f) and H (f) , it is then possible to obtain 
HX HY 

the transfer functions H (S) and H (S) (cf. Davies [5], pp. 198-
HX HY 

206) . 

Remnant Considerations 

It is possible to shift to the left the remnant team of the 

quasi-linear model of the human operator shown in Figure 7. The 

result of such a shift is the configuration shown as Figure 8. 
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r' + 

Figure 8. Quasi-Linear Model of Human Operator with Shifted Remnant 

It is then possible to reduce Figure 8 to the form shown in Figure 9 

J 
H X Remnant 

HCE HHX Y 
> 

HCE HHX 
X-HCE HHY 

Figure 9. Simplified Quasi-Linear Model of Human Operator with Shifted Remnant 

Let S ,(f) and-S (f) denote the power spectral density functions 
XX X x 

of X'(t) and y(t), respectively. Then, for the block with input 
X'(t) and output y(t) in Figure 9, the following fundamental 
spectral relationship applies (see Ref. [3] , p. 137): 

YY 
HCE(f)HHX<f) 

1 " HCE

(f)HHY(f) X'X* (3.10) 
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where S , ,(f) i s given by the following: X X 

•1 

R
v . v . ( T > = l i m ™ / t x ( t ) + r ' ( t ) ] [ X ( t + T ) + r ' ( t + T ) ] d t 
XX _ v 

,p - K » _t 

(3.11) 

But R , (T) = 0 for a l l T since R „ (T) = 0 for a l l T by assumption. Xr' Xr 
It i s also well known that 

S , , (f) = r r H H X ( f ) 
S (f) rr (3.12) 

Then, from equations (3.10, 3 . 1 1 , and 3.12) , i t i s found that 

H C E ( f )H H y ( f ) 
1 ' H C E < f , H H Y ( f ) 

2 r 2 i 
S + l S 

XX H „, rr HX 4 

(3.13) 

From equation (3.13) i t follows that 

S (f) = rr 
1 " H C E ( f ) H H V ( f ) 

H C E ( f ) 
s y y ( f ) - H x x ( f ) s x x ( f ) (3.14) 

From Figure 9 i t i s clear that 

s c c < f ) • s....(f) 
H C E ( f ) 

2 YY (3.15) 

From equations (3 .13) , (3 .14) , and (3.15) i t follows that "the 

l inear i ty coeff ic ient" p, which provides some measure of the degree 

of l inear i ty for the human control ler , may be expressed as fol lows: 
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p(f) A 1 -
S (f) rr 
s c c ( f ) 

- 1 - |l - H C E ( f ) H H y ( f ) | + |H H X(f)H (f) | 2
 ( 3 . 1 6 ) 

YY ' 



CHAPTER IV 

METHOD 

Experimental Apparatus 

The controller input or forcing function for this experiment 

was generated by Hewlett-Packard model 3722A low-frequency broadband 

noise generator which provides two types of random noise output—a 

two-level (binary) output and a continuous analog waveform of approxi 

mately Gaussian amplitude distribution. The latter random function 

was used in this experiment. The spectrum of the Gaussian output of 

the random noise generator is approximately rectangular. The band­

width (at 3db point) of the Gaussian noise is selectable from 

0.00015 Hz to 50 K Hz. In the random mode, the output of this noise 

generator has continuous spectra extending down to d.c. line. The 

output of the generator is at 3.16v rms for Gaussian distribution, 

but a precision RMS amplitude control provides a variable output 

ranging from O.lv up to the level of the fixed output [26]. Since 

the output of the random noise generator is greater than the voltage 

desired for the recorder, a voltage divider network was used in the 

experiment to obtain the desired voltage (see Figure 10). The 

voltage divider network consisted of two resistors connected in 

series. In Figure 10 the voltage V^ across the total impedances is 

divided by the resistors so that only part of voltage V^ appears 

across R^. By selecting the resistors at specified values, it was 

possible to obtain the desired voltage V 0 for the recorder. 



R 2 = 470ft v 2 

o -

Figure 10. The Voltage Divider Network 

In this experiment the values of and R 2 were chosen as 1 Mfl and 

470 ft, respectively. 

The recorder used in the experiment was a Speedomax XL re­

corder, which is a potentiometrie-type, null-balance, variable-

response-time instrument, which can be used as either a one-pen or 

a two-pen recorder. As a two-pen recorder, it can simultaneously 

measure and record two functions on a moving chart 10 inches (250 

mm) wide. The two pens on the recorder are approximately 0.1-inch 

(3.0 mm) apart on the time axis. The recorder has five different 

chart speeds. 

In order to generate a random course for tracking purposes 

in the first part of the experiment, only one pen recorder was used 

to record the random signal. The chart speed was set at the maxi­

mum of 1200 cm/hr. 

The "plant" or controlled element was a simple integrator 

simulated on an analog computer. The input to this element was pro­

vided by a joystick which was operated by the subject and which was 
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housed in a wooden box equipped with two connector jacks. These 

jacks were of the three-conductor type, providing connection for 

power supply, output, and ground. The jacks were labeled either as 

the y axis (front-back) or as the x axis (right-left) connectors. 

The cords that connected these jacks had clearly marked plugs; how­

ever, only one cord had a ground connection, since the ground was 

common for both the x and y axes. The input plug was connected to 

the 100-volt receptacle on the analog computer patchboard. The out­

put plug was inserted into the input of the integrator on the com­

puter patchboard. The maximum angle of deviation of the joystick 

from the vertical position was 60° in any direction. 

The analog computer used in this experiment for the plant 

dynamics was a System Conner model 10/20 which is an all-solid-state 

analog computer [2] that has an operating range of +100 v and 20 

operational amplifiers with a removable patchboard which mates 

directly with computing modules to eliminate all problems of board 

cabling. All computing components in the SD 10/20 are modular plug-

in units which allow for a wide choice of computing capabilities. 

Since the plant was represented by a first-order exponential 

lag of the from a patchboard with integrators such as the model 

3320 dual integrator was an appropriate tool for this experiment. 

As shown in Figure 11, the 3320 is divided into three sections: 

the top and bottom integrators and a logic section common to both. 

The top integrator was used in this experiment. Basic patching of 

the integrator was as shown in Figure 11. 

Preview constraints were incorporated into the experiment by 
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ADJUST 
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INPUJ" 
IC INPUT 

MANUAL 
(NON-REP-OP) 

R E S E T BUSS 

REVERSE LOGIC 
RELAY CONTROL 
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K ' -100 V 

.100 1 
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P- R r ! " • 
R- JF. 1M ; L '" " 

+I.C. 

Figure 11. Simple First-Order Exponential Lag System 

Source: Analog Computer Instruction Manual, p. 18. 
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attaching a rectangular cardboard plate to the hinged cover of the 

recorder. The position of the rectangular cardboard was changed for 

different preview conditions. The cardboard plates were attached in 

such a way that the controller could only see the input or forcing 

function for the interval T . For the maximum preview case, the 
P 

hinged cover of the recorder was removed providing a preview distance 

of 1 cm or 3 sec. 

Experimental Task 

The pieces of equipment used were placed on the top of a 

table in front of which the subject was seated. The joystick was 

placed in the right corner of the table next to the recorder. The 

movements of the pen on the strip chart recorder corresponded to the 

movements of the joystick. The experimental task required each 

subject to move the joystick to the right and to the left, causing 

the pen on the strip chart recorder to move correspondingly. With 

the joystick exactly at the center, the strip-chart pen would travel 

in a straight line at the center of each path. Because of the pre­

view constraint the subject could, in some cases, see only a small 

portion of the path that he had to follow; in other cases, nothing 

could be seen beforehand. The subjects were told to control the 

system so that it would follow the already-drawn random curve as 

accurately as possible, using the recorder pen which corresponded 

to the output of the plant. 

The random curves mentioned above were generated by the 

Gaussian noise generator and recorded on the strip chart before the 
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actual tracking started (Figures 12 and 13). The bandwidth was set 

at 0.5 cps and 0.15 cps; the RMS amplitude was set at 3.16, and the 

sequence length at infinity. 

Subjects 

Two unpaid subjects were used in the experiment; both were 

right-handed male graduate students. The subjects were free to 

assume any position while performing the task, and both chose the 

ordinary sitting position. It did not prove necessary to make pro­

vision for differences in sitting height for the two subjects. In 

preliminary experiments, not reported here, the subjects showed 

marked visual fatigue with lacrimation, a condition discovered to 

have resulted from insufficient rest periods and very long experi­

mental sessions. With extra rest periods, the subjects rarely if 

ever complained of visual fatigue, and tracking performance improved 

considerably. Each of the two subjects performed the experiment 

both with and without preview. It took one hour and fifteen minutes, 

including the rest period, to perform the experiment. 

Experimental Condition 

The six experimental conditions used consisted of two differ­

ent forcing function bandwidth frequencies of 0.15 cps and 0.5 cps 

and three different preview conditions, i.e., maximum preview of 

3 sec or 1 cm, 1.5 sec, and no preview. The order of these conditions 

were randomized and different for each subject. Prior to each run, 

the joystick was set at the vertical position, so that the pen on the 

strip chart was on the center line. Then, with the recorder set at 
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Figure 13. Random Input Signal x(t) at f = 0.5 Hz 
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the maximum speed of 1200 cm/hr, the subjects were initially given a 

practice period of three minutes. A one-minute practice session was 

allowed before each new experimental condition. Following each 

practice session, the recorder was turned off and the subjects were 

given sufficient time to observe the initial random curve and place 

the joystick, as desired for their initial control input. The subjects 

were notified to start as the recorder was turned on. Then the task 

was to follow the random signal (marked in red) with the plant output 

(marked in blue) as accurately as possible. The subjects performed 

the experiment for five minutes. Then they were told to stop, and 

were given a four-minute rest period. This procedure was repeated 

for each of the six different experimental conditions. The movement 

of the joystick with time was also recorded simultaneously in a 

separate curve. Figure 14 is a typical result obtained from the 

experiment. 

Data Preparation 

Subject data were taken in analog form from the strip-chart 

recorder discussed previously. These time-continuous data, which 

consisted of the original random input, the controller output (i.e., 

the output of the joystick) , and the output of the controlled ele­

ment, were converted manually into digital form. Only the two 

conditions of no-preview and maximum-preview for both subjects at 

0.5 Hz forcing function bandwidth will be analyzed in the following 

discussion. The continuous random records were sampled at h = 0.3-

second intervals, which corresponded to 0.1 cm on the strip chart. 

From these charts, the experimenter was able to obtain the sampled-
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data quantities required for determining the transfer characteristics 

of the human controller under alternative preview conditions, as 

outlined before. The particular data acquisition procedure used will 

be discussed subsequently. 



37 

CHAPTER V 

DATA ANALYSIS PROCEDURES 

This choice of the sampling interval h = 0.3 sec met the 

requirement that h <_ for fc = 0.15 Hz and fc = 0.5 Hz, as sug-
~ 2fc 

gested by Bendat and Piersal [3, p. 320] for digital computation of 

autocorrelation and cross-correlation estimates of time-continuous 

signals. Note that fc is the cutoff frequency in hertz of the sig­

nal x(t); that is, the cutoff frequency chosen for the gaussian 

noise generator. It appeared reasonable to assume that y(t) had 

approximately the same cutoff frequency. Another requirement was 

that the maximum number of lags used for the correlation functions 

should be about one-tenth of the number of samples used. For the 

cross-correlation function estimate 

1 N-r 
R (rh) = - — E x y ^ ; r = 0, 1, 2, m (5.1) xy N-r . n Jn+r n=l 

where N is sample size, r is number of correlation lag values, m is 

maximum number of correlation lag values, and h is the sample inter­

val. It is suggested (cf. [3] , p. 320) that 

N = - ~ with N > 10 m (5.2) 
r 

where is the normalized standard error desired for spectral 

calculations. Note that the maximum lag number is related to 
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maximum time displacement of the estimate by 

T = T = mh (5.3) max m 

and the value of sample size and record length is related by 

T = Nh (5.4) 
S 

The next problem was to determine the appropriate values of 

N , N^, N^, M in equation (3.6). The value of M, which needed to be 

considerably larger than the total number of other parameters in the 

regression model, was estimated from the inequality 

M > 2(N + N 2 + N ) (5.5) 

since the value of h was previously chosen, follows from: 

N h = T - T (5.6) 1 p r 

where, as before, T denotes the preview span and T denotes the 
p r 

reaction time delay of S (T - 0.20 sec). It was furthermore 
H r 

assumed that 

T = T (5.7) mx my 

so that 

N 2h = N h + T r (5.8) 

and hence 
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T 
(5.9) 

In the no-preview condition, the value of was equal to zero, and 

values of N 2 , were set equal to .20. For the 3-seconds-preview 

condition and were set equal to 15 and from equation (5.6) 

was chosen equal to 10. 

The value of M which satisfied equation (5.5) was chosen as 

M = 90 for the first subject and M = 125 for the second subject. 

This inconsistency in choosing M values was due to the fact that 

only 500 data points (N = 500) was used for analysis of the second 

subject's performance compared to 1000 points (N = 1000) for the 

first subject. 

The values of R^^trh), R^frh) , and R
X y ( r n ) were obtained 

from the Bio-Med Autocovariance and power spectral analysis program 

BMD02T (see Ref. [6] , p. 459). These values obtained were used as 

dependent and independent variables, respectively, for the linear 

statistical model given in equation (3.7). The autocovariance and 

power spectral analysis program computed the autocovariance, power 

spectrum, cross-covariance, cross-spectrum of the data. The values 

of the autocovariance and cross-covariance functions obtained from 

this program were equal to autocorrelation and cross-correlations 

desired because the time series used were automatically centered by 

the computer program. 
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CHAPTER VI 

RESULTS AND DISCUSSION 

Impulse Response Function Estimates 

Once the values of N^ , N^, N , M, h had been chosen, it was 

possible to use the Biomed program BMD02D (see Ref. [6] , p. 233) for 

stepwise regression. This program computes a sequence of multiple 

linear regression equations in a stepwise manner. At each step, one 

variable is added to the regression equation—the variable which 

would make the greatest reduction in the error sum of squares, (or, 

equivalently, the variable which has the highest partial correlation 

with the dependent variable partialed on the variables which had al­

ready been added, thus having the highest F value). In addition, 

variables can be forced into the regression equation (nonforced 

variables are automatically removed when their F values are too low). 

A regression equation was chosen with zero intercept as dic­

tated by equation (3.6). The F levels for inclusion and deletion 

were equated to zero in all cases in order to bring all the variables 

into the regression, except for the case of no preview for both sub­

jects, in which the values 0.01 and 0.005 for inclusion and deletion, 

respectively, were sufficient. 

On the basis of such multiple linear regressions, the least 

squares estimates obtained for the impulse response sequences 

(h (ph)} and (h (ph)} are given in Tables 1 and 2. These data 
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Table 1. Values of Frequency Responses h H X , h H Y for 0.3 
sec Preview Case (Note that only h H X values 
exist for t < 0 ) . 

P 
Subject I Subject II 

P 
h H X < P h > 

t h (ph) HY t h H X < P h ) t h (ph) HY ^ t 

-10 0.12 0.09 -5.46 -2.41 
- 9 -0.92 -0.38 8.95 1.59 
- 8 - - -3.10 -0.43 
- 7 2.93 0.67 -3.62 -0.58 
- 6 -1.79 -0.35 5.03 0.86 
- 5 - - 0.12 0.02 
- 4 1.64 0.25 -1.60 -0.24 
- 3 4.21 0.42 5.84 0.90 
- 2 -3.00 -0.31 -2.57 -0.44 
- 1 -0.20 -0.03 -1.17 -0.43 

1 1.84 0.82 -8.89 2.96 - - -3.65 -1.53 
2 - - 10.48 1.78 -0.63 -0.57 4.08 1.36 
3 -3.68 -1.31 -1.59 0.31 -0.28 -0.46 - -
4 1.52 0.43 - - -0.47 -0.86 -0.50 -0.21 
5 3.84 1.17 -7.21 1.43 -0.41 -0.61 - -
6 -3.92 -1.80 7.44 1.63 -0.34 -0.17 3.67 0.96 
7 - - - - -0.29 -0.11 -2.78 -0.54 
8 0.84 0.79 -2.42 1.15 2.04 0.90 -2.24 -0.59 
9 0.19 0.19 - - 0.03 0.02 - -

10 -1.12 -1.01 - - 1.03 0.44 -0.63 -0.28 
11 -0.25 -0.26 2.11 0.66 0.67 0.28 0.25 0.47 
12 -0.27 -0.26 -0.03 0.01 -0.01 -0.01 -1.27 -0.41 
13 0.64 0.68 - - -0.23 -0.18 -0.62 -0.15 
14 0.98 1.02 -2.95 1.20 0.40 0.35 1.43 0.46 
15 0.27 0.34 0.31 0.20 -0.20 -0.24 -0.89 -0.62 
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Table 2. Values of Frequency Response Functions h ^ , 
h for No Preview Case 

p 
Subject II Subject I 

p 
h H X ( P h ) t h H Y ( P h > t h (ph) HY t h (ph) HY t 

1 14.39 9.61 -0.89 -0.18 -0.50 -1.81 -2.79 -1.48 
2 -9.08 -2.49 -3.68 -0.37 -0.11 -0.09 3.30 1.34 
3 -6.23 -1.21 5.84 0.51 0.77 0.64 .12 0.05 
4 10.54 1.75 1.76 0.20 0.34 0.28 -1.03 -0.42 
5 -4.22 -0.66 - - 0.11 0.09 0.17 0.07 
6 -6.34 -0.97 -5.26 -0.58 -0.04 -0.03 0.06 0.02 
7 4.61 0.96 0.28 0.03 0.99 0.81 -2.50 -0.99 
8 - - - - 0.78 0.67 -2.11 -0.82 
9 0.83 0.19 -3.35 -0.64 1.48 1.38 -0.29 -0.11 

10 2.23 0.52 - - 0.29 0.27 -1.40 -0.54 

11 _ — 7.65 0.92 -0.03 -0.03 1.04 0.42 
12 0.73 0.15 8.99 0.78 0.09 0.09 -1.96 -0.75 
13 -1.16 -0.17 -10.37 -1.19 1.12 1.13 -1.42 -0.49 
14 -3.36 -0.52 - - 0.15 0.15 0.64 0.22 
15 -2.49 -0.37 5.35 0.60 0.55 0.57 -1.72 0.59 
16 2.55 0.39 -4.09 -0.35 -0.05 -0.05 -0.10 -0.03 
17 0.02 0.00 -3.07 -0.28 -0. 39 -0.39 0.45 0.15 
18 - - 1.68 0.15 -0.38 -0.38 2.10 0.70 
19 1.04 0.38 -0.77 -0.09 -0.04 -0.04 -0.67 -0.24 
20 1.79 0.92 0.19 0.06 -1.37 -1.63 3.10 2.07 
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correspond to two experimental conditions used for each of the two 

subjects. It is apparent from these data and calculated t-statistics 

that the smaller the absolute value of p the more significant are 

the impulse response terms. The values of h and h for both sub-
HX HY 

jects do not have any obvious similarity except that for larger P 

values, the h and h values, in most cases decrease somewhat. HX HY 
This is to be expected and the general model formulation is based on 

such an assumption. 

The values of the square of the multiple correlation coef-
2 

ficient, R , for regressions with zero intercept about the origin 

were obtained from the computer output. In addition, the values of 
2 

the square of the multiple correlation coefficient R' about the 
2 

sample mean of R ^ ^ h ) was computed. The values of R' , which 

corresponds to the nonzero intercept case, were obtained from the 

relationship 

M 

R ' 2 = l - _ 222_Ji ( 6 . 1 } 

q= 0 

where 

\ c - T £ i \ v(*h) (6-2) 

q= 0 

and the £^ denote the fitted residuals for the regression equation. 
2 2 

The values given in Table 3 for R and R 1 are seen to be 

very close, due to the fact that the mean values R were found to 
xc 
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Table 3. Values of R and R' for Both Subjects in the 
Two Different Task Conditions 

Bandwidth Preview 0 sec Preview 3 sec 

Subject 
Frequency R 2 R' 2 R 2 R' 2 

I 0.5 0.62 0.63 0.93 0.93 

II 0.5 0.96 0.64 0.89 0.89 

be close to zero (except for Subject II in the no-preview condition 
2 2 

for which the two values of R and R* are significantly different). 
2 

These values of R* indicate an excellent fit for conditions of 3 

seconds-preview for the two subjects and a rather fair fit for the 

zero-preview condition. In addition, the power spectral densities 

for the residuals in the regressions for different preview conditions 

for both subjects were obtained as shown in Figures 15, 16, 17, and 

18. Considering these figures (15 through 18) the power spectral 

densities are somewhat constant for values over 0.8 cps for all 

subjects at different preview conditions. It seems that for the 

first subject there are peaks of residuals for both preview and no-

preview conditions in the interval between 0.4 to 0.6 cps, while for 

the second subject, the peaks are in a somewhat lower interval. Note 

that these residual power spectra account partly for the nonlinear 

part of the human controller as well as for experimental errors. 

As the results show, these residuals correspond fairly well to the 

results for the linearity coefficient obtained in the following 

sections. In both cases, it seems that nonlinearity decreases 

somewhat in the interval from 1.0 to 1.8 cps. 
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Frequency Response Data 

Frequency response data were obtained for the two linear 

human controller elements from the estimated computer response 

sequences (h (ph)} and (h (ph) } in accordance with the method HX HY 

indicated in equations (3.8) and (3.9). A computer program was 

developed and used for these calculations. The resulting data are 

presented as Bode plots in Figures 19-26. It is impossible from 

these graphs to arrive at any clear inferences as to the form of 

the transfer functions of the two human controller components. 

The Linearity Coefficient 

The determination of the linearity coefficient p for 

f = 0.5 Hz for both subjects was based on the values of the c 

quantities H ^ , H ^ , H ^ , S ^ , S y y , S ^ , and S c c at different fre­

quencies. As mentioned previously, the plant was a simple integrator 

with unit feedback and gain K as shown by the closed-loop system 

diagrammed in Figure 27. 

C(s) C (s) C(s) K 
C (s) 1 Y(s) 

s 

t 

Figure 27. Closed-Loop System of Controls and Controlled 
Elements 



DEGREES 
0.1 

LUTD/SEC 
1 10 

' • < • I M ' i 1 

i 4 
< • 

I < i ( O 
I 
1 

< 
> O * 

) < » < ) 0 < > < > < x O , > < > 1 

i— 
>< >< 

< 

> 
• c 0 

c < c 

! < 
• • 

! I 

1 I < 
I < 

1 
I • 

I 
< < < —•—1 

I 
I 

! 

1 I 
l 

PHASE • 

MAGNITUDE O 

PHASE • 

MAGNITUDE O 

PHASE • 

MAGNITUDE O 

DB 

40 

20 -50 

-100 

-150 

-200 -40 

FIGURE 19. BODE DIAGRAMS FOR H FOR SUBJECT I I (3 SECOND PREVIEW F = 0.5 HZ.) 

O 

60 



DEGREES 
0.1 

RAD/SEC 
1 10 

0 W~ 

+ 4 

-50 

-100 

-150 

• 4 i I •_ 

6 o 6 i 

PHASE 9 

MAGNITUDE O 

FIGURE 20. BODE DIAGRAMS FOR FOR SUBJECT I (3 SECOND PREVIEW ff = 0.5 HZ) 



degrees 
0.1 

Rad/Sec 
1 10 

i 1 i i ( »1 • l > 
> < 

> 
< 

| 4 c 
< 

1 
1 ! ! 1 < 

< 

( 0 c 
0 

1 I i 
< 

0 
) 

( > < 1 ( 

> <! > < > 6 < i 
1 

> ( > < X M i o < ' c1 > < 

* < ( 

1 
i 

( 

( 1 ( > t c | 
4 • ! 

i 
1 

| 
! « • 

f • 
! 
! 

I 
i 
i 
1 

I 

Ph ase • 
gnitude 0 Ma 
ase • 
gnitude 0 
ase • 
gnitude 0 

db 

60 

40 

20 

-20 

-40 

Figure 21. Bode Diagrams for for Subject II (No Preview tQ - 0.5 Hz) 



degree* 
0.1 

Rad/Sec 
1 10 

db 
60 

40 

20 

i 4 4 4 t*4 

-50 4 • 

la 

-loo p 4 ?—4—4-9-4-<i M 4 4 666 

-150t 

-200. -40 

Phase 0 
Magnitude O 

Figure 22. Bode Diagrams for for Subject I (No Preview f. - 0.5 Hz) 

Co 



d e g r e e s 

0 . 1 

R a d / S e c 

1 0 

1 

i 
1 
1 

^ 

I 
1 t 

i 
< 4 

< 

I 
! J c 

( 1 ( 0 ° < > 

1 
1 

J 1 ( 

i 

i 

> o \ IH >< 
1 < 

> 
) C 1 

( 1 

! 

' V V 

i 

H * < > < » c 
» < 

< i j •< 
< i 

c 
0 

c 
1 

1 

! I 
i 

I i 

< > | p • i 
i 

I 

! I 

i 
1 

1 
( • 

• • 

i 
i 

i 

i a 4 
I 

I 

i . •« 
i 
i 

4 >* 
i 
i 

1 

i 1 4 > 

P h a s e • 

M a g n i t u d e 0 

P h a s e • 

M a g n i t u d e 0 

P h a s e • 

M a g n i t u d e 0 

d b 

4 0 

- 5 0 

- 1 0 0 

- 1 5 0 

- 2 0 0 

- 2 0 

- 4 0 

F i g u r e 2 3 . B o d e D i a g r a m s f o r H f o r S u b j e c t I I ( 3 S e c o n d P r e v i e w f_ » 0 . 5 H z ) 

6 0 

1 



degrees 0.1 
Rad/Sec 1 10 

• < > < » < > ( i I >4 < • 
1 » 

> 

( » 

< 1 i < » ( > < » 

> < ) < > < » < ) C > c 1 ° < < 1 < 1 
1 

) < 
< 
' 1 > r 

» 

o 
< > < 

< 

i | ° o ( 

• 

• 

1 
( 

1 • 5 < 
1 ) ' 1 ( 

< 
> • • 

o 
> 

4 
> 

i ( • 

* 

4 I r-

< i 1 
• i t 4 

Phase • Magnitude O Phase • Magnitude O Phase • Magnitude O 
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The closed~loop system was modified to become 

The value of K, which is the controls' proportionality constant, was 

obtained by finding the deviation of one of the pens on the strip 

chart recorder for a one-degree angle change on the joystick. The 

corresponding value of K was found to be 0.07. Once K was obtained 

it was possible to obtain from equation (6.3) for different 

frequencies. 
/\ / \ 

The values of the power spectral estimates S (f) and S (f) 
XX YY 

were obtained from the autocovariance and power spectral analyses 

program (BMD02T) for both subjects with different preview conditions. 

The values of H (f) and H (f) used were those given in Figures 19 HX HY 
through 26. The values that obtained for the linearity coefficient p 

are listed in Table 4. 

In general, one tends to have most confidence in the describ­

ing function techniques when the quasi-linear transfer function by 

itself provides an adequate representation of the system; that is to 

say, when the remnant term is relatively small. In our case. Table 4 

shows that the remnant term is somewhat large, thereby suggesting 

that some important nonlinear effects may be occurring. As Mitchell 

[17] suggested, this nonlinearity could be due to such factors as: 

(1) noise at the operator's input, (2) noise at the operator's out­

put, (3) unsteady behavior of the human operator, or (4) nonlinear 

operation and dither of the human operator. 

In any event, the values of the linearity coefficients are 
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small except at to = 4.0 rad/sec and in the region 1.0 <_ u) <_ 1.5 

rad/sec. This, and the fact that some of the values of the linearity 

coefficient for low frequencies are negative, might suggest that our 

model may not be very accurate for the entire range considered, al­

though it may be quite acceptable for certain frequency intervals. 

Error Characteristics 

In order to compare the performance of the subjects at differ­

ent bandwidth frequencies for different task conditions, the mean 

squared error (MSE) between the signals x(t) and y(t) at each 1.5 sec 

sample point was computed from 

MSE = i / T e 2(t)dt (6.4) 
0 

where 

e(t) = x(t) - y(t) (6.5) 

Equation (6.4) can be approximated as 

N 
1 fT 2 1 2 
± / e^(t)dt = i I e^(kAt) (6.6) 

0 k=l 

with N = 50 and At equal to 1.5 second or 0.5 cm on the strip chart 

recorder. The MSE values obtained for different experimental con­

ditions are summarized in Table 5. 

As seen from the data in Table 5, the first subject performed 

slightly better than the second subject in most cases. In those few 

cases for which the second subject performed better, the difference 
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Table 5. Mean Square Error for Different Preview 
Conditions 

Subject Bandwidth 
Frequency Hz 

No Preview 
Condition 

1-5 Seconds 
Preview 
Condition 

3 Seconds 
Preview 
Condition 

I f = 0 . 5 0 c 2.16 0.78 0.89 

f = 0.15 
c 

0.25 0.07 0.04 

II f = 0 . 5 0 
c 

3.50 1.00 0.86 

f = 0.15 
c 

0.52 0.06 0.07 

was significant. The MSE was considerably smaller for the preview 

cases for both subjects than for the no preview case. The two 

preview conditions (1.5 second and 3 seconds) tested did not result 

in significant differences in the two subjects' performances in 

terms of MSE. 

Comparing the two different bandwidth frequencies used for 

the experiment, there is an immediate decrease in MSE for higher 

frequency conditions. In the cases of 1.5 Hz bandwidth frequency, 

the track (y(t)) is very similar to the course (x(t)) in the general 

shape and follows it closely, usually with a small time lag and some 

amplitude error. At the 0.5 Hz bandwidth frequency and for both 

subjects, the track maintained the general shape and form of the 

course but the lag became large and a substantial error in amplitude 

appeared. 
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

This study has considered the effect of preview or antici­

pation on the human controller in pursuit tracking. The experiments 

of this investigation demonstrated that the imposition of preview in 

tracking tasks has a significant effect on the mean square error for 

different experimental conditions. 

The characteristics of the human controller in pursuit track­

ing have been studied using servo techniques, and the human con­

troller elements have been identified in the time domain based on 

linear statistical regression theory. The power spectra for the 

residual errors in the linear regression models have been estimated. 

The Bode diagrams showing frequency response data for the human con­

troller elements were drawn; however, these diagrams did not show a 

specific pattern for estimating the transfer functions of the human 

controller. 

The remnant power spectral density was obtained and the 

linearity coefficient was calculated for different frequencies. Al­

though the results were not very satisfactory, they correspond 

reasonably well to the results obtained from the residual power 

spectra which indicated higher linearities in certain frequency 

regions. 

A comparison of the tracking performance of the two subjects 
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revealed that they performed the required tasks much better at a 

lower bandwidth frequency of the input. The performances of the two 

subjects were somewhat similar except for the no-preview condition, 

for which the first subject produced smaller tracking errors. All 

tracking models exhibited the hesitancy property resulting from a 

reaction time lag. When preview was introduced, this lag seemed to 

be reduced significantly. 

Perhaps the most important recommendation that can be made 

based on this experimental work is that further investigation be 

made to determine the feasibility of using analog-to-digital con­

version devices to supplant the cumbersome, time-consuming, and in­

accurate manual procedure used in this study to make the necessary 

conversions. It is possible to use a graph pen sonic digitizen to 

digitalize the curves obtained from tracking, but care must be taken 

to run the pen on the curves at a constant speed. 

One useful extension of this experimental work would be to 

consider the effect of preview or anticipation on the human con­

troller in compensatory tracking, and then to compare the results 

for compensatory tracking with the results of pursuit tracking. 

Such a study would obviously require more sophisticated peripheral 

equipment than was necessary for the work described herein. 

Finally, it is possible to include more preview constraints 

on tracking, and to consider both higher and lower bandwidth fre­

quencies than the ones considered in this experiment. 
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APPENDIX 

INSTRUCTION TO SUBJECTS 

A. General Considerations 

The purpose of this experiment is to determine the effect of 

preview or anticipation on human controller behavior in tracking 

tasks. The curve already drawn on the chart is used to show the 

path which the vehicle should follow. The vehicle is represented by 

the analog computer, and the output of the vehicle is displayed by 

the blue pen on the strip chart recorder. You will control the 

vehicle by moving the joystick that has been placed in the right 

corner of the table next to the recorder. The movement of the joy­

stick (right and left only) corresponds to movement of pens on the 

strip chart recorder. 

The horizontal axis of the recorder is the time scale and 

the vertical axis is the position scale. By moving the joystick 

right and left, you will cause the two pens of the strip chart re­

corder to move in the same direction as you have moved the stick. 

(Note that you are concerned only with the blue pen.) With the joy­

stick exactly at the center, the vehicle on the strip chart pen will 

travel in a straight line at the center of each path. 

B. Experiment 

In this experiment your task is to control the vehicle so 

that it follows, as accurately as possible, the random curve already 
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drawn. You must follow the random curve (red) with vehicle output 

(blue). Two different frequencies have been used for the random 

input signal, and the strip chart recorder will travel at the same 

speed (1200 cm/hr) at all times. 

The different constraints of the experiment are the distances 

that you will see ahead of the strip chart pen. These distances, 

which vary for different cases, are called preview. In this experi­

ment we will see three different previews for our two frequencies, 

a total of six different cases. 

C. Lab Procedure 

You will be seated in front of the strip chart recorder with 

your right hand on the joystick. Initially, you will be given a 

practice period of three minutes. For each case you will be given 

a one-minute practice and at the end of each trial you will be given 

four minutes of rest period. Before a trial begins, you will have 

sufficient time to observe the initial position and place the joy­

stick as desired for your initial control input. If, for example, 

in the pursuit case the blue pen initially is to the right of the 

random signal, you can move the joystick to the left. You will be 

notified when to start and when to stop. Do your best, and do not 

be discouraged. The experimenter will be present in the room during 

the experiment; before the experiment begins, he will answer only 

general questions. The total duration of each case is nine minutes. 
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