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SUMMARY 

Metal-based composite energetic materials have substantially higher volumetric 

energy density when compared with monomolecular compounds such as trinitrotoluene 

(TNT). Micron-sized metal particles have been routinely used for energetic applications 

since the 1950’s. They, however, suffer from several drawbacks such as high ignition 

temperatures, agglomeration, and low reaction rates, resulting in low energy release rates. 

Nanoparticles exhibit beneficial physicochemical properties compared to their micron-

scale counterparts for combustion applications. Due to the large specific surface area 

(SSA), they also offer tailorable surface properties that have the potential to allow precision 

control of thermal transport and chemical kinetics. Hence, during the mid-1990’s, 

widespread replacement of microparticles with nanoparticles created a new class of 

energetic materials called nanoenergetic materials. 

 Among the different candidate metals, aluminum is desired because of its 

abundance, high oxidation enthalpy, low cost of extraction, and for its relatively safe 

combustion products. This study provides a perspective to combustion wave propagation 

in nano-energetic materials that accounts for nanoscale heat conduction effects. Here we 

use the nano-aluminum – water system as an example system. A fundamental treatment of 

heat transport in nanoparticles and interfaces is carried out. Firstly, ab initio and atomistic 

scale simulations were performed to investigate the nanoscopic nature of heat transport in 

bulk and nanosized aluminum and aluminum oxide, as well as at the interface of these 

materials. Atomistically informed macroscale modeling techniques were then employed to 
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treat heat transport in mixtures of nanoparticles in liquid oxidizer to study combustion wave 

propagation. The key findings of this research are summarized herein.  

 Before delving into investigating the nuances, a simple analysis was performed on 

the factors contributing towards thermal conductivity. The analysis showed that size effects 

could be important and also that the thermal interfacial resistance (TIR) could be the 

limiting resistance. Therefore, as the first step, a detailed analysis of phonon transport 

properties in aluminum (Al) and aluminum oxide (Al2O3) has been performed via lattice 

dynamics (LD) using input from density functional theory (DFT) calculations. DFT-LD 

methods reproduce the transverse and longitudinal phonon branches in Al and Al2O3 along 

the edges of Brillouin zone accurately. Furthermore, temperature dependent phonon 

thermal conductivity (TC) of Al and Al2O3 are also evaluated by solving the Boltzmann 

transport equation (BTE) under the relaxation time approximation (RTA), and the thermal 

conductivity accumulation functions were also evaluated. This analysis gave insights on 

what phonon mean free paths were affected by the system size. Spectral distribution of TC 

was also analyzed to assess the possibility of engineering phonon transport properties. 

These studies provide a fundamental understanding of phonon frequencies and their 

contribution in pristine bulk Al and Al2O3 crystals.    

 Building on the understanding of thermal transport in bulk Al and Al2O3, the study 

was extended to understand heat transport across Al/Al2O3 interfaces. The thermal 

interfacial conductance (G) of the aluminum (Al)-aluminum oxide (α-Al2O3) interface 

along the crystal directions (111) Al || (0001) Al2O3 was accurately predicted. Two 

fundamentally different formalisms were used to make these predictions in the temperature 

range 50-1800 K: interfacial conductance modal analysis (ICMA) and the atomistic green 
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function (AGF) method. ICMA formalism is based on the fluctuation-dissipation theorem 

whereas AGF is based on phonon gas model (PGM). The study reveals the right description 

of the interfacial heat flux, and the shortcomings of PGM in including full anharmonicity 

of vibrational modes.  

Subsequently, we question the traditional nanofluid theory that substantiates the 

presence of nanolayers and Brownian motion (otherwise termed as ‘dynamic’ modes of 

thermal conductivity) in enhancing thermal conductivity of nanoparticle suspensions. To 

assess the role of dynamic mechanisms, a rigorous study based on equilibrium molecular 

dynamics (MD) simulations was conducted. We identify that the abnormally high thermal 

conductivity reported in prior studies is due to an error source originating from the artificial 

correlations of periodic images of atoms in the simulation system. We also devise a method 

to alleviate these artificial correlations and calculate thermal conductivity accurately. 

Hence, an alternative explanation to the unusually high thermal conductivity of nano-

suspensions obtained using Green-Kubo relations is provided.  

Finally, building on the knowledge of how the transport properties are affected by 

the nanometer length scales involved, a detailed numerical analysis of flame propagation 

in nano-aluminum (nAl) - water (H2O) mixtures was performed. Considering a multi-zone 

framework, the nonlinear energy equation is solved iteratively using the Gauss-Seidel 

method. Thermal conductivity of nanoparticles is modeled using thermal conductivities of 

aluminum and oxide layer, as well as interfacial conductance. The effective thermal 

conductivity of the mixture is modeled using the Maxwell-Eucken-Bruggeman model as a 

function of temperature, spatial coordinate, and local mixture composition. Sensitivity of 

linear burning rate, rb to changes in thermal conductivities of aluminum (kAl) and aluminum 



 xx 

oxide (kAl2O3), and interface conductance (G) is also studied for various particle sizes in the 

nanometer range. This study illustrates how the nanoscale effects on the transport 

properties ultimately impact the combustion wave propagation in nanoenergetic materials, 

providing a solid foundation to their bottom-up rational design.  
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CHAPTER 1. INTRODUCTION 

 This chapter introduces the concept of nanoenergetic materials. The significance of 

metal-based nanoenergetic materials in this century, as well as prior works reporting 

experimental and the theoretical study of combustion of nanoenergetic materials, are 

reviewed. The unique mechanism of ignition of nanomaterials is also discussed. 

Furthermore, the role of heat conduction in nanoparticle suspensions is reviewed, and the 

major mechanisms that govern heat conduction are described. The rate of heat conduction 

is found to be a crucial factor that governs burning rate in nanoenergetic materials. Despite 

its significance, however, the conduction rate has not received much attention in the past. 

Therefore, the motivation of research drawn from the survey of literature is to 

fundamentally understand heat transport in nanoparticle suspensions. Finally, the research 

methodology and dissertation outline are presented. 

 

1.1 Nanoenergetic materials 

 Energetic materials are typically defined as substances with large amounts of stored 

chemical energy and high rates of energy release. They can be classified based on 

composition as either monomolecular or composite. In monomolecular energetic materials, 

such as TNT, fuel and oxidizer groups are present in the same molecule [3] whereas in 

composite energetic materials, fuel and oxidizer are separate phases [4]. They are 

predominantly used in space and underwater propulsion, explosives, pyrotechnics, and 

energy generation applications [5]. Figure 1.1 compares the volumetric and gravimetric 
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energy densities of some commonly used energetic materials. As can be seen from the 

figure, metal-based energetic materials have higher volumetric energy densities than their 

hydrocarbon counterparts [6]. For example, the volumetric energy density of aluminum 

(Al) is 83.8 MJ/L, which is substantially greater than that of some common explosives 

(TNT ~10.8 MJ/L) and fuels (liquid hydrogen compressed at 900 bar ~ 9.17 MJ/L and jet 

fuel JP-8 ~ 42.8 MJ/L). High energy density metals include boron (B), beryllium (Be), Al, 

silicon (Si), and titanium (Ti). Among the metals, B has the highest energy density, 

followed by Be. However, B experiences delayed ignition, due to the formation of B2O3, 

which significantly inhibits further oxidation. Be is extremely scarce and forms toxic gas 

products. Al, on the other hand, is one of the most abundant metals in the earth’s crust and 

has a low cost of extraction, making it the most popular ingredient in energetic material 

compositions.  

 

Figure 1.1  - Comparison of volumetric and gravimetric enthalpy of oxidation (energy 

content) of metals and widely used monomolecular energetic materials [6] 

 

 Macro and micron-sized Al particles have been routinely used in combination with 

various oxidizers and binding agents to create solid propellants since the 1950’s. The most 
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widely used oxidizer in solid propellants is ammonium perchlorate (AP), which is 

structurally integrated with Al using polymeric binders like hydroxyl-terminated 

polybutadiene (HTPB) [7] and polybutadiene acrylonitrile (PBAN) [8]. The resulting 

composite material offers high thrust, simplicity, and reliability, and low-to-medium 

specific impulses (depending on the composition and operating pressure) of 180–260 s. 

They are used in early stage propulsion in rockets (solid rocket boosters), hypersonic 

propulsion, and descent stage retrorockets for e.g. NASA Mars rovers. Al has also been 

used as an additive for liquid propellants [9] and conventional fuels [10] to improve their 

energy density. In addition to space and underwater propulsion, Al energetics can also be 

used for applications in interceptors, missiles, etc., where high thrust to overall weight of 

the motor is crucial, and for military applications like explosives and pyrotechnics, where 

large amounts of energy need to be stored in small volumes.   

 Micron-sized Al particles nonetheless suffer from several drawbacks such as high 

ignition temperatures, agglomeration, and low reaction rates, resulting in low energy 

release rates.[4, 11, 12] The advent of nanotechnology and concurrent developments in 

synthesis and characterization techniques have offered new opportunities to realize 

different properties with nanomaterials and the possibility of using them as additives in 

energetic compositions. Nanomaterials are substances with characteristic dimensions <100 

nm. They exhibit substantially different physicochemical properties compared with their 

micron-scale counterparts. They have lower melting and boiling temperatures [13], lower 

ignition time and temperatures, lower activation energy of oxidation [14]  and enhanced 

chemical activity due to higher specific surface area (SSA) and surface energy [15]. Higher 

surface energy originates from the fact that nanoparticles have a higher percentage of 
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surface to bulk atoms in comparison with micron-sized particles. These surface atoms are 

non-bonded/partially bonded compared with the bulk atoms, resulting in an enhanced 

chemical reactivity. Likewise, specific surface area (or the surface area per unit volume of 

nanoparticle) also increases as the nanoparticle size reduces, resulting in enhanced fuel-

oxidizer intimacy leading to higher reaction rates. In addition, due to the large SSA, 

nanoparticles also offer tailorable surface properties that have the potential to allow 

precision control of thermal transport and chemical kinetics [16, 17]. Hence, during the 

mid-1990’s, widespread replacement of microparticles with nanoparticles created a new 

class of energetic materials called nanoenergetic materials.  

 Among the various physical forms of nanoenergetic materials, nanoparticle-laden 

fluids, or ‘nano-suspensions’, have received considerable attention, owing to their ease of 

manufacture and relative structural stability.[12] Nanosuspensions are suspensions of solid 

fuel nanoparticles in an oxidizer medium. The oxidizer can be in solid, liquid, or gaseous 

state, giving rise to a solid-sol, gel, or aerosol respectively. Irrespective of the surrounding 

oxidizer, nano-aluminum (nAl) particles possess a unique ignition mechanism in 

comparison with micro Al particles. The following section summarizes the ignition and 

combustion mechanism of nAl.  

  

1.2 Mechanism of ignition and combustion of nano-aluminum: Phenomenological 

understanding 

Ignition and combustion of micron-sized aluminum particles has been a topic of 

experimental and theoretical studies for several decades.[4, 11, 12, 16, 18-22] Although 

combustion follows ignition, it is better to observe and optimize combustion behavior first, 
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as it paves way towards a logical explanation of the ignition mechanism. A characteristic 

property that can be used to represent combustion behavior is the particle burning time. 

Figure 1.2 summarizes the experimental results of particle burn time as a function of 

particle size. As can be seen from Figure 1.2, for particles of size > ~20μm, mass-diffusion 

is the rate limiting mechanism, and therefore combustion becomes diffusion-limited. At 

these length scales, the burning time, tb follows the d2 law, i.e., it is proportional to the 

square of particle diameter (
2

bt d ). 

 

Figure 1.2 Burning time of Al particles as a function of mean particle diameter 

obtained from experimental results. [12] 

 

 At smaller length scales, quadratic dependence of tb on particle diameter breaks 

down, as shown in Figure 1.2. The equation becomes 
n

bt d where n~1.1-1.2. In a recent 

review article, Sundaram et al. [23] point out that the combustion of nAl in various oxidizer 

environments deviates from d2 law, as shown in Figure 1.3. Based on a phenomenological 

understanding, they demarcate the two particle size regimes: where the d2 scaling is valid, 

and where it fails. Their observations indicate a kinetically controlled combustion occurs 

Kinetic 

controlled 

Diffusion 

controlled 
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for particle sizes < 100 μm; in other words, the combustion wave resembles a premixed 

flame. 

 

 

Figure 1.3 Particle size regimes where kinetic and diffusion controlled combustion 

are observed in experimental studies [23] 

 

 

Figure 1.4 Energy balance where the control volume represents an aluminum 

nanoparticle suspended in an oxidizer medium 

  

Interstice 
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 Since we have established that the combustion in nano aluminum suspensions is 

likely to be kinetically controlled, let us take a step further to understand the mechanism 

of combustion at the particle level. Figure 1.4 shows the control volume of system with a 

gaseous oxidizer encapsulated by nanoparticle in the reaction zone. The nascent fuel (Al) 

nanoparticle remains passivated during the gas phase synthesis process by a thin layer of 

aluminum oxide (Al2O3), unless a coating material with better affinity is provided during 

the process of synthesis. Experimental measurements have shown an ignition temperature 

of ~1360 K [12, 18, 22, 24]. The melting point of Al is 933 K and that of Al2O3 is 2345 K. 

At this temperature, therefore, Al exists in molten state and Al2O3 remains in solid state.  

 Ignition of nAl is preceded by an important phase change phenomenon: melting of 

the Al core to form liquid aluminum, which in turns escalates the pressure inside the 

nanoparticle and cracks the oxide layer [23]. Al atoms diffuse out through the cracks in the 

oxide layer while mixing with oxidizer molecules that diffuse inwards. The exact location 

of the reaction zone is not completely understood, but it is convenient to assume that it lies 

somewhere within the interstices of the oxide shell. This assumption also leads one to 

assume the production of new oxide molecules which adds to the shell thickness. Other 

products diffuse away from oxide shell. A part of the heat generated from the reactions, Ein 

gets conducted into the nanoparticle, and a part of it conducts upstream towards the 

unreacted mixture, which in turn preheats it. A portion of the energy at the reaction surface, 

Erad, gets radiated upstream to preheat the unburnt mixture. It has been shown in prior 

studies that more than 99% of preheating occurs due to conduction, and the contribution 

from radiation is less than 1% [25]. There is also a heat loss, Eout from the particle to 

surroundings via radiation and conduction. 
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Figure 1.5 (a) Linear burning rate of Al composite as a function of specific surface 

area (SSA) and (b) Flame speed in Al-air mixture as a function of particle diameter 

[20] 

  

 As seen in Figure 1.4, as the reaction proceeds, the thickness of aluminum oxide 

layer on the nanoparticle increases. This decrease reduces the molecular-level interactions 

between fuel and oxidizer. Hence, one may expect that, as particle size reduces further, the 

net reaction rate saturates. A corroborating observation can be made from Figure 1.5. 

Figure 1.5(a) represents the burning rate of a solid-sol propellant as a function of specific 

surface area (SSA). Note that increase in SSA represents a decrease in nanoparticle size. 

Figure 1.5(b), shows a reduction in flame speeds at much smaller length scales when 

compared to gas-phase combustion reactions. Therefore, in the kinetically controlled 

regime, as the size reduces beyond a certain small value, relative oxide layer content 

becomes sufficiently high that reaction rates become significantly lower than gas phase 

reactions. In this regime of saturated chemistry, there is no appreciable burning rate 

enhancement, despite the ostensible increased reaction rates owing to high SSA of 

nanoparticles. In this regime, therefore, one may think of various measures to improve 
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reaction rates: catalysis, surface functionalization, forced cracking of oxide layer, etc. 

Nonetheless, as an open question remains: by improving reaction rates, can we expect 

significant enhancements in linear burning rates?     

 

1.3 Flame propagation in nAl mixtures: Experimental studies and theoretical 

modeling 

 There have been numerous experimental studies conducted to understand the 

burning properties of nAl in various oxidizers. Tyagi et al. [26] measured the ignition 

probability of diesel droplets laden with aluminum nanoparticles. The diameter of particles 

used was 50 nm. The droplets were allowed to fall from a height of 25 mm onto a 75 mm 

diameter stainless steel hot plate whose temperature varied in the range of 668-768 °C. The 

ignition probability increased by more than 100% due to the addition of nanoparticles. This 

increase was attributed to the increased reaction rates of nAl particles, resulting in faster 

and lower temperature ignition. In addition, the burning characteristics of liquid propellants 

such as nitromethane have been found to be enhanced by the addition of nanoparticles [17]. 

For example, the addition of ~1.3 wt. % of aluminum oxide nano-particles increased the 

burning rate of nitromethane by > 100%. This increase was attributed to the catalytic 

properties of the nanoparticle when dispersed in nitromethane. Apart from being used as 

additives in conventional propellants and fuels, novel energetic materials created by 

dispersing nanometallic particles in liquid oxidizers have also been studied. Risha et al. 

[22] considered a green energetic material consisting of nano-aluminum particles dispersed 

in water and studied the effects of pressure and particle size on the burning characteristics. 

The burning rate was inversely proportional to the particle diameter, and the pressure 
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exponent was in the range of 0.27-0.47, depending on the particle size.  While the overall 

burning rate was significantly higher than micron Al particle suspensions, the underlying 

physics were not discussed.  

Despite the enormous potential of nAl combustion in propulsion applications, there 

have been very limited theoretical studies reported in the literature that describe flame 

propagation in these systems. Sundaram et al. [18] performed a companion theoretical 

analysis for the experiments of Risha et al. [22] to investigate the effects of particle size 

and pressure on the linear burning rate, rb of nAl-H2O mixtures. Particle sizes ranging from 

38-130 nm were considered for chamber pressures in the range 1-10 MPa. They used a 

mean particle burning time, τb, as a surrogate to the particle burning rate, given by[27]: 

  2

1 1 2 2

3 3 4 4

exp( ) exp( )

exp( ) exp( )

p

b m

c a bT a b T d

p

m a b T a b T






 

 

where the free parameters c, a1, a2, a3, a4, b1, b2, b3, b4 are free parameters that are optimized 

to experimentally measured burning times. Exact values of the free parameters and further 

discussion are given in Table 6.2 and Section 6.2.4 respectively of this thesis.  

(1.1) 
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Figure 1.6 Comparison of nAl burning times predicted by Eq. 6.1 and experimental 

burning times [27] for a range of temperatures representative of the reaction zone of 

a flame  

 Figure 1.6 demonstrates the fidelity of the burning time model for a wide range of 

temperatures in the reaction zone of a nAl – water combustion system at 1 bar pressure, 

when compared with the experimentally obtained burning time values.[27] The burning 

time value at the ignition temperature (~1380 K) is > 1.5 ms, which reduces as we go to 

higher temperature due to the enhanced reaction rates. From Figure 1.6, it is quite clear that 

the mass burning time model captures the reaction kinetics explicably well.  

 Sundaram et al. [18] combined this independently benchmarked burning time 

model with an effective thermal conductivity model to model flame propagation in nAl-

H2O mixtures. The thermal conductivity of Al and water were assumed to be constant 

throughout preheat and combustion zones. An effective thermal conductivity was 

calculated using an effective medium theory approach, which was originally developed for 

micron Al particles without accounting for the size and random distribution of particles. 

Results of their studies are summarized in Figure 1.7. These methods overpredict rb for 

particle sizes 80 and 130 nm for all pressures when compared with experimental results. 
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The mean error in rb for 130 nm particle is ~25%, whereas for the 80 nm particles, the error 

increases to 31%. For 38 nm particles, the predicted quantitative and qualitative trends 

differ substantially from the experimental results. In addition, the mean error is more than 

50%, with a peak error in rb of 104% at 3.5 MPa. Risha et al. attributed this error to the 

adsorption of water molecules to the nanoparticle surface, which prevents diffusion 

towards Al atoms within the core.  

  

 

Figure 1.7 Comparison of linear burning rates predicted by the model[18] with 

experimental values as a function of chamber pressure for a) 38 nm, b) 80 nm, and c) 

138 nm particle suspensions 
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Recently, an attempt has been made to determine a suitable thermal conductivity 

model for heterogeneous metal-based energetic materials by investigating the effect of 

particle volume fraction on the burning rate of nickel-clad aluminum pellets in an argon 

environment [24].  

 

 

Figure 1.8 Comparison of linear burning rates as a function of nanoparticle volume 

fraction predicted by using different effective thermal conductivity models with 

experimental data [24] 

 

The volume fraction was varied in the range of 10-100% of theoretical maximum 

packing density. Four different classical effective thermal conductivity models were 

considered and their predictions are shown in Figure 1.8. In addition,  Maxwell-Eucken 

[28, 29] and Bruggeman [30] theories were unified. The resulting Maxwell-Eucken-

Bruggeman model offered the most accurate predictions of the burning rate for all loading 

densities. However, the mean error in predicted burning rates were still > 10%, and the 

large errors were attributed to nanoparticle agglomeration. While these works ascribe the 

large errors in burning rate prediction to various possible physicochemical phenomena, 
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there is sufficient grounds to hypothesize that this error is due to an oversimplification of 

nanoscale heat conduction physics and inadequate modeling of thermal conductivity. 

Note that for kinetically controlled combustion, heat conduction rates from the 

reaction zone to the unburnt reactants is crucial in sustaining a flame. If heat conduction 

rates are low, the thin reaction zone (flame) can get quenched before the reactants get 

preheated to the ignition temperature, or if it does not, the resulting flame will be slow-

propagating. If the conduction rates are very fast, heat is conducted out to the system walls, 

subsequently quenching the flame. Hence, it is certain that heat conduction is as important 

as chemical kinetics. Heat conduction rates can be characterized by the thermal 

conductivity of the system. Until now, thermal conductivity has not been given the 

attention it perhaps deserves, and has been approximated using somewhat ad hoc modeling 

approaches.  

In summary, there is a significant disparity between predicted burning properties 

and experimental results [18]. Since chemical reaction rates are accurately captured by the 

burning time model, it is reasonable to assume that the inadequate modeling of thermal 

conductivity could be a reason for this disparity. To ensure a high-fidelity combustion 

model, it is imperative that an atomistically informed heat conduction model be 

incorporated. An atomistically informed model should ideally account for how thermal 

conductivity changes at the nanoscale. Similar to reaction kinetics, another open question 

is: can higher burning rates be achieved by improving the heat conduction properties of the 

system? To answer such a question, it is important that we first understand the physics of 

heat conduction in a nano-suspension.   
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1.4 Thermal conductivity of nano-suspensions 

 Thermal conductivity, k, is the constant of proportionality in Fourier’s law of heat 

conduction that relates a heat flux density (Q) to the local temperature gradient ( T ), 

given by,  

Q k T   . 

 Thermal conductivity in solids is a property that consists of cumulative 

contributions from different types of heat carriers, namely electrons and phonons. A nano-

suspension is a dispersion of nanoparticles in a fluid medium. To model effective thermal 

conductivity of nAl-H2O mixtures, a fundamental understanding of the physics of heat 

conduction in nano-suspensions is required. The various components of the system are 

oxide coated nAl particles (Al core and Al2O3 shell) dispersed in a fluid as shown in Fig. 

1.9.  

 

 

Figure 1.9 Schematic diagram showing nAl particles coated by an oxide layer 

dispersed in water. Temperature profile shows initial (Ti) and final (Tf) temperatures. 

Nanoparticles move around within the system in random directions, as shown by the 

arrows. 

 

Ti 

Tf 

(1.2) 
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 As can be seen from Figure 1.9, at any given instance, the particles undergo 

Brownian motion (random motion due to the collision of fluid molecules on the surface 

resulting in a net unbalanced force) with velocities indicated by the arrows. In theory, the 

effective thermal conductivity of the system has the following components: i) thermal 

conductivity of the core-shell nanoparticle, ii) thermal conductivity of the fluid, and iii) 

contributions to thermal conductivity due the dynamic modes of heat conduction. Thermal 

conductivity of the core-shell particle has contributions from thermal conductivity of the 

Al core, the Al2O3 shell, and the Al/Al2O3 thermal interfacial conductance (TIC). 

Temperature dependent thermal conductivities of bulk Al and Al2O3 have been 

experimentally studied and documented [31-33]. Availability of thermal interfacial 

conductance data is very limited (only in the temperature ranges: 50-480 K) and the 

temperature dependence of conductance is unknown beyond 480 K [34, 35]. The thermal 

conductivity of different oxidizers has also been characterized and documented. The term 

dynamic mode is quite misleading. It was first introduced to explain the enhanced thermal 

conductivity in nanofluids. Nanofluids are a class of heat transfer fluids which are dilute 

(<1% volume fraction) suspensions of nanoparticles in a fluid medium. The dynamic 

modes of heat conduction in a nanofluid are associated with Brownian motion and 

nanolayering [36]. Brownian motion is the random thermal motion of suspended particle 

within the system. Nanolayering is the phenomenon by which the fluid forms a high-

density crystalline layer on the surface of the nanoparticle due to its adhesive properties. 

The existence of these dynamic modes is highly disputed [37-41]. There are numerous 

works in the literature [37, 38, 40] suggesting the presence of these dynamic modes, that 
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also propose theories to support it, though lately, these theories have been called into 

question [42-44]. In the following sections, we will look at these effects in detail.  

 

1.4.1 Size-dependent thermal conductivity of nanoparticles and the oxide layer 

The thermal conductivity of nanoparticles can be several orders of magnitudes 

lower than that of bulk material. There is a vast amount of literature available on size 

dependent thermal conductivity of materials [45, 46]. As particle size decreases, the 

percentage of surface atoms increases, and boundary scattering of heat carriers become 

increasingly significant. Due to the small size of the system, large mean free path (MFP) 

carriers undergo higher rates of scattering which limits their ability to contribute to heat 

transport. Chen et al. [47, 48] studied the effect of particle size on the thermal conductivity 

of a nanoparticle. Figure 1.10 shows the ratio of size affected thermal conductivity to bulk 

thermal conductivity as a function of particle size to carrier MFP (L/Λ). Three distinct heat 

conduction regimes can be identified: ballistic, quasi-diffusive, and diffusive regimes. In 

the ballistic regime, heat carriers undergo negligible collisions and heat is transported 

between the two ends of a material maintained at different temperatures by the direct 

motion of heat carriers between them, i.e., ballistic motion. In the diffusive regime, carriers 

undergo significant scattering, and energy diffuses across the material. The quasi-diffusive 

regime is a hybrid of the ballistic and diffusive regimes where a portion of heat carriers 

contribute ballistically while the remaining ones experience scattering. 
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Figure 1.10 Dependence of thermal conductivity on the particle size and carrier mean 

free path as described by Chen et al. [48] showing ballistic, quasi-diffusive, and 

diffusive regimes of heat conduction 

 

Hence, thermal conductivity in the nanoscale regime, as opposed to micro and 

macroscale regimes, is no longer simply a material property, but rather is dependent on the 

ratio of carrier MFP to system size. The heat carriers in solids are phonons and electrons. 

A phonon is a collective excitation of atoms in molecules or solids. A phonon is a quasi-

particle that represents a quanta of energy associated with a given normal mode of 

vibration. Phonons are the major carriers of heat in insulators and semiconductors. 

Electrons, especially free electrons, are a major heat transport mechanism in metals. The 

MFP of electrons is on the order of a few nanometers [49], and that of phonons can range 

from 100-104 nanometers [49, 50]. As the size of the system becomes comparable to or 

lower than the MFP of the heat carrier, the heat conduction mechanism ceases to be 

completely diffusive and begins to take on a quasi-diffusive or ballistic nature. Both an Al 
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nanoparticle and its oxide layer coating can be affected by size effects, warranting further 

investigation. 

 

1.4.2 Thermal interfacial conductance and resistance (TIC, TIR) 

 Interfacial heat transport can be characterized by thermal interfacial conductance 

(TIC), G, which is the inverse of thermal interfacial resistance (TIR), R. G is the constant 

of proportionality in the equation that relates heat flow, Q, at the interface of two materials 

to the temperature drop/discontinuity, ΔT, at the interface (Q = GΔT). TIC becomes 

increasingly important as particle size reduces because of the relatively large ratio of 

interfacial area to particle volume. It occurs due to the difference in vibrational properties 

of the two materials in contact. The importance of TIC in heat conduction can be 

understood via a simple analysis following the series resistance circuit analogy.  Let us first 

consider a series circuit model representing the interface of Al and Al2O3 as shown in 

Figure 1.11.  

 

 

 

 

Figure 1.11 Series circuit framework for evaluating thermal conductivity of 

nanoparticle 

  

 This circuit is a partial representation of the nano-aluminum particle with oxide 

coating. It consists of three main components: bulk Al whose thermal conductivity is 
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denoted by kAl, bulk Al2O3 whose thermal conductivity is denoted by kAl2O3, and the 

interface whose conductance is denoted by G. The thermal resistance of Al2O3, Al, and the 

interface are given as 2 3

2 3

Al O

Al O

L

k
,

Al

Al

L

k
, and 

1

G
respectively. L denotes the length of each 

material. The effective conductivity of the entire system including the interface, kint can be 

obtained from the net resistance from adding the component resistors in series: 

2 3

2 3

int

1Al O Al

Al O Al

L
k

L L

k k G


 

  
 
 

 

This concept can be extended to estimate the thermal conductivity of a passivated nAl 

particle of total diameter Dp, and can be given as: 

2 3

2 3

.
2
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p

p

Al O p

Al O Al
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L D
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
 
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 

 

Using Eq. (1.4), it can be found that if G ~ 1x106 W/m2K, then the interface 

comprises 90% of the total resistance. On the other hand, if G ~1x109 W/m2K, less than 

10% of resistance to heat flow originates from the interface. Therefore, depending on the 

magnitude of G, it is clear that it could be of the most crucial parameters in determining 

the net resistance of the medium to heat conduction. Furthermore, using different values of 

TIC and particle sizes, the effective thermal conductivity enhancement, keff/kf of a 

suspension of Al nanoparticles can be evaluated using the Maxwell model of effective 

thermal conductivity:  

2 2( )

2 ( )

eff p f p f

f p f p f

k k k k k

k k k k k





   
  

    
, 

(1.3) 

(1.4) 

(1.5) 
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where ϕ is the volume fraction, kp and kf are the thermal conductivities of particle and fluid 

respectively. Results of solutions of Eq. 1.5 for various hypothetical values of G and 

particle sizes are presented in Figure 1.12.  

 

Figure 1.12 Thermal conductivity enhancement of a nanoparticle suspension as a 

function of particle size for various interfacial conductance values 

 

These results show that for smaller particle size, thermal conductivity enhancement 

changes noticeably from 2.1 to 2.8 when G is varied from 50 to 250 MW/m2K. As the 

particle size increases, the sensitivity of thermal conductivity enhancements to changes in 

TIC is negligible. The TIC of Al/Al2O3 has not been widely studied, as there are only three 

Time-domain Thermoreflectance (TDTR) experimental data sets available in the literature 

[34, 35, 51]. G is available only for temperatures ranging from 50-480 K, in which case the 

value ranges from 10 MW/m2K to 300 MW/m2K. Experimental methods can get 

challenging and expensive especially from a standpoint of making clean and defect-free 

interfaces by epitaxial growth, and achieving high temperatures and/or pressures. For 
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instance, beyond 480 K, experimental measurement is challenging because Al atoms 

deposited on the Al2O3 surface tend to evaporate at higher temperatures. Realistically, a 

combustion system will have regions with temperatures far in excess of 480 K and for T > 

933 K, Al will be in molten state. Once Al melts, it loses its crystallinity and therefore its 

ability to conduct by an organized vibration of the lattice. Hence, it is safe to assume that 

beyond the melting point of Al, TIC of Al/Al2O3 interface could be significantly lower than 

that of the solid interface due to the loss of crystallinity of the Al lattice. Depending up on 

the magnitude of the drop in TIC value, the molten Al/Al2O3 could potentially act as the 

most significant resistance in the combustion system, which can be evaluated from Eq. 1.4. 

Nevertheless, the numerical values of TIC of Al/Al2O3 at higher temperatures are 

totally unknown at this point. Since experimentation is challenging, an alternative is to use 

theoretical/computational methods. Most of the existing methods are based on the phonon 

gas model (PGM), but none of the PGM-based methods have been able to achieve 

experimental validation, because the PGM does not correctly account for interfacial 

physics. Hence, a more fundamental approach to computing TIC is essential. 

 

1.4.3 Dynamic heat conduction mechanisms 

When compared with the thermal conductivity of dispersed solid particles, thermal 

conductivity of the surrounding fluid is two orders of magnitude lower. For example, 

consider a suspension of Al2O3 particles ~100 nm in diameter dispersed in water. The 

thermal conductivity of Al2O3 is ~30 W m-1 K-1 whereas that of water is 0.6 W/m-K. 

Therefore, the resistance offered by fluids to heat conduction is intrinsically quite large. In 
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such cases, one may naturally try exploring other possible features in nano-suspensions 

that can be exploited to reduce the thermal resistance of fluids. Towards this end, two 

important phenomena that prior researchers have investigated are Brownian motion and 

nanolayering [36]. Numerous attempts have been made to assess the contribution of 

different mechanisms to thermal conductivity enhancement and gain in-depth 

understanding of underlying processes and mechanisms. 

  The interfacial layer formed at the particle surface due to the adsorption of base-

fluid molecules possesses higher density and some order/crystallinity compared to the bulk 

fluid. It is hypothesized that such a layer acts as a thermal bridge, effecting heat transfer 

between the solid and fluid media, enhancing the transport. There is, however, little 

experimental data to corroborate this hypothesis. Over the last decade, there have been 

several attempts to include nanolayering in classical thermal conductivity models.[52, 53] 

Yu and Choi [52] developed a modified Maxwell model, by treating a particle-nanolayer 

core-shell complex dispersed in the base-fluid.  By judiciously choosing a constant 

nanolayer thickness of ~2-3 nm and nanolayer thermal conductivity of 10-100 kf, 

reasonable agreement with experimental data was achieved. The core-shell complex 

particle assumption was also used by several other researchers to develop effective thermal 

conductivity models [54, 55]. These models yield only qualitative descriptions of the 

variations of effective thermal conductivity with particle volume fraction and particle size. 

Molecular dynamics (MD) simulations [56] also support the notion of a dynamic interfacial 

layer in promoting heat transport rates of suspensions. Eapen et al. [56] conducted 

equilibrium MD (EMD) simulations to calculate thermal conductivity of platinum-xenon 

(Pt-Xe) nanofluids. Dilute suspensions of volume fractions < 1% were considered, and a 
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Lennard-Jones (LJ) potential was employed to model atomic interactions. Thermal 

conductivity was calculated using Green-Kubo relations. It was found that the potential 

energy correlation between particles and the fluid contributes to the enhanced thermal 

conductivity. The work suggests that the dynamic interfacial layer at the particle surface 

plays a significant role in enhancing heat transport properties of nanofluids. A correlation 

between thermal conductivity enhancement and nanolayer properties was, however, not 

reported. Non-equilibrium MD (NEMD) studies have also been conducted to evaluate the 

thickness and thermal conductivity of the nanolayer [57, 58]. Based on the radial 

distribution function and density profiles, the thickness of the nanolayer was estimated to 

be about 1 nm [58], and the in-plane thermal conductivity of the nanolayer was ~2.5 times 

the thermal conductivity of the base-fluid. Note, however, that these works suggest that 

nanolayer thermal conductivity does not substantially affect heat transport rates in 

suspensions. It should also be noted that in most of the MD studies, atomic interactions 

were modeled using the Lennard-Jones (LJ) potential, which does not always offer accurate 

descriptions of atomic interactions for many practical materials of concern. 

  It is well known that particles suspended in a base-fluid undergo Brownian motion 

[59]. This motion can further induce convection of fluid molecules in the vicinity of the 

moving particle [36, 60]. The role of Brownian motion in enhancing the thermal 

conductivity of nanofluids has also been studied extensively [41, 61]. Das et al. [41] 

measured the thermal conductivities of Al2O3 and CuO nanofluids for different 

temperatures and particle sizes. The temperature was in the range of 21-51 °C, and the 

particle size was 38.4 nm for Al2O3 and 28.6 nm for CuO. It was hypothesized that 

Brownian motion is significant only below a critical particle size and beyond a critical 
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temperature, both of which are particular to the suspended material. Brownian dynamics 

[61] and  MD simulations [42, 62] have also been performed to study the role of micro-

convection. Sarkar et al. [62] conducted EMD simulations to calculate the effective thermal 

conductivity of an argon fluid dispersed with copper nanoparticles. The particle volume 

fraction varied between 0.4 and 8.0 %. The temperature was maintained constant at 85 K 

using a Nose-Hoover thermostat. The LJ potential was used to model interatomic 

interactions. The calculated thermal conductivities were marginally greater than the 

predictions of the Hamilton-Crosser model. Furthermore, at low particle volume fractions, 

the self-diffusion coefficient of base-fluid molecules steadily increased with increasing 

particle volume fraction, suggesting that it is possible that the Brownian motion-induced-

micro-convection can result in a thermal conductivity enhancement. However, results from 

the EMD simulations of Babaei et al. [42], when incorporated with an order of magnitude 

analysis [63], suggest that the contribution of Brownian motion (and micro-convection) 

towards thermal conductivity enhancement is negligible. With the lack of consensus on the 

existence of these mechanisms, it is difficult to assess their quantitative contribution 

towards thermal conductivity enhancement in nAl-H2O mixtures. 

 

1.5 Research objectives 

 Based on the preliminary assessment, there is a significant gap in the understanding 

of thermal conductivity of nanosuspensions. Prima facie, interfacial conductance and size 

effects could be the crucial components of the effective thermal conductivity of the system. 

There is very limited experimental data on the TIC of Al/Al2O3 interface, of which none of 

the experiments have gone beyond 480 K. All the existing theoretical models to predict 
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TIC are based on the phonon gas model (PGM), which, to our knowledge, have not been 

able to predict TIC consistently accurately. In addition, size effects on thermal conductivity 

has also not been studied in detail or quantified yet for Al and Al2O3. The debate over the 

existence of dynamic modes of heat conduction also remains unresolved. Surprisingly, all 

existing combustion models appear to have negated their explicit inclusion. This could be 

the major reason that the models yield spurious results for the burning properties. In light 

of these issues, the specific questions to be answered in this thesis are:  

1) How to investigate size effects on thermal conductivity and how to quantify size 

effects on Al and Al2O3? 

2) How to predict thermal interface conductance (TIC) of Al/Al2O3 interface 

accurately? How does TIC vary beyond the melting point of aluminum? What are 

the vibrational modal contributions to interfacial conductance? 

3) Do Brownian motion and nanolayer actually contribute towards thermal 

conductivity enhancement in nanosuspensions? 

4) How to model flame propagation in realistic nanosuspensions by explicitly 

modeling particle thermal conductivity (with size effects and interfacial 

conductance)? What are the nanoscale heat transfer effects on combustion 

performance of nanoenergetic materials? 

 

1.6 Dissertation outline 

 This dissertation is organized into seven chapters. Chapter 2 deals with the 

theoretical framework required to understand and evaluate thermal conductivity in bulk 

crystals, interfaces, and nano-suspensions. It also outlines the one-dimensional flame-
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propagation framework used to study flame properties of a nanoenergetic material. 

Chapters 3 discusses the phonon transport properties in bulk aluminum and aluminum 

oxide via lattice dynamics and Boltzmann transport equation (BTE) calculations. This 

provides a foundation for understanding interfacial heat transport in the succeeding 

chapter. Chapter 4 presents a study of interfacial heat conduction in an Al/Al2O3 system 

and the underlying physics via the interfacial conductance modal analysis (ICMA) 

technique. Chapter 5 assesses the significance of dynamic effects, namely nanolayering 

and Brownian motion, on thermal conductivity enhancement in nanoparticle suspensions. 

Chapter 6 presents a numerical solution of a nonlinear energy equation and uses it to 

understand flame propagation in an energetic suspension of aluminum nanoparticles in 

water. The conclusions of the thesis are then summarized and suggestions for future work 

are presented in Chapter 7. 
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CHAPTER 2. THEORETICAL FORMULATION 

 In this chapter, the theoretical and numerical formulation of the computational 

approach used to solve the heat conduction problem and subsequent treatment of flame 

propagation in nanosuspensions is summarized. Firstly, the theoretical/computational 

methods used to investigate and model thermal conductivity of nanosuspensions are 

reviewed. Here, the formulation of density functional theory (DFT), molecular dynamics 

(MD), and lattice dynamics (LD) are reviewed and their application in solving the heat 

conduction problem is discussed. Then, the theoretical formulation of a one-dimensional 

flame propagation problem in a composite propellant is presented.  

 

2.1 Introduction 

 Flame propagation in nanosuspensions is a multiscale problem. Figure 2.1(a) shows 

a schematic diagram of vertically downward flame propagation in a mixture of nAl-H2O 

suspension clearly showing the temperature profile within the system. This is 

representative of the experimental setup of a constant pressure strand burner used to 

measure linear burning rates in propellants. [22] In this thesis, we will be attempting to 

study the nanoscale heat transfer effects on flame propagation from the standpoint of this 

particular system. 
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Figure 2.1 (a) Vertically downward flame propagation in a mixture of nAl and water 

showing the temperature profile within the system, and (b) Schematic of constant-

pressure strand burner 

 

 To solve this flame propagation problem, we devise an atomistically informed 

mesoscale simulation strategy. Herein, the heat transport properties at the small scales are 

precisely evaluated and mathematically modeled as a function of various parameters 

(particle size, temperature, etc.), which are later used as inputs in a mesoscale numerical 

framework to solve the flame propagation problem. From Chapter 1, it is quite clear that 

in order to adequately model the effective thermal conductivity of nanosuspensions, we 

need to evaluate size-effects on the phonon thermal conductivity of Al and Al2O3, the TIC 

of Al/Al2O3 interface, and the role of Brownian motion and nanolayering, thereby 

respectively addressing the first three thesis questions. Insights from these studies would 

help in building a macroscale effective thermal conductivity model for nanosuspensions. 

Using this effective thermal conductivity model in conjunction with an independently 

benchmarked chemical kinetics model, a steady state solution to the flame propagation 

problem can be obtained. 
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 Firstly, the phonon thermal conductivity of Al and Al2O3 can be evaluated by 

solving the phonon Boltzmann transport equation (BTE) under the relaxation time 

approximation (RTA). Inputs to this solution framework can be obtained from DFT-LD 

(or first principles LD) calculations. Likewise, TIC of Al/Al2O3 also needs to be evaluated 

from first principles. Conventionally, TIC of material interfaces are evaluated with the help 

of Lennard-Jones (LJ) potential in an MD framework due to lack of better options. 

However, in the Al/Al2O3 system, there is chemical bonding at the interface, and it may be 

wrong to assume that there are only van der Waals forces (as modeled by the LJ potential). 

Therefore, this interface needs to be modeled using a charge transfer interatomic potential 

obtained from the first principles.[64] An open question in TIC evaluation is on the role of 

electrons. The role of electrons in heat conduction across a metal/metal-oxide interface has 

not been conclusively proven but there is sufficient grounds to believe that it could be 

negligible for Al/Al2O3 interface due to the unavailability of free electrons on the Al2O3 

side. Therefore, if the experimental values of TIC can be obtained computationally from 

merely including phonon contributions, then it can offer some evidence to the argument 

that the role of electrons is negligible. 

 First principle calculation methods like DFT attempt to find an approximate 

solution of Schrödinger wave equation [65]. Properties obtained from DFT calculations 

can be used as inputs in lattice dynamics (LD) [66] and molecular dynamics (MD) 

calculations [67]. LD can be used to study phonon properties in solids. Outputs (interatomic 

force constants) from LD calculations can be used to evaluate phonon properties like 

dispersion relations, density of states (DOS), and thermal conductivity. Size effects on 

thermal conductivity can also be quantified by evaluating the thermal conductivity 
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accumulation as a function of phonon mean free path (MFP). Similarly, MD is a promising 

tool for evaluating material processes and properties (Example: TIC) characterized by 

length scales ranging over tens of nanometers and timescales of over tens of nanoseconds. 

In MD, inputs from DFT calculations in the form of interatomic potentials (or force-fields) 

are used to evaluate the forces on atoms and thereby observe the time evolution of a system 

of interacting atoms by integrating these forces.[68] Once a quantitative and qualitative 

understanding of all the nanoscale properties are gained, they can be incorporated in 

macroscale thermal conductivity models of heterogeneous materials and used in flame 

solvers. Flame solvers are meso/macroscale solutions to problems wherein the energy 

equation is solved by finite difference methods (FDM), finite element methods (FEM), etc. 

In this chapter, a step-by-step account of theoretical formulation from nano to macro scales 

is given.  

    

2.2 Density functional theory 

2.2.1 Wavefunctions and Schroedinger’s equation 

 To model atomic interactions from first principles, and to describe the behavior and 

bonding associated with valence electrons, quantum mechanics is necessary. In quantum 

mechanics, electrons are described by their wavefunction governed by the Schrödinger 

wave equation. The energy of a system can then be computed from the time-independent, 

non-relativistic form of the Schrödinger equation given as: 

),...,,(),...,,(ˆ
2121 NiiNi rrrErrrH


 

 
(2.1) 
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where i is the imaginary number, h is the Planck constant, Ψ is the wavefunction, Ĥ is the 

Hamiltonian operator, and r is the position vector. With the Born-Oppenheimer (BO) 

approximation [65], the motion of atomic nuclei and electrons in a molecule can be 

separated. It allows the wavefunction of the molecule to be broken into its electronic and 

nuclear components, expressed as:  

total e n     

where subscripts e and n denotes electronic and nuclear components respectively. The BO 

approximation makes it possible to compute the wavefunction in two less complicated 

consecutive steps compared with an otherwise complex partial differential eigenvalue 

problem in 162 variables (the spatial coordinates of the electron and the nuclei).[69] Under 

the BO approximation, the energy of electrons can be given as: 

elecelecelecelec EH  ˆ
 

Ĥ Ψ (x1,x2,…,xN; R1,…,RNn) = E Ψ (x1,x2,…,xN; R1,…,RNn),  

 

where x1,x2,…,xN represent the spin and Cartesian coordinates of the electrons in the 

molecule, and R1,…,RNn are the nuclear coordinates of the Nn  nuclei in the molecule.  The 

Hamiltonian operator is given by, 

H = Te + Tn +Ven +Vee +Vnn, 

where T represents kinetic energy and V represents potential energy. Subscripts e and n 

represent electronic and nuclear respectively. In order to compute the total energy, we need 

not know the complex 3N dimensional wavefunction. Evaluating the full wavefunction is 

computationally expensive. Hence a useful quantity called the electron probability function 

(2.4) 

(2.3) 

(2.5) 

(2.2) 
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can be utilized to approximate the energy of the system. This serves as the basis of DFT 

wherein the energy of the system is a functional of the electron density. Electron density 

can be given as:  

NN xdxddsxxxNr


..|),...,,(|...)( 21

2

21  
 

And the energy of the system is given by:  

][][][][  eeext EETE 
 

Where Eext is the energy due to interaction with external field, and Eee is the electron-

electron interaction energy. Among these, Eext is straightforward, and can be calculated 

from the applied external field:  

rdrEE extext


 )(ˆ][ 

 

  The electron-electron interaction energy can be computed from Coulomb 

interaction (electrostatic energy), J, and the total energy can be re-written as:  

[ ] [ ] [ ] [ ] [ ].s xc extE T J E E         

Here Ts is the non-interacting kinetic energy, and Exc is the exchange-correlation energy, 

which represents the sum of error made in assuming classical nature to non-interacting 

kinetic energy and electron-electron interaction energy.  

  Ts and ρ can be evaluated by the Kohn-Sham approach. The Kohn-Sham approach 

relies on a fictitious reference system of non-interacting electrons introduced to have the 

same electron density as the system of interest [70]. These electrons move in a potential 

that takes into account the actual forms of electron correlation and the difference between 

the kinetic energy functional of the reference system and the real system. The kinetic and 

(2.7) 

(2.8) 

(2.9) 

(2.6) 
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electron-electron functionals can be approximated via Kohn-Sham approach, in which the 

density of electrons are given as a function of their orbitals, ϕi as:  

 
N
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  The Kohn-Sham approach lays the foundation for DFT calculations. In DFT, 

material properties are evaluated from the total energy. Therefore, the primary interest is 

to approximate Exc with high levels of accuracy. There are several approximations such as 

local density approximation (LDA), generalized gradient approximation (GGA), hybrid 

exchange functional, etc. In this research, LDA is used for all DFT calculations because 

LDA is sufficiently accurate to study phonon properties of Al and Al2O3 at a much lower 

computational expense[71]. LDA may be mathematically represented as: 

 rdrrE xc
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is the Dirac/Slater exchange energy of the gas.   

 There are several ways to implement DFT calculations. Throughout this 

dissertation, a self-consistent field (SCF) method is used to obtain the energy surface of 

the given crystal. SCF is an iterative method that involves selecting an approximate density 

function, and solving the Kohn-Sham equation until the convergence criteria are met. Only 

(2.12) 

(2.13) 

(2.11) 

(2.10) 
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the energies of the outer shell electrons are evaluated and the norm conserving Perdew-

Zunger scalar relativistic pseudopotential was used to describe the core electrons.[72] The 

basis set chosen is projector-augmented wave formalism.  

 In this thesis, DFT calculations are used for two different purposes. 1) To generate 

large datasets of material properties that are used as inputs in LD and MD calculations, and 

2) validate the accuracy of the empirical interatomic potential in predicting phonon 

properties. Firstly, to actualize a DFT-LD calculation of phonon properties of materials, 

we need to supplement the LD framework with large number of randomly perturbed 

geometries of crystal structures and the corresponding forces acting on atoms. This can be 

achieved via DFT calculations wherein high-throughput SCF calculations are performed 

following the random perturbation of atoms from their equilibrium positions. SCF 

calculations can be performed to find the resulting forces acting on the atoms. The 

displacement and force datasets can be collected and provided as input to the LD 

framework. Secondly, TIC of Al/Al2O3 interface needs to be calculated using MD 

simulations, which require interatomic potentials as input. Hence, before performing large 

scale MD simulations, it is important to benchmark the potential against the DFT data. The 

following sections describe how DFT results can be used in conjunction with other MD 

and LD to investigate heat conduction properties. 

 

2.3 Molecular dynamics (MD) 

 Molecular dynamics (MD) is a computer simulation technique where the time 

evolution of a set of interacting particles (atoms, molecules, coarse-grained structures, etc.) 
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is obtained by numerically integrating their equations of motion [67]. In classical molecular 

dynamics, the equation of motion is Newton’s law:  

i i iF m a , and 

2

2

i
i

d r
a

dt
  

where F is the force, m is the mass, and a is the acceleration on particle i. Typical MD 

simulations can be performed on thousands of atoms for several picoseconds to 

nanoseconds. With the rapid progresses in parallel computing, it is now possible to simulate 

multimillion atom processes for several thousand nanoseconds in a matter of certain weeks 

[73]. The following sub-sections on potential functions and time integration gives an 

elaborated introduction to practical MD, and the sub-section on fluctuation-dissipation 

theorem presents the formalism for post-processing heat current data, and obtain thermal 

conductivity values. 

 

2.3.1 Potential functions 

 In Eqn. 2.14, force is calculated as the negative gradient of the potential energy, V 

of the system:  

 

   

,....,
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
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
. 

Here, ϕ is the interaction potential. Choosing an appropriate potential is the crux of a MD 

simulation; the fidelity of the results is wholly dictated by the potential used. Eq. 2.17 

represents an example potential function that only includes pairwise interactions. There are 

more complex 3, 4, and many-body potentials as well, but one simple 2-body potential is 

the LJ 12-6 potential, given by: 

(2.16) 

(2.14) 

(2.15) 
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12 6
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 
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where, 1/r12 term represents the repulsion that dominates are small distances, while 1/r6 

models a van der Waals attraction, ε denotes the depth of potential well and σ, the hard 

sphere diameter. The LJ potential is one of the simplest potential functions used to model 

van der Waals interactions.  

  A complete review on all the existing potentials is beyond the scope of this 

dissertation. As a general rule, one should choose potentials based on what properties are 

optimized. If calculating phonon thermal conductivity is of interest, one may resort to using 

the phonon-optimized potentials developed by Rohskopf et al.[74] by optimizing the free 

parameters of a potential functional form to phonon properties obtained from the first 

principles. They suggest that if the phonon density of states (DOS), dispersion relations, 

and thermal conductivity can be accurately predicted by a potential, then it is optimized for 

phonons, and can be used in large-scale MD simulations aimed at evaluating more 

computationally challenging properties (like TIC for example) that involve phonon 

interaction and transport. When considered more carefully, their work also provides a 

routine to benchmark other existing interatomic potentials against the phonon properties 

obtained from the first-principles. Hence, this work provides us means to assess the 

capability of any potential function to reproduce the phonon properties before they can be 

used in massive MD simulations. Below is an abbreviated summary of all the potential 

functions used in the current research in the increasing order of complexity. Additional 

information on each, including free parameters, can be found in Appendix A.1. 

 

(2.17) 
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2.3.1.1 Extended simple point charge (SPC/E) potential 

  The extended simple point charge (SPC/E) is the most widely used potential for 

predicting thermal properties of water [75]. As the name suggests, a point charge is given 

to hydrogen and oxygen ions of the water molecule held together by a bond length and 

bond angle restriction. The potential energy is given as: 

12 6

4
i jq q

V C
r r r

 

    

      
     

 

where q represents charges on atoms and C is a fitting parameter. SPC/E potential is used 

in this research to model atomic interactions in water, which is one of the components of 

the nanosuspension used in combustion applications. In Chapter 5, we have compared the 

results of the thermal conductivity values predicted by the SPC/E potential with 

experimental results and prior computational works.  After making sure that the predictions 

of SPC/E potential are reasonably accurate for a wide range of temperatures, MD 

simulations are carried out for a system of Al2O3 nanoparticle suspended in water. In this 

system, Vashishta potential[76] is used to model atomic interactions in Al2O3, as described 

in the next section. 

 

2.3.1.2 Vashishta potential 

  The Vashishta et al. potential is used to simulate atomic interactions in the Al2O3 

system [76]. As the material involves more interactions from electrostatic forces, dipoles, 

steric effects, etc., LJ potential ceases to give accurate results. In response to this, advanced 

N-body force-fields were developed to model the forces. In the present study we use 

Vashishta et al. potential for alumina, given by: 

(2.18) 
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The two-body term includes steric-size effects, coulomb interactions, charge-induced 

dipole, and van der Waals interactions. The three-body term includes the product of spatial 

dependent factor dependent factor and angular dependent factor to describe bond-bending 

and bond-stretching characteristics.    
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Here Bjik is the strength of three-body interaction, θjik the angle formed by rij and rik, and Θ 

(r0 – rij) the step function. As mentioned in section 2.3.1.1, the Vashishta et al. potential is 

only used to model atomic interactions in Al2O3 nanoparticle suspended in water system. 

The following two sections describe the potential functions used for modeling Al and the 

Al/Al2O3 interfaces respectively.  

 

(2.19) 

(2.20) 

(2.23) 

(2.22) 

(2.21) 
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2.3.1.3 Embedded atom method (EAM) potential 

 For transition metals and metal-alloys, the embedded atom model (EAM) is a very 

common many-body potential used for its ability to electron cloud around nuclei [77]. The 

EAM potential takes the form:  

1
( ) ( )

2
i ij ij

i j i j

V F r r   
 

 
  

 
  , 

where ϕ is the pairwise potential energy, ρβ is the contribution to the electronic charge 

density from atom j of type β at the location of atom i, and F is an embedding function 

that represents the energy required to place atom i of type α into the electron cloud. For a 

typical Al/Al2O3 interface structure used in Chapter 4, atomic interactions on the Al side 

need to be modeled by explicit inclusion of the effects of the electron cloud. Hence, EAM 

potential is used for this purpose. However, in order to model the interface, we also need 

to include the bonding characteristics, which is accomplished by using a charge-transfer 

interatomic potential such as the Streitz-Mintmire potential,[78] as described in the 

following section.  

 

2.3.1.4 Streitz-Mintmire potential 

 To model material interfaces that involve charges, it is more convenient to employ 

a dynamic charge transfer interatomic potential. The Streitz-Mintmire (SM) potential is a 

more complicated variable charge interatomic potential designed specifically for Al/Al2O3 

interface, which explicitly includes charge transfer between anions and cations in the 

material [78] during the formation of an interface. The SM potential has been used to 

(2.24) 
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adequately describe the elastic properties, surface energies, and surface properties of 

sapphire in prior works [78]. We have also confirmed the suitability of using SM potential 

in predicting phonon properties by comparing with DFT-LD results for Al and Al2O3 

crystals independently (shown in Appendix B). Therefore, SM potential is suitable for 

modeling interfacial phonon mediated heat transport. It involves an EAM potential coupled 

with a pairwise interaction. Characteristics of this potential are long range electrostatics 

and variable charges: 

1
( ) ( , , )

2
es i ij ij i j

i i j

E E q V r q q

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Here, Ees represents the electrostatic energy of a set of interacting atoms with atomic 

charges qi, which is given as the sum of atomic energies, Ei, and the electrostatic interaction 

energies between all pairs of atoms, Vij. Expanding these terms, we get: 
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where, λ is the electronegativity, Z is effective-core charge, and f describes the radial 

distribution of the valence charge in space. 

 Since we have discussed all the interatomic potential functions used in MD 

simulations, let us review the major time integration algorithms and the rationale behind 

choosing the right algorithm for the different MD simulations used in this research.  

 

 

(2.26a) 

(2.27b) 

(2.31c) 

 

 

(2.25) 



 42 

2.3.2 Time integration 

 Time integration is the engine of an MD simulation. Acceleration on each atom can 

be obtained from the forces, which may be integrated to get velocities of atoms, which 

when integrated give their new positions. New spatial positions give rise to a new set of 

atomic forces, and the iteration continues, so that one can track the time dependent 

positions and velocities of all the atoms, which is referred to as the trajectory. The sampling 

of the continuous trajectory in time continues until enough data is accumulated to calculate 

desired properties.  

 MD time integration algorithms are usually based on finite difference methods, 

where time is discretized on a finite grid. In these approaches, the distance between 

consecutive points on the grid is the time-step size, Δt and the time evolution of the system 

can be followed for long times by integrating over time steps. Two popular integration 

methods for MD calculations are the Verlet algorithm and predictor-corrector algorithms 

[79]. The Verlet algorithm has a truncation error ~ O(Δt4) for each integration time step, 

while the round-off errors decrease more slowly with decreasing Δt, and dominate in the 

small Δt limit. Therefore, it is important to choose the right time step size for MD 

simulations to ensure that these errors are sufficiently suppressed.  

 In this research, the Verlet algorithm is used, which involves the addition of two 

Taylor expansions in time, for the position of an individual atom r(t). One expansion is 

forward in time, while the other is backwards in time. The scheme can be written as: 

2 3 4

2 3 4
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Here r is the position vector, a is the acceleration, and b is the third derivatives of r with 

respect to t. Adding these two expressions result in, 

2 4( ) 2 ( ) ( ) ( ) ( )r t t r t r t t a t t O t         

This is the basic form of Verlet algorithm. From this, the acceleration of an atom at time t 

can be calculated as: 

( ) (1/ ) ( ( ))a t m r t    

The velocities of atoms at time t can then be calculate from the expression: 
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 Verlet algorithm was chosen over other time integration algorithms is because of 

its relatively high numerical stability in terms of largest allowable time step, which is 

especially useful when the processes in the system has an ample separation of time scales. 

In addition, Verlet algorithm also allows one to obtain at time t + Δt rather than t + Δt/2 in 

other time integration schemes. 

 Now that we have discussed all the essential features required to get a typical MD 

simulation running and produce data, let us look at theoretical formulations that can be 

used to evaluate thermal transport properties in materials. The following section 

summarizes fluctuation-dissipation theorem and the Green-Kubo relations for thermal 

conductivity.  
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2.3.3 Fluctuation dissipation theorem: Green-Kubo relations 

 Equilibrium MD (EMD) and non-equilibrium MD (NEMD) are the two commonly 

used techniques to predict thermal conductivity. In NEMD, thermal conductivity is 

determined using Fourier’s law of heat conduction [7], wherein a heat flux is imposed on 

the system and the resulting temperature gradient is calculated; the reverse can also be 

done, by calculating a heat flux from an imposed temperature gradient. In either case, when 

small nanometer size supercells are used or temperature differences greater than ~10 K are 

observed/imposed, the result is extremely high heat fluxes that often exceed what is 

observed terrestrially and/or non-linear temperature profiles. Size effects may also be 

present, as the system must be large enough, in the case of solids, to contain long 

wavelength and long mean-free-path (MFP) phonons [8]. This is because the artificially 

imposed boundary conditions used to impart the heat flux tend to perturb the atom’s natural 

motions, and consequently they artificially “scatter” phonons.  

In EMD, the system is in equilibrium throughout the simulation. EMD is sometimes 

preferred over NEMD, owing to its lesser size-dependency for solids. The system size 

should be large enough to include all the necessary wavelengths, but not necessarily the 

MFPs [7, 9, 10], as periodic boundary conditions (PBC) allow phonons to propagate past 

the boundaries and re-enter through the opposite face without being scattered. EMD can 

be combined with the fluctuation-dissipation theorem to calculate thermal conductivity 

[80]. Here, the linear response of the system to a small thermal perturbation is determined 

from the time history of the equilibrium fluctuations of the volume averaged heat flux. The 

thermal conductivity, k, is given by the Green-Kubo (GK) relation as,  
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where the heat current vector S was derived by Hardy [81] as: 
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     
  , 

where V is the volume of the system, T the equilibrium temperature, kB the Boltzmann 

constant, p the momentum, v the velocity, and r the position, m the mass,   the potential 

energy, and summation is over atoms denoted by i. The term in angular brackets represents 

the heat current autocorrelation function (HCACF). In Eq. 2.33, the first term is the 

convective term and the second is the virial term. In the GK formulation, thermal 

conductivity depends on the time taken for fluctuations to lose correlation with their 

original values. Studies have shown that fluctuations in crystalline materials are correlated 

for a longer time, resulting in higher thermal conductivity [82, 83]. Conversely, 

fluctuations lose correlation quickly in amorphous materials and liquids [84]. 

For homogeneous systems, Eq. 2.33 is sufficient to represent the heat current. 

However, for multicomponent systems, self-diffusion of species is possible. In order to 

account for it, the convective term may be corrected with the partial enthalpy, [56] he of 

each species a: 

2

, ,

1 1 1

1
.
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aNN n
i i

conv i e a a i

i a ii i

p p
S U h v

V m m  

  
    

  
    

From thermodynamics, enthalpy H = E + PV. This can be expressed statistically as:  

 

(2.32) 

(2.33) 

(2.34) 
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where the sum of the first two terms corresponds to the total energy E, which is the sum of 

time-averaged kinetic energy, Ki and potential energy, Vi of particles of species, a. The 

terms in the brackets represent the PV term, which includes the kinetic and virial terms. It 

was shown by Babaei et al. [43] that the properties of multicomponent systems are sensitive 

to a non-zero he, which if not subtracted from convective heat flux can reflect in HCACF, 

which when integrated, results in anomalous thermal conductivity values.  

In summary, GK relations when used in conjunction with EMD can help us gain a 

quantitative and qualitative understanding of the thermal conductivity of various materials. 

Now let us review a similar treatment for TIC based on the fluctuation-dissipation theorem. 

MD, when combined with the vibrational modal information has the potential to gain 

mode-level information on the TIC. Modal information can be gained from lattice 

dynamics (LD) calculations.[74, 85-88] Therefore, before getting into the nuances of such 

formulations, it is important to have some fundamental understanding on the LD 

formulation.  

 

2.4 Lattice Dynamics (LD) 

In addition to using MD, LD is also used in this research to determine the 

vibrational properties of the lattice. Specifically, LD can be used to evaluate the phonon 

thermal conductivity, phonon DOS, and polarization vectors of crystal structures. LD is a 

(2.35) 
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generalized formulation that can provide a clearer picture into the spectral characteristics 

of phonons. To describe the formulation, a simple one-dimensional chain is considered as 

an example and then we move to a more general formulation involving the solution of an 

eigenvalue problem.  

 

Figure 2.2. One-dimensional bead-spring chain representing atomic arrangement in 

a crystal 

 Consider the one-dimensional chain of atoms in Figure 2.2.  This is a bead-spring 

model where every atom is connected with a spring to two neighboring atoms on either 

side. Hence, the equation of motion for the nth atom in the chain is a discretized version of 

the wave equation: 

2 2 2
2

1 12 2 2
. ( ) ( ) . ,n n n

n n n n n n

d u u u
m K u u K u u m Ka

dt t x
 

 
     

 
 

where uk is the displacement from equilibrium, the subscript n denotes its position in the 

chain, K is the spring constant, 

2

2

nu

t




is the acceleration and m is the mass of the atom. 

Assuming infinite length for the chain and taking the continuum limit, solution to un can 

be denoted by a series of plane waves as: 

exp( ( )),nu A i t k n a         

(2.36) 

(2.37) 
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where k is a wavevector equal to 
2


, where  is a wavelength corresponding to the 

wave's spatial periodicity and   is the vibrational frequency. Plugging the solution back 

into Eq. 2.37, we get the mode frequencies as a function of wave vector, or dispersion 

relation, as: 

.
2 . sin .

2

K k a

m


 
  

 
 

This can be generalized to three dimensions. Rewriting 2.38 in matrix form for a single 

term in the infinite series plane wave solution, we get:  

2( , ). ( , ) ( ). ( , ),   k e k D k e k  

where ( , )e k is a complex vector representing the polarization direction for the mode and 

D(k) is the dynamical matrix containing the mass and stiffness information related to a 

particular propagation direction. The elements of the dynamical matrix are generalized for 

more than one basis atom.  

 

2.4.1 Calculation of interatomic force constants and phonon properties 

We start by evaluating the interatomic force constants (IFC) by LD calculations, 

which can be used to analyze phonon properties. The potential energy of interacting atoms 

must be approximated via Taylor expansion as a function of atomic displacement with 

respect to equilibrium potential energy as: 

(2.38) 

(2.39) 
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 Here, ( )u   is the atomic displacement of the κth atom in the lth unit cell along the μth 

direction, and 
1 1 1( ; ; )

n n n      is the nth order IFC. Therefore, a ‘model’ force 
LD

,i tF

can be obtained as a linear function of IFC’s by differentiating U with respect to ui, where 

( , , )i    is the coordinate triplet. The objective is to find the right set of IFC’s so that 

the 
LD

,i tF is the best approximation of 
DFT

,i tF i.e. forces obtained from first principles 

calculations. This can be performed by a least-squares fitting strategy:  

2 DFT LD 2
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i t i t

t i

F F  ‖ ‖  

Here, 
2 is the squared error in forces or the residual of fit summed over m distinct atomic 

configurations. The fit can be evaluated by σ defined as: 

2
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F
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 
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The interatomic force constants can be then used to calculate the phonon dynamical matrix 

given by:  
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(2.40) 

(2.44b) 

(2.41) 

(2.42) 

(2.43) 
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where Mκ is the atomic mass of atom κ, and q represents the coordinate vector in reciprocal 

space. For example, the reciprocal space can be discretized by q x q x q wave vector grids. 

Numerical value of q determines the coarseness/fineness of the grid space i.e. if the 

numerical value of q is low, the grid is coarse whereas a large value of q corresponds to a 

fine grid. Number of q points have to be chosen based on a tradeoff between computational 

costs and accuracy requirements for the properties to be calculated.  

 By diagonalizing the dynamical matrix, the eigenvalues 
2

jq  (j = 1, 2, …, m) and 

corresponding eigenvectors jqe  for each q point can be obtained, where jqe  is a column 

vector consisting of atomic polarization ( ; )e j  q . Most importantly, note that the number 

of eigenvectors, m = 3Nκ. Now, eigenvalues can be written as:  

2 * T( ) ( ) .j j jD q q qe q e  

From the information available, several properties of phonons can be extracted. The 

following sections review the various phonon properties and how to formulate them 

mathematically. 

 

2.4.2 Group velocity of phonons 

The first important property to be evaluated is the phonon group velocity. It is the 

speed of propagation of an acoustic phonon, which is also the speed of sound in the lattice. 

The group velocity of the phonon mode jq  can be given as: 

(2.44) 
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Numerically, this can be evaluated using a central difference scheme in the q-point space, 

as: 

.
2

j j

j
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q q q q
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2.4.3 Phonon density of states (DOS) 

Phonon density of states (DOS) is another important property that can be studied 

using LD calculations. DOS represents the number of phonons per interval of energy (or 

frequency) available to be occupied. The one-phonon DOS is given by: 

,

1
DOS( ) ( ).j

jqN
     q

q

 

The two-phonon DOS is given by:  

1 1 2 2 1 2

1 2 1 2

,

, , ,

1
DOS2( ; ; ) ( ) ,j j

j jqN
           q q q q q G

q q

q  

where G is a reciprocal lattice vector. The sign   represents absorption and emission 

processes respectively, and δ represents the delta function. Phonon DOS can be usually 

evaluated fairly accurately from a coarse phonon wave vector grid. [50] For instance, prior 

(2.46) 

(2.45) 

(2.47) 

(2.48) 
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calculations[50] based on a q-point convergence test show that a relatively coarse 4x4x4 

grid space can give a reasonably accurate prediction of DOS.  

 

2.4.4 Phonon thermal conductivity 

 Finally, the most important property: phonon thermal conductivity can be evaluated 

by solving the phonon Boltzmann transport equation (BTE) given by: 

0 ( )
. . ,

( , )

f f E,Tf
f f

t m 


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
q v

F
v

q k
 

where v is velocity, F is external force acting on the phonons, and 
m

F
 is the acceleration 

and the symbols q  and  v denote gradients with respect to position and velocity 

respectively. The phonon thermal conductivity, ph ( )k T
 can be calculated by solving the 

phonon BTE under relaxation time approximation (RTA) giving the following expression:  

ph

,

1
( ) ( ) ( ),j j j j

jq

k T c T v v T
N

   


 q q q q

q

 

where /j j jc n T  q q q and ( )j Tq  is the phonon lifetime. The phonon lifetime can be 

approximated by the Mattheissen’s rule as: 

1 anh iso( ) 2( ( ) ).j j jT T    q q q  

(2.49) 

(2.50) 

(2.51) 
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where is the phonon line-width. The superscripts anh and iso denote anharmonic and 

isotopic respectively. 
anh

j
q can be calculated as: 





1 1 2 2

1 2 1 2

anh (3) 2
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where, 
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1Bk T

n

e


 



 is the Bose-Einstein distribution for phonons, and V is the matrix 

element of the cubic Hamiltonian between the different eigen states.[89]. 

iso

jq can be calculated as: 
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where g2 is a dimensionless factor given by 
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 , fi is the fraction 

of the ith isotope of an element having mass mi, and Mκ is the average mass of the system.  

 Phonon wave vector grid requirements for evaluating thermal conductivity is higher 

than that of DOS. Prior studies have shown that a fine 28x28x28 grid space is required to 

obtain a converged value of phonon thermal conductivity of metals and 

semiconductors.[50] Furthermore, the phonon thermal conductivity spectra ph ( )k    can 

also be calculated as:  

(2.52) 

(2.53) 
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When spectral thermal conductivity is integrated over the phonon frequency, we get the 

total phonon thermal conductivity: ph ph
0

( ) dk    


  , where 
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Thermal conductivity accumulation is an important property that can be studied using LD 

calculations. This can be given as:  

ph,acc

,

1
( ) ( | | ),j j j j j j

jq

k L c v v L
N

     


 q q q q q q

q

v  

where ( )x  is the step function, and | |j jq qv represents the phonon MFP. Now that we 

have discussed the necessary equations and solution methods to investigate phonon 

properties of pure crystal, let us look at a method to investigate interfacial conductance that 

is based on MD and LD. 

 We are now in a position to combine LD with MD to perform modal analysis of 

TIC. By solving the eigenvalue problem shown in Eq. 2.44, we can obtain the complete 

eigenvector basis set of the vibrational modes in an interface structure. This eigenvector 

basis set can be supplemented with an MD simulation to decompose interfacial heat 

transport properties across the eigen modes. The following section reviews a mathematical 

formulation for TIC. Firstly, a mathematical formulation for total TIC value based on 

(2.55) 

(2.56) 

(2.54) 
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fluctuation-dissipation theorem is discussed. Following that, formulation for the modal 

decomposition is also reviewed.  

 

2.5 Interfacial Conductance Modal Analysis (ICMA) 

2.5.1 Total conductance 

 Interfacial conductance modal analysis (ICMA) is a hybrid of LD and MD. It 

combines an eigenmode decomposition method by McGaughey and Kaviany [90] with 

equilibrium molecular dynamics (EMD) conductance expression derived by Barrat et al. 

[91] and Domingues et al. [92]. As the name suggests, it gives eigenmode level details on 

interfacial conductance, and can be used to study the effects of anaharmonic effects and 

the effect of stress, defects, functionalization, etc. on interfacial conductance. 

 Consider a system of two materials A and B consisting of NA and NB atoms 

respectively where these atoms vibrate about their equilibrium positions. When these two 

materials are brought together to form an interface, within the harmonic limit, 3(NA + NB) 

eigen solutions can be obtained from lattice dynamics calculations. The atomic 

displacements and velocities can be expressed in terms of these eigen modes as:  
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(2.57) 

(2.58) 
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Here the summations are made over the n eigenmodes, and ix , ix , mi are the displacement 

from equilibrium, velocity, and mass of atom i respectively. The symbol en,i is the 

eigenvector with atom i. The normal mode coordinates for position and velocity of the nth 

mode are given respectively by nX  and nX . By inverting eqns. 2.57 and 2.58, we obtain  

 

1/2
*

1/2 ,
i

n i n i

i

m
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1/2
*

1/2 ,i n
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i
n iX
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N
 x e .   

Now the summation is over atoms i, and the * denotes complex conjugate of eigenvector.  

 Following the approach of Barrat et al. [91] and Domingues et al. [92], the 

instantaneous heat flow across the interface can be given as follows. In a microcanonical 

ensemble, the rate at which energy transmitted across the boundaries of material A is equal 

to the rate of change of energy in material B, at any instant. Hence from statistical 

mechanics, the Hamiltonian of such a system is: 
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Consequently, the Hamiltonian of an individual atom is:  
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From Eqn. 2.61 and 2.62, the instantaneous energy transfer across the interface of A and B 

can be expressed as 
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For a system with only pairwise interactions, this reduces to 
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From this relation, using the fluctuation-dissipation theorem, the conductance can be 

calculated via correlation in the equilibrium fluctuations of the heat flow as: 
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Eq. 2.65 gives the total thermal conductance of the interface.  

 

2.5.2 Modal decomposition 

 The total heat flow across the interface can be given as the sum of modal heat flow: 

n

n

Q Q . 

Therefore, G can be rewritten as: 
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This gives the contribution from each mode as: 
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resulting in: 

n

n
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The total G can be again written from mode-mode correlation of heat current as: 
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with individual contributions from correlations between pairs of modes equal to 
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In Eq. 2.71, by replacing the velocity of each atom with the sum of modal contributions, 

we can obtain the modal heat Qn as: 
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For pairwise interactions, this simplifies to:  
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The aim of this research is to choose an appropriate MD framework to simulate the 

interface, and in combination with a complete eigenvector basis set, use it in ICMA 

framework to obtain modal conductance contribution. Further analysis can be performed 

on mode-mode correlations to analyze its contribution to net conductance.  

 Now that we have discussed methods to quantify size-affected and temperature 

dependent thermal conductivity of Al and Al2O3 crystals, as well as the temperature 

dependent TIC values of the Al/Al2O3 interface, we will discuss methods to model 

nanoparticle thermal conductivity and the effective thermal conductivity of 

nanosuspensions.  
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2.6 Effective thermal conductivity model of heterogeneous propellant 

The inputs of an effective thermal conductivity model for a mixture of solid and 

fluid are the particle thermal conductivity (kp), fluid thermal conductivity (kf), and the 

particle volume fraction, ϕ. In order to evaluate kp, let us first consider a series circuit model 

representing the interface of Al and Al2O3 as shown in Figure 1.11 and the following 

treatment may be used.   

 

 

Figure 2.3 Schematic diagram of the core-shell particle model for evaluating the 

effective thermal conductivity of a nanoparticle 

 

The thermal conductivity of a passivated nAl particle of total diameter Dp 

represented by a core-shell particle model as illustrated in Figure 2.3 was obtained as: 
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Now that we obtained kp, the next step is to model the effective thermal conductivity 

of the mixture, km. There are several effective thermal conductivity models for nanoparticle 

suspensions [52, 93, 94]. Some of them are based on dynamic heat conduction mechanisms 

[36] in nanofluids, namely base-fluid nanolayering and Brownian motion. In a recent study 

on thermal conductivity of nano-suspensions, Muraleedharan et al. [95] conducted MD 
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simulations in combination with fluctuation-dissipation theorem to rigorously show that 

nanolayering and Brownian motion have negligible contribution on the effective thermal 

conductivity of a mixture. Therefore, in this work, we have neglected these effects. Two 

other important factors to be considered in modeling km of a dense suspension are the 

random particle distribution and the viscous interaction between nanoparticles. Maxwell-

Eucken [28, 29, 96] effective medium theory properly accounts for the random distribution 

of particles, and provides the following expression for the mixture thermal conductivity: 
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. 

Here ϕ is the volume fraction, subscripts f and p denote fluid and particle respectively. 

Interaction between particles is also important in capturing the viscous effects in the 

system, and can be addressed by using the Bruggeman effective medium theory, [30] which 

gives:  

0
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Therefore, in order to include both these effects, it is desirable to unify the Maxwell-

Eucken and Bruggeman theories yielding effective thermal conductivity of the mixture, km 

as: 
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where,  

2 2 1
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2

f p p

p f p p f p f

f

D k k k k



    

          
 

Here αp is the volume fraction of particle in a mixture with a Maxwell-Eucken 

structure.[29] The value of αp is chosen to be 0.5 so as to conform to the condition that for

1,p m pk k    

 Now that we have discussed a mathematical modeling strategy for the effective 

thermal conductivity of nanosuspensions, we can use this model in conjunction with an 

independent chemical kinetics model to study flame propagation in a real combustion 

system. The following section introduces the mesoscale one-dimensional flame 

propagation model that can be used to study the flame properties. Detailed description of 

the numerical methods are given in Chapter 6 of the dissertation. 

 

2.7 1-Dimensional flame propagation model 

2.7.1 Physical system 

 For simplicity, a steady, one-dimensional, isobaric downward propagating flame in 

a chemically reacting system of fuel nanoparticles dispersed in liquid oxidizer is 

considered. This system ensures that the effect of thermal conduction can be studied 

without compromising on other phenomena that can occur in a real physical combustion 

system. Availability of experimental data ensures validation of results. Flame propagation 

(2.79) 
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is modeled as a propagation of a thermal conduction wave, accompanied by a variety of 

physical and chemical processes, including vaporization of oxidizer, chemical reactions, 

and mass, momentum and energy exchanges between the fluid and particle phases. The 

system is approximated to be pseudo-homogenous. This contrasts with a completely 

heterogeneous system but ensures that the particles are in local thermal equilibrium with 

the surrounding fluid.  

 

Figure 2.4. Physical model and multi-zone theoretical framework. 

Figure 2.4 represents the physical model and the multizone flame structure used in 

the present study. Initially, the system is at an ambient temperature of 298 K. Liquid 

oxidizer undergoes a thermodynamic phase transition at the vaporization front which may 

for simplicity be treated as an infinitesimal plane at x = v at temperature Tv. At x = m, 

Al core undergoes melting. Region encompassing x = v to x = 0 has higher temperature 

gradient, and marks the zone for an overall ignition of the suspension when an ignition 

temperature, Tign, is attained. Chemical reactions are negligible in the preheat zones. In the 

gas-phase reaction zone, the temperature of products continues to increase up to the flame 

temperature of Tf. The flame continues propagating into the unburned suspension by 

conduction of heat and radicals.  
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The temperature profile and zone thicknesses can be obtained by solving the energy 

equation in each zone and matching the physical conditions at the boundaries. The general 

equation of energy balance can be given as: 

 p

T
C T k Q

t x x


   
  

   
 

Where, ρ is the density, Cp is the specific heat, T is the temperature, k is the effective 

thermal conductivity, Q  is the heat release rate (source term) which is inversely 

proportional to mean particle burning time, τb. τb has to be independently evaluated and 

input using particle burning time models that are benchmarked with experimental 

measurements or first principle calculations. In the constant linear burning rate assumption, 

the partial time derivative, 
t




 can be written as

b

d
r

dx
under the assumption that the steady 

state burning rate is constant, and equation 2.88 can be rewritten as: 

  b p

d T
r C T k Q

dx x x
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Note that the physical properties ρ and Cp are function of temperature only. Thermal 

conductivity k, on the other hand, is a function of temperature as well as local mixture 

composition.  

The linear burning rate (or flame speed) rb is to be evaluated by the shooting 

method. The first step is to assume rb. Disregarding the source term and expanding the 

RHS of the Eq. 2.89, we have  

(2.80) 

(2.81) 
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Eq. 2.82 can be discretized by one-dimensional finite difference method  
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and solved using Gauss-Seidel iteration: 
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where i is the grid point in the one-dimensional stencil consisting of r grid points, and n 

denotes the number of iteration. Note that the number of grid points should be chosen so 

as to include at the minimum, a full nanoparticle and the surrounding fluid medium so that 

it is representative of the mean mixture properties of the zone. If the grid size is smaller, 

then the effective thermal conductivity model fails for the control volume leading to the 

failure of iterative solution.  

 

2.8 Conclusions 

 This chapter provided a high level introduction to the formulation of the 

computational approach used to understand the nanoscale heat transfer effects in the 

combustion of a nanoparticle suspension. Tools discussed in this chapter will be judiciously 

chosen and elaborated further to answer the different thesis questions in the following 

chapters one by one.  

(2.82) 

(2.83) 

(2.84) 
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CHAPTER 3. PHONON TRANSPORT IN ALUMINUM AND 

ALUMINUM OXIDE 

In this chapter, we try to answer the first thesis question: How to investigate size 

effects on phonon thermal conductivity of Al and Al2O3 and how to quantify size effects? 

To answer this, we begin with the hypothesis that phonon transport properties can be 

investigated via first principle lattice dynamics (DFT-LD) calculations. It utilizes input 

from DFT calculations, and the output of LD is the set of IFC’s, which can be used to 

analyze phonon properties. Firstly, the temperature dependent phonon thermal 

conductivity obtained from the solution of phonon BTE is presented, and the contribution 

from phonons with different mean free paths and frequencies are also discussed. From 

these values, the effect of particle size on phonon thermal conductivity is deduced and 

modeled mathematically. Other properties of phonons, namely, mean free path and lifetime 

as a function of frequency are also analyzed to obtain a holistic view of phonon transport 

in Al and Al2O3. 

 

3.1   Introduction 

The major carriers of heat in solids are electrons and phonons. In metals, due to the 

large density of free electrons, the primary heat carriers are electrons and consequently, the 

phonon contributions are comparatively very low. Jain and McGaughey [50] calculated the 

phonon contributions to thermal conductivity of Al via solution of the phonon BTE under 

RTA using inputs from DFT-LD calculations, considering phonon-phonon (p-p) and 
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electron-phonon (e-p) interactions to obtain phonon thermal conductivity. Their results 

show that the phonon thermal conductivity of Al at 300 K is only 7 W/m-K, which is only 

a very small fraction (~3%) the total thermal conductivity of Al (237 W/m-K). Another 

DFT-LD calculation by Wang et al. [97] gives a phonon thermal conductivity of 4 W/m-K 

for Al at the same temperature. The differences in these results may be ascribed to the 

difference in pseudopotential used to perform the DFT calculations. Aluminum oxide, on 

the other hand, is an insulator. Due to the high band gap resulting in the unavailability of 

conduction band electrons, heat conduction in Al2O3 is phonon-dominated. Therefore, the 

dominant heat carriers in Al2O3 are phonons. To our knowledge, there has not been any 

work reported in the literature that reports the thermal conductivity of Al2O3 via DFT-LD 

calculations.   

In this chapter, we try to understand the effect of particle size on phonon thermal 

conductivity in Al and Al2O3. Here, we first employ a DFT-LD framework to study the 

temperature dependent phonon thermal conductivity of Al and Al2O3 and benchmark the 

framework with experimental results and/or prior theoretical studies. Secondly, the thermal 

conductivity accumulation as a function of phonon mean free path (MFP) is evaluated to 

assess the role of system sizes on thermal conductivity. Ideally, if the system size is larger 

than the smallest phonon MFP at which thermal conductivity accumulates, then phonons 

will not be affected by the system boundaries. Conversely, if system sizes are smaller, some 

of the large MFP phonons will have MFP restricted to the size of the system. These 

phonons are excessively scattering with the material’s boundaries, thereby leading to a 

reduced thermal conductivity. 
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3.2  Methodology 

 Firstly, direct displacement of relaxed lattice structure was performed to create 

numerous perturbed structures, which was followed by DFT calculations on each of the 

structure. The DFT calculations were performed by employing LDA for the exchange-

correlation functional, and the norm conserving Perdew-Zunger [98] scalar relativistic 

pseudopotential was used to describe the core electrons. The projector-augmented wave 

formalism was implemented in QUANTUM ESPRESSO (QE) [71] with a plane wave 

energy cutoff of 750 eV. The Brillouin zone was sampled using 4x4x4 uniform 

(Monkhorst-Pack) k-point grids. For the self-consistent field (SCF) calculations, the 

electron energy convergence threshold was set 1x10-7 eV, and for the initial structural 

optimization, the force/atom convergence threshold was set to 1 x10-4 eV/Å. Forces on 

atoms obtained from DFT calculations as well as the displacement values were then used 

as input to LD calculations. 

To perform lattice dynamics calculations, the open-source ALAMODE code [88] 

was used, which is useful for calculating the harmonic and anharmonic force constants 

from DFT data and also facilitates the calculation of dispersion relations and the phonon 

DOS. The phonon DOS was calculated using a 4x4x4 mesh resolution, and dispersion 

relations were extracted using a fine 150 one-dimensional grid points along each phonon 

branch. The phonon BTE was solved under a relaxation time approximation (RTA) using 

a 30x30x30 grid, which produced converged phonon thermal conductivity values that can 

be compared with our results and with experimental data.  
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3.3  Results 

3.3.1 Phonon dispersion relations 

The phonon dispersion relations were calculated from Eq. 2.38. They represent the 

phonon branches, and their frequencies as a function of wavevector, ω. The phonon group 

velocity, vg can be calculated from the derivative of phonon frequency with respect to wave 

vector, as given in Eq. 2.45. Then vg can be used in eq. 2.50 to calculate phonon TC from 

the solution of BTE. In addition, dispersion relations can also be compared with 

experimental data to ensure that harmonic force constants are evaluated accurately. 

 

Figure 3.1 Phonon dispersion relations of a) Al and b) Al2O3 evaluated via DFT-LD 

method compared with experimental results [99, 100] suggesting that the phonons are 

captured reasonably well by the DFT-LD framework 

 

 Figure 3.1(a) and (b) show the dispersion relations of Al and Al2O3 respectively 

evaluated via LD calculations. The experimental results are also overlaid for comparison. 

Figure 3.1(a) compares the transverse (T) and longitudinal (L) branches of phonons along 
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the different crystal directions. Here, the relations are plotted in the Brillouin zone where 

the gamma point (center of the Brillouin zone), Γ = 0. The DFT-LD calculations are in 

accordance with the experimental results [99]. Figure 3.1(b) compares the phonon branches 

evaluated by DFT-LD calculations with the experimental results. Note that there is very 

limited experimental data available on Al2O3 phonon branches. Nevertheless, for Al2O3, 

there is decent agreement between DFT-LD and experimental results. It is, therefore, clear 

from Figure 3.1 that phonon dispersion relations are reproduced with reasonable accuracy 

using DFT calculations; such accuracy suggests that the DFT calculations are correct and 

are useful for modeling the phonons in these materials. 

 

3.3.2 Phonon density of states 

In addition to the dispersion relations, the phonon DOS also gives important 

information about phonons present in a crystals. The DOS gives the density of phonons 

corresponding to different frequencies in a crystal structure. The total number of phonons 

(i.e. eigenmodes) is three times the number of atoms in the crystal geometry, corresponding 

to the three degrees of freedom available to every atom. Figure 3.2 shows the phonon DOS 

for Al and Al2O3 crystals obtained from DFT-LD calculations. The experimental data [99] 

are also overlaid in the figures.  
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Figure 3.2 Phonon density of states (DOS) of a) Al and b) Al2O3 evaluated via DFT-

LD method compared with experimental results [99, 100] giving further validation to 

the fact that the phonons are captured reasonably well by the DFT-LD framework 

 

 From Figure 3.2(a), it is evident that for Al, the first peak frequency predicted by 

DFT-LD calculations is ~ 2 THz lower than that of the experimental values, whereas the 

second peak frequency is correctly predicted. For Al2O3 as shown in Figure 3.2(b), the DFT 

predictions match well with experimental results. By reproducing the phonon DOS, DFT 

framework has been further validated, and may be expected to give reasonably good 

predictions of phonon thermal conductivity. 

 

3.3.3 Phonon thermal conductivity 

The temperature dependent phonon thermal conductivity of Al and Al2O3 as a 

function of only p-p interactions are plotted in Figure 3.3(a) and (b) respectively. The 

phonon thermal conductivity decreases with increase in temperature. The number of active 
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phonons in a system increases proportional to kBT where kB is the Boltzmann constant. This 

increase in phonons leads in turn to an increase in p-p scattering, which results in a 

reduction in phonon TC.  

 

Figure 3.3 Phonon thermal conductivity (TC) of a) Al and b) Al2O3 evaluated via 

DFT-LD method compared with prior DFT calculations and experimental results  

Experimental results for the phonon contributions to TC for Al are unavailable 

because no technique currently exists that can isolate the phonon thermal conductivity by 

itself. However, one can measure the electrical conductivity, which is intrinsically 

interrelated with the electronic component of the thermal conductivity. Using this 

approach, one can indirectly deduce the phonon contribution to the thermal conductivity 

by subtracting the electron contribution from the total thermal conductivity. However, this 

is not a very robust method, since it contains aggregated errors from the direct measurement 

and the subsequent deduction of the electronic thermal conductivity via the Wiedemann 

Franz law. Furthermore, the Wiedemann Franz law is not a rigorous law but instead a 

constitutive relation born out of a model for electron conduction and a relation to describe 

the energy carried by electrons along with their own charge. Nonetheless, deviations from 
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this law have been frequently observed and this consequently introduces a great deal of 

uncertainty into the notion that one can indirectly deduce the phonon contribution to 

thermal conductivity from this approach. As a result, the results of prior DFT-LD 

calculations by Jain and McGaughey [50] are overlaid for comparison in Figure 3.3(a); our 

predictions are comparable. To our knowledge, DFT prediction of phonon thermal 

conductivity of Al2O3 has not been reported in the literature. However, experimental results 

for Al2O3 [101-103] thermal conductivity from four different sources are overlaid in Figure 

3.3(b). As seen in Figure 3.3(b), our calculations are in accordance with three out of four 

experimental results. This agreement suggests that the phonon thermal conductivity has 

been calculated accurately. Thus, the focus in the next section is on assessing the phonon 

MFP and size effects, which can become important at the nanometer length scales that 

involve in nAl combustion.  

 

3.3.4 Phonon thermal conductivity accumulation function 

The thermal conductivity accumulation plot as a function of phonon MFP 

calculated at T=300 K is shown in Figure 3.4. For Al, as can be seen in Figure 3.4(a), 

phonon thermal conductivity accumulates at a MFP of only ~ 34 nm, as the contributions 

to thermal conductivity from larger MFP phonons are negligible. This observation suggests 

that if the system size is below 34 nm, phonon TC can be reduced, as larger MFP phonons 

become affected by the boundaries. As clearly illustrated by Jain and McGaughey [50] 

from the study of electron thermal conductivity as a function of MFP of electrons, it is 

quite evident that TC is affected for system sizes lower than 20 nm.  
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Figure 3.4 Phonon thermal conductivity accumulation plots of a) Al and b) Al2O3 

For Al2O3, however, thermal conductivity saturates at MFP ~ 47 nm as shown in 

Figure 3.4(b). Hence Al2O3 is more strongly impacted by size effects. Nonetheless, neither 

material is strongly affected as compared to longer MFP materials such as crystalline 

silicon, where the average MFP is 100 nm but almost half of the bulk TC comes from 

phonons with MFPs longer than 1 micron.[104] As a result, while modeling the thermal 

conductivity of a nanoparticle, the effect of particle size (or more conveniently, particle 

diameter) should be factored in, but only becomes significant for particle diameters less 

than about 47 nm, and we can roughly approximate the thermal conductivity, k as: 
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 for D L , 

where kbulk is the bulk thermal conductivity, D is the system dimension, L is the peak mean 

free path at which k  kbulk. 
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3.3.5 Spectral thermal conductivity distribution 

The phonon thermal conductivity contributions as a function of phonon frequency 

– termed the spectral thermal conductivity distribution – for Al and Al2O3 are given in 

Figure 3.5(a) and (b) respectively. As can be seen from Figure 3.5(a), for Al, a significant 

contribution to phonon TC is due to phonons with frequencies in the range 5-8 THz, 

whereas from Figure 3.5(b), for Al2O3, significant contribution is from phonons within 

frequencies 4-9 THz.  

 

 Figure 3.5 Spectral distribution of phonon TC of a) Al and b) Al2O3 

Spectral thermal conductivity gives the relative importance of phonons at specific 

frequencies with respect to other phonons. It is assumed the relative importance of these 

phonon frequencies may be tied to their higher lifetimes and/or MFP’s. The phonon 

lifetimes and mean free paths are analyzed in Section 3.4.6. Both phonon MFP and 

frequency dependent studies are very important in thinking about phonon engineered 

materials.  
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3.3.6 Phonon mean free paths and lifetimes 

Continuing from the theoretical formulation of lattice dynamics given in Chapter 

2, further information on phonons can be deduced by calculating phonon mean free paths 

and phonon lifetimes.  

 

Figure 3.6 Spectral distribution of phonon lifetime and mean free paths of a) Al and 

b) Al2O3 

 Figure 3.6(a) and (b) shows the spectral MFP and lifetimes of phonons in Al and 

Al2O3 respectively. From Fig. 3.6 (a), it is quite evident that the highest phonon lifetimes 

are associated with frequencies 5-8 THz in Al. On the other hand, the largest MFP phonons 

lie within 4-8 THz range. From Figure 3.5(a), it is quite evident that MFP > 30 nm do not 

contribute significantly towards thermal conductivity. Hence, we focus our attention 

towards phonons with MFP < 30 nm. The peak phonon MFP as shown in Figure 3.6(a) is 

~100 nm. The number of phonons with MFP > 30 nm is also much lower, which 

corroborates the data depicted in the TC accumulation plot (Figure 3.4). In the case of 

Al2O3, however, the trends are a bit different. The peak frequency and lifetimes correspond 

Phonon frequency, THz

P
h
o
n
o
n

li
fe

ti
m

e,
p
s

M
ea

n
fr

ee
p
at

h
,

n
m

0 2 4 6 8 10 12
10

-1

10
0

10
1

10
2

10
3

10
-2

10
-1

10
0

10
1

10
2

Lifetime
MFP

Frequency, THz

P
h
o
n
o
n

li
fe

ti
m

e,
p

s

M
ea

n
fr

ee
p

at
h
,
n
m

0 5 10 15 20 25 30

10
-1

10
0

10
1

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Lifetime
MFP



 76 

to phonon frequencies 4-9 THz. From Figure 3.5(b), the TC accumulates ~ 50 nm MFP, 

and correspondingly, the peak MFP of phonons in Al2O3 ~ 50 nm.  

 

3.4  Conclusions 

In summary, a detailed analysis of phonon transport properties in Al and Al2O3 has 

been performed via LD calculations using input from density functional theory (DFT) 

calculations. Firstly, the phonon dispersion relations and phonon density of states (DOS) 

are evaluated and compared with experimental data. The DFT-LD method reproduces the 

transverse and longitudinal phonon branches in Al and Al2O3 along the edges of Brillouin 

zone. Substantial agreement is found between LD predictions and available experimental 

data. Predictions in phonon DOS via lattice dynamics are also accurate. Two peaks in 

phonon density are observed in Al at ~3 and ~8.5 THz respectively. When compared with 

neutron scattering experimental data, the lower frequency is off by ~1 THz whereas at 

higher frequencies, data is reproduced more accurately. This discrepancy is due to 

neglecting electron-phonon scattering in Al metal. For Al2O3, the DFT-LD predictions of 

phonon DOS compare well with the neutron scattering data, confirming that the phonon 

properties are evaluated accurately. Furthermore, temperature dependent phonon thermal 

conductivity of Al and Al2O3 are also evaluated by solving the Boltzmann transport 

equation (BTE) under the relaxation time approximation (RTA). Calculated phonon TC of 

Al is very close to prior lattice dynamics calculations. Experimental data on phonon 

thermal conductivity of Al is unavailable; phonon thermal conductivity of Al2O3 evaluated 

by LD is close to three out of four experimental results reported in the literature. 
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Furthermore, the thermal conductivity accumulation function was evaluated. Our results 

suggest that for Al, phonon TC accumulates at mean free path (MFP) ~ 30 nm. This finding 

suggests that if the system size is below 30 nm, phonon TC can be reduced due to the fact 

that some of the larger MFP phonons become inaccessible. For Al2O3, however, TC 

accumulates at a MFP of ~ 50 nm. Hence the system is more easily size affected than Al, 

but generally speaking the size effects are weaker than many other materials that have been 

analyzed [50]. Nonetheless, since particle diameters in the range of 10-50 nm are of interest 

for nAl combustion, the effect of particle size should be considered in modeling the 

combustion. Spectral distribution of TC was also analyzed to assess the possibility of 

engineering phonon transport properties. For Al, more than 80% of phonon thermal 

conductivity is due to phonons within frequencies between 5 and 8 THz. For Al2O3, more 

than 92% of TC was contributed by phonons with frequencies between 4 and 9 THz. 

Finally, the phonon lifetimes and mean free paths as a function of phonon frequencies were 

studied. Complementing the results of spectral distribution, the highest phonon lifetimes 

and mean free paths in Al were observed for phonons in the 5-8 THz range; for Al2O3, 

these phonons exist in the 4-8 THz regime. These studies give a fundamental understanding 

of phonon frequencies and their contribution in pristine bulk Al and Al2O3 crystals. The 

findings in this chapter provide a foundation to understand phonon transport across 

Al/Al2O3 interfaces, which can now be addressed in the next chapter.  
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CHAPTER 4. THERMAL CONDUCTANCE OF ALUMINUM-

ALUMINUM OXIDE INTERFACE 

 In this chapter we will try to answer the second thesis question on thermal 

interfacial conductance (TIC): How to predict TIC of Al/Al2O3 interface accurately? How 

does TIC vary beyond the melting point of Al? What are the vibrational modal 

contributions to TIC? Here, the TIC of Al- α-Al2O3 interface along crystal directions (111) 

Al || (0001) Al2O3 is calculated using interfacial conductance modal analysis (ICMA). 

Results corresponding to temperatures 50-500 K are compared with the available time-

domain thermoreflectance (TDTR) experimental data. The benchmarked ICMA 

framework is then used to predict TIC for temperatures ranging from 500-1800 K. 

Moreover, modal analysis of interfacial conductance is also performed to understand how 

various vibrational modes interact and contribute towards thermal conductance.  

 

4.1 Introduction 

To understand and quantify thermal interface conductance, G, one may seek 

experimental measurements, theory-based predictive models, or a combination of both. 

The time-domain thermoreflectance (TDTR) method, an optical-pump probe technique, is 

the most widely used experimental method [34, 105-107]. A typical TDTR experiment 

measures the total conductance but neither resolves the modal contributions nor elucidates 

the governing mechanisms. Sometimes, merely due to the low thermal conductivity of the 

constituent sides of the interface, the measurement is incapable of measuring G because of 
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the low sensitivity to the interfacial resistance. In addition, experimental methods can be 

challenging and expensive especially from a standpoint of making clean and defect-free 

interfaces by epitaxial growth, and achieving high temperatures and/or pressures. 

Moreover, the results are sensitive to experimental conditions thus challenging 

reproducibility.  

 Theoretical approaches, in contrast to experiments, are less expensive, and can be 

performed over wide range of temperatures and pressures. Nevertheless, theoretical models 

should be thoroughly benchmarked with experimental results before being applied to any 

practical application. To model interfacial heat transfer, several formalisms/models exist: 

acoustic mismatch model (AMM) [108, 109], diffuse mismatch model (DMM) [110-112], 

AGF [113-115], wave packet method (WP) [116-119], harmonic LD based approach [120, 

121], and frequency-domain perfectly matched (FD-PML) method [122, 123]. All of these 

models are based on the phonon-gas model (PGM).[124] In the PGM, phonons are treated 

as gas molecules that interact with other phonons, electrons, or other atoms/molecules and 

these interactions (or collisions) obey the classical law of conservation of energy and 

momentum. Within the PGM assumption, the Landauer formalism [125] can then be used 

to determine the G as: 
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where the summation is performed over different polarizations denoted by pA and allowed 

wave vectors kx,y,z in material A; VA is the volume of material A, vz,A is the phonon group 

velocity normal to the interface,   denotes the phonon energy wherein is Planck’s 

(4.1) 
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constant divided by 2π and ω is the phonon frequency, τ is the phonon transmission 

probability, f is the phonon distribution function (Bose-Einstein distribution). The 

aforementioned methods differ based on how each method calculates the transmission 

probability.  For calculating the thermal conductivity of different materials, PGM based 

formalisms have achieved excellent agreement with experimental measurements. When it 

comes to G, however, no general or consistent agreement between theory and experiment 

has ever been reported. Figure 4.1 compares the predictions of various theoretical 

formalisms (vertical axis) with the experimentally measured values (horizontal axis). 
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Figure 4.1 Comparison of theoretical predictions of thermal interfacial conductance, 

G across different interfaces with corresponding experimentally measured values.  

 In Figure 4.1, for each interface, each point represents a comparison between a 

calculation and a corresponding measurement, and the multiple points for a given material 

correspond to different temperatures. Each panel represents a different G range. The dashed 

lines represent the percent error associated with the theoretical predictions. The examined 
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interfaces have references as follows: TiN/MgO [126], TiN/Al2O3,[126] Al/Si 

with/without oxide layer [127], Al/GaSb [128] GaSb/GaAs [128], Au/Diamond [35], 

Bi/Diamond [106], and Pb/Diamond [106]. The modified DMM referenced in the legend 

was proposed as a variation of DMM to predict TIC across interfaces with severe chemical 

and structural changes around the interface [129, 130]. JFDMM is a variation of DMM, 

where the altered phonon frequencies in the interface region were also included in the 

calculations [131]. It is apparent from Fig.4.1 that all of the models suffer significant 

disagreement at some temperature. Note that in the Landauer formalism (Eq. 4.1), group 

velocity, v of all vibrational modes must be calculated to evaluate G. Therefore, rigorously, 

since the calculation of v is only possible for purely crystalline solids, this approach should 

only be applied to crystalline solids. When models based on the PGM are applied to 

calculate TIC, they implicitly assume the interface to be merely a break in symmetry of a 

crystal and adopts the same treatment used in perfect crystals.[132] Such an assumption in 

applying PGM to systems with break in symmetry such as interfaces and disordered 

materials like amorphous materials, alloys, and polymers is highly questionable, since a 

large population of the vibrational modes in these systems could be non-propagating and 

localized, for which a group velocity cannot be defined. [133-137]  

In addition, many formalisms do not include the intrinsic anharmonicity, which is 

another important factor that affects heat conduction. Although Mingo [113] has shown 

that, in principle, anharmonicity can be included in the AGF, this has been neither widely 

adopted nor applied to any realistic interface. Finally, from Eq. (4.1), it is clear that PGM 

derives G by using the properties of only one of the two materials forming the interface 

and the transmission probability, τ. AMM and DMM methods calculate transmission 
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probability under the assumption of purely specular and purely diffuse scattering of 

phonons respectively at the interface, which are limiting cases. Although there have been 

many improvements made to these models from a standpoint of calculating transmission 

probability, none of them resolve the atomic level detail of interface quality like 

imperfections, defects, interatomic diffusion, etc.  

 In this respect, the AGF formalism is superior, since it is capable of including 

atomic level details and quantum effects. AGF utilizes the harmonic force constants (FC) 

calculated by means of atomic forces, which can be calculated through first principle 

methods like DFT or empirical interatomic potentials to determine the transmission 

function. In the AGF method, for contact area A, G is given by,  

1
( )

2

f
G d

A T
   






 ,                                              

where the phonon transmission τ at frequency ω is calculated as the trace over the Green’s 

function of the interface and its coupling terms between the bulk material on either end. 

Although AGF, in theory, combines atomic-scale fidelity with an asymptotic treatment of 

the bulk material, to our knowledge, no good agreement with experimental measurements 

have been reported till date. Note also that AGF is intrinsically unable to achieve mode-

level details of conduction. Although one may argue that mode-level details can be 

extracted from the interatomic force constants, since AGF calculates contributions only 

from the modes existing in the bulk material, it is uncertain whether they are the actual 

modes present in the interfacial system. The contributions from individual modes are 

particularly important in materials where all the eigenmodes may not be propagating. The 

non-propagating modes could be localized or diffusive in nature. Knowing the 

(4.2) 
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contributions of specific eigenmodes facilitates rational design of materials by engineering 

certain features to target certain group of modes to either inhibit or enhance their role. 

Therefore irrespective of the underlying theory, emphasis should be given to describing the 

contributions from the actual modes that exist in the system.  

 Unequivocally, there is a major gap in the understanding of interfacial heat 

transport.  Considering the inadequacies in PGM, we seek an alternative view of interfacial 

heat conduction based on the fluctuation dissipation theorem wherein the modal 

contributions to transport are assessed by the degree to which they are correlated, rather 

than the degree to which they are scattered. To serve the purpose, the recently reported 

interfacial conductance modal analysis (ICMA) formalism [138] based on the fluctuation-

dissipation theorem and lattice dynamics has important features. In the ICMA formalism, 

the instantaneous energy transfer across an interface of material A and B can be given as:  

,,
.

j ji

A B

A B i i

i

j j ji

p
Q

m

H p H

m





 

   
   

 


      

   


r r
 

Here, QAB is the instantaneous energy transfer across the interface of material A and B; p, 

H, and m represent the momentum, Hamiltonian, and mass of atoms i and j respectively.  

From this relation, the conductance can be calculated by the time integration of correlation 

of autocorrelation of the equilibrium fluctuations of the heat flow as: 
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Since ICMA is implemented in classical molecular dynamics (MD) framework, it is 

capable of full inclusion of anharmonic contributions to the interfacial heat transfer by all 

types of vibrational modes including the localized interfacial modes. Most importantly, 

(4.3) 

(4.4) 
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ICMA can resolve the modal heat flux nQ (i.e. n

n

Q Q ) yielding the modal contribution 

to conductance, nG (i.e. n

n

G G ) by utilizing the input eigenvector basis set given as 

input. 

 In this chapter, both ICMA and AGF techniques are implemented independently to 

predict thermal conductance of aluminum (Al)-aluminum oxide (α-Al2O3) interface for 

temperature ranging from 50-500 K. The results are compared with each other and with 

experiments. Results are also compared with DMM predictions to observe how results vary 

when purely diffuse scattering mechanism is assumed. Moreover, the mode-level details 

obtained from ICMA are also reported, which gives the nanoscale picture of the modal 

interactions and thereby explaining the mechanisms governing interfacial heat transport. 

After benchmarking the results for T = 50-500 K, ICMA method is extended to 1800 K to 

evaluate interfacial conductance. 

 

4.2  Simulation details 

4.2.1 Interfacial Conductance Modal Analysis (ICMA) 

 ICMA method is implemented in equilibrium molecular dynamics (EMD). A 

simulation cell size of ~19.2 nm in length having a cross sectional area of ~80 nm2 with 

1260 atoms containing an interface with crystal directions (111) Al || (0001) Al2O3 

representing the primary orientation in FCC metal-metal oxide[64, 139] interfaces is used 

for the simulations. The system length was chosen based on an initial size-dependency 
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calculation, which suggested that a system size larger than ~18 nm yields a size 

independent G. To model atomic interactions, the Streitz-Mintmire (SM) potential is used.  

 Firstly, the system was relaxed in isobaric-isothermal (NPT) ensemble at zero 

pressure for 2 ns to relieve any internal stresses. After relaxation, the system was 

equilibrated in a canonical (NVT) ensemble at required temperature for another 2 ns. 

Following equilibration, the system was evolved in time under microcanonical ensemble 

(NVE) ensemble for 10 ns. Heat flux was recorded every 5 fs, which is found to be 

sufficiently low enough to resolve the heat current fluctuations in both the materials. In 

order to overcome the possible statistical uncertainty due to insufficient phase space 

averaging, 10 independent ensembles are considered for each temperature. All calculations 

were performed on Large-scale Atomic/Molecular Massively Parallel Simulator 

(LAMMPS) [73] package using a time step size of 1 fs. To include the modal 

decomposition routine, the original SM potential in LAMMPS was modified to accept 

eigenvector basis set obtained from lattice dynamics (LD) calculations and to output modal 

contributions to heat current at required intervals. For performing lattice dynamics (LD) 

calculations, following the NVT equilibration, the system was gradually cooled to 0 K in 

microcanonical ensemble using Langevin thermostat. The system was then allowed to 

undergo relaxation at 0 K in NPT ensemble. The relaxed crystal was used as the input for 

LD calculations performed on General Utility Lattice Program (GULP) [140] from which 

the eigenvectors of vibration for the structure were obtained. The auto- and cross-

correlations between the total and modal heat fluxes from ICMA routine were calculated 

to obtain the total G and modal contributions, respectively. 
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4.2.2 Atomistic Green Function (AGF) 

 To ensure a fair comparison between AGF and ICMA, force constants used in AGF 

calculation were obtained from empirical LD calculations using the same Streitz-Mintmire 

potential used in ICMA calculations. In the AGF method, the system consists of two bulk 

regions of aluminum and sapphire respectively, and an interface region of these two 

materials. For FC calculation, we used structures composed 36 and 60 atoms respectively 

to represent bulk structures of aluminum and sapphire, and 96 atoms for interface structure. 

LD calculations were performed using ALAMODE code [87, 88]. Several initial 

geometries with atoms displaced from their equilibrium coordinates were input to 

ALAMODE. To obtain empirical FC, ALAMODE was coupled with LAMMPS, and the 

SM potential was invoked to obtain forces acting on atoms corresponding to the displaced 

geometries.  

 

4.3  Results 

4.3.1 Total conductance, G 

 The total G values as a function of temperature obtained from various sources are 

summarized in Figure 4.2. Results of our ICMA and AGF calculations are compared with 

the experimental results from three different sources[34, 35, 51] as well as the DMM 

predictions [34]. Experimental data from 50-300 K are obtained from Stoner and Maris 

[35], whereas the experimental results for 300-480 K are obtained from Hopkins et al. [51]. 
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Another set of experimental data and DMM calculations reported by Hopkins et al. [34] 

are also overlaid for comparison. Experimental data above 480 K is not available.  

 

Figure 4.2 a) TIC predicted by ICMA and AGF methods compared with experimental 

results and diffused-mismatch model (DMM) prediction, and b) TIC predicted by 

ICMA from T = 300-1800 K 

 In all these experiments, the samples consisted of thin Al films evaporated onto 

Al2O3 substrates. Firstly, the (0001) plane in the direction parallel to [21̅1̅0] was obtained 

by cutting Al2O3 substrate followed by vapor deposition of Al atoms. The quality of the 

surface depends on the technique used to clean the interface, which in turn affects the 

accuracy of the TIC results. Thickness of Al layer may also affect measured TIC 

values.[106] Thickness of Al layer must be chosen to be sufficiently larger than the electron 

MFP in Al to minimize electron scattering at the boundary, to prevent from it acting as an 

error source for the TIC measurements. For the samples by Stoner and Maris[35], the Al2O3 

surface was polished with Syton (colloidal SiO2 in water), and the surfaces were confirmed 

virtually perfect from high-energy electron diffraction. Thickness of deposited Al layer, 

however, is not reported. Hopkins et al. I[34] and II[51] cleaned the surfaces by a chemical 
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rinse using aceton, methanol, and isopropyl alcohol in both of their studies. However, data 

represented as Hopkins et al. I used an Al layer of 90 nm and Hopkins et al. II deposited 

an Al layer of ~75 nm, which may be the reason for the discrepancies in TIC values. 

Nonetheless, two of the experimental results suggest a near-linearly increasing trend in G 

v/s T in the temperature range considered, that is captured quite well by ICMA. The mean 

quantitative error in ICMA calculations when compared with these experiments is under 

5% and the qualitative trend is also in agreement with two of the data sets.  

As seen in Figure 4.2(a), except for a slight proximity with Hopkins et al. 

experimental results below 150 K, DMM predictions are considerably above the 

experimental results. This is possibly because of the severely restrictive assumption on 

phonon scattering to be purely diffusive in nature. The green line represents the results of 

AGF calculations. It is quite evident that except for the coincidence with the experimental 

result of Hopkins et al. at T = 450 K, the AGF significantly over-predicts G from 50-450 

K. The temperature trend of G predicted by AGF is also not in agreement with two of the 

experiments. AGF results steeply rise from 50-100 K and plateaus thereafter. At higher 

temperatures, G is nearly constant; no temperature dependence is observed.  

We attribute the poor predictive power of AGF to two factors. Firstly, AGF does 

not take into account the intrinsic anharmonicity associated with the vibrational modes, 

which can play a vital role in heat conduction.[113] Secondly, the only mechanism that the 

AGF accounts for, in evaluating the temperature dependence is the quantum (Bose-

Einstein) correction applied to the modal calculations. This is different from ICMA in 

which we calculate conductance using classical MD followed by quantum correction at 

every single temperature, thereby including anharmonicity and the quantum effect on 
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specific heat. To examine these ideas, a detailed analysis of modal anharmonic energy 

distribution and modal contribution to G is discussed in the following sections. 

 With this high level of accuracy in predictions, ICMA can be deemed to be 

thoroughly benchmarked with experiments, and can be extended to higher temperatures as 

well. Figure 4.2(b) shows the results of G calculated via ICMA for T = 300-1800 K, an 

ideal temperature regime of combustion of nano-suspensions. As can be seen from Figure 

4.2(b), G increases monotonically with temperature until the melting temperature of Al = 

933 K. At the melting temperature, there is a sharp fall in TIC, which remains nearly 

constant thereafter. This is due to the loss of crystallinity of core Al lattice as it melts. A 

perfect crystal has  

 

4.3.2 Modal Analysis 

 Partial DOS of the interface structure, modal summation of TIC, and mode-mode 

correlations at 300 K is shown in Figure 4.3(a)-(c) respectively. Figure 4.3(a) shows the 

partial DOS calculated from the eigenvector basis set obtained by lattice dynamics 

calculations. From the partial DOS, we can identify four types of modes based on their 

participation ratio as: i) extended modes, ii) partially extended modes, iii) isolated modes, 

and iii) interfacial modes.[133, 134, 138] Extended modes are present at the interface, but 

the majority of them by contrast, are delocalized into both materials. Partially extended 

modes are also present at the interface, but majority of them are not present at the interface, 

and are localized on one side of the interface. Isolated modes exist far away from the 

interface while interfacial modes are localized vibrational modes which are mostly present 
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at the interface. Figure 4. 3(b) shows the dominance of partially extended modes in Al (< 

9 THz) and Al2O3 (<12 THz) and the negligible presence of extended modes (< 0.6 THz). 

A small percentage of modes (> 9 THz) are interfacial in nature whereas the remaining 

modes seem to be isolated.  

 

   

 

 

 

 

 

 

 

 

 

 

Figure 4.3 a) Partial DOS showing different types of modes, b) TIC accumulation (In 

this system, >90% of the total conductance is contributed by partially extended modes 

on Al and Al2O3, and the extended modes below 12 THz, c) mode-mode correlation 

map at T = 300 K showing three distinguishable regions. 
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 In Figure 4.3(b) and (c), two distinguishable regions are marked as Region 1 and 2. 

Region 1 is below 9 THz marking the peak frequency in Al. Region 2 comprises all 

frequencies above 9 THz. In region 1, distinct regions of strong positive correlations are 

observed. Except below 0.6 THz where extended modes are present, this region is 

dominated by the cross-correlation (CC) of partially extended modes of Al with that of 

Al2O3 reflecting as red regions in the correlation map. Considering the large population of 

states of partially extended modes of Al and that of Al2O3, this region of high CC is the 

major reason for the initial high slope of TIC accumulation until ~ 9 THz. After that, within 

region 1, 9-12 THz marks a narrow region of interaction between interfacial and partially 

extended modes of Al2O3, which due to a combined effect of weak correlations and low 

density, only gives a very shallow slope in TIC accumulation.  

 From 12-15.5 THz, interfacial modes, and the isolated and partially extended 

modes of Al2O3 co-exist. This frequency ranges in region 2 also shows a strong correlation. 

However, the very low density of these modes is a clear evidence of the small increment 

of G in this region. In region 2, the modal characteristics shift drastically from strong 

positively to strong negatively correlated regions in effect canceling each other, 

maintaining a cumulative G constant until ~17.5 THz. From 17.5 THz to 22.5 THz, there 

are observable regions of strong correlation and a slight increase in the density of 

vibrational states. Especially around the diagonal, there is a strong observable positive 

correlation from the interaction between the interfacial modes. The combined effect is a 

jump in G accumulation in Figure 4.3(b) at around the same frequency i.e. 17.5 THz. In 

order to further gauge the role of each mode, it is important to obtain the contribution of 

each type of mode normalized by the DOS i.e. G/DOS. 
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Table 4.1 Contribution of different types of modes to partial DOS and G, and the 

percentage relative contribution of G to DOS 

Mode Type (%)DOS  (%)G  G DOS  

Extended 0.18 0.31 1.72 

Partially 

extended 
89.52 91.83 1.02 

Interfacial 9.31 7.80 0.84 

Isolated 0.90 0.06 0.07 

 

 Table 4.1 shows the population of each type of mode in partial DOS, and their 

contribution towards G. Also given is the normalized contribution of G. The high density 

of partially extended modes in the region from frequency < 12 THz corresponding to 

89.52% of DOS together constitute towards ~92% of TIC. The G/DOS ratio of partially 

extended modes ~1 suggesting that the role of partially extended modes in G is justified by 

their presence in the partial DOS. In the remaining 10.5% modes, 9.31% is constituted by 

interfacial modes and under 1% by isolated modes. The percentage of extended modes in 

the system is only 0.18%. Prior studies have shown that extended modes occur on regimes 

with high frequency overlap.[133, 134]. Therefore, it is surprising that, given the great 

degree of frequency overlap in this regime, the percentage of extended modes is 

significantly low. This suggests that whether or not the extended modes are likely to exist 

within a frequency regime is not purely dictated by frequency overlap, but may also require 

matching structural structures. Since Al and Al2O3 have significantly different crystal 
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structures, it may be difficult for the modes of vibration of each material to extend 

throughout the interface structure while not only conserving energy (i.e. frequency) but 

also momentum (i.e. wavelength).  

 Also considering the G/DOS value of 1.72, it is to be understood that there is a 

disproportionately high contribution to G from the extended modes for their relatively 

small presence in DOS. Therefore, we doubt that the presence of high concentration of 

extended modes is the reason for the apparent high G of cSi-cGe [134] interfacial system 

reported in a prior work. We believe that for the Al/Al2O3 system, a major portion of G is 

contributed by partially extended modes, subsequently helping us achieve realistic 

predictions. In summary, ICMA has not only been able to provide an accurate theoretical 

prediction of interfacial conductance, but also capture the physical picture of modal 

interactions governing thermal transport. 

 

4.4   Conclusions   

 The TIC of the aluminum (Al)-aluminum oxide (α-Al2O3) interface along the 

crystal directions (111) Al || (0001) Al2O3 has been accurately predicted. Two 

fundamentally different approaches: interfacial conductance modal analysis (ICMA) and 

atomistic green function (AGF) method in the temperature range 50-500 K. While AGF 

over predicts G, predictions of ICMA show great agreement with experimental results both 

quantitatively and qualitatively. The ICMA formalism seems to do a better job of 

explaining the experimental data than the PGM based models, which can be ascribed to its 

more fundamental treatment of the interfacial heat flux, its inclusion of full anharmonicity 

of vibrational modes, and for its ability to access to phonon mode level details. Using the 
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benchmarked ICMA framework, the TIC of Al/Al2O3 interface was calculated for 

temperatures up to 1800 K.  It was observed that TIC increases monotonously up to the 

melting point of Al (= 933 K) and drops sharply by an order of magnitude thereafter. 

Experimental measurement of TIC at higher temperatures is challenging, hence ICMA 

provides a promising way to achieve this. In a real combustion system, elevated 

temperatures exist, and in the ignition and combustion zone, Al exists in molten state. In 

this regime, the significantly low TIC value could be a major resistance to overall heat 

conduction in the nanosuspension. In summary, we quantified TIC across a wide range of 

temperatures, which can now be fitted to a mathematical model. 
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CHAPTER 5. INTERFACIAL NANOLAYER AND BROWNIAN 

MOTION: THE ISSUE OF ARTIFICIAL CORRELATIONS  

 In this chapter, we will try to address the third thesis question: Do Brownian motion 

and nanolayer actually contribute towards thermal conductivity enhancement in 

nanosuspensions? The role of interfacial nanolayers and Brownian motion in the enhanced 

thermal conductivity of nanosuspensions is a widely debated topic [36, 141-143]. 

Phenomenological models and corroborating MD simulations indicate that nanolayering is 

a possible cause of enhanced heat conduction in dilute suspensions of nanoparticles. In this 

chapter, MD simulations are studied in deeper detail than previous works to evaluate the 

possibility of thermal conductivity enhancement from nanolayering and Brownian motion. 

 

5.1 Introduction 

It has been hypothesized in the seminal work by Keblinski et al. [36] that for a 

dilute nano-suspension, in addition to the particle and fluid thermal conductivities, there 

also exist dynamic mechanisms that contribute towards thermal conductivity 

enhancements. These are Brownian motion and nanolayering, respectively. Brownian 

motion is the random thermal motion of dispersed nanoparticles in fluid. It is hypothesized 

to aid in ballistic heat exchange between the particles as well as create regions of localized 

convection called micro-convection. A nanolayer is a structured/ordered fluid layer formed 

on the surface of the nanoparticle owing to its excess surface energy. Nanolayers have also 
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been hypothesized to act as a conduit in conducting heat from the particle to the fluid, and 

thus helping in overcoming the high thermal resistance at the interface.  

Numerous studies report thermal conductivity predictions of nanofluids using 

Green-Kubo (GK) relations [37, 40, 62, 144-149]. Sankar et al. [145] used a platinum-

water nanofluid system with volume fractions () in the range of 1-7%. Atomic interactions 

were modeled using Lennard-Jones (LJ) and Spohr-Heinzinger potentials. Results 

suggested a 70% enhancement in thermal conductivity at  =7%. A physical explanation 

was not given, but one possible reason for the high prediction is that the analysis did not 

consider the enthalpy correction introduced in Eq. 2.39. Sarkar et al. [62] studied a system 

of 2 nm copper particles in argon fluid using LJ potential to model interactions. An 

enhancement of 52% was reported for  = 8%, which is significantly higher than Maxwell 

model (26%) [28]; this was attributed to Brownian motion effects. Note that the Maxwell 

model is based on the effective medium theory (EMT), which assumes a fully dispersed 

dilute nanofluid with non-interacting suspended nanoparticles. In this idealized case, the 

thermal conductivity increase associated with the addition of the solid phase, should simply 

scale with the respective volumes of each phase and their respective thermal conductivities, 

since their interactions are neglected. In reality, however, particles can interact and undergo 

Brownian motion resulting in a stirring effect. Consequently, several modified Maxwell 

models were developed, and these unusually high thermal conductivity enhancements in 

MD simulations were credited to Brownian motion effects [60, 150]. Although earlier 

experimental studies [41, 151] also support this theory, Brownian motion may not be of 

concern owing to the large timescales associated with particle motion [42, 44]. 
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While experimental measurements do not indicate the formation of a liquid layer 

over the particle surface that has the potential to enhance thermal conductivity, several 

computational studies using MD simulations report significant thermal conductivity 

enhancements. Another theory that has been proposed to explain the anomalous 

enhancement is based on the formation of a nanolayer around the particle [37, 40, 152], 

which is believed to function as a high thermal conductivity conduit for interfacial heat 

flow. Interfacial resistance, on the other hand, has an opposite effect. Over the last decade, 

there have been several attempts to include the effects of nanolayering and interfacial 

resistance in classical thermal conductivity models. Yu and Choi [52] developed a modified 

Maxwell model, by treating particle-nanolayer core-shell complexes dispersed in the base-

fluid.  By judiciously choosing a constant nanolayer thickness of ~2-3 nm and nanolayer 

thermal conductivity of 10-100 kf, reasonable agreement with experimental data was 

achieved. The core-shell complex particle assumption was also used by several other 

researchers to develop effective thermal conductivity models [54, 55]. These models only 

yield qualitative descriptions of the variations of effective thermal conductivity with 

particle volume fraction and particle size. In the GK calculations by Sachdeva et al. [40] 

for copper-water nanofluids, an advanced flexible-3-center (F3C) model for water and the 

finitely extensible nonlinear elastic (FENE) potential for copper were used. Results showed 

an enhancement as high as 80% for  =5% and 1 nm particle. This was attributed to 

hydration layering on the copper surface. This argument relies on earlier [52] and 

concurrent [153] experimental investigations favoring nanolayer effects. Yu and Choi [52] 

attributed an enhancement greater than 40% (for  = 3%) solely to nanolayering, whereas, 

Feng et al. [153] suggest contributions from both nanolayering and particle aggregation. 
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Recent studies, however, have shown that the thermal conductivity of the adsorbed layer 

is only marginally greater than that of the base fluid [57, 58]. Taking the high interfacial 

resistance also into consideration, the nanolayer theory may not conclusively explain the 

results [154].  

 It is evident that GK relations often give high thermal conductivity values, but the 

physical origin of this behavior is elusive. It is counterintuitive to obtain thermal 

conductivity enhancements for fully-dispersed nanoparticle suspensions higher than the 

EMT models. We hypothesize that the results of prior MD simulations might have been 

contaminated with numerical errors arising from artificial correlations due to periodic 

boundary conditions. To test this hypothesis, we conduct a detailed MD analysis that may 

offer a physical explanation for the underlying mechanisms at play. In the following 

sections, we conduct systematic EMD simulations using alumina-water nano-suspensions, 

and calculate the effective thermal conductivity for a range of volume fractions and particle 

sizes. We also investigate the origin and effects of artificial correlations in thermal 

conductivity calculations. 

 

5.2 Methodology 

EMD simulations are conducted for a system consisting of a single alumina (Al2O3) 

nanoparticle and water molecules.  GK relations are used to calculate thermal conductivity 

at a temperature of 300 K. Partial enthalpy correction is applied. The volume fraction is in 

the range 1-10%. Particle sizes of 1 and 3 nm are considered. Note that when the particle 

size is changed, simulation cell size is readjusted to obtain the target volume fraction. 
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Atomic interactions within Al2O3 are modeled using the potential function developed by 

Vashishta et al. [76]. Interactions in water are captured using the Extended Simple Point 

Charge [75] (SPC/E) model, with bonds constrained by the SHAKE algorithm [155]. Long-

range electrostatic interactions are treated by particle-particle-particle-mesh (pppm) 

summation [75]. The alumina-water cross-interaction is modeled using Lorentz-Berthelot 

mixing rules [79]:  
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where εAl-Al = 1.4383 x 10-8 eV, σAl-Al = 5.3814 Å, εO-O = 1.6847 x 10-3 eV, and σO-O = 

3.9883 Å [156]. 

The nanoparticle and water systems are independently equilibrated at the target 

temperature. For the water system, isobaric-isothermal (NPT) ensemble is used and PBC 

are imposed in all three directions. Temperature and pressure were controlled by Nose-

Hoover thermostat and barostat, respectively. For the nanoparticles, the microcanonical 

(NVE) ensemble is used, and free boundary conditions are imposed on all directions. A 

Berendsen thermostat [157] is used to maintain the temperature of the nanoparticle at 300 

K. The suspension is created by creating a spherical cavity at the center of the water domain 

and inserting the equilibrated nanoparticle in the cavity. Care was taken to make sure that 

there is no overlap of atomic positions. The box dimensions were chosen based on the 

volume fraction, while ensuring that densities of both materials match the experimental 

counterparts. After the particle and water systems are independently equilibrated, they are 

combined, as shown in Figure 1 (a). The resulting system is equilibrated at 300 K and 1 

(5.1) 
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bar in Nose-Hoover isobaric-isothermal (NPT) ensemble for 100 ps using a time step of 

0.1 fs. The thermal conductivity calculation is then carried out for a time period of 5 ns; 

heat current correlation times are in the range 2.5-10 ps. All simulations are conducted 

using the LAMMPS [73] MD code; the Verlet Algorithm is used for time-integration. 

 

5.3   Results and Discussion 

5.3.1 Thermal conductivity of water 

Figure 5.1 shows thermal conductivity of water as a function of temperature 

calculated from GK relations using different interatomic potentials. Experimental results 

are also overlaid for comparison.  As can be seen from Figure 5.1, the thermal conductivity 

of water increases from 0.72 to 0.81 W/m-K, when the temperature increases from 300 to 

370 K. Predictions differ from experimental values marginally, suggesting the model is 

valid and SPC/E potential is effective for calculating the thermal properties of water. 
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Figure 5.1 Thermal conductivity of water as a function of temperature evaluated by 

MD simulations using different potential functions, compared with experimental 

results 

 

5.3.2 Thermal conductivity of nano-suspensions 

Figure 5.3 shows the variation of effective thermal conductivity (ke/kf) of the 

mixture with volume fraction (ϕ). Results suggest a near-linear variation of ke/kf with ϕ, 

aligning well with the behavior of nanofluids [158]. For a particle size of 3 nm and  ~ 9 

%, ke/kf is ~200%, substantially greater than the predictions of the nanofluid thermal 

conductivity models [28, 52, 53, 159]. As particle size is reduced to 1 nm, the enhancement 

increases to 235% at  ~ 9%. This is similar to the observations of other researchers [40]. 

In the absence of aggregation or Brownian motion, enhancements may be credited to 

possible nanolayer effects, but that hypothesis can be tested. In essence, the nanolayer 

thickness, h, may be estimated using a radial density profile, as shown in Figure 5.2(b), 

evaluated using 0.5-1 Å thick spherical shells around the particle. The nanolayer can be 

approximately taken as the region between the particle surface and the shell in which the 
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density reduces to the bulk density of water. For the cases in Figure 5.2, the estimated 

nanolayer thickness is ~ 6.5-9 Å or 2-3 atomic layers, and it is independent of the particle 

size. This is in agreement with the physisorption theory [160] as well as with ab initio 

findings [161]. As a result, smaller particles may be expected to have a higher relative 

nanolayer thickness, h/D, resulting in a higher thermal conductivity, producing a seemingly 

convincing validation of the nanolayer hypothesis.  

 

 

 

Figure 5.2 (a). Cross-section of single nanoparticle simulation system, and (b) radial 

density profile for 1 nm particle suspension at ϕ ~ 1%  
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Figure 5.3 Enhancement in effective thermal conductivity (TC) as a function of 

particle volume fraction compared with various thermal conductivity models 

This hypothesis, however, has several issues. Firstly, as seen in Figure 5.2(a), the 

nanoparticle is not a perfect sphere. Surface roughness, with a characteristic dimension of 

a few angstroms, could contribute to an increase in mass density near the surface. 

Furthermore, water layering occurs mainly by hydrogen bonding, which does not cause 

significant density changes [162], as reported in other works [37, 40]. In addition, the 

NEMD analysis of Liang et al. [58] suggests that the nanolayer thermal conductivity is 

only ~1.6 times that of the liquid, suggesting its insignificant role in interfacial conduction.  

Figure 5.4 below shows thermal conductivity enhancement as a function of particle 

thermal conductivity. As shown in Figure 5.4, at lower volume fractions, 3 nm particle 

suspensions have a higher thermal conductivity than 1 nm particle suspensions, probably 

because the system sizes are so large that the effect of artificial correlations are not very 

strong. However, as the volume fraction increases (or system shrinks), these effects 

intensify, and we observe a shift in the trend.  

Particle volume fraction, %

T
C

en
h
an

ce
m

en
t,

k
ef

f/
k

f
0 2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

3.0

3.5
1 nm

3 nm

Maxwell

Yu and Choi

Xie

Shaker



 105 

 

Figure 5.4 Enhancement in effective thermal conductivity (TC) calculated from single 

particle simulations as a function of particle thermal conductivity for various volume 

fractions 

 

5.3.3 Artificial correlations 

The size effect on thermal conductivity poses concerns. Figure 5.5 shows the effect 

of particle size on thermal conductivity, kp, of alumina nanoparticles. For a 1 nm particle, 

kp is only about one-fifteenth of the bulk value. This is expected, as the phonon MFP 

decreases with decreasing particle size due to boundary scattering [46] and accessible 

phonon modes are limited due to size-restricted phonon wavelengths. This suggests that 

the effective thermal conductivity of nanofluids may decrease with decreasing particle size, 

contrary to the trend shown in Figure 5.3. 
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Figure 5.5 Thermal conductivity of alumina nanoparticle as a function of particle size 

This contradiction highlights two factors governing the calculated thermal 

conductivity, namely the magnitude of the HCACF, and the time required for the 

fluctuations to lose correlation. If the correlations are large and/or remain intact for a long 

time, greater thermal conductivity may be expected. As periodic boundary conditions are 

imposed, it is possible that an atom will experience perturbations from its own periodic 

image. In particular, an atom can thus experience an artificial enhancement in the self-

correlated heat current, as its motion perturbs the surrounding atoms, which can then be 

transmitted through the entire supercell back to itself. The returning and initial 

perturbations are likely to be well-correlated, as they originate from the same atom. This 

is unrealistic because every atom is unique, and perturbations to its surrounding 

environment can never possess a circular resonance with its own motion, in reality. The 

observed thermal conductivity enhancement could thus simply be a numerical artefact 

arising from the periodic boundary conditions.  

Disparities in vibrational frequencies may also play an important role in 
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163], as shown in Figure 5.6, reveals that the frequencies associated with water are 3-4 

times higher than that of alumina. Consequently, water would experience vibrations of 

alumina atoms as low frequency waves. As lower frequency waves can be transmitted 

farther through a medium, since they experience less attenuation[164], alumina vibrations 

have a greater propensity to establish a circular resonance from the PBC. These 

perturbations can thus form a feedback loop if they are not sufficiently damped by the 

surrounding water molecules. Furthermore, this effect would be more pronounced in 

smaller simulation domains and/or systems with long-range forces, such as those in ionic 

suspensions. 

 

Figure 5.6 Comparison of the vibrational spectra of water and alumina 

 For the alumina-water system, the electrostatic part of the SPC/E force-field is 

truncated at 10 Å, whereas the Vashishta et al. [76] potential is truncated at 6 Å. For a 1 
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in the HCACF associated with fictitious self-correlations. As the particle size and volume 

fraction decreases, the system gets larger and self-interactions and artificial correlations 

are suppressed. This is an intrinsic problem associated with PBC and small system sizes, 

but the problem can be mitigated by choosing a system size large enough to minimize 

artificial correlations. This, however, imposes constraints on the maximum attainable 

volume fraction with single-nanoparticle, although only volume fractions as high as 20-

30% are of concern for many practical propulsion and energy-conversion systems. 

Alternatively, we may use multiple nanoparticles in the system, as illustrated in Figure 

5.7(inset).  

  

Figure 5.7 Time decay of heat current autocorrelation function 1 nm particle, ϕ = 

10%; Inset: multi-particle simulation system 
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Figure 5.8 Enhancement in effective thermal conductivity (TC) calculated from 

multi-particle simulations as a function of particle volume fraction compared with (a) 

Maxwell model[28] with bulk thermal conductivity of alumina and experimental 

results[1, 2] (b) Maxwell model with thermal conductivity of alumina particles from 

Fig. 5.5 

 It is logical to expect that the addition of more nanoparticles is likely to hamper 

the development of artificial self-correlations due to the presence of unrelated perturbations 

from other nanoparticles, thereby breaking the symmetry that a single particle tries to 

establish with its own image. This hypothesis was then tested by comparing the time decay 

of HCACF for single and three-particle systems, as shown in Figure 5.7. For single-particle 

systems, HCACF oscillates substantially before decaying to zero. These fluctuations are, 

however, damped in three-particle systems, resulting in a quicker and smoother decay. 

Prior studies attributed these oscillations to back-scattering of phonons at the particle-fluid 

interface [36] or to the relative motion of dissimilar atoms [83]. However, the results of the 

present study, suggest that the oscillations are merely associated with artificial correlations.  

The thermal conductivity was then recalculated for multi-particle supercells. By 

gradually increasing the particle count and testing for convergence, it was found that a 

minimum of three alumina particles are required to diminish the artificial correlations. 
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Multiple initial configurations were used to remove any directional dependencies, and an 

average of twelve independent runs were used to calculate thermal conductivity. Figure 

5.8(a) shows the resulting variation of keff/kf with  for different particle sizes and the MD 

predictions are compared with experimental results [1, 2] and the Maxwell model. In Figure 

5.8(a), bulk thermal conductivity is used, while in Figure 5.8(b), nanoparticle thermal 

conductivity (from Figure 5.5) is used. Experimental data correspond to nanofluids with 

negligible aggregation. The results do not suggest any anomalous enhancement beyond the 

Maxwell model. In fact, MD predictions are slightly lower than the Maxwell model, and 

agree well with the experimental data. Furthermore, the effective thermal conductivity also 

increases with increasing particle size, which is consistent with the size dependent thermal 

conductivity behavior of nanoparticles. Figure 5.8(b) shows that MD predictions are 

marginally greater than Maxwell model predictions, when the nanoparticle thermal 

conductivity values are used instead of the bulk values. This may be because the Vashishta 

potential underestimates the thermal conductivity of alumina, as explained earlier. 

 

5.4  Conclusions 

To conclude, an alternative explanation to the unusually high thermal conductivity 

of nano-suspensions obtained using Green-Kubo relations has been investigated. While 

prior studies credit them to dynamic heat transport mechanisms, our results suggest that 

these high values are merely an outcome of artificial correlations, arising from single 

nanoparticle systems and PBC, thereby introducing artificial contributions to the heat 

current autocorrelation function (HCACF). This problem is expected to be prominent for 
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systems in which vibration frequencies of the constituents are disparate. In such cases, low 

frequency perturbations are transmitted through the surrounding high frequency medium 

and return to the originating particle due to PBC. The resulting circular resonance 

contaminates the HCACF, which is more pronounced for smaller particles and/or higher 

volume fractions. In an effort to alleviate this artifact, multi-particle systems were 

considered. The presence of additional particles impedes the development of artificial self-

correlations by breaking the particle-image symmetry. Thermal conductivity predicted 

from the rectified HCACF is in good agreement with experimental data and the Maxwell 

model predictions. It is to be noted that the required minimum number of particles depends 

on the simulation system, which can be determined by devising an appropriate convergence 

test. In summary, Brownian motion and nanolayering have negligible roles on enhancing 

the effective thermal conductivity of a nanosuspension and they need not be explicitly 

included in the effective thermal conductivity model. Therefore, in the following chapter, 

we will not be including their contributions in the thermal conductivity model, whereas the 

size and temperature effects on phonon thermal conductivity and the interfacial 

conductance will be explicitly included following a series resistance circuit model 

described in Chapter 2.  
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CHAPTER 6. NUMERICAL MODELING OF FLAME 

PROPAGATION IN NANO-ALUMINUM-WATER MIXTURES 

In this chapter, we try to address the fourth and final thesis question: How to model 

flame propagation in realistic nanosuspensions by explicitly modeling particle thermal 

conductivity (with size effects and interfacial conductance)? What are the nanoscale heat 

transfer effects on combustion performance of nanoenergetic materials? This chapter 

incorporates the nanoscale heat transfer effects introduced in Chapters 3-5 into a revised 

perspective about flame propagation in nanoenergetic materials. Based on the findings in 

prior chapters, an effective thermal conductivity model is developed for nano-

aluminum/water (nAl-H2O) mixture by considering the random distribution and viscous 

interaction of particles as described in Chapter 2. The developed thermal conductivity 

model is then validated by predicting the burning properties of a nAl-H2O mixture. A 

detailed numerical analysis of flame propagation in nAl – water (H2O) mixture is 

performed and emphasis is placed on investigating the role of particle thermal conductivity 

in predicting burning properties of the mixture. Flame structure and burning characteristics 

are obtained by solving the discretized energy equation using finite the Gauss-Seidel 

iteration method. The particle thermal conductivity is modeled using temperature-

dependent thermal conductivities for both the aluminum core and the oxide layer, as well 

as considering interface resistance. The effective thermal conductivity of the mixture is 

modeled as a function of temperature, spatial coordinate, and local mixture composition by 

means of unified Maxwell-Eucken-Bruggeman model, accounting for random particle 

distribution and particle interaction. 
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6.1 Introduction  

As discussed earlier, nAl is a promising fuel in energetic material compositions. 

Oxidizers considered here are oxygen, water, fluorine, nitrous oxide, carbon monoxide, 

and carbon dioxide. Table 6.1 shows the single-step balanced reactions of Al with various 

oxidizers and their equilibrium product compositions.   

 

Table 6.1 Some prospective Al oxidation chemistries and equilibrium products 

Reactants Products 

2Al(s)+1.5O2 Al, AlO, Al2O, Al2O2, O, O2, Al2O3 

2Al(s)+1.5(O2+3.76N2) Al, AlO, Al2O, NO, N2, O, Al2O3, AlN, AlON 

2Al(s)+3N2O Al, AlO, Al2O, Al2O2, NO, N2, O, O2, Al2O3 

2Al(s)+3H2O H, H2, H2O, Al(OH)3, Al2O3 

2Al(s)+3CO2 CO, CO2, Al2O3 

2Al(s)+3CO Al, Al2O, CO, Al4C3, Al2O3, C 

2Al(s)+1.5F2 Al, AlF, AlF2, F 

 

 Among the different nAl chemistries, nAl-H2O chemistry has been particularly 

attractive, due to several unique advantages. Firstly, it offers much cleaner combustion 

because of the less hazardous combustion products. Two of the particulate products are 

aluminum oxide (Al2O3) and aluminum hydroxide (Al(OH)3) which are relatively inert and 

generally non-hazardous to plant and animal life. Moreover, owing to the high surface 

tension of nanoparticles, additional polymeric binders like HTPB and PBAN are not 

required to synthesize propellant mixtures. A lack of binders leads to elimination of a 
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significant amount of other combustion products that have been shown to be 

environmentally hazardous. Secondly, the Al–H2O reaction liberates hydrogen gas from 

water, which can be used as secondary energy source in multistage propulsion systems, or 

for reducing less reactive metals from their ores, paving way for carbon-neutral 

metallurgical applications. Finally, all the constituents can be locally sourced, ensuring 

scalability and faster response in times of military emergencies. For these reasons, in the 

first decade of twenty-first century, nAl- H2O reactions started gaining traction as 

propellant compositions, particularly nAl- water and nAl-ice (ALICE).  

There have been several experimental and associated theoretical studies that 

investigate flame propagation in nAl suspensions [18, 19, 22]. Experimental studies span 

a pressure range of 0.1-10 MPa [22] and use particles of sizes 38-130 nm. The measured 

burning rates were found to be inversely proportional to particle size. This peculiar burning 

behavior was ascribed to both heat conduction and chemical kinetics, but the key 

mechanisms were not discussed. To complement their experiments, several theoretical 

studies were also performed [18]. All these studies adopted a modelling approach suited 

for micron-sized particle mixtures. They used approximate thermal transport property 

models that do not take TIR into consideration. In addition, the studies assume mean 

thermal properties and thermal conductivity in preheat and flame zones, while in reality 

these properties are temperature dependent and hence spatially varying.  As a result, they 

have severely over predicted the linear burning rate, rb in these systems.[18, 24] For 

instance, the mean error in rb for a 130 nm particle is ~25%, while for a 80 nm particle, the 

error is 31%. For 38 nm particle suspensions, the predicted quantitative and qualitative 

trends differ substantially from experimental results. Furthermore, the mean error is > 50%, 
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with a peak error in rb of 104% at 3.5 MPa. In these studies the authors attribute this error 

to the adsorption of water molecules to the nanoparticle surface, and argue that adsorption 

prevents the diffusion of oxidizer molecules towards the core Al atoms. While this is a 

plausible claim, recent studies [165] indicate that mass diffusion is not a rate limiting 

process in the combustion of nAl suspensions. Hence, we hypothesize that this disparity 

may occur due to an oversimplification of nanoscale heat conduction physics and 

inadequate modeling of the thermal conductivity of the system. 

The primary objective of this chapter is therefore to systematically investigate the 

role of thermal resistance offered by Al, Al2O3, and the interface in modeling effective 

thermal conductivity, and subsequently, flame propagation in nAl-H2O mixture. Here, we 

use findings from Chapter 4 of TIR of Al/Al2O3 for temperatures ranging from 300-1800 

K, and the effective thermal conductivity of the suspension is modeled by accounting for 

the effect of particle size, temperature, and random dispersion of  the mixture, as described 

in Chapter 2. Finally, the effective thermal conductivity model is applied in combination 

with the particle burning time scales to simulate a vertically propagating one dimensional 

flame in a stoichiometric mixture under isobaric conditions. Thermal properties are 

assumed to be spatially varying, and the nonlinear energy equation is solved iteratively. 

Linear burning rate, rb is computed, and the effect of particle size is also assessed. Finally, 

the sensitivity of rb to variations in transport properties are also analyzed to provide a heat 

conduction perspective to combustion of metal-based nano-energetic materials.  
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6.2  One-dimensional flame model and numerical framework 

  A one-dimensional, isobaric flame propagating vertically downward through a 

stoichiometric mixture of nAl particles and liquid water is considered. This model 

represents the real physical system on which combustion experiments were performed, and 

the results are available for validation [21]. A multi-zone framework representing the flame 

and preheat zones is shown in Figure 6.1. 

 

  

Figure 6.1 Theoretical multizone framework used to represent reaction and preheat 

zones. Zone A-C represent preheat zones and zone D represents the reaction zone. 

As can be seen from Figure 6.1, several distinct zones can be identified within the 

framework. Zone A represents the nAl-H2O (l) reactant mixture, which constitutes the 

propellant pellet originally synthesized for experimental study. The initial temperature of 

the unburnt propellant, Tu may be assumed to be equal to the ambient temperature i.e. Tu = 

298 K. In Zone A, the major physical process is preheating of the system from Tu to the 

vaporization temperature of water, Tv and there are no notable chemical reactions in this 

zone due to the presence of a stable capping oxide layer. Once the water vaporizes at Tv, 

resulting vapor acts as an oxidizer in the following zones. The end of Zone B is marked by 
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the melting of the aluminum core at a temperature Tm. The melting of the aluminum core 

causes a volume expansion which cracks the oxide layer. Molecules diffuse through these 

cracks and react with the water vapor. Near the end of Zone B and throughout Zone C, 

ignition reactions occur. Marking the end of Zone C, at temperature Tign = 1360 K, an 

overall ignition of the system is obtained. Zone D represents the flame zone leading to a 

flame temperature Tf = 1800 K.  

The temperature profile, T(x) and zone thicknesses, Δ can be obtained by solving 

the energy equation in each zone and matching the physical conditions at the boundaries. 

The general equation of the energy balance can be given as: 

  ,p

T
C T k Q

t x x
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where, ρ is the density, Cp is the specific heat, T is the temperature, k is the effective thermal 

conductivity of the mixture, and Q  is the heat release rate. Note that ρ, Cp, and k are 

functions of temperature and local mixture composition. In a flame coordinate system, 

assuming constant rb, the partial time derivative, 
t




 can be written as

b

d
r

dx
and Eq. 7 can 

be rewritten as: 

  b p

d d dT
r C T k Q

dx dx dx


 
  

 
 

The linear burning rate, rb needs to be evaluated via the shooting method.[166] 

Therefore, the first step is to assume an initial solution for rb. Neglecting the source term 

and expanding the right hand side of the eq. (8), the energy equation can be written as:  

(6.1) 

(6.2) 
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 
2

2
.b p

d dk dT d T
r C T k

dx dx dx dx
      

Eq. (6.3) can be discretized by the one-dimensional finite difference method as: 

   
 

1 1 1 1 1 1 1 1

2

2
. ,

2 2 2

p pi i i i i i i i i
b i

C T C T k k T T T T T
r k

x x x x

 
       
    

 
   

 

and solved using Gauss-Seidel iteration: 

 

 

   2

1 1 1 1 1 1 1 1 1

2
. .

2 2 2 2

n n
n n n n n n

p pn i i i i i i i i
i i b

i

C T C Tx k k T T T T
T k r

k x x xx

 
        

       
   
 

 

Here i is the grid point index in the one-dimensional stencil consisting of r grid points, and 

n denotes the iteration. Note that the number of grid points should be chosen so as to include 

at the minimum a full nanoparticle and the surrounding fluid medium, so that the model is 

representative of the average mixture properties of the zone. If the grid size is smaller, then 

the effective thermal conductivity model fails for the control volume, leading to the failure 

of convergence of the iterative scheme. With the finite difference grid set up, the next step 

is to consider energy equations, identify boundary conditions, and perform the same 

numerical treatment for each zone present in the framework.  

 

6.2.1 Energy balance for liquid water- solid aluminum (Zone A) 

 The liquid water zone is the region between x =  ∞ and x =  v. Here, the energy 

equation can be written as: 

(6.3) 

(6.4) 

(6.5) 
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   , , , ,b Al p Al Al ox p ox ox lw p lw lw m

d d dT
r C C C T k

dx dx dx
     

         
 

where   is the volume fraction, subject to boundary conditions: 

; .
vx u x vT T T T   Here, the subscripts Al, ox, lw, and m,W denote aluminum, 

oxide layer, liquid water, and mixture in liquid water zone respectively. Assuming a zone 

length of ~ 1000 cm, and an initial linear temperature profile between the boundary 

conditions, T1 = Tu and Tr+1 = Tvap, Eq. 6.5 is solved iteratively at each grid point until a 

steady state solution is obtained with a residual less than 1x10-3. Once the solution is 

obtained, the temperature gradient at A-B interface (x = -δv), 
W

dT

dx
is calculated using a 

second order one-sided backward finite difference scheme. Using
W

dT

dx
, the temperature 

gradient on the vapor side, 
V

dT

dx
 can be calculated as: 

, ,m AB m AB fg lw lw b

V W

dT dT
k k h r

dx dx
     

where hfg is the heat of vaporization of water, 𝜌𝑙𝑤 is the density of liquid water T = Tvap; 

Φvap is the mass fraction of water in the mixture and km,AB- and km,AB+ are the thermal 

conductivities of the mixture to the left (liquid water) and right (vapor) of the phase 

boundaries respectively at T=Tvap. 

 

 

(6.6) 

(6.7) 
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6.2.2 Energy balance for water vapor- solid aluminum (Zone B) 

A water vapor-solid aluminum mixture exists in the region between x =  v and x =  m. 

The energy equation in this region can be written in following form: 

 , , , ,b Al p Al Al ox p ox ox lw p wv lw m

d d dT
r C C C T k

dx dx dx
     

         
 

subject to the interfacial conditions: 

;
,

,

v v m m fg lw lw b

V W

m m

dT dT
x :T T k k h r

dx dx

x :T T

  



 


    


   

 

where the subscripts - and + represent the right and left side of the boundary respectively.  

For Zone B, in addition to solving the temperature profile, we need to 

simultaneously determine the zone thickness, ΔBC. To do so, we first assume an initial zone 

thickness ΔBC followed by a two-level iterative procedure – the inner level is to iteratively 

compute the temperature at each grid point using Eq. 6.5, and the outer level to correct the 

slope condition at the left boundary using a non-linear least square error minimization 

solver. The slope of the temperature profile at each outer step is computed from the 

converged temperature profile obtained from the inner step using a second order one-sided 

forward finite difference scheme. Once the converged zone thickness and corresponding 

temperature profile are simultaneously obtained, we can compute the heat flux at the right 

boundary and thereafter compute the incoming heat flux from zone C as: 

, ,

, ,

m BC m BC m Al Al Al b

V BC V BC

dT dT
k k h r

dx dx
   

 

   

(6.8) 

(6.9) 

(6.10) 
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where hm-Al is the heat of fusion of Al, ρAl is the density of solid Al at T=Tm, ΦAl is the mass 

fraction of Al in the mixture and km,BC+ and km,BC- are the thermal conductivities of the 

mixture corresponding to the left (solid Al) and right (molten Al) of the phase boundary 

respectively at T=Tm. 

 

6.2.3 Energy balance for water vapor- molten aluminum (Zone C) 

Similar to Zone B, the energy equation for Zone C can be written as: 

 , , , ,b lAl p lAl lAl ox p ox ox lw p wv lw m

d d dT
r C C C T k

dx dx dx
     

         
 

subject to the boundary conditions: 

,

: ; ,

,

m m m m mAl Al Al b

V mAl V

ign

dT dT
x T T k k h r

dx dx

x 0 :T T

   


    


  

 

where the subscript lAl represents liquid aluminum and hmAl is the enthalpy of fusion of 

aluminum.  

A similar procedure followed for Zone B is used to compute the temperature profile 

and zone thickness ΔCD of zone C. The inner level computes the temperature profile for 

each estimate of zone thickness using Eq. 6.5 with T1 = Tm and Tr+1 = Tign, and the outer 

level iteratively corrects the zone thickness to match the computed heat flux from the inner 

step temperature profile, with that obtained. Finally, from the converged zone thickness 

(6.11) 

(6.12) 
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and temperature profile, the heat flux at the C-D interface, ,

,

m CD

V CD

dT
k

dx




 can be computed 

using a second order one-sided backward finite difference scheme. This heat flux is also 

equal to the heat flux coming in from the reaction zone D since there is no phase change 

associated with the C-D interface, i.e.: 

, ,

, ,

m CD m CD

V CD V CD

dT dT
k k

dx dx
 

 

  

 

6.2.4 Energy balance for reaction zone (Zone D) 

The energy equation for Zone D can be expressed as:  

,m

b

r
b i p,i i

i

Q
r

d d dT
C T k

dx dx dx




   

    
    

   
  

where Qr is the chemical energy release per unit mass of the mixture and τb the particle 

burning time scale. The inputs required to solve these equations are physical properties: ρ 

and Cp, particle burning time τb, and mixture thermal conductivity km.  

 The thermophysical (Cp and ρ) properties of aluminum and its oxide are taken from 

Refs. [31-33] and that of water and hydrogen are taken from Refs. [167, 168] The energy 

equation is modified to include the reaction source term and mean particle burning time as: 

 
2

2
,m r m

b p m

b

dk Qd T d T
r C T k

dx dx x dx






 
   

 
 

(6.13) 

(6.14) 

(6.15) 
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where Qr is the heat released by combustion per mass of stoichiometric mixture, ρm is the 

density of the mixture and τb is a burning time parameter to characterize the rate of reaction. 

Since a detailed reaction mechanism of Al-H2O combustion is not well understood, we 

assume a mean mass burning time scale is justifiable, as long as the experimental mass 

burning properties can be properly reproduced. Therefore, particle burning time, τb, is 

obtained from experimental measurements [18, 27]. The mean particle burning time scale 

can be calculated from the following equation: 

  2

1 1 2 2

3 3 4 4

exp( ) exp( )

exp( ) exp( )

p

b m

c a bT a b T d

p

m a b T a b T






 

 

The numerical values corresponding to various constants are given in Table 6.2 Constants 

in eq. 6.16. 

    Table 6.2 Constants in eq. 6.16 

Constant Value 

c 1.736 x 10-3 

a1 204.650 

b1 -9.848 x 10-3 

a2 1.842 x 10-4 

b2 3.461 x 10-5 

a3 7.075 

b3 -1.905 x 10-3 

a4 4.023 x 10-1 

b4 -3.120 x 10-4 

 

(6.16a) 

(6.16b) 
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 We have already observed the fidelity of the burning time model in reproducing the 

experimental burning times of nAl in Figure 1.6. Therefore, for solving the temperature 

profile and thickness of this zone, the boundary conditions are: 

1

1

1

1

0

.

ig

r f

r

CD

T T

T T

dT

dx

dT dT

dx dx















  

Note however that for solving for temperature profile, only two boundary conditions are 

required, and for determining the reaction zone thickness, only one additional boundary 

condition is required. The fourth boundary condition can be used to correct the rb which 

was assumed at the very beginning of our calculations. Therefore, for Zone D, we follow 

a similar procedure as Zone B and C, using an inner step with Eqs. 6.17 and 6.18 to solve 

Eq. 6.15 to determine the temperature profile for a given zone thickness, and an outer step 

to correct the zone thickness based on Eq. 6.19. Finally, rb is estimated by iteratively 

solving the above steps (zones) until Eq. 6.20 is satisfied. 

 

6.3  Results 

6.3.1 Thermal transport 

In Chapter 4, we implemented ICMA calculations in an equilibrium molecular 

dynamics (EMD) framework for an Al/Al2O3 system to evaluate TIC, and have achieved 

(6.17) 

(6.18) 

(6.19) 

 

(6.20) 
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conclusive experimental validation for temperatures ranging from 50-500 K. Using the 

benchmarked ICMA framework, the TIC calculations was also extended to 1800 K. We 

considered a (111) Al || (0001) Al2O3 crystal direction representing the primary orientation 

in FCC metal-metal oxide interface for both Al- and O-terminated Al2O3 surfaces. Here, 

the inverse of TIC values is taken to evaluate TIR. Following ICMA calculations, a 

temperature dependent TIR model was also fitted to the data using a least squares 

algorithm.   

 

Figure 6.2 (a) Thermal resistance of Al, Al2O3, and interface (b) Percentage 

contribution by each resistance component to the total thermal resistance of the 

nanoparticle 

Figure 6.2(a) shows the thermal resistance due to Al, Al2O3, and their interface, and 

Figure 6.2(b) shows the percentage contribution of each thermal resistance to total thermal 

resistance of the particle for temperatures ranging from 300-1800 K. The results correspond 

to a nanoparticle with a diameter of 38 nm coated by an oxide layer of initial thickness 2.7 

nm, which increases as the reaction proceeds. As can be seen from Figure 6.2(a), the TIR 

decreases monotonically with temperature until reaching the melting temperature of Al = 

933 K. At the melting temperature, there is a sharp rise in TIR, which remains nearly 
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constant thereafter. This is due to the loss of crystallinity of core Al lattice as it melts. The 

thermal resistance of Al2O3, on the other hand, shows a monotonically increasing trend as 

it remains in solid state throughout the temperature range considered. Its increase is a 

combined result of the decrease in its thermal conductivity and the increase in oxide layer 

thickness. Also note that, for most temperatures, the TIR is higher than the Al2O3 

resistance, indicating that TIR is crucial in accounting for the net thermal resistance of the 

nanoparticle. Moreover, from Figure 6.2(a), it is quite evident that the contribution to total 

resistance is the lowest from Al. The thermal resistance of Al is two orders of magnitude 

lower than that of Al2O3 and the interface. In other words, Al offers the highest conductive 

pathway for energy released at reaction zones to traverse through the unburnt mixture. 

Were the oxide layer absent on the Al surface, the medium would offer a much lower 

resistance to heat conduction, and would exhibit a much higher burning rate. In the liquid 

state, similar to the interface, Al offers significantly higher resistance due to lack of 

crystallinity. Furthermore from Figure 6.2(b), comparing the contribution of each of the 

components to total thermal resistance, it is evident that TIR and oxide layer resistance 

together contribute > 95% of thermal resistance. The same approach can be extended to 

various particle sizes and used in conjunction with the MEB model to predict thermal 

conductivity of the mixture. 
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Figure 6.3 (a) Thermal conductivity of nanoparticles of diameters Dp = 38 nm, 80 nm, 

and 138 nm, and (b) Effective thermal conductivity of nAl-H2O mixture for different 

particle sizes, as a function of temperature 

Utilizing the temperature dependent thermal resistance values depicted in Figure 

6.2(a), particle thermal conductivity, kp for three different particle diameters Dp: 38 nm, 80 

nm, and 138 nm are calculated. Figure 6.3(a) shows kp as a function of temperature. As can 

be seen from the figure, kp initially decreases steadily with temperature, drops sharply at 

the melting temperature of Al, and remains nearly constant thereafter. Using the particle 

and fluid thermal conductivities, effective thermal conductivity of the mixture, km can be 

evaluated using the MEB model. Results of the temperature dependent km for different 

particle sizes are shown in Fig. 6.3(b). In addition to the decreasing trend in km, two sharp 

drops are also observed corresponding to the vaporization temperature of water at 373 K 

and the melting point of Al respectively. More importantly, km increases with an increase 

in particle size because the thermal resistance of core Al decreases. Results shown in Fig. 

6.3 are straightforward, and need to be validated against experimental measurements by 

applying the numerical framework to predict burning properties.  
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6.3.2 Flame propagation 

A numerical solution of the flame problem yields the temperature profile across the 

reaction and preheat zones, as shown in Figure 6.4. Figure 5 represents zones A-D in the 

multizone framework corresponding to a baseline case of a 38 nm particle suspension at 

pressure, P = 1 bar. Results of rb and the thicknesses of various zones are given in Table 1. 

The rb predicted for the baseline case is 1.79 cm/s, and two distinct experimental 

measurements [21] give a value of ~1.61 cm/s and ~1.40 cm/s respectively. The error in 

predictions of rb is < 10% compared with the experimental data, demonstrating the fidelity 

of the numerical framework. Prior theoretical studies [18] severely overpredict rb to be 4.4 

cm/s because they do not account for interface resistance and spatial variation of thermal 

transport properties. In addition, thicknesses of zones B, C, and D are also obtained as 4.7 

μm, 1.01 μm, and 1.49 μm respectively. Zone thicknesses elucidate finer details of the 

flame structure that are difficult to measure experimentally. Also note that the slope of 

temperature profile increases at the A-B interface, accounting for the enthalpy of 

vaporization of water. A similar increase in slope is observed at B-C to account for enthalpy 

of fusion of Al. The end of zone D is marked by a slope of zero, corresponding to a constant 

flame temperature, Tf, as there is no heat transfer between reaction zone and products.  
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Figure 6.4 Detailed flame structure obtained via numerical solution of the 1D flame 

propagation problem clearly showing the different zones and their thicknesses 

 

Table 6.3 Summary of results obtained from a numerical solution of flame structure 

and burning properties for the baseline case (P = 1 bar; Dp = 38 nm), compared with 

experimental results [19] and a prior theoretical model [18] 

Linear burning rate, rb Zone B Zone C Zone D 

This work = 1.79 cm/s 

Expt 1.: 1.61 cm/s [21, 22] 

Expt 2. :1.40 cm/s [21, 22] 

Prior work: 4.4 cm/s [18] 

4.7 μm 1.01 μm 1.49 μm 

 Having benchmarked the numerical framework with baseline experimental results, 

a detailed analysis of rb as a function of kp modeled with increasing levels of complexity is 

studied. Figure 6.5 compares rb predicted using 3 different kp models at P =10 bar. Model 

1 includes only the thermal conductivity of Al, kAl, to represent kp. This model neglects the 

presence of oxide layer and, therefore over predicts the thermal conduction in the 
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nanoparticle. In model 2, the Al core and the oxide layer are considered, but TIR is 

neglected. Model 3 has the highest complexity wherein TIR is also used to model kp. 

Experimentally measured rb values are also overlaid for comparison [21]. As can be seen 

from Figure 6.5, predictions of model 3 are closest to the experimental values. Models 1 

and 2 over predict rb because they over predict thermal conductivity. The mean error in 

model 1 is ~20%, and is ~18% for model 2. The mean error in model 3 is < 5% and the 

maximum error in prediction is ~12% for Dp = 38 nm. A model fit on rb v/s Dp predicted 

from model 3 obtained from least squares algorithm gives a relation: 

  
1.0

1cm.s 144.76 nmb pr D


   
. Hence rb is inversely proportional to Dp, which is also in 

accordance with the experimental measurements. 

 

Figure 6.5 Linear burning rate as a function of particle diameter, illustrating how 

increasing levels of complexity in modeling particle thermal conductivity give better 

prediction of particle size dependent burning rates 

Finally, we study the sensitivity of rb to changes in thermal conductivity of Al and 

Al2O3, and G at P = 10 bar. This study is motivated by recent advances in nanotechnology 

whereby thermal conductivity can be tuned by deliberately designing materials i.e. by 
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engineering features to target certain group of vibrational modes to either inhibit or enhance 

their role in heat conduction [169-171]. Tuning thermal conductivity provides a means to 

precisely control burning rates of energetic materials in propulsive missions. Here, the 

individual thermal conductivity components kAl, G, and kAl2O3 are arbitrarily varied with 

respect to their actual values and the effects on rb are analyzed. Figure 6.6 depicts the 

sensitivity of rb to changes in kAl, G, and kAl2O3 respectively.  

 

 

Figure 6.6 Sensitivity of linear burning rate to changes in thermal conductivity of a) 

Al and b) Al2O3, and c) thermal interfacial conductance, G for three different particle 

sizes 
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From Figure 6.6, it is evident that in general, rb sensitivity is highest for 38 nm 

particle suspensions. From Figure 6.6 (a), it can be seen that for Dp = 38 nm, a reduction 

of kAl by two orders of magnitude results in reduction in rb by only ~15%. Whereas Figure 

6.6(b) indicates that for the same reduction in G, reduction in rb is nearly ~30%. Figure 

6.6(c) shows that rb drops by ~34% when kAl2O3 decreases two orders of magnitude. It is 

therefore quite evident that thermal conductivity of oxide layer and interface conductance 

dictate rb sensitivity. While kAl2O3 seems to have the highest influence on rb, it is also 

important to note that the oxide layer forms on particle surface in situ during the 

combustion process, and its thermal conductivity is practically uncontrollable. TIC, on the 

other hand, can be tuned to user requirements if certain vibrational modes in Al core are 

preferentially altered by means of nanoengineered defects, doping, and/or alloying. In other 

words, precise tuning of burning rate in nanoenergetic materials is theoretically achievable 

by careful consideration of interfacial conductance. However, as particles becomes larger, 

sensitivity of rb to changes in k appears to diminish. Note also that for all particle sizes, 

even with several-fold enhancement in k and G, the effect on rb is minimal. Therefore, to 

increase burning rates in nanoenergetic materials, one must also adopt conventional 

strategies like high pressure combustion, active metal coating, or catalysis to further 

improve reaction rates. 

 

6.4  Conclusions 

 A detailed numerical analysis of flame propagation in nAl- H2O mixtures was 

performed. Considering a multi-zone framework, the nonlinear energy equation is solved 



 133 

iteratively using the Gauss-Seidel method. The thermal conductivity of nanoparticles is 

modeled by considering the thermal conductivities of both the aluminum and oxide layers, 

as well as TIR. Effective thermal conductivity of the mixture is modeled using the 

Maxwell-Eucken-Bruggeman model as a function of temperature, spatial coordinate, and 

local mixture composition. Results indicate that the oxide layer and the interface together 

constitute ~95% of the net thermal resistance of the nanoparticle. The effect of complexity 

in modeling particle thermal conductivity, kp was studied by predicting the particle size 

dependent linear burning rate, rb. Error in rb prediction is lowest (< 5%) when TIR is taken 

into account. When interface resistance is neglected, error in rb increases to 20%. 

Furthermore, rb varies as the inverse of particle diameter, as observed in experimental 

measurements. Sensitivity of rb to changes in thermal conductivities of aluminum (kAl) and 

aluminum oxide (kAl2O3), and interface conductance (G) is also studied for three particle 

sizes: 38 nm, 80 nm, and 138 nm. rb sensitivity is the highest for 38 nm particles and 

decreases with increasing particle size. rb drops by 15%, 30%, and 34% for a two orders of 

magnitude reduction in kAl, G, and kAl2O3 respectively. No notable enhancement in rb is 

achieved by an enhancement in thermal conductivity or interface conductance. 
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CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 

7.1 Conclusions 

 This dissertation summarizes the nanoscale heat transfer effects on the combustion 

of metal-based nano-energetic materials. The investigation is carried out via a fundamental 

treatment of heat transport in nanoparticles and interfaces. First, ab initio and atomistic 

scale simulations were performed to investigate the nanoscopic nature of heat transport in 

bulk and nanosized aluminum and aluminum oxide, as well as at the interface of these 

materials. Atomistically informed macroscale modeling techniques were then employed to 

treat heat transport in mixtures of nanoparticles in liquid oxidizer to study combustion wave 

propagation. The key findings of this research are now summarized.  

 Firstly, a detailed analysis of phonon transport properties in aluminum (Al) and 

aluminum oxide (Al2O3) has been performed via lattice dynamics (LD) using input from 

density functional theory (DFT) calculations. The phonon dispersion relations and phonon 

density of states (DOS) are evaluated and compared with experimental data. DFT-LD 

methods accurately reproduce the transverse and longitudinal phonon branches in Al and 

Al2O3 along the edges of Brillouin zone. When compared with experimental data, the error 

in LD predictions is comparatively low. Predictions in phonon DOS via lattice dynamics 

is also exceptional. Two peaks in phonon density are observed in Al at ~3 and ~8.5 THz. 

When compared with neutron scattering experimental data, the lower frequency peak 

differs by ~1 THz whereas the higher frequency peak is reproduced accurately. For Al2O3, 

however, the DFT-LD predictions of phonon DOS compares well with the neutron 

scattering data confirming that the phonon properties are well accounted for. Furthermore, 
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the temperature dependent phonon thermal conductivity (TC) of Al and Al2O3 are 

evaluated by solving the Boltzmann transport equation (BTE) under the relaxation time 

approximation (RTA). The phonon TC of Al calculated here is comparable to prior lattice 

dynamics calculations. Experimental data on phonon TC of Al is unavailable. Similarly, 

phonon TC of Al2O3 evaluated by LD is in accordance with experimental results. 

Furthermore, the thermal conductivity accumulation function was evaluated. Results 

suggest that for Al, phonon TC accumulates at a mean free path (MFP) of ~ 30 nm. This 

result suggests that if the system size is below 30 nm, phonon TC can be reduced as larger 

MFP phonons become inaccessible. For Al2O3, TC accumulates at a MFP of ~ 50 nm. 

Hence the system is more severely affected by size. Therefore, while modeling the thermal 

conductivity of a nanoparticle, the effect of particle size should be considered. Spectral 

distribution of TC was also analyzed. For Al, more than 80% of phonon thermal 

conductivity was due to phonons with frequencies in the range of 5-8 THz; for Al2O3, more 

than 92% of TC was due to phonons with frequencies in the range of 4-9 THz. Finally, the 

phonon lifetimes and mean free paths as a function of phonon frequencies were studied. 

Complementing the results of spectral distribution, highest phonon lifetimes and mean free 

paths were observed for phonons with frequencies 5-8 THz for Al and 4-8 THz for Al2O3. 

These studies provide a fundamental understanding of phonon frequencies and their 

contribution in pristine bulk Al and Al2O3 crystals.  

 Building on this understanding of thermal transport in bulk Al and Al2O3, the study 

was extended to understand heat transport across Al/Al2O3 interfaces. The thermal 

interfacial conductance (G) of the aluminum (Al)-aluminum oxide (α-Al2O3) interface 

along the crystal directions (111) Al || (0001) Al2O3 was accurately predicted. Two 
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fundamentally different formalisms were used to make these predictions in the temperature 

range 50-1800 K: interfacial conductance modal analysis (ICMA) and the atomistic green 

function (AGF) method. While AGF overpredicts G, predictions of ICMA show excellent 

agreement with experimental results both quantitatively and qualitatively. The ICMA 

formalism is clearly superior to PGM-based models due to its more fundamental treatment 

of the interfacial heat flux, its inclusion of full anharmoncity of vibrational modes, and for 

its ability to access to phonon mode level details.  

Subsequently, to assess the role of dynamic heat transport mechanisms in nano-

suspensions, a rigorous study of the effect of dynamic mechanisms of thermal conductivity 

enhancement was conducted. An alternative explanation to the unusually high thermal 

conductivity of nano-suspensions obtained using Green-Kubo relations is provided. While 

prior studies credit these enhancements to dynamic heat transport mechanisms, our results 

suggest that these high values are merely an outcome of artificial correlations, arising from 

single nanoparticle systems and periodic boundary conditions, thereby contaminating the 

heat current autocorrelation function (HCACF). This problem is expected to be prominent 

for systems in which vibration frequencies of the constituents are disparate. In such cases, 

low frequency perturbations are transmitted through the surrounding high frequency 

medium and return to the originating particle due to periodic boundary conditions. The 

resulting circular resonance contaminates the HCACF, which is more pronounced for 

smaller particles and/or higher volume fractions. To alleviate this artifact, multi-particle 

systems are considered. The presence of additional particles impedes the development of 

artificial self-correlations by breaking the particle-image symmetry. Thermal conductivity 

predicted from the rectified HCACF is in good agreement with experimental data and the 



 137 

Maxwell model predictions. In other words, the role of nanolayer in thermal conductivity 

enhancement is found to be insignificant as there is no thermal conductivity enhancement 

beyond the Maxwell model.  

Finally, building on the knowledge of nanoscale heat transport properties, a heat 

conduction perspective to flame propagation in nanoenergetic materials is developed. A 

detailed numerical analysis of flame propagation in nano-aluminum (nAl) - water (H2O) 

mixtures is performed. Considering a multi-zone framework, the nonlinear energy equation 

is solved iteratively using the Gauss-Seidel method. Thermal conductivity of nanoparticles 

is modeled using thermal conductivities of aluminum and oxide layer, as well as TIR. The 

effective thermal conductivity of the mixture is modeled using the Maxwell-Eucken-

Bruggeman model as a function of temperature, spatial coordinate, and local mixture 

composition. Results indicate that the oxide layer and the interface together constitute 95% 

of the net thermal resistance of the nanoparticle. The effect of complexity in modeling 

particle thermal conductivity, kp was studied by predicting the particle size dependent linear 

burning rate, rb. Error in rb is lowest (< 5%) when interface resistance is included in 

modeling kp. When interface resistance is neglected, the error in rb increases to 20%. 

Furthermore, rb varies as the inverse of particle diameter, as observed in experimental 

measurements. Sensitivity of rb to changes in thermal conductivities of aluminum (kAl) and 

aluminum oxide (kAl2O3), and interface conductance (G) is also studied for three particle 

sizes: 38 nm, 80 nm, and 138 nm. rb sensitivity is the highest for 38 nm particles and 

decreases with increasing particle size. rb decreases by 15%, 30%, and 34% for a two orders 

of magnitude reduction in kAl, G, and kAl2O3 respectively. No notable enhancement in rb is 

achieved by an enhancement in thermal conductivity or interface conductance. 
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In summary, we have investigated the nanoscale heat transfer effects in the 

combustion of nanoenergetic materials in depth, from the first principles. The numerical 

simulation techniques developed, and the insights gained as a part of this research can be 

applied to a broader class of nanoenergetic materials to study their combustion 

performance following a similar treatment. Understanding the origin of heat conduction in 

such materials can suggest methods to tune their thermal conductivity. Tuning thermal 

conductivity provides means to precisely control burning rates of nanoenergetic materials 

in propulsive missions. 

 

7.2 Recommendations for future work 

  Investigation of heat conduction in engineered surfaces and interfaces is an 

interesting topic for future research. Engineered surfaces are deliberately grafted with 

molecules used to precisely control interfacial heat conduction. For instance, it is known 

that aluminum when coated with active metals such as nickel (Ni) and palladium (Pd) 

reduces oxide layer formation, and also facilitates inter-metallic reactions thereby 

improving the overall energetic value of the mixture. Heat conduction across Al-Ni and 

Al-Pd interfaces, however, is not understood well. In addition, grafting functional groups 

like –OH, -F, -N, and –COOH to aluminum surface can also alter the interfacial 

conductance. These cases are to be investigated thoroughly in future.  

  Leveraging on the knowledge gained from heat transport in engineered surfaces 

and interfaces, smart functional nanoenergetic materials can be designed from the first 

principles. Smart functional nanoenergetic materials can be used in futuristic space and 
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underwater propulsion systems, standalone power source for deep sea and forest 

explorations, etc. Moreover, exploiting heat conduction pathways to switch on/off 

combustion: stress/strain regulated thermal conductivity, interfacial heat conduction, 

structural considerations, porosity, dimensionality, etc. are exciting areas of future 

research.  

  The current dissertation introduces a robust one dimensional finite difference solver 

for flame propagation. In future, better computational models incorporated with detailed 

chemistry, transient flame models in two and three dimensions to simulate realistic flames 

may be developed. These models may also be incorporated with molecular dynamics codes 

to facilitate on-the-fly thermal transport property evaluations.   
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APPENDIX A. FREE PARAMETERS OF EMPIRICAL 

POTENTIAL FUNCTIONS 

Table A.1 Interatomic potential parameters for Vashishta potential for Al2O3 [76] 

 

 

 

  

 
Al O 

  

 

Zi (e) 
1.5237 -1.0158 

 

λ = 5.0 Å ξ = 3.75 Å rc = 6.0 Å e = 1.602 x 10-19 C 

Two-body term 

 
Al-Al Al-O O-O 

ηij 7 9 7 

Hij (eVÅη) 12.7506 249.3108 564.7334 

Dij (eVÅ4) 0 50.1522 44.5797 

Wij (eVÅ6) 0 0 79.2884 

Three-body term 

 
Bjik (eV) 

jik  Cjik  γ (Å) r0 (Å) 

Al-O-Al 8.1149 109.47 10 1.0 2.90 

O-Al-O 12.4844 90.00 10 1.0 2.90 
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Table A.2 Interatomic potential parameters for Streitz-Mintmire potential for Al and 

Al2O3 [78] 

 

Atomic parameters 

 λ (eV) J (eV) ζ (Å-1) Z A (eV) ξ 

Al 0.000 10.328 0.968 0.746 0.763 0.147 

O 5.484 14.035 2.143 0.000 2.116 1.000 

Pair parameters 

 r*(Å) α (Å-1) β (Å-1) B (eV) C (eV) 

Al-Al 3.365 1.767 2.017 0.075 0.159 

O-O 2.005 8.389 6.871 1.693 1.865 

Al-O 2.358 4.233 4.507 0.154 0.094 
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APPENDIX B. COMPARISON OF PHONON PROPERTIES 

CALCULATED FROM LD CALCULATION USING STREITZ-

MINTMIRE (SM) POTENTIAL AND DFT 

 

 

  

Figure B.1 Comparison of phonon DOS evaluated using SM potential and DFT for a) 

Al and b) Al2O3 

 

 

Frequency, THz

In
te

n
si

ty

0 2 4 6 8 10 12

0.01

0.02

0.03

0.04

0.05

0.06
DFT
SM

Frequency, THz

In
te

n
si

ty

0 5 10 15 20 25 30 35
0.00

0.05

0.10

0.15

0.20

DFT
SM



 143 

  

Figure B.2 Comparison of dispersion relations evaluated using SM potential and DFT 

for a) Al and b) Al2O3 

 

 

Figure B.3 Comparison of phonon thermal conductivity evaluated using SM potential 

and DFT for a) Al and b) Al2O3 
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