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SUMMARY

This thesis uncovers the behavior of market participants in reponse to regula-

tory changes in the financial intermediation sector. The first essay, “Repo Regret?”,

I find that Independent Mortgage Companies (IMCs), which accounted for a third

of all mortgage originations in the U.S., experienced an exogenous increase in their

funding after the passage of the 2005 bankruptcy reform act. The act increased cred-

itor protection by including mortgage related collateral to bankruptcy safe harbored

repos, thereby expanding IMCs funding opportunities. Using multiple identification

strategies based on funding constraints, discontinuity in securitization propensity, and

geographic discontinuity in anti-predatory lending laws, I find that IMCs responded

to this funding shock by increasing the issuance of risky home loans which culminated

in higher ex-post defaults. Areas exposed to significant IMC lending also experienced

a greater house price growth. My results highlight the unintended role of regulation

in aiding the U.S. housing market boom and bust by safe harboring mortgage related

repo collateral.

In the second essay, “Are credit ratings still relevant?”, we show that firms’ stock

prices react significantly less to credit rating downgrade announcements when they

have Credit Default Swap (CDS) contracts trading on their debts. We find that

CDS spreads predict firms’ future rating downgrades and defaults, and document a

significant information flow from the CDS to equity and bond markets before firms

are downgraded. Further, the CDS term structure can be used to construct a more

reliable measure of default risk premium for firms undergoing rating revisions. While

the CDS market is not a perfect substitute for credit ratings, our results suggest that

credit rating revisions have become less informative to equity investors in the presence

xii



of the CDS market.

In the third essay, “Credit Default Swaps and Moral Hazard in Bank Lending”,

we analyze whether introducing Credit Default Swaps (CDSs) on a borrower’s debt

leads to lender moral hazard around covenant violations, wherein lending banks can

terminate or accelerate the loan. Using a regression discontinuity design, we show that

CDS firms, including those with agency problems, do not decrease their investment

after covenant violations, pay a higher loan spread, and perform poorly, but do not go

bankrupt at a higher rate when compared with non-CDS firms that violate covenants.

These results are magnified when lenders have weaker incentives to monitor and

suggest that introducing CDSs misaligns incentives between lenders and borrowers.

In the fourth essay, “Do Bond Investors Price Tail Risk Exposures of Financial

Institutions?”, we analyze whether bond investors price tail risk exposures of finan-

cial institutions using a comprehensive sample of bond issuances by U.S. financial

institutions. Although primary bond yield spreads increase with an institutions’

own tail risk (expected shortfall), systematic tail risk (marginal expected shortfall)

of the institution doesn’t affect its yields. The relationship between yield spreads

and tail risk is significantly weaker for depository institutions, large institutions,

government-sponsored entities, politically-connected institutions, and in periods fol-

lowing large-scale bailouts of financial institutions. Overall, our results suggest that

implicit bailout guarantees of financial institutions can exacerbate moral hazard in

bond markets and weaken market discipline.

xiii



CHAPTER I

REPO REGRET?

1.1 Introduction

The early 2000s saw an exponential growth in mortgage debt which rose to $14.6

trillion by 2008 before the collapse of the U.S. housing market.1 Since then, there has

been a concerted effort to understand the origins of the expansion in mortgage credit

and its consequences (see [105, 106, 107, 6, 7, 8, 45]). Central to our understanding of

the recent mortgage credit growth is the regulatory environment and incentives un-

der which the mortgage industry operated. This study contributes to the literature

focusing on the recent mortgage credit expansion by analyzing a class of mortgage

originators known as independent mortgage companies – which accounted for about

34% of all mortgage origination in the mid-2000s 2 – and the inadvertent role regu-

lation played in subsidizing their issuance of risky mortgage credit by safe harboring

derivative contracts.

An important regulatory change in the treatment of certain derivative contracts

in the event of bankruptcy occurred in April 2005 when Congress expanded the range

of safe harbored repos or repurchase agreements with the passage of the Bankruptcy

Abuse Prevention and Consumer Protection Act of 2005 (BAPCPA).3 The act ex-

panded the range of bankruptcy safe harbored repos by amending the definition of the

1Mortgage debt rose by 106% from $6.9 trillion in 2000 to $14.6 trillion in 2008. Sources: http://
www.federalreserve.gov/econresdata/releases/mortoutstand/mortoutstand20090331.htm ;
http://www.federalreserve.gov/Pubs/supplement/2004/01/table1_54.htm

2Source: Home Mortgage Disclosure Act (HMDA) data
3See Bankruptcy Abuse Prevention and Consumer Protection Act, 2005, Pub. L. No. 109-8;

http://www.gpo.gov/fdsys/granule/STATUTE-119/STATUTE-119-Pg23/content-detail.html

1



“repurchase agreement” to include mortgage loans, mortgage related securities, inter-

ests in mortgage related securities or mortgage loans, and qualified foreign government

securities. The rationale behind this specific provision was to prevent systemic risk

by granting derivative counterparties an exemption to the bankruptcy automatic stay

rule, thereby allowing them to close out their positions (See [100], [111], and [134]).

Instead, I document that this change to the bankruptcy code expanded the fund-

ing opportunities of Independent Mortgage Companies (IMCs), which in turn led

to an expansion in the supply of risk mortgage credit. Specifically, IMCs increased

the issuance of risky home loans such as Subprime, Alt-A, Low-documentation and

Complex mortgages by about 10% per quarter due to the passage of BAPCPA. This

culminated in an increase in ex-post default rate by about 2.24% relative to a control

group.

IMCs operate using an originate-to-distribute (OTD) model of lending wherein

they originate mortgages and sell them off for securitization (see [55]). Unlike banks,

IMCs do not take deposits and thus fund their mortgage origination business by

relying on short-term revolving lines of credit called warehouse loans and repurchase

agreements (repos). After BAPCPA, repos with mortgage related collateral were

made exempt from the bankruptcy automatic stay rule. This exemption allows repo

lenders immediate rights to their collateral if a borrowing IMC defaults. However,

lenders extending warehouse loans to an IMC have to wait in line for an orderly

liquidation process and the bankruptcy court’s approval. By parsing 8-K filings and

collecting excerpts from 10-K filings of IMCs, I first document that the financing

documentation significantly shifts towards the use of repurchase agreements. This is

expected given that a secured loan and a repo are economically equivalent, but a repo

lender has greater protection in the event of a bankruptcy.

There are two potential reasons why BAPCPA affected IMCs’ funding. First, to

the extent that increased creditor protection lowers a lender’s loss given default and

2



reduces the risk-premium demanded, a competitive lending market will drive down

funding costs for repos. Second, by expanding the eligibility of the safe harbored repo

collateral to include mortgage related securities, IMCs could borrow greater amounts

via repos by using mortgages in their pipeline as repo collateral.4 Using a merged

database of BlackBox Logic (BBx Logic) data and Home Mortgage Disclosure Act

(HMDA) data, I first show that the proposed funding shock due to BAPCPA in turn

translated to an increase in supply of mortgage credit by IMCs. Subsequently, I study

the consequences of this mortgage credit expansion on loan performance and house

prices.

The major impediments to identifying the effect of BAPCPA on IMCs are concerns

regarding the exogeneity of BAPCPA, choice of a good control group for the IMCs,

and the fact that BAPCPA was a singular as opposed to a staggered shock. The

exogeneity of BAPCPA with respect to IMC’s funding mechanisms derives from the

fact that the safe harbor rules were instituted to prevent systemic risk arising from

the inability to close out derivative positions due to the bankruptcy automatic stay

rule 5 (See [100], [111], and [134]). Moreover, the fact that a reduction in funding

costs and an increase in funding amount can only take place once the BAPCPA law

is in effect, gives rise to a causal interpretation of BAPCPA on IMC funding and the

growth in mortgage issuance. For the second and third concerns, I employ multiple

identification strategies based on funding constraints, discontinuity in securitization

propensity, and geographic discontinuity in anti-predatory lending laws. In each case

there is a different set of treated and control groups, and additionally I also include

County×Quarter fixed effects in the bulk of my analysis. The former allows the

results to be independent of the choice of control groups and alleviates the concern

4Before BAPCPA, safe harbored repo collateral included only U.S. Treasuries and Agency debt.
5This especially seemed to be a growing concern after the LTCM (Long-Term Capital Manage-

ment) crisis which allegedly provided an example of how derivatives and systemic risk might be
associated

3



that the results are being driven due to a particular control group. The later controls

for any time-varying common shocks influencing the treatment and control groups

that might affect the results.

My first identification strategy is based on exploiting the funding constraints of

IMCs compared to affiliated mortgage companies (AMCs) to test for the growth

in IMC mortgage credit due to BAPCPA. AMCs’ funding needs are mostly met

via their affiliated sister depository institutions or parent Bank Holding Company

(BHC).6 Thus arguably, AMCs are less financially constrained when compared with

IMCs. Therefore, the proposed BAPCPA-related funding shock should affect IMCs

more than AMCs. Furthermore, as Section 1.2 discusses in detail, IMCs and AMCs

were similar on other important dimensions such as their primary line of business

(OTD), and the lack of regulatory oversight ([44]). I also show that the difference in

quarterly growth rates of the volume of mortgage credit originated between IMCs and

AMCs did not significantly differ from each other in the pre-BAPCPA period (see

Figure 2). This establishes parallel trends between the treated (IMCs) and control

(AMCs) groups prior to the law change. However, in the post-BAPCPA period, the

growth rate of IMCs is significantly greater than that of AMCs and has an overall

increasing trend over time.

In a more formal regression setup, I confirm that IMCs have a higher growth

in mortgage origination in the post BAPCPA period – both in terms of the num-

ber and volume of loans. Consistent with the hypothesis of an increase in supply

of credit, controlling for the loan’s risk characteristics, there is a reduction in the

average mortgage interest rate, as well as an increase in the size of the mortgage loan

6For instance Citigroup in its 2006 10-K filing states that the primary source of funding for
Citigroup and its subsidiaries comes from diverse types such as deposits, collateralized financing
transactions, senior and subordinated debt, issuance of commercial paper, proceeds from issuance
of trust preferred securities, purchased/wholesale funds, and securitization of financial assets.
Source: https://www.sec.gov/Archives/edgar/data/831001/000104746906002377/

a2167745z10-k.htm
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for a given borrower income level. These results are robust to including both Firm

and County×Quarter fixed effects, which control for any time-invariant unobserved

heterogeneity at the firm-level and any common time-varying factors at the county-

level. To the extent that a borrower’s access to credit is rationed in equilibrium, a

positive shock to the supply of credit translates into a higher growth in mortgage

originations, especially for the lower credit quality borrowers ([142]). Using subsam-

ples of low, medium and high FICO score samples, I find that the growth in mortgage

credit and reduction in interest rates monotonically decrease with FICO scores. In

other words, the low credit quality borrowers experience the highest growth rate in

mortgages and the highest reduction in interest rates when IMCs lend to them.

If IMCs and AMCs are inherently different kinds of firms, one concern with the

above tests is that they could differ on certain time-varying unobserved characteristics

(such as differences in regulatory treatment). To address this concern, I compare

mortgage credit growth among small and large IMC originators. In general, as firms

of the same kind are more similar on broader dimensions, a “within-IMC” comparison

potentially alleviates the aforementioned concern. I find that small IMC originators

have a larger growth in mortgage issuance compared with large IMC originators.

This is consistent with the relaxation of funding constraints due to a positive funding

supply shock as smaller firms in general tend to be more constrained than larger firms

([151]).

Although comparing small and large IMC originators relieves the concern of time-

varying heterogeneity among treated and controls to a certain extent, it does not

entirely eliminate it. To further address this concern, I test within IMCs by relying

on a discontinuity in mortgage origination documented by [94]. This discontinuity

exists due to the ease of securitization beyond certain FICO scores, particularly 620

for low-documentation loans, and 580 for full-documentation loans.7 As the number

7Consistent with [75], I find a discontinuity in loan originations at FICO scores of 620 and 580
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of potential borrowers at each FICO score is continuous, the demand for mortgages is

continuous. Thus, a discontinuity in mortgage origination at any FICO score implies

a discontinuity in the supply of credit at that FICO score. As mentioned previously,

IMCs rely on the OTD business model by securitizing their originated mortgages.

Therefore, as the propensity to securitize just above the FICO threshold is higher, a

positive shock to the supply of credit should result in a higher growth in loan origina-

tions for borrowers with FICO scores just above the threshold compared to borrowers

just below the threshold. Using a regression discontinuity design (RDD), I report a

discontinuity in the growth of the number and volume of low-documentation loans,

and find weak evidence for a discontinuity in the case of full-documentation loans.

Overall, this test also provides support for the BAPCPA-led mortgage credit growth.

Moreover, it suggests a robust mortgage credit growth for the low-documentation

loans which tend to be riskier than full-documentation loans.

Arguably the discontinuity in the propensity to securitize provides a cleaner setting

to test for a change in the supply of credit. However, a potential drawback is that

it can be applied only locally around the FICO thresholds to test for the BAPCPA-

related mortgage credit growth. To overcome this shortcoming, I exploit another

source of variation in state anti-predatory lending (APL) laws to capture the effect

of BAPCPA on mortgage credit growth. I specifically consider APL laws which

make the securitization trusts and the investors who acquire loans liable for statutory

violations committed by the original lender. Focusing on counties bordering states

with weak and strong APL laws, I find that counties with weaker APL laws indeed

experienced a higher growth in mortgage credit in the post-BAPCPA period. This

approach mitigates any potential unobserved differences across counties as economic

forces tend to be quite similar across neighboring geographic areas.

While the above results are suggestive of an increase in credit supply, there could

unlike [94] who find it at 620 and 600 for full-doc and low-doc loans respectively.

6



be alternate explanations for the observed results such as a shock to the expected

income growth or the house price growth. The demand for housing may increase if

borrowers expect a future growth in income. On the other hand, lenders might be

more willing to lend more if they expect a growth in houses prices which in turn

would reduce their loss given default. I find an expansion in mortgage credit even in

counties with a negative real income growth which is evidence against the income-

growth hypothesis. Similarly, areas with a high housing supply elasticity should

experience only a minimal to moderate appreciation in house prices as any demand

for housing can be met with new construction of houses ([68]). I find that even in

such areas there is a substantial increase in mortgage credit, thus contradicting the

house price appreciation hypothesis.

Next, I document the consequences of the expansion of mortgage credit. Sec-

tion 1.2 details the life-cycle of a loan originated by mortgage companies and the

incentives of the various intermediaries involved to issue risky mortgages.8 As ware-

house lenders are unsure about the loan quality, they typically mitigate the origina-

tors’ risk-taking incentives by applying haircuts to the collateral, and by the spreads

charged on the warehouse loan. However, the exemption from the automatic stay

rule of bankruptcy increased the seniority of warehouse lenders’ as they could read-

ily liquidate the pledged mortgage collateral without requiring the bankruptcy court

approval. This seniority claim results in avoiding potential bankruptcy costs and

thereby increases the warehouse lender’s recovery rate.9 Further, theory suggests an

inverse relationship between seniority of debt claims and lender’s incentive to mon-

itor ([125]). Without adequate due diligence by the warehouse lender, originators

can have the incentive to significantly misrepresent loan applications ([89, 75, 121]).

8[105, 94, 124] show evidence for the deteriorating lending standards for mortgage loans sold for
securitization

9Estimated costs of financial distress in the existing literature vary from a 3% ([149]) to as high
as 20% ([10]).
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Therefore, I argue that BAPCPA lowered creditor monitoring10 which helped fund

riskier mortgage loans via repos as long as they could be readily securitized.11

Consistent with this notion, I find that the increase in credit supply by IMCs

mainly funded riskier types of loans in the post-BAPCPA period compared to the

pre-BAPCPA period. This result is corroborated by the evidence of higher default

rates of the loans originated in the post- versus pre-BAPCPA period. I also observe

that the default rates increase over time and peak between two and three after the

loan origination. This is consistent with the typical period after which the initial lower

fixed rates on complex adjustable rate mortgages (ARM) expire, following which there

is a substantial increase in the monthly repayments for the borrowers. Interestingly,

subsample analysis also conveys a higher default rate in the medium and high quality

borrowers, and counties with higher income growth and higher competition compared

to the AMC control group. This indicates risk-shifting within good quality borrowers

by the mortgage companies in addition to supplying credit to lower quality borrowers

due to lower credit rationing. Lastly, I examine the relationship between credit growth

and house prices and find that counties experiencing a higher growth in IMC lending

are also associated with a higher growth in house prices. Again, consistent with the

default results, I find the highest house price growth for the medium and high house

price indexes.

Overall, the results in this paper show the unanticipated adverse consequences of

BAPCPA which assisted the growth of risky mortgage credit via IMCs.12 My study

contributes to the literature focusing on explaining the expansion of risky credit in

10See the Taylor, Bean & Whitaker Mortgage Corporation (TBW) and Colonial Bank’s case of
fraud as a result of pending repurchase obligations. The case highlights the failure of counter-
party monitoring in the mortgage market. Sources: http://www.fhfaoig.gov/Content/Files/

SIR_TBW_Colonial%20Investigation%20Lessons%20Learned%20August%202014.pdf; https://

www.sec.gov/litigation/complaints/2011/comp-pr2011-68.pdf
11The growth in subprime mortgage credit from 12% in 2000 to 36% of all mortgages in 2006 in

part was due to the ease of subprime securitzation ([105]).
12The adverse consequences in the form of externalities on the economy due to higher house price

growth and higher default rates have been documented in the recent literature ([107, 108])
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the mortgage market specifically through mortgage companies which were largely

overlooked despite their significant share in the mortgage market. The results also

add to the literature exploring regulatory design by documenting the unintended

consequences of a regulatory change to the bankruptcy code in the mortgage market.

Specifically for BAPCPA, there still exists a debate on the costs and benefits of

privileged status of derivatives in bankruptcy (See [52], [99], [50], and [23]). The

results in this paper enrich that debate by furnishing new evidence on the real costs of

BAPCPA related to the safe harbor exemptions for repos which led to the expansions

of risky mortgage credit. This paper also contributes to the literature exploring the

role repo market played in the 2008 financial crisis ([71]).

The remaining paper is organized as the following: Section 1.2 elaborates on the

structure of U.S. mortgage market with information relevant to the study in this pa-

per. Section 1.3 gives details and provides evidence on effect of BAPCPA on IMC

funding. Section 1.4 describes the data used in the empirical analysis. Section 1.5 de-

tails the empirical setup and presents results testing the positive “credit supply shock”

hypothesis due to BAPCPA. Section 1.6 studies the consequences of the BAPCPA-led

increase in mortgage credit and finally Section 1.7 concludes.

1.2 The mortgage market

In this section, I briefly describe the mortgage market in the context of this study.

There are different types of mortgage lenders in the U.S., and they can be broadly

divided into two main categories – depository institutions and mortgage companies.

Depository institutions take deposits and can be primarily categorized into banks,

thrifts and credit unions. Mortgage companies do not take deposits and can exist

either as independent mortgage companies (IMCs) or can be owned by or affiliated

with banks, thrifts and holding companies (AMCs). These different types of mort-

gage originating institutions differ in the extent to which they may participate in
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the mortgage market. In general, mortgages account for only a portion of a bank’s

overall business, which also includes other consumer loans, business loans and credit

extensions through other instruments; whereas mortgage companies typically focus on

originating mortgages. Based on the Home Mortgage Disclosure Act (HMDA) data

from the period of 2004 to 2006, mortgage companies companies together accounted

for about 54% all mortgage originations.

The various types of mortgage lenders in the U.S. also differed significantly in

regulation. Bank holding companies (BHCs) and state member banks are regulated

by the Federal Reserve System (FRS), national banks are regulated by the Office of

the Comptroller of the Currency (OCC), and thrifts are regulated by the Office of

Thrift Supervision (OTS). Mortgage companies that are subsidiaries are regulated

by their parent’s regulator, while independent mortgage companies are regulated by

the state and the federal trade commission to the extent that they engaged in any

unfair or deceptive practice in violation of the Federal Trade Commission Act (see

[55]). [44] point out that the mortgage companies were relatively free of regulatory

oversight due to the fragmented U.S. regulatory system, despite having a market

share of about 50% in the mortgage origination market since the 1990s.13 They argue

that mortgage companies do not hold deposits and hence do not require a charter

from an institutional regulator such as the FRS, OCC, OTS or FDIC; and that their

activities did not fall under the purview of functional regulators such the SEC, CFTC

or state insurance regulators. The Gramm-Leach-Bliley (GLB) Act of 1999 also stated

that the non-bank subsidiaries of BHCs could only be examined by the FRS if their

activities were deemed to have adverse material impact on the safety and soundness

of their sister affiliate banks. 14 This meant that regulating mortgage companies was

13For instance consider a BHC that has two subsidiaries - a mortgage company and a national
bank. If the national bank has another mortgage company as a subsidiary, then the national bank
and its mortgage company subsidiary would be regulated by OCC while the BHC and its mortgage
company subsidiary would be regulated by the FRS.

14See Gramm-Leach-Bliley Act, 1999, Pub. L. No. 106-102
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a matter of discretion rather than a decree of the law. In fact [44] show that mortgage

company subsidiaries of BHCs (AMCs) originated riskier mortgages and had higher

default rates when compared to the BHC bank subsidiaries.

Borrowers in the 2000s could get mortgage loans from three main channels, namely

the (i) retail channel, (ii) wholesale channel and (iii) correspondent channel. Retail

lenders work directly with the homeowner to originate the mortgage loan without any

middlemen or brokers. These loans are generally made in person, over the Internet

or via call centers and are processed by in-house loan officers as opposed to outside

brokers. Wholesale lenders work with independent mortgage brokers who generate

loan applications for them by working on the retail end with the borrowers. Once

the mortgage deal is secured, the brokers send it to the wholesale lenders who under-

write the loan and fund it. Correspondent lenders are institutions that make loans

through retail operations at their end, but according to underwriting standards set

by a wholesale lender who in turn commits in advance to buy the loans from the

correspondent lender at a set price. Although lenders might use multiple channels

to originate mortgages, mortgage companies typically originate through wholesale

and/or correspondent channels ([129]). 15. For instance an IMC usually originates a

mortgage loan to a borrower by drawing down on their lines of credit in order to fund

the mortgage.

Typically, these lines of credit are secured by the originated mortgages. However,

within a short period of time, which usually ranges from 30-45 days, the mortgage

is sold to a third-party, often for the purpose of securitization, and the warehouse

line of credit is then paid down. The bulk of IMCs’ income is usually earned through

originating fees and selling the originated loans for a higher value than when they

were made. Meanwhile, the warehouse lenders earn interest on their lines of credit

15The liabilities structure of American Home Mortgage Company, which is a large IMC, is shown
in Table A.1 Although they use multiple sources of financing, warehouse line of credit and repurchase
agreements remain their largest sources.
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when a draw-down occurs. In a typical case when the IMCs exhaust their credit lines,

they will need to securitize or sell the originated loans in their pipeline before they

can replenish their credit lines and further draw-down on them.

Mortgage brokers are generally independent agents who serve as a contact between

the borrowers and lenders. Brokers allow wholesale lenders to lend in markets where

they have no physical presence. Brokers earn commissions on every loan they arrange.

Each day the lenders provide brokers with “rate sheets” which have information on the

various types of mortgages the lender would underwrite along with the minimum price

they would accept for a loan for a given credit score. In the 2000s, the commissions

were higher if the brokers could get the borrower on a higher interest rate mortgage

with prepayment penalties ([55]). Brokers also earned higher commissions on low-

documentation (low-doc) and no-documentation (no-doc) loans.16. For instance [55]

note that the fees on a $300,000 low-doc was $15,000 whereas a comparable full-

doc loan would yielded less than $5,000 in fees Moreover, borrowers opted for the

low-doc loans as it entailed less paperwork and less processing time, or due to the

concern that the mortgages rates and house prices might rise. Borrowers who did not

qualify for conventional fixed-rate mortgages, were offered complex products such as

ARMs, option ARMs and hybrid ARMs which tended to have lower initial payments

compared to fixed-rate until the rates are reset to a higher number after a specified

term. In these cases, the borrowers were assured that they could refinance their

mortgages when the rates went up (see [55]).

1.3 Effect of BAPCPA on IMC Funding

This section describes the effect of BAPCPA on the funding opportunities of IMCs

in further detail. As discussed previously, unlike depositories, IMCs do not take

16The Wall Street journal article Subprime Debacle Traps Even Very Credit-Worthy, Dec 2007
by Brooks and Simon reports that 55% of all subprime loans in 2005 went to borrowers with credit
scores high enough to qualify for prime loans
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deposits and rely on funding their mortgage originations through external credit fa-

cilities such as lines of credit provided by warehouse lenders. Warehouse lenders are

typically banks which allow collateralized short-term borrowings that are secured by

the originated mortgages.17 A principal concern of the warehouse lender is the po-

tential default of the mortgage company to which it lends. As a result, bankruptcy

law has been a predominant factor in driving the type and cost of funding. Arguably,

IMCs’ cost of funding was significantly lower after the passage of the BAPCPA act

which subsidized the latter of the two major types of funding agreements used by

warehouse lenders and mortgage companies which are the “Master Loan and Secu-

rity Agreement” and the “Master Repurchase Agreement” (MRA). In the event of a

default or bankruptcy, under the loan and securities agreement, the warehouse lender

would not have the unfettered right to take over the ownership of the pledged mort-

gage loans. They would be halted by the “automatic stay” feature of the bankruptcy

code. On the other hand, under the repurchase agreement, the warehouse lender

would have the right to liquidate the pledged mortgage loans without having to ob-

tain the bankruptcy court approval and recover the related advances.18

After BAPCPA expanded the “safe harbored” securities to include mortgage loans,

the financing documentation for IMCs significantly shifted towards the use of repur-

chase agreements. Figure 1 shows the result of parsing 8-K filings for IMCs for the

number of occurrences of repurchase and loan agreements. The number of repurchase

agreements used have evidently increased after the BAPCPA took effect in 2005-Q4,

while the number of loan agreements have decreased over the same period.

To supplement this evidence, A.2 provides excerpts from the 10-K filings of IMCs

17A relatively large IMC – American Home Mortgage Company’s 2004 10-K filing states their
warehouse lenders were: UBS ($1.2 Bil), Bank of America ($600 Mil), CDC Mortgage Capital
($450 Mil), Morgan Stanley ($350), Lehman Brothers ($250 Mil), Bear Stearns ($500 Mil), and
Caylon Americas ($250 Mil). Source: https://www.sec.gov/Archives/edgar/data/1256536/

000091412105000607/am031605-10k.txt
18Table A.1 reports that the cost of warehouse repos is indeed lower than warehouse lines of credit

based on the 10-K filings of a large IMC.

13



and the industry responses to the U.S. Housing and Urban Development’s (HUD)

solicitation on the changes of funding mechanisms in the mortgage industry. These

excerpts clearly state a preference for repurchase agreements as a means for funding

IMC operations. Moreover they affirm an increase in the size of warehouse lines of

credit under these repurchase agreements as well as a change in the eligibility of the

collateral backing them.19

There are two potential reasons why BAPCPA reduced the funding costs and in-

creased the line of available credit to IMCs. First, the exemption from the bankruptcy

automatic stay allowed repurchase lenders immediate rights to their collateral if a bor-

rowing IMC defaulted. This results in increasing the warehouse lender’s recovery rate

by avoiding potential bankruptcy costs. [10] estimate that bankruptcy costs can be

as high as 20%. Second, as a repurchase agreement involved a “true sale” of the col-

lateral unlike a loan agreement, this allowed warehouse lenders to account for these

warehouse facilities as “loans held for sale” instead of a financing transaction.

There are benefits to accounting for repurchase agreements in this manner. The

risk-weights assigned to purchased qualifying mortgages is 50% (20% for FHA and VA

loans) whereas a traditional warehouse line of credit is recognized with a 100% risk-

weight ([141]).20 This also allows warehouse lenders (especially the smaller banks)

to extend bigger lines of credit without violating the “loans-to-one-borrower” restric-

tion.21 Together, these advantages of repurchase agreements can incentivize more

banks to enter the warehouse lending business, and also enable them to commit

higher amounts towards credit lines written through MRAs.

19Prior to the BAPCPA, since the early 1980s, safe harbored repos included only U.S. Treasury
and Agency securities backed by the government’s full faith and credit, certificates of deposits, and
bankers acceptances.

20The OCC in its 2012 memorandum has reiterated that warehouse repurchase agreements should
receive a 100% risk weight. Despite that, lenders still continue to account for them as “loans held
for sale”. See Texas Capital Bancshares Inc’s (a warehouse lender’s) 2012 10-K filing: https:

//www.sec.gov/Archives/edgar/data/1077428/000119312513068855/d468799d10k.htm
21See Section 32.3 on Lending Limits at https://www.fdic.gov/regulations/laws/rules/

8000-7400.html
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1.4 Data and descriptive statistics

The two main datasets used in this study are BlackBox Logic (BBx Logic) and Home

Mortgage Disclosure Act (HMDA). BBx data covers about 90% of the U.S. residential

mortgage-backed securities (RMBS) non-agency market while HMDA covers the loan

originations by 99% of depository and non-depository financial institutions. BBx data

is mainly gathered from securitization trustees and contains information on borrower

credit scores, as well as loan characteristics such as the loan-to-value (LTV) ratio,

loan principal, maturity and variety of indicators identifying the purpose, occupancy

status, documentation type. It also maintains a time-varying record of the history

of the loan payoff status such as delinquency, modification, prepayment, loss from

liquidation etc. at a monthly frequency for each loan. However, the identity of the

loan originator – whether a loan has been originated by an independent or affiliated

mortgage company, or a depository – is recorded in the HMDA dataset.22 Thus the

BBx data is a richer dataset compared to HMDA.

Arguably a positive shock to credit supply in the mortgage industry leads to

the expansion of mortgage credit to borrowers with lower credit quality who were

previously rationed out ([142]).Furthermore, the incentive structures in the mortgage

market as discussed in Section 1.2 encourages the underwriting of complex and riskier

mortgages. Therefore the effect of an increase in mortgage credit due to the BAPCPA

act is conceivably more apparent in the non-agency market. Hence this also motivates

the use of the BBx dataset.

The matching of loans between BBx and HMDA databases is carried out based

on loan characteristics and the geography of the underlying mortgage property. BBx

reports data by zip-code while HMDA reports data by census-tract. Census-tract

22Although BBx data has a raw data field for the name of loan originator, it is missing for about
90% of the loans. As a result, BBx does not provide a cleaned and standardized version of this data
field.
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and zip-codes are not uniquely identified and intersect each other. Census-tract clas-

sification can change when every decennial census is conducted whereas zip-codes

are relatively stable. To merge BBx and HMDA based on geographic information,

I use the zip-code to census-tract crosswalk files. The variable used for determining

the portion of a census-tract region that overlaps with a given zip-code region is the

number of housing units (according to the 1990 or 2000 census 23). This is an in-

tuitive weight especially when one is trying to gauge the probability of a mortgage

origination in a given census-tract to be in a particular zip-code 24. Loans BBx and

HMDA are matched exactly on four loan characteristics loan amount, loan purpose,

occupancy type and lien type, but coarsely on the geography of the property. Details

of the matching algorithm are provided in A.3.

The HMDA dataset is augmented to the “HMDA Lender File” compiled by Robert

Avery from the Board of Governors of the Federal Reserve System which provides

information used to identify the type of originator/lender. Originators are broadly

classified into (i)independent depository institutions which include commercial banks,

savings banks and credit unions; (ii) affiliated depository institutions which are typi-

cally subsidiaries thrift or bank holding companies; (iii) independent mortgage com-

panies (IMCs); and (iv) affiliated mortgage companies which are typically subsidiaries

or affiliates of holding companies or depository institutions.

Table 1 provides the summary statistics of the matched BBx-HMDA datasets in

the pre- and post-BAPCPA periods. On an average IMC issue mortgage loans with

a smaller loan amount compared with AMCs in both periods. This is consistent

with IMCs being more financially constrained compared to AMCs. Panel A shows

that the number and dollar volume of loans for both IMCs and AMCs increased in

the post-BAPCPA period. The table also shows that the initial interest rates at

23Census-tract definition in HMDA changed in 2003 to make use of the 2000 census classification.
Prior to 2003, the 1990 census classification was used.

24Census-tract (∼73,000 areas) has more granularity compared with zip-codes (∼43,000 areas).
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origination have increased in the post-BAPCPA period. Although this is inconsistent

with a reduction in mortgage origination costs vis-á-vis increased repo financing after

BAPCPA, it is likely that the increase is due to originating riskier mortgages to low

credit-quality borrowers. Support for this is noted in Panel B which shows that the

fraction of low-documentation loans, Alt-A, and Subprime loans increased in the post-

BAPCPA period. However, these are univariate statistics and one needs to control

for county-level factors and time-varying risk factors to draw any useful conclusions

on the effect of the passage of BAPCPA on the expansion of mortgage credit.

1.5 Results: Mortgage credit growth via IMCs

This section tests the hypothesis that the 2005 BAPCPA act led to an expansion

of mortgage credit for the IMCs. As BAPCPA was a singular shock as opposed to

a series of staggered stocks, I use four sets of treated and control groups for my

identification strategy. This alleviates concerns that the results may be driven by

the choice of the control group rather than the treated group in the post-BAPCPA

period. Additionally, I also control for any time-varying common shocks influencing

the treatment and control groups by including County×Quarter fixed effects. While

the first set of treated and control groups in my identification strategy compares

IMCs with AMCs, the next three are comparisons within IMCs. Comparisons within

IMCs mitigate the concern that IMCs and AMCs might differ on certain unobservable

characteristics that might drive the results. Arguably, firms of the same kind are more

aligned on broader dimensions. The later subsections test alternate explanations and

carry out a host of robustness checks for the BAPCPA-led mortgage credit expansion.

1.5.1 Exploiting funding constraints: IMCs vs AMCs

In the first identification test, I use IMCs as the treated group and AMCs as the

control group. This choice of treated and control groups exploits the setting that

IMCs are more financially constrained compared to AMCs while being similar on
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other dimensions such as their core line of business and lack of regulatory oversight

as discussed in Section 1.2

To test for the growth in mortgage credit after the passage of the 2005 BAPCPA

act, I estimate the following difference-in-difference identification model on quarterly

data at the firm-county-quarter observation level:

Yict = α + β1dPostBAPCPAt × dIMCi + β2dIMCi + β3dPostBAPCPAt

+ θXc,t + λi + δct + εict (1)

where the subscripts i, c and t stand for firm, county and quarter respectively. dPost-

BAPCPA is a dummy variable equal to 1 for all quarters on or after the fourth quarter

of 2005 during which the provisions of the 2005 BAPCPA act started to apply, and

0 prior to that. dIMC is dummy variable equal to 1 if the mortgage company is an

independent mortgage company (IMC), whereas it is 0 if it a subsidiary or an affiliate

of a bank or a holding company and will be thereafter referred to as an affiliated

mortgage company (AMC) for the sake of convenience. Yict stands for one of the five

observed firm-county level activities in the mortgage market, namely the log-growth

rate in the number and volume of loans issued, the average FICO score, interest rate

and loan-to-income (LTI) ratio. Xict are the firm-specific controls I can explicitly

measure. As I only have information on the loan-mix at origination for each firm and

no other firm-level information, Xict mainly reflect the loan-mix of each firm and are

included in the interest rate and LTI regressions only.

Equation (1) also includes firm fixed effects (λi) to control for any time-invariant

unobserved heterogeneity across firms and County×Quarter fixed effects (δct) to con-

trol for time-varying factors at the county-level that might drive credit expansion.

The coefficient on the interaction term dPostBAPCPA×dIMC is the difference-in-

difference (DID) estimator, and it is the key variable of interest while the base coef-

ficients dPostBAPCPA and dIMC are absorbed in the fixed effects. The coefficient
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on the term dPostBAPCPA×dIMC captures the change in the dependent variable of

interest between the IMCs (treated group) and the AMCs (control group).

Table 2 shows the results for the regression specification in Equation (1) wherein

I restrict the sample period to six quarters before and after the 2005 BAPCPA act.25

The positive and significant coefficient on dPostBAPCPA×dIMC in columns (1) and

(2) indicates that the growth rates in the total number and total volume of loans

increases when compared with AMCs. The median IMC firm during the sample

period from 2004-2006 issues close to $500 million in loan volume per county in a

given quarter. An 11% increase in growth rate amounts to a growth of $55 million in

loan volume per county over a given quarter.

The evidence presented in A.2 and Table A.1 suggests that the 2005 BAPCPA act

resulted in a positive supply shock by lowering the cost of funding a mortgage loan

as well as increasing the capacity of the warehouse line of credit to IMCs. Consistent

with that notion, columns (3) and (4) show that the growth rate in the number

and volume of jumbo loans26 increases for IMCs after the 2005 BAPCPA act when

compared to AMCs. Column (5) shows that IMCs also originated mortgages with

lower interest rates controlling for the types of mortgage issuance by each firm. In

line with expectations, column (5) shows that higher loan-to-value ratios, higher

percentage of Alt-A, subprime and low-doc loans, and loans to lower quality borrowers

increase the average issuing mortgage interest rate by a firm. Similarly column (6)

shows that a higher mortgage loan was made for a given income level of the borrower

by IMCs in the post BAPCPA period when compared to AMCs.

25I drop singleton groups in regression. Singleton groups are groups which have only one observa-
tion and hence will not contribute to any “within-group” variation when fixed effects are included.
However, adding singleton groups to the total observations may lower the standard errors and bias
the t-statistics upwards.

26The jumbo loan limits form 2004, 2005 and 2006 were 333700, 359650 and 417000 respectively.
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1.5.1.1 Variation across borrower quality

Next I examine the variation of mortgage credit growth across borrower quality. If

lower credit quality borrowers are typically rationed out ([142]) when credit supply

is tight, then one expects to see larger growth for them with the loosening of credit

supply. Furthermore, as discussed in Section 1.2, the saturation of the prime market

and broker incentives in the form of higher commissions for non-prime loans leads

to the effect of a positive credit supply shock to manifest in the lower credit quality

borrower category.

Following [120] I divide the mortgage origination sample into three groups based

on borrower credit quality measured using FICO scores: low quality (FICO ≤ 620),

medium quality (620 ≤ FICO ≤ 680), and high quality (FICO ≥ 680). To test the

above hypothesis, I run the baseline regression model in equation 1 for the above

three groups defined based on FICO scores. In line with expectations, columns (1)

and (2) in Panels A, B, and C in Table 3 show that the mortgage credit growth is

higher for the low FICO category along with a larger reduction (11 basis points) in

the average interest rate of an originated mortgage loan. The growth in mortgage

credit and the reduction of mortgage rates show a monotonic decreasing relationship

with FICO scores consistent with an increase in credit supply relieving the constraints

of lower credit quality borrowers.

1.5.2 Exploiting funding constraints: Small vs large IMCs

In the second identification test, I exploit that notion that small IMCs are more

financially constrained compared to large IMCs ([151]). To classify IMCs as small and

large, I divide the sample of IMC issuers based on total mortgage issuance volume

from 2001 to 2003 (prior to the sample period of my analysis). A dummy variable

dSmallIMC is created to be equal to 1 if the total issuance volume is below the

median (small IMCs), and equal to 0 if it above the median (large IMCs). Arguably,
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IMCs that are more financially constrained have lower mortgage issuance volumes.

They are likely to rely on traditional sources of financing such as lines of credit from

warehouse lenders as opposed to other sophisticated means. Therefore, a positive

shock to the funding structure of IMCs should affect the small IMCs more than the

large IMCs.

I run the baseline specifications in Table 2 for IMCs to test the above hypothe-

sis in Table 4. The positive and significant coefficient on the DID estimator dPost-

BAPCPA×dSmallIMC for all columns (1)–(4) confirms that the positive supply shock

to funding leads to a higher growth in loan volume, loan number, and jumbo loans for

small IMCs compared to the large IMCs. In line with positive funding supply shock

hypothesis, column (5) shows that the reduction in the average interest rate of the

originated loans by small IMCs is also greater compared to large IMCs. Furthermore,

comparing small and large IMCs as opposed to IMCs and AMCs is advantageous as it

rules out any plausible unobservable differences (such as implementation of regulatory

oversight) between IMCs and AMCs that might be driving the results.

1.5.3 Exploiting securitization propensity

In the third identification test, I exploit a specific rule of thumb in the lending market

that generates an exogenous variation in the ease of securitizing mortgages around

certain FICO scores. This was first documented by [94] (henceforth KMSV) who show

that although the distribution of the population of potential borrowers with respect

to FICO scores is continuous, there is a discontinuity in the number of originated

mortgages at the FICO score of 620 (600) for low-doc (full-doc) loans.27

Following KMSV, I plot the number and volume of loans originated by IMCs

27Generally homeowners are required to provide information on their assets, liabilities, income,
credit history, employment history and personal information. Low documentation loans are loans
where borrowers with acceptable payment histories are not required to provide any information
regarding income. Thus such loans potentially rely significantly on soft information as noted in
KMSV.
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at each FICO score for low-doc loans and full-doc loans for the periods before and

after the BAPCPA. First, Figure 3 plotted for low-doc loans confirms the results

in KMSV, showing that there is indeed a discontinuous increase in the number and

volume of originated loans around the 620 FICO score. Given that IMCs rely on

securitizing their originated mortgages, as long as the propensity to securitize around

the FICO threshold remains constant, a positive shock to the supply of credit should

result in a higher growth in loan volume for borrowers with FICO score just above

the threshold compared to the borrowers just below the threshold. Sub-figures 3a

and 3b compare the number of mortgage originations six quarters before and after

the BAPCPA respectively. As it can be seen, the discontinuity in the number of

originations is higher in the post-BAPCPA period compared to the pre-BAPCPA

period. Moreover, the total originations at each FICO score in the post-BAPCPA

period is higher than the pre-BAPCPA period, consistent with the increase in the

supply of mortgage credit. One can note a similar pattern for the volume of mortgage

originations in Sub-figures 3c and 3d. Figure A.4 plots the same graphs for full-doc

loans with a discontinuity at the FICO score of 580.28 The plots for the full-doc loans

also indicate an increase in the number and volume of loans at the 580 FICO score

after the BAPCPA.

However, the increase in the discontinuity in the post-BAPCPA period could be

due to a secular increase in supply or demand of credit at each FICO score.29 In order

to control for this, I compute the growth in mortgage credit at each FICO score from

the pre- to post-BAPCPA period and test whether or not there is a discontinuity at

620 and 580 for low-doc and full-doc loans respectively. In similar spirit to KMSV’s

28While KMSV find a discontinuity at the FICO score of 600 for full-doc loans, I find the discon-
tinuity threshold to be at 580 similar to [75].

29In other words, even if there is a K% increase in the number/volume of loans at each FICO
score, then the discontinuity in the post-BAPCPA period will be greater than the pre-BAPCPA
period. In the absence of any other supply shock, such as BAPCPA, which has heterogeneous effects
around the FICO threshold, a plot of the growth of loans against the FICO score will be a constant
K% without a discontinuity at the threshold.
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empirical setup, I collapse the data on each FICO score and estimate the following

regression:

Yi = α + βdThreshold+ θf(FICO(i)) + δdThreshold× f(FICO(i)) + εi (2)

where Yi is the growth in number or volume of loans at the FICO score i from

the pre- to post-BAPCPA period, dThreshold is a dummy variable that is equal to

1 if the FICO score is greater than 620 (580) for low-doc (full-doc) loans, and 0

otherwise. f(FICO(i)) is a flexible fifth-order distance polynomial for a smooth fit

estimated on the left side of the threshold, and while dThreshold× f(FICO(i)) is

estimated on the right side of the threshold. The main coefficient of interest is the

term dThreshold, which is the average treatment effect (ATE) for the growth of loans

around the discontinuity.

Table 5 Panel A reports the results of the regressions using Equation 2. The ATE

(coefficient on dThreshold) is estimated to be about 21% in mortgage credit growth

at the threshold in six quarters after BAPCPA for low-doc loans, but is insignificant

for full-doc loans. The increase in growth of only low-doc loans is in line with the

documented incentives which reward mortgage brokers with higher commissions for

low-documentation risky loans as discussed in Section 1.2. I also fit a non-parametric

local linear polynomial around an optimal bandwidth computed using the method in

[28].30 Table 5 Panel B reports these results and shows that there is an estimated

11% (13%) increase in mortgage credit growth at the threshold in six quarters after

BAPCPA for low-doc (full-doc) loans. As this estimation method is typically sensitive

to the choice of bandwidth, in Table A.10 I also report the results for half and twice

the optimal bandwidth. Additionally, I plot the results for the local linear polynomial

fit around the discontinuity thresholds in Figure 4. In all these scenarios, ATE for

low-doc loans is robust and significant compared with full-doc loans. Overall, these

30[76] emphasize using non-parametric local polynomial regressions as opposed to global flexible
polynomials for regression discontinuity designs.
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results provide support for the BAPCPA-led mortgage credit growth. Moreover, these

results also show that the growth in mortgage credit was higher for risky loans such as

low-documentation loans compared to the relatively safer full-documentation loans.

1.5.4 Exploiting variation in anti-predatory lending laws

In the final identification test, I consider a subsample of only IMC loans which were

originated in counties along a state border such that one of the bordering states has

a stronger anti-predatory lending (APL) laws compared to the other. This approach

alleviates any potential unobserved heterogeneity across counties as economic forces

tend to be quite similar across such neighboring geographic areas. Thus the bordering

counties enable the effect of BAPCPA resulting from the differences in the legal

framework across these geographic areas to be captured.

APL laws vary considerably across states in terms of their coverage, restriction

and enforcement. The coverage category includes regulation on the type of loans,

APR triggers on first and higher lien loans, and points and fees on loans. The re-

striction category entails prohibitions and limits on prepayment penalties and bal-

loon payments during specific periods after mortgage origination, credit counseling

requirements and restrictions of mandatory arbitration. The enforcement category

mainly covers the strength of assignee liability and enforcement against creditors (see

[81, 25]). These different categories of APL laws have been shown to have different

effects in the mortgage market. On one hand these laws can alleviate borrower con-

cerns about fraudulent lenders and increase demand for mortgage credit, while on

the other hand these laws can ration credit to the lower credit quality borrowers. For

instance, [81, 25] find that a broader coverage category is associated with an increase

in mortgage origination, while a stringent restriction category is associated with a

decrease in mortgage credit.

In this paper however, I mainly focus on the enforcement category for the following
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reason - the assignee liability clause makes securitization trusts and investors who

acquire loans, liable for statutory violations committed by the original lender. The

liability in such cases may result in the imposition of monetary fines. For this reason,

Moodys’ analysis of residential mortgage backed securities (RMBS) takes into account

the likelihood that a lender may have violated anti-predatory lending laws, which may

lower the proceeds available to repay securitization investors ([45]). Thus the presence

and the strength of assignee laws is expected to be critical for IMCs given that their

primary business model is to originate mortgages and sell them off for securitization.

Therefore a funding shock to IMCs such as BAPCPA, will lead them to expand

mortgage credit in areas with weaker APL laws concerning assignee liabilities and

enforcement against creditors.

To test the above hypothesis, I gather data on anti-predatory laws from [25] for

all the states in the U.S. with APL laws in effect until 2005. This data is presented in

Table A.5. I further sort states based on the strength of the enforcement of APL laws

and classify the states in the top half as weak-APL states and the bottom half strong-

APL states. I then define “neighboring counties” across weak and strong APL state

borders to be within 30 miles of each other.31 This yields a sample of 195 counties

in weak-APL states (treated) and 207 counties in strong-APL states (controls). To

test for the BAPCPA-led increase in mortgage credit supply, I run the following

difference-in-difference identification model on IMCs’ quarterly origination data at

the firm-county-quarter observation level:

Yict = α + β1dPostBAPCPAt × dWeakAPLCountyc + β2dWeakAPLCountyc

+ β3dPostBAPCPAt + θXc,t + λi + δc + τt + εict (3)

where all the variables are the same as in the baseline specification in Equation 1

31While smaller distances ensure greater similarity in economic forces governing areas across state
borders, they also reduce the sample size and power of the tests considerably – thus a trade-off
exists. However I find that the results are qualitatively robust to using a cut-off of 50 and 100 miles
and cross-sectionally across entire states as well.
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except for two changes – dWeakAPLCounty is a dummy variable that takes the value

of 1 if counties belong to weak-APL states and 0 otherwise. I also use County and

Quarter fixed effects as opposed to County×Quarter fixed effects in order to identify

the coefficient on dPostBAPCPA×dWeakAPLCounty which is at the county-quarter

level. dPostBAPCPA×dWeakAPLCounty is the difference-in-difference (DID) esti-

mator and it is the key variable of interest.

Table 6 presents the results for the regression specification in Equation 3, which

shows that counties with weaker APL enforcement laws indeed experienced a higher

growth in mortgage credit in the post-BAPCPA period. Consistent with the supply

hypothesis, the results also show that there was a decrease in the average mortgage

interest rate and the loan-to-income ratio after controlling for the risk of the origi-

nated loans. As robustness, I conduct these tests by defining neighboring counties

to be within a distance of 50 miles, 100 miles, and cross-sectionally across states

by including all the counties. These results which are presented in Table A.11 are

qualitatively similar, but get weaker as distance increases. This is likely due to the

increasing time-varying heterogeneity among counties that are geographically farther

apart.

Overall the results documented in Section 1.5 indicate an increase in supply of

mortgage credit after BAPCPA went into effect.

1.5.5 Testing alternate hypotheses

In this section, I test two potential alternate hypothesis which might drive the results

so far. The first alternate hypothesis is the income-based demand hypothesis which

argues that the increase in mortgage credit is due to the growth in incomes of the

borrowers who respond by increasing their demand for mortgages ([65]). To test

this hypothesis, I gather the publicly available county-level income data from the

U.S. Census Bureau. Using this data, I compute the growth in per-capita income
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and median income for each county from 2004-2006 as this period covers most of

event window around the BAPCPA. The counties are then divided into four quartiles

based on the computed growth rates. The lowest and the highest quartile counties

based on the growth rate of per-capita income (median income) have average annual

growth rates of 1.4% (1.8%) and 10.1% (7.7%) respectively. The average inflation rate

during this period was 3.3%, which implies that the average real growth in wages for

the counties in the lowest quartile was -1.9% (-1.5%). If the results in this study are

driven by income growth, then the counties in the lowest income growth quartiles,

which have a negative real growth in wages, should be less likely to experience a

growth in mortgage credit.

I test the above income-based demand hypothesis in Table 7 Panel A. Columns

(1), (2) and (4), (5) run the baseline specification in Equation 1 for the counties in

the lowest quartiles of per-capita and median income growth rates respectively. The

results show that there is an expansion of mortgage credit even in these counties which

experienced negative real growth rates in wages. Furthermore, I classify borrowers

in my dataset as low-income borrowers if their income is lower than 80% of the

median income in their counties. The results for this subset which are provided in

specifications (3) and (6) also show a growth in mortgage credit. The magnitude of

the coefficient of dPostBAPCPA×dIMC in all the specifications are similar to those

in the full sample regressions in Table 2. Overall, the results in Table 7 Panel A

suggest evidence against the income-based demand hypothesis.

The second alternate hypothesis for the expansion in mortgages credit could be

due to an expectation of the increase in future house prices. As [105] note, higher

house prices lower the estimated loss given default, and hence the lenders would be

more willing to lend to lower quality borrowers. [68] note that house price run-ups

occur mainly in areas with an inelastic housing supply. Whereas in areas where hous-

ing supply is elastic, any pressure on house prices will lead to increased construction
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thereby keeping the house prices in check.32 If the increase in mortgage credit, espe-

cially to the low quality borrowers, is due to the increasing house price expectation

hypothesis, then areas with a higher housing supply elasticity should not see a growth

in mortgage credit.

To test the above hypothesis, I gather data on housing supply elasticity from

[131] at the MSA level. This measure of elasticity is based on the percentage of land

which cannot be developed for housing, either due to the presence of water bodies or

uneven terrain. Finally, this elasticity measure takes into account both the physical

and regulatory land constraints.33 [131] computes and ranks the measure of supply

elasticities for 95 MSAs. I classify the counties overlapping with the MSAs into

two samples: (i) very high housing supply elasticity areas (where the rank of supply

elasticity lies between 72 and 95) and (ii) high housing supply elasticity areas (where

the rank of supply elasticity lies between 48 and 95). Table 7 Panel B provides results

for these subsamples after running the baseline regression in Equation 1. The results

show an expansion in mortgage credit of the same order as the full sample results

in Table 2 for the two subsamples of high land supply elasticity. Thus, overall these

tests also suggest evidence against the increasing house price expectation hypothesis.

1.5.6 Robustness

I use growth rates in equation 1 to test for the increase in mortgage credit (volume and

number of mortgages) as opposed to levels for two main reasons. First, the levels in

mortgage credit and county-level variables may exhibit heterogeneous trends. Taking

the first difference cancels out any time-invariant trend at the firm-county level for the

mortgage credit variables. Thus, any type of county fixed effects would be guaranteed

to capture county-specific trends (see [116] and [59]). Second, a law change such as the

32See [105] who demonstrate this fact by comparing the house price growth in elastic and non-
elastic housing supply MSAs

33See [131] for more details on the construction of this measure
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2005 BAPCPA act can be argued to be a permanent shock as opposed to a temporary

shock to credit supply. Permanent shocks are commonly modeled as shocks to the

first-difference in the level rather than the level itself (temporary shocks).

Regardless, in Table A.9 Panel A, I test for an alternate specification using levels

instead of first differences. Specifically, I regress the logarithm of the number and

volume of loans and control for any auto-dependence in the levels by including the

lagged dependent variable in the regressions as well. Columns (1) and (2) show

that there was a 3% and 4% overall growth in loan origination volume and number

respectively for IMCs over AMCs in the six quarters after the BAPCPA act compared

to the six quarters before. As an additional check, in Panel B, columns (1)–(4), I test

using different time-periods before and after the BAPCPA law change and find that

the results are qualitatively the same for an event window of four and eight quarters.

However, I stick to the event window of six quarters for the rest of the paper as the

window is long enough to capture the effect of the law, and the post-event window

ends in 2007-Q1 which is just before the period when the financial crisis began to

materialize.34 I also test using a placebo law change date 12 quarters before the

implementation of BAPCPA in 2005-Q4 so that the event window is non-overlapping

with the event window around the actual law change date. In this case, I do not find

any significant difference between the loan volume and loan number growth rates of

IMCs and AMCs.

Overall, the results thus far support the hypothesis that the 2005 BAPCPA act

resulted in a positive supply shock to the funding of the IMCs, which in turn resulted

in the expansion of mortgage credit. In the next section, I focus on the consequences

of this credit expansion and test for the types of originated mortgages and their

ex-post delinquency rate.

34[124] documents a disruption to the securitization market after 2007-Q1 which would have
affected the mortgage companies as they primarily rely on securitizing their originated mortgages.
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1.6 Results: Consequences of IMC mortgage credit growth

1.6.1 Types of mortgage issuance

I use the information in the BBx dataset to classify loans as Alt-A, Subprime, Com-

plex and Low-doc loans. Alt-A, which stands for Alternative-A, are loans which are

typically originated to moderate and good credit quality borrowers, who would oth-

erwise qualify for a prime loan (see [136]), with an aggressive underwriting compared

to conforming or jumbo classes. These loans typically have no income documen-

tation and/or have higher loan-to-value ratios due to which they do not qualify as

conforming mortgages. Subprime loans are loans mainly made to lower credit qual-

ity borrowers (see [13]) who have impaired or incomplete credit histories. I classify

complex mortgages to be either Interest Only, Hybrid ARM, Pay-option ARM, and

Negative Amortizing mortgages.

Since the early 2000s, there has been a rapid growth in these non-traditional

mortgages. For instance, IOs and Pay-option ARMs represented only 3% of the total

non-prime mortgage originations in 2002, but rose to more than 50% at the end of

2005 ([11]). Hybrid ARMs, which were the most common non-traditional mortgages,

represented about 75% of the loans in subprime securitizations from 2004 to 2006

([55]). Hybrid ARMs were a combination of fixed and adjustable rate mortgages that

had a fixed interest rate in the initial period followed by an adjustable rate period.35

Pay-option ARMs allowed investors to choose among 3 payment options each month:

(i) paying the monthly principal and interest according to the amortization schedule,

(ii) paying the interest only (IOs), or (iii) paying a minimum amount that is less than

the interest owed (Negative Amortization). Borrowers found Pay-option ARMs and

Hybrid ARMs attractive as a result of the teaser rates that were offered in the form of

35A 2/28 hybrid ARM meant that it has 2 years of a fixed rate and 28 years of adjustable rates
typically adjusting every six months.
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minimum initial payments. However, at the end of the initial period for these ARMs,

the mortgage payments went up substantially after accounting for any missed and

lower interest payments.36 Furthermore, with the advent of automated underwriting,

Subprime and Alt-A loans with low- or no-documentation rose significantly from 11%

in 2003 to about 33% of all mortgage originations in 2005 ([11]).

The effect of a positive funding shock to IMCs can manifest itself in the form of

origination of riskier mortgage types. As Section 1.2 discuses, this is especially likely

in the presence of a saturated prime mortgage market and the broker incentives in

the form of higher commissions for non-prime loans and low-doc loans. Moreover, the

increased protection and seniority for warehouse lenders in the post-BAPCPA period

likely reduced their due diligence for mortgage collateral placed under repo financ-

ing agreements. Without adequate due diligence, originators (possibly in collusion

with the borrowers) can have significant incentives to misreport information on the

loan applications. For instance [89] showed that the income in low-documentation

loans had been overstated by 20% to 25%. [121], and [75] document misreporting

of mortgage characteristics for loans in the non-agency market. These misreported

loans eventually had over a 50% higher likelihood of defaulting compared to the loans

without any misreporting.

I test whether the positive funding shock to IMCs resulted in the origination

of risky mortgage types in Table 8. I run the baseline regression specification in

Equation 1 with the dependent variables as the growth in the number and volume

of different types of mortgages loans. Panel A shows the results for the full sample,

which indicates that the growth of Alt-A, Subprime, Complex and Low-doc mortgages

rose significantly after BAPCPA for the IMCs compared to the AMCs. Moreover,

the growth in Alt-A, Low-doc, and Complex loans is larger than the growth in overall

36Borrowers were also assured that they could refinance the loan with a new teaser rate when
their monthly payments went up. However, a major assumption was that the house price would be
higher for the refinance.
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loans reported in Table 2.

1.6.2 Mortgage defaults

I now compare the performance of the loans originated by IMC before and after the

BAPCPA. As argued in the previous section, if the funding shock to IMCs led to

the origination of riskier mortgages, then loans in the post-BAPCPA period should

underperform loans in the pre-BAPCPA period. Following KMSV I define a default

to occur if any of the following three conditions are true: (i) The loans are 60+ days

delinquent as defined by the Office of Thrift Supervision (OTS),37 (ii) the loan is in

foreclosure, or (iii) the loan is real estate owned (REO). I compute the frequency of

defaulted loans that were originated every quarter around the BAPCPA and regress

it on dPostBAPCPA×dIMC after controlling for the difference in loan-mix of each

institution that might drive defaults ([102]). Additionally, I compute the frequency of

defaults over multiple horizons, namely early defaults (loans that became delinquent

within 6 months of the first payment date), 15 months, 18 months, 2 years, 3 years

after origination and until the end of 2010.

The plot of the fraction of loan defaults within 2 years after origination between

IMCs and AMCs is presented in Figure 5. The default rates of IMCs and AMCs in

the pre-BAPCPA period do not differ significantly from each other, thus establishing

parallel trends between the treated (IMCs) and control (AMCs) groups prior to the

law change. This is also indicates that IMCs and AMCs did not differ in the riskiness

of their mortgage issuances prior to the passage of BAPCPA. However in the post-

BAPCPA period, the default rate of IMCs is significantly greater than that of AMCs

and trends upward over time.

37As KMSV point out, there are two different definitions of default used in the industry – the OTS
definition and the Mortgage Bankers Association (MBA) definition. The OTS starts counting the
days of delinquency one month after the missed payment whereas MBA starts counting it from the
day after the payment is missed. Thus, OTS’s delinquency definition is more stringent compared to
MBA’s.
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Next, I analyze the time variation of defaults in Table 9. The dependent variable

for these specifications are early default rates (default rates within 6 months of the

first payment date), and defaults within 15 months, 18 months, 2 years, 3 years and

until the end of 2010. The rate of defaults increases over time for IMCs compared

to AMCs in the post- vs pre-default period. This is consistent with the origination

of complex mortgages such as Interest Only, Hybrid ARM, Pay-option ARM, and

Negative Amortizing mortgages. These mortgages tend to have lower payments in

the initial periods before the monthly payments spike up. The typical reset period

for such loans is around two years. That is arguably why default rates peak after two

years (2.24%) for the IMCs in the post BAPCPA period, as seen by the magnitude

of the coefficient on dPostBAPCPA×dIMC in Column (4).

In Table 10, I run the default regressions with the percentage of defaults in 2 years

as the dependent for subsamples of borrower credit quality based on FICO scores

as defined in Section 1.5.1.1. The results show that the frequency of defaults was

the highest for medium credit quality borrower (3.69%) followed by the high credit

quality borrower (3.01%). This is likely to be a result of the ease of securitization and

issuance of Alt-A loans in the medium and good credit quality categories. Moreover,

it indicates risk-shifting by originators within these better quality borrowers which is

consistent with the notion of lower due diligence after BAPCPA. Finally, in Table 11

I analyze the default frequency subsamples based on high and low income, growth

in per-capita income, and competition. Columns (3) and (4) show that the default

frequency is higher for individuals with a higher income (3.31%) and for those counties

with a higher growth in per-capita income (3.36%) just as the results in Table 10.

To classify counties as high and low competition counties, I construct a Herfind-

ahl index (HHI) of loan origination concentration at the county-level using the entire

HMDA dataset by aggregating the loans by each originator in a given county. Coun-

ties with HHI below (above) the median county HHI are then classified as high (low)
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competition counties. Column (6) in Table 8 shows that the default frequency in coun-

ties with greater competition is 2.11% higher in the post-BAPCPA period compared

to the pre-BAPCPA period. However, the default frequencies for the low competition

counties are not significantly different between the pre- and post BAPCPA period as

shown in column (5). This suggests that the expansion of risky mortgage credit took

place in counties with higher competition.

Overall, the performance of loans originated by IMCs after BAPCPA is lower

compared to the loans originated before the BAPCPA. The subsample analyses are

in line with the origination of riskier mortgages due to the incentives of the mortgage

brokers in the form of higher commissions for riskier loans.

1.6.3 Effect on house prices

Recent literature has focused on the effect of credit supply on house prices. For

instance, [59] use the passage of the Interstate Banking and Branching Efficiency

Act (IBBEA) of 1994 to show the casual effect of an increase in credit availability

on house prices; [6] use the exogenous changes in the conforming loan limit on house

prices; while [45] exploit OCC’s federal preemption for national banks from predatory

lending on house price growth. In similar spirit, I test the effect of an increase in credit

availability after the BAPCPA on house prices. However, for this study I now limit

my sample to counties with a significant presence of IMCs and AMCs lending and

aggregate the originations of IMC and AMC firms at the quarter level. Specifically, I

use a subsample of counties in which IMCs and AMCs together originate more than

50% of all the mortgages in the event window around BAPCPA. Further, I classify

these counties every quarter by creating a dummy variable dHighIMC, which takes

the value 1 if the growth in the volume of mortgage loans issued is higher for IMCs

than AMCs in a given county and quarter. House prices at the county-quarter level

are gathered from zillow.com. I collect the median estimated house price for single
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family homes, median estimated house prices for the bottom, middle and top tier

homes in each county. Tiers in zillow are defined by dividing the house prices in a

region into terciles.

To test for the growth in house prices after the passage of the 2005 BAPCPA act,

I estimate the following model on quarterly data at the county-quarter observation

level:

gHc,t = α+β1dPostBAPCPA×dHighIMCc,t+β2dHighIMCc,t+β3dPostBAPCPA

+ θgXc,t−1 + λc + δt + εct (4)

where gHct is the log growth rate in house prices in county c and quarter t in annual

terms, and gXc,t−1 are the current and lagged control variables which include county

c’s growth rates in population, per-capita income and competition in mortgage origi-

nation. dHighIMCc,t is a dummy variable that takes the value of 1 if the growth rate

of the aggregated IMC loans in county c and quarter t is greater than the growth rate

of the aggregated AMC loans, and 0 otherwise. Additionally, I also include county

and quarter fixed-effects in all the regressions. The assignment of dHighIMCc,t to

counties cannot be argued to be completely exogenous, hence the following results

indicate the association of credit growth due to BAPCPA and house prices rather

than a causal interpretation.38

Table 12 presents the regression results and the coefficient on dPostBAPCPA×

dHighIMC determines the consequence of credit expansion on house price growth.

Column (1) indicates that the median house price growth for single family homes

was higher by 1.97% per year in counties which had a higher growth in mortgage

originations due to IMCs in the post BAPCPA period. Columns (2)-(4) indicate that

the house price appreciation is higher for the middle (2.44%) and top (2.97%) tercile

38For example, if IMCs have a greater propensity to expand in counties with rising house prices
compared to AMCs, then this omitted variable can introduce a positive bias while estimating coef-
ficients involving dHighIMCc,t.
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of house prices. This is in line with the higher default rates observed for the medium

and good quality borrowers in Table 10, which are likely explained by the boom and

the subsequent bust of house prices in these counties.

As robustness, I also test within the subsample of counties with high and low

housing supply elasticities39 in Table 13 as the effect of credit supply on house prices

are expected to be more pronounced in the areas with a low housing supply elasticity.

Consistent with expectation, the growth in house prices in the post BAPCPA period

in the high-IMC mortgage origination counties with low housing supply elasticities

is more than twice as high when compared to Table 12 and is significant for all

specifications. The house price growth per year are 6.33% for the median single

family homes and 4.82%, 6.73% and 5.57% for median house prices in the bottom,

middle and top tiers respectively. On the other hand, high-IMC mortgage origination

counties with high housing supply elasticities do not experience any significant growth

in house prices post-BAPCPA compared with pre-BAPCPA.

1.7 Conclusion

The past decade saw an unprecedented growth in mortgage credit which eventually

led to the 2008 housing crisis and the recent economic downturn. Since then there

has been a push to understand the role of the mortgage industry and its interplay

with regulation in leading to the 2008 financial crisis. This paper provides evidence

for one such channel that induced credit expansion in the recent decade. Specifically,

this paper documents an increase in risky mortgage credit due to the unintended

consequences of the 2005 Bankruptcy Abuse Prevention and Consumer Protection

Act (BAPCPA) which expanded the safe harbored repos to include mortgage related

securities.

BAPCPA effectively increased repo creditors’ protection thereby subsidized repo

39I define low supply elasticity counties as ranks 1 to 47 and high supply elasticity counties as 48
to 95 from [131]
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financing, and triggered the use of repurchase agreements by Independent Mortgage

Companies (IMCs) to finance their mortgage originations. Using BAPCPA as an

exogenous shock to IMCs’ funding, and multiple identification strategies based on

funding constraints, discontinuity in securitization propensity, and geographic dis-

continuity in anti-predatory lending laws, I document an increase in the growth of

mortgage credit in the post-BAPCPA period compared with the pre-BAPCPA pe-

riod. Consistent with a supply shock that reduces credit rationing, I find that the

growth in mortgage credit is not uniform across all borrowers, but is higher among

borrowers with lower credit quality. In line with a reduction in mortgage financing

costs, I also find that IMCs charged lower interest rates on their originated mortgages

after controlling for the risk of mortgage loans.

Further analysis of the types of mortgages originated in the post-BAPCPA by

IMCs reveals a higher degree of growth in risky mortgage types which culminated in

higher ex-post defaults rates. Interestingly, the default rates, when compared to those

of a control group, are higher for medium and high quality borrowers. This suggests

risk-shifting by IMCs within good quality borrowers, potentially due to greater cred-

itor protection in the post-BAPCPA period which disincentivized warehouse lenders’

due diligence. Furthermore, in line with the recent literature showing a causal link

between credit growth and asset prices, I find that counties experiencing a higher

growth in mortgage credit through IMCs also experienced a higher growth in house

prices. The growth in house prices also has a similar pattern as defaults, wherein it

is higher for medium and higher house price indexes.

The early 2000s saw an exponential growth in technology (automated under-

writing) and financial engineering (option ARMs, IOs, MBS, CDOs etc). We also

witnessed public policy promoting homeownership and the eventual saturation of

the prime market. In the midst of this environment, I document the unintended

and unanticipated consequences of a financial regulation namely BAPCPA. Although
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BAPCPA was intended to reduce systemic risk, it ironically increased the U.S. house-

hold leverage by encouraging the underwriting of riskier mortgages enabled by the

incentive structure of certain mortgage lenders. This conceivably, at least in part,

enabled the boom and eventual bust of the U.S. mortgage market. Specifically for

BAPCPA, there still exists a debate on the costs and benefits of privileged status of

derivatives in bankruptcy. The results in this paper enrich that debate by furnishing

new evidence on the real costs of BAPCPA related to the safe harbor exemptions

for repos. Thus, the results of this paper also contribute to the literature exploring

regulatory design by documenting the unanticipated real costs of BAPCPA.
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Figure 1: 8-K Filings Parsing

The figure presents the number of occurrences of master repurchase and master loan agreements

in the 8-K filings for firms belonging to the SIC codes 6162 (Mortgage Bankers and Loan Corre-

spondents), 6163 (Loan Brokers), 6798 (Real Estate Investment Trusts) from 2004 to 2007. These

SIC codes are assigned to most Independent Mortgage Companies (IMCs). The dashed vertical line

indicates the passage of BAPCPA while the solid vertical line indicates the quarter since BAPCPA

went into effect.

39



Figure 2: IMC vs AMC Quarterly Growth Rates Trend

The figure presents the quarterly growth rates for IMCs compared with AMCs before and after the

2005 BAPCPA. The figure plots the point estimates for the leading and lagging indicators over 2

years before and after BAPCPA using the following specification: Yict = α + β−3dIMCQtri,−3 +

β−2dIMCQtri,−2 +β0dIMCQtri,0 + · · ·+β7dIMCQtri,7 +λi+δct+εict. Yict is the log growth rate

in the volume of loans issued by firm i, in county c and quarter t. dIMCQtri,t ∀t ∈ {−2, 0, 1, . . . , 7}

is a dummy variable set to 1 if firm i is an IMC and t is the number of quarters before/after the

quarter in which BAPCPA takes effect, and 0 otherwise. dIMCQtri,−3 is a dummy variable set to 1

from the eighth quarter up to and including the third quarter prior to the quarter in which BAPCPA

takes effect. λi and δct are firm and county×quarter fixed effects respectively. The vertical bars

correspond to the 95% confidence intervals of the point estimates. The solid black vertical line at

0 represents 2005-Q4 which is when the BAPCPA regulation took effect. The dot-dashed red line

is the best fit line in the pre- and post-BAPCPA period indicating the trend of growth rates over

time. Standard errors are clustered at the county-level.
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Figure 3: Discontinuity in Low-Doc Loan Issuance : Around 620 FICO Threshold

The figure shows the number and volume of low-documentation mortgages issued at each FICO

score in blue dots. The black solid line fits a flexible seventh-order polynomial as in Equation 2 on

either side of the cut-off FICO score of 620. The red lines are the 95% confidence intervals. The

black dashed line passes through the 620 FICO score point.

(a) Pre-Bankruptcy Act: Number of
Loans

(b) Post-Bankruptcy Act: Number of
Loans

(c) Pre-Bankruptcy Act: Volume of Loans
(d) Post-Bankruptcy Act: Volume of
Loans
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Figure 4: Discontinuity in Loan Growth

The figure shows the growth in the number and volume of low- and full-documentation mortgages

issued at each FICO score in blue dots. The threshold for low-documentation loans is 620 and for

full documentation loans is 580. The black solid line fits a non-parametric local linear polynomial

using a triangular kernel within a bandwidth of 30 around the threshold. The red long-dashed lines

are the 95% confidence intervals. The black dashed line passes through the threshold FICO score

point.

(a) Growth in Number of Low-doc Loans (b) Growth in Volume of Low-doc Loans

(c) Growth in Number of Full-doc Loans (d) Growth in Volume of Full-doc Loans
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Figure 5: IMC vs AMC Quarterly Default Rates Trend

The figure presents the quarterly default rates for IMCs compared with AMCs before and after the

2005 BAPCPA. The figure plots the point estimates for the leading and lagging indicators before and

after BAPCPA using the following specification: Dict = α+β−3dIMCQtri,−3+β−2dIMCQtri,−2+

β0dIMCQtri,0+· · ·+β5dIMCQtri,5+λi+γc+δt+Xict+εict. Dict is the percentage of defaulted loans

issued by firm i, in county c and quarter t. dIMCQtri,t ∀t ∈ {−2, 0, 1, . . . , 5} is a dummy variable

set to 1 if firm i is an IMC and t is the number of quarters before/after the quarter in which BAPCPA

takes effect, and 0 otherwise. dIMCQtri,−3 is a dummy variable set to 1 from the eighth quarter up

to and including the third quarter prior to the quarter in which BAPCPA takes effect. Xict are a set

of controls including the perentage of ARM and Low-Doc loans, loans with a prepayment penalty,

and average borrower FICO, loan amount, LTV ratio and interest rate computed for issuances by

firm i, in county c and quarter t. λi and δct are firm and county×quarter fixed effects respectively.

The vertical bars correspond to the 95% confidence intervals of the point estimates. The solid black

vertical line at 0 represents 2005-Q4 which is when the BAPCPA regulation took effect. The dot-

dashed red line is the best fit line in the pre- and post-BAPCPA period indicating the trend of

growth rates over time. Standard errors are clustered at the county-level.
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Table 1: Summary Statistics

This table presents the changes in the broad measures of loan origination before and after the 2005

Bankruptcy Abuse Prevention and Consumer Protection Act (BAPCPA) for IMCs (independent

mortgage companies) and AMCs (affiliated mortgage companies). The BAPCPA was signed into

law on April 14th 2005 and took effect in October 2005. The Pre-BAPCPA period refers to six

quarters from 2004Q2 to 2005Q3, and the Post-BAPCPA period refers to six quarters from 2005Q4

to 2007Q1. Loan-types are defined in A.1.

Panel A:Main Loan Variables

Pre-BAPCPA Post-BAPCPA

IMC AMC IMC AMC

Total Number of Loans (1000s) 385.82 144.27 469.20 199.98

Total Loan Dollar Volume ($ Billions) 86.31 37.20 118.41 54.81

Average Loan Amount (1000s) 223.70 257.84 252.37 274.06

Average Loan-to-Income Ratio 2.75 2.75 2.74 2.64

Average Loan-to-Value Ratio 82.36 81.95 81.84 81.43

Average FICO Score 671.45 679.74 665.93 671.99

Average Borrower Income (1000s) 84.74 98.44 96.54 109.47

Average Initial Interest Rate (%) 6.67 6.45 7.61 7.41

Panel B:Loan Types

Pre-BAPCPA Post-BAPCPA

IMC AMC IMC AMC

Low Documentation Loans (%) 52.77 56.30 61.40 62.57

Alt-A Loans (%) 19.60 17.58 19.95 19.13

Subprime Loans (%) 26.13 22.90 32.92 27.57

ARM Loans (%) 80.08 76.58 77.41 71.48

Loans with Pre-payment Penalty (%) 53.38 46.04 53.12 49.74

Complex Loans (%) 43.13 48.61 41.51 53.24

Jumbo Loans (%) 17.58 25.17 16.52 22.87
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Table 2: Mortgage Credit Growth: Exploiting Funding Constraints – IMCs vs AMCs

This table examines the changes in the broad measures of loan origination before and after the 2005

BAPCPA between IMCs and AMCs. The dataset is at the mortgage originating firm-county-quarter

level. The dependent variables in columns (1)–(4) are quarterly growth rates in total volume of loans

(g LoanVol), total number of loans (g LoanNum), total volume of jumbo loans (g JumboVol), total

number of jumbo loans (g JumboNum) made by a mortgage originating firm in a given county

and quarter. The dependent variables in columns (5) & (6) are the average initial interest rate

(AvgIntRate) in percentage terms, and the average loan-to-income ratio (AvgIntRate). The Indicator

variable dPostBAPCPA takes the value 1 for six quarters from 2005Q4 to 2007Q1 and 0 for six

quarters from 2004Q2 to 2005Q3. The Indicator variable dIMC is equal to 1 if the mortgage

originating firm is an IMC, and 0 otherwise. Other regression loan-mix controls are defined in A.1.

All regressions include Firm FE and County×Quarter FE. T -statistics displayed in parentheses are

robust and clustered at the County level. *, **, and *** indicate significance greater than 10%, 5%,

and 1% respectively.

Depvar: g LoanVol g LoanNum g JumboVol g JumboNum AvgIntRate AvgLTI
(1) (2) (3) (4) (5) (6)

dPostBAPCPA×dIMC 0.11*** 0.11*** 0.06*** 0.06*** -0.08*** 0.04***
(11.57) (13.18) (2.95) (3.09) (-8.89) (6.17)

Avg FICO -0.01*** 0.00
(-55.35) (1.04)

Avg LTV 0.04***
(64.83)

ARM Loans(%) 0.01 0.07***
(0.53) (11.35)

Alt-A Loans(%) 0.33*** -0.02**
(24.80) (-2.50)

Subprime Loans(%) 0.86*** -0.04***
(51.68) (-4.06)

LowDoc Loans(%) 0.23*** -0.06***
(25.58) (-12.97)

Firm FE X X X X X X
County×Quarter FE X X X X X X

N 295932 295932 53194 53194 267885 264277
Adj. R2 0.051 0.053 0.054 0.060 0.603 0.369
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Table 3: Mortgage Credit Growth: Variation Across Borrower Quality

This table examines the changes in the broad measures of loan origination before and after the

2005 BAPCPA between IMCs and AMCs across subsamples of low (FICO ≤ 620), medium (620 ≤
FICO ≤ 680), and high (FICO ≥ 680) quality borrowers. The dataset is at the mortgage originating

firm-county-quarter level. The dependent and independent variables are the same as in Table 2.

All regressions include Firm FE and County×Quarter FE. T -statistics displayed in parentheses are

robust and clustered at the County level. *, **, and *** indicate significance greater than 10%, 5%,

and 1% respectively.

Panel A: Low Borrower Quality – FICO Category 500–619

Depvar: g LoanVol g LoanNum AvgIntRate AvgLTI
(1) (2) (3) (4)

dPostBAPCPA×dIMC 0.17*** 0.16*** -0.11*** 0.02*
(9.91) (10.17) (-5.99) (1.65)

Loan-mix Controls X X
Firm FE X X X X
County×Quarter FE X X X X

N 121216 121216 114141 112937
Adj. R2 0.028 0.026 0.392 0.298

Panel B: Medium Borrower Quality – FICO Category 620–680

Depvar: g LoanVol g LoanNum AvgIntRate AvgLTI
(1) (2) (3) (4)

dPostBAPCPA×dIMC 0.13*** 0.14*** -0.04** 0.06***
(8.97) (9.71) (-2.38) (6.54)

Loan-mix Controls X X
Firm FE X X X X
County×Quarter FE X X X X

N 143013 143013 134569 132634
Adj. R2 0.036 0.035 0.379 0.312

Panel C: High Borrower Quality – FICO Category 681–800

Depvar: g LoanVol g LoanNum AvgIntRate AvgLTI
(1) (2) (3) (4)

dPostBAPCPA×dIMC 0.12*** 0.12*** -0.02 0.05***
(7.82) (8.69) (-1.22) (5.30)

Loan-mix Controls X X
Firm FE X X X X
County×Quarter FE X X X X

N 152638 152638 142277 140433
Adj. R2 0.047 0.048 0.325 0.338
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Table 4: Mortgage Credit Growth: Exploiting Funding Constraints within IMCs

This table examines the changes in the broad measures of loan origination before and after the 2005

BAPCPA between small and large IMCs. Large IMCs (Small IMCs) are defined as IMCs which

are above (below) the median in terms of the aggregate volume of mortgage origination between

2001–2003. The Indicator variable dPostBAPCPA takes the value 1 for six quarters from 2005Q4 to

2007Q1 and 0 for six quarters from 2004Q2 to 2005Q3. The Indicator variable dSmallIMC is equal

to 1 if the mortgage originating IMC is a small IMC, and 0 otherwise. The dependent and rest of the

control variables are the same as in Table 2. All regressions include Firm FE and County×Quarter

FE. T -statistics displayed in parentheses are robust and clustered at the County level. *, **, and

*** indicate significance greater than 10%, 5%, and 1% respectively.

Depvar: g LoanVol g LoanNum g JumboVol g JumboNum AvgIntRate AvgLTI
(1) (2) (3) (4) (5) (6)

dPostBAPCPA×dSmallIMC 0.06*** 0.05*** 0.06*** 0.05*** -0.04*** 0.01
(6.62) (6.56) (3.42) (3.08) (-4.81) (1.63)

Avg FICO -0.01*** 0.00
(-51.23) (1.26)

Avg LTV 0.04***
(57.59)

ARM Loans(%) -0.00 0.06***
(-0.07) (8.88)

Alt-A Loans(%) 0.33*** -0.02**
(22.13) (-2.02)

Subprime Loans(%) 0.86*** -0.03***
(48.57) (-3.10)

LowDoc Loans(%) 0.23*** -0.06***
(22.22) (-10.02)

Firm FE X X X X X X
County×Quarter FE X X X X X X

N 205458 205458 36240 36240 184967 182617
Adj. R2 0.053 0.056 0.056 0.062 0.601 0.364
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Table 5: Mortgage Credit Growth: Exploiting Securitization Propensity

Panel A of this table presents the estimates in the regression specification Equation 2 in which a

fifth degree distance polynomial is fitted on either side of the threshold value. Panel B fits a non-

parametric local linear polynomial using a triangular kernel within an optimal bandwidth proposed

by [28]. The dependent variable in both panels is either the growth in number or volume of mortgage

originations at each FICO score from the pre- to post-BAPCPA period covering 2004Q2 to 2007Q1.

The Indicator variable dThreshold is equal to 1 if the FICO score is greater than 620 (580) for low

(full) documentation loans, and 0 otherwise. T -statistics displayed in parentheses. *, **, and ***

indicate significance greater than 10%, 5%, and 1% respectively.

Panel A: Flexible fifth degree polynomial fit

Low-Doc Loans (FICO Threshold=620) Full-Doc Loans (FICO Threshold=580)

Depvar: g LoanVol g LoanNum g LoanVol g LoanNum
(1) (2) (3) (4)

dThreshold 0.21*** 0.22** 0.02 0.03
(2.82) (2.52) (0.39) (0.50)

N 301 301 301 301
Adj. R2 0.597 0.562 0.939 0.900

Panel B: Local linear polynomial fit within optimal bandwidth

Low Doc Loans (FICO Threshold=620) Full Doc Loans (FICO Threshold=580)

Depvar: g LoanVol g LoanNum g LoanVol g LoanNum
(1) (2) (3) (4)

d Threshold 0.11*** 0.11*** 0.13*** 0.08*
(4.30) (5.68) (3.45) (1.83)

N 57 57 41 41
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Table 6: Mortgage Credit Growth: Exploiting APL Laws Across State Borders

This table examines the changes in the broad measures of IMC loan origination before and after

the 2005 BAPCPA between counties bordering states with weak and strong anti-predatory lend-

ing (APL) laws. The dataset is at the mortgage originating firm-county-quarter level. States are

sorted in ascending order based on the strength of the enforcement of APL laws presented in Ta-

ble A.5. States in the top and bottom half are classified as weak-APL states and strong-APL states

respectively. Neighboring counties are defined as counties within 30 miles across borders of states

with weak and strong APL laws. The dummy variable dWeakAPLCounty is equal to 1 if a county

belongs to a weak-APL state and is 0 otherwise. The dependent variable and rest of the control

variables are the same as in Table 2. All regressions include Firm FE, County, and Quarter FE.

T -statistics displayed in parentheses are robust and clustered at the County level. *, **, and ***

indicate significance greater than 10%, 5%, and 1% respectively.

Depvar: g LoanVol g LoanNum AvgIntRate AvgLTI
(1) (2) (3) (4)

dPostBAPCPA×dWeakAPLCounty 0.07*** 0.06*** -0.06* 0.04**
(2.96) (2.96) (-1.66) (2.32)

Avg FICO -0.01*** -0.00
(-23.17) (-0.09)

Avg LTV 0.04***
(24.80)

ARM Loans (%) 0.10*** 0.04**
(3.28) (2.50)

Alt-A Loans (%) 0.27*** -0.04*
(7.28) (-1.82)

Subprime Loans (%) 0.75*** -0.03
(20.39) (-1.13)

LowDoc Loans (%) 0.28*** -0.05***
(12.96) (-3.63)

Firm FE X X X X
County FE X X X X
Quarter FE X X X X

N 31786 31786 28387 28069
Adj. R2 0.033 0.034 0.562 0.353
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Table 7: Mortgage Credit Growth: Testing Alternate Hypotheses

This table examines the changes in the broad measures of loan origination before and after the

2005 BAPCPA between IMCs and AMCs across different subsamples to test the borrower demand

hypothesis and the house-price appreciation hypothesis. The dataset is at the mortgage originating

firm-county-quarter level. The subsamples in Panel A columns (1), (4) and (2), (5) are counties with

the lowest per-capita income growth (LowPCI g) and lowest median income growth (LowMedInc g).

The lowest group in each case is defined as the 1st quartile of growth rates computed over the

2004–2006 period for each county and then ordered from the smallest to the largest value. The

LowIncome subsample in Panel A column (3), (6) consists of borrowers whose income is below

0.8×their median county income. The VHighSupElas and HighSupElas subsamples in Panel B are

defined as counties that overlap with MSAs (metro statistical areas) ranked based on land supply

elasticities between 72–95 and 48–95 respectively from Table VI in [131]. The dependent variable in

Panel A columns (1)–(3) and Panel B columns (1)–(2) is the quarterly growth rate in total volume

of loans (g LoanVol). The dependent variable in Panel A columns (4)–(6) and Panel B columns

(3)–(4) is the quarterly growth rate in total number of loans (g LoanNum). The Indicator variable

dPostBAPCPA takes the value 1 for six quarters from 2005Q4 to 2007Q1 and 0 for six quarters from

2004Q2 to 2005Q3. The Indicator variable dIMC is equal to 1 if the mortgage originating firm is

an IMC, and 0 otherwise. All regressions include Firm FE and County×Quarter FE. T -statistics

displayed in parentheses are robust and clustered at the County level. *, **, and *** indicate

significance greater than 10%, 5%, and 1% respectively.

Panel A: Testing the Demand Hypothesis

Depvar: g LoanVol g LoanNum

Subsample: LowPCI g LowMedInc g LowIncome LowPCI g LowMedInc g LowIncome
(1) (2) (3) (4) (5) (6)

dPostBAPCPA×dIMC 0.07** 0.06*** 0.12*** 0.06** 0.05** 0.13***
(2.49) (3.20) (7.13) (2.12) (2.38) (7.18)

Firm FE X X X X X X
County×Quarter FE X X X X X X

N 31329 63354 85537 31329 63354 85537
Adj. R2 0.032 0.044 0.070 0.033 0.041 0.091

Panel B: Testing the House Price Appreciation Hpothesis

Depvar: g LoanVol g LoanNum

Subsample: VHighSupElas HighSupElas VHighSupElas HighSupElas
(1) (2) (3) (4)

dPostBAPCPA×dIMC 0.05* 0.08*** 0.04 0.07***
(1.97) (4.71) (1.63) (3.90)

Firm FE X X X X
County×Quarter FE X X X X

N 40162 75530 40162 75530
Adj. R2 0.037 0.044 0.034 0.040
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Table 9: Consequences of Mortgage Credit Growth: Loan Defaults – Time Variation

This table examines the percentage of defaulted loans among the loans that were originated around

the 2005 BAPCPA period over different time horizons. The dependent variable for each column is

the percentage of defaulted loans within a given time-period after origination as specified by the

header of the column. A loan is classified as under default if any of the conditions are true: (a)

payments on the loan are 60+ days late as defined by the Office of Thrift Supervision; (b) the loan

is in foreclosure; or (c) the loan is real estate owned (REO), that is, the bank has retaken possession

of the home. Early default (Early) is defined as the loan which defaults within six months from the

first payment date. The Indicator variable dPostBAPCPA takes the value 1 for six quarters from

2005Q4 to 2007Q1 and 0 for six quarters from 2004Q2 to 2005Q3. The Indicator variable dIMC is

equal to 1 if the mortgage originating firm is an IMC, and 0 otherwise. Rest of the control variables

are defined in A.1. All regressions include Firm FE and County FE and Loan Origination Quarter

FE. T -statistics displayed in parentheses are robust and clustered at the County level. *, **, and

*** indicate significance greater than 10%, 5%, and 1% respectively.

Depvar: Default Percentage Early 15 Mons 18 Mons 2 Yrs 3 Yrs Until 2010
(1) (2) (3) (4) (5) (6)

dPostBAPCPA×dIMC 0.11 0.57** 0.96*** 2.24*** 1.67*** 1.03**
(0.92) (2.28) (3.17) (5.53) (3.20) (2.08)

ARM Loans(%) 0.85*** 2.97*** 4.00*** 6.09*** 10.69*** 8.47***
(7.53) (14.53) (16.89) (20.87) (29.72) (21.86)

Low-Doc Loans(%) 1.10*** 2.68*** 3.36*** 4.56*** 6.50*** 8.97***
(9.86) (13.65) (15.79) (17.33) (20.51) (28.23)

PPt-Penalty Loans (%) 0.66*** 0.96*** 1.56*** 2.80*** 4.23*** 5.12***
(5.92) (3.62) (5.50) (8.57) (10.39) (10.99)

Avg FICO (log) -17.51*** -54.90*** -67.87*** -88.98*** -112.30*** -120.95***
(-25.57) (-46.19) (-52.46) (-58.75) (-60.96) (-57.40)

Avg LoanAmt (log) 0.88*** 2.30*** 2.67*** 3.49*** 3.97*** 3.09***
(6.83) (9.78) (9.83) (11.01) (10.64) (7.23)

Avg LTV 0.03*** 0.04*** 0.05*** 0.08*** 0.17*** 0.24***
(5.21) (4.45) (4.89) (5.77) (9.81) (12.56)

Avg IntRate(%) 0.33*** 1.24*** 1.43*** 1.77*** 1.94*** 1.48***
(11.05) (21.56) (21.98) (24.73) (21.97) (15.48)

Firm FE X X X X X X
County FE X X X X X X
Origination-quarter FE X X X X X X

N 276568 276568 276568 276568 276568 276568
Adj. R2 0.051 0.112 0.133 0.174 0.240 0.225
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Table 10: Consequences of Mortgage Credit Growth: Loan Defaults Across Borrower
Quality

This table examines the percentage of defaulted loans among the loans that were originated around

the 2005 BAPCPA period over subsamples of different borrower quality. The dependent variable

in each column is the percentage of defaulted loans within two years after origination. A loan is

classified as under default if any of the conditions are true: (a) payments on the loan are 60+ days

late as defined by the Office of Thrift Supervision; (b) the loan is in foreclosure; or (c) the loan is

real estate owned (REO), that is, the bank has retaken possession of the home. Loans are classified

based on borrower credit quality namely: low (FICO ≤ 620), medium (620 ≤ FICO ≤ 680), and high

(FICO ≥ 680) quality. The Indicator variable dPostBAPCPA takes the value 1 for six quarters from

2005Q4 to 2007Q1 and 0 for six quarters from 2004Q2 to 2005Q3. The Indicator variable dIMC is

equal to 1 if the mortgage originating firm is an IMC, and 0 otherwise. Rest of the control variables

are defined in A.1. All regressions include Firm FE and County FE and Loan Origination Quarter

FE. T -statistics displayed in parentheses are robust and clustered at the County level. *, **, and

*** indicate significance greater than 10%, 5%, and 1% respectively.

Borrower Quality

Depvar: Default Percentage FullSample Low Medium High
(1) (2) (3) (4)

dPostBAPCPA×dIMC 2.24*** 1.22** 3.69*** 3.01***
(5.53) (2.17) (6.60) (7.61)

ARM Loans(%) 6.09*** 3.00*** 6.37*** 6.66***
(20.87) (5.90) (16.28) (19.74)

Low-Doc Loans(%) 4.56*** 4.96*** 5.97*** 5.59***
(17.33) (10.34) (16.73) (20.29)

PPt-Penalty Loans (%) 2.80*** 1.58** 2.96*** 1.04***
(8.57) (2.19) (5.43) (3.33)

Avg FICO (log) -88.98*** -12.57*** -16.38*** -13.50***
(-58.75) (-5.05) (-7.22) (-7.40)

Avg LoanAmt (log) 3.49*** 2.18*** 4.50*** 2.69***
(11.01) (4.51) (10.51) (7.59)

Avg LTV 0.08*** 0.10*** 0.06*** 0.11***
(5.77) (4.34) (3.00) (7.88)

Avg IntRate(%) 1.77*** 1.29*** 1.63*** 1.23***
(24.73) (9.16) (15.20) (14.86)

Firm FE X X X X
County FE X X X X
Origination-quarter FE X X X X

N 276568 176714 188738 168855
Adj. R2 0.174 0.083 0.146 0.157
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Table 11: Consequences of Mortgage Credit Growth: Loan Defaults in Subsamples

This table examines the percentage of defaulted loans among the loans that were originated around

the 2005 BAPCPA period over various subsamples. The dependent variable in each column is the

percentage of defaulted loans within two years after origination. A loan is classified as under default

if any of the conditions are true: (a) payments on the loan are 60+ days late as defined by the Office

of Thrift Supervision; (b) the loan is in foreclosure; or (c) the loan is real estate owned (REO),

that is, the bank has retaken possession of the home. The header for each column indicates the

subsample of loans. The LowIncome (HighIncome) subsample consists of loans made to borrowers

whose income is below (above) 0.8×their median county income (1.2×their median county income) .

The g LowPCI (g HighPCI ) subsample consists of loans made in counties with the lowest per-capita

income growth. The lowest (highest) group in each case is defined as the 1st (4th) quartile of growth

rates computed over the 2004–2006 period for each county and then ordered from the smallest to the

largest value. The HighComp (LowComp) subsample consists of loans made to borrowers in counties

with lending competition above (below) the median lending competition. Lending competition in a

county is computed using the entire HMDA dataset from 2004–2006. It is defined as the Herfindahl

index of loan originations by firms in a county. The Indicator variable dPostBAPCPA takes the

value 1 for six quarters from 2005Q4 to 2007Q1 and 0 for six quarters from 2004Q2 to 2005Q3. The

Indicator variable dIMC is equal to 1 if the mortgage originating firm is an IMC, and 0 otherwise.

Rest of the control variables are defined in A.1. All regressions include Firm FE and County FE

and Loan Origination Quarter FE. T -statistics displayed in parentheses are robust and clustered at

the County level. *, **, and *** indicate significance greater than 10%, 5%, and 1% respectively.

Depvar: Default Percentage LowIncome g LowPCI HighIncome g HighPCI LowComp HighComp
(1) (2) (3) (4) (5) (6)

dPostBAPCPA×dIMC -0.58 -0.24 3.31*** 3.36*** -1.65 2.11***
(-1.10) (-0.26) (7.16) (5.64) (-1.28) (5.27)

ARM Loans(%) 2.51*** 5.79*** 6.73*** 6.38*** 3.90*** 6.14***
(4.44) (6.73) (20.40) (13.43) (4.08) (20.32)

Low-Doc Loans(%) 2.83*** 4.63*** 4.96*** 4.53*** 0.99 4.54***
(5.48) (5.31) (15.88) (10.39) (1.00) (16.65)

PPt-Penalty Loans (%) 0.77 4.78*** 2.19*** 3.06*** 3.63* 2.64***
(1.04) (4.60) (5.47) (5.93) (1.90) (8.09)

Avg FICO (log) -83.35*** -95.30*** -81.47*** -84.10*** -88.10*** -87.91***
(-26.85) (-21.32) (-46.06) (-32.96) (-15.26) (-55.76)

Avg LoanAmt (log) 4.09*** 3.16*** 2.90*** 3.61*** 1.21 3.59***
(7.69) (3.29) (7.79) (6.83) (1.10) (10.83)

Avg LTV 0.03 0.04 0.09*** 0.09*** -0.02 0.08***
(1.17) (0.93) (5.48) (4.04) (-0.32) (5.63)

Avg IntRate(%) 1.62*** 1.86*** 1.75*** 1.72*** 1.82*** 1.79***
(9.37) (7.63) (20.50) (14.71) (6.00) (24.12)

Firm FE X X X X X X
County FE X X X X X X
Origination-quarter FE X X X X X X

N 90157 31864 196810 95279 15985 250266
Adj. R2 0.108 0.153 0.164 0.199 0.106 0.176
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Table 12: Consequences of Mortgage Credit Growth: House Price Growth

This table examines the changes in house price growth before and after the 2005 BAPCPA be-

tween IMCs and AMCs. The dataset is at the county-quarter level. Median house prices at the

county-quarter level are gathered from zillow.com. The dependent variables in the regression are the

quarterly growth rates in house prices (g HP) in every county. SFH stands for the median single

family house price in a given county, quarter. While Bottom, Mid and Top are the median estimated

house price for the bottom, middle and top tier homes in each county, quarter respectively. Tiers in

zillow are defined by dividing the house prices in a region into terciles. The sample in this table is

limited to counties in which IMCs and AMCs together originate more than 50% of all the mortgages

issued in a county over the event window around BAPCPA. These counties are then classified every

quarter by comparing the growth rate in the volume of loans issued by IMCs with that of AMCs.

dHighIMC is an indicator variable that takes the value 1 if the growth in the volume of mortgage

loans issued is higher for IMCs than AMCs in a given county and quarter. The Indicator variable

dPostBAPCPA takes the value 1 for six quarters from 2005Q4 to 2007Q1 and 0 for six quarters from

2004Q2 to 2005Q3. Lagged values of county population growth and county per-capita income (PCI)

are included as controls in all specifications. All regressions include County FE, and Quarter FE.

T -statistics displayed in parentheses are robust and clustered at the County level. *, **, and ***

indicate significance greater than 10%, 5%, and 1% respectively.

Depvar: g HP(SFH) g HP(Bottom) g HP(Mid) g HP(Top)
(1) (2) (3) (4)

dPostBAPCPA×dHighIMC 1.88** 0.97 2.30** 2.82***
(2.00) (0.94) (2.46) (3.67)

dHighIMC -1.16* -0.35 -1.34* -1.90***
(-1.69) (-0.44) (-1.92) (-3.30)

Pop. growth(%) 2.24*** 2.56*** 2.52*** 2.35***
(6.67) (7.40) (8.26) (8.50)

PCI growth(%) 0.32*** 0.35*** 0.42*** 0.25***
(3.62) (3.50) (5.28) (3.25)

HHI growth(%) -3.90*** -3.80*** -3.35*** -2.35***
(-4.01) (-3.27) (-3.61) (-2.62)

Lagged Pop growth(%) 1.51*** 1.47*** 1.27*** 1.05***
(3.39) (3.91) (2.88) (3.43)

Lagged PCI growth(%) 0.38*** 0.38*** 0.41*** 0.36***
(3.61) (3.05) (4.10) (3.96)

Lagged HHI growth(%) 1.07 0.38 0.03 -0.51
(1.00) (0.30) (0.03) (-0.57)

County FE X X X X
Quarter FE X X X X

N 9656 8526 9128 9829
Adj. R2 0.381 0.395 0.419 0.370
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Table 13: Consequences of Mortgage Credit Growth: House Price Growth in Subsam-
ples

This table examines the changes in house price growth before and after the 2005 BAPCPA between

IMCs and AMCs in subsamples of high and low housing supply elasticities. The Low Housing Supply

Elasticity (Panel A) and High Housing Supply Elasticity (Panel B) subsamples are defined as counties

that overlap with MSAs (metro statistical areas) ranked based on land supply elasticities between

1–47 and 48–95 respectively from Table VI in [131]. The dependent and independent variables are

the same as in Table 12. All regressions include County FE, and Quarter FE. T -statistics displayed

in parentheses are robust and clustered at the County level. *, **, and *** indicate significance

greater than 10%, 5%, and 1% respectively.

Panel A: Low Housing Supply Elasticity

Depvar: g HP(SFH) g HP(Bottom) g HP(Mid) g HP(Top)
(1) (2) (3) (4)

dPostBAPCPA×dHighIMC 5.51** 4.04** 5.92*** 4.79***
(2.54) (1.98) (3.05) (2.97)

dHighIMC -3.30* -0.89 -3.05* -2.55*
(-1.75) (-0.48) (-1.72) (-1.74)

Pop. growth(%) 4.12*** 3.16*** 4.11*** 3.21***
(5.80) (5.37) (6.89) (4.91)

PCI growth(%) 0.94*** 0.81*** 0.96*** 0.76***
(5.87) (4.76) (7.29) (5.43)

HHI growth(%) -5.80** -6.99*** -3.26 -6.31***
(-2.34) (-2.61) (-1.62) (-2.93)

Lagged County controls X X X X
County FE X X X X
Quarter FE X X X X

N 2001 1967 1981 1994
Adj. R2 0.623 0.653 0.658 0.621

Panel B: High Housing Supply Elasticity

Depvar: g HP(SFH) g HP(Bottom) g HP(Mid) g HP(Top)
(1) (2) (3) (4)

dPostBAPCPA*dHighIMC -0.74 -2.66 -0.15 1.01
(-0.49) (-1.33) (-0.09) (0.82)

dHighIMC 0.60 1.69 0.09 -0.40
(0.47) (1.00) (0.06) (-0.38)

Pop growth(%) 1.96*** 1.76** 1.91*** 1.03**
(3.38) (2.26) (3.48) (2.16)

PCI growth(%) -0.07 0.06 0.05 -0.01
(-0.41) (0.31) (0.40) (-0.08)

HHI growth(%) 1.13 -1.60 1.04 0.01
(0.69) (-0.72) (0.56) (0.01)

Lagged County controls X X X X
County FE X X X X
Quarter FE X X X X

N 2228 2026 2256 2297
Adj. R2 0.316 0.262 0.309 0.294
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CHAPTER II

ARE CREDIT RATINGS STILL RELEVANT?

2.1 Introduction

Credit rating agencies that specialize in assessing the credit worthiness of bond is-

suers are an integral component of the financial landscape. Investors, regulators, and

managers have historically relied on credit ratings, yet they are also frequently criti-

cized for their slow response in predicting corporate defaults (e.g., Enron, Worldcom),

accuracy of their ratings, and the conflicts of interest inherent in the agencies’ busi-

ness model (see [150]). As a consequence of these criticisms, regulators have initiated

proposals in the Dodd-Frank Act to reduce regulatory and supervisory reliance on

credit rating agencies.

A firm’s credit rating is the opinion of a particular credit rating agency about

the firm’s credit worthiness, and it reflects the agency’s view on the firm’s physical

default probability PDP. The prevailing consensus is that such opinion by a rat-

ing agency is relevant as documented by negative stock market reactions to rating

downgrade announcements (see for examples [77]; [47]; [90]). In contrast, CDS con-

tracts are a market-based measure of a firm’s default risk, and provide an estimate

of the firm’s risk-neutral default probability PDQ (see [98]). Although credit ratings

and CDS spreads provide an assessment of the firm’s default risk under two differ-

ent probability measures (P versus Q), insights based on Merton’s (1974) structural

model suggest they share common information about the firm’s fundamentals. If

CDS spreads provide information about the underlying firm, in lieu of, or in addition

to that conveyed by credit ratings, rating change announcements should become less
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pricing relevant to equity investors. In this paper, we analyze whether the stock mar-

ket still reacts to credit rating agencies’ downgrade announcements after CDS trades

on their underlying firm’s debt.

We use a comprehensive sample of credit rating change announcements from three

major credit rating agencies — Standard and Poor’s, Moody’s, and Fitch, and find

that, consistent with the prior literature, stock and bond markets react significantly

negatively to credit rating downgrades. However, when CDS contracts are introduced

on the firm’s debt, the stock market reaction to credit rating downgrades is muted

compared with the period before CDS contracts start trading on a firm’s debt. Also,

stock and bond prices of firms with traded CDS contracts react significantly less to

rating downgrades relative to those of firms without traded CDS contracts. These

results are robust to a number of tests such as instrumental variable regressions and

propensity score matching analysis, which were used to mitigate endogeneity concerns.

In order to understand the information content of CDS contracts relative to credit

ratings, we first construct CDS-implied credit ratings non-parametrically following the

approach in [26] and [97] and find that they start deteriorating 180 days prior to a

downgrade. Second, using a semi-parametric hazard model (See [139] and [32]), we

find that CDS spreads contain information that significantly predict the likelihood

of rating downgrade announcements. In the same vein, we show that information in

CDS spreads complements credit ratings by enhancing corporate default prediction

models.

Bond yields also reflect the market’s assessment of a firm’s default risk. How-

ever, CDS contracts are standardized credit derivative contracts that generally trade

more liquidly than bonds and allow investors to more easily short or hedge credit

risk. Further, [98] and [56] show that CDS spreads are a “more pure” measure of a

firm’s default risk than corporate bond spreads (also see [147] and [144]). Using the

Hasbrouck’s (1995) information share measure, we show the CDS market, on average,
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dominates the bond market in credit price discovery (see also, [21]). However, before

rating downgrades, the CDS market’s information share increases substantially to

about 90% relative to the bond market. Thus, the CDS market is a leading venue for

credit price discovery before rating downgrade announcements.

The presence of the CDS market also helps improve equity valuation. Examining

the information flow between the CDS and stock markets, we find that unantici-

pated changes in CDS spreads lead stock returns, predominantly before firms are

downgraded. In support of our main conclusion, we find evidence suggesting that

stock prices react less to rating change announcements because a bulk of their price

adjustment occurred in the pre-announcement period.

An important channel through which the CDS market improves equity pricing

is by providing investors with information that can be used to better estimate the

default risk premium. In particular, [15] find that the distress risk puzzle, i.e., lower

rated firms earn lower returns, is most pronounced around rating downgrades.1 We

test this implication by examining the value of the CDS market in explaining the

cross-section of stock returns for firms that are about to be re-rated. We follow the

method developed in [62]. Their general idea is that the firm’s equity risk premium can

be extracted using the term structure of CDS spreads over time. Our results, based

on portfolio sorting, show a strong, positively monotonic relationship between CDS-

implied equity risk premia and average one-year equity returns. Importantly, this

finding holds when we focus our samples on firms that are about to be downgraded.

However, we observe the opposite pattern — i.e., firms with higher default risk have

lower returns, when sorting firms based on credit rating levels.

Our paper contributes to two strands of literature. The first is the literature

documenting abnormal stock and bond market returns to credit rating downgrades,

1For the review of literature, see [29] and [34].
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but not for upgrades.2 [90] argue that the Regulation Fair Disclosure (Reg FD) might

have bestowed upon the credit rating agencies an informational advantage because

the rating agencies were exempted from the regulation.3 Our results show that even

after Reg FD, the onset of CDS trading significantly reduces the importance of these

rating change announcements.

The second strand of literature to which we contribute is related to studies that

examine whether the CDS market helps in price discovery. For example, [85], and

[114] show that CDS spreads anticipate credit rating downgrades, and some evidence

exists that CDS spreads lead the stock ([4]) and bond market ([21]) in price discovery.

Motivated by these studies, we examine whether stock and bond markets perceive

credit rating announcements to be less pricing relevant when the underlying firm has

a CDS contract traded on its debt.

Any market based benchmark of default risk, such as CDS, provides a risk-neutral

assessment of default risk. However, credit ratings which convey the agency’s objec-

tive view of a firm’s default risk are built “through the cycle” and may be more suit-

able from a corporate policy or a risk-management perspective. So, without making

additional assumptions, CDS contracts and credit ratings are not completely equiv-

alent and hence not a perfect substitute. Similar to credit ratings, CDS can convey

many false positives. Furthermore, as with any market-based measures, changes in

CDS spreads can be volatile, which may make them less suitable for use as a bench-

mark in financial contracts such has bond covenants or rating triggers. Credit rating

agencies can still play an important role in financial markets, but the increased com-

petition from the CDS market and the availability of a market-based benchmark for

default risk can potentially improve the performance of rating agencies.

The rest of this paper is organized as follows. Section 2.2 develops hypotheses

2For examples, see [83], [77], [69], and [47].
3We confirm the finding in [90] on the effect of Reg FD introduced in August 2000.
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that motivate empirical tests in this paper. Section 2.3 describes the data. Section

2.4 presents the main empirical tests of stock price reactions to rating revisions.

Sections 2.5 and 2.6 examine why stock prices react significantly less to credit rating

downgrades in the presence of CDS contracts. Section 2.7 examines the value of CDS

contracts for explaining the cross-section of stock returns in relation to default risk

premia. Finally, Section 2.8 concludes.

2.2 Hypotheses development

In this section, we develop hypotheses that motivate subsequent empirical tests using

insights based on the Merton’s (1974) structural model, which assumes the firm value

V follows a geometric Brownian motion with drift µ and volatility σ. The model

values equity E as a call option on the firm value with the strike price equal to the

face value D of a non-coupon paying bond with maturity T. The firm can default only

at the maturity T of its debt. It can be shown that the expected excess equity return

over the risk-free rate µE − r (i.e. equity risk premium), and the equity volatility σE

are given by

µE − r = (µ− r)
(
V

E
EV

)
(5)

σE = σ

(
V

E
EV

)
, (6)

where EV denotes the partial derivative of E with respect to V . Using standard call

option pricing notation for E, and noting that EV is the call option delta, we can

rewrite equation (5) as

µE − r =
µ− r

1− Le−rT
[

Φ(d2)
Φ(d1)

] , (7)

where L =
D

V
is the firm’s leverage, and Φ denotes the cumulative distribution func-

tion of the standard normal random variable.4 Equation (7) shows that the firm’s

4In the standard Black-Scholes option pricing formula, d1 =
log(V/D)+(r+ 1

2σ
2)T

σ
√
T

, and d2 = d1 −
σ
√
T
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equity risk premium (ERP) is a function of its asset return, asset return volatility,

and leverage. For instance, ceteris paribus, a shock to the firm’s asset return µ is

amplified when translated to a change in the firm’s equity return due to the leverage

effect.

The default probabilities under the physical measure (PDP) and the risk-neutral

measure (PDQ) are respectively given by

PDP = Φ

(
−
log(1/L) + (µ− 1

2
σ2)T

σ
√
T

)
(8)

PDQ = Φ

(
−
log(1/L) + (r − 1

2
σ2)T

σ
√
T

)
. (9)

Combining equations (8) and (9) and using the relationships shown in equations (5)

and (6), we can write the equity risk premium as

µE − r =
(
Φ−1(PDQ

t )− Φ−1(PDP
t )
) σE√

T
. (10)

Equation (10) shows that changes to PDP and PDQ can affect the equity risk pre-

mium thereby resulting in the stock price reaction. Therefore, we expect the stock

price to react to new information about the firm’s physical and risk-neutral default

probabilities.

A credit rating, by definition, conveys the rating agency’s opinion about the firm’s

ability to meet its financial obligations on time.5 Therefore, a rating change reflects

the change of an agency’s view on the firm’s physical default probability PDP. A

related question is, what new information about the firm’s fundamentals does it con-

tain? Equations (7) and (8) provide some insights. For instance, a rating downgrade,

which corresponds to an increasing PDP can be due to a deterioration in the firm’s

performance (decreasing µ, ∂PDP

∂µ
< 0) or uncertainty of its cash flows (increasing

σ, ∂PDP

∂σ
> 0), or both. As a result, stock prices react negatively to unanticipated bad

5For instance, Standard & Poor’s website states that credit ratings express the agency’s opinion
about the ability and willingness of an issuer, such as a corporation or state or city government, to
meet its financial obligations in full and on time.
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news about µ and σ because ∂ERP
∂µ

> 0, and ∂ERP
∂σ

< 0. An increase in PDP can

also arise due to the change in firm leverage L as seen from ∂PDP

∂L
> 0. Distinguishing

between which information change conveyed by rating agencies is more relevant to

equity investors can be difficult.6 As we do not observe the exact reason in terms of

the change in fundamentals that drives the rating change event, we include all the

rating change announcements in our analysis.

Our first hypothesis relates to the information relevance of credit rating agen-

cies. If credit ratings provide equity investor with pricing-relevant information about

that firm’s physical default probability, then rating change events should elicit stock

market reactions.

Hypothesis 1 The stock market reacts to a firm’s credit rating change announce-

ment as the news reveals changes in the firms physical default probability.

The simple structural model offers us insights into how the presence of the CDS mar-

ket may affect the value of credit rating changes. CDS spreads embody a risk-neutral

assessment of the firm’s default probability PDQ. Taking partial derivatives of PDP

and PDQ (see equations (8) and (9)) with respect to σ, L, and µ, respectively, shows

that (1) ∂PDQ

∂σ
> 0, ∂PD

P

∂σ
> 0; (2) ∂PDQ

∂L
> 0 , ∂PD

P

∂L
> 0; and (3) ∂PDQ

∂µ
= 0 , ∂PD

P

∂µ
> 0.

These relationships suggest that the risk-neutral default probability PDQ and the

physical default probability PDP contain correlated information about the firm’s

fundamentals (i.e., regarding σ and L). Therefore, if the CDS market provides infor-

mation about the underlying firm’s fundamentals, in lieu of, or in addition to that

conveyed by credit ratings (through PDP), then rating change announcements should

become less pricing relevant to equity investors.

6[69] documented that rating changes – specifically downgrades – due to a deterioration in firm’s
financial prospects are informative and produce a negative abnormal stock return while those due
to an increase in leverage are uninformative.
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Hypothesis 2 Stock market reactions to a firm’s rating change events are attenuated

if CDS contracts trade on the underlying firm’s debt.

The hypothesis above tests for the effect of CDS trading on the information value

of rating changes, which is the main conclusion of this paper. In the remaining

hypotheses, we focus on how and why the CDS market may affect the magnitude of

stock market reactions to credit rating changes.

As discussed previously, static analyses of the structural model show that CDS

spreads and credit ratings convey common information about the firm’s fundamentals.

If CDS spreads contain information about the firm that anticipates changes in PDP

associated with rating revisions, then rating change announcements should become

less informative about the firm’s equity risk premium. This, in turn, implies a smaller

stock market reaction to rating change announcements.

Hypothesis 3 CDS spreads contain information that predict credit rating revisions.

We test the above hypothesis by examining whether CDS spreads predict credit rating

changes on a firm, and whether they improve the model for predicting defaults.

The presence of the CDS market can improve equity valuation, if it contains new

information about the firm’s risk-neutral default probabilities (see equation (10)).

Although CDS and corporate bond spreads provide a risk-neutral assessment of their

underlying firm’s default risk, existing evidence suggests that the CDS market leads

the bond market in credit price discovery (see [21]). CDS contracts also provide a

feasible way to short credit risk, thereby helping complete the credit risk market.7

Until then, shorting corporate bonds was limited to the repo market which typically

has a very short maturity. Whereas, CDS contracts are standardized and can be used

for shorting credit risk for longer periods ranging from one to ten years. Further, the

CDS market generally trades more frequently relative to the corporate bond market.

7See [60] for supporting arguments.
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This enables market participants to construct high frequency estimates of risk-neutral

default probability.

Equity prices also contain information about the firm’s credit risk. However, [4]

find that changes in CDS spreads lead stock returns especially around negative credit

events. They argue that unlike the stock market, trading in the CDS market is

dominated by large institutions, mostly banks, which explains why the information

revelation may occur in the CDS market before the equity market. In relation to credit

rating changes, if the CDS market provides new information about the firm’s credit

risk before rating change announcements, we expect unanticipated changes in CDS

spreads to lead stock and bond returns during this period. As a result, stock prices

react less to rating change announcements because a bulk of their price adjustment

occurred in the pre-announcement period.

Hypothesis 4 CDS spreads lead other market measures that embody risk-neutral

default probabilities before rating change announcements.

We test the hypothesis above by examining whether the CDS market contributes to

price discovery in the stock and bond markets before rating change announcements.

Arguments in Hypotheses 2–4 posit that the presence of CDS market improves

equity valuation by providing investors with new (or more reliable) information about

the firm’s credit risk. This statement has an important implication in light of the well

documented distress risk puzzle, i.e., lower rated firms earn lower returns, because the

structural model shows that risk premia in equity and credit markets are related (see

equation (10)). In particular, [15] find that the puzzle is most pronounced around

rating downgrades. Therefore, if the CDS market provides information that improves

equity valuation, we expect equity risk premia estimated using CDS information to

relate better to firms’ default risks than credit ratings, particularly for firms that are

about to be re-rated. We test this important implication in the next hypothesis.
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Hypothesis 5 The CDS market provides investors with a more reliable measure of

default risk premium than credit ratings for firms undergoing rating revisions.

To test the hypothesis above, we examine whether the equity risk premia extracted

from CDS data can explain the cross-section of stock returns of firms that are under-

going rating revisions.

2.3 Data and descriptive statistics

We use a CDS database that is widely used among financial market participants

(CMA Datavision database (CMA)) to identify all firms for which we observe CDS

quotes on their debt. CMA contains consensus data sourced from 30 buy-side firms,

including major global investment banks, hedge funds, and asset managers which is

disseminated through Bloomberg since October 2006.8 We further ensure the accu-

racy in the coverage of CDS quotes by augmenting the CMA database with CDS data

obtained from Bloomberg. The earliest quotes were then taken as the first sign of

active CDS trading on a firm’s debt.

Data on bond ratings were gathered from the Mergent Fixed Income Securities

Database (FISD). FISD provides comprehensive data on issue-level details on over

140,000 corporations, U.S. agencies, and U.S. Treasury debt securities. The data

contains detailed information for each issue, including the issuer name, rating date,

rating level, agency that rated the issue, and credit watch status, etc. We include

only those ratings issued by the top three NRSROs – S&P, Moody’s, and Fitch.

We restrict our sample to U.S. domestic corporate debentures, and exclude yankee

bonds, and bonds issued via private placements, preferred stocks, mortgage-backed,

trust preferred capital, convertible bonds and bonds with credit enhancements. We

also consider only the issuers whose stocks are traded on either the NYSE, AMEX,

8[103] compare the data qualities of the six most widely used databases – GFI, Fenics, Reuters,
EOD, CMA, Markit and JP Morgan – and find that the CMA database quotes lead the price
discovery process.
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or NASDAQ. Approximately 18% of the ratings are from Fitch, and the remaining

ratings are split evenly between S&P and Moody’s.

We consider a rating change for an issuer as one observation. When there are

rating changes on multiple bond issues for an issuer on the same day, we use the

issue with the greatest absolute rating scale change because such changes are likely

to create the strongest impact on bond and stock prices. We consider only the rat-

ing announcements that are associated with either “DNG” (downgrade) or “UPG”

(upgrade), which constitute about 90% of the total rating events.9 The main sample

is from January 1996 to December 2010 and consists of 4665 downgrades and 2171

upgrades; we refer to it as the “Full sample” for the remainder of this paper. The

Full sample consists of 1142 unique firms, of which 390 have CDS trading at some

point during the sample period. There are about 2.1 downgrades for every upgrade,

which is line with the findings in [47]. More details on the sample are provided in the

internet appendix.

Many of the firms in our sample never experienced CDS trading over the 1996-

2010 period. In order to control for the differences between firms with and without

CDS contracts traded on their debt, we consider a subsample of firms for which CDS

starts trading at some point during our sample period. We refer to this sample as

the “Traded-CDS”. We use firms’ rating changes in this subsample to compare their

stock reactions to rating change announcements made between their pre-CDS and

post-CDS trading periods. The average size of rating change for this sample is 1.45

before CDS trading starts and 1.49 after CDS trading starts. The distribution of the

rating changes are provided in the internet appendix.

We obtain corporate bond price data from TRACE, which contains individual

bond transactions starting on July 1, 2002. Corporate bond data prior to July 2002

9The FISD ratings database reports the reason for the rating change on an issue. About 4.8% of
the total rating change reasons are “IR” (Internal Review), while about 2% are “AFRM” (Affirmed).
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is obtained from Mergent FISD historical NAICS database. We apply a number of

standard filters to the data set. Following [17], we eliminate trades that have been

canceled or corrected, trades that have commissions, and non-institutional trades

because they show that they help increase the power of the test for detecting abnormal

performance. Therefore, consistent with [51], we remove observations in which the

par value of the transaction is less than or equal to $100, 000 as smaller trades tend

to be non-institutional trades.10

2.4 Stock price reaction to rating changes

This section tests Hypotheses 1 and 2 of the paper. First we provide univariate

evidence that the stock market reacts to rating downgrades, but the magnitude sig-

nificantly decreases when CDS contracts trade on the firm’s debt. We then confirm

our results using multivariate regressions. Subsequently, we address endogeneity con-

cerns regarding the timing of the CDS introduction.

2.4.1 Abnormal stock returns

We study changes in daily abnormal stock returns on the date of rating change an-

nouncements for CDS and non-CDS firms. We carry out the analysis separately for

upgrades and downgrades. We define the daily abnormal stock return of firm i on

day t, ARit, as the residual estimated from the market model:

ARit = Rit − (α̂i + β̂iRmt),

where Rit is the raw return for firm i on day t, and Rmt is the value-weighted

NYSE/AMEX/NASDAQ index return. We examine whether the mean cumulative

abnormal return (CAR) around the event period is significantly different from zero.

10The prices reported in the TRACE bond database are the “clean” prices. They do not include
the accrued coupon payment. We add the accrued coupon payment to the clean prices by merging
in variables from the Mergent FISD database. The final bond prices that we use are therefore
settlement prices.
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Following [83], we compute CAR using the three-day window centered on the an-

nouncement date. That is, CARi(−1, 1) =
∑+1

t=−1ARit. [96] show that short–horizon

event studies such as ours are not highly sensitive to the assumption of cross-sectional

or time-series dependence of abnormal returns, as well as the benchmark model used

for computing abnormal returns.11

2.4.2 Univariate analysis

Table 14 presents the mean of cumulative adjusted return (CAR) for the pre- and post-

CDS trading periods. The results in Panel A are based on the “Full-sample” which

consists of traded-CDS and non-traded-CDS firms. The results in Panel B are based

on the “Traded-CDS–sample”. Traded-CDS firms are those that have CDS traded at

some point during our sample period. However, non-traded-CDS firms are those that

do not have CDS trading in our sample period, which is from 1996 to 2010. Results

obtained using the “Traded-CDS–sample” can be usefully thought of as fixed-effects

tests because only firms that experience CDS trading are considered. Consistent

with previous studies, Panel A shows that overall, stock price reacts significantly to

downgrades (-4.31%) but only weakly to upgrades (0.14%).12 This finding supports

of Hypothesis H1.

The results in Panel A show the mean CARs over the three-day window around

rating downgrades is negative and significant at the 1% level for the pre- and post-CDS

periods. However, the magnitude is significantly weaker for the post-CDS period. The

mean CAR in the post-CDS period is -2.51%, compared to -5.10% in the pre-CDS

period. The difference in CAR between these two groups is 2.58% and is statistically

significant at the 1% level. On the other hand, we do not find that stock prices react

11We estimate α̂i and β̂i using a rolling window over a period of 255 days from -91 to -345 relative
to the event date. Using a shorter estimation window and a different factor model do not affect our
conclusions. Table I.A1 in the Internet Appendix shows that we obtain similar findings when using
the Fama-French 3-factor model to calculate abnormal return.

12The magnitude of CAR to rating downgrades is in line with existing studies that examine
announcement returns to rating changes using the more recent sample, e.g. [90].
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significantly differently to rating upgrades in the post-CDS period. The difference

in CAR to credit rating upgrades do not differ significantly between the pre- and

post-CDS periods.

In Panel B of Table 14, we report univariate results for firms that eventually

have CDS contracts traded on its debt. Restricting our analysis to the Traded-CDS

sample mitigates the concern that traded-CDS firms are inherently different from non-

traded-CDS firms. We find that stock price reaction to credit rating downgrades is

significantly weaker in the post-CDS period. The difference in the mean CAR values

is 0.95% between the post-CDS and pre-CDS periods, and is statistically significant.13

2.4.3 Regression analysis

We employ multivariate regressions to control for factors that could affect stock price

reactions to rating changes. Following previous studies (e.g., [83]), we run the regres-

sions separately for upgrades and downgrades. The results are reported in Table 15.

The regression model that we estimate is

CARi =β0 + β1dCDSi +
∑

γiRating-level characteristicit+∑
δiFirm-level characteristicit +

∑
φiCDS-trading control it + εi

(11)

where for bond issue i, CAR is the 3-day cumulative abnormal return centered on the

date of rating change announcements – i.e., event window (-1,1). The main variable

of interest is dCDS, an indicator variable equal to one if the rating change takes

place when CDS trades on the underlying firm and 0 otherwise. Panel A of Table

15 reports results for rating downgrades, while Panel B reports results for rating

upgrades. Each panel reports results for three regression specifications. Regression

models (I) and (II) are run on the full sample, while regression model (III) is estimated

13[90] find that stock price reactions to rating downgrades is significantly stronger after Regulation
Fair Disclosure (Reg FD) was implemented in Oct 2000 because rating agencies are exempt from
Reg FD and could still access private information on the rated firms. For a robustness check, we
eliminate rating changes prior to the year 2001 (before Reg FD was put in place) and find that our
conclusions remain unchanged.
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using the traded-CDS sample. All variables are defined in Appendix B.14

If rating changes are less informative in the presence of CDS trading, we would

expect the coefficient of dCDS in equation (11) to be positive for downgrades and

negative for upgrades. Panel A of Table 15 shows the coefficients on dCDS are posi-

tive and statistically significant across the three regression specifications. Controlling

for industry- and year-fixed effects in specification (II), we find the difference in CARs

between firms that have and do not have CDS trading is 1.70%. Looking only at the

traded-CDS sample, (i.e. model (III)), we find the evidence is stronger. Stock prices

react significantly less to credit rating downgrades by an average of 2.59% in the

traded-CDS sample. The results in Panel B, however, show that all three coefficients

on dCDS are not significantly different from zero. Overall, our regression results in

Table 15 confirm our univariate results (see Table 14) that stock price reaction is sig-

nificantly weaker to credit rating downgrades, and not upgrades, when CDS contracts

trade on the firms’ debt.

The coefficients on the control variables are in line with the results documented

in the literature (see [77], and [90]). Table 15 shows the coefficients on Previous

Rating and AbsRating Change are negative and highly significant, suggesting that

ratings downgrades on lower-rated firms, as well as downgrades across multiple car-

dinal scales, lead to larger stock price reactions. The time since the previous credit

rating does not seem to impact how the new rating change influences stock response.

However, rating downgrades accompanied by firms’ earnings announcements elicit a

larger stock price reaction. Among the firm-level characteristics, we find that firms’

14All regression models include three sets of control variables to account for potential factors
affecting the magnitude of stock price reactions. The first set of control variables are rating-level
characteristics: previous rating level, the size of rating change, how long has the previous rating
been outstanding for, and whether rating change occurs in relation with the company’s earnings
announcement. The second set of control variables includes various firm-level characteristics. The
third set of control variables account for characteristics that may be related to the propensity that
firms that have CDS trading. All variables are defined in Appendix B. All firm-level characteristics
and CDS-trading controls are lagged by one period, i.e. a month or a quarter, depending on the
frequency of data sources.
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recent return performance, (i.e. Avg Return), robustly predict the magnitude of stock

price reactions to rating downgrades. Leverage, as well as Avg Trading Volume appear

to be negatively related to CAR for downgrades, though, their statistical significance

disappears when we restrict our regressions to traded-CDS firms.

We confirm that our regression results are robust to a series of robustness checks,

which are reported in the Internet Appendix. Table B.6 Panel A reports regression

results showing that our main conclusion holds when we allow for Industry×Year fixed

effects, which helps controlling for time-varying industry risk factors. Table B.6 Panel

B shows our regression results hold when using a subsample of only non-financial

firms. We find that the coefficients on dCDS are slightly larger in magnitude for

downgrades when we focus our analysis only non-financial firms. Further, to ensure

that our results are unaffected by the financial crisis, we focus on rating changes prior

to 2008 and find that our conclusions remain intact. Table B.7 Panel A replicates

the results in Table 15 using the Fama-French 3-factor model to compute CARs and

Table B.7 Panel B conducts a pooled analysis on downgrades and upgrades together.

In both cases we verify that our results are robust.

2.4.4 Instrumental variable analysis

A potential concern with any study on the impact of the CDS market is that the

timing of CDS introduction is not exogenous. CDS contracts may have been intro-

duced during a period when the firm’s credit quality improves, thereby affecting how

its stock price reacts to rating changes. In this section, we address the concern that

the emergence of the CDS market is not exogenous using the instrumental variable

method.

We follow [132] to find an instrument that correlates with the firm’s likelihood

of having CDS contracts traded on its debt, while being directly unrelated to how

the firm reacts to its credit rating changes. [132] use the foreign exchange derivatives
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traded for hedging purposes by banks that have a lending relationship with a given

firm as the instrument for CDS market introduction. The choice of this instrument

is motivated by [110] who show that banks that use interest rate, foreign exchange,

equity, and commodity derivatives are more likely to be net buyers of CDS, and hence

are related to the emergence of the CDS market. Among banks’ various derivatives

activities, their foreign exchange position is arguably least likely to directly influence

the credit risk of firms with which they conduct business. Importantly, the amount

of foreign exchange derivatives used by banks reflect their hedging need for macro

risk, and hence should not affect the credit risk of domestic firms (i.e., U.S. entities)

in our sample. We further exclude non-financial firms from the instrumental variable

regression results for two reasons. First, financial firms are more likely to act as

borrowers and lenders amongst themselves and with several banks simultaneously,

which makes their nature and the extent of relationship difficult to identify. Second,

we want to maintain consistency with [132] who motivated the use of the instrumental

variable.

Our instrumental variable, Forex Derivative Hedging, is defined as the average

foreign exchange derivatives amount used for hedging (i.e., non-trading purposes)

relative to total assets by the lead syndicate banks and bond underwriters that the

firm has conducted business with over the past five years. We use the Dealscan

syndicated loan database to identify firms’ lenders (i.e., lead syndicates), and Mergent

FISD database to identify firms’ bond underwriters. Banks’ derivatives usage data

is obtained from the Bank Holding Company (BHC) Y9-C filings. We lag Forex

Derivative Hedging by one quarter when including it in the instrumental variable

(IV) estimation. The average Forex Derivative Hedging at the firm-level in our full

sample is 1.98% of the total assets with a standard deviation of 1.54%. These values

are in line with [132].

In order to address concerns that CDS introduction is endogenous, we re-estimate
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the main regression results using Foreign Derivative Hedging to instrument for dCDS.

We follow [152] and apply the fitted variable from a probit model for dCDS to the

regression model in equation (11); see also [18] and [132] for similar applications. We

include firm-level characteristics and CDS-trading controls in the probit model. The

instrument that we use is available quarterly and therefore the model is estimated at

the firm-quarter level. Table B.2 in the Appendix reports the probit model from the IV

estimation. After accounting for various firm-level characteristics and variables that

may influence CDS trading, we find that the amount of foreign exchange derivatives

usage significantly predicts the likelihood that a firm will have CDS trading on its

debt (t-statistic of 4.84).15

Table 16 reports the regression results using the fitted instrumental variable, dCDS

IV for 1966 downgrades and 886 upgrades belonging to 609 unique firms. The number

of observations are lower compared to Table 15 because we restrict our sample to non-

financial firms with lending or underwriting relationships with banks that are active

in the forex derivatives market. Further, bank forex derivatives activities are reported

in the BHC Y-9C filings and call reports are from 2001 onwards.

Table 16 shows the coefficients on dCDS IV are positive and statistically signif-

icant for downgrades, but not for upgrades, which is consistent with our previous

findings. A one-standard deviation change in the dCDS IV is related to a 2.26 and

2.01 percent attenuation in CAR response to credit rating downgrades for the regres-

sions specifications with industry-fixed effects (I) and year and industry-fixed effects

(II), respectively. Overall, we conclude that our main results hold when using Foreign

Derivative Hedging as an instrument to address the potential bias associated with the

endogeneity of CDS market introduction.

15The incremental psuedo-R2 of the instrument is about 1.1%. The economic impact of foreign
exchange derivatives usage on the probability of CDS trading is reasonably large. We find that a
one-standard deviation increase in Forex Derivative Hedging increases the likelihood that a firm has
CDS traded on its debt by 4.2. Overall, consistent with [132], we find that the instrument is not
weak.
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2.4.5 Matched sample analysis

In addition to the instrumental variable regression, we carry out a matched-sample

analysis to mitigate concerns that traded-CDS and non-traded-CDS firms are differ-

ent on some observable dimensions. A traded-CDS firm is matched with a firm that

does not have a CDS traded on its debt at any point in our sample period (i.e., a

non-traded-CDS firm). We use a propensity score matching method that can incor-

porate a large number of matching dimensions ([130]). The matching is carried out

in the month when CDS starts trading on a traded-CDS firm based on 14 observ-

able characteristics. These matching characteristics are motivated by [12], [132], and

include other factors that might affect the introduction of CDS trading.

We estimate firms’ propensity of having CDS trading using a probit model. The

dependent variable in the model, dCDS, is an indicator variable equal to one starting

on the month when CDS begins trading on the firm, and zero otherwise. All explana-

tory variables in the probit model are lagged by one period and defined in Appendix

B. We require that firms entering the matching sample have complete time-series

information on their observable variables from 2001 onwards, which is when we first

observe CDS trading in our sample. This requirement leaves us with 382 traded-

CDS firms and 492 non-traded-CDS firms for estimating the propensity score model,

which we refer to as the before-matching sample. In the Appendix, Table B.3 reports

diagnostics of the propensity score matched sample. In Panel A, the column labeled

“Before matching” reports results for the probit model estimated at the firm-month

level using the before-matching sample. Most of the estimated coefficients are sig-

nificant with the magnitude roughly in line with the probit model estimated using

firm-quarter observations for the instrumental variable estimator (see Table B.2). The

fitted probability from the probit model is then used as the propensity score to match

traded-CDS firms to non-traded-CDS firms.

For each traded-CDS firm, we use its propensity score in the month that CDS
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starts trading to identify a non-traded-CDS firm with the closest propensity score in

the same month. We require that the propensity score of the matched non-traded-

CDS firms be within ±2% of the propensity score of the traded-CDS firm. The

matching technique used for this is the nearest-neighborhood caliper method of [37].

We match one traded-CDS (treated) firm with five non-traded-CDS firms (control),

i.e., one-to-five matching, in order to increase our sample of matched pairs (see [42],

and [140]). The matching is carried out with replacement.16 This exercise leaves us

with 286 unique traded-CDS firms each matched to five eligible control firms.

We report various diagnostics of the matched sample in Table B.3 in the Appendix.

The column labeled “After matching” in Panel A reports results derived from esti-

mating the probit model using the matched observations. Overall, the explanatory

power of the probit model decreases significantly with the pseudo R2 of 9% relative to

49% observed in the “Before matching” sample. We find that some observable char-

acteristics remain statistically significant in the probit model for the matched sample.

Given the large observable dimensions used for matching, we do not expect to find

a perfect match. Nevertheless, Panel A shows that all the probit coefficients in the

after-matching sample either lost statistical significance or have become substantially

less significant relative to the before-matching sample. We further report the quality

of our matched sample in Panels B and C in the Appendix Table B.3. In Panel B,

we report univariate means of the 14 observable dimensions for the before-matching

and after-matching samples. The findings echo the results reported in Panel A, which

show that the propensity-score matching significantly reduces observable differences

between the traded-CDS firms (treatment group) and the non-traded-CDS firms (con-

trol group). Nevertheless, traded-CDS firms in the matched sample still tend to be

16We also verify that our results are similar when using one-to-one matching without replacement.
In this case, we have 162 uniquely matched pairs. Table B.8 in the Internet Appendix reports
difference-in-difference regression results verifying our main finding using the one-to-one matched
sample too.
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larger, better rated, and have greater bond debt outstanding. In order to control for

remaining differences in these observable dimensions, we include all matching charac-

teristics as control variables in the matched sample regression. Additionally, in Panel

C we report the industry distribution of firms in the treatment and control samples.

Overall, we find that industry distributions of the two samples do not differ greatly.

Using the matched sample, we estimate the following difference-in-difference re-

gression

CARi = β0 + β1dCDSi + β2dTreatment i + β3 dTreatment i × dCDSi

+
∑

γiRating-level characteristicit +
∑

δiFirm-level characteristicit

+
∑

φiCDS-trading control it + εi,

(12)

where the dependent variable CARi is the cumulative abnormal stock return of firm

i to a credit rating downgrade. Table 17 reports the results. To save space, we do not

report results for credit rating upgrades as our previous evidence suggests that CAR

to credit rating upgrades are, on average, not significant. The above regression model

in (12) is similar to the baseline regression model in (11), with the additions of two new

variables. The first is dTreatment i, which is an indicator variable equal to one if the

firm corresponding to the observation is from the treatment group, i.e. a traded-CDS

firm in the matched sample, and zero otherwise. The second variable we introduce is

dTreatment i×dCDSi, which is the difference-in-difference (DID) estimator and is our

key variable of interest. It is an interaction term of the dTreatment i with the indicator

variable for CDS trading, dCDSi. For firms in the treatment group, dCDSi simply

takes the value of 1 when CDS starts trading on the firm’s debt, and zero otherwise.

Control-group firms are assigned counterfactual dCDSi variables that are identical

to their matched traded-CDS firms. The coefficient on the DID estimator therefore

captures the difference in CARs to credit rating downgrades between the traded-CDS

firms and their matched non-traded-CDS firms over the two periods: before and after

CDS introduction.
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Panel A of Table 17 reports difference-in-difference regression results using the

matched sample. Industry-fixed effects are included in the first regression specification

(I), while both industry- and year-fixed effects are included in the second regression

specification (II). In both cases, we find the coefficient on the DID estimator is positive

and highly significant. Looking at a more conservative regression specification (II),

the coefficient on DID estimator is 2.16. This finding suggests that stock prices

of firms with CDS trading react less to credit rating downgrades by about 2.16%

relative to firms sharing similar observable characteristics, but without CDS trading.

Overall, the results suggest that the information content in rating announcements has

decreased for downgrades after the onset of CDS trading.

In Panel B of Table 17, we run regression diagnostics based on equation (12)

for four different subsamples. The regression model (III) reports results for firms

that are in the treatment group (dTreatment = 1), while regression model (IV)

reports results for firms that are in the control (dTreatment = 0). Because the

regressions are estimated separately for the treatment and control groups, the variable

dTreatment is dropped from the regressions as it is not identified. In these two

subsamples, the variable of interest is dCDS, which examines the impact of the dCDS

variable on CAR to bond downgrades for treatment-group firms and control-group

firms, respectively. We expect coefficients on dCDS to be positive and significant

for the treatment group because this dummy variable indicates when the firms have

CDS trading. In fact, the regression model (I) is similar to the regression model (III)

for the traded-CDS sample in Table 15. However, we do not expect dCDS to be

significant for the subsample consisting only of control-group firms because they do

not actually have CDS trading. The coefficients on dCDS in the regression models

(III) and (IV) confirm our expectation. We do not find that firms in the control

sample, which have similar characteristics as traded-CDS firms, experience weaker

stock price reactions to credit rating downgrades.
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The regression models (V) and (VI) in Table 17 report results for firms in both the

treatment and control groups estimated using two different subsample periods. The

regression model (V) uses only firms that are in the post-CDS period (dCDS = 1),

while the regression model (VI) uses firms in the pre-CDS period (dCDS = 0).

In these two regression models, the variable dCDS is excluded because it is not

identified. The main variable of interest is dTreatment which tests for the difference

in CAR values between treatment-group firms and control-group firms in the post-

CDS period (V) and pre-CDS period (VI). We expect the coefficient on dTreatment

to be positive and significant for the post-CDS period, if CAR to rating downgrades

is weaker for firms that have CDS trading relative to control-group firms. Recall that

control-group firms do not actually have a traded CDS but are assigned to the post-

CDS period because their observable characteristics resemble those of traded-CDS

firms. The positive coefficient on dTreatment in the regression model (V) is 2.27 and

statistically significant, which confirms our expectation. However, the statistically

insignificant coefficient on dTreatment in the regression model (VI) shows that firms

in the treatment and control groups do not react differently to rating downgrades,

and thus suggest parallel trends in the pre-CDS period and also shows the efficacy of

our matching procedure. Overall, results in the regression models (VI) suggest that

firms the in the treatment and control groups are well matched in how they respond

to rating changes in the pre-CDS period, while results in (V) suggest the difference in

post-CDS CARs between the treatment and control groups is due to the introduction

of CDS contracts in the treatment-group firms.

2.5 Information in CDS spreads about credit ratings

This section tests Hypothesis 3 of the paper. Insights from the simple structural

model show that CDS spreads and credit ratings convey common information about

the firm’s fundamentals. If CDS spreads contain information that anticipates changes
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in the physical default probability PDP associated with rating revisions, then rating

change events should become less informative. We provide three sets of empirical

results to support Hypothesis 3. First, we back out CDS-implied ratings using a non-

parametric method and show that they significantly lead rating downgrades issued

by credit rating agencies. Second, we show the predictive power of CDS spreads on

credit rating downgrades in a multivariate framework using a hazard model. Third,

we show that information in CDS spreads improve the model for predicting historical

defaults.

2.5.1 CDS-implied ratings

One reason why CDS spreads appear more information-relevant than credit ratings

is their timely response to changes in the underlying firm’s credit condition. [4] find

that information discovery occurs in the CDS market prior to negative credit news. In

this subsection, we back out the rating levels implicit in CDS spreads (CDS-implied

ratings) and compare them with those issued by rating agencies. Our objective is to

examine the dynamics of CDS-implied ratings around rating downgrades. If trading

in the CDS market reveals information about changes in a firm’s default risk, we

expect CDS-implied ratings to significantly change prior to a downgrade issued by

credit rating agencies.

We calculate CDS-implied ratings following the approach in [26] and [97]. The

basic idea is to estimate the CDS boundaries separating two adjacent rating classes in

a non-parametric manner. Once the boundaries are determined, we assign each firm

to a rating class corresponding to its CDS spread level. We estimate CDS boundaries

by minimizing the penalty function with the objective of reducing the number of

misclassifications, which we define as the discrepancy between the firm’s CDS spread

level and its rating class. For instance, missclassification occurs when the CDS spread

of a higher-rated firm is greater than the spread of a lower-rated firm. Following this
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intuition, the penalty function for estimating the boundary between the A and BBB

ratings classes, bA−BBB, is

F (bA−BBB) =
1

m

m∑
i=1

[max(si,A−bA−BBB, 0)]2+
1

n

n∑
j=1

[max(bA−BBB−sj,BBB, 0)]2, (13)

where si,A is the CDS spread of A-rated firm i, and sj,BBB is the CDS spread of

BBB-rated firm j. When the spread of A-rated firm is higher than the boundary

bA−BBB, the firm’s CDS spread is considered misclassified with the error equal to their

difference. Similarly, when the spread of BBB-rated firm is lower than the boundary

bA−BBB, the firm’s CDS is considered misclassified. The objective is then to minimize

the error from misclassifications by minimizing the penalty function described in

equation (13). The numbers of firms in the A and BBB rating classes are denoted as m

and n, respectively, and the penalty function for estimating boundaries between other

adjacent rating classes are defined similarly. We estimate CDS spread boundaries for

all adjacent rating classes.17 The estimation uses all CDS spreads on firms that have

CDS spreads traded on each day.

Figure 6 plots average CDS-implied ratings over the interval [-360,180] days cen-

tered on the rating change events. The solid line plots the official ratings issued

by credit rating agencies and the dotted line plots average CDS-implied ratings. The

rating levels are plotted on the rating class scale. A higher rating class corresponds

to a higher credit risk. To save space, we plot the results for three adjacent rating

classes that have the most rating change events: A-BBB, BBB-BB, and BB-B. Fig-

ure 6 shows that CDS-implied ratings started increasing at least 180 days prior to a

downgrade announcement. This finding suggests that the CDS market responds to

the firm’s deteriorating credit quality significantly faster than credit rating agencies.

17The mapping between rating codes and rating classes is shown in the Appendix Table B.1. Due
to the large number of daily observations required to precisely estimate the boundary, we do not
consider adjacent rating levels that are in the same rating classes. For instance, AA+, AA, AA- are
considered to be rated AA. Fitch estimates CDS-implied ratings based on a method similar to ours
but with a slightly different penalty function. As a robustness check, we implement Fitch’s penalty
function and obtain roughly the same boundaries.
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However, Figure 6 shows that CDS-implied ratings do not change significantly prior

to an upgrade announcement. In fact, CDS-implied ratings were already at the level

that represents the future rating class of the soon-to-be upgraded firm. This finding

is consistent with the prevailing consensus, as well as our previous results that rating

upgrades have little pricing relevance.

2.5.2 Predictability of credit rating changes

So far, we have visually shown in Section 2.5.1 that credit ratings backed out from

CDS spreads anticipate rating downgrades issued by credit rating agencies. An im-

portant question is whether CDS spreads provide additional predictability of rating

downgrades after controlling for variables such as accounting measures and bond

spreads that have been shown to anticipate credit rating changes. We test the hy-

pothesis that information derived from the CDS market can predict future downgrades

using a hazard model.18

We estimate the extended Cox model commonly used for survival analysis in

epidemiological studies (e.g. Platt et al. (2004)). The survival time in our analysis

is the number of months from current time to the next rating change event. Let t be

the current time period, and T ≥ t be when rating change occurs, the hazard rate

associated with future rating changes is given by

h(t) = lim
y→0

P(t ≤ T < t+ y|T ≥ t)

y
.

In our analysis, the hazard function is represented by

h(t,x, z (t)) = hq(t) exp

(
p1∑
i=1

βixi +

p2∑
j=1

δjzj(t)

)
, (14)

where x = (x1, x2, . . . , xp1)
′ is a time-independent vector of variables, i.e., industry,

18Our approach is similar to [85] who use a logistic model to show that changes in CDS spreads
increase the likelihood of future rating events. However, our analysis differs from theirs as we use
a much longer and more extensive set of firms in our sample, and control for a number of variables
that can potentially predict future rating changes.
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rating agency, and year-fixed effects, and z (t) = (z1(t), z2(t), . . . , zp2(t))
′ is a time-

dependent vector of covariates affecting the hazard rate of having rating changes (i.e.,

CDS spreads, bond spreads, and accounting variables). When δj = 0 for all j’s, the

above equation (14) is known as the Cox proportional hazard (Cox PH) model, where

hq(t) is the baseline hazard function. The baseline function is semi–parametric and

hence we do not need to define the functional form for hq(t). We further allow hq(t)

to be different for different rating levels, i.e. strata. Arguably, a one unit rating

change for a lower-rated firm and a higher-rated firm may be perceived differently by

investors. This intuition is supported by our results in Table 15, which shows that

Previous Rating robustly explains the difference in firms’ stock price reactions to

credit rating downgrades. Therefore, credit rating agencies may use a different model

to decide when to revise their ratings on a lower-rated firm relative to a higher-

rated firm. The use of stratification controls for a predictor that does not satisfy

the proportional hazard assumption.19 In our estimation, we allow firms in different

rating levels to have different baseline hazard functions hq(t), while sharing the same

coefficients βi and δj. The model is estimated using maximum likelihood at the issue-

month level.

Table 18 presents the results from estimating the hazard model in equation (14)

separately for downgrades (Panel A) and upgrades (Panel B). All explanatory vari-

ables are described in Appendix B and are lagged by one period. We also control

for credit watch announcements in all regression models using the indicator variable

Credit watch dummy , which indicates whether the firm (or bond issue) is put on credit

watch prior to a credit rating change.20

19We confirm the importance of using rating scale as the strata by testing whether the proportional
hazard (PH) assumption holds. Following the test of [74], we reject the PH assumption when using
rating scale as a predictor for downgrades at the 5% level.

20This monthly indicator variable is equal to one from the month of the watch announcement
to the month of the rating change event, or until “Off Watch” or “Not On Watch” is announced.
For downgrades, only negative watches are considered while for upgrades, only positive watches
are considered. Credit watch announced 180 days or more prior to when a firm is re-rated is not
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The variables of interest in Table 18 are average CDS spreads, bond yields and

their changes. Bond yields are calculated as the trade-weighted average monthly bond

yield at the issue level. We require that firms in the estimation sample have CDS

spreads currently traded on their debt. We use 5-year to maturity CDS spreads as

they are the most liquid. Our primary CDS data are from CMA Datavision. We also

supplement CMA data with CDS quotes from Markit. We obtain corporate bond

data from TRACE, which contains individual bond transactions starting from July

1, 2002. Corporate bond data prior to July 2002 is obtained from Mergent FISD

historical NAICS database. We also include industry, year and rating agency-fixed

effects in all hazard model regression specifications.

In Table 18 regression model (I), we test whether recent changes in CDS spreads

and bond yields are informative about future rating changes. We find a positive and

significant coefficient on CDS Spread Change, suggesting that an increase in CDS

spreads in the prior month increases the likelihood that the firm will be downgraded.

The coefficient on CDS Spread Change is negative, but not statistically significant for

upgrades. Our findings that CDS spread changes are predictive of rating downgrades,

but not upgrades, are consistent with prior results shown in Figure 6. Interestingly,

we find that the coefficient on Bond Yield Change is negative and weakly significant

for downgrades, which is counter-intuitive from the credit risk perspective. A pos-

sible explanation could be the relatively low liquidity and high trading costs in the

corporate bond market, which might cause the prices between these two instruments

to diverge. Because of the relative liquidity advantage, the CDS market is likely the

more attractive trading venue for hedgers, speculators, and short-term investors as

opposed to long-term investors in the bond market (see [115]). The heterogeneous

investor base in these two markets and their different trading frequencies in response

considered to be related to the rating change event. Credit watch data is obtained from Mergent
FISD and Moody’s Default Risk Database (MDRS).
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to information-related events could further render bond yields stale.

Regression model (II) in Table 18 compares the predictive power of CDS spreads

versus bond yields on rating downgrades and upgrades. We again find that the

coefficient on CDS spread is positive and significant only for downgrades, but not

upgrades. This suggests that a higher CDS spread level in the current month increases

the likelihood that the firm will be downgraded in the following month. However,

the coefficient on CDS spread is negative for predicting rating upgrades, which is

consistent with the general observations that higher rated firms have lower CDS

spreads, though it is not statistically significant. The sign on the coefficient for Bond

Yield, for both upgrades and downgrades, is somewhat unexpected. As discussed

previously, this could be due to the low bond market liquidity. The regression model

(III) includes both CDS spreads, bond yields and their changes. Overall, the results

remain qualitatively similar for this specification too. We conclude that the level of

CDS spread and the change in CDS spreads have incremental predictive power for

future rating downgrades, after controlling for credit watch events and other standard

accounting variables.

2.5.3 Predicting default

We examine whether the information embedded in CDS spreads can improve the

estimation of default risk under the physical measure using a hazard model. We follow

the approach similar to the hazard model for predicting rating changes described in

Section 2.5.2, however, the event of interest here is the firm’s actual default date.

Data on firms’ default history is obtained from Moody’s Ultimate Recovery Database

(Moody’s URD), which contains information on all bonds rated by Moody’s during

our sample period 1996–2010. Moody’s URD has information on default history of

the bonds and recovery rates in the event of default ([49], and [36]). We restrict our

attention to firms that are in the intersection of Moody’s URD, CRSP, COMPUSTAT,
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and the CDS databases during 1996-2010. We use Moody’s definition of default in our

analysis. The sample includes 616 firms of which about 6 percent of them experienced

default.

We estimate the extended Cox model similar to equation (14) at the firm-month

level. Because the number of defaults observed is small, we do not allow for stratifica-

tion. Table 19 reports the results. All regression models include accounting variables

that have been shown to predict default. The first regression model (I) shows that

credit rating levels, defined as the average ratings of the three agencies, significantly

predict future default. The pseudo R2 is about 69% suggesting that credit ratings

along with standard accounting variables can explain a significant variation of default

risks across firms.

In the regression models (II)–(IV), we test whether the level of CDS spread, and

the change in CDS spread can improve default risk estimation. Based on the R2,

we find that each of these two pieces of information extracted from CDS spreads do

not improve default risk modeling relative to the model that relies on credit ratings

(model (I)). The coefficients CDS Spread and CDS Spread Change are positive and

significant, which is consistent with the prediction of the structural model that the

risk-neutral and physical default probabilities are positively correlated (see equations

(8) and (9)).

The regression model (V) in Table 19 reports estimation results of the hazard rate

model when both credit ratings and CDS-related variables are included. We find a

substantial increase in pseudo R2 from 69% to about 78%. Importantly, we find the

coefficients on credit ratings, as well as on the two CDS variables are mostly significant

with their signs consistent with the prediction of the structural model. Overall, the

results in Table 19 show that both credit ratings and CDS spreads carry important

information for modeling default probability. In other words, information extracted

from CDS spreads substantially improves the default prediction model when used
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jointly with credit ratings.

2.6 Price discovery before rating change announcements

This section tests Hypothesis 4 of the paper. We examine whether the CDS market

leads other market measures embodying risk-neutral default probabilities, e.g., stock

and bond prices. We first show that the CDS market’s information share of credit

price discovery relative to the bond market increases substantially before credit rating

downgrades. After, we show that unanticipated changes in CDS spreads lead stock

returns particularly before rating downgrade announcements.

2.6.1 Credit price discovery in the CDS and bond markets

We examine how much the CDS market contributes to credit price discovery par-

ticularly in the period prior to credit rating downgrades. We follow the method in

[21] and study lead-lag dynamics of CDS and bond spreads using the Vector Error

Correction Model (VECM). We choose the VECM approach because the approach

conveniently allows us to examine which of the two markets is more important for

credit price discovery using the Hasbrouck’s (1995) “information share” measure.

Further, the theoretical equivalence between CDS and corporate bond spreads sug-

gests that the two time-series are cointegrated through a long-run relationship. The

VECM is therefore a suitable technique because it adjusts for their long-run changes,

as well as deviations from equilibrium.

We estimate the VECM in two steps. First, we estimate the following first-stage

regression model for each firm individually using all daily oberservations:

CDSi,t = α0i + α1iCSi,t + Ei,t, (15)

where CDSi,t and CSi,t are CDS and corporate bond spreads of firm i with the

same maturity observed on day t. The residual term, Ei,t, represents daily deviation

from the long-run relationship between CDS and corporate bond spreads. It is also
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referred to as the error correction term. Next, we apply residuals from the first-stage

regression in equation (15) to estimate the following panel regression specification:

∆CDSi,t = λ1Ei,t−1 +
∑5

j=1
β1j∆CDSi,t−j +

∑5

j=1
γ1j∆CSi,t−j + ε1i,t (16)

∆CSi,t = λ2Ei,t−1 +
∑5

j=1
β2j∆CDSi,t−j +

∑5

j=1
γ2j∆CSi,t−j + ε2i,t, (17)

where ∆CDSi,t and ∆CSi,t are diferences in CDSi,t and CSi,t spreads for firm i

between days t and t− 1, respectively.

In equations (16) and (17), we are interested in the estimated coefficients λ1 and

λ2, which show how CDS and bond spreads adjust after a deviation to their long-run

relationship. When Ei,t−1 is positive, equation (15) suggests the CDS spread is too

high relative to the bond spread and their long-run relationship predicts that the CDS

spread will decrease (λ1 < 0), while the corporate bond spread will increase (λ2 > 0).

A similar logic holds when Ei,t−1 is negative. The sign and magnitude of coefficients λ1

and λ2 are used to infer the information-flow direction and the adjustment speeds of

the two securities. If both coefficients are significant with correct signs, i.e. λ1 < 0 and

λ2 > 0, then both markets contribute to price discovery. However, when only λ2 is

positive and significant, the CDS market is the main contributor to price discovery

because it suggests that corporate bond spreads adjust to reconcile their deviation

from CDS spreads. Analogously, when only λ1 is negative and significant, the bond

market leads in the credit risk’s price discovery.

We estimate the VECM system using daily CDS and bond spreads with constant

5-year maturity. We use CDS contracts that are written on senior debt and with no

restructing clause. Unlike CDS contracts, corporate bonds do not trade at standard-

ized maturities. Therefore, we need 5-year bond yields to match the constant 5-year

CDS spreads. We follow the procedure similar to [21]. On each day and for each

reference entity, we search for a bond with maturities between three and five years,

and another bond with maturity of 6.5 years of more. We then linearly interploate
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between these yields to estimate a 5-year yield to maturity bond. Bond spread is

calculated by subtracting bond yield with the constant 5-year Treasury rate.

In order for firms to enter our sample, we require that they have CDS and bond

data traded simultaneously and continuously for at least two calendar years. This

filter ensures that we can precisely estimate the first-stage regression in (15). This

requirement leaves us with 305 firms. In order to use VECM analysis, we apply the

Johansen trace test for cointegration between CDS and bond spreads. We find for

210 reference entities, their CDS and bond spreads are cointegrated with order one,

i.e., I(1). Our empirical analysis in this section is therefore based on 210 reference

entities.

Table 20 reports results from the second-stage panel regression model in equa-

tions (16)–(17). We report results estimated from three estimation samples.21 The

first estimation sample uses all 249, 306 daily observations. The second estimation

sample uses only daily observations that fall in the window [-90,-2] days relative to

firms’ rating downgrade announcements. This estimation period is used to examine

credit price discovery prior to rating downgrade announcements. Finally, the third

estimation sample uses only daily observations that fall in the window [-90,-2] days

relative to firms’ rating upgrade announcements.

Using all observations, we find the coefficient estimates of λ1 and λ2 are −0.017

and 0.033, respectively, and are statistically significant. This finding suggests that, on

average, CDS and corporate bond spreads adjust toward their long-run relationship

consistent with [21] who apply the VECM approach to 33 investment-grade firms.

Using the VECM estimates in Table 20, we calculate the lower and upper bounds

of Hasbrouck’s (1995) measure of the CDS market contribution to price discovery.

21The first-stage regression (see equation (15)) is estimated for each firm individually using all
available observations. To save space, we do not report their estimates.
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Their expressions are given by

HAS1 =
λ2

2

(
σ2

1 −
σ2
12

σ2
2

)
λ2

2σ
2
1 − 2λ1λ2σ12 + λ2

1σ
2
2

, HAS2 =

(
λ2σ1 − σ12

σ2

)2

λ2
2σ

2
1 − 2λ1λ2σ12 + λ2

1σ
2
2

, (18)

where HAS1 and HAS2 are the two bounds of Hasbrouck’s measures. The remaining

variables σ2
1, σ2

2, and σ12 in (18) are the covariance matrix terms between ε1i,t and

ε2i,t in equations (16)–(17).

Table 20 shows that for the first estimation sample, the CDS market’s contribution

to price discovery of credit risk is between 81 and 85 percent, which is roughly in line

with [21]. However, prior to rating downgrades, the contribution from the CDS

market increases to between 90 and 91 percent. We also find that the coefficient

λ2 = 0.037 is positive and significant, while the λ1 is no longer significant. This

finding suggests that prior to rating downgrades, bond spreads always adjust toward

CDS spreads in order to maintain their equilibrium relationship. In other words, the

CDS market is the leading venue for credit price dicovery prior to rating downgrades.

Given our finding that bond prices adjust following CDS spreads before credit rating

downgrades, we expect firms with CDS trading to experience a weaker bond price

reaction to rating downgrade announcements. We test this conjecture in the Internet

B.1.8 section. Using the event-study method similar to our analysis for stock price

reactions, we find that bond price reacts less to credit rating downgrades for firms

with CDS trading.

We next turn to the VECM results for the period prior to rating upgrades. Table

20 shows the contribution of the CDS market to credit price discovery falls substan-

tially, ranging between 51 and 56 percent. We also find the coefficient λ1 = −0.024

is significant and negative, while λ2 is not significant. This finding suggests that the

bond market leads the CDS market in credit price discovery prior to rating upgrades.

Overall, the lead-lag analyses using the VECM show that on a day-to-day basis,

both the CDS and corporate bond markets contribute to price discovery of their firm’s
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credit risk. The contribution of the CDS market however, significantly increases over

the quarter-period prior to rating downgrades where CDS spreads lead bond spreads

in their daily changes. Whereas, in the quarter-period prior to rating upgrades,

we find the opposite relation holds. Collectively, our results in Table 20 strongly

support the main conclusion of this paper that the CDS market provides important

information to equity and bond investors prior to rating downgrades, which explains

why stock and bond prices react less to rating downgrades for firms with CDS trading

on their debts.

2.6.2 Does information flow from the CDS to equity markets?

Following the empirical framework in [4], we study how the information flows between

the CDS and equity markets by looking at the lead-lag relationship between CDS and

stock returns. The objective is to test whether there is any incremental information

in the CDS market that is not already contained in the equity market. An important

concern with the lead-lag study between the credit and equity markets is that the two

markets could be highly dependent. It is therefore important to remove components

in CDS changes that are predictable using lagged CDS returns, contempraneous stock

return, and lagged stock returns.

We regress daily CDS returns (i.e., percentage changes) for each firm i using past

information up to five lags as follows:

CDS returni,t = αi +
5∑

k=0

βi,t−kStock returni,t−k +
5∑

k=0

γi,t−k

(
Stock returni,t−k

CDS leveli,t

)

+
5∑

k=1

δi,t−kCDS returni,t−k + ui,t (19)

Besides lagged CDS, lagged stock returns, and contemporaneous stock returns, we

include the ratio of past stock return to the current CDS spread in equation (19) to

capture the nonlinear elasticity between CDS spread and equity value. The above

regression is estimated for each firm separately. The residuals ui,t from the regression
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represent the unexpected change in CDS spreads that is unanticipated by both the

equity and CDS markets. We refer to ui,t as CDS innovation, which is used in the

second-stage regression for studying the information flow from the CDS market to

the stock market. Consistent with [4], we find that R2 from the unreported first-stage

regressions are mostly in the single digits.

Next, we test whether the unanticipated component in CDS spread changes can

predict future stock returns. We estimate the following panel regression specification:

Stock returnt = a+
5∑

k=1

(
bk + bdk Rating-downgradet + buk Rating-upgradet

)
× ui,t−k

+
5∑

k=1

(
ck + cdk Rating-downgradet + cuk Rating-upgradet

)
× Stock returnt−k + εt

(20)

where ui,t−k is the CDS innovation on day t−k estimated from equation (19). We also

include lagged stock returns in the above equation to ensure that any relationships

between past CDS innovations and future stock returns are not artifacts of stock

return autocorrelations. We introduce two new variables in the above regression

specification. Rating-downgradet is an indicator variable equal to one on day t if it

is within [-90,-2] days of credit rating downgrades, and zero otherwise. This variable

is designed to capture information flow from the CDS to equity markets that occurs

before rating downgrade announcements. Similarly, Rating-upgradet is an indicator

variable equal to one on day t if it is within [-90,-2] days of credit rating upgrades,

and zero otherwise.22 For our analysis, we use CDS spreads with the constant 5-year

maturity because they are the most liquid. We also consider only CDS spreads that

are written on senior debt and those without a restructuring clause. Table 21 reports

results based on the regression model in equation (20).

22We obtain similar conclusions when replicating the results with rating condition dummies defined
over the following event windows [-60,-2], [-60,+30], and [-30,+30] relative to rating change events.
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The regression model (I) in Table 21 reports results based on equation (20) with-

out Rating-downgradet and Rating-upgradet. In this case, the coefficient
∑5

k=1 bk

quantifies the amount of information discovered through the CDS market that is in-

formative of future stock prices on the day-to-day basis. Table 21 shows that
∑5

k=1 bk

= −0.0074, which is negative and significant at the 10 percent confidence level. The

negative sign on the sum of coefficients is consistent with [104], which shows that

as default risk increases equity price falls. However, the magnitude of 0.74% is eco-

nomically trivial, suggesting that the CDS market, on average, is not substantially

informative of the equity price. On the other hand, we find that past stock returns

significantly predict future stock returns with the coefficient of −7.23%. This strong

negative auto-correlation that we observe is consistent with the well-established mean-

reversion characteristic of stock returns.

The regression model (II) in Table 21 reports results without Rating-upgradet. In

this case,
∑5

k=1 bk and
∑5

k=1 b
d
k quantify information flow from the CDS to equity

markets in the periods that are outside and during rating-downgrades, respectively.

We find that the flow measure during the rating-downgrade period
(∑5

k=1 b
d
k

)
is neg-

ative and statistically significant, indicating an approximate 4.3% transmission of

information from CDS innovation to future stock returns. We find the information

flow measure outside the rating-downgrade period
(∑5

k=1 bk
)

is no longer significant,

suggesting that the CDS market is not very informative of future stock returns out-

side the rating-downgrade period. Interestingly, estimates from regression model (II)

show that past stock returns do not significantly predict future stock returns dur-

ing the rating-downgrade period. This can be seen by the statistically insignificant

estimates on
∑5

k=1 c
d
k.

Lastly, the regression model (III) reports results based on the model in equation

(20) without Rating-downgradet. In this case,
∑5

k=1 b
u
k captures the information flow

from the CDS to equity markets during the rating-upgrade period. We do not find
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that the CDS market provides new information to the equity market during the

period around credit rating upgrades. However, it is interesting to point out that

stock returns are quite persistent when the firm experiences rating upgrades, which

is observed through the positive and significant coefficients on
∑5

k=1 c
u
k = 20.7%.

Overall, the results in Table 21 show that there exists significant information

flow from the CDS to equity markets before the firm is being downgraded. We

conclude that the CDS market is an important venue for equity price discovery prior

to credit rating downgrades, providing support to explain why stock prices of firms

with CDS trading react significantly less to credit rating downgrades. These results

are consistent with [4] who document insider trading by privately informed parties in

the CDS markets around negative events.23

2.7 CDS spreads and the cross-section of stock returns

The distress risk puzzle, i.e., lower-rated firms earn lower returns, has been docu-

mented by a number of empirical studies. In particular, [15] find that the puzzle is

most pronounced around rating downgrades. In this section, we test Hypothesis 5

by examining the value of the CDS market in explaining the cross-section of stock

returns for firms that are about to be re-rated.

We are motivated by [62] who estimate the equity risk premia from CDS spreads

and show that they positively correlate with firms’ stock returns. Their general idea

is that the firm’s equity risk premium is related their CDS spread dynamics under the

risk-neutral (Q) and physical (P) measures, which can be extracted using the term

structure of CDS spreads over time, i.e., panel CDS data. Building on the insight

of the Merton’s structural model, the equity risk premium, µE − r, is related to the

23For instance, these informed parties could be banks that have relationships with firms and
simultaneously act as intermediaries in the CDS market.
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CDS excess return by

µE − r =
−
(
µP
s − µQ

s

)
σS

σE, (21)

where µP
s − µQ

s is the CDS spread excess return defined as the difference between the

drifts under the physical and risk-neutral probability measures.24 Equity volatility

and CDS spread volatility are denoted by σE and σS, respectively. [62] suggest that

equation (21), can be inferred from the CDS spread dynamics with constant maturity

T as follows

ERP T
t+τ ≡ −

 logEP
t

[
STt+τ

]
− logEQ

t

[
STt+τ

]√∫ t+τ
t

σ2
S,udu

 ·√∫ t+τ

t

σ2
E,udu, (22)

where EQ
t

[
STt+τ

]
and EP

t

[
STt+τ

]
denote the conditional time-t expectation of CDS

spread at the future time t + τ under the Q and P-measure, respectively. The de-

nominator in the above equation (22) refers to the volatility of CDS spreads across

the interval [t, t+ τ ], and
∫ t+τ
t

σ2
E,udu is the equity variance calculated over the same

period. The term in brackets on the right-hand side of equation (22) can be usefully

thought of as the Sharpe ratio of CDS spreads with constant maturity T .

We estimate equation (22) using the term structure of CDS spreads at various

points in time. The method is based on the well-established approach of [38] in the

fixed income literature. To save space, we describe the procedure in Internet B.1.10.

We estimate one-year CDS-implied equity risk premium on a daily basis for each firm

in the sample, i.e., τ = 1 in equation (22). We refer to the estimate as ERP . In

order for firms to be eligible for the equity risk premia estimation, they must have

sufficient CDS quotes traded at maturities 1, 3, 5, 7, and 10 years. In Table B.12,

we report portfolio characteristics sorted based on ERP , credit ratings, and CDS

spreads. The sorting is done at the beginning of each month. We find that ERP

positively and monotonically increases with average portfolio returns. This positively

24The risk-neutral drift of the CDS spread µQ
s does not need to be equal to the risk-free rate as

the CDS spread is not a traded asset, only the CDS contract is.
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monotonic relationship, however, does not hold for portfolios sorted by either credit

ratings or CDS spreads, confirming the findings in [62].

We next examine whether CDS implied ERP can explain the cross-section of

equity returns of firms that are about to be downgraded. Panel A of Table 22 reports

average one-year portfolio returns of firms before credit rating downgrades quintile–

sorted based on ERP , credit ratings, and CDS spreads. Only firms that will be

downgraded by one of the three rating agencies within the next 30 calendar days

are kept in the sample. The average one-year returns of all portfolios in Panel A

are negative, which is consistent with [47] who documented negative stock returns

persisting for a year after downgrades. However, importantly for this sample, we

find that ERP monotonically increases with average one-year equity returns. The

difference in average one-year returns between the highest and lowest ERP -sorted

portfolio is 29.2% and statistically significant at the one percent level. On the other

hand, we do not find that sorting firms prior to rating downgrades based on their

rating scales result in a cross–sectional difference in one-year equity returns. The

relationship between credit ratings and one-year equity returns is not monotonic, and

the difference in equity returns between the worst-rated group and the best-rated

group is not statistically significant.

Similar to sorting based on credit ratings, we do not find that CDS spreads alone

can explain the cross-section of equity returns before rating downgrade announce-

ments. Interestingly, sorting portfolios based on credit ratings and CDS spreads pro-

duces results that are synonymous with the distressed puzzle, i.e., firms with higher

CDS spreads (worse credit ratings) have lower expected equity returns.

We replicate the results in Panel A using firms that will be upgraded in the next

30 days, i.e. prior to rating upgrade announcements. The results are reported in

Panel B of Table 22. Sorting based on either ERP , credit ratings or CDS spreads,

we do not observe a strictly monotonic relationship in returns unlike in the case
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of downgrades. Overall, the results in this section show that the ERP estimated

from CDS spreads perform better than credit ratings in explaining equity returns,

especially before rating downgrade announcements.

2.8 Conclusion

We present evidence that firms’ stock prices react significantly less to credit rating

downgrades when they have CDS contracts trading on their debt. Our results are

robust to different model specifications such as the instrumental variable regression

and the propensity-score-matched difference-in-difference analysis. Drawing insights

from the simple structural model, we examine various economic channels that can

potentially explain our results. We show that CDS spreads contain information that

anticipates credit rating downgrades as far as 180 days ahead of the revision date.

Using a hazard model for default, we find that CDS spreads provide information that

significantly helps improve historical default prediction. Further, the CDS market

significantly contributes to price discovery in the stock and bond markets before

rating change announcements, and CDS term structures contain information that

allow equity investors to construct a more reliable measure of default risk premium

than credit ratings.

Overall, our findings suggest that the CDS market leads, and provides new and

complementary information to that already conveyed by credit rating agencies. There-

fore, it may also be beneficial for regulators to design policies that can enhance the

transparency and liquidity in the CDS market instead of focusing solely on regulating

the credit rating agencies.
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Figure 6: CDS-implied credit ratings

We plot daily averaged CDS-implied ratings over the interval [-360,180] days centered

on the rating change events. The left (right) panels plot results for downgrades (up-

grades) for three adjacent rating classes: A-BBB, BBB-BB, and BB-B. On each day,

we classify firms according to their CDS spread into six rating classes; see Table B.1

in the appendix for the mapping. The CDS spread boundaries used to classify firms

into rating classes are estimated non-parametrically following the method in [26] and

[97]. The plotted CDS-implied ratings are daily averaged values across rating–change

events. The y-axis in each panel indicates the credit rating classes. Higher credit

rating classes imply higher default probability. The x-axis indicates event days rela-

tive to the rating change date. In each panel, the solid line plots the official ratings,

in rating class scale, issued by credit agencies, while the dotted line plots average

CDS-implied ratings.
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Table 14: Stock price reactions to rating changes

This table reports stock price reactions to bond downgrades and upgrades. The sample consists

of credit rating downgrades and upgrades on taxable corporate bonds issued by U.S. firms from

January 1996 to December 2010. Panel A reports results for the full sample, while Panel B reports

results for the traded-CDS sample. The full sample consists of 4,665 credit rating downgrades and

2,171 credit rating upgrades. The traded-CDS sample (Panel B) consists only of firms that have

CDS trading at any point in our sample period, i.e from 1996 to 2010. In each panel, we report

cumulative abnormal returns (CAR) calculated over the 3-day event window (-1,+1), where day 0

represents the rating change event day. CAR is calculated using the market model. Count reports

the number of rating change observations used in each CAR calculation. We report averaged CAR

values separately for the Pre-CDS period and the Post-CDS period. Rating changes that occur in

the presence of CDS trading are considered to be in the post-CDS period, while rating changes that

occur in the absence of CDS trading are considered to be in the pre-CDS period. Difference reports

the difference in averaged CAR values between the Pre-CDS period and the Post-CDS period. T-

statistics are reported in brackets below each estimate. *, **, and *** indicate significance at the

10%, 5%, and 1% confidence levels, respectively.

Panel A: Full sample

Downgrades Upgrades

Mean CAR(%) Count Mean CAR(%) Count

Pre-CDS -5.10*** 3249 0.16* 1482
(-19.72) (1.60)

Post-CDS -2.51*** 1416 0.09 689
(-6.42) (0.61)

Difference (Post−Pre) 2.58*** -0.07
(5.51) (-0.39)

Total -4.31*** 4665 0.14* 2171
(-19.93) (1.67)

Panel B: Traded-CDS sample

Downgrades Upgrades

Mean CAR(%) Count Mean CAR(%) Count

Pre-CDS -2.87*** 803 0.18 300
(-7.23) (0.85)

Post-CDS -1.92*** 1029 0.06 574
(-5.48) (0.39)

Difference (Post−Pre) 0.95* -0.12
(1.79) (-0.46)

Total -2.34*** 1832 0.10 874
(-8.89) (0.82)
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Table 15: Regression analysis of stock price reactions to rating changes

This table reports regression results of stock price reactions to bond rating changes. The dependent

variable is CAR (-1,+1) calculated over the 3-day event window around a rating change event using

the market model. All the variables are defined in B.1. Robust t-statistics are clustered at the

firm-level and reported in bracket. *, **, and *** indicate significance at the 10%, 5%, and 1%

confidence levels, respectively.

Panel A: Downgrades Panel B: Upgrades

Full sample Traded-CDS Full sample Traded-CDS

(I) (II) (III) (I) (II) (III)

dCDS 2.08*** 1.70** 2.59*** -0.14 0.03 0.08
(3.38) (2.39) (3.73) (-0.65) (0.11) (0.19)

Rating-level controls

Prev Rating (log) -3.04*** -3.19*** -3.48*** -0.16 0.02 -0.41
(-3.42) (-3.45) (-2.99) (-0.40) (0.05) (-0.69)

Abs Rating Change -2.24*** -2.27*** -1.87** 0.03 0.01 0.04
(-5.03) (-5.08) (-2.22) (0.33) (0.16) (0.20)

Days Since Last Rating (log) 0.13 0.12 -0.02 0.09 0.10 0.18
(0.54) (0.50) (-0.09) (0.74) (0.84) (1.10)

Earnings Ann Related -2.09** -2.15** -1.44 0.78 0.80 0.12
(-2.20) (-2.25) (-1.20) (1.34) (1.36) (0.13)

Firm-level controls

Sales (log) 0.62 0.66 -0.27 -0.14 -0.17 -0.27
(1.55) (1.61) (-0.63) (-1.11) (-1.30) (-1.55)

Profitability 0.44 0.38 -0.59 0.85 0.79 0.66
(0.32) (0.28) (-0.39) (1.08) (1.00) (0.59)

Leverage -3.38 -3.73* 2.18 0.20 0.11 0.59
(-1.58) (-1.71) (0.75) (0.32) (0.18) (0.59)

Mkt-to-Book 0.19* 0.20** 0.10 -0.02 -0.02 -0.00
(1.96) (2.07) (0.85) (-0.94) (-1.00) (-0.08)

Avg Volatility (log) -0.78 -0.68 -0.33 0.19 -0.04 0.53
(-1.52) (-1.01) (-0.43) (0.83) (-0.19) (1.53)

Avg Trading Volume (log) -0.81*** -0.86** -0.52 0.15 0.18 0.01
(-2.64) (-2.51) (-1.06) (0.94) (1.09) (0.03)

Avg Return 7.16*** 6.71*** 8.02*** -1.38 -1.20 -1.98
(4.33) (4.11) (2.71) (-1.25) (-1.05) (-1.29)

CDS-trading controls

Analyst Coverage (log) 0.12 0.22 -0.19 -0.06 -0.06 0.08
(0.28) (0.51) (-0.26) (-0.44) (-0.38) (0.43)

Analyst Dispersion 0.00 0.00 0.00 -0.00 -0.00 -0.01*
(1.20) (1.28) (0.47) (-0.42) (-0.49) (-1.80)

Institutional Ownership 1.32** 1.31** -1.12* -0.22* -0.19 -0.10
(1.99) (1.98) (-1.77) (-1.75) (-1.41) (-0.43)

Stock Illiquidity 1.33 1.51 -3.39 0.87 0.94 10.25
(0.56) (0.64) (-0.21) (0.23) (0.25) (1.10)

Bond Illiquidity -0.28 -0.23 -0.39 0.11 0.11 0.32**
(-0.68) (-0.57) (-0.85) (1.01) (0.96) (1.99)

Debt Outstanding (log) -0.44 -0.44 -0.14 0.05 0.06 0.31
(-1.17) (-1.16) (-0.28) (0.42) (0.45) (1.65)

Fixed effects Ind Ind & Year Ind Ind Ind & Year Ind
Observations 4176 4176 1775 1972 1972 834
Adjusted R2 0.123 0.124 0.091 -0.000 -0.004 0.000
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Table 16: Instrumental variable regression of stock price response to rating changes

This table reports instrumental variable regression results of stock price reactions to bond rating

changes. The dependent variable is CAR (-1,+1) calculated over the 3-day event window around a

rating change event using the market model. All the variables are defined in B.1. Robust t-statistics

are clustered at the firm-level and reported in brackets. *, **, and *** indicate significance at the

10%, 5%, and 1% confidence levels, respectively.

Panel A: Downgrades Panel B: Upgrades

(I) (II) (I) (II)

dCDS IV 6.10*** 5.44* 0.13 1.44
(4.44) (1.76) (0.17) (1.23)

Rating-level controls

Prev Rating (log) -2.91** -2.96** -1.07 -0.76
(-2.36) (-2.35) (-1.50) (-0.99)

Abs Rating Change -1.06* -1.10* 0.20 0.23
(-1.87) (-1.94) (1.35) (1.57)

Days Since Last Rating (log) 0.21 0.19 0.22 0.27
(0.75) (0.71) (1.13) (1.30)

Earnings Ann Related -1.25 -1.32 0.72 0.65
(-1.01) (-1.07) (0.87) (0.77)

Firm-level controls

Sales (log) 0.15 0.11 -0.22 -0.38*
(0.29) (0.18) (-1.02) (-1.67)

Profitability 6.49* 6.52** -0.03 -0.33
(1.96) (2.00) (-0.02) (-0.21)

Leverage -0.01 -0.53 -0.14 -0.40
(-0.00) (-0.21) (-0.16) (-0.42)

Market-to-Book 0.03 0.03 0.03 0.04
(0.29) (0.33) (1.16) (1.34)

Avg Volatility (log) -0.31 -0.35 0.96** 0.72*
(-0.45) (-0.44) (2.39) (1.83)

Avg Trading Volume (log) -1.02** -0.93** -0.04 -0.02
(-2.25) (-1.99) (-0.19) (-0.09)

Avg Return 8.71*** 8.15*** -0.97 -0.66
(3.89) (3.56) (-0.63) (-0.42)

CDS-trading controls

Analyst Coverage (log) 0.40 0.45 -0.04 -0.02
(0.74) (0.83) (-0.18) (-0.06)

Analyst Dispersion 0.00 0.00 -0.00 -0.00
(1.10) (1.19) (-0.90) (-0.91)

Institutional Ownership -0.02 0.08 -0.84*** -0.75***
(-0.03) (0.12) (-3.22) (-2.66)

Stock Illiquidity -3.22 -2.70 -8.28 -8.03
(-0.76) (-0.63) (-1.08) (-0.95)

Bond Illiquidity -0.77 -0.71 0.13 -0.02
(-1.47) (-1.14) (0.67) (-0.09)

Debt Outstanding (log) -1.04** -0.96 0.21 0.11
(-2.04) (-1.61) (0.93) (0.45)

Fixed effects Ind Ind & Year Ind Ind & Year
Observations 1966 1966 886 886
Adjusted R2 0.128 0.133 0.014 -0.017
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Table 17: Diff-in-diff regression of stock price reactions to downgrades

This table reports difference-in-difference regression analysis of stock price response to bond down-

grades for the 1:5 propensity-score matched sample with replacement. The dependent variable is

CAR (-1,+1) calculated over the 3-day event window around a rating change event using the market

model. All the variables are defined in B.1. Robust t-statistics are clustered at the firm-level and

reported in brackets. *, **, and *** indicate significance at the 10%, 5%, and 1% confidence levels,

respectively.

Panel A: Matched sample Panel B: Subsamples (diagnostics)

Treatment Control Post-CDS Pre-CDS

(I) (II) (III) (IV) (V) (VI)

Diff-in-diff variables

dTreatment×dCDS 2.58*** 2.16**
(2.77) (2.40)

dCDS 0.00 -0.93 2.50*** 0.10
(0.00) (-1.06) (3.22) (0.12)

dTreatment -0.17 -0.27 2.27*** 0.04
(-0.25) (-0.40) (2.97) (0.05)

Rating-level controls

Prev Rating (log) -3.72** -3.76** -2.69*** -3.69 -4.89* -2.88***
(-2.32) (-2.32) (-2.75) (-1.41) (-1.89) (-2.59)

Abs Rating Change -1.26*** -1.19*** -1.45** -1.11*** -1.10* -1.60***
(-3.80) (-3.46) (-2.30) (-2.91) (-1.89) (-6.25)

Days Since Last Rating (log) 0.45 0.33 -0.08 0.72 1.36** -0.63
(1.20) (0.93) (-0.29) (1.31) (2.55) (-1.49)

Earnings Ann Related -4.42*** -4.26*** -2.29 -5.59** -5.05** -2.61**
(-2.87) (-2.87) (-1.51) (-2.49) (-2.29) (-2.07)

Firm-level controls

Sales (log) -0.41 -0.37 0.22 -0.52 -0.64 -0.09
(-0.72) (-0.69) (0.48) (-0.62) (-0.75) (-0.16)

Profitability -4.17** -4.55*** -5.95*** -2.50 -5.10** -2.65
(-2.52) (-2.80) (-3.31) (-1.01) (-2.31) (-1.26)

Leverage 0.40 0.85 1.90 -0.85 0.30 -1.26
(0.17) (0.38) (0.59) (-0.27) (0.11) (-0.40)

Mkt-to-Book 0.14 0.12 0.15 0.17 0.11 0.22
(1.48) (1.16) (1.41) (1.22) (0.72) (1.28)

Avg Volatility (log) -0.71 -0.23 -0.89 -0.49 -2.00** 2.00*
(-1.13) (-0.28) (-1.24) (-0.51) (-2.45) (1.70)

Avg Trading Volume (log) -0.39 -0.62 -0.30 -0.39 0.56 -1.67***
(-1.06) (-1.56) (-0.64) (-0.68) (1.00) (-3.06)

Avg Return 8.19*** 8.58*** 3.62 10.60*** 9.19*** 7.10***
(3.62) (3.90) (1.38) (3.49) (3.12) (3.13)

CDS-trading controls

Analyst Coverage (log) 0.06 0.36 -0.09 -0.03 -0.23 -0.13
(0.13) (0.77) (-0.12) (-0.05) (-0.32) (-0.23)

Analyst Dispersion 0.01** 0.01** 0.01 0.01** 0.01 0.01**
(2.52) (2.54) (1.40) (2.04) (1.43) (2.17)

Institutional Ownership 0.44 0.07 -0.55 1.24 0.68 -0.02
(0.82) (0.13) (-0.85) (1.38) (0.89) (-0.03)

Stock Illiquidity 8.05 6.83 8.98 11.13 32.06* -17.87
(0.80) (0.67) (0.48) (0.82) (1.73) (-1.35)

Bond Illiquidity -0.42 -0.35 -0.92** -0.10 -0.93 0.14
(-1.04) (-0.86) (-2.18) (-0.16) (-1.37) (0.34)

Debt Outstanding (log) -0.77 -0.67 -0.12 -1.14 -0.81 -0.56
(-1.36) (-1.11) (-0.23) (-1.36) (-0.96) (-1.16)

Fixed effects Ind Ind & Year Ind Ind Ind Ind
Observations 4899 4899 1518 3381 2585 2314
Adjusted R2 0.153 0.162 0.079 0.194 0.161 0.181
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Table 18: CDS, and the predictability of rating changes

This table reports results from estimating the extended Cox model for predicting bonds’ credit rating

change events. The sample consists of corporate bonds issued by U.S. firms that have CDS contracts

trading on its debt. We estimate the hazard rate function (see equation (14)) for the time-to-rating

change events (in months) at the bond-issuance level. We allow the baseline hazard functions to

differ between different credit rating levels, i.e. strata. Panel A reports results for downgrades, while

Panel B reports results for upgrades. Observations and Nob. events indicate the number of issuance-

month observations and the number of rating change events used in the estimation, respectively.

CDS spread is the average 5-year CDS spread in the prior month (in %). Bond Yield is the trade-

weighted average bond yield in the prior month (in %). CDS Spread Change is the log difference

in 5-year CDS spreads at the start and end of the previous month. Bond Yield change is the log

difference in trade-weighted average bond yields at the start and end of the previous month. Credit

Watch dummy is an indicator variable equal to one if the firm has been put on the credit watch

list. We obtain credit watch announcements data from FISD, as well as from Moody’s Default Risk

Database (MDRS). We only consider negative watches for downgrades, and positive watches for

upgrades. All remaining explanatory variables are described in B.1 and are lagged by one month.

All regressions include industry, rating agency and year fixed-effects. We report robust t-statistics

clustered at the firm level in brackets below each estimate.

Hazard rate of future rating change event

Panel A: Downgrades Panel B: Upgrades

(I) (II) (III) (I) (II) (III)

CDS Spread Change 0.42** 0.38** -0.24 -0.23
(2.56) (2.36) (-0.73) (-0.68)

Bond Yield Change -0.14* -0.14* 0.11 0.05
(-1.75) (-1.75) (0.50) (0.23)

CDS Spread 0.01* 0.01* -0.02 -0.02
(1.95) (1.70) (-0.74) (-0.76)

Bond Yield -0.00 -0.00 0.01*** 0.01***
(-0.59) (-0.44) (4.19) (4.74)

Credit watch dummy 1.69*** 1.71*** 1.70*** 1.90*** 1.89*** 1.90***
(19.65) (20.11) (19.83) (11.44) (11.53) (11.43)

Market Cap (log) -0.56*** -0.55*** -0.54*** 0.37*** 0.38*** 0.38***
(-6.30) (-6.48) (-6.21) (2.75) (2.83) (2.78)

Profitability -0.09 -0.08 -0.09 0.29 0.31 0.30
(-1.56) (-1.47) (-1.54) (1.47) (1.56) (1.48)

Long Term Debt-to-Assets -0.02 -0.10 -0.10 -0.67 -0.63 -0.65
(-0.04) (-0.19) (-0.18) (-0.71) (-0.66) (-0.68)

Leverage 0.01*** 0.01** 0.01*** 0.03* 0.03** 0.03*
(2.76) (2.53) (2.70) (1.80) (1.99) (1.79)

Avg Trading Volume (log) 0.82*** 0.80*** 0.80*** 0.23* 0.22* 0.23*
(10.08) (10.23) (10.08) (1.88) (1.79) (1.84)

Avg Volatility (log) 0.24** 0.21* 0.22* -0.38 -0.37 -0.37
(2.05) (1.83) (1.92) (-1.62) (-1.62) (-1.62)

Avg Return 0.09 -0.13 0.08 -1.11* -1.03 -1.12*
(0.27) (-0.38) (0.24) (-1.75) (-1.59) (-1.76)

Observations 206338 211259 206338 113639 115610 113639
Nob. events 7541 7640 7541 2251 2273 2251
Pseudo R-sq 0.088 0.087 0.089 0.057 0.057 0.058
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Table 19: CDS and the predictability of defaults

This table reports results from estimating the extended Cox model for predicting default.

We estimate the hazard rate function (see equation (14)) for the time-to-default events (in

months) at the firm level. We obtain default and bankruptcy filing data from Moody’s Ulti-

mate Recovery Database (Moody’s URD), FISD and Bankrupcy.com. The sample consists

of U.S. firms that have CDS contracts trading on their debt at some point between January

1996 and December 2010 (i.e. traded-CDS firms). A firm is considered to be in default

in the month that it misses a disbursement of interest and/or principal, as well as when

it files for bankruptcy. Observations and Nob. events indicate the number of firm-month

observations and default events used in the estimations. Credit Rating is the credit rating

level, in cardinal scale, of the firm in the prior month averaged across the three rating

agencies. CDS spread is the firm’s average 5-year CDS spread in the prior month (in %).

CDS Spread Change is the log difference in 5-year CDS spreads at the start and end of the

previous month. All remaining explanatory variables are described in Appendix B and are

lagged by one period. All regressions include industry and year fixed-effects. We report

robust t-statistics clustered at the firm level in brackets below each estimate. *, **, and

*** indicate significance at the 10%, 5%, and 1% confidence levels, respectively.

Probability of default

(I) (II) (III) (IV) (V)

Credit Rating (Avg of 3 CRAs) 0.52*** 0.61***
(3.61) (3.57)

CDS Spread Level (5yr) 0.16** 0.17*** 0.12*
(2.12) (2.73) (1.65)

CDS Spread Change (5yr) 2.85** 3.23** 3.83**
(2.27) (2.13) (2.18)

Net Income-to-Assets -5.16 -8.08 -9.68* -12.64** -14.22
(-0.77) (-1.08) (-1.69) (-2.09) (-1.35)

Total Liabilities-to-Assets 3.52** 1.64 2.37 1.58 1.83
(2.24) (1.02) (1.54) (0.97) (0.85)

Relative Size 0.34 -0.14 -0.42* -0.21 0.24
(1.47) (-0.44) (-1.87) (-0.72) (0.50)

Excess Return -3.68*** -2.06 -1.52 -1.77 -4.13*
(-3.02) (-1.27) (-1.02) (-1.02) (-1.87)

Market-to-Book -0.15*** -0.39** -0.47*** -0.42*** -0.37***
(-2.79) (-2.54) (-2.87) (-2.67) (-3.28)

Avg Volatility (log) 2.58*** 1.55*** 2.08*** 1.31** 1.40*
(5.39) (2.79) (3.96) (2.35) (1.93)

Observations 54215 46470 45897 45897 45203
Nob. events 37 33 33 33 32
Pseudo R-sq 0.690 0.661 0.646 0.675 0.775
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Table 20: CDS contribution to credit price discovery

We report coefficient estimates from the Vector Error Correction Model (VECM), and Hasbrouck

measures of CDS spreads’ contribution to the credit price discovery process. The sample consists of

210 reference entities for which the Johansen trace test statistics conclude that their daily secondary

bond yields and CDS spreads are cointegrated I(1) variables. Secondary bond yields data are

obtained from TRACE, which starts in July 2001. Our sample period ends in December 2010. We

use daily CDS spreads with a 5-year. We follow the method in [21] and estimate the constant 5-year

maturity bond yield by interploating the daily bond yields curve. Corporate bond spread is the

difference between the 5-year interpolated bond yield and the 5-year treasury yield. The coefficients

λ1 and λ2 are estimates from the following second-stage panel regression

∆CDSi,t =λ1Ei,t−1 +
∑5

j=1
β1j∆CDSi,t−j +

∑5

j=1
γ1j∆CSi,t−j + ε1i,t

∆CSi,t =λ2Ei,t−1 +
∑5

j=1
β2j∆CDSi,t−j +

∑5

j=1
γ2j∆CSi,t−j + ε2i,t,

where ∆CDSi,t, and ∆CSi,t are daily diferences in CDS and corporate bond spreads for firm i

between days t and t − 1. The error correction term, Ei,t−1, is obtained from the following first-

stage regression estimated firm-by-firm using all daily oberservations:

CDSi,t = α0i + α1iCSi,t + Ei,t.

The residual term, Ei,t, represents daily deviation to the long-run relationship between CDS and

corporate bond spreads. This table reports from the second-stage panel regression for the three

estimation samples. The first estimation sample uses all daily observations available. The second

estimation sample uses daily observations over a quarter-period prior to the firm’s credit rating

downgrades, i.e. [-90,-2] days relative to the event date. Similarly, the third estimation sample uses

daily observations over [-90,-2] days prior to the firm’s credit rating upgrades. Hasbrouck’s measure

provides upper and lower bounds to the price discovery contribution made in the CDS market;

see equation (18). The coefficients λ1 and λ2 measure the relationship between changes in CDS

and corporate bond spreads in relation to their cointegrated relationship. Robust t-statistics are

clustered at the firm level and reported in brackets beneath the λ1 and λ2 estimates. Superscripts

***, **, * indicate significance at the 1, 5, and 10 percent levels, respectively.

Vector Error Correction Model (VECM)

Estimation sample Observations Coefficient estimates Hasbrouck share of CDS market

λ1 λ2 Lower Mid Upper

(1) All observations 249306 -0.017** 0.033*** 0.8143 0.8327 0.8511
(-2.24) (3.85)

(2) Prior to downgrades 22529 -0.011 0.037*** 0.9001 0.9073 0.9145
(-1.20) (2.90)

(3) Prior to upgrades 12449 -0.024* 0.094 0.5074 0.5324 0.5574
(-1.90) (1.46)
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Table 21: Lead-lag analysis of CDS and stock returns

This table reports results from the panel regression of daily stock returns on lagged CDS innovations,

and lagged stock returns under different credit-rating conditions. We estimate the following panel

regression model:

Stock returnt =a+

5∑
k=1

(
bk + bdk Rating-downgradet + buk Rating-upgradet

)
× CDS innovationt−k

+

5∑
k=1

(
ck + cdk Rating-downgradet + cuk Rating-upgradet

)
× Stock returnt−k + εt.

We surpress firm-level notation above for brevity. Stock return at time t is calculated as the daily

difference between the log of stock prices. CDS innovationt represents daily changes to CDS returns

due to shock in the credit markets that is not anticipated by stock markets at time t. We estimate

CDS innovationt using the residual from the first-stage regression according to equation (19). We

interact lagged CDS innovations and stock returns with dummy variables indicating when the firm

is under different credit-rating conditions. Regression model (I) reports results for the baseline

regression without a rating-condition dummy. For the regression model (II), Rating-downgradet

is equal to one on days [-90,-2] relative to when the firm’s credit rating is downgraded, and zero

otherwise. For the regression model (III), Rating-upgradet is equal to one on days [-90,-2] relative to

when the firm’s credit rating is upgraded, and zero otherwise. We report robust t-statistics clustered

at the firm level in brackets beneath each estimate. *, **, and *** indicate significance at the 10%,

5%, and 1% confidence levels, respectively.

Dependent variable: Stock returnt

(I) None (II) Downgrade (III) Upgrade

Intercept 0.0004*** 0.0004*** 0.0004***
(8.58) (8.72) (8.38)∑5

k=1 CDS innovationt−k -0.0074* -0.0038 -0.0054
(-1.76) (-0.97) (-1.39)∑5

k=1 Stock returnt−k -0.0723*** -0.0672*** -0.0796***
(-4.41) (-4.65) (-4.83)∑5

k=1 Rating-downgradet×CDS innovationt−k -0.0428**
(-2.12)∑5

k=1 Rating-downgradet×Stock returnt−k -0.0306
(-0.48)∑5

k=1 Rating-upgradet×CDS innovationt−k -0.0513
(-0.93)∑5

k=1 Rating-upgradet×Stock returnt−k 0.2074***
(3.30)

Observations 286777 286777 286777
No. of clusters 345 345 345
Adj. R2 0.17% 0.31% 0.20%
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Table 22: CDS-implied equity risk premia and the cross-section of stock
returns: Before rating change announcements

This table reports means of one-year portfolio returns based on quintile monthly portfolio sorts. The

sample consists of U.S. firms that have CDS contracts traded with maturity of 1, 3, 5, 7, and 10

years. The portfolios are formed at the beginning of each month based on three dimensions: CDS-

implied equity risk premia (ERP), credit ratings, and CDS spreads. We calculate CDS-implied ERP

for each reference entity using its CDS term structures following the method in [62] (see Section 2.7

& B.1.10 for details). Average credit rating levels of the three rating agencies are used for portfolio

sorting based on credit ratings. The level of 5-year CDS spreads are used for portfolio sorting based

on CDS spreads. Panel A reports average one-year returns calculated using firms that are about to

be downgraded. In Panel B, average one-year returns are calculated using firms that are about to be

upgraded. Newey-West t-statistics adjusted for 11 lags are reported in brackets below the average

portfolio returns. *, **, and *** indicate significance greater than 10%, 5%, and 1%, respectively.

Panel A: Portfolio-sorted average one-year returns before rating downgrades

Average one-year return
Sorted by ERP Sorted by Credit ratings Sorted by CDS spreads

1 (lowest) -0.456*** -0.386*** -0.139***
(-17.95) (-11.47) (-4.84)

2 -0.333*** -0.250*** -0.169***
(-8.94) (-8.16) (-5.55)

3 -0.326*** -0.366*** -0.320***
(-8.33) (-10.33) (-9.30)

4 -0.302*** -0.290*** -0.405***
(-8.53) (-7.98) (-12.19)

5 (highest) -0.164*** -0.454*** -0.492***
(-3.59) (-12.21) (-15.73)

5−1 0.292*** -0.068 -0.353***
(5.59) (-1.36) (-8.32)

Panel B: Portfolio-sorted average one-year returns before rating upgrades

Average one-year return
Sorted by ERP Sorted by Credit ratings Sorted by CDS spreads

1 (lowest) -0.027 -0.021 0.103***
(-0.61) (-0.30) (3.85)

2 0.083** 0.103*** 0.110***
(2.21) (2.81) (3.74)

3 0.160*** 0.114*** 0.088***
(4.97) (3.91) (2.58)

4 0.117*** 0.054** 0.102***
(4.57) (1.82) (3.11)

5 (highest) 0.254*** 0.241*** 0.220***
(9.07) (10.06) (7.10)

5−1 0.281*** 0.262*** 0.118***
(5.39) (3.53) (2.87)
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CHAPTER III

CREDIT DEFAULT SWAPS AND MORAL HAZARD IN

BANK LENDING

3.1 Introduction

Credit Default Swaps (CDSs) are a relatively new financial instrument that allow

lenders to reduce exposure to the credit risk of their borrowers. Credit risk transfer,

through a CDS, can be used to hedge on-balance sheet asset credit risk. Commercial

banks and other lenders are natural buyers of CDS protection to mitigate credit risk

which helps free up regulatory capital,1 diversify risk, and potentially increase credit

supply to firms ([73, 119, 22, 133]). On the flip side, credit risk transfer through

a CDS can reduce the incentives of banks to screen and monitor their borrowers,

even though they still retain control rights2 ([43, 117]). This separation of cash flow

exposure and control rights could potentially give rise to an even stronger form of

incentive misalignment, the empty creditor problem ([84, 22, 145]).

In this paper, we focus on the private debt market to study whether the initi-

ation of CDS trading on borrowers’ debt misaligns incentives between lenders and

borrowers. Covenant violations and the consequent renegotiation between banks and

borrowers provide an ideal setting to understand whether lender moral hazard ex-

ists when lenders can easily engage in credit risk transfer. Covenant violations give

creditors contractual rights similar to those in the case of payment defaults – rights

1For instance, the Basel II regulation permits using a CDS as a hedge against loan credit risk if
the CDS reference obligation (typically a bond) is junior to the loan being hedged

2Banks may now originate a loan, hold the loan on their balance sheet, and continue to service
the loan without being exposed to the borrowing firm’s prospects. Servicing includes monitoring
the borrower and enforcing the covenants, even though economic exposure to credit risk is passed
on to the credit default swap insurance provider.
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include requesting immediate repayment of the principal and termination of further

lending commitments – enhancing the bargaining power of lenders vis-á-vis the bor-

rowers ([35, 112]). If the lenders are indeed empty creditors and intend to impose

harsher renegotiated loan terms to extract rents or if they intend to push borrowers

into bankruptcy, borrowers’ covenant violations give lenders an ideal opportunity to

do so. Covenant violations also allow us to employ a regression discontinuity design

to help with identification.

There are potential countervailing forces against moral hazard in the private debt

market that may not be as relevant for public bond holders. First, banks, in con-

trast to public bond holders, may face reputation costs if they push borrowers into

inefficient bankruptcy or liquidation. These reputation costs are two-fold and are not

directly modeled in the one period setup of [22]. One cost that lead-lenders face is

the damage to their reputation in the loan syndication market in the event that the

borrower files for bankruptcy ([70]). In addition, in a competitive lending market,

a lender with a reputation of being an empty creditor, who imposes harsh renegoti-

ated loan terms or pushes borrowers into bankruptcy, would be at a disadvantage.

Moreover, lenders risk losing all the relationship-specific information and future prof-

its in the case of borrower bankruptcy. These reputation costs may be large enough

to discourage banks from engaging in the aforementioned exploitative behavior in a

multi-period setting. Thus, whether or not lender moral hazard exists in the private

debt market, is ultimately an empirical question that we address in this paper.

In order to answer this question, we first analyze changes in corporate policies of

borrowers conditional on covenant violations in a regression discontinuity framework.

[35] and [112] document that lenders in the private debt market use their bargaining

power to influence borrowers’ corporate policies after a covenant violation, and this

type of creditor governance improves firm value ([113]). On the other hand, banks that

hedge borrower exposure with CDSs, may be prone to moral hazard and not expend
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costly effort in negotiating and influencing firm policies. We find that borrowers

with CDS trading on their debt do not reduce their investment after their covenant

violations. This is in contrast to firms without CDSs which experience a significant

reduction in firm investment. These results are broadly supportive of lender moral

hazard and suggest that lenders do not expend much effort on influencing investment

policies of borrowers after covenant violations when borrowers have CDS trading on

their debt.

In the absence of availability of data on the exact net credit risk exposure of the

lender to the borrower, we use other measures of lenders’ propensity to engage in

credit risk transfer and consequent lender moral hazard. We consider three proxies:

banks’ purchase of credit derivatives, their securitization activity, and their reliance

on non-interest income. Consistent with our hypotheses, when lenders are more likely

to lay off credit risk and exhibit moral hazard (i.e., banks that engage in credit risk

transfer through credit derivatives or securitization, or rely more on non-interest

income), we find that covenant violations do not have a material impact on a firm’s

investment policies.

A potential alternative explanation for our results could be that investment projects

of firms with CDSs are more valuable and, hence, investment is not cut even after

covenant violations. [35] show that there is a significantly larger decrease in firm

investment post covenant violation when borrowers have information asymmetry or

agency conflicts (as proxied by cash holdings and the length of the relationship with

the lender), highlighting that inefficient investment is reduced. In contrast, we find

that when lenders can purchase CDSs on borrowers, there is no significant drop in

investment even when borrowers are more exposed to information asymmetry and

agency problems. These results provide further support to credit risk transfer through

CDS causing lender moral hazard.

We next consider the result of debt renegotiations after a borrower violates a
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covenant and when the borrower has a CDS trading on its debt. As discussed before,

after the covenant violations, creditors can request immediate repayment of the prin-

cipal and terminate further lending commitments. Alternatively, creditors can use

their additional bargaining power and extract higher spreads on loans extended con-

sequent to the covenant violation. Consistent with the argument that the availability

of credit derivatives on the borrower’s debt increases the lender’s outside options

([22]) and, hence, their bargaining power vis-á-vis the borrower, we find that lenders

extract rents after covenant violations by imposing higher spreads on renegotiated

loans of borrowers with a traded CDS. These results suggest that the availability of

CDS on borrowers induces lender moral hazard, where lenders do not expend costly

effort to influence firm policies that increase firm value, but extract rents using their

stronger bargaining power.

We next examine the effect of lender intervention on the stock returns of the bor-

rowing firm after covenant violation in the presence of a traded CDS on the firm’s

debt. For non-CDS firms, we find that after a covenant violation, the actions taken

by creditors to influence borrowers’ policies increase the value of the firm ([113]).

However, for firms with traded CDSs, the post covenant violation cumulative abnor-

mal returns are not significantly different from zero and are negative in the long-run,

indicating deteriorating firm performance. Consistent with this evidence, we find that

firms with traded CDSs on their debt are more likely to experience a credit rating

downgrade consequent to a covenant violation. Overall, these results again support

the existence of lender moral hazard wherein the lender doesn’t expend costly effort

to influence firm policies to improve firm value. Instead, lenders renegotiate higher

loan spreads post-covenent violation using their enhanced bargaining power. Conse-

quently, firm performance deteriorates as evidenced by credit rating downgrades and

lower stock returns.

One implication of severe moral hazard problems is that CDS trading may lead
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to higher borrower bankruptcies (see [22, 145]). Our results from a Cox proportional

hazards model of the survival time of the firm after covenant violation suggests that

CDS firms are neither more nor less likely to make a distressed exit or go bankrupt

after a covenant violation than firms without CDS.3 These results indicate that banks

may not be actively causing firm bankruptcies due to overinsurance (empty creditor

problem). Rules regarding risk-weighting of bank assets, such as those prescribed by

Basel Accords, suggest why banks may not overinsure against borrowing firms. The

risk weights, determined based on the credit rating of a borrower, can be substituted

by those of the CDS protection seller when the CDS is used to hedge credit exposure

from the borrower. Typically, as the CDS protection/insurance seller is better rated

than the borrower, it leads to lower risk weights on the credit exposure. However, if

CDS purchases lead to overinsurance, they are deemed speculative assets and receive

higher risk weights. Thus, overinsurance can be quite costly for banks. Banks that

do not overinsure are less likely to be empty creditors. Another potential reason

could be the inability of banks, which are arguably more informed, to overinsure (as

opposed to partially insure) against the borrower due to increased adverse selection

problems making any marginal credit protection expensive, especially after a covenant

violation.

Finally, we explore whether these ex-post lender moral hazard problems in the

presence of CDS trading on borrowers are consistent with ex-ante loan announce-

ment returns. Theoretically, [46] suggests that bank monitoring improves firm value.

Empirical evidence that bank credit line announcements indeed generate positive ab-

normal borrower returns is presented in [109], [86], [101], and [20] among others. If

capital markets anticipate lender moral hazard in the presence of CDS trading and,

consequently, lower lender monitoring (see [43, 117]), then loan announcement returns

3Following [66] and [67], firms are identified as distressed if they are in the bottom 5% of the
universe of firms in the Center for Research in Security Prices (CRSP) on the basis of the past
three-year cumulative return.
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for a firm with CDSs, should be relatively lower than returns for firms without CDSs.

In the absence of any agency problems between banks and firms, the loan announce-

ment returns of firms with CDSs should be statistically indistinguishable from firms

without CDSs. We find that loan announcement returns for CDS firms are muted

and not statistically different from zero. However, the loan announcement returns for

non-CDS firms are positive and significant, which is in line with the previous studies.

Overall, our results complement and enrich our understanding of the impact of

CDSs on the credit risk of the borrowers. [145] show that CDS introduction leads to

a higher incidence of bankruptcy and credit rating downgrades for firms. However,

they do not distinguish between public and private debt. In a related paper, [41] an-

alyzes out-of-court restructurings of public debt and shows that firms with CDSs face

difficulties with reducing debt out-of-court, thus increasing the likelihood of future

bankruptcy. The dramatically different results that we document in the context of

bankruptcy incidents after covenant violations on bank loans suggest that lenders in

the private market behave very differently from public bond holders. In contrast to

public debt holders, reputational concerns, future lending and non-lending business

from established relationships, and lower debt renegotiation frictions due to concen-

trated ownerships are a few of the factors that can mitigate such severe moral hazard

concerns in the private debt market.

Our work is also related to the contemporaneous paper by [137] who find that

debt covenants are less strict if CDS contracts exist on the borrowing firm’s debt at

the time of loan initiation. Interestingly, we find that, even ex-post, lenders do not

influence CDS firms to reduce their investment after covenant violations.

Our paper is related to work that examines the impact of credit transfer mecha-

nisms on lenders.4 However, CDSs are not the only mechanism that lenders have to

4The CDS market has grown quickly to an outstanding notional value as high as 5 Trillion U.S.
dollars, or approximately 15% of the total over the counter derivative markets in the 2007–2008
period.
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reduce their exposure to the borrowers. Some other possibilities are loan syndication,

loan sales, and loan securitization. In the context of loan sales, [40] empirically show

that firms whose loans are sold by their banks suffer negative stock returns, and sug-

gest that a loan sale conveys the selling bank’s private negative information on the

borrower to the market. As [118] discuss, the broad difference between loan sales and

a CDS purchase on a loan is that in the former cash flows are bundled with control

rights, while in the latter they are not.

[148] show that banks impose less restrictive covenants in anticipation of securi-

tization. However, [48] show that sold loans have significantly more covenants than

loans that are not sold, reducing the financial flexibility of the borrowers. Secu-

ritization and hedging borrower exposure with a CDS have very different economic

implications for lenders.5 Our results contribute to this literature and highlight lender

moral hazard when banks maintain control rights (but not economic exposure).

Our work also relates to the literature on the special nature of banks as information

producers and monitors.6 We show that the market reaction to a loan announcement

is insignificant when there is a potential for lender moral hazard in the presence of

CDS trading on the borrower’s debt. However, the loan announcement returns for

non-CDS firms are positive and significant, consistent with the previous studies.

The remaining sections are organized as follows. Section 3.2 discusses sources of

data and summary statistics. Section 3.3 discusses our empirical specifications and

results. Section 3.4 concludes.

5Also, as [148], among others, point out, generally loans of borrowing firms with high leverage,
non-investment grade rating, and severe information problems are securitized. On the other hand,
as [133] and our paper among others find, firms with CDSs traded against them are in similar, if
not in better, financial health than other firms.

6[101] focus on the status of the lending relationship and find that new bank loans generate zero
average abnormal returns, while loan renewals have a positive effect. The type of lender also matters.
[86] finds that loans placed with banks have a higher announcement effect compared to loans placed
through private placements. In contrast, [123] find a smaller return for bank loans. The findings of
[20] suggest that the quality of the lender affects the market’s perception of firm value.
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3.2 Data

3.2.1 Data sources and sample selection

We utilize five main datasets for our analysis: (i) Loan Pricing Corporation (LPC)

Dealscan database; (ii) Credit Market Analysis (CMA) Datavision dataset; (iii)

Bloomberg; (iv) Markit; (v) Consolidated Financial Statements for Bank Holding

Companies (FR Y-9C) and Bank Call Report data. We obtain firm-quarter level

financial data from COMPUSTAT and equity return-related information from the

CRSP.

Loan information is extracted from the Dealscan database. The basic unit of

loans reported in Dealscan is a loan facility. Loan facilities are grouped into pack-

ages. Packages may contain various types of loan facilities for the borrower. Loan

information such as loan amount, maturity, type of loan, and other information, is

reported at the facility level. The database consists of private loans made by bank

and non-bank lenders to U.S. corporations. The Dealscan database contains the ma-

jority of all commercial loans issued in the U.S. We construct our covenant violation

sample following [35] for the period between 1994 and 20127. We focus on loans of

non-financial firms with covenants written on current ratio, net worth, or tangible net

worth, as these covenants are more frequent and the accounting measures used for

these covenants are unambiguous, standardized and less susceptible to manipulation.

The data on the timing of CDS introduction is obtained from three separate

sources: Markit, CMA Datavision, and Bloomberg. The CMA Datavision database

collects data from 30 buy-side firms which consist of major investment banks, hedge

funds, and asset managers. [103] compare multiple CDS databases, namely GFI,

Fenics, Reuters, EOD, CMA, Markit, and JP Morgan, and find that the CDS quotes

in the CMA database lead the price discovery process. The CMA database is widely

7The covenant sample begins in 1994 as the information on covenants is limited before that period
in the Dealscan database
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used among financial market participants. We use the CMA database to identify all

firms for which we observe CDS quotes on their debt. To further ensure the accuracy

of CDS initiation dates on a firm, we augment the CMA database with the CDS

data from Bloomberg and Markit. We take the earliest quote date from those three

databases as the first sign of active CDS trading on a firm’s debt.

As discussed later, our primary variables of interest in the combined dataset are (i)

an indicator that shows if the firm violates a financial covenant, and (ii) an indicator

that shows if the firm has outstanding CDS trades in the corresponding quarter. We

do not have access to data regarding the exact firms against which lending banks

protect themselves using CDSs. However, since CDS protection can only be obtained

for firms with traded CDS, we divide firms based on traded CDS. We use the lead

bank’s Y9C and call report data to identify which lenders are active in the credit

derivatives market. Arguably, most stock market participants and investors also may

not have access to information on which specific bank loans are protected with a

CDS. Hence, we believe that our analysis based on the credit derivative exposure of

the bank and CDS trading for a firm is justified from a market investor’s point of

view. This is especially true when we try to assess the stock market reaction to loan

announcements and covenant violations.

3.2.2 Descriptive statistics

Table 23 summarizes the statistics for the loan announcement sample. Loan agree-

ments are significant external financing events: the median loan or commitment size

is 31% of the firm’s total assets, which also implies that the median loan announcer

is not a very large firm. The median maturity of a loan is approximately four years.

Panel B of Table 23 summarizes the number of loan announcements along with the

mean size of the loan each year. There are about 1,200 loan announcements per year,

which is consistent with previous studies. We observe that the number of loans issued
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increased from 1990 to 1997, before declining and plateauing thereafter. Since the

recent financial crisis, the number of loans issued per year has almost halved. The

increasing trend in the earlier part of the sample may be due to Dealscan’s increasing

coverage of issued loans over time. Panel B of Table 23 also shows that the average

size of loan announcements has also increased over the years. There are 3,074 loan

announcements for 507 unique firms where the borrowing firms have traded CDS

contracts. On the other hand, there are 24,375 loan announcements for 5,962 unique

firms when the borrowing firms have not traded CDS contracts. Table 23 also shows

that the median loan size for firms that have CDS contracts traded is larger than the

average loan size for firms that do not have CDS contracts traded. This difference in

loan size leads us to specifically control for loan size in the latter part of the analysis.

Table 24, Panel A summarizes the statistics for the current ratio and net worth

covenant samples from 1994 to 2012. The current ratio and net worth samples consist

of all firm-quarter observations of non-financial firms in the COMPUSTAT database.

These two samples are further divided based on whether a firm-quarter observation

is determined to be in covenant violation (denoted by “Bind”) or not in covenant

violation (denoted by “Slack”) for the corresponding covenant. Panel B displays

the same set of firm-quarter observations split by firms with CDSs and without CDSs

issued against them. The outcome variables and control variables used in the analysis

for changes in firm characteristics when a covenant violation occurs are defined in

the Appendix section. The distributions of the covenant violations and the control

variables are in line with data used in previous studies (see [35] and [113]).

3.3 Empirical results

This section provides evidence regarding the existence of lender moral hazard in the

presence of CDS trading on a borrowing firm’s debt. It also tests if an empty creditor

problem exists, and whether markets anticipate lender moral hazard. Sections 3.3.1,
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3.3.2, and 3.3.3 test for moral hazard based on (i) lender intervention in the firm’s

operations, (ii) loan renegotiations after covenant violation, and (iii) the realized stock

market returns in the post covenant violation period respectively. Section 3.3.4 tests

for the presence of an empty creditor problem where banks can overinsure and cause

a higher rate of firm bankruptcies by studying firm exit hazard rates post covenant

violation. Finally, Section 3.3.5 tests whether capital markets anticipate and discount

for the potential agency problems by comparing the stock market returns to the loan

announcement conditional on whether or not CDS trades against a firm’s debt.

3.3.1 CDS and Capital Expenditure After Covenant Violations

Financial covenant violations provide an ideal setting for studying agency problems

that banks face in the presence of CDSs. Covenant violations give creditors contrac-

tual rights similar to those in the event of payment defaults, such as the right to

request immediate repayment of the principal and terminating further lending com-

mitments. Such rights provide creditors with a sudden increase in bargaining position

post-violation. Hence, if agency problems between lenders and borrowers exist, they

should manifest after covenant violation.

Granting waivers for a violation to a borrowing firm requires banks to investigate

the firm’s current condition, and its future prospects, and then handle each waiver

on a case-by-case basis. This requires the lending bank to exert effort at a significant

cost. Hence, if a bank hedges or reduces its exposure to a firm through CDS trading,

and the firm violates a covenant, the bank may not have economic incentives to take

corrective actions. To test for such lender moral hazard in the presence of CDS

trading, we follow the regression discontinuity approach in [35].

The identification is based on comparing firms just around the contractually writ-

ten covenant violation threshold. We compare the average treatment effects (ATE)

of firms that violate a covenant and have a traded CDS, with firms that violate a
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covenant and do not have a traded CDS. [35] have shown that after covenant viola-

tion, creditors intervene and firm investment is reduced significantly. [112] show that

such intervention helps the firm regain financial strength over time, helping equity

holders as well. If banks with CDS protection intervene less in firm policy, then we

should see smaller corrective changes, resulting in smaller drops in investment, for

firms with CDSs traded against their debt than for firms without.

The empirical specification is as follows, where i is the subscript to denote a

specific firm, and subscript t represents time quarter:

Investmentit = α+β1d Bindit−1 × d CDSit−1 + β2d Bindit−1

+ β3d CDSit−1 + β4Xit−1 + ηi + δt + εit,

(23)

where Investmentit is the ratio of the capital expenditures to the capital in the

beginning of the period. Our main variables of interest is the interaction term

d Bindit−1 × d CDSit−1. d Bindit−1 is an indicator variable equal to one if a firm

i in quarter t − 1 is in covenant violation and zero otherwise. Similarly, d CDSit−1

is an indicator variable equal to one if there is a traded CDS contract for a firm i

in quarter t − 1. The coefficient β1 captures the average difference in investment

between a firm with a traded CDS and a firm without a traded CDS, after covenant

violation. Coefficient β2 captures the ATE of covenant violation for the firms that do

not have a traded CDS. Xit−1 is a vector of control variables to control for potential

differences in dynamic firm characteristics that affect firm investment. ηi denotes

firm fixed effects and δt estimates year-quarter fixed effects to control for unobserved

heterogeniety across firms and time. Detailed variable definitions of the dependent

variable and all the firm controls included in the regression specifications are provided

in the Appendix.

Table 25, Panel A reports the results. The first three columns utilize the full

dataset and the last three columns conduct the analysis using the regression disconti-

nuity sample. The regression discontinuity sample limits the sample of observations
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to 30% of the relative distance around the covenant violation boundary. Columns

(2), (3), (5), and (6) include firm level characteristics, and Columns (3) and (6) also

include the distance from covenant violation threshold as additional controls.

The negative and statistically significant coefficients that we find on the d Bind

indicator variable confirm the findings of [35], who show that firms face a significant

reduction in investment after a covenant violation due to creditor intervention. The

positive coefficient on the interaction term d Bind×d CDS shows that firms which

violate a covenant and have a CDS traded do not have as large a decrease in invest-

ment. In fact, adding the coefficients on d Bind and d Bind×d CDS, we note that the

net effect of violating a covenant on firm investment is statistically indistinguishable

from zero for firms with traded CDSs. The results hold through all six specifications.

This supports the hypothesis that in the presence of CDS trading, which allows lend-

ing banks to reduce credit exposure to borrowing firms, banks do not intervene in

changing firm investment policy after gaining control post covenant violation.

For a visual representation, Figure 7 plots firm investment with respect to the

distance of the firm from the covenant violation threshold 8. We consider two types of

covenants, net worth and current ratio, and use the tighter of the two covenants when

both are present to calculate the distance to covenant violation. The top panel reports

the relationship between firm investment and the distance to covenant violation for

firms which do not have CDSs traded against them. The bottom panel is for firms

with traded CDSs. In the case of firms without CDSs, we note a significant decline

in investments once a covenant is violated. However, in the bottom panel we do not

see any marked change in firm investment for firms with a traded CDS.

8We also plot the polynomial fit for firm investment versus firm distance to covenant violation in
the appendix section in Figure C.1
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3.3.1.1 CDS and Borrower CapEx After Violations: Lender Heterogeneity

In this section, we delve deeper into the hypothesis that bank moral hazard is causing

the muted reduction in firm investment after covenant violation. We investigate if

lender characteristics that affect bank moral hazard have predictable effects on firm

investment post covenant violation.

We match lenders from Dealscan to their parent bank holding companies (BHCs).

Using the parent BHC’s FR Y-9C reports, we gather data on their activities in the

credit derivatives market, loan sales, and securitization market and the total amount

of non-core banking activities. We are able to find matches for lenders for about 70%

of the packages in our sample. Data for credit derivatives and securitization & loan

sales are available from 1997 Q1 and 2001 Q2 onwards, respectively, while data on

non-interest income is available for the entire sample period from 1994-2012. Detailed

definitions for these lender variables are in the Appendix.

High (Low) lender activity for a specific lender variable is defined as the variable

being above (below) its computed median value using the entire sample period over

which data for it is available. Similar to specifications in Table 25, the dependent vari-

able is Investment and the main independent variables of interest are d Bind×d CDS

and d Bind. As before, along with firm level controls such as Macro q, Cash Flow,

and Assets (log), we also include the initial distance to the covenant violation thresh-

old. The distance to threshold helps control for the probability of covenant violation

(and ensuing conflicts of interest with the borrower) that the lender expects while

setting the initial covenant tightness.

We find that banks that actively reduce their credit exposure – by either buying

protection in the credit derivatives market or removing loans from their balance sheets

by securitizing them and/or selling them in the secondary loan market – intervene less

in borrowing firms’ investment policies after covenant violation. Table 26, Panels A

and B report these results for the full sample and the regression discontinuity sample,
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respectively. By noting the positive and significant coefficient of the interaction vari-

able d Bind×d CDS in Column (2) compared to the statistically and economically

insignificant coefficient in Column (1), we note that banks that have higher amounts

of CDS protection bought, intervene less. This holds true for Columns (3) and (4)

where banks with higher amounts of loans securitized, intervene less post covenant

violation. Finally, Columns (5) and (6) show that banks that have higher amounts

of non-interest income, i.e. banks with more non-core banking activities such as pro-

prietary trading and investment banking activities, intervene less as well. Overall,

banks that are more likely to hedge credit risk exposure intervene less in firms’ invest-

ment policies post-violation. These results are consistent with a bank moral hazard

argument.

3.3.1.2 CDS and Borrower CapEx After Violations: Borrower Heterogeneity

Table 27, Panels A and B conduct a test similar to the one above, where we investigate

whether borrowing firm characteristics that increase intervention costs for the lender

affect moral hazard. We examine two sets of problems that can increase the costs of

monitoring for the lender: (i) agency problems, such as free cash flow problems, are

exacerbated for firms that have a higher fraction of assets held as cash ([88]); and

(ii) information asymmetry and related monitoring costs should be higher when firms

have a shorter relationship history with the lending bank. Banks that are exposed

to such agency and information problems have even higher incentives to intervene

in firm policies after a credit event than in the case of firms in general. However, a

creditor hedged with a CDS has less incentive to intervene after a credit event, even

for firms with higher agency and information problems.

To conduct the test, we first divide our sample based on cash holdings and lending

relationship length. These borrower characteristics, as we argued above, should affect

the level of intervention post covenant violation, based on our hypothesis. Borrowing
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firms’ cash holdings data is from COMPUSTAT and lending relationship length is

obtained from Dealscan. High (Low) Cash is defined as cash being above (below) its

computed median value using the entire sample period over which data is available.

Lending relationship is computed at the firm level when a loan is made by summing up

the lending relationships of all lenders in the syndicate. A High lending relationship

sample corresponds to loans in which 30% or greater of the borrower’s past loans have

been made by the lending syndicate. A Low lending relationship sample corresponds

to loans in which a borrower has no historical relationship with the lenders in the

syndicate. As before, detailed definitions of these variables are in the Appendix.

Our dependent variable remains Investment and the main independent variables

of interest remain the interaction term d Bind×d CDS and also d Bind. Along with

firm-level controls, we again include the initial distance to the covenant threshold

to take into account potential future problems, such as covenant violation, that the

lenders might anticipate.

Comparing Columns (2) and (1) for both panels, we first note that the coefficient

of d Bind is twice as large and negative for firms with higher cash holdings when

compared to firms with low cash holdings. This result suggests that lenders recognize

possible free cash flow problems and reduce investment in firms with more cash. Next,

we note the positive and significant coefficient for the interaction term d Bind ×

d CDS for firms with a greater fraction of cash holdings. Thus, even though possible

free cash flow problems are large, the net effect of the presence of a CDS is that

there is effectively no reduction in firm investment after covenant violation. The

same phenomenon holds true when we compare the coefficient of interaction terms in

Columns (3) and (4) in either panel. Firms with shorter relationship history, which

implies higher information asymmetry and higher costs of due diligence by banks,

face less intervention in the presence of CDS trading.

A potential concern is that CDS traded firms tend to be large and if covenant
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violations are less constraining for larger firms then our results may possibly be driven

by size 9. In order to examine this we analyze the subsample of non-CDS firms by

dividing it into small and large firms. Large firms are defined as firms with an

asset value greater than $1 billion (which is close to the median asset value of CDS

firms). We follow the regression discontinuity setup as in column (4) of Table 25

and substitute d CDS with the large-firm dummy d Large instead. We find that the

d Bind×d Large coefficient is indeed positive but statistically insignificant from zero

with a t-statistic of 1.23 and a coefficient value of 0.006 which is half the magnitude

of the comparable d Bind×d CDS coefficient in column (4) of Table 25.

Overall, these results further bolster the hypothesis that banks suffer from moral

hazard in the presence of CDS trading, which results in muted or no corrective action

after a credit event.

3.3.2 Debt renegotiation after covenant violation

As discussed before, intervention, renegotiation, and monitoring are costly to banks.

If a lending bank has hedged or reduced its credit exposure to a borrowing firm by

purchasing a CDS, then the lender may not have incentives to intervene and help

improve the firm’s future prospects. At the same time, the lending bank still has

control rights over the firm, which allows it to renegotiate loans and grant waivers

after covenant violation. Thus, in the presence of a CDS against the firm, a hedged

lending bank may minimize the costly monitoring efforts post covenant violation.

If lending banks can overinsure themselves, through CDS, then arguably they

will have a higher incentive to accelerate the loan payment by not granting a waiver

and push the borrowing firm into bankruptcy (empty creditor problem). However,

there are many reasons why banks cannot get overinsured against their borrowers:

9We control for firm-size and include firm fixed-effects in our covenant violation regression which
should arguably address this issue to some extent. In unreported specifications, we also control for
non-linear terms of firm-size and find that our results are qualitatively unaltered.
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(a) regulatory reasons,10 (b) adverse selection,11 and (c) reputation concerns.12 In

such cases however, banks could grant waivers to borrowing firms and extract rents

via the renegotiated loan terms due to their increased bargaining power vis-á-vis the

borrower. This can be achieved, for instance, by imposing higher spreads or fees on

renegotiated loans of borrowing firms that have violated a covenant.

Table 28 investigates changes in the major loan contract terms post covenant

violation. We focus on loans initiated and amended by the same borrower-lead lender

pair before and after covenant violation 13 . The loan issuance date post covenant

violation is restricted to before the maturity of the loan facility which was affected by

the violation, or within one year of the covenant violation, whichever is the shorter

period. In addition to new issuances, we also gather data from the Dealscan facility

amendment datafile on the covenant violating loan facilities. Again, we require that

the amendment date be within one year of the covenant violation date.

Loan spread is the main dependent variable in our regression analysis. The

main independent variable of interest is the interaction term d AfterCovViol×d CDS.

d AfterCovViol is an indicator variable set equal to one for loan facilities initiated

10The rules regarding risk-weighting of bank assets, such as those prescribed by Basel Accords,
may also suggest why banks do not overinsure against borrowing firms. A CDS purchased to hedge
credit exposure receives a lower weight in terms of the risk based on the credit rating of the CDS
seller according to the Basel credit risk methodology. However, purchases that lead to overinsurance
are deemed speculative assets and receive higher risk weights as they are evaluated under the Basel
market risk methodology. Thus, overinsurance can be costly for banks.

11One can purchase CDS protection only if there is a counterparty willing to sell it. Given that a
lending bank is in an informationally advantageous position regarding a borrowing firm’s health, it
may be harder to find protection sellers to lay off credit risk at an attractive price, especially during
or after a credit event like a covenant violation.

12The concern of losing future loan origination business or syndicate ties might deter lending banks
from getting overinsured and pushing firms into bankruptcy after a credit event like a covenant
violation. However, given that large banks with diversified businesses are more active in the credit
derivatives market, reputation may be a weak disciplining mechanism for such lending banks (See
[70]).

13When there is a unanimous decision among the lenders to restructure or refinance a given loan
then the loan is entered as a new loan as opposed to an amended loan in Dealscan. Some of these
loans are marked as refinanced loans but many are not. Whereas the facility amendment dataset in
Dealscan mainly consists of amendments which requires a majority (51%) of lenders to agree to the
amendment (See [128])
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or amended after the covenant violation date and is set to zero otherwise. d CDS

is an indicator variable equal to one if the loan facility announcement occurs when

CDS is traded on the underlying firm’s debt, and zero otherwise. d TradedCDS is an

indicator variable equal to one if the firm in our sample has CDS traded on the debt

at any point during our sample period, and zero otherwise.

By noting the coefficient of d AfterCovViol in Column (1) of Table 28, we find that

after covenant violation, the spread of the renegotiated loan increases, which is in line

with the results in [113].14 The coefficient in Column (1) of our variable of interest

d AfterCovV iol × d CDS suggests that firms that have CDS traded against them,

experience an increase in spread of approximately 51%, or about 90 bps on average

compared to firms that do not have a traded CDS. The summation of coefficients in

Column (1) shows that post covenant violation, firms with a CDS experience a 65%

increase in loan spread (by approximately 120 bps). The main observed change in

loan terms post-violation is in the loan spread, through which the lending banks can

extract additional rents.15 Thus, renegotiation in the presence of CDS seems to only

benefit the lending bank and not the borrowing firm.

The remaining columns investigate if extraction of rents is higher in cases where

banks have a higher probability of hedging their economic exposure to borrowing

firms. Columns (2)–(9) in Table 28 report the results for changes in loan spreads

by dividing the sample by credit derivative market activity, securitization activity,

proportion of non-interest income, and syndicate size, respectively. A larger syndi-

cate size can imply a greater coordination failure among lenders upon a credit event

incentivizing lenders to hedge themselves in the CDS market ([22]). Therefore us-

ing these subsamples we test the hypothesis that lenders who actively reduce their

14We also find that the maturity decreases and the syndicate size is also significantly reduced.
15In unreported tests, we also check non-price loan terms such as whether the loan is secured, or

has performance pricing terms, sweep provisions. Although we note that CDS firms are significantly
less likely to have secured loans and sweep provisions, we do not see a significant change in the
non-price terms for CDS firms compared with non-CDS firms post covenant violation.

126



credit exposure extract more surplus from borrowing firms as a result of the higher

bargaining power vis-á-vis the borrower.

The coefficients of interaction variable d AfterCovV iol×d CDS in Columns (3),

(5), (7), and (9) are all positive and statistically significant. This suggest that banks

that have high credit derivative market activity, high securitization activity, a high

proportion of non-interest income, and banks that have large syndicates, and are

thus more likely to hedge credit risk of their borrowers, extract surplus by charging

a statistically significant higher loan spread in the case that CDS trades on borrower

debt. Overall, this evidence supports the hypothesis that banks attempt to extract

additional surplus from firms where they have higher bargaining resulting from a

lower credit exposure.

3.3.3 Equity return after violation

In this section, we examine the effect of lender intervention on the stock returns of the

borrowing firm after covenant violation where there is a traded CDS on the firm’s debt.

[113] find that after a covenant violation, the actions taken by creditors to change the

firm policy increase the value of the firm. On average, if creditor intervention improves

firm quality, then the equity markets should respond with higher cumulative abnormal

returns in the long run.

However, as discussed above, as a result of moral hazard stemming from the abil-

ity to buy CDS protection, creditors may not take corrective action post covenant

violation. Creditors may not expend costly effort to reign in inefficient firm invest-

ment, and instead may extract higher surplus from firms. In such a case, firms should

experience lower cumulative abnormal returns after a covenant violation. Therefore,

in the long run, firms with a traded CDS should have lower cumulative abnormal

returns after a covenant violation compared with firms that do not have a traded

CDS.
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We compare the stock return post-violation for firms with an outstanding CDS

with firms without an outstanding CDS for the full sample as well as the regression

discontinuity sample. As before, the regression discontinuity sample limits the obser-

vations in the sample to 30% of the relative distance around the covenant violation

boundary. Following the regression framework developed in [146] and [135] and im-

plemented in [113], we compute monthly abnormal returns using a four-factor model

(three Fama-French factors and the momentum factor). We also account for delisting

returns which are calculated from the CRSP delisting file. We then use the estimated

model to calculate cumulative abnormal returns of each firm over various horizons

after covenant violation. For our analysis, as in [113], we define a “new covenant

violation” for a firm as a violation where the firm has not violated another covenant

in the previous four quarters.

Figure 8 plots event-time abnormal returns after a new covenant violation, and

compares the returns of firms with CDSs with those of firms without CDSs. The

figure shows that in the post-violation period, firms without a traded CDS show

substantially higher positive abnormal returns than firms with a traded CDS. The

equity price of violating firms with a traded CDS also increases in the early part of

the post-violation period, but then remains flat after about a year.

Table 29, Panel A reports the results of the monthly CAR regressions post covenant

violation for the full sample of firms. Panel B reports the results for the regression

discontinuity sample. The dependent variable is the monthly cumulative abnormal

return CAR computed at various horizons. For instance, for every firm i and quarter

q, CAR(1,m) is computed by summing up the monthly abnormal returns of firm i

from the first month following quarter q until the mth month. The main indepen-

dent variables of interest remain d Bind and d Bind×d CDS. The control variables

included in the regressions are assets (log), tangible assets, operating cash flow, book

leverage, interest expense, and market-to-book. All control variables are lagged by one
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quarter and their definitions are provided in the Appendix. All columns include firm

level accounting variables as controls along with firm fixed effects and year quarter

fixed effects.

Consistent with Figure 8 and the findings of [113], we note that the coefficient

estimates of the d Bind indicator variable suggest that on average violating firms

experience positive stock returns after covenant violation. This can be attributed to

a reduction in inefficient investment and an improvement of management discipline

in general by lending banks that gain control rights. The coefficient estimates of the

d CDS indicator variable are not significant, suggesting that just the presence of CDS

trading does not lead to a different stock market performance. The variable of interest

is, as before, the estimated coefficient of the interaction between the d Bind and

d CDS indicator variables. We note that over time, the coefficient of the interaction

variable is statistically and economically significant and negative. The net effect

on firms with a CDS traded against them post covenant violation is statistically

indistinguishable from zero, as observed by the sum of the d Bind and d Bind×d CDS

coefficients.

We next carry out similar CAR regressions for our regression discontinuity sample.

In support of our results from the full sample, we again find that violating firms with

a CDS have much lower abnormal stock returns than firms without a CDS. The

coefficient of the interaction variable, over 24 months, i.e., two years post covenant

violation is −17% and is statistically and economically significant. The same remains

true 30 months and three years out.

Overall, these results suggest the absence of lender intervention in the borrowing

firm’s interest when the firm has a traded CDS, which potentially allows creditors to

hedge their credit risk.
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3.3.4 Firm survival after covenant violation

If banks face an empty creditor problem, then firms should default more often in

the presence of CDS trading. This is because in this extreme case of moral hazard,

overinsured banks benefit from firm bankruptcy. As banks gain control rights after

covenant violation, they should use these control rights to push firms into bankruptcy.

To test this hypothesis, we conduct a survival analysis for firms after a covenant

violation.

We first examine the frequency of firm exit from our sample. We identify firm

exits from the CRSP delisting codes16 and Moody’s Ultimate Recovery Database

(Moody’s URD) which contains information on all bonds rated by Moody’s.17 Firms

which do not have delisting codes in the CRSP dataset are classified as dropped due

to financial distress, in case we also fail to find firm data on total assets, total sales,

common shares outstanding, and the closing share price in COMPUSTAT.

Overall, we find that the frequency of firm exit within four quarters after covenant

violation is 7.82% in our sample compared to a firm exit rate of 3.30% when there is

no covenant violation. Distress related exits within the four quarters after covenant

violations are 4.5% while non-distress related exits (mergers, going private) over the

same period after covenant violation is 3.32%. We also note that only 5% of all the

exits over fours quarters after covenant violations are CDS firms, whereas this number

is 2% for our entire sample period.

We run a Cox proportional hazards model on loan-quarter observations, where the

hazard rate is the likelihood of a firm exit after a covenant violation. The survival time

16Financial failure is defined as liquidation (400 – 490), bankruptcy (574). Other forms of firm
exit include mergers (200 – 290), or going private (573). Active firms have codes ranging from (100
– 170).

17Moody’s defines default as an event when one or more of the following occurs: (a) there is
a missed or delayed disbursement of interest and/or principal, including delayed payments made
within a grace period; (b) the company files for bankruptcy, administration, legal receivership, or
other legal blocks to the timely payment of interest or principal; and (c) a distressed exchange takes
place.
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is measured in quarters from the firm’s covenant violation until its exit. Specifically,

we estimate the hazard rate h(t) which is the conditional probability that a firm will

exit between t and t+ δt conditional on surviving until time t. Formally, let T be the

time when the firm exits. Then h(t) is defined as:

h(t) = lim
δt→0

P(t ≤ T < t+ δt|T ≥ t)

y
.

In our hazard regression model, the hazard function is then represented by:

h(t,x, z (t)) = h(t) exp

(
k1∑
i=1

βixi +

k2∑
j=1

γjzj,t−1

)
(24)

In the above equation, x = (x1, x2, . . . , xk1)
′ is a time-independent vector of

variables which consists of the initial covenant tightness, industry fixed effects and

year fixed effects. zt−1 = (z1,t−1, z2,t−1, . . . , zk2,t−1)′ is a time-dependent vector of

lagged firm characteristics affecting the hazard rate of firm exit.

Table 30 reports the results. Specification (1) examines all firm exits, while spec-

ifications (2) and (3) examine distress related exits and non-distress related exits,

respectively. An insignificant coefficient for the d CDS indicator variable, which

is our main variable of interest, suggests that CDS firms are neither more nor less

likely to exit the sample after covenant violation. This result is evidence against the

presence of a severe empty creditor problem where an over-hedged creditor has an

incentive to push the firm into bankruptcy.

Next, we measure firm distress in an alternative manner. We define distress and

outperformance based on [66] and [67], among others, to be the firms in the bottom

and top 5% of the entire universe of firms in the CRSP dataset based on the past

three-year cumulative return. The reason we focus on distress is because distressed

firms are generally more likely to be bankrupt. The insignificant coefficient estimates

on the d CDS indicator variable for the distress regression in specification (4) based

on cumulative equity return confirms our previous result that CDS firms are not more
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likely to be distressed when compared with non-CDS firms. As a comparison, we also

investigate the probability of firms outperforming the universe of CRSP firms in

Column (5). Interestingly, the negative and significant result on the d CDS indicator

variable suggests that firms with a CDS traded against them have a significantly

lower likelihood of outperforming the universe of firms. These results suggest that

creditors do not cause the CDS firm to be distressed or push them into bankruptcy

after covenant violation as suggested by the severe empty creditor problem where

lenders are over-hedged. However, if the creditors are at least partially hedged, they

do not exert effort to improve firm performance either.

A concern may be that firms with a CDS traded against them are inherently

different or distressed to begin with. To address such potential selection concerns

regarding the presence of CDS trading, we employ an instrumental variables approach.

Following [133], we instrument the presence of CDS trading by the average amount of

forex derivatives used for hedging purposes relative to total assets of the lead syndicate

banks and bond underwriters with which the borrowing firm has conducted business

in the past five years. Data on bond underwriters is obtained from Mergent Fixed

Income Securities Database (FISD). Following the methodology in [152], we use the

fitted value from a probit model for d CDS as shown in the appendix Table C.2 as

an instrumental variable for d CDS. We estimate the model for the determinants of

CDS trading on firm-quarter observations for the full sample including additional

controls that might affect the propensity of CDS trading on a firm. We then run

a 2SLS regression using a linear probability model with the fitted CDS probability

as an instrument. Table C.1 in the Appendix reports the results. As in Table 30,

the negative coefficient in Column (1) for all exits, and the insignificant coefficients

for the d CDS indicator variable in Columns (2)-(4) suggests that CDS firms are

not more likely to exit the sample after covenant violation. As before, Column (5)

suggests that firms that have CDS traded against them have a lower likelihood of
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outperformance.

While exits and stock performance provide corroboration of our hypothesis of bank

moral hazard in the presence of CDSs (but not the extreme case of an empty creditor

problem), another firm event that can shed light on bank behavior before firm exit

is a debt rating change. Hence, we examine the frequency of a rating downgrade or

upgrade conditional on covenant violation. We gather rating change events from FISD

and construct loan-quarter level observations post covenant violation. If a firm in a

given quarter post covenant violation is downgraded (upgraded) by any of the three

rating agencies – namely S&P, Moody’s or Fitch – then an indicator varible d DNG

(d UPG) is set to one; otherwise it is set to zero. We then run a hazard model

similar to the firm exit regressions. However, in this case, the sample is limited to

loan-quarter observations of rated firms.

Table 31 reports the results for the ratings change using a Cox proportional haz-

ards model. Specifications (1) and (2) show that traded CDS firms are more likely

to get downgraded, and not upgraded after a covenant violation compared with non-

traded CDS firms. Columns (3) and (4) show that these results are robust to using

the instrument variables approach for CDS trading as well.

Overall, the evidence above suggests that the lender moral hazard in the pres-

ence of CDS trading leads to under-performance of firms, but does not increase the

likelihood of distress or default.

3.3.5 Loan announcement results

Do capital markets anticipate lender moral hazard in presence of CDS trading, and the

resulting under-performance of firms due to lax monitoring? To answer this question,

we focus on loan announcement results. The literature has shown that bank loan

announcements lead to positive abnormal returns for stocks (see [109, 86, 101, 20]

among others). The theoretical argument hinges on the special role of banks: bank
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monitoring increases firm value and loan issuance signals positive private information

regarding the firm (see [46]). However, if the purchase of CDS protection by banks

creates moral hazard, then equity holders who anticipate such agency problems should

discount the significance of bank loan announcements. This, in turn, should lead to

lower loan announcement abnormal returns for CDS firms when compared with non-

CDS firms.

To test this, we conduct an event study on the abnormal return of firms’ stocks

around the loan announcement date (using the deal active date of a loan in Dealscan).

We compare the loan announcement effect in a five-day window (-2,+2) for firms with

CDS against their debt with those firms without. The null hypothesis is that there

is no difference in the loan announcement return between firms with CDS and those

without, and hence, the estimate of interest is the average effect of the presence of

CDS trading on loan announcement returns.

We first compare the loan announcement effect for the full sample. The full

sample includes both firms that never had CDS traded against their debt and firms

that have had CDS traded at some point in the sample period. Table 32 reports

the results. Consistent with previous studies, we find a significantly positive stock

price reaction at the time of the loan announcement for the full sample. The average

five-day abnormal return is 0.39%, significant at 1% level. These results are similar

in magnitude to findings in the literature that suggests that bank loans are special

in terms of providing monitoring benefits to the firm. However, we find that for loan

announcements of firms with CDS, the stock abnormal return is close to zero (mean

five-day CAR of 0.10%, which is statistically insignificant).

A potential concern is that the firms with CDS are inherently different from firms

that have never had CDS traded. The right-hand side of the table reports the results

only for firms that had CDS traded against their debt at some point in time, compared

to the same firms when they did not have CDS traded against their debt. Even within
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this set of firms that have traded CDSs, the average five-day loan announcement

abnormal return is 0.31%, significant at the 1% level, before the introduction of

CDS trading, and in the period after the introduction of CDS trading, the five-day

abnormal return drops to 0.08%, which is not statistically significant.

The univariate comparison of loan announcement returns described above suggests

a possible decline in the traditional value that the market places on a bank’s role after

the introduction of CDS trading. We next conduct a multivariate regression analysis

to examine whether this conclusion changes when we control for other determinants

of borrower loan announcement abnormal returns identified in the literature.

The dependent variable for the multivariate analysis is the five-day (-2,+2) stock

cumulative abnormal return (CAR) of the borrowing firm, where day 0 refers to the

loan announcement day. The main variable of interest is, as before, the CDS indicator

variable d CDS, that takes a value of 1 if a firm has CDS trading on its debt at the

time of the loan announcement and 0 otherwise.18 If CDS trading leads to bank moral

hazard that the market anticipates ex-ante, then we should expect the coefficient on

the CDS indicator variable to be negative and statistically significant.

We employ four sets of controls to capture additional determinants of loan an-

nouncement returns: (i) loan-level characteristics; (ii) pre-announcement stock per-

formance controls; (iii) firm level accounting variables as controls; and (iv) controls

that may determine the presence of CDS trading. Loan-level characteristics include

variables such as the interest rate spread at which the loan was obtained, the size

of the loan, the horizon of the loan, and the number of lenders in the syndicate.

All these characteristics contain potential information about the firm’s future plans

18As discussed before, we do not have access to data regarding which bank obtains protection
using a CDS against which firm. We divide firms based on traded CDSs. We think this approach
is reasonable since stock market participants also may not have access to bank data regarding
which bank loans are protected with a CDS. Hence, stock market participants also respond to loan
announcements based on a similar information set, i.e., expected CDS exposure of the bank with
respect to a firm.
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and how banks perceive them. [95] show that firms tend to sell new equity claims

following a run-up. If the issuance of bank loans are related to similar trends, then

pre-announcement stock performance such as Runup and Beta of the firm’s stock

may be related to the abnormal return around loan announcement. We also include

idiosyncratic volatility as an independent variable since shareholders in a risky firm

might react more positively to the initiation of a loan and accompanied monitoring,

than shareholders of a less risky firm (see [20]). [19] show that large firms are able

to obtain large loans at lower interest rates. Hence, firm level accounting variables

such as size of the firm and leverage may be relevant to firm performance around loan

announcement. A loan announcement event for a profitable company or a firm with

a high current ratio could convey a different signal to the market than an unprof-

itable firm or a firm with a low current ratio, which may require more monitoring.

Consequently, we expect a relationship between variables such as profitability and

current ratio and the abnormal stock return on the day of loan announcement. Firms

with high market-to-book ratios tend to have more growth options, and hence, we

expect alleviation of financial constraints to be especially important for such firms

(see [63]). Since we are interested in the impact of CDS trading on bank behavior,

we also included controls that may determine which firms have CDS traded against

their debt.

Table 33 reports the loan announcement regression results for the full sample of

firms. To address any industry level announcement effects, the specifications include

industry fixed effects. The columns also include an indicator variable d TradedCDS

to control for firms that have ever had a CDS traded against them. This control helps

address concerns about selection bias due to the inherent heterogeneity of firms that

ever had a CDS traded against their debt. We also control for the purpose of the deal

and time fixed effects.

All specifications (1)-(4) show that the coefficient of the CDS indicator variable
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(d CDS ) is indeed negative and statistically significant in each case. As shown in

specification (4), which is the most exhaustive, firms with traded CDS conservatively

have approximately a 0.5% lower abnormal loan announcement return.

These results are consistent with the hypothesis that suggests that capital markets

anticipate bank moral hazard ex-ante when firms with CDSs obtain loans.

3.3.6 Evidence against adverse selection

In this section, we further investigate whether selection in terms of the quality of

firms that have traded CDS can explain the muted loan announcement response.

The muted loan announcement returns could be because the quality of firms that

have CDS traded against them is worse at the time of loan announcement. In other

words, the presence of a CDS market allows lower quality firms to obtain loans, and

hence, markets discount the loan announcements since the markets believe banks are

not screening firms with CDSs carefully.

Table C.3 in the Appendix investigates this concern by considering various mea-

sures of firm health such as Altman Z-score, proportion of intangible assets, interest

coverage, and cash flow volatility. Controls include firm level characteristics such as

whether the firm has a rating, which may indicate different access to credit mar-

kets, firm size, leverage, market-to-book, profitability, and current ratio, and other

characteristics that may affect the probability of CDS trading.

In Column (1), we note that the indicator variable CDS loads positively on the

Altman Z-score, suggesting that firms with traded CDS are, in fact, in relatively

better health statistically, and not worse health. A higher proportion of intangible

assets at the firm may suggest higher information asymmetry and riskier loans. The

insignificant coefficient of d CDS in Column (2) shows this not to be the case. Firms

with low interest coverage may be risky as they are closer to potential technical

default. Column (3) shows that firms with traded CDSs do not have statistically
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different interest coverage than firms without. Cash flow volatility can also indicate

firm level risk. Column (4) again shows that firms with traded CDSs are similar

in this dimension as well to firms without traded CDSs. These results suggest that

firms with traded CDSs are not in relatively worse financial health at the time of loan

announcement. This evidence suggests that the quality of firms at the time of loan

announcement cannot explain the muted response of the markets.

Another possible explanation for the muted loan announcement returns could be

that the lenders lending to CDS and non-CDS firms are different. In that case, the

loan announcement result between CDS and non-CDS firms may be driven by some

unobserved heterogeneity among different lender-types. Table C.4 investigates this

concern by including Lender fixed-effects in the loan announcement CAR regressions

in specifications (1) & (2). Specifications (3) & (4) are more exhaustive and include

both Lender and Firm fixed-effects. In all of the columns (1) – (4), the negative and

statistically significant coefficients on d CDS show that the even after controlling for

lender heterogeneity, loan announcement returns for CDS traded firms are muted.

3.4 Conclusion

The growth of CDSs have allowed banks to now originate a loan and continue to

service the loan without being exposed to the borrowing firm’s prospects. This paper

empirically investigates agency problems that banks may suffer in the presence of CDS

trading. By analyzing changes in firm policy in case of covenant violations, we provide

evidence consistent with the presence of bank moral hazard in the presence of CDS

contracts. CDS firms do not decrease their investment after a covenant violation, even

those that are more prone to agency issues. Moreover, consistent with the increased

bargaining power of the lenders, CDS firms pay a significantly higher spread on loans

issued after covenant violations than non-CDS firms that violate covenants. These

results are magnified when lenders have weaker incentives to monitor (higher purchase

138



of credit derivatives, higher amount of securitization, and higher non-interest income).

However, we do not find evidence in support of a more severe empty creditor

problem, where banks overinsure themselves and cause firms to go bankrupt more

often. Our loan announcement return results are also more consistent with lender

moral hazard but not the empty creditor problem. The capital markets seem to an-

ticipate this lender moral hazard, leading to insignificant loan announcement return,

for firms with CDSs, as compared to positive returns for non-CDS firms. It seems, in

contrast to public debt investors, the reputation of the lenders or regulatory capital

requirements constrain private lenders to not overinsure themselves with CDSs, and

push firms into inefficient bankruptcy or liquidation.
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Figure 7: Investment vs distance to violation: CDS vs non-CDS firms

This figure plots investment vs distance to covenant violation. Distance to covenant violation

is defined as the negative of the relative covenant distance for every firm-quarter observation

(−Ratio−CovenantThresholdRatioCovenantThresholdRatio ). In case both, net worth and current ratio covenants are present,

the tighter of the two is chosen to compute the distance to covenant violation. The plot displays

the mean investment for 60 bins defined along the distance to covenant violation on each side with

95% confidence bands.
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Figure 8: Financial covenant violations and stock price performance

This figure plots event-time abnormal returns post covenant violation for firms in the presence and

absence of CDS on its underlying debt. Following the regression framework developed in [146] and

[135] and implemented in [113], monthly abnormal returns are computed using a four-factor model

(three Fama-French factors and the momentum factor) over the entire sample period by including

dummy variables for the covenant violation event month and for months prior and post the event

month for which we need to compute the monthly abnormal returns. We also account for delisting

returns computed from the CRSP delisting file. The estimated model is then used to compute the

monthly abnormal return for each firm and the cumulative abnormal returns. Data for the three

monthly Fama-French factors and the momentum factor are gathered from Kenneth French’s web

data library.
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Table 23: Loan sample summary statistics

This table presents summary statistics (mean, median, standard deviation, and the 10th and 90th

percentile) for the loan characteristics for all loans made to non-financial firms found in the Dealscan

database during the period of 1990–2012. The sample consists of 5,951 firms and 27,450 packages

and the following loan characteristics are at the package level. A package is a collection of loans

made under a common agreement or a deal. Variable definitions for the loan and firm cahracteristics

are provided in the Appendix section.

Panel A : Summary statistics of loan sample

Mean Median 10th 90th Std. Dev N

Loan Size (Mil) 352.030 127.000 10.500 1000.000 580.861 27449
Relative Loan Size 0.308 0.192 0.036 0.658 0.620 27449
Maturity (Months) 48.582 48.700 12.133 85.233 28.264 25946
Assets (log) 6.529 6.449 4.021 9.274 1.922 27450
Book Leverage 0.297 0.286 0.026 0.564 0.199 27120
Market-To-Book 1.658 1.352 0.898 2.815 0.933 26400

Panel B : Summary statistics by year

Year CDS=0 CDS=1

Count Loan Size Count Loan Size
(#) (Median) (#) (Median)

1990 588 30.00
1991 802 35.00
1992 1019 40.00
1993 1141 55.00
1994 1436 75.00
1995 1442 100.00
1996 1806 77.00
1997 2324 100.00
1998 1840 100.00
1999 1619 135.00
2000 1502 150.00
2001 1261 100.00 197 650.00
2002 1103 85.40 263 600.00
2003 971 100.00 308 500.00
2004 948 133.50 383 680.00
2005 847 165.00 399 750.00
2006 796 175.00 334 950.00
2007 711 225.00 338 1000.00
2008 485 150.00 136 750.00
2009 345 100.00 130 600.00
2010 484 200.00 178 917.50
2011 666 300.00 303 1000.00
2012 239 300.00 105 1250.00

Total 24375 100.00 3074 750.00
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Table 24: Summary statistics of the covenant violation sample

This table provides the summary statistics for the covenant violation sample which was constructed

based on [35]. The covenant sample begins in 1994 as the information on covenants is limited before

that period. There are two main covenant samples included in the analysis - the current ratio

covenant sample and the net worth covenant sample. The median and standard error are provided

in square brackets and round brackets respectively.

Panel A provides summary statistics for the current ratio and net worth covenant samples from

1994 to 2012. The current ratio and net worth sample consists of all firm-quarter observations of

non-financial firms in the COMPUSTAT database. The current ratio (net worth) sample consists

of firms whose private loans have a current ratio (net worth and/or tangible net worth) covenant as

per the Dealscan database between 1994 to 2012. These two samples are further divided based on

whether a firm-quarter observation is determined to be in covenant violation (denoted by “Bind”)

or not in covenant violation (denoted by “Slack”) for the corresponding covenant.

Panel B displays the same firm-quarter observations for CDS and non-CDS firms. The data on

the timing of CDS introduction is obtained from three separate sources: Markit, CMA Datavision

(CMA), and Bloomberg. Firm-quarter observations are classified as “CDS” observations if there are

CDS contracts trading on the firm’s debt in that quarter. The sample is further divided on whether

the observation is determined to be in covenant violation for either the current ratio, net worth

covenant, or both. Variable definitions of all the firm characteristics in the table are provided in the

Appendix section.

Panel A: Current ratio vs net worth. Mean, Median, and Standard error

Current Ratio Net Worth

Bind Slack Bind Slack

Assets(log) 5.335 (0.034) 5.191 (0.013) 5.277 (0.034) 5.882 (0.011)
[5.243] [5.190] [4.945] [5.803]

Market-to-Book 1.453 (0.022) 1.745 (0.014) 1.439 (0.022) 1.753 (0.014)
[1.215] [1.339] [1.138] [1.292]

Macro q 4.991 (0.221) 9.733 (0.161) 6.847 (0.237) 10.370 (0.121)
[1.974] [3.713] [2.375] [3.739]

ROA 0.016 (0.002) 0.034 (0.000) 0.005 (0.001) 0.035 (0.003)
[0.026] [0.034] [0.018] [0.033]

Tangible Capital 0.506 (0.007) 0.334 (0.002) 0.298 (0.004) 0.316 (0.002)
[0.477] [0.259] [0.231] [0.241]

Investment 0.066 (0.005) 0.099 (0.007) 0.050 (0.004) 0.086 (0.002)
[0.043] [0.055] [0.025] [0.048]

Cash Flow -0.051 (0.008) 0.100 (0.003) -0.099 (0.008) 0.099 (0.002)
[0.028] [0.076] [0.020] [0.076]

Book Leverage 0.433 (0.006) 0.258 (0.002) 0.401 (0.006) 0.244 (0.001)
[0.384] [0.232] [0.358] [0.235]

Firm-Qtr Obs. 2353 11104 3388 23797
Firms 395 901 541 1817

143



Table 24 (continued)

Panel B: CDS vs non-CDS firms. Mean, Median, and Standard error

CDS Non-CDS

Bind Slack Bind Slack

Assets(log) 9.291 (0.040) 8.769 (0.022) 5.106 (0.023) 5.600 (0.010)
[9.887] [8.738] [5.010] [5.585]

Market-to-Book 1.187 (0.016) 1.443 (0.018) 1.460 (0.017) 1.773 (0.012)
[1.159] [1.276] [1.161] [1.313]

Macro q 6.468 (0.748) 7.568 (0.344) 6.055 (0.178) 10.419 (0.109)
[2.478] [3.512] [2.119] [3.801]

ROA 0.027 (0.001) 0.032 (0.001) 0.009 (0.001) 0.035 (0.002)
[0.025] [0.032] [0.020] [0.033]

Tangible Capital 0.368 (0.015) 0.340 (0.006) 0.389 (0.004) 0.320 (0.001)
[0.347] [0.270] [0.300] [0.244]

Investment 0.041 (0.003) 0.047 (0.002) 0.059 (0.003) 0.093 (0.003)
[0.024] [0.038] [0.032] [0.051]

Cash Flow 0.066 (0.016) 0.122 (0.009) -0.085 (0.006) 0.100 (0.002)
[0.051] [0.075] [0.022] [0.077]

Book Leverage 0.316 (0.008) 0.291 (0.003) 0.412 (0.004) 0.248 (0.001)
[0.298] [0.285] [0.372] [0.232]

Firm-Qtr Obs. 330 1601 5172 28360
Firms 42 110 814 2228
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Table 25: Investment response to covenant violations: Regression discontinuity

This table follows the regression discontinuity (RD) approach for investment in [35]. The sample

consists of firm-quarter observations for non-financial firms merged with COMPUSTAT. Panels A

and B present results for the full sample and the RD sample, respectively. The RD sample in Panel

B is defined as those firm-quarter observations that have a relative distance (absolute value) of less

than 0.3 around the covenant violation boundary. The dependent variable is Investment and the

main independent variables of interest are d Bind and d Bind×d CDS, where d Bind is an indicator

variable equal to one if a firm-quarter observation is determined to be in covenant violation and zero

otherwise; and d CDS is an indicator variable equal to one if there is a traded CDS contract for that

firm-quarter observation. All control variables are lagged by one quarter. Variable definitions of all

the firm characteristics in the table are provided in the Appendix section. All t-statistics displayed

in parantheses are robust to within-firm correlation and heteroscedasticity. *, **, and *** indicate

significance greater than 10%, 5%, and 1% , respectively.

Panel A: Full sample Panel B: RD sample

(1) (2) (3) (4) (5) (6)

d Bind -0.015*** -0.014*** -0.011*** -0.009*** -0.008*** -0.005*
(-8.13) (-8.29) (-5.68) (-4.91) (-4.06) (-1.87)

d Bind×d CDS 0.010*** 0.010** 0.008* 0.014*** 0.013** 0.012**
(2.77) (2.56) (1.88) (3.08) (2.32) (2.06)

d CDS 0.007** 0.011*** 0.011*** 0.000 0.008 0.008
(2.09) (3.35) (3.43) (0.03) (1.39) (1.46)

Macro q 0.002*** 0.002*** 0.002*** 0.002***
(16.81) (16.76) (6.90) (6.91)

Cash Flow 0.011*** 0.011*** 0.015*** 0.015***
(4.71) (4.65) (3.73) (3.63)

Assets(log) -0.011*** -0.011*** -0.013*** -0.012***
(-5.51) (-5.37) (-3.21) (-3.14)

NW Distance 0.000*** 0.015
(15.14) (1.60)

CR Distance 0.028*** 0.037**
(3.54) (2.44)

ΣCoeff -0.005 -0.004 -0.003 0.004 0.005 0.007
T-stat (-1.38) (-0.92) (-0.72) (1.02) (0.94) (1.31)

N 33439 28584 28584 11054 9532 9532
Adj. R2 0.385 0.434 0.434 0.418 0.455 0.456

Firm FE X X X X X X
Year-Quarter FE X X X X X X
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Table 26: Investment response to covenant violations : Lender characteristics

Panels A and B divide our main sample based on lender characteristics that may affect the level

of intervention post covenant violation. The observations in the sample are at lender-firm-quarter

level. High (Low) lender activity in a given lender variable is defined as the variable being above

(below) its computed median value using the entire sample period over which data for it is available.

Panels A and B present results for the full sample and the RD sample respectively. The RD sample in

Panels B1 and B2 is defined as those firm-quarter observations that have a relative distance (absolute

value) of less than 0.3 around the covenant violation boundary. The dependent variable is Investment

and the main independent variables of interest are d Bind and d Bind×d CDS, where d Bind is

an indicator variable equal to one if a firm-quarter observation is determined to be in covenant

violation and zero otherwise; and d CDS is an indicator variable equal to one if there is a traded

CDS contract for that firm-quarter observation. All control variables are lagged by one quarter.

Firm-level controls included in the regressions are Macro q, Cash Flow, Assets (log), and the initial

distance to the covenant threshold. Variable definitions of all the firm and lender characteristics in

the table are provided in the Appendix section. All t-statistics displayed in parentheses are robust

to within-firm correlation and heteroscedasticity. *, **, and *** indicate significance greater than

10%, 5%, and 1%, respectively.

Panel A: Lender characteristics – Full sample

CD bought Loans securitized Non-interest income

Low High Low High Low High
(1) (2) (3) (4) (5) (6)

d Bind -0.015*** -0.010*** -0.013*** -0.011*** -0.017*** -0.010***
(-6.19) (-4.12) (-4.18) (-3.59) (-6.96) (-4.53)

d Bind×d CDS 0.004 0.010** 0.009 0.010* 0.006 0.010*
(0.51) (2.01) (0.99) (1.82) (1.09) (1.89)

d CDS 0.015** 0.007** 0.012* 0.002 0.017*** 0.007**
(2.51) (2.37) (1.82) (0.49) (3.12) (2.26)

ΣCoeff -0.011 0.000 -0.004 -0.001 -0.011** -0.001
(-1.57) (-0.11) (-0.45) (-0.31) (-2.22) (-0.14)

N 15185 14674 8834 8889 15770 16379
Adj. R2 0.447 0.462 0.450 0.458 0.449 0.448

Firm Controls X X X X X X
Firm FE X X X X X X
Year-Quarter FE X X X X X X
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Table 26 (continued)

Panel B: Lender characteristics – RD sample

CD Bought Loans Securitized Non-Interest Income

Low High Low High Low High
(1) (2) (3) (4) (5) (6)

d Bind -0.011*** -0.006* -0.011*** -0.011*** -0.011*** -0.006**
(-3.70) (-1.90) (-3.06) (-2.65) (-3.71) (-2.14)

d Bind×d CDS 0.002 0.014** 0.010 0.020** 0.008 0.014**
(0.27) (2.12) (1.52) (2.49) (1.33) (2.06)

d CDS 0.005 0.009 0.009 0.007 0.005 0.011
(0.84) (1.31) (1.49) (0.56) (0.93) (1.48)

ΣCoeff -0.008 0.008 -0.001 0.009 -0.003 0.008
(-1.11) (1.33) (-0.16) (1.37) (-0.56) (1.27)

N 5201 4945 2839 2826 5460 5619
Adj. R2 0.480 0.480 0.499 0.484 0.481 0.484

Firm Controls X X X X X X
Firm FE X X X X X X
Year-Quarter FE X X X X X X

147



Table 27: Investment response to covenant violations: Borrower characteristics

Panels A and B divide our main sample based on borrower characteristics that may affect the level

of intervention post covenant violation. The observations in the sample are at the firm-quarter level.

We compute the cash from COMPUSTAT and lending relationship using Dealscan. High (Low) cash

is defined as cash being above (below) its computed median value using the entire sample period

over which data for it is available. Lending relationship is computed at the firm level when a loan

is made by summing up the lending relationships of all lenders in the syndicate. A High lending

relationship sample corresponds to loans in which 30% or greater of the borrower’s past loans have

been made by the lending syndicate. A Low lending relationship sample corresponds to loans in

which the borrower has no historical relationship with the lenders in the syndicate.

Panel A and B present results for the full sample and the RD sample, respectively. The RD sample

in Panel B1 and B2 is defined as those firm-quarter observations that have a relative distance

(absolute value) of less than 0.3 around the covenant violation boundary. The dependent variable is

Investment and the main independent variables of interest are d Bind and d Bind×d CDS, where

d Bind is an indicator variable equal to one if a firm-quarter observation is determined to be in

covenant violation and zero otherwise; and d CDS is an indicator variable equal to one if there is

a traded CDS contract for that firm-quarter observation. All control variables are lagged by one

quarter. Firm-level controls included in the regressions are Macro q, Cash Flow, Assets (log), and

the initial distance to the covenant threshold. Variable definitions of all the firm characteristics in

the table are provided in the Appendix section. All t-statistics displayed in parentheses are robust

to within-firm correlation and heteroscedasticity. *, **, and *** indicate significance greater than

10%, 5%, and 1%, respectively.

Panel A: Firm Characteristics – Full Sample

Cash Lending Relationship

Low High Low High
(1) (2) (3) (4)

d Bind -0.009*** -0.019*** -0.016*** -0.011***
(-4.09) (-6.15) (-7.01) (-3.56)

d Bind×d CDS 0.004 0.017*** 0.013 0.011
(0.58) (3.12) (1.53) (1.57)

d CDS 0.006* 0.014** 0.013** 0.008**
(1.72) (2.45) (2.37) (2.04)

ΣCoeff -0.005 -0.002 -0.003 0.000
(-0.64) (-0.34) (-0.33) (-0.03)

N 13335 14275 17995 8705
Adj. R2 0.400 0.437 0.428 0.448

Firm Controls X X X X
Firm FE X X X X
Year-Quarter FE X X X X
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Table 27 (continued)

Panel B: Firm Characteristics – RD Sample

Cash Lending Relationship

Low High Low High
(1) (2) (3) (4)

d Bind -0.008*** -0.007* -0.008*** -0.010***
(-2.95) (-1.68) (-3.13) (-2.79)

d Bind×d CDS 0.005 0.020** 0.022* 0.017*
(0.57) (2.17) (1.71) (1.81)

d CDS 0.007 0.002 -0.006 0.018*
(0.78) (0.16) (-0.59) (1.93)

ΣCoeff -0.003 0.013 0.014 0.007
(-0.32) (1.55) (1.11) (0.78)

N 5352 4009 5922 3097
Adj. R2 0.426 0.491 0.467 0.436

Firm Controls X X X X
Firm FE X X X X
Year-Quarter FE X X X X
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Table 31: Ratings change Cox proportional hazard rate model

This table conducts rating change hazard regression using Cox hazard regressions and a

2SLS IV regression using a linear probability model for firms after a covenant violation in

the presence and absence of traded CDS on its underlying debt. Downgrade and upgrade

rating change event data are gathered from FISD. The instrument used for CDS trading is

the average amount of forex derivatives used for hedging purposes relative to total assets

of the lead syndicate banks and bond underwriters with which the firms have conducted

business in the past five years.

The data is constructed at the firm-quarter level. The main independent variable of interest

is d CDS, which is an indicator variable equal to one if a CDS is traded on the underlying

firm’s debt for that firm-quarter observation, and zero otherwise. t-statistics displayed in

parentheses are robust to within-firm correlation and heteroscedasticity. *, **, and ***

indicate significance greater than 10%, 5%, and 1%, respectively.

Cox hazard 2SLS IV

DNG UPG DNG UPG

(1) (2) (3) (4)

d CDS 1.43*** 1.56
(3.07) (1.61)

CDS IV 0.18** 0.05
(2.00) (1.33)

Assets(log) 0.04 0.04 -0.01 -0.01
(0.33) (0.17) (-0.59) (-0.85)

Profitability -5.67*** 3.65** -0.56*** 0.03
(-5.08) (2.16) (-3.13) (0.65)

Book Leverage -0.05 0.72 0.10 0.04
(-0.04) (0.26) (0.95) (0.68)

Interest Expense/Assets 13.04 -25.97 -0.03 -0.72
(1.11) (-0.91) (-0.03) (-1.11)

Market-to-Book 0.05 1.16** -0.01 0.03
(0.14) (2.32) (-0.20) (1.58)

Initial Covenant Tightness 0.20 -0.11 0.00 -0.01
(1.20) (-0.69) (0.10) (-0.87)

Observations 11228 11228 7805 7805
Nob. events 652 208
Pseudo. R2 0.07 0.15
Adj. R2 0.15 0.03

Industry FE X X X X
Year FE X X X X
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Table 32: Loan announcement univariate results

This table reports stock price reactions to firm loan announcements. The sample consists of loan

announcements from 1990 to 2012. The full sample consists of all the loan announcements in the

period 1990-2012. The traded-CDS sample consists only of firms that have a CDS traded on their

underlying debt at any point in our sample period, i.e., from 1990 to 2012. In each panel, we report

cumulative abnormal returns (CAR) calculated over the 5-day event window (-2,+2), where day zero

represents the loan announcement event day. CAR is calculated using the market model. Count

reports the number of loan announcements used in each CAR calculation. We report averaged

CAR values separately for the “CDS=0” period and the “CDS=1” period. Loan announcements

that occur in the presence of CDS trading are considered to be in the “CDS=1” period, while loan

announcements that occur in the absence of CDS trading are considered to be in the “CDS=0”

period. Difference reports the difference in averaged CAR values between the “CDS=1” period and

the “CDS=0” period. t-statistics displayed in parentheses are robust to within-firm correlation and

heteroscedasticity. *, **, and *** indicate significance greater than 10%, 5%, and 1%, respectively

Full Sample Traded-CDS Sample

Mean CAR (%) Count Mean CAR (%) Count

CDS=0 0.39*** 24376 0.31*** 3713
(9.61) (4.08)

CDS=1 0.10 3074 0.08 2959
(0.90) (0.95)

Difference -0.29** -0.23**
(-2.37) (-2.01)

Total 0.36*** 27450 0.21*** 6672
(9.36) (3.67)
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Table 33: Loan announcement CAR regression

The specifications in Panel A report regression results of stock price reactions to firm loan

announcements. The dependent variable is the cumulative abnormal return (CAR) calcu-

lated over the five-day event window (-2,+2), where day zero represents the loan announce-

ment event day. CAR is calculated using the market model. Our main variable of interest

is d CDS, which is an indicator variable equal to one if the loan announcement occurs when

CDS is traded on the underlying firm’s debt, and zero otherwise. d TradedCDS is an idica-

tor variable equal to one if the firm in our sample has CDS traded on the debt at any point

during our sample period, and zero otherwise. We control for loan-level characteristics, pre-

announcement characteristics, firm-level characteristics, and CDS-trading characteristics

which are defined in detail in the Appendix.

Loan announcement CAR (-2,+2) regression

(1) (2) (3) (4)

d CDS -0.51*** -0.59*** -0.71*** -0.55***
(-3.10) (-3.42) (-2.84) (-3.14)

d TradedCDS 0.28** 0.26* 0.25*
(2.07) (1.83) (1.75)

Loan-level controls

Loan Spread 0.00 0.00 0.00 0.00
(0.04) (0.09) (0.15) (0.20)

Loan Size (log) 0.13** 0.07 0.05 0.08
(2.07) (1.09) (0.57) (1.20)

Maturity (Months) -0.00 -0.00 -0.00 -0.00
(-0.81) (-1.28) (-0.12) (-1.04)

Syndicate Size -0.01 -0.00 -0.00 -0.00
(-1.01) (-0.39) (-0.21) (-0.56)

Pre-announcement controls

Beta -0.25** -0.11 0.07 -0.15
(-2.18) (-0.81) (0.31) (-0.99)

Idiosyncratic Volatility 20.70*** 7.20 3.51 6.37
(3.76) (0.86) (0.27) (0.76)

Runup -2.03*** -1.97*** -2.08*** -1.98***
(-15.07) (-12.03) (-8.95) (-11.84)
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Table 33 (continued)

Firm-level controls

d Rated -0.20 -0.24* -0.34 -0.24*
(-1.54) (-1.72) (-1.23) (-1.70)

Assets (log) -0.07 0.04 -0.39** 0.03
(-1.15) (0.49) (-2.10) (0.41)

Book Leverage 0.71** 0.48 1.23 0.47
(2.26) (1.35) (1.60) (1.30)

Market-to-Book -0.15** -0.11 -0.24 -0.11
(-2.39) (-1.46) (-1.56) (-1.51)

Profitability 1.10** 0.44 -0.19 0.66
(1.97) (0.66) (-0.16) (0.97)

Current Ratio -0.03 -0.01 -0.11 -0.01
(-0.69) (-0.22) (-1.01) (-0.11)

CDS-trading controls

Analyst Coverage (log) -0.06 -0.03 -0.06
(-0.76) (-0.24) (-0.77)

Institutional Ownership 0.15 0.01 0.15
(1.58) (0.04) (1.64)

Stock Illiquidity 0.50 1.68** 0.46
(1.24) (2.34) (1.14)

Analyst Dispersion -0.08 -0.17* -0.08
(-1.40) (-1.93) (-1.31)

N 20683 15436 15436 15436
Adj. R2 0.024 0.024 0.123 0.026

Deal Purpose FE X X X X
Year FE X X X 7

Industry FE X X 7 7

Firm FE 7 7 X 7

Industry×Year FE 7 7 7 X
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CHAPTER IV

DO BOND INVESTORS PRICE TAIL RISK EXPOSURES

OF FINANCIAL INSTITUTIONS?

4.1 Introduction

The experience of the recent financial crisis highlights two aspects of risk-taking by

financial institutions that reinforced each other in the run-up to the crisis and con-

tributed to an increase in systemic risk.1 First, executives at financial institutions

have incentives to take on tail risks, that is, risks that generate severe adverse con-

sequences with small probability but, in return, offer generous returns the rest of the

time ([126], [92], [82] and [143]). Second, institutions have incentives to herd with

other institutions in investment choices, thus increasing their exposure to systemically

important sectors, such as housing, because they expect to be bailed out in the event

of a systemic crisis ([58]).

Given the importance of the financial sector and the negative externality on the

real economy from a widespread failure of financial institutions, there is an increased

focus on how to contain tail risk exposures of financial institutions. One recurring

idea in financial-sector regulation is that regulators increase their reliance on “market

discipline” in controlling institutions’ risk exposures. The idea is that a financial

institution will be more restrained in its risk-taking behavior if its cost of capital

increases with its risk exposure. However, market discipline can only be effective if

investors price the risk exposure of financial institutions. In this paper, we examine

whether bond market investors price the tail risk exposure of financial institutions in

1Systemic risk is the risk of widespread failure of financial institutions or the freezing up of capital
markets (see [5] and [79] for a more detailed discussion).
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which they invest.

We focus on tail risk because financial institutions are highly-levered entities,

whose equity capital may not be adequate to absorb the large losses that materialize

when a tail event occurs. Given that bondholders hold uninsured liabilities that do

not share in the upside from tail risk but may have to absorb losses when the tail risk

materializes, it is rational to expect that they will demand higher yield spreads from

institutions with higher tail risk exposures. This should be particularly true for in-

vestors in subordinated bonds, whose claims are junior to those of senior bondholders.

In fact, Pillar III of the New Basel Capital Accord places special emphasis on mar-

ket discipline through subordinated bonds, which are meant to act as loss-absorbing

instruments.

On the other hand, there are two reasons why bondholders may not price tail

risk exposures. First, implicit bailout guarantees may engender moral hazard prob-

lems among bond market investors. Bondholders of systemically important financial

institutions (SIFIs) may rationally anticipate a taxpayer-funded bailout of their in-

stitution in the event of a systemic crisis, and thus, may not price the institution’s

exposure to tail risk, especially systematic tail risk. Even bondholders of smaller

institutions may be subject to moral hazard, because they may rationally anticipate

indirect benefits from bailouts of SIFIs with which their institution has counterparty

links in the derivatives and wholesale funding markets. The experience of the recent

financial crisis, during which bondholders of many distressed institutions were able

to avoid losses thanks to government bailouts, lends credence to the moral hazard

argument.2 Second, it may be that, investors did not really expect a large tail event

2For instance, the government-assisted buyout of Bear Stearns by J.P. Morgan lifted the rat-
ing on Bear Stearn’s bonds from junk status to investment-grade status, and ensured that senior
bondholders of Bear Stearns did not have to suffer any losses. Similarly, the government bailout of
A.I.G. ensured that none of its counterparties had to take any haircuts on their claims. In the 2010
bailout of Irish banks, unsecured senior bondholders were paid in full even though the bonds did not
carry any explicit government guarantees. The only two U.S. institutions where senior bondholders
had to take significant haircuts were Lehman Brothers and Washington Mutual. The benefits to
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like the financial crisis to materialize, and hence, ignored tail risk as a low-probability

nonsalient risk before the crisis ([24] and [64]).3

We test these hypotheses using a large sample of primary bond issuances by U.S.

financial institutions during the 1990 to 2010 period. We focus on the primary bond

market because it directly affects the cost of institutions’ debt capital. As is standard

in the literature, we proxy for institutions’ expected tail risk using realized measures

of tail risk computed using the recent history of stock returns.4 We measure an

institution’s own tail risk using expected shortfall (ES ), which measures its expected

loss conditional on returns being less than some α-quintile. Specifically, ES is defined

as the negative of the average return on the institution’s stock over the 5% worst

return days for the institution over the year; i.e., ES measures the institution’s loss

in its own left tail. We capture the tail dependence between the institution and

the stock market using the marginal expected shortfall (MES ), which measures the

institution’s expected loss when the stock market is in its left tail (see [5], [27]).

Specifically, MES is defined as the negative of the average return on the institution’s

stock over the 5% worst return days for the S&P 500 index over the year. Clearly,

both ES and MES are realized measures of risk. [5] show that MES is an important

determinant of a financial institution’s overall contribution to systemic risk, and that

institutions with high MES before the onset of the financial crisis had worse stock

returns during the crisis years, all else equal. Henceforth, we will refer to MES as the

institution’s systematic tail risk, to distinguish it from ES, which may also be driven

by risk factors that are idiosyncratic to the institution.

bondholders from bailouts can be gauged from the fact that senior bondholders in Lehman were only
able to recover 21 cents on the dollar, whereas holders of Lehman’s commercial paper were only to
recover around 48–56 cents on the dollar.

3This view is supported by [87] and [39] who show that, before the financial crisis, the sensitivities
of structured products like CDOs to home prices were not taken into account by rating agencies and
investors alike.

4It is possible to obtain forward-looking measures of tail risk derived from equity options, but
that would significantly reduce the size of our sample, because only 30% of the institutions have
options traded.
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We first examine whether the yield spreads on new bond offerings at issuance

(Yield Spread) vary with the tail risk exposure of the financial institution issuing the

bonds. To test this, we estimate regressions similar to that in [30], where we include

the tail risk measures one at a time as the main independent variable of interest.5 As

expected, we find a robust positive relationship between Yield Spread and ES, which

indicates that the cost of debt capital is higher for institutions with a higher total

tail risk. Interestingly, however, we fail to detect any significant relationship between

Yield Spread and MES ; that is, bond market investors seem to ignore an institution’s

systematic tail risk. To alleviate the concern that the effect of systematic tail risk

may be subsumed by a bond’s credit rating or an institution’s size and leverage, we

estimate our regression after omitting these important controls, and obtain qualita-

tively similar results. To test the robustness of this result that systematic risk is not

priced whereas total risk is priced, we regress Yield Spread against equity volatility

(e.g., standard deviation of the institution’s stock return) and Beta, and arrive at a

similar conclusion: Yield Spread increases with equity volatility but does not respond

to systematic risk (Beta).

We next explore how the relationship between yield spreads and tail risk varies

with different bond characteristics that can affect an institution’s default risk and

the loss given default. When we distinguish between senior and subordinate bonds,

we find that, as expected, the positive relationship between yield spreads and ES

is significantly stronger for subordinated bonds. However, the pricing of systematic

tail risk MES does not vary between senior and subordinated bonds. In fact, a

more striking result is that the institutions’ MES is not priced even in the case of

subordinated bonds. We also find that, as expected, the positive relationship between

5As expected, ES and MES are highly correlated with each other, and with other risk measures,
such as equity volatility and Beta. Hence, we cannot include all risk measures simultaneously. We
focus on the pricing of tail risk because, given the high leverage of financial institutions, tail risk
should be a first-order concern for bondholders.
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yield spreads and tail risk is stronger for bonds with poorer credit ratings.

Next, we examine how the pricing of tail risk varies with firm characteristics that

may affect bailout expectations. As [143] highlights, if investors place a positive

probability that creditors would be protected in the event of failure, the prices of

financial instruments would be distorted - the greater the probability, the greater

the distortion. Consistent with the existence of too-big-to-fail (TBTF) subsidies for

large financial institutions (e.g., see [3]), we find that the relationship between yield

spreads and total tail risk ES is weaker for large financial institutions, although ES is

priced even in case of large financial institutions. However, there is no such variation

in terms of the pricing of MES, which is not priced regardless of the institution’s

size. An interesting class of institutions in our sample are the government-sponsored

entities (GSEs) such as Fannie Mae and Freddie Mac. Although bonds issued by GSEs

carry no explicit government guarantee of creditworthiness, there is a perception of

an implicit guarantee because it is widely believed that the government will not allow

such important institutions to fail or default on their debt ([143]). Consistent with

the existence of such an implicit guarantee, we find that the relationship between

yield spreads and tail risk measures is significantly weaker for GSEs.

We conduct several additional tests to further distinguish between the moral haz-

ard hypothesis and the nonsalient-risks hypothesis. First, we estimate our regressions

separately for the following four categories of institutions: depository institutions,

broker-dealers, insurance companies, and other financial institutions. Institutions

across these categories vary not only in terms of their risk exposures and balance-

sheet composition, but also in terms of implicit bailout guarantees from the govern-

ment. For instance, ever since the bailout of the Continental Illinois National Bank

in 1984, the FDIC and other regulatory agencies have repeatedly indicated that they

consider large banks too-big-to-fail (TBTF) because their closure might destabilize

the financial system and impose a negative externality on the real economy. On the
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other hand, there are no implicit guarantees for debt issued by insurance companies

as these are less likely to be considered systemically important. Thus, as per the

moral hazard hypothesis, the relationship between bond yield spreads and tail risk

should be weaker for depository institutions compared with other types of financial

institutions.

Consistent with this argument, we uncover striking differences in the pricing of

tail risk between depository institutions and other types of financial institutions. We

find that neither the total tail risk ES nor the systematic tail risk MES is priced in

the case of bonds issued by depository institutions, whereas both ES and MES are

priced in the case of bonds issued by broker-dealers and insurance companies. More

strikingly, we find that ES and MES are not priced even in the case of subordinated

bonds issued by depository institutions. These results cast serious doubt on the idea

that market discipline can be used to control the tail risk exposure of depository

institutions.

Second, we examine how the relationship between yield spreads and tail risk varies

based on the political connectedness of financial institutions. The idea is to exploit

political connectedness as a source of cross-sectional variation in bailout expecta-

tions, because politically connected institutions are more likely to receive government

bailouts ([57]). To test this idea, we hand-collect information on corporate lobbying

expenditures by financial institutions from the Center for Responsive Politics (CRP).

Consistent with the moral hazard hypothesis, we find that the relationship between

yield spreads and tail risk is significantly weaker for politically-connected institutions

compared with non-connected institutions, suggesting the existence of a bailout sub-

sidy for the debt of politically-connected institutions. If such a subsidy exists, a

natural question that arises is whether politically-connected institutions exploit the

subsidy to issue more debt. To investigate this question, we examine how the debt

issuance of institutions varies with their political connectedness. Although we do not
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find evidence that politically-connected institutions issue more debt on average, our

analysis shows that large and politically-connected institutions undertake more bond

issues and issue larger amounts, all else equal.

Third, we examine how the relationship between yield spreads and tail risk varies

in the immediate aftermath of crisis events, such as the Long Term Capital Manage-

ment (LTCM) crisis and the recent financial crisis. The idea underlying this test is

to exploit the time-series variation in bailout expectations following the large-scale

bailouts of troubled institutions during these crises. Not surprisingly, we find an

across-the-board increase in the cost of debt for all financial institutions following a

crisis event. However, consistent with the moral hazard hypothesis, the relationship

between yield spreads and tail risk is significantly weaker in the immediate aftermath

of the LTCM crisis and the recent financial crisis. In sharp contrast, we do not find

any such patterns surrounding the dotcom crisis of 2001. This is interesting because

the dotcom crisis was confined to the technology sector and did not lead to bailouts of

financial institutions. This differential impact of the dotcom crash compared with the

other two crisis events suggests that our results are more likely driven by expectations

of future bailouts rather than a general neglect of nonsalient risks.

Our paper is closely related to and complements the results in a contemporaneous

paper by [3] that finds that secondary bond yield spreads of large financial insti-

tutions are lower compared with other financial institutions even after controlling

for their risk exposures. They attribute this phenomenon to investor expectations

of implicit state guarantees for large institutions. Our paper differs from theirs in

the following respects: First, we focus on primary bond yield spreads that directly

reflect the institutions’ cost of debt capital. Second, our analysis is focused on the

pricing of tail risk measures that are of particular concern to bondholders, especially

investors in subordinated bonds. Finally, we provide further support for the moral

hazard hypothesis by showing that the pricing of tail risk is significantly weaker for
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politically-connected institutions compared with non-connected institutions. Over-

all, our evidence points to moral hazard in the primary debt markets for financial

institutions and complements the secondary debt market evidence in [3].

Our paper is related to prior studies of bank market discipline that focus on

whether uninsured bank liabilities such as certificates of deposit (CDs) and subordi-

nated notes and debentures (SNDs) contain appropriate risk premia. The literature

generally concludes that CD rates paid by large money-center banks include signif-

icant default risk premia (e.g., see [54], [78], and [31]). On the other hand, the

literature is divided with respect to the pricing of SNDs. Using a sample from 1983

and 1984, [14] and [72] fail to detect any relationship between SND pricing and bal-

ance sheet measures of bank risk. However, examining a longer sample period, [61]

conclude that SND prices become more sensitive to risk measurements as expectations

of government-sponsored bailouts decrease. The main difference between our study

and this literature is that we focus exclusively on the pricing of tail risk exposures

of financial institutions. Similar to [14] and [72], we fail to find any evidence that

subordinated bondholders of depository institutions care more about tail risk than

senior bondholders. Also, similar to [61], we find that the pricing of tail risk changes

with expectations of government bailouts.

Past research has highlighted the perverse impact of implicit bailout guarantees on

risk-taking behavior of financial institutions. This literature argues that expectations

of future systemic bailouts causes banks to correlate their risk exposure and take on

high leverage ([58]), incentivizes small banks to herd together with large banks and

increases the risk that many banks fail together ([2]), and generally exacerbates the

moral hazard of banks and bank managers ([16] and [127]). We contribute to this

literature by highlighting how implicit bailout guarantees also exacerbate the moral

hazard of bond investors, thus undermining bank market discipline. Our finding is

also in line with a recent study by [93] that shows that a large amount of aggregate
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tail risk is missing from the price of financial sector crash insurance (i.e., price of puts

on the financial sector index) during the recent financial crisis, which suggests that

investors in the options market are pricing in a collective government guarantee for

the financial sector.

Our study has potential regulatory implications in favor of internal restructuring/bail-

in provisions, which lower the expectations of future government bailouts. In par-

ticular, it is important that bondholders are made to share in any loss arising from

the institution’s failure. This is essential in restoring market discipline and ensuring

that prices of uninsured liabilities of financial institutions are in line with their risk

exposures. 6

The remainder of the paper is organized as follows. We describe our data sources

and construction of variables in Section 4.2, and provide descriptive statistics and

preliminary results in Section 4.3. We present our main empirical results in Section

4.4. We do additional tests in Section 4.5 to distinguish between our competing

hypotheses. Section 4.6 concludes the paper.

4.2 Data, Sample Construction, and Key Variables

Given the focus of our paper, our sample comprises only bonds issued by U.S. finan-

cial institutions over the 1990 to 2010 period. Following Acharya et al. (2010), we

classify U.S. financial institutions into the following four groups based on SIC codes:

depositories, which have a 2-digit SIC code of 60 (e.g., Bank of America, JP Morgan,

Citigroup, etc.); broker-dealers, which have a 4-digit SIC code of 6211 (e.g., Goldman

Sachs, Morgan Stanley, etc.); insurance companies, which have a 2-digit SIC code of

either 63 or 64 (e.g., AIG, Metlife, Prudential, etc.); and other financial institutions,

6Possibly recognizing these issues, Mario Draghi, President of the European Central Bank (ECB),
recently advocated that even senior bondholders must share in the losses at the worst-hit savings
banks in Spain. This was in sharp contrast to the bailout of Irish banks in late 2010 in which
unsecured senior bondholders were paid in full using taxpayer money even though they had absolutely
no form of government guarantee.
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which have a 2-digit SIC code of 61, 62, 65 or 67, and consist of nonbank finance

companies (e.g., American Express), real estate companies (e.g., CIT Group), and

GSEs (e.g., FNMA and FHLM), etc. We include all financial institutions in our sam-

ple regardless of their size. We have verified that our results are qualitatively similar

even if we confine our analysis to large institutions, defined as those with market

capitalization in excess of $5 billion dollars over the entire sample period. The names

of these large U.S. financial institutions are listed in Table D.1.

We obtain primary bond market data from Mergent’s Fixed Investment Securities

Database (FISD). FISD is a comprehensive database that provides issue details for

over 140,000 corporations, U.S. agencies, and U.S. Treasury debt securities.7 We

restrict our sample to U.S. domestic bonds and exclude yankee bonds, bonds issued

via private placements, and issues that are asset-backed or have credit-enhancement

features. We also exclude preferred stocks, mortgage-backed securities, trust-preferred

capital, and convertible bonds.8 We include only ratings issued by the top three

NRSROs – Standard and Poor (S&P), Moody’s, and Fitch. Our sample consists of

both senior and subordinated bonds.9 We obtain firm-level control variables from

COMPUSTAT’s quarterly firm fundamentals file and merge this information with

the primary market data.

Our main dependent variable of interest is Yield Spread, which is the yield to

maturity (YTM) on the bond at issuance minus the YTM on a Treasury security

with comparable maturity. Another variable of interest is Rating, which measures

7FISD contains detailed information for each issue such as the issuer name, bond yields, bond
yield spreads over the closest benchmark treasury, maturity date, offering amount, bond types,
optionality features, rating date, rating level, and the agency that rated the issue, etc. See [33] for
more details of the FISD database.

8Lehman Brothers and Morgan Stanley issued large number of equity-linked bonds in 2007 and
2008. Such issues were dropped after a search based on the issue description field.

9FISD usually provides information regarding the seniority of the bond issue. In cases where the
information is not provided, we obtain the missing seniority information by matching the issue in
FISD using its complete CUSIP with the corresponding issue in Moody’s Default Risk Database
(DRS) and S&P’s CUSIP master file. Additionally, we also classify issues as senior or subordinated
based on the issue description for bonds.
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the bond’s credit rating at issuance. To obtain Rating, we first convert the credit

ratings provided by S&P (Moody’s) into an ordinal scale starting with 1 as AAA

(Aaa), 2 as AA+ (Aa1), 3 as AA (Aa2), and so on until 22, which denotes the default

category. As Fitch provides three ratings for default, we follow the existing literature

and chose 23 instead of 22 for the default category, which is the average of the three

default ratings; i.e., DD. Because each bond issue may be rated by multiple agencies,

we compute Rating as the simple average of the ordinal rating assigned by each rating

agency. Note that by construction, a lower value for Rating denotes a better credit

quality at issuance.

We obtain stock price data from CRSP and use it to compute our risk measures.

We measure tail risk using expected shortfall (ES ), which is widely used within fi-

nancial firms to measure expected loss conditional on returns being less than some

α-quintile. Its computation involves identifying the 5% worst return days during

the year for the firm’s stock (i.e., days on which the return was lower than its fifth-

percentile cutoff), and then computing the negative of the average of the firm’s daily

returns on these days. We measure systematic tail risk using marginal expected short-

fall (MES ), which measures the firm’s expected loss when the market is in its left

tail (see Acharya et al. (2010)). Specifically, MES is defined as the negative of the

average return on the firm’s stock over the 5% worst return days for the S&P500

index over the year. As we show below, there is a high correlation between ES and

MES in our sample, which is not surprising: given the systemic importance of the

financial sector, financial institutions are more likely to experience a tail event when

the market as a whole experiences a tail event.

Apart from the tail risk measures, we also compute two commonly used measures

of risk: Volatility, which is a measure of the total firm-specific risk and defined as

the standard deviation of the firm’s daily return over the year; and Beta, which

is a measure of systematic risk, and is obtained by estimating the market model
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Rit = αi + βiRmt + εit using daily returns over the year. We use a rolling yearly

window to compute the risk measures, so that for each quarter, risk measures are

computed using the information from the preceding four quarters. For example, the

risk measures pertaining to quarter from April 2007 to June 2007 are computed using

the stock and S&P returns over the one-year period from April 2006 to March 2007.

4.3 Descriptive Statistics and Preliminary Results

4.3.1 Summary Statistics

We provide a year-wise summary of bond offerings by financial institutions during the

1990 to 2010 period in Table 34. As can be seen, there is a great deal of variation in

total annual bond issuances by number over our sample period, with the 1992–1995

period being the most active in terms of number of bonds issued. However, although

there were fewer issues in the latter half of the sample period, the median offering

amount in the second half of the sample period is significantly higher than in the

first half. Therefore, examining the total dollar amount issued each year, we find

that the later half of the sample period has a larger dollar amount of bonds issued

even though there are a fewer number of total issues in this period. The majority of

the sample consists of senior bonds, with subordinated bonds making up only 18% of

total issuances by number. A little more than half of the bonds in our sample have a

maturity of less than 10 years and about half have a redeemable feature.

We provide the mean and median values (in parentheses) of the key variables by

institution type in Panel B of Table I. Examining firm characteristics, we see that

broker-dealers have the highest leverage, whereas insurance companies have the lowest

leverage. On average, depository and broker-dealer institutions are also larger (higher

log(assets)) and better rated (lower Rating) than insurance firms. Consistent with

Acharya et al. (2010), depository institutions have lower aggregate risk and lower tail

risk (both ES and MES ), whereas broker-dealers have the highest level of systematic
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risk (Beta), tail risk (ES ), and systematic tail risk (MES ) mainly due to the nature of

their business. Other financial institutions account for half of the total bond issuances

in our sample; out of these, GSEs account for about 40%. Depository institutions

account for about a quarter of the total bond issuances by number, whereas broker-

dealers and insurance firms together account for another quarter. However, as can be

seen from the mean and median offering sizes, the bond offerings by broker-dealers

and depository institutions are much larger in size compared with those of insurance

companies and other financial institutions. Depository institutions are the main is-

suers of subordinated debt, which accounts for around 40% of their bond offerings.

This is mainly due to regulatory reasons. As per the Basel Capital Accord, subordi-

nated debt is among the three types of eligible loss-absorbing instruments that banks

are required to issue at regular intervals in order to facilitate market discipline.

4.3.2 Correlations

We provide univariate correlations between our key variables in Table 35. Not sur-

prisingly, total tail risk (ES ) and systematic tail risk (MES ) are highly correlated.

This suggests that, given the systemic importance of the financial sector, financial

institutions are more likely to experience a tail event when the market as a whole

experiences a tail event. Therefore, in our subsequent multivariate analysis, we are

careful to only include either ES or MES as an independent variable. We also note

the high correlation between ES and Aggregate Risk, which suggests that riskier in-

stitutions also have higher tail risk. Similarly, the high correlation between Beta and

MES suggests that institutions with high overall systematic risk also have higher

systematic tail risk.

We find that Yield Spread is positively correlated with the tail risk measures (ES,

MES ) and Aggregate Risk. We must, however, interpret this with caution because

these are univariate correlations that do not control for other important institutional
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characteristics. In particular, Yield Spread is negatively correlated with Size and

Leverage, which are two important characteristics that are positively correlated with

tail risk. In the case of rating assignments, we find that Rating is positively corre-

lated with ES and Aggregate Risk, suggesting that institutions with higher tail risk

and higher total risk are assigned worse ratings. On the other hand, Rating is uncor-

related with MES. As with the yield spreads, we find that Rating is highly negatively

correlated with Size and Leverage, suggesting that large and highly levered financial

institutions are assigned better ratings.

We now proceed to multivariate analysis in which we examine the relationship

between Yield Spread and tail risk after controlling for differences in size, leverage,

and other risk characteristics across institutions.

4.4 Empirical Results

4.4.1 Bond Yield Spreads and Tail Risk

We begin our empirical analysis by examining whether investors in the primary bond

markets price the tail risk exposures of the financial institution issuing the bonds. To

test this, we estimate the following OLS regression model:

Yield Spreadift = α+β ∗Tail Riskf,t + γ ∗Xf,t−1 + ρ ∗Xi +Y earFE+ InstTypeFE.

In the above equation, we use subscript ‘i’ to denote the bond, subscript ‘f’ to denote

the issuer firm, and subscript ‘t’ to denote the quarter of issuance. Each observation

in the regression sample corresponds to a primary bond issue. The main dependent

variable of interest is the bond’s Yield Spread at issuance. The main independent

variable of interest is Tail Risk, which we measure using either ES or MES. We control

the regression for important firm characteristics (Xf ), issue characteristics (Xi), and

macroeconomic variables that may affect Yield Spread. All the variables are defined

in the Appendix. The firm characteristics that we control for are Size, Profitability,

market leverage (Leverage), and book leverage (LongTermDebt Assets). The issue
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characteristics that we control for are the bond’s Rating, issue size, maturity, and

indicator variables to identify subordinated debt, callable bonds, and agency debt.

We also include year fixed effects in all specifications, and control for Term Spread,

which is defined as the yield spread between 10-year and 1-year Treasury bonds.

We begin by estimating regression (4.4.1) on all financial institutions in our sam-

ple pooled together, but include institution-type fixed effects to control for differences

between depository institutions, broker-dealers, insurance companies, and other fi-

nancial institutions. The results of our estimation are presented in Table 36. The

standard errors reported in parentheses are robust to heteroskedasticity, and are clus-

tered at the level of the institution.

The main independent variable of interest is ES in column (1) and MES in column

(2). As we mentioned previously, we do not include ES and MES simultaneously to

avoid multicollinearity. The positive and significant coefficient on ES in column (1)

indicates that yield spreads at issuance are higher for bonds issued by institutions

with high tail risk. A one standard deviation increase in ES increases the primary

bond issuance yield by 18 basis points. However, the coefficient on MES in column (2)

is statistically insignificant, and is also much smaller in magnitude than the coefficient

on ES in column (1). Thus, it appears from the results in column (1) and (2) that

primary bond market investors care about the institution’s total tail risk, but not its

systematic component of tail risk.

The coefficients on the control variables in columns (1) and (2) are broadly as

expected. The positive coefficients on Rating and Maturity indicate that yield spreads

are higher for lower rated bonds and longer maturity bonds, whereas the negative

coefficient on Log(Issue Size) indicates that yield spreads are lower for larger issues.

Examining firm characteristics, we find that yield spreads are higher for institutions

with higher leverage. However, controlling for issue size, the size of the institution

has no effect on yield spreads.
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One possible reason for the lack of a significant association between Yield Spread

and MES is that we may be over-controlling our regressions. That is, it is possible that

the impact of the tail risk measures is being subsumed by Size, Leverage, Rating, and

other firm-level factors, which we showed to be significantly correlated with the risk

measures. To alleviate this concern, we repeat our tests from (1) and (2) after omitting

all firm-level controls and the bond’s credit rating. The results are reported in columns

(3) and (4). As can be seen by comparing columns (1) and (3), the coefficient on ES

does become stronger after we omit firm-level controls and rating from the regression

specification, suggesting that the omitted controls are somewhat subsuming the effect

of ES. However, the coefficient on MES continues to be insignificant and actually

decreases in magnitude after omission of the controls.

To summarize, the results in Table III suggest that primary bond market investors

care about the institution’s total tail risk, but not its systematic component of tail

risk.

4.4.2 Bond Yield Spreads and Other Risk Measures

We did not control the regressions in Table 36 for well-known risk measures, such

as Volatility and Beta, because these are highly correlated with ES and MES, re-

spectively. Thus, including Volatility along with ES, or Beta along with MES, may

give rise to multicollinearity. For the same reason, we did not include ES and MES

together in the same regression. In this section, for robustness, we examine how pri-

mary bond yield spreads vary with Volatility and Beta. The results of our estimation

are presented in Table IV. Apart from the fact that we employ different risk mea-

sures, the empirical specification and control variables in columns (1) through (3) are

exactly the same as that of column (1) of Table 36; i.e., we control for the full set of

firm-level and issue characteristics, and include year fixed effects and institution-type

fixed effects. However, to conserve space, we do not report the coefficients on the
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control variables.

The risk measures of interest in columns (1) and (2) are Volatility and Beta,

respectively. Recall that Volatility is a measure of the institution’s aggregate risk,

whereas Beta is widely used as a measure of systematic risk. Consistent with our

results in Table III, we find that primary bond market investors price the institution’s

aggregate risk (positive and significant coefficient on Volatility) but do not price its

systematic risk (insignificant coefficient on Beta).

As we noted in Table II, ES and MES are highly correlated. To isolate the

idiosyncratic component of tail risk, we construct a new risk measure, ES idio, by

orthogonalizing ES with respect to MES.10 We then estimate regression (4.4.1) after

including both ES idio and MES as independent variables. As can be seen from column

(3), the coefficient on ES idio is positive and significant whereas the coefficient on

MES is insignificant. Moreover, the coefficient on ES idio appears to be larger than

the coefficient on ES in column (1) of Table III. Thus, it appears that primary bond

market investors only price the idiosyncratic component of the institution’s tail risk.

As in Table III, we repeat the estimations in columns (1) through (3) after omitting

firm-level characteristics and credit rating as control variables, just to make sure that

these control variables are not subsuming the effect of the risk variables. As can

be seen from columns (4) through (6), our qualitative results hold even after we

omit these control variables. Moreover, consistent with our findings in Table III, the

coefficients on Volatility and ES idio become stronger after the omission of the control

variables, whereas the coefficient on Beta becomes significantly weaker.

Note that the results in Tables III and IV are more consistent with the moral

hazard hypothesis than the nonsalient-risks hypothesis. As per the nonsalient-risks

10Formally, we obtain ES idio by adding the constant and the residual from the regression of ES on
MES. We conduct the orthogonalization separately for each institution type because the sensitivity
of ES to MES can vary across depositories, broker-dealers, insurance companies, and other financial
institutions.
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hypothesis, yield spreads should not respond to either the idiosyncratic or the sys-

tematic component of tail risk. However, we find that although bond yield spreads do

not respond to the systematic component of tail risk (MES ), they do increase with

the total tail risk (ES ) and the idiosyncratic component of tail risk (ES idio). On the

other hand, given that bailouts are more likely in the event of a systemic failure, the

fact that investors only ignore MES is consistent with the moral hazard hypothesis.

4.4.3 Variation of Results with Bond Characteristics

In this section, we examine how our baseline results on the association between Yield

Spread and risk measures vary with key bond characteristics, such as seniority, ma-

turity, and rating. The results of our analysis are in Table 38.

In columns (1) and (2) of Table 38, we examine how the pricing of tail risk varies

between senior and subordinated bonds. Absent government bailout, the loss given

default should be significantly higher for subordinated bonds. Hence, it is logical

to expect that the positive association between Yield Spread and tail risk measures

should be stronger for subordinated bonds. To test this, we define the dummy variable

d Sub to identify subordinated bonds, and estimate regression (4.4.1) after including

d Sub and its interaction with the tail risk measures as additional regressors. The

empirical specification and control variables are exactly the same as in columns (1)

and (2) of Table 36, although we suppress the coefficients on the control variables

in order to conserve space. The positive and significant coefficient on d Sub×ES in

column (1) indicates that the association between tail risk and yield spreads is indeed

stronger for subordinated bonds. However, the insignificant coefficient on d Sub×MES

indicates that there is no incremental effect of MES on yield spreads for subordinated

bonds over senior bonds. A more striking finding is that the sum of the coefficients

on MES and d Sub×MES is also statistically insignificant, which suggests that MES

is not priced even in the case of subordinated bonds issued by financial institutions.

175



In columns (3) and (4), we examine how our baseline results vary with the bond’s

credit quality at issuance. Intuitively, we expect our results to be stronger for bonds

with lower credit ratings. To test this, we define the dummy variable d LowGrade to

identify bonds with an S&P credit rating of “A” or worse at issuance (i.e., Rating≥

5), and interact this with the tail risk measures.11 The positive coefficients on the

interaction terms d LowGrade×ES and d LowGrade×MES indicate that the effect of

tail risk on yield spreads is indeed stronger for low grade bonds. These results are

inconsistent with the nonsalient-risks hypothesis as yield spreads respond to both the

idiosyncratic and systematic component of tail risk.

In columns (5) and (6), we examine whether the effect of tail risk on yield spreads

is stronger for longer maturity bonds. There are two reasons to expect that the effect

should be stronger for longer maturity bonds. First, there is more uncertainty in

the long run than in the short run. Second, given that financial institutions rely

heavily on short-term debt, long-term bondholders are also exposed to the risk that

the institution may not be able to rollover or refinance its short-term debt (“rollover

risk”). To test this, we define the dummy variable d LongMat to identify bonds with

stated maturity of 10 years or more. We then estimate our baseline regressions after

including d LongMat and its interaction with the tail risk measures as additional

regressors. As can be seen from the insignificant coefficients on d LongMat×ES and

d LongMat×MES, we fail to detect any incremental effect of tail risk on primary yield

spreads for longer maturity bonds. Moreover, the sum of the coefficients on MES and

d LongMat×MES in column (4) is also statistically insignificant, which suggests that

MES is not priced for long maturity bonds.

11High-grade bonds (defined as those with credit rating of AAA or AA) constitute roughly 33% of
our sample, medium-grade bonds (defined as those with credit rating between A and BBB) constitute
63% of our sample, and speculative-grade bonds (i.e., credit rating worse than BBB) constitute the
remaining 4%.
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4.4.4 Variation of Results with Firm Characteristics

Next, we examine how our baseline results on the association between Yield Spread

and tail risk measures vary with important firm characteristics, such as size, leverage,

and implicit bailout expectations. The results of our analysis are in Table 39.

We begin with the effect of firm size. As per the moral hazard hypothesis, the

relationship between Yield Spread and tail risk should be weaker for large institutions,

which are more likely to be considered systemically important and qualify for implicit

too-big-to-fail guarantees. To test this, we define the dummy variable d Large to

identify firms that are larger than the median size by the book value of assets in the

universe of all the financial firms in COMPUSTAT.12 We then estimate our baseline

regressions after including d Large and its interactions with tail risk measures as

additional regressors. The negative and significant coefficient on d Large×ES in

column (1) indicates that the incremental effect of ES on Yield Spread is significantly

weaker for large institutions. However, the sum of coefficients on ES and d Large×ES

is still positive and significant, which suggests that yield spreads increase with total

tail risk even for large financial institutions. On the other hand, the coefficients on

MES and d Large×MES in column (2), as well as the sum of these coefficients are

all statistically insignificant. This indicates that yield spreads do not vary with MES

regardless of the institution’s size.

In columns (3) and (4), we examine if our results vary with the level of the

institution’s leverage. As with size, we define the dummy variable d HighLeverage

to identify institutions whose market leverage exceeds the median leverage in the

universe of all the financial firms in COMPUSTAT. As expected, the positive and

significant coefficient on d Leverage signifies that firms with higher leverage have

higher bond yield spreads, all else equal. However, we fail to find any incremental

12This classification yields 144 small firms and 160 large firms. However, the large firms contribute
to more than three-quarters of the issuance sample while the remainder comes from the smaller firms.
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effect of tail risk on yield spreads for institutions with high leverage.

An interesting class of institutions in our sample are the GSEs such as Fannie

Mae and Freddie Mac. Although bonds issued by GSEs carry no explicit government

guarantee of creditworthiness, there is a perception of an implicit guarantee because

it is widely believed that the government will not allow such important institutions

to fail or default on their debt.13 Hence, as per the moral hazard hypothesis, we

should also expect the relationship between Yield Spread and tail risk measures to

be weaker for GSEs. We examine this in columns (5) and (6) where we interact the

tail risk measures with d Agency, a dummy variable that identifies GSEs. The strong

negative and significant coefficients on d Agency×ES and d Agency×MES indicate

that the effect of tail risk exposure on yield spreads is indeed much weaker for bonds

issued by GSEs.

As a further robustness check, in unreported results, we also compare financial

firms and industrial firms by employing the nearest-neighborhood (NN) matching

technique (see [1]) to match debt issued by financial firms to debt issued by non-

financials (industrial firms). We conduct an exact matching on the subordination

status, callability feature, and year of origination, and then use the NN matching on

the remaining controls in the bond yield spread regression model, namely, Rating, Lo-

gAssets, Profitability, LongTermDebt Assets, Leverage, LogIssueSize, and Maturity.14

To ensure that our results are not sensitive to the sample of matched counterfactuals,

we match each bond offering by a financial institution (treated sample) with three

bond offerings by non-financial firms (control sample). We then estimate OLS regres-

sions to examine how the yield spread on bonds issued by financial institutions varies

with their tail risk exposure, after controlling for the yield spread on the matched

13According to estimates by the Congressional Budget Office and the Treasury Department in
1997, GSEs saved about $2 billion per year in funding costs because of this implicit guarantee.

14Optimal matching resulted in 100% matching on the subordinated and callable dummy, and
91% on offering year of the bond. As the optimal matching on offering year is not exact, we include
year fixed effects in our regressions.
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counterfactuals. Consistent with earlier results and the moral hazard hypothesis, we

find that investors do not price the systematic tail risk exposure (MES) for either

senior or subordinated debt issuances of financial institutions, and do not price tail

risk (ES) for bonds issued by GSEs.

4.5 Why Don’t Primary Bond Market Investors Price Tail
Risk Exposures of Financial Institutions ?

As we noted in the introduction, there are two potential reasons why primary bond

market investors may not price an institution’s tail risk. It may be that bond market

investors are subject to moral hazard because, given the systemic importance of the

financial sector, they rationally anticipate taxpayer-funded bailouts in the event of

large losses. Alternatively, it may be that investors neglect low-probability nonsalient

risks, in general, and are caught unaware when the debt that they had considered

safe turns out to be risky ([64]). In this section, we conduct additional tests aimed

at distinguishing between these competing hypotheses.

4.5.1 Variation of Results Across Institution Types

One way to distinguish between the moral hazard hypothesis and the nonsalient-risk

hypothesis is to examine how the pricing of tail risk varies across different types of

financial institutions. Certain types of financial institutions, such as depositories and

GSEs, are more likely to be considered systemically important because the failure

of such institutions imposes a large negative externality on the real economy. Such

institutions are also more likely to receive government bailouts if a negative event

materializes. Thus, as per the moral hazard hypothesis, the relationship between

bond yield spreads and tail risk should be weaker for depository institutions compared

with other types of financial institutions.

To test this idea, we now estimate regression (4.4.1) separately for bonds issued

by each institution type. The results of our estimation are presented in Panel A
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of Table VII. We estimate the regressions separately on the subsamples of bonds

issued by depository institutions (columns (1) and (2)), broker-dealers (columns (3)

and (4)), insurance companies (columns (5) and (6)), and other financial institutions

(columns (7) and (8)). We control these regressions for the full set of firm and bond

characteristics as in Table III, and also include year fixed effects. However, to conserve

space, we do not report the coefficients on the control variables.

As can be seen, the results in Panel A highlight a striking difference in the pricing

of tail risk between bonds issued by depository institutions and bonds issued by all

other types of financial institutions. The insignificant coefficients on ES and MES

in columns (1) and (2) indicate that the cost of debt for depository institutions does

not vary with their exposure to tail risk. On the other hand, we find a positive

and significant association between Yield Spread and tail risk measures for all other

institution types, except for the category of other financial institutions for which the

coefficient on MES is positive but statistically insignificant. The lack of significance

on MES in column (8) may be driven by bonds issued by GSEs, which are included

in the category of other financial institutions. As we showed in Panel B of Table VI,

the relationship between bond yield spreads and tail risk is significantly weaker in

case of bonds issued by GSEs.

Our results in Panel A cast doubt on the idea that primary bond markets can

provide effective market discipline to depository institutions. One particular category

of bonds that bank regulators and supervisors rely on to enhance market discipline

are subordinated bonds, which are meant to act as loss-bearing instruments and are

thus treated as part of regulatory capital. As we noted in the discussion following

Table I, depository institutions are by far the largest issuers of subordinated bonds.

In Panel B of Table VII, we separately examine whether the pricing of tail risk varies

between subordinated and senior bonds for depository institutions (in columns (1)

and (2)) and for all other types of financial institutions (in columns (3) and (4)).
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The positive and significant coefficient on d Sub×ES in column (1) indicates that

in the case of bonds issued by depository institutions, the relationship between Yield

Spread and ES is indeed stronger for subordinated bonds. However, the coefficient

on ES is itself negative, although not statistically significant. Moreover, the sum of

coefficients on ES and d Sub×ES is insignificant, which indicates that tail risk is not

priced even in the case of subordinated bonds issued by depository institutions. In

column (2), we find that the coefficients on MES and d Sub×MES, as well as the

sum of these coefficients, are all statistically insignificant. That is, systematic tail

risk MES is not priced either for senior or subordinated bonds issued by depository

institutions.

Turning to the non-depository institutions, we can see that the coefficients on

d Sub×ES in column (3) and d Sub×MES in column (4) are both positive but are

not statistically significant at the conventional 10% level (the t−statistics of 1.61 and

1.49, respectively, are lower than the cutoff value of 1.652). However, the coefficient

on ES as well as the sum of coefficients on ES and d Sub×ES in column (3) are both

statistically significant, which indicates that total tail risk is priced for both senior

and subordinated bonds issued by non-depository institutions. The same is true for

systematic tail risk MES in column (4).

Overall, the results in Table VII indicate that the pricing of tail risk in the primary

bond market varies between depository institutions and non-depository institutions.

The result that neither ES nor MES is priced for bonds issued by depository institu-

tions is consistent with the moral hazard hypothesis, because depository institutions

are more likely to be considered systemically important and benefit from implicit

government guarantees. In unreported tests, we verify that the qualitative results in

Table VII are robust to the exclusion of firm-level characteristics and credit rating as

control variables; that is, we verify that the effect of tail risk is not being subsumed

by Size, Leverage, and Rating of depository institutions.
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4.5.2 Political Connectedness and the Pricing of Tail Risk

In this section, we focus on cross-sectional variation in bailout expectations across

financial institutions. One such source of cross-sectional variation is the political

connectedness of financial institutions. If politically connected institutions are more

likely to receive government bailouts, then we expect the relationship between bond

yield spreads and tail risk measures to be weaker for better connected institutions.

We measure political connectedness using information on lobbying expenditures by

financial institutions obtained from the Center for Responsive Politics (CRP), which

compiles data from lobbying disclosure reports filed with the Secretary of the Senate’s

Office of Public Records (SOPR).15 This data is available from 1998 through the most

recent quarter. We hand-match lobbying records with our data set by firm name and

broad industry classification. We measure political connectedness using two variables:

a dummy variable d PoliticalConnection, which identifies financial institutions that

have ever lobbied the government; and Log(Lobby Expenditure), which is the natural

logarithm of the amount of total lobbying expenditure by the institution since the

data became available in 1998.

As per our definition of d PoliticalConnection, 53% of the institutions in our sam-

ple are politically connected, and include large institutions that were bailed out during

the recent financial crisis; e.g., Bear Stearns, AIG, Citigroup, Merrill Lynch, Bank

of America, JP Morgan, CIT Group, Freddie Mac, and Fannie Mae among others.

The average lobbying amount per year for our sample of firms is close to $1.8 mil-

lion. Depositories on average have the highest lobbying amount per year, as well

as the highest percentage of politically connected firms, followed by broker-dealers.

15This data is also publicly available for download on SOPR’s website. As per the lobbying
disclosure act of 1995, firms that hire lobbyists are required to provide a good-faith estimate rounded
to the nearest $20,000 of all lobbying-related expenditures in each six-month period. An organization
that spends less than $10,000 in any six-month period does not have to state its expenditures. In
those cases, the Center treats the figure as zero.
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In general, there seems to be a positive correlation between our measures of political

connectedness and bailout probability ([57]). A simple correlation analysis shows that

our measures of political connectedness are positively correlated with firm assets and

leverage, which implies that larger institutions lobby the government more. Similarly,

the correlation between Yield Spread and our political connections measures are neg-

atively correlated, which indicates that politically connected firms seem to enjoy a

lower cost of capital.

To test whether the pricing of tail risk varies with the institutions’ political con-

nectedness, we estimate regression (4.4.1) after including our measures of political

connectedness and their interactions with the tail risk measures as additional regres-

sors. We can estimate this regression only for the 1998 to 2010 period as the data

on lobbying expenditures is available only after 1998. The results of our analysis are

presented in Table 41. The empirical specification and control variables are exactly

the same as in Table III although we suppress the coefficients on control variables in

order to conserve space.

The negative and significant coefficients on d PoliticalConnection×ES and Log(Lobby

Expenditure)×ES in columns (1) and (3), respectively, indicate that the relationship

between Yield Spread and tail risk is indeed weaker for politically connected institu-

tions. On the other hand, although the coefficients on d PoliticalConnection×MES

and Log(Lobby Expenditure)×MES in columns (2) and (4), respectively, are negative,

they are not statistically significant. Hence, we cannot conclude that the pricing of

systematic tail risk varies between politically-connected and non-connected financial

institutions. However, the sum of coefficients on MES and d PoliticalConnection×MES

in column (3) is statistically insignificant, which indicates that the yield spreads of

bonds issued by politically-connected institutions does not vary with their MES.

Note that the regression sample in columns (1) through (4) includes both crisis

periods and noncrisis periods. It is possible that political connections matter less in
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the midst of a systemic crises, when the government is focussed on bailing out the

entire financial sector. For example, the massive liquidity infusions into the interbank

market in the immediate aftermath of Lehman’s bankruptcy were not aimed at any

specific institution, but were rather meant to prevent a complete breakdown of money

markets. Hence, a better test of the impact of political connectedness is to examine

bond issuances during noncrisis periods. We do this in columns (5) through (8),

where we estimate the regressions on a subsample spanning the crisis-free period

from 2001:Q2 to 2008:Q2 (i.e., the period from immediately after the LTCM and

dotcom crises to immediately before the recent financial crisis). As can be seen, all

the interaction terms between measures of political-connectedness and tail risk in

columns (5) through (8) are negative and statistically significant: that is, consistent

with the moral hazard hypothesis, we find that the relationship between yield spreads

and tail risk is significantly weaker for politically-connected institutions compared

with non-connected institutions, suggesting the existence of a bailout subsidy for the

debt of politically-connected institutions.

If indeed politically-connected financial institutions benefit from an implicit bailout

subsidy in bond markets, then a natural question that arises is whether politically-

connected institutions exploit the implicit subsidy to undertake more and larger bond

issuances. To investigate this question, we aggregate all bond issuances for each fi-

nancial institution in each calendar quarter during our sample period, and create

an institution-quarter bond issuance panel dataset. We then examine how bond is-

suances vary with the institutions’ political connectedness, after controlling for all

possible institution- and market-level characteristics that may affect bond issuances.

The main dependent variables of interest are: (a) d Issue, which is a dummy variable

that identifies whether the institution issued any bonds during that calendar quarter;

(b) Total Issue Amount, which is the total issuance amount across all the bond is-

suances by the institution during the quarter; and (c) Number of issues which is the
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total number of issues undertaken by the institution during the quarter. We control

for both lagged institution-level determinants (assets, book leverage, market lever-

age, market-to-book, asset growth) and include year-quarter fixed effects to control

for market-level conditions of bond issuance activity. The results of our estimation

are in Table 42.

In column (1), we report the results of a Probit regression with d Issue as the de-

pendent variable. The insignificant coefficient on d PoliticalConnection indicates that

politically-connected institutions are no more likely to issue bonds in any given quar-

ter than non-connected institutions. However, the positive coefficient on d Political-

Connection×Lag1Q-Assets(log) in column (1) indicates that among large institutions,

politically-connected institutions are more likely to undertake bond issuances than

non-connected institutions. We arrive at very similar conclusions when we examine

total issuance amounts (in column (3)) and the number of bond issuances (in column

(5)). In columns (2), (4), and (6), we verify that these results are also robust to using

Total Lobby Amount as the measure of political connectedness.

Overall, the results in Table 41 and Table 42 provide more evidence in support

of the moral hazard hypothesis by highlighting that primary bond market investors

are less likely to price the tail risk exposures of politically-connected institutions, and

that large, politically-connected institutions exploit this implicit bailout subsidy by

issuing more debt in the bond markets.

4.5.3 Pricing of Tail Risk Around Crisis Periods

In the previous section, we used political connectedness to identify the cross-sectional

variation in bailout expectations across firms. Another way to distinguish between

the moral hazard hypothesis and the nonsalient-risks hypothesis is to examine how

the association between Yield Spread and the tail risk measures varies around crisis

periods. In general, a crisis can affect the pricing of tail risk in two ways. In the
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absence of bailout expectations, a crisis may serve as a reminder of the existence of

tail risks, and thus strengthen the relationship between Yield Spread and the tail risk.

However, if the crisis triggers large-scale bailouts of troubled institutions, that may

weaken the relationship between Yield Spread and the tail risk.

To better understand these effects, we focus on three crisis events that occurred

during our sample period: the failure and bailout of LTCM in August 1998, the dot-

com crash of March 2000, and the recent financial crisis in March 2008. Note that

unlike the dotcom crash, which was largely confined to the technology sector, the

LTCM crisis and the recent financial crisis adversely affected the financial sector and

triggered government bailouts of troubled institutions. We exploit this key difference

to understand the extent to which our results are being driven by changes in expecta-

tions of future bailouts. For each of these crisis events, we construct a sample of bond

issuances by all financial institutions that occurred in a two-year (i.e., eight calendar

quarters) window around the crisis event, and divide this into pre-crisis and post-

crisis windows of four calendars quarters each.16 We then compare how the pricing

of tail risk varies between the pre-crisis and post-crisis samples.

The results of our analysis are summarized in Table 43. In columns (1) and

(2), we examine the effect of the LTCM crisis that occurred during August and

September of 1998. The LTCM bailout was announced on September 23, 1998 when

14 financial institutions agreed to a $3.6 billion recapitalization under the supervision

of the Federal Reserve. Accordingly, we use the sample of bonds issued during the

two-year period from 1997:Q4 to 1999:Q3 surrounding this crisis event; the sample

consists of 154 bond offerings. In this sample, we define the dummy variable d LTCM

16Choosing a two-year window around the crisis provides a reasonable sample size for our analysis
without introducing other confounding events, thus allowing for cleaner interpretation of results.
We must note that it is not feasible to conduct these tests separately for each institution type as
the sample size for each institution type would be very small. Hence, we conduct these tests for
all financial institutions pooled together, but include institution-type fixed effects in the regression
specification.
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to identify bonds issued between 1998:Q4 and 1999:Q3, that is, after the LTCM

bailout was announced. We then estimate regression (4.4.1) after including d LTCM

and its interactions with the tail risk variables as additional regressors. The empirical

specification and control variables are otherwise the same as in Table III, but with

one important difference: we exclude the year dummies, and instead use the specific

crisis dummy to understand how the pricing of tail risk changed pre- and post-crisis.

We suppress the coefficients on the control variables in order to conserve space.

The positive and significant coefficients on d LTCM in columns (1) and (2) indi-

cate that primary bond yield spreads of financial firms increased significantly in the

immediate aftermath of the LTCM crisis. However, the negative and significant co-

efficients on d LTCM×ES and d LTCM×MES in columns (1) and (2), respectively,

indicate that the relationship between Yield Spread and tail risk was significantly

weaker in the immediate aftermath of the LTCM crisis. Moreover, the sum of the

coefficients on ES and d LTCM×ES in column (1) is insignificant, and so is the sum

of the coefficients on MES and d LTCM×MES in column (2). These indicate that

tail risk was not priced at all in the immediate aftermath of the LTCM crisis.

We examine the effect of the recent financial crisis in columns (3) and (4). The

main events of the financial crisis occurred during mid-September to early October

of 2008.17 Accordingly, to understand the impact of the financial crisis, we use the

sample of bonds issued during the two-year period from 2007:Q4 to 2009:Q3. In this

sample, we use the dummy variable d FinCrisis to identify bonds issued between

2008:4Q and 2009:Q3, which denotes the post-crisis period. As can be seen from

columns (3) and (4), the impact of the financial crisis was very similar to that of

the LTCM crisis: although there was an across-the-board increase in primary bond

17The collapse of Lehman Brothers and the collapse and bailout of AIG occurred on September
15 and 16, 2008, triggering widespread panic and a liquidity crisis that required the intervention of
the U.S. government and the Federal Reserve. In the next few weeks, other financial institutions
including Merrill Lynch, Fannie Mae, Freddie Mac, Washington Mutual, Wachovia, and Citigroup
were either acquired under duress, or were subject to government takeover.
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yield spreads for all financial institutions following the crisis (positive coefficient on

d FinCrisis), the relationship between yield spreads and tail risk was also significantly

weaker after the crisis as evidenced by the negative and significant coefficients on

d FinCrisis×ES and d FinCrisis×MES.

Finally, in columns (5) and (6), we study the effect of the dotcom crisis, which was

triggered by the collapse of the NASDAQ-100 Index on March 10, 2000. Accordingly,

we use the sample of bonds issued in the two-year period from 1999:Q2 to 2001:Q1. In

this sample, the dummy variable d Dotcom identifies bonds issued between the period

2000:Q2 and 2001:Q1, the period right after the dotcom bubble burst on March 10,

2000. As with the LTCM crisis and the financial crisis of 2008, we find that there was

an across-the-board increase in primary bond yield spreads of financial institutions

in the immediate aftermath of the dotcom crisis (positive and significant coefficient

on d DotCom). However, in stark contrast to the other two crises, the coefficients on

d DotCom×ES and d DotCom×MES are statistically insignificant, which suggests

that there was no difference in the pricing of tail risk in the primary bond markets in

the immediate aftermath of the dotcom crisis. This could be due to the fact that the

dotcom crash did not change bond market investors’ expectations of future bailouts

of financial institutions.

Overall, the evidence in Table 43 lends more support to the moral hazard hypoth-

esis over the nonsalient-risks hypothesis.

4.5.4 Do Rating Agencies Account for Tail Risk Exposures?

Investors may rely on rating agencies to price tail risk, as rating agencies specialize

in determining creditworthiness of firms. For example, a rating agency may be better

positioned to judge the quality of loans and other non-traded assets on a bank’s

balance sheet. Rating agencies also have access to a firm’s private information as

they were exempt from the Fair Disclosure Regulation (Reg FD) during our sample
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period. If rating agencies are also subject to the aforementioned bailout moral hazard

problem then they may not price tail risk. Bond investors, who may rely on rating

agencies to price tail risks, will consequently not price it too. On the other hand

rating agencies may price tail risk and investors might rationally choose to ignore

them. To investigate this issue we run an ordered probit model with Rating as the

dependent variable, and ES and MES as the key independent variables of interest.

We include all the control variables in equation (4.4.1) except of course Rating itself.

The results of our estimation are presented in Panel A of Table 44.

In columns (1) and (2), we estimate the regression separately on the subsample

of bonds issued by depository institutions. Although we find a positive association

between Rating and total tail risk (ES ), we fail to find any association between Rating

and systematic tail risk (MES ). Interestingly, while rating agencies appear to price ES,

investors seem to ignore it as shown in Table 40. In columns (3) and (4), we estimate

the regression separately on the subsample of bonds issued by broker-dealers. In this

subsample, we fail to find any significant association between Rating and either tail

risk or systematic tail risk. In contrast, even though rating agencies seem to ignore

the tail risk exposures of broker-dealers, primary bond market investors as shown in

Table 40 seem well aware of these risks and do price them. When we estimate the

regression on bonds issued by insurance companies (columns (5) and (6)) and other

financial institutions (columns (7) and (8)), we find a positive association between

Rating and both tail risk measures, which is particularly strong for bonds issued by

insurance companies.

Next, we examine how the association between Rating and the tail risk measures

varies with bonds’ seniority status. As in the previous section, we repeat our regres-

sion in Panel A after including the interaction terms d Sub×ES and d Sub×MES,

where d Sub is an indicator variable that identifies subordinated bonds. The results

of the estimation are presented in Panel B. The positive and significant coefficient
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on d Sub indicates that subordinated bonds are assigned lower ratings, all else equal,

which is to be expected because the loss given default should be higher for these

bonds. However, surprisingly, there is no adverse incremental effect of tail risk on the

credit ratings of subordinated bonds. As can be seen, the coefficients on d Sub×ES

and d Sub×MES are mostly insignificant; in fact, we find a negative and significant

coefficient on d Sub×ES in column (1). In a separate row, we also report the statisti-

cal significance on the sum of coefficients on the tail risk measure and its interaction

term with the d Sub dummy. Overall, these coefficients are positive and significant for

depositories whereas they are insignificant for the rest of the financial firms suggesting

that rating agencies account for tail risk for subordinated debt issued by depositories

although not incrementally over senior bonds.

To summarize, the results in Table 44 highlight interesting differences in how credit

rating agencies rate new bond issuances by different types of financial institutions

compared with investors. In particular, rating agencies do not seem to account for

tail risk exposures of broker-dealers and the systematic tail risk exposure of depository

institutions. More strikingly, although subordinated bonds are assigned lower credit

ratings, there is no additional adverse impact of the institution’s tail risk on the credit

ratings assigned to subordinated bonds. Again, to ensure we are not over-controlling

our regressions, we repeat all of our tests from Panels A and B after omitting these

firm-level factors as controls. The results of these robustness tests are however not

reported and our qualitative results from Panels A and B are unchanged when we

omit these additional controls. The only noticeable difference is that the coefficient

on MES is significantly lower for these repeat tests of Panels A and B and all of the

sum of coefficients on the tail risk measure and its interaction term with the d Sub

dummy are small and statistically insignificant. Overall, the ordered probit rating

regression results indicate that it is not the investors’ reliance on rating agencies that

leads to the mispricing of tail risk.
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4.6 Conclusion

In the aftermath of the recent financial crisis, there is an increased focus on contain-

ing tail risk and systematic risk exposure of financial institutions. One recurring idea

in financial sector regulation is for regulators to increase their reliance on “market

discipline” in controlling institutions’ risk exposure. However, market discipline is

effective only if investors price the risk exposure of financial institutions. In the re-

cent U.S. subprime financial crisis, large-scale government interventions were enacted,

which included bailouts designed to prevent the financial industry from a potential

system-wide breakdown. However, a consequence of implied government guarantees

and bailouts for financial institutions is a weakening of market discipline. Investors

can be subject to moral hazard and may not rationally price an institution’s exposure

to tail risks.

In this paper, we use a large sample of bond issuances by U.S. financial institutions

during the 1990 to 2010 period to examine whether bond market investors price the

tail risk exposure of financial institutions. We find that primary bond yield spreads

increase with institutions’ own tail risk (expected shortfall) but do not respond to their

systematic tail risk (marginal expected shortfall), even in the case of subordinated

bonds. When we distinguish between different types of financial institutions, we find

a striking result that primary bond yield spreads of depository institutions do not

respond to tail risk for either senior bonds or subordinated bonds. On the other

hand, primary bond yield spreads of broker-dealers and insurance companies respond

to both total tail risk and systematic tail risk.

There are two potential explanations for why bond market investors may neglect

tail risk exposure of financial institutions. It may be that bond market investors are

subject to moral hazard because they rationally expect to be bailed out by the gov-

ernment if a negative tail event materializes. Alternatively, it may be that investors

neglect low-probability non-salient risks are are caught unaware when the assets that
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they had considered to be safe turn out to be risky. Consistent with the moral hazard

hypothesis, we find that systematic tail risk is not priced in situations where ex-ante

bailout expectations are higher: that is, for depositories and government-sponsored

entities (GSEs), large institutions, and politically connected firms. Moreover, bond

investors’ concern for tail risk seems to have weakened in the immediate aftermath

of financial crises (such as LTCM and the recent financial crisis) that involved gov-

ernment bailouts of financial institutions.

Overall, our results point to moral hazard in the primary bond markets due to

implicit bailout guarantees and cast doubt on the idea that market discipline can be

sufficient in controlling the tail risk exposures of depository institutions.
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Table 34: Summary statistics of bond sample.

The table displays the summary statistics of the sample of senior and subordinated corporate

bonds issued by U.S. financial firms (1-digit SIC code=6) during the period from 1990 to

2010. We restrict our sample to U.S. domestic bonds and exclude yankee bonds, bonds

issued via private placements, issues which are asset-backed or have credit-enhancement

features. In addition we exclude preferred stocks, mortgage backed securities, trust preferred

capital and convertible bonds. Panel A displays the summary statistics year-wise. The

numbers for Subordinated, Maturity, and Callable feature are expressed as a percentage

of the total sample. In addition, Panel B displays the summary statistics by firm-type for

our risk measures, bond-level variables and firm-level variables. Our tail risk measures are

defined as: ES: the negative of the average of the firm’s daily returns on 5% worst return

days during the calendar year for the firm; MES: the negative of the average firm’s daily

return on 5% worst return days of the market (S&P 500 instead of for the firm) during the

calendar year; ESidio: is the residual plus constant upon regressing ES on MES separately

for each firm-type. Other risk measures are Volatility: is the standard deviation of daily

firm equity return over the calendar year; Beta: is the estimate of the coefficient upon

regressing the firm’s daily return on market’s daily return (S&P 500); Volatility, ES, MES,

ESidio are expressed in percentage terms. Other variables are defined as: Yield Spread is

the bond yield minus closest benchmark treasury yield expressed in basis points. Rating is

generated by converting the bond ratings to a cardinal scale measured on a 23 point scale

for ratings issued by S&P, Moody’s and Fitch and then taking their average for a given

firm, Leverage is the ratio of market value of assets and market value of equity; Assets (log)

is the log of total assets. The firms are categorized into 4 groups (firm-types): Depositories

(2-digit SIC code=60); Broker-Dealers (4-digit SIC code=6211); Insurance (2-digit SIC

code=60 & 64); Other (2-digit SIC code=61, 62(except 6211), 65, 67)
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Table 34 (continued)

Panel B : Summary Statistics by Firm Type

BrokerDeal Depository Insurance Other Total

Bond Vars
Number of Issues 228 470 269 906 1873

Subordinated 6.1% 39.6% 9.7% 12.4% 18.0%

Offering Amount ($mil) 711.85 694.40 397.32 241.19 434.63
(400.00) (386.79) (300.00) (150.00) (250.00)

Rating Scale 5.57 5.55 7.26 5.04 5.55
(5.00) (6.00) (7.00) (5.00) (6.00)

Yield Spread (bps) 140 127 189 110 129
(101) (92) (160) (83) (95)

Tail Risk Vars
ES 4.54 3.84 4.47 3.82 4.01

(3.97) (3.41) (4.12) (3.31) (3.45)

MES 3.01 2.22 2.35 1.91 2.19
(2.70) (1.89) (1.69) (1.79) (1.88)

ESidio 1.44 1.88 2.41 2.18 2.05
(1.34) (1.54) (2.08) (1.81) (1.75)

Other Risk Vars
Volatility 2.28 1.89 2.20 1.86 1.97

(2.00) (1.62) (1.92) (1.63) (1.67)

Beta 1.53 1.10 1.00 1.10 1.14
(1.56) (1.09) (0.89) (1.19) (1.14)

Firm Vars
Assets (log) 11.98 12.14 10.44 9.94 10.81

(12.13) (12.28) (10.57) (10.69) (11.18)

Market Leverage 17.66 9.24 8.62 10.20 10.64
(16.52) (7.42) (5.06) (7.84) (7.87)

Book Debt/Equity 24.80 12.18 8.06 12.92 13.48
(26.78) (12.02) (6.09) (14.99) (12.69)
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Table 36: Bond Yield Spreads and Tail Risk

The following table displays the primary bond yield regressions with dependent vari-

able as bond yield minus the closest benchmark treasury yield expressed in basis

points on firm tail-risk measures and other firm and bond characteristics during the

period from 1990 to 2010. Our tail risk measures are defined as: ES: the negative of

the average of the firm’s daily returns on 5% worst return days during the calendar

year for the firm; MES: the negative of the average firm’s daily return on 5% worst

return days of the market (S&P 500 instead of for the firm) during the calendar year;

ES, MES are expressed in percentage terms. Rating is generated by converting the

bond ratings to a cardinal scale measured on a 23 point scale for ratings issued by

S&P, Moody’s and Fitch and then taking their average for a given firm. The firms

are categorized into 4 firm-types: Depositories (2-digit SIC code=60); Broker-Dealers

(4-digit SIC code=6211); Insurance (2-digit SIC code=60 & 64); Other (2-digit SIC

code=61, 62(except 6211), 65, 67). Standard bond yield regression controls which are

defined in Appendix D.1 and included in the regression specification are: log assets,

profitability, long-term debt to assets, leverage, term spread, log issue size, years to

maturity. Firm-type fixed effects (FE) are included by defining a dummy variable

d Firm-Type for each firm-type that is set to 1 if a firm belongs to that firm-type

or else it is set to 0. Bond-type fixed effects are controlled by including d Agency,

d Sub and d Callable which are dummy variables set to 1 if the type of bond is an

agency debt, subordinated or callable respectively or else they are set to 0. Year

fixed effects are included in the regressions. All standard errors are clustered at firm

level to correct for correlation across observations of a given firm. All t-statistics are

displayed in brackets. *, ** and *** indicate significance greater than 10%, 5% and

1%, respectively.
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Table 36 (continued)

All Controls No Firm Controls
(1) (2) (3) (4)

Tail Risk Vars
ES 10.25*** 14.80***

(3.12) (4.09)

MES 3.47 2.97
(1.09) (0.84)

Firm Vars
Market Leverage 0.63** 0.79***

(2.42) (2.64)

LongTermDebt Assets 50.35*** 51.26***
(2.68) (2.63)

Assets (log) 1.43 2.27
(0.44) (0.68)

Profitability -2.83 -5.90
(-0.16) (-0.33)

Bond Vars
d Agency -5.85 -3.99 -65.06*** -69.98***

(-0.34) (-0.22) (-7.59) (-7.52)

Rating Scale 12.81*** 14.22***
(5.10) (5.60)

Maturity (yrs) 1.11*** 1.01*** 0.76*** 0.55*
(4.56) (4.04) (2.70) (1.84)

IssueSize (log) -16.31*** -16.98*** -22.32*** -22.96***
(-3.39) (-3.56) (-4.99) (-4.93)

Macro Vars
10yr-1yr Treasury Spread -8.48* -5.15 -14.39** -9.08

(-1.68) (-1.06) (-2.46) (-1.62)

N 1873 1873 1873 1873
Adj. R2 0.577 0.569 0.536 0.518

Year FE X X X X
FirmType FE X X X X
BondType FE X X X X
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Table 37: Bond Yield Spreads and Other Risk Measures

The following table displays the pricing effect of other risk measures, which are closely related to tail

risk, on bond yield issuance in the primary market controlling for bond and firm characteristics during

the period from 1990 to 2010. Our risk measures are defined as the following: ESidio: is the residual

plus constant upon regressing ES on MES separately for each firm-type; Volatility: is the standard

deviation of daily firm equity return over the calendar year; Beta: is the estimate of the coefficient

upon regressing the firm’s daily return on market’s daily return (S&P 500). Volatility, MES, ESidio

are expressed in percentage terms. Other variables are defined as: Yield Spread is the bond yield

minus closest benchmark treasury yield expressed in basis points. The firms are categorized into 4

firm-types: Depositories (2-digit SIC code=60); Broker-Dealers (4-digit SIC code=6211); Insurance

(2-digit SIC code=60 & 64); Other (2-digit SIC code=61, 62(except 6211), 65, 67). d firm − type
is defined as a dummy variable that is set to 1 if a firm belongs to that firm-type or else it is set to

0. d Agency, d Sub and d Callable are dummy variables set to 1 if the type of bond is an agency

debt, subordinated or callable respectively or else they are set to 0. Standard bond yield regression

controls which are defined in Appendix D.1 and included in the regression specification are: log

assets, profitability, long-term debt to assets, leverage, term spread, log issue size, years to maturity

and rating scale Year fixed effects are included in the regressions. All standard errors are clustered at

firm level to correct for correlation across observations of a given firm. All t-statistics are displayed

in brackets. *, ** and *** indicate significance greater than 10%, 5% and 1%, respectively.

All Controls No Firm Controls
(1) (2) (3) (4) (5) (6)

Volatility 18.65*** 27.76***
(3.00) (4.16)

Beta 3.95 0.54
(0.47) (0.06)

ESidio 13.26*** 20.45***
(3.09) (4.63)

MES 5.07 5.67
(1.54) (1.55)

N 1873 1873 1873 1873 1873 1873
adj. R2 0.579 0.568 0.578 0.547 0.517 0.542

Year FE X X X X X X
FirmType FE X X X X X X
BondType FE X X X X X X
Firm-level Vars X X X 7 7 7
OtherControls X X X X X X
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Table 38: Bond Characteristics and Pricing of Tail Risk

The following table displays the primary bond yield regressions with dependent variable as

bond yield minus closest benchmark treasury yield expressed in basis points on firm tail-risk

measures and other bond characteristics during the period from 1990 to 2010. The analysis

consists of the interaction results of tail-risk measures with bond features which are defined

in the following manner: Dummy variable d Sub is set to 1 if the bond is subordinated

else it is set to 0. Dummy variables d LowGrade is set to 1 if it’s rating scale ≥ 5 (A

or lower for S&P, Fitch and Moodys’) implying they are medium-grade bonds else it is

set 0 implying they are high-grade bonds (AAA or AA - High-grade AAA and AA bonds

constitute about 33% of the sample; Medium grade A to BBB constitute 63% and the rest

4% are speculative grade bonds). Similarly d LongMat is set to 1 if the years to maturity

of the bond is ≥ 10 (the mean and median maturity in the sample is close to 10 years) else

it is set to 0. Our tail risk measures are defined as: ES: the negative of the average of the

firm’s daily returns on 5% worst return days during the calendar year for the firm; MES:

the negative of the average firm’s daily return on 5% worst return days of the market (S&P

500 instead of for the firm) during the calendar year; ES, MES are expressed in percentage

terms. Rating is generated by converting the bond ratings to a cardinal scale measured

on a 23 point scale for ratings issued by S&P, Moody’s and Fitch and then taking their

average for a given firm. The firms are categorized into 4 firm-types: Depositories (2-digit

SIC code=60); Broker-Dealers (4-digit SIC code=6211); Insurance (2-digit SIC code=60 &

64); Other (2-digit SIC code=61, 62(except 6211), 65, 67). Standard bond yield regression

controls which are defined in Appendix D.1 and included in the regression specification

are: log assets, profitability, long-term debt to assets, leverage, term spread, log issue size,

years to maturity. Firm-type fixed effects (FE) are included by defining a dummy variable

d Firm-Type for each firm-type that is set to 1 if a firm belongs to that firm-type or else it

is set to 0. Bond-type fixed effects are controlled by including dummy variables d Agency,

d Sub and d Callable. Year fixed effects are included in the regressions. All standard errors

are clustered at firm level to correct for correlation across observations of a given firm. All

t-statistics are displayed in brackets. *, ** and *** indicate significance greater than 10%,

5% and 1%, respectively.
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Table 38 (continued)

Subordinated Low Grade Bond Maturity
(1) (2) (3) (4) (5) (6)

ES 7.50** -0.38 11.36***
(2.18) (-0.09) (2.98)

MES 3.15 -4.34 3.92
(0.96) (-0.92) (1.06)

d Sub×ES 11.72**
(2.10)

d Sub×MES 2.27
(0.31)

d LowGrade×ES 18.36***
(4.72)

d LowGrade×MES 14.65***
(3.09)

d LongMat×ES -3.63
(-1.08)

d LongMat×MES -1.13
(-0.31)

d Sub 2.42 1.61 13.85* 13.38 4.32 4.66
(0.29) (0.18) (1.74) (1.61) (0.48) (0.51)

d LowGrade 5.64 2.61
(0.74) (0.34)

d LongMat 8.41* 6.32
(1.86) (1.27)

ΣCoeff 19.22*** 5.42 17.98*** 10.31*** 7.73** 2.80
(3.37) (0.74) (5.05) (2.81) (2.34) (0.79)

N 1873 1873 1873 1873 1873 1873
adj. R2 0.580 0.569 0.563 0.542 0.574 0.565

Year FE X X X X X X
FirmType FE X X X X X X
BondType FE X X X X X X
Rating X X 7 7 X X
Maturity X X X X 7 7

OtherControls X X X X X X
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Table 39: Firm Characteristics and Pricing of Tail Risk

The following table displays the primary bond yield regressions with dependent variable as

bond yield minus closest benchmark treasury yield expressed in basis points on firm tail-risk

measures and other firm characteristics during the period from 1990 to 2010. The analysis

consists of the interaction results of tail-risk measures with firm features which are defined

in the following manner: d Large is a dummy variable set to 1 if the log of firm assets is

greater than the median in the universe of financial firms in COMPUSTAT, else it is set

to 0. d HighLeverage is a dummy variable set to 1 if the firm leverage is greater than the

median in the universe of financial firms in COMPUSTAT, else it is set to 0. d Agency is set

to 1 if the bond is an agency bond else it is set to 0. Our tail risk measures are defined as:

ES: the negative of the average of the firm’s daily returns on 5% worst return days during

the calendar year for the firm; MES: the negative of the average firm’s daily return on 5%

worst return days of the market (S&P 500 instead of for the firm) during the calendar year;

ES, MES are expressed in percentage terms. Rating is generated by converting the bond

ratings to a cardinal scale measured on a 23 point scale for ratings issued by S&P, Moody’s

and Fitch and then taking their average for a given firm. The firms are categorized into

4 firm-types: Depositories (2-digit SIC code=60); Broker-Dealers (4-digit SIC code=6211);

Insurance (2-digit SIC code=60 & 64); Other (2-digit SIC code=61, 62(except 6211), 65, 67).

Standard bond yield regression controls which are defined in Appendix D.1 and included in

the regression specification are: log assets, profitability, long-term debt to assets, leverage,

term spread, log issue size, years to maturity. Firm-type fixed effects (FE) are included by

defining a dummy variable d Firm-Type for each firm-type that is set to 1 if a firm belongs

to that firm-type or else it is set to 0. Bond-type fixed effects are controlled by including

dummy variables d Agency, d Sub and d Callable. Year fixed effects are included in the

regressions. All standard errors are clustered at firm level to correct for correlation across

observations of a given firm. All t-statistics are displayed in brackets. *, ** and *** indicate

significance greater than 10%, 5% and 1%, respectively.

202



Table 39 (continued)

Assets Leverage Agency Debt
(1) (2) (3) (4) (5) (6)

ES 17.97*** 10.82** 11.62***
(3.33) (2.44) (3.43)

MES 10.30 2.26 4.99
(1.51) (0.50) (1.55)

d Large×ES -10.14*
(-1.72)

d Large×MES -5.98
(-0.86)

d Leverage×ES -0.77
(-0.16)

d Leverage×MES 0.66
(0.13)

d Agency×ES -29.98***
(-5.35)

d Agency×MES -32.84***
(-4.40)

d Large -16.45 -18.26
(-1.58) (-1.49)

d Leverage 13.43 19.31*
(1.33) (1.90)

d Agency -3.03 -1.15 12.35 14.57 -12.98 -5.67
(-0.18) (-0.07) (0.78) (0.90) (-0.74) (-0.31)

ΣCoeff 7.83** 4.32 10.05*** 2.92 -18.36*** -27.85***
(2.31) (1.32) (2.74) (0.79) (-3.37) (-3.95)

N 1873 1873 1873 1873 1873 1873
adj. R2 0.581 0.570 0.573 0.565 0.581 0.571

Year FE X X X X X X
FirmType FE X X X X X X
BondType FE X X X X X X
LogAssets 7 7 X X X X
Leverage X X 7 7 X X
RatingScale X X X X X X
OtherControls X X X X X X
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Table 40: Pricing of Tail Risk for Different Institution Types

The following table displays the primary bond yield regressions with dependent variable

as bond yield minus closest benchmark treasury yield expressed in basis points on firm

tail-risk measures and other firm and bond characteristics during the period from 1990 to

2010 separately for each firm type. Our tail risk measures are defined as: ES: the negative

of the average of the firm’s daily returns on 5% worst return days during the calendar year

for the firm; MES: the negative of the average firm’s daily return on 5% worst return days

of the market (S&P 500 instead of for the firm) during the calendar year; ES, MES are

expressed in percentage terms. Rating is generated by converting the bond ratings to a

cardinal scale measured on a 23 point scale for ratings issued by S&P, Moody’s and Fitch

and then taking their average for a given firm. The firms are categorized into 4 firm-types:

Depositories (2-digit SIC code=60); Broker-Dealers (4-digit SIC code=6211); Insurance

(2-digit SIC code=60 & 64); Other (2-digit SIC code=61, 62(except 6211), 65, 67).

Standard bond yield regression controls which are defined in Appendix D.1 and included in

the regression specification are: log assets, profitability, long-term debt to assets, leverage,

term spread, log issue size, years to maturity. Firm-type fixed effects (FE) are included by

defining a dummy variable d Firm-Type for each firm-type that is set to 1 if a firm belongs

to that firm-type or else it is set to 0. Bond-type fixed effects are controlled by including

d Agency, d Sub and d Callable which are dummy variables set to 1 if the type of bond is

an agency debt, subordinated or callable respectively or else they are set to 0. Year fixed

effects are included in the regressions. All standard errors are clustered at firm level to

correct for correlation across observations of a given firm. All t-statistics are displayed in

brackets. *, ** and *** indicate significance greater than 10%, 5% and 1%, respectively.

Panel A analyzes the effect of tail-risk on bond issuance yields controlling for all

our bond-level, firm-level and macroeconomic variables. Panel B analyzes the incremental

effect of tail-risk on subordinated bond issuance yields controlling for all our bond-level,

firm-level and macroeconomic variables.
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Table 40 (continued)

Panel A: Only Tail Risk

Depository Broker-Dealer Insurance Other
(1) (2) (3) (4) (5) (6) (7) (8)

ES -1.45 37.92*** 11.85* 15.56***
(-0.22) (3.34) (1.68) (3.57)

MES -8.57 35.68*** 16.28** 5.23
(-0.98) (3.59) (2.44) (1.10)

N 470 470 228 228 269 269 906 906
adj. R2 0.476 0.478 0.494 0.483 0.552 0.558 0.656 0.635

Year FE X X X X X X X X
BondType FE X X X X X X X X
OtherControls X X X X X X X X

Panel B: Tail Risk×Subordinated

Depository Rest
(1) (2) (3) (4)

ES -7.23 10.85***
(-0.89) (2.88)

d Sub×ES 14.91*** 13.56
(2.85) (1.60)

MES -8.80 7.78**
(-0.81) (2.12)

d Sub×MES 0.61 14.69
(0.06) (1.49)

d Sub 4.08 5.00 11.85 21.73
(0.42) (0.43) (0.92) (1.51)

ΣCoeff 7.68 -8.19 24.41*** 22.47**
(1.20) (-1.00) (3.10) (2.22)

N 470 470 1403 1403
adj. R2 0.484 0.477 0.616 0.604

Year FE X X X X
FirmType FE 7 7 X X
BondType FE X X X X
OtherControls X X X X
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Table 41: Political Connectedness and Pricing of Tail Risk

The following table displays the primary bond yield regressions with dependent variable

as bond yield minus closest benchmark treasury yield expressed in basis points on firm

tail-risk measures and other firm and bond characteristics during the period from 1998 to

2010. Our tail risk measures are defined as: ES: the negative of the average of the firm’s

daily returns on 5% worst return days during the calendar year for the firm; MES: the

negative of the average firm’s daily return on 5% worst return days of the market (S&P

500 instead of for the firm) during the calendar year; ES, MES are expressed in percentage

terms. Rating is generated by converting the bond ratings to a cardinal scale measured

on a 23 point scale for ratings issued by S&P, Moody’s and Fitch and then taking their

average for a given firm. The firms are categorized into 4 firm-types: Depositories (2-digit

SIC code=60); Broker-Dealers (4-digit SIC code=6211); Insurance (2-digit SIC code=60 &

64); Other (2-digit SIC code=61, 62(except 6211), 65, 67). Standard bond yield regression

controls which are defined in Appendix D.1 and included in the regression specification

are: log assets, profitability, long-term debt to assets, leverage, term spread, log issue size,

years to maturity. Firm-type fixed effects (FE) are included by defining a dummy variable

d Firm-Type for each firm-type that is set to 1 if a firm belongs to that firm-type or else

it is set to 0. Bond-type fixed effects are controlled by including d Agency, d Sub and

d Callable which are dummy variables set to 1 if the type of bond is an agency debt,

subordinated or callable respectively or else they are set to 0. All standard errors are

clustered at firm level to correct for correlation across observations of a given firm. All

t-statistics are displayed in brackets. *, ** and *** indicate significance greater than 10%,

5% and 1%, respectively.

To study the impact of political connectedness, we use lobbing expenditure data

from the Center for Responsive Politics (CRP) which compiles data from lobbying

disclosure reports filed with Secretary of the Senate’s Office of Public Records (SOPR).

The data covers lobbying activity that took place from 1998 to 2010. Lobbying records are

matched with our dataset on the name and the broad industry classification of the firm.

Political connectedness is defined in two ways - a dummy variable d PoliticalConnection

equal to 1 if the financial firm has ever lobbied the government and 0 otherwise; and Total

Lobby Amount(log) as the natural logarithm of the amount of total lobbying expenditure

since the year of data availability in 1998.
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Table 42: Political Connectedness and Debt Issuance

The following table displays the regression results of measures of bond issuance on political con-

nectedness and other firm characteristics during the period from 1998 to 2010 on a firm-quarter

panel dataset. The dependent variables are d Issue: a dummy variable set to 1 for a firm-quarter

observation if the firm issues a bond in the given quarter, and 0 otherwise; Total Issue Amount: is

the total bond issue amount for a given firm in a given quarter in log terms; Number Of Issues: is

the total number of bond issues for a given firm in a given quarter. Control variables, defined in

Appendix D.1 and included in the regression specification are 1 quarter lagged values of: log assets,

profitability, long-term debt to assets, market leverage, market-to-book, asset growth. Firm-type fixed

effects (FE) are included by defining a dummy variable d Firm-Type for each firm-type that is set

to 1 if a firm belongs to that firm-type or else it is set to 0. All standard errors are clustered at firm

level to correct for correlation across observations of a given firm. All t-statistics are displayed in

brackets. *, ** and *** indicate significance greater than 10%, 5% and 1%, respectively.

To study the impact of political connectedness, we use lobbing expenditure data from the Center

for Responsive Politics (CRP) which compiles data from lobbying disclosure reports filed with Sec-

retary of the Senate’s Office of Public Records (SOPR). The data covers lobbying activity that took

place from 1998 to 2010. Lobbying records are matched with our dataset on the name and the

broad industry classification of the firm. Political connectedness is defined in two ways - a dummy

variable d PoliticalConnection equal to 1 if the financial firm has ever lobbied the government and

0 otherwise; and Total Lobby Amount(log) as the natural logarithm of the amount of total lobbying

expenditure since the year of data availability in 1998.

Pr(Issue) Tot. Issue Amount Num. Of Issues
(1) (2) (3) (4) (5) (6)

d PoliticalConnection -0.10 -0.16 -0.02
(-1.36) (-0.76) (-0.25)

d PoliticalConnection×Lag1Q-Assets(log) 0.12** 0.70*** 0.33***
(2.51) (4.11) (3.53)

Total Lobby Amount(log) -0.01 -0.01 -0.00
(-1.52) (-0.74) (-0.18)

Total Lobby Amount(log)×Lag1Q-Assets(log) 0.01*** 0.06*** 0.03***
(2.58) (4.27) (3.41)

Lag Assets(log) 0.26*** 0.30*** 0.54*** 0.79*** 0.06** 0.17***
(7.45) (11.11) (6.23) (9.47) (2.18) (5.21)

ΣCoeff 0.37*** 1.24*** 0.38***
(9.95) (7.72) (4.40)

N 8366 8366 8366 8366 8366 8366
pseudo. R2 0.164 0.164
adj. R2 0.152 0.156 0.103 0.108

Year-Quarter FE X X X X X X
FirmType FE X X X X X X
Firm Controls X X X X X X

208



Table 43: Pricing of Tail Risk Around Crisis Periods

The following table displays the primary bond yield regressions with dependent variable

as bond yield minus closest benchmark treasury yield expressed in basis points on firm

tail-risk measures and other firm and bond characteristics during the crisis periods from

1990 to 2010. Our tail risk measures are defined as: ES: the negative of the average of the

firm’s daily returns on 5% worst return days during the calendar year for the firm; MES:

the negative of the average firm’s daily return on 5% worst return days of the market (S&P

500 instead of for the firm) during the calendar year; ES, MES are expressed in percentage

terms. Rating is generated by converting the bond ratings to a cardinal scale measured

on a 23 point scale for ratings issued by S&P, Moody’s and Fitch and then taking their

average for a given firm. The firms are categorized into 4 firm-types: Depositories (2-digit

SIC code=60); Broker-Dealers (4-digit SIC code=6211); Insurance (2-digit SIC code=60 &

64); Other (2-digit SIC code=61, 62(except 6211), 65, 67). Standard bond yield regression

controls which are defined in Appendix D.1 and included in the regression specification

are: log assets, profitability, long-term debt to assets, leverage, term spread, log issue size,

years to maturity. Firm-type fixed effects (FE) are included by defining a dummy variable

d Firm-Type for each firm-type that is set to 1 if a firm belongs to that firm-type or else

it is set to 0. Bond-type fixed effects are controlled by including d Agency, d Sub and

d Callable which are dummy variables set to 1 if the type of bond is an agency debt,

subordinated or callable respectively or else they are set to 0. All standard errors are

clustered at firm level to correct for correlation across observations of a given firm. All

t-statistics are displayed in brackets. *, ** and *** indicate significance greater than 10%,

5% and 1%, respectively.

To study the impact of crisis periods, we construct bond issuance samples of all the

financial firms in a 2-year window around the crisis-period and divide the period into equal

pre- and post- crisis periods of four quarters each. Post-crisis dummies are defined in the

following manner: For bonds issued between the period 1997:Q4 and 1999:Q3, d LTCM

takes the value 1 for all bonds issued between the 1998:Q4 and 1999:Q3, and 0 otherwise.

For bonds issued between the period 1999:Q2 and 2001:Q1 , d Dotcom takes the value

1 for all bonds issued between 2000:Q2 and 2001:Q1, and 0 otherwise. For bonds issued

between the period 2007:Q4 and 2009:Q3, d F inCrisis takes the value 1 for all bonds

issued between 2008:4Q and 2009:Q3, and 0 otherwise.
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Table 43 (continued)

LTCM Dotcom Financial Crisis
(1) (2) (3) (4) (5) (6)

ES 27.57** 2.24 43.41***
(2.09) (0.31) (3.53)

MES 9.57 -7.04 18.76
(1.10) (-1.10) (1.09)

d LTCM×ES -33.16***
(-2.92)

d LTCM×MES -16.55**
(-2.03)

d DotCom×ES 9.65
(1.24)

d DotCom×MES -17.10
(-1.36)

d FinCrisis×ES -61.22**
(-2.51)

d FinCrisis×MES -74.70***
(-3.41)

d LTCM 70.28*** 86.66***
(2.77) (4.08)

d DotCom 47.77*** 40.31***
(3.81) (2.80)

d FinCrisis 175.59*** 230.37***
(2.80) (5.11)

ΣCoeff -5.59 -6.98 11.89 -24.13* -17.82 -55.95***
(-0.88) (-1.25) (1.17) (-1.69) (-0.71) (-2.86)

N 154 154 126 126 100 100
adj. R2 0.656 0.602 0.364 0.374 0.605 0.626

Year FE 7 7 7 7 7 7

FirmType FE X X X X X X
BondType FE X X X X X X
OtherControls X X X X X X
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Table 44: Credit Ratings and Tail Risk

The following table displays the ordered probit regressions with dependent variable as

rating scale on tail risk and other firm characteristics during the period from 1990 to 2010

separately for each firm-type. Credit ratings are converted into a cardinal scale starting

with 1 as AAA(Aaa), 2 as AA+(Aa1), 3 as AA(Aa2), and so on. Our tail risk measures are

defined as: ES: the negative of the average of the firm’s daily returns on 5% worst return

days during the calendar year for the firm; MES: the negative of the average firm’s daily

return on 5% worst return days of the market (S&P 500 instead of for the firm) during the

calendar year; ES, MES are expressed in percentage terms. The firms are categorized into

4 firm-types: Depositories (2-digit SIC code=60); Broker-Dealers (4-digit SIC code=6211);

Insurance (2-digit SIC code=60 & 64); Other (2-digit SIC code=61, 62(except 6211),

65, 67). Standard bond yield regression controls which are defined in Appendix D.1 and

included in the regression specification are: log assets, profitability, long-term debt to

assets, leverage, term spread, log issue size, years to maturity. Firm-type fixed effects

(FE) are included by defining a dummy variable d Firm-Type for each firm-type that is

set to 1 if a firm belongs to that firm-type or else it is set to 0. Bond-type fixed effects

are controlled by including d Agency, d Sub and d Callable which are dummy variables

set to 1 if the type of bond is an agency debt, subordinated or callable respectively or else

they are set to 0. Year fixed effects are included in the regressions. All standard errors are

clustered at firm level to correct for correlation across observations of a given firm. All

t-statistics are displayed in brackets. *, ** and *** indicate significance greater than 10%,

5% and 1%, respectively.

Panel A analyzes the effect of tail-risk on bond rating assignment by credit rating

agencies controlling for all our bond-level, firm-level and macroeconomic variables. Panel

B analyzes the incremental effect of tail-risk on subordinated bond rating assignment

controlling for all our bond-level, firm-level and macroeconomic variables.
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Table 44 (continued)

Panel A: Only Tail Risk

Depository Broker-Dealer Insurance Other
(1) (2) (3) (4) (5) (6) (7) (8)

ES 0.27*** 0.08 0.43*** 0.15***
(3.68) (0.37) (4.19) (2.93)

MES 0.21 -0.30 0.38*** 0.16**
(1.46) (-1.17) (3.31) (2.34)

N 470 470 228 228 269 269 906 906
Pseudo-R2 0.298 0.290 0.368 0.375 0.189 0.175 0.436 0.433

Year FE X X X X X X X X
BondType FE X X X X X X X X
OtherControls X X X X X X X X

Panel B: Tail Risk×Subordinated

Depository Rest
(1) (2) (3) (4)

ES 0.33*** 0.18***
(3.77) (3.92)

d Sub×ES -0.17* -0.14
(-1.79) (-1.36)

MES 0.17 0.11*
(1.12) (1.67)

d Sub×MES 0.09 0.09
(0.78) (0.78)

d Sub 1.10*** 1.05*** 0.30 0.39**
(7.89) (8.18) (1.49) (1.98)

ΣCoeff 0.16* 0.26* 0.04 0.20
(1.94) (1.82) (0.37) (1.54)

N 470 470 1403 1403
Pseudo-R2 0.301 0.290 0.376 0.371

Year FE X X X X
FirmType FE 7 7 X X
BondType FE X X X X
FirmControls X X X X
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APPENDIX A

MISCELLANEOUS SECTION FOR CHAPTER 1

A.1 Variable Definitions

This section provides the definitions of variables used in the paper’s analysis. The

mortgage loans used in this paper are all owner occupied, first lien, single family

homes from HMDA and BBx databases. County-level income and population data is

from the publicly available U.S. Census Bureau data. House prices are gathered from

Zillow.com.

The Loans in BBx and HMDA are matched exactly on four loan characteristics,

namely loan amount, loan purpose, occupancy type and lien type. Additionally loans

are matched on the geographic location of the property as shown in Figure A.1 .

• Number of Loans is computed as
∑N

i pi where pi is the probability of a matched

loan-pair from BBx and HMDA. N is the number of matched loan pairs in the

aggregation set (ex: firm-county-quarter level set). The definition of N and p

remain the same when defining the rest of the variables below.

• Volume of Loans is computed as
∑N

i pi × Ai where. Ai is the mortgage loan

amount of the matched pair (matching is exact on this dimension).

• Average Loan Amount is computed as the
(∑N

i=1 pi × Ai
)
÷
∑N

i=1 pi.

• Average Loan-to-Income Ratio is computed as the
(∑N

i=1 pi × LTIi
)
÷
∑N

i=1 pi

where LTIi is the loan-to-income ratio of the matched loan pair i available in

the HMDA dataset.

• Average Loan-to-Value Ratio is computed as the
(∑N

i=1 pi × LTVi
)
÷
∑N

i=1 pi

213



where LTVi is the loan-to-value ratio of the matched loan pair i available in the

BBx dataset.

• Average Borrower Income is computed as the
(∑N

i=1 pi × Incomei
)
÷
∑N

i=1 pi

where Incomei is the mortgage borrower’s Income corresponding to the matched

loan pair i available in the HMDA dataset.

• Average FICO Score is computed as the
(∑N

i=1 pi × FICOi

)
÷
∑N

i=1 pi where

FICOi is the mortgage borrower’s FICO credit score corresponding to the

matched loan pair i available in the BBx dataset.

• Average Interest Rate is computed as the
(∑N

i=1 pi ×Ratei
)
÷
∑N

i=1 pi where

Ratei is the is the initial interest rate in percentage terms of the matched loan

pair i available in the BBx dataset.

• ARM Loans are adjustable rate mortgages.

• Complex Loans are defined as either Interest Only (IO), Hybrid ARM (HARM),

Pay-option ARM, or Negative Amortizing mortgages.

• Jumbo Loans are mortgages with loan amount greater than a particular loan

limit. The loan limits for 2004, 2005 and 2006 were $333,700, $359,650 and

$417,000 respectively.

• Loan-type are low-documentation loans, Alt-A loans, Subprime loans, ARM

loans, loans with pre-payment penalty, complex loans and jumbo loans. Loans

are classified based on BBx data.

• Loan-type (%) is computed as
(∑N

i=1 pi × Iloan−type
)
÷
∑N

i=1 pi in percentage

terms where Iloan−type is an indicator function taking the value of 1 if the loan is

of type=loan-type and 0 otherwise. For instance, the fraction of Alt-A loans is
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(∑N
i=1 pi × IAlt−A

)
÷
∑N

i=1 pi where IAlt−A is an indicator function taking the

value of 1 if the loan is an Alt-A mortgage and 0 otherwise.

• Loan default is defined if any of the following conditions are true: (a) payments

on the loan are 60+ days late as defined by the Office of Thrift Supervision

(OTS); (b) the loan is in foreclosure; or (c) the loan is real estate owned (REO),

that is, the lending bank has retaken possession of the home.

• Default PercentageT is computed as
(∑N

i=1 pi × IDef,T
)
÷
∑N

i=1 pi in percentage

terms where IDef,T is an indicator function taking the value of 1 if the loan has

defaulted within T periods after origination and 0 otherwise.

A.2 Supplemental Notes on Repo Financing and Bankruptcy
Code

1. “The Amended Repurchase Agreements increased the capacity of the Mortgage

Repurchase Facility from $500 million to $750 million, expanded the eligibility

of underlying mortgage loan collateral and modified certain other covenants

and terms. In addition, the Mortgage Repurchase Facility has been modified to

conform to the revised bankruptcy remoteness rules with regard to repurchase

facilities adopted by the IRS in October 2005.” – PHH Corporation 10-K

filings.

Source: https://www.sec.gov/Archives/edgar/data/77776/

000095012306014446/y26027e10vk.htm

2. “Our use of repurchase agreements to borrow money may give our lenders

greater rights in the event of bankruptcy.” – American Mortgage Acceptance

Company 10-K filings.

Source: https://www.sec.gov/Archives/edgar/data/878774/

000132404207000007/f10k_dec2006-amac.txt
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3. “Our borrowings under repurchase agreements may qualify for special treat-

ment under the bankruptcy code, giving our lenders the ability to avoid the

automatic stay provisions of the bankruptcy code and to take possession of

and liquidate our collateral under the repurchase agreements without delay in

the event that we file for bankruptcy.” – American Home Mortgage Investment

Corp 10-K filings.

Source: https://www.sec.gov/Archives/edgar/data/1256536/

000119312507044477/d10k.htm

4. “Our repurchase facilities are dependent on our counterparties ability to resell

our obligations to third-party purchasers. There have been in the past, and in

the future there may be, disruptions in the repurchase market. If there is a

disruption of the repurchase market generally, or if one of our counterparties

is itself unable to access the repurchase market, our access to this source of

liquidity could be adversely affected.” – American Home Mortgage Investment

Corp 10-K filings.

Source: https://www.sec.gov/Archives/edgar/data/1256536/

000119312507044477/d10k.htm

5. “Repurchase agreements are used instead of warehouse loans in part to qualify

for an exemption from the automatic stay provisions under Section 362(a)

of the federal Bankruptcy Code” – Wells Fargo responding as a Warehouse

Lender to a HUD solicitation of “Information on Changes in Warehouse

Lending and Other Loan Funding Mechanisms”.

Source: http://www.regulations.gov/#!documentDetail;D=HUD-2010-

0121-0008

6. “Since the adoption of the 2005-06 Bankruptcy Amendments, the Financing
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Documentation has significantly shifted towards the use of Repurchase Agree-

ments” – American Securitization Forum responding to a HUD solicitation

of “Information on Changes in Warehouse Lending and Other Loan Funding

Mechanisms”.

Source: http://www.regulations.gov/#!documentDetail;D=HUD-2010-

0121-0005

A.3 BBx and HMDA Matching Algorithm

The HMDA dataset contains information on whether a loan was sold to a secondary

market entity within the same calendar year as the origination year. This field allows

for breaking down the mortgages sold to GSE and non-GSE financial institutions.

The mortgages sold to non-GSE financial institutions are classified as (i) mortgages

sold for private securitization, (ii) mortgages sold to non-bank institutions such as

insurance companies, credit unions, mortgage banks or other finance companies, (iii)

mortgages sold to banking institutions which include commercial and savings banks

and (iv) mortgages sold to originating institution affiliates 1. Following [105]’s classi-

fication and [13] who show that ten of the largest issuers of MBS from securitization

belong to category (ii), categories (i) and (ii) are classified as mortgages most likely

sold for the purpose of securitization. Summary statistics for the filtered HMDA

dataset are shown in Table A.2 Panel A. Using the zip-code and census-tract cross-

walk file, this dataset is then matched to the BBx data based on four loan character-

istics: loan amount, loan purpose, occupancy type and lien type and the geography

of the property2. While the matching can be carried out exactly on the four loan

characteristics, matching on geography yields a probability related to the overlap of

1The HMDA reporting format and thereby the classification codes for mortgages sold changes in
2004. Different codes are used for pre- and post-2004 periods.

2The HMDA loan amount is rounded to the nearest thousand, but BBx contains the exact loan
amount. This leads to a coarse match on the loan amount. Moreover, while the data on the identity
of the loan originator is complete in the HMDA dataset, it is missing for about 90% of the BBx
data. This does not allow for matching on the loan originator.
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a HMDA census-tract region with the BBx zip-code region. Specifically, within the

subset of HMDA and BBx loans that have matched on the four loan characteristics,

let there be N census-tracts which overlap with the zip-code z of a matched BBx loan.

Let Kc,z be the number of matched loans in census-tract c which overlaps with the

zip-code z of a matched BBx loan, where c ∈ {1, 2, 3 . . . N}. The conditional proba-

bility3 of any one loan Li,c,z in census-tract c to be a match for the given HMDA loan

in zip-code z is computed as P(Li,c,z) =
P(Ac,z)/Kc,z

N∑
j=1

P(Aj,z)

where P(Ac,z) is the proportion

of a census-tract region c that overlaps with a given zip-code region z based on the

number of housing units. Refer to Figure A.1 for a simple pictorial depiction of the

above matching algorithm. Summary statistics for the matched BBx-HMDA data is

shown in Table A.2 Panel B. The matching quality of both databases is compared

by plotting the Epanechnikov kernel densities in Figure A.2 and Figure A.3 across

various loan characteristics.

3I.e. conditional on matching exactly on the four loan-characteristics.

218



Figure A.1: Databases Matching Exercise

In the above Figure, the matching probability for each loan is given by:

P(L1,C1,Z) =
P(AC1,Z)

P(AC1,Z) + P(AC2,Z)

P(L1,C2,Z) = P(L2,C2,Z) =
P(AC2,Z)/2

P(AC1,Z) + P(AC2,Z)

Where P(AC,Z) is the proportion of a census-tract region C that overlaps with a

given zip-code region Z based on the percentage of common housing units.
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Table A.2: Summary Statistics

Panel A of this table presents the summary statistics of the HMDA sample used for matching with

the BBx database. The HMDA dataset is first filtered to consist of mortgages (i) sold for private

securitization, (ii) sold to non-bank institutions such as insurance companies, credit unions, mortgage

banks or other finance companies. This subsample of loans sold to non-GSEs is further filtered to

contain only owner occupied, first lien, single family homes. Similarly, the BBx database is also

filtered to consist of owner occupied, first lien, single family homes. Panel B of this table presents

the matched BBx-HMDA dataset. The matching is carried exactly on four loan characteristics,

namely loan amount, loan purpose, occupancy type and lien type. Additionally, loans are matched

on the geographic location of the property as shown in Figure A.1. LTI stands for loan-to-income

ratio. LTV stands for loan-to-value ratio.

Panel A:Unmatched HMDA sample

CommBanks Thrifts CreditUnions AMC IMC

Tot Loan Number (1000s) 553.10 536.29 29.34 714.85 2597.68
Tot Loan Volume ($Bil) 116.40 127.33 4.55 184.59 584.74
Avg Loan Amount (1000s) 210.45 237.42 155.23 258.23 225.10
Avg Borrower Inc. (1000s) 86.56 94.49 70.72 102.33 89.68
Avg LTI Ratio (%) 2.65 2.68 2.40 2.70 2.68

Panel B:Matched BBx-HMDA sample

CommBanks Thrifts CreditUnions AMC IMC

Tot Loan Number (1000s) 339.04 396.19 8.97 716.09 1666.18
Tot Loan Volume ($Bil) 81.55 105.20 1.70 192.44 393.42
Avg Loan Amount (1000s) 240.54 265.53 189.19 268.74 236.12
Avg FICO 674.86 675.30 673.23 678.96 670.85
Avg LTV Ratio (%) 83.78 81.99 83.14 82.46 82.52
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Table A.3: Summary Statistics

Panel A of this table presents the summary statistics of the matched BBx-HMDA sample. The

headers of the columns indicate the number of HMDA matches for a given BBx loan. The matching

is carried exactly on four loan characteristics, namely loan amount, loan purpose, occupancy type

and lien type. Additionally, loans are matched on the geographic location of the property as shown

in Figure A.1.

Panel A: BBx Logic matching across years

Number of Matches (%)

Year BBx Unmatched (#) BBx Matched (%) One Two Three Four ≥ Five (%)

2004 879,377 74.70 36.72 21.38 13.02 8.24 20.64
2005 1,237,355 79.87 32.09 19.48 12.75 8.62 27.06
2006 989,129 78.63 35.49 20.41 12.66 8.35 23.09

Panel B: HMDA matching across years

Year IMCs (%) AMCs (%) Others (%)

2004 60.14 59.84 60.10
2005 63.97 73.20 66.27
2006 58.48 71.69 61.45
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Table A.5: State Anti-Predatory Lending Laws

This table provides the data for anti-predatory lending laws for U.S. states gathered from [25]. The

numbers reported in this table are from the combined index based on the pre- and post-mini-HOEPA

laws that were in effect in 2004–2005. The table has been sorted based on the Enforcement measure.

StateName Enforcement Coverage Restriction

Arizona 0.00 0.00 0.00
Delaware 0.00 0.00 0.00
Louisiana 0.00 1.81 0.67
Minnesota 0.00 6.46 0.55
Montana 0.00 0.00 0.00
New Hampshire 0.00 0.00 0.00
North Dakota 0.00 0.00 0.00
Oregon 0.00 0.00 0.00
Rhode Island 0.00 1.93 2.01
South Dakota 0.00 0.00 0.00
Tennessee 0.00 0.00 0.00
Washington 0.00 0.00 0.00
Wisconsin 0.00 0.00 0.00
Alaska 0.64 1.69 2.68
Iowa 0.64 1.93 2.68
Nebraska 0.64 1.93 0.00
Michigan 0.96 6.74 2.16
New York 1.76 2.15 1.91
West Virginia 1.76 5.60 1.64
Hawaii 1.92 0.85 0.67
Mississippi 1.92 1.93 0.67
Missouri 1.92 1.81 0.67
Vermont 1.92 1.57 2.68
Florida 2.10 0.00 1.64
Arkansas 2.11 3.66 4.07
Connecticut 2.11 2.67 3.25
Georgia 2.11 1.72 3.00
Pennsylvania 2.11 0.00 1.36
Texas 2.11 0.86 1.36
Illinois 2.46 3.74 1.91
Massachusetts 2.46 2.15 3.82
New Jersey 2.46 2.15 2.73
Alabama 2.57 1.57 2.68
Idaho 2.57 1.81 1.34
Kansas 2.57 1.93 2.68
Utah 2.57 3.54 4.87
Virginia 2.57 1.81 0.00
Wyoming 2.57 0.85 2.68
Nevada 2.81 0.00 0.00
California 3.33 4.09 2.03
North Carolina 3.33 3.42 4.61
District Of Columbia 3.39 5.67 3.25
Maryland 3.97 3.01 3.23
Colorado 4.03 1.88 4.32
Ohio 4.03 1.93 2.03
South Carolina 4.32 2.80 4.87
Indiana 4.39 3.23 4.34
Maine 4.39 1.57 3.23
Oklahoma 4.68 0.97 4.87
Kentucky 4.74 2.43 2.85
New Mexico 5.03 6.10 5.96
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Table A.6: Mortgage Credit Growth: Unique BBx-HMDA Matches

This table examines the changes in the broad measures of loan origination before and after the

2005 BAPCPA between IMCs and AMCs. The dataset is at the mortgage originating firm-county-

quarter level. The dataset is restricted to only unique matches where one BBx loan is matched to

one HMDa loan. The dependent and independent variables are the same as in the baseline regression

specifications in Table 2. All regressions include Firm FE and County×Quarter FE. T -statistics

displayed in parentheses are robust and clustered at the County level. *, **, and *** indicate

significance greater than 10%, 5%, and 1% respectively.

Depvar: g LoanVol g LoanNum AvgIntRate AvgLTI
(1) (2) (3) (4)

dPostBAPCPA×dIMC 0.09*** 0.11*** -0.14*** 0.03**
(7.81) (11.57) (-8.04) (2.54)

Avg FICO -0.01*** 0.00*
(-31.91) (1.91)

Avg LTV 0.04***
(38.27)

ARM Loans(%) -0.23*** 0.13***
(-8.37) (10.85)

Alt-A Loans(%) 0.40*** -0.04***
(17.46) (-3.15)

Subprime Loans(%) 1.02*** -0.06***
(36.09) (-3.70)

LowDoc Loans(%) 0.19*** -0.10***
(13.16) (-12.26)

Firm FE X X X X
County×Quarter FE X X X X

N 96483 96483 79724 78787
Adj. R2 0.040 0.039 0.547 0.356
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Table A.7: Mortgage Credit Growth: Highest Probability Match

This table examines the changes in the broad measures of loan origination before and after the

2005 BAPCPA between IMCs and AMCs. The dataset is at the mortgage originating firm-county-

quarter level. The dataset is restricted only to the highest probability matched HMDA loan for a

given BBx loan. The dependent and independent variables are the same as in the baseline regression

specifications in Table 2. All regressions include Firm FE and County×Quarter FE. T -statistics

displayed in parentheses are robust and clustered at the County level. *, **, and *** indicate

significance greater than 10%, 5%, and 1% respectively.

Depvar: g LoanVol g LoanNum AvgIntRate AvgLTI
(1) (2) (3) (4)

dPostBAPCPA×dIMC 0.10*** 0.11*** -0.09*** 0.05***
(12.65) (15.91) (-8.05) (6.07)

Avg FICO -0.01*** 0.00
(-46.61) (1.44)

Avg LTV 0.04***
(55.78)

ARM Loans(%) 0.00 0.07***
(0.05) (9.05)

Alt-A Loans(%) 0.33*** -0.01
(19.42) (-1.55)

Subprime Loans(%) 0.86*** -0.03**
(42.73) (-2.46)

LowDoc Loans(%) 0.23*** -0.08***
(23.20) (-12.09)

Firm FE X X X X
County×Quarter FE X X X X

N 187227 187227 163798 161762
Adj. R2 0.068 0.074 0.593 0.379
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Table A.8: Mortgage Credit Growth: County-Quarter Level

This table examines the changes in the broad measures of loan origination before and after the 2005

BAPCPA between IMCs and AMCs. The dataset is at the mortgage originating county-quarter level.

The dependent and independent variables are the same as in the baseline regression specifications

in Table 2. Additionally, county-level population growth and per-capita income growth rates are

included as county-level controls. All regressions include County FE and Quarter FE. T -statistics

displayed in parentheses are robust and clustered at the County level. *, **, and *** indicate

significance greater than 10%, 5%, and 1% respectively.

Depvar: g LoanVol g LoanNum AvgIntRate AvgLTI
(1) (2) (3) (4)

dPostBAPCPA×dIMC 0.08*** 0.08*** -0.12*** 0.05***
(7.92) (8.38) (-8.85) (5.65)

dIMC -0.13*** -0.13*** 0.16*** 0.00
(-17.83) (-20.91) (18.26) (0.69)

County-level Controls:
Population growth 1.41** 0.66 -0.00 0.73

(2.20) (1.21) (-0.00) (1.45)

PCI growth -0.24 -0.20 0.07 -0.44***
(-1.15) (-1.08) (0.29) (-2.75)

Competition growth -0.06*** -0.06*** 0.01 0.01
(-2.97) (-3.46) (0.20) (0.40)

Loan-mix Controls:
Avg FICO -0.01*** 0.00

(-30.91) (1.22)

Avg LTV 0.05***
(42.70)

ARM Loans(%) 0.23*** 0.09***
(8.97) (5.82)

Alt-A Loans(%) 0.31*** -0.02
(8.91) (-1.08)

Subprime Loans(%) 0.74*** 0.01
(19.03) (0.44)

LowDoc Loans(%) 0.20*** -0.12***
(9.12) (-8.73)

County FE X X X X
Quarter FE X X X X

N 38356 38356 36508 36505
Adj. R2 0.112 0.145 0.726 0.463
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Table A.9: Mortgage Credit Growth Robustness: Alternate Specifications

This table examines the changes in the broad measures of loan origination before and after the

2005 BAPCPA using alternate specifications for the dependent variable and the event window.

The dataset is at the mortgage originating firm-county-quarter level. The dependent variables in

Panel A are the log of total volume of loans (Log LoanVol) and the log of total number of loans

(Log LoanNum) made by a mortgage originating firm in a given county and quarter. In Panel B

columns (1)–(2), dPostBAPCPA takes the value 1 for four quarters from 2005Q4 to 2006Q3 and

0 for four quarters from 2004Q4 to 2005Q3. In Panel B columns (3)–(4), dPostBAPCPA takes

the value 1 for eight quarters from 2005Q4 to 2007Q3 and 0 for eight quarters from 2003Q4 to

2005Q3. In Panel B columns (5)–(6), the placebo event window is a non-overlapping window with

the baseline regression event window in Table 2. For these specifications, dPostBAPCPA takes the

value 1 for six quarters from 2002Q4 to 2004Q1 and 0 for six quarters from 2001Q2 to 2002Q3. All

regressions include Firm FE, County×Quarter FE. T -statistics displayed in parentheses are robust

and clustered at the County level. *, **, and *** indicate significance greater than 10%, 5%, and

1% respectively.

Panel A: Change in Levels (log)

Levels

Depvar: Log LoanVol Log LoanNum
(1) (2)

dPostBAPCPA×dIMC 0.03*** 0.04***
(4.07) (4.87)

Lagged Depvar 0.56*** 0.58***
(66.17) (67.41)

Firm FE X X
County×Quarter FE X X

N 295932 295932
Adj. R2 0.607 0.561

Panel B: Alternate Time Periods

4Q Before/After 8Q Before/After Placebo Test

Depvar: g LoanVol g LoansNum g LoanVol g LoansNum g LoanVol g LoansNum
(1) (2) (3) (4) (5) (6)

dPostBAPCPA×dIMC 0.08*** 0.08*** 0.05*** 0.06*** -0.00 -0.01
(7.02) (8.26) (5.51) (7.01) (-0.19) (-0.96)

Firm FE X X X X X X
County×Quarter FE X X X X X X

N 217025 217025 334839 334839 104177 104177
Adj. R2 0.041 0.042 0.054 0.058 0.032 0.029
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Table A.10: Mortgage Credit Growth Robustness: Discontinuity in Growth of Number
and Volume of Loans

Panel A and B fit a non-parametric local linear polynomial using a triangular kernel within half

and twice the optimal bandwidth (OB) proposed by [28] respectively. The dependent variable in

both panels is either the growth in the number or volume of mortgage originations at each FICO

score from the pre- to post-BAPCPA period covering 2004Q2 to 2007Q1. The Indicator variable

dThreshold is equal to 1 if the FICO score is greater than 620 (580) for low (full) documentation

loans, and 0 otherwise. T -statistics displayed in parentheses. *, **, and *** indicate significance

greater than 10%, 5%, and 1% respectively.

Panel A: Local linear polynomial fit within half the optimal bandwidth (0.5×OB)

Low-Doc Loans (FICO Threshold=620) Full-Doc Loans (FICO Threshold=580)

Depvar: g LoanVol g LoanNum g LoanVol g LoanNum
(1) (2) (3) (4)

d Threshold 0.18*** 0.18*** 0.15*** 0.07
(4.75) (6.25) (2.67) (1.29)

N 29 29 21 21

Panel B: Local linear polynomial fit within twice the optimal bandwidth (2×OB)

Low Doc Loans (FICO Threshold=620) Full Doc Loans (FICO Threshold=580)

Depvar: g LoanVol g LoanNum g LoanVol g LoanNum
(1) (2) (3) (4)

d Threshold 0.10*** 0.10*** 0.16*** 0.13***
(4.79) (6.52) (5.91) (4.31)

N 115 115 83 83
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Table A.11: Mortgage Credit Growth Robustness: Variation Across Counties with
APL laws

This table examines the changes in the broad measures of IMC loan origination before and after

the 2005 BAPCPA between counties bordering states with weak and strong anti-predatory lending

(APL) laws. The dataset is at the mortgage originating firm-county-quarter level. States are sorted

in ascending order based on the strength of the enforcement of APL laws presented in Table A.5.

States in the top and bottom half are classified as weak-APL states and strong-APL states respec-

tively. In panels A and B, neighboring counties are defined as counties within 30 miles and 50 miles

respectively across borders of states with weak and strong APL laws. In panel C all counties in

weak- and strong-APL states are included and no distance cut-off is used. The dummy variable

dWeakAPLCounty is equal to 1 if a county belongs to a weak-APL state and is 0 otherwise. The

dependent variable and rest of the control variables are the same as in Table 2. All regressions

include Firm FE, County, and Quarter FE. T -statistics displayed in parentheses are robust and

clustered at the County level. *, **, and *** indicate significance greater than 10%, 5%, and 1%

respectively.

Panel A: Neighboring counties classified as within 50 miles

Depvar: g LoanVol g LoanNum AvgIntRate AvgLTI
(1) (2) (3) (4)

dPostBAPCPA×dWeakAPLCounty 0.07*** 0.07*** -0.03 0.04**
(3.85) (3.95) (-1.03) (2.43)

Loan-mix Controls X X
Firm FE X X X X
County FE X X X X
Quarter FE X X X X

N 58004 58004 51810 51178
Adj. R2 0.035 0.037 0.569 0.341
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Table A.11 (continued)

Panel B: Neighboring counties classified as within 100 miles

Depvar: g LoanVol g LoanNum AvgIntRate AvgLTI
(1) (2) (3) (4)

dPostBAPCPA×dWeakAPLCounty 0.04*** 0.04*** -0.00 0.00
(3.04) (3.31) (-0.21) (0.18)

Loan-mix Controls X X
Firm FE X X X X
County FE X X X X
Quarter FE X X X X

N 107849 107849 96397 95253
Adj. R2 0.031 0.033 0.560 0.309

Panel C: Variation across states

Depvar: g LoanVol g LoanNum AvgIntRate AvgLTI
(1) (2) (3) (4)

dPostBAPCPA×dWeakAPLCounty 0.02* 0.02** 0.00 0.06***
(1.70) (2.20) (0.17) (4.93)

Loan-mix Controls X X
Firm FE X X X X
County FE X X X X
Quarter FE X X X X

N 241040 241040 217659 214742
Adj. R2 0.032 0.034 0.580 0.353

234



APPENDIX B

MISCELLANEOUS SECTION FOR CHAPTER 2

B.1 Variable Definitions

B.1.1 Rating-level variables

• dCDS is an indicator variable equal to one if the rating change takes place when

the CDS trades on the underlying firm, and 0 otherwise.

• Previous Rating is the credit rating level prior to the rating change. It is

expressed as the natural logarithm of the cardinal rating scale; see Table B.1

for the mapping

• Abs Rating Change is the absolute value of the difference in rating scale change

between after and before rating change events.

• Days Since Last Rating is the natural logarithm of the number of days between

the previous rating change in the same direction for the same bond issue, but

by another rating agency. Following Jorion, Liu, and Shi (2005), the number

of days is set to 60 (a) if both rating agencies rate on the same day, (b) if the

rating by the second rating agency is in the opposite direction,or (c) if the rating

change by the other rating agency is more than 60 days.

• Earnings Ann Related is an indicator variable equal to one if there is an earn-

ings announcement within (-1,+1) days of the rating change event day, and 0

otherwise.

• dDowngrade is an indicator variable equal to one if the bond experiences a

rating downgrade event, and 0 otherwise.
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B.1.2 Firm-level variables: Firm fundamentals

• Sales is the firm’s quarterly sales (saleq) reported in COMPUSTAT.

• Assets is the firms’ quarterly total assets (atq) reported in COMPUSTAT.

• Operating income is the quarterly operating income (oiadpq) reported in COM-

PUSTAT.

• Profitability is the firm’s quarterly ratio of Operating income to Sales.

• Total debt is the firm’s total debts (dlcq + dlttq) reported in the quarterly

COMPUSTAT.

• Leverage is the firm’s Total debt divided by its Assets.

• Market value of equity is the market value of equity calculated using the monthly

CRSP database, i.e. share price × total shares outstanding.

• Book value of equity is the book value of equity. It is the total assets minus

total liability plus tax credit (atq−ltq + txditcq) calculated using quarterly

COMPUSTAT.

• Mkt-to-Book is the monthly ratio of Market value of equity divided by the Book

value of equity.

• Avg Volatility is the monthly standard deviation of daily stock returns caculated

using data from CRSP.

• Avg Trading Volume is the monthly trading volume on the stock reported in

CRSP.

• Avg Return is the monthly stock return obtained from CRSP.
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B.1.3 Firm-level variables: CDS trading variables

• Analyst Coverage is the number of analyst EPS forecasts in the 90 days prior

to the earnings announcement date. (source: I/B/E/S)

• Analyst Dispersion is the standard deviation of analyst EPS estimates made

in the 90 days prior to the earnings announcement date scaled by the actual

reported EPS. (source: I/B/E/S)

• Institutional Ownership is the ratio of total shares held by institutional investors

to the total shares outstanding for a given stock. (source: Thomson-Reuters

Institutional Holdings (13F) Database)

• Stock Illiquidity is the monthly average stock illiquidity defined as the squared

root of the [9] measure. It is the monthly average of the following daily values

where Rett and Pricet are daily return and price of the stock:√
1000000 ∗ |Rett|/ (Volume× Pricet).

• Bond Illiquidity is the number of outstanding bond issues in a given month (see

[115]).

• Debt Outstanding is a proxy for hedging demand. It is the residual from regress-

ing total amount of bond debt outstanding on the number of bond issues.This

variable measures the amount of bond debt outstanding for a firm that is lin-

early unrelated to the number of its bond issues.

• Forex Derivative Hedging is the average amount of foreign exchange derivatives

used for hedging purposes (i.e. non-trading purposes) relative to total assets of

the lead syndicate banks and bond underwriters that the firm has done business

with in the past five years. Banks’ derivatives usage data is obtained from Bank

Holding Company (BHC) Y9-C filings. Data on the firm’s lead bank syndicate is

obtained from LPC Dealscan, and the firm’s underwriter information is obtained
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from Mergent FISD.

B.1.4 CDS & Bond variables

• CDS Spread is the average monthly 5-year CDS spread from CMA and MARKIT

databases.

• Bond Yield is the trade-weighted average monthly bond yield calculated from

the TRACE database.

• CDS Spread Change is the logarithmic difference in average monthly 5-year

CDS spreads between the current and previous months.

• Bond Yield Change is the logarithmic difference in trade-weighted average bond

yields between the current month and previous months.

• CDS Slope is the difference between the monthly average 10-year CDS spreads

and the monthly average 1-year CDS spreads.

• CDS-implied Rating Class is the firm’s credit rating class, on the scale of 1 to

6, that is backed out non-parametrically using CDS spreads. See Section 2.5.1

for more details.

• Credit Rating Class is the credit rating level mapped to the rating class scale.

See Table C.2 for the mapping.

• Credit watch dummy indicates whether the firm (or bond issue) is put on credit

watch prior to a credit rating change. This monthly indicator variable takes

the value 1 from the month of the watch announcement to the month of the

rating change event or until “Off Watch” or “Not On Watch” is announced.

Only negative watches are considered for downgrades and only positive watches

were considered for upgrades. A credit watch announced 180 days or more prior

to when a firm is re-rated is not considered to be related to the rating change
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event. Credit watch data is obtained from Mergent FISD and Moody’s Default

Risk Database (MDRS).

• Market Cap is the monthly market value of equity.

• Market Leverage is defined as (Total debt + Market value of equity)/(Market

value of equity) calculated at a quarterly frequency.

• Long Term Debt-to-Asset is the ratio of long term debt to total assets (dlttq/atq)

calculated using quarterly COMPUSTAT.

• ERP is the firm’s annualized equity risk premium implied by the dynamic of

CDS term structure.

• Subordinate is an indicator variable equal to one if the bond is subordinated.

We obtain bond characteristics from Mergent FISD, CUSIP Master file, and

Moody’s Default Risk Database (MDRS).

• Callable is an indicator variable equal to one if the bond is callable or re-

deemable, and zero otherwise.

• Issue Size is the offering amount of the bond at primary issue.

• Maturity is the maturity of the bond in years.

• Treasury Slope (10yr-1yr) is the difference between the 10-year and 1-year Trea-

sury rates.

• Bond return is the raw bond return around the rating change event (t = 0)

calculated over the [−k,+k] event days as:

BondReturnt=0 =
BondPricet+k −BondPricet−k + AccruedInterest

BondPricet−k
.

We use the shortest event window possible depending on the availability of bond

trading history. The maximum window of k = 7 days is used, otherwise bond

event-period return is not computed.
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• Daily bond index is the weighted (equal or value) index of bond returns grouped

according to Moody’s six major rating categories.

B.1.5 Bankruptcy & Distress regression variables

• Bankruptcy is defined as when the firm experiences a credit default event as

defined in Moody’s Ultimate Recovery Database (Moody’s URD).

• Net Income-to-Assets is the ratio of net income to total assets (niq/atq) ob-

tained from quarterly COMPUSTAT.

• Total Liabilities-to-Assets is the ratio of total liabilities to total assets (ltq/atq)

obtained from quarterly COMPUSTAT.

• Relative Size is the logarithmic of the firm’s market value of equity divided by

the total NYSE/AMEX market equity value. It is calculated monthly using

data from CRSP.

• Excess Return is the monthly return on the firm minus the value-weighted

NYSE/AMEX index return.
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Table B.1: Classification of credit rating codes

The table presents the mapping of rating codes issued by S&P, Fitch, and Moody’s to the cardinal

scale, as well as to the rating class. The rating codes used by S&P and Fitch are similar but are

different from those used by Moody’s. Moody’s uses code from Aaa down to C to rate bonds whereas

S&P and Fitch rate bonds from AAA down to D. Within the 6 classes from AA to CCC for S&P and

Fitch, the rating agencies have three additional gradations with modifiers (+,none,-). For examples,

S&P’s AA rating class is subdivided into AA+, AA, AA-. Similarly, Moody’s has three additional

gradations with modifiers 1,2,3 from Aaa to Caa. We transformed the credit ratings of the three

rating agencies into a cardinal scale starting with 1 as AAA(Aaa), 2 as AA+(Aa1), 3 as AA(Aa2),

and so on until 23 as the default category. The rating class mapping is from [91]. Fitch differs

from the other two agencies in that it provides three ratings for default. We follow [90] by using 23

instead of 22 as the cardinal scale for Fitch’s default category, which is the average of three default

ratings – i.e., DD.

Description S&P Moody’s Fitch Cardinal scale Rating class

Investment grade
Highest grade AAA Aaa AAA 1 1
High grade AA (+,none,-) Aa (1,2,3) AA (+,none,-) 2, 3, 4 1
Upper-medium grade A (+,none,-) A (1,2,3) A (+,none,-) 5, 6, 7 2
Medium grade BBB (+,none,-) Baa (1,2,3) BBB (+,none,-) 8, 9, 10 3
Speculative grade
Lower medium grade BB (+,none,-) Ba (1,2,3) BB (+,none,-) 11, 12, 13 4
Speculative B (+,none,-) B (1,2,3) B (+,none,-) 14, 15, 16 5
Poor standing CCC (+,none,-) Caa (1,2,3) CCC (+,none,-) 17, 18, 19 6
Highly speculative CC Ca CC 20 6
Lowest quality C C C 21 6
In default D DDD/DD/D 23 6
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Table B.2: Probit model for CDS trading: First-stage IV model

We report probit regression results for the probability of CDS trading. The dependent variable is

the firm-quarter indicator variable that is equal one if CDS contract trades on the underlying firm’s

debt in this quarter, and zero otherwise. The explanatory variables include firm-level characteristics,

CDS-trading controls, and the instrument variable proxying for the probability of CDS trading. The

instrumental variable (IV) that we use is Forex Derivative Hedging (see also [132]). It is defined as

the average amount of foreign exchange derivatives used for hedging purposes relative to total assets

of the lead syndicate banks and bond underwriters that firms have done business with in the past

five years. We obtain data on firm’s lead syndicate bank and underwriters from Dealscan and FISD,

respectively. See Appendix B for description of other variables. Industry and year fixed-effects are

included. *, **, and *** indicate significance at the 10%, 5%, and 1% confidence levels, respectively.

Probability of CDS trading

Instrumental variable

Forex Derivative Hedging (%) 0.04***
(4.84)

Firm-level controls

Sales (log) 0.40***
(21.14)

Profitability -0.54***
(-4.81)

Leverage 0.28***
(3.19)

Market-to-Book -0.01*
(-1.89)

Rating Scale (log) -0.30***
(-6.01)

Avg Volatility (log) -0.05
(-1.58)

Avg Trading Volume (log) 0.12***
(6.23)

Avg Return 0.15
(1.16)

CDS-trading controls

Analyst Coverage (log) 0.03
(1.53)

Analyst Dispersion 0.00**
(1.96)

Institutional Ownership 0.26***
(5.10)

Stock Illiquidity -3.28***
(-4.92)

Bond Illiquidity 0.66***
(33.22)

Debt Outstanding (log) 0.40***
(20.15)

Observations 17850
Incremental Pseudo R2 1.1%
Pseudo R2 0.4854
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Table B.3: The propensity score matched sample

This table presents matched sample diagnostics. Panel A shows the probit model used in the

propensity score matching. We estimate firms’ probability of having CDS trading in each month. The

dependent variable in the probit model is the firm-month indicator that is equal one if CDS contract

trades on the underlying firm’s debt this month, and zero otherwise. All independent variables are

lagged by one month. The first column in Panel A (Before matching) reports results estimated using

the full sample for which data are available. The second column in Panel A (After matching) reports

results estimated using the CDS-traded and propensity-score matched firms. Firms for which CDS

contracts trade at any point in our sample period (1996-2010) are identified as the treatment group,

i.e. traded-CDS firms. Firms in the control group used in the matching are those in the full sample

that never have CDS contracts traded at any point in our sample period , i.e. non-traded-CDS firms.

Each traded-CDS firm (treatment firm) is matched with up to five non-traded-CDS firms (control

firms) based on their propensity scores of having CDS trading. Industry and year fixed effects are

included in the regressions. *, **, and *** indicate statistical confidence greater than 10%, 5%,

and 1%, respectively. Panel B reports pairwise comparisons of the variables used for matching for

the CDS treatment firms, and the matched control firms. Panel C reports industry distributions

(Fama-French 12 classification) for the CDS treatment firms, and the matched control firms.
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Table B.3 (continued)

Panel A: Propensity score matched sample

Before matching After matching

Sales (log) 0.43*** 0.12*
(41.60) (1.73)

Profitability -0.44*** -0.25
(-7.50) (-0.66)

Leverage 0.02 -0.66*
(0.35) (-1.68)

Mkt-to-Book -0.00* -0.00
(-1.84) (-0.19)

Rating Scale(log) -0.33*** -0.36**
(-11.20) (-2.47)

Avg Return 0.05 1.07**
(0.74) (2.41)

Avg Volatility (log) -0.05** 0.05
(-2.52) (0.42)

Avg Trading Volume (log) 0.08*** 0.00
(7.71) (0.05)

Analyst Coverage (log) -0.03** -0.05**
(-2.37) (-1.96)

Analyst Dispersion 0.00*** 0.00
(4.49) (0.88)

Institutional Ownership 0.38*** 0.13
(13.87) (0.82)

Stock Illiquidity -3.14*** -1.42
(-7.99) (-0.43)

Bond Illiquidity 0.64*** 0.21***
(60.12) (3.07)

Debt Outstanding (log) 0.38*** 0.29***
(37.11) (3.36)

Observations 59539 1025
Pseudo R2 0.49 0.09
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Table B.3 (continued)

Panel B: Sample means of firm variables used in the propensity-score matching

Before matching After matching

Mean (Diff) Mean (Diff)

Treated Control T-stats Treated Control T-stats

Sales (log) 7.75 6.70 151.98 7.22 6.79 6.15
Profitability 0.14 0.15 -8.70 0.16 0.15 0.48
Leverage 0.68 0.69 -8.04 0.68 0.70 -1.77
Mkt-to-Book 2.80 2.47 15.31 2.65 2.62 0.12
Rating Scale 8.41 9.63 -59.39 8.44 9.60 -2.28
Avg Return 0.01 0.01 -1.76 0.02 0.00 1.79
Avg Volatility (log) -4.00 -3.95 -14.74 -4.02 -4.00 -0.61
Avg Trading Volume (log) -0.83 -1.70 107.21 -1.32 -1.46 1.19
Analyst Coverage (log) 2.11 1.86 54.82 1.94 1.81 2.67
Analyst Dispersion 5.59 5.31 1.36 7.09 5.41 0.73
Institutional Ownership 4.27 4.25 10.41 4.25 4.27 -0.98
Stock Illiquidity 0.02 0.03 -64.73 0.02 0.03 -1.92
Bond Illiquidity 2.02 1.46 103.92 1.74 1.59 2.56
Debt Outstanding (log) 0.38 -0.21 96.95 0.20 -0.11 2.99

Panel C: Industry distribution of firms in the matched sample

FamaFrench 12 Industry Classifications Treatment Sample (%) Control Sample (%)

(1) Consumer Non-durables 7.34 5.44
(2) Consumer Durables 2.10 2.51
(3) Manufacturing 13.29 13.81
(4) Energy, Oil, Gas, and Coal Extraction 6.64 5.86
(5) Chemicals and Allied Products 4.55 5.44
(6) Business Equipment 6.99 6.69
(7) Telecommunciations 5.59 5.02
(8) Utilities 9.44 8.37
(9) Wholesale, Retail, and Services 10.14 7.11
(10) Healthcare 4.55 5.86
(11) Finance 19.58 22.18
(12) Others 9.79 11.72
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B.1.6 Descriptives of the credit rating change sample

Panel A of Table B.4 summarizes the number of upgrades and downgrades along with

the size of their rating changes over each year. There are about 2.1 downgrades for

every upgrade, which is more or less consistent with previous studies.1 We observe

clustering of upgrades and downgrades in certain years over the 15-year period, and

we find that 42% of all downgrades occurred in 2001-2002 and 2007-2009, which corre-

spond to the post-Internet bubble and the recent financial crisis periods, respectively.

On the other hand, 39% of all upgrades occurred in pre-Internet bubble period, i.e.

1997-1998, and when the market volatility level is historically low, i.e. 2006-2007, as

measured by the VIX index. The size of the rating change is the absolute value of

the change in the rating scale. The average size of the rating change does not vary

significantly over the years. There are 1416 downgrades and 689 upgrades during the

period when the underlying firms have CDS contracts traded. On the other hand,

there are 3249 downgrades and 1482 upgrades during the period when the underlying

firms do not have CDS contracts traded. For downgrades (upgrades), the mean size

of the absolute rating change for an issue without CDS trading is 1.69 (1.38), and

for an issue with CDS trading, it is 1.55 (1.27). Table B.4 shows that the start dates

of CDS trading in our sample begin in 2001, when we observe only 12 downgrades

on firms that have CDS contracts traded. Nevertheless, the number of firms that

have CDS contracts traded increases significantly in subsequent years. In fact, Panel

A shows that the numbers of downgrades on firms with and without CDS contracts

traded are roughly comparable after 2005.

In order to control for the differences between these two types of firms, we consider

a subsample of firms for which CDS starts trading at some point during our sample

1Our number is closer to that of [47], who report twice as many downgrades as upgrades over
their sample period of 1970 to 1987. In contrast, [90] report 4 downgrades for every upgrade from
1998 to 2002.
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period. We refer to this sample as the “Traded-CDS”. Panel B of Table B.4 reports

the sample size of traded-CDS sample. The average size of rating change for the

sample is 1.45 before CDS trading starts and 1.49 after CDS trading starts.

Table B.5 presents the distribution of the absolute magnitude of rating changes

for the pre- and post-CDS trading periods. Panel A reports the distribution year by

year, while Panel B reports absolute rating changes for “within-letter-grade”, “across-

letter-grade”, and “across-investment” rating changes. A rating change is defined as

“within-letter-grade” if it is within the same alphabet letter (e.g., A+, A, A-). All

other rating changes are classified as “across-letter-grade”. Among the across-letter-

grade changes, those that change between investment grade to speculative grade,

and vice versa, are considered “ across-investment” grade changes. Table B.1 in the

appendix summarizes rating categories that belong to the investment and speculative

grades.

B.1.7 Other robustness tests for stock price reactions to rating changes

The abnormal returns of firms around credit rating events could be affected due to

factors which are unrelated to the rating event. In this case, the CARs would not

average out to zero in the cross-section. This problem can be alleviated by using

standardized CAR (SCAR) instead of CAR. We define SCAR as SCARi(−1,+1) =

CARi(−1,+1)

σ(ARi)
√

3
, where σ(ARi) is the standard deviation of the one-period mean abnormal

return, and the factor of
√

3 accounts for the length of the event window (-1,+1), which

is equal to 3 days. We carry out all the univariate analysis, the regression analysis,

and the matched sample analysis using SCAR instead of CAR as a measurement of

abnormal returns and obtain the same conclusions.

In order to rule out the possibility that our results are due to outliers, we winsorize

each of the CAR and SCAR specifications at the 1% level. We also test for the

difference in the mean of stock price reactions between the pre- and post-CDS groups
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using bootstrapped standard errors. In both cases, we find that the results do not

change qualitatively. In addition, we conduct various other subsample analyses based

on credit rating agencies, industry type, across-investment-grade rating change, and

we find that our results are robust.

We verify that our main conclusion holds for rating changes that are within-

investment-grade, as well as those that are across investment grade. Using only

traded-CDS firms, we find that stock price reactions to rating downgrades in the pre-

CDS-trading period is -1.72% for “within investment grade” rating changes, while it

is -9.13% for “across investment grade” rating changes. However, in the post-CDS-

trading period, we find that stock price reactions to rating downgrades is -0.84% and

-2.86% for “within investment grade” and “across investment grade” rating changes,

respectively. In both cases we find the difference in CAR(-1,1) to be positive and

statistically different from zero. The difference in CARs between the pre-CDS-trading

and post-CDS-trading periods for “within investment grade” rating change is 0.88%

with a t-statistic of 1.82, while the for “across investment grade” rating change is

6.28% with a t-statistic of 3.60.

Apart from the instrumental variable analysis and the matched sample analysis

described in Sections 2.4.4–2.4.5, we apply a “placebo test” test to further rule out

a concern that our results are related to changes in certain market conditions over

time — e.g., changes in volatility. To do this, we first generate random pseudo

CDS introduction dates. Then we apply the standard event study methodology to

these randomly generated pre- and post-CDS periods. We find that the difference

in the stock price reactions between these pseudo pre- and post-CDS periods is not

significantly different from 0. Overall, using a host of robustness tests, we confirm

that the abnormal stock return around credit rating downgrades is muted after CDS

contracts trade on the underlying firm’s debt.
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B.1.8 Bond price reactions to rating changes

We examine the impact of the CDS market on corporate bond pricing as a channel

through which CDS trading attenuates firms’ equity price reactions to credit rating

downgrades. The basic idea in the cost of capital calculation is that the market

value of the firm’s assets must equal the market value of the firm’s debt plus the

market value of the firm’s equity. Any impacts on the firm’s debt value can affect its

equity return through changes in the firm’s total assets. We examine whether bond

prices also react less to credit rating downgrade announcements when firms have CDS

trading on their debt.

Similar to our analyses for stock returns, we consider a rating change event on a

debt’s issuer as one observation. We calculate the daily bond price using the trade-

weighted average of all the prices reported during that day (see also [17]). In a

number of cases, there are multiple bond issues per issuer. These multiple issues

usually experience rating changes on the same day. In order to avoid double counting

events, we study the return of a weighted bond portfolio (equal or value weighted) for

each firm. We construct both the equal- and value-weighted portfolios using all the

issues written on a firm, and we find that the results are not qualitatively affected by

the weighting methods. To save space, we present only the results that are based on

the value-weighted portfolios.

Unlike the stock sample analysis, bond trading is relatively thin. For instance,

based on the filtered sample in 2006–2007, we find that each bond issue, on average,

trades on only 30 days per year. Conditional on the day that we observe trades, there

are approximately 3.48 trades per day. To compute abnormal bond returns, we follow

the method advocated in [17] by differencing the raw returns with the benchmark of

indices. We match returns to six benchmark indices based on Moody’s six major

rating categories (Aaa, Aa, A, Baa, Ba, and B), and the equivalent S&P and Fitch

rating categories (See the mapping in Appendix Table B.1). Matching further on
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additional dimensions yields an inadequately small sample because the majority of

bonds do not trade daily. We construct daily bond return indices based on the above

six rating categories. For each rating category, we calculate the daily index return

using all of the bonds rated in that category. We exclude bonds that are re-rated

on the day the index is constructed. Since few bonds trade on a daily basis, the

composition of the index changes daily. As suggested by [17], the bond index return

is computed using the value-weighted average to reflect the daily change in index

composition.

The cumulative bond return is first calculated at the issue level using transaction

prices observed immidately before and after the event day. Because bonds do not

often trade daily, the closest observations to the event day may be several days away.

We pick the closest pre-event and post-event bond trades around the event day (Day

0) in the (-7,+7) event window. If we do not observe bond trades within (-7,+7) days

relative to the event date, the rating change observation is excluded. On average,

the closest transaction prices are observed on event-days -2.7 and +2.4 relative to

the event date.2 The cumulative abnormal return for the bond price is calculated

by subtracting the cumulative bond return with the cumulative bond index return

over the same window period. Finally, the bond market reaction to a rating change

event for a firm is calculated as the value-weighted average returns of all of the issues

traded around the event date.

Appendix Table B.10 displays the number of upgrades and downgrades and the

sizes of rating changes per year in the bond sample. There are about twice the

downgrades for every upgrade in the bond event-study sample, which is similar to

the stock sample (Table B.10). Relative to the stock sample, we find significantly

fewer rating events. This is because TRACE and NAICS databases had limited bond

2Sampling over smaller event windows such as (-3,+3) and (-5,+5) lead to a very small sample of
unique firms. On the other hand, extending the sampling window – e.g., (-15,+15) would increase
the bias due to confounding information arrivals (see [138], and [53]).
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coverage during the early years. We rely on NAICS bond database before 2002, which

reports only bond trades executed by national insurance companies. For TRACE, it

was not until March 2003 that it began to cover all the bonds with an issue size of at

least $100 million that were rated “A” or higher. Nevertheless, in subsequent years,

the coverage has steadily increased. The Traded-CDS sample for bonds is constructed

in the same manner as for the stocks. Panel B of Table B.10 shows a large reduction

in the number of observations from the Full sample to the Traded-CDS sample. The

number of unique firms in the Traded-CDS sample is only 123 (as opposed to 672

unique firms for the full sample) Therefore, we rely mainly on the Full sample when

interpreting the results.

Table B.11 reports the mean bond cumulative abnormal returns (CAR) for the pre-

and post-CDS trading periods. The results in Panel A are based on the full sample.

Consistent with prior literature ([77]), we find that bond prices react significantly to

downgrades (-2.39%) but little to upgrades (0.0%). We find that average bond price

reactions to rating upgrades in the post-CDS period is negative, but not significant.

Panel A shows the mean of bond CARs to downgrades are negative and significant

at the 1% level for both pre-CDS and post-CDS periods. However, the magnitude

of bond price reaction is significantly weaker in the post-CDS period. The mean

CARs for the pre- and post-CDS cases are -3.37% and -1.44%, respectively, and their

difference is significant at the 1% level. To rule out concerns that our results are

due to outliers, we verify that the difference in the means of bond CARs to rating

downgrades is statistically significant using the bootstrapped standard error. As for

upgrades, the difference between bond price reactions in the pre- and post-CDS cases

is not significant. This set of results is consistent with our findings on stock price

reactions to rating change announcements.

Panel B of Table B.11 displays results for the Traded-CDS sample, which repre-

sents firms that have CDS traded at some point during 1996–2010. Again, we find
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that the overall bond price reaction to downgrades is negative (-1.94%) and signif-

icant at the 1% level. Consistent with our hypothesis, the magnitude of the bond

price reaction is weaker in the post-CDS period (-1.61%) than in the pre-CDS period

(-2.61%), although not significant. The fall in statistical power is likely due to the

small sample size. Also, most of the post-CDS downgrades for the bond sample occur

during the crisis, i.e. 2007-2009, which could systematically amplify the magnitude

of bond price reaction to rating downgrade announcements.

B.1.9 Primary market bond yields

This section tests whether CDS spreads are useful relative to credit ratings in explain-

ing the primary market bond yields. Table B.9 reports the cross-sectional regression

results where the dependent variables are corporate bond yields, in basis points,

observed at their primary bond issuance. We report results for four regression speci-

fications. We include rating-level, firm-level, and bond-issuance-level controls in the

regressions. Where appropriate, the control variables are lagged by one period. In-

dustry, year, and rating agency fixed-effects are also included. Appendix B describes

the control variables. We use lagged CDS quotes that are traded immediately prior

to the bond issuance in order to avoid the endogeneity concern that bond yields and

CDS spreads are jointly determined.

In regression models (I) and (II), we compare the relative explanatory power of

Credit Rating and CDS Spread to explain the cross section of primary market bond

yields. Credit Rating is expressed on the cardinal scale (see Table B.1 for mapping),

and CDS Spread is expressed in basis points. The coefficient on Credit Rating in

regression model (I) is 17.18 and significant at the one percent level, suggesting that

credit ratings are useful for explaining the cross-section of newly issued bond yields.

However, we find that once CDS Spread is introduced as a variable in the regression

(see regression model (II)), the size of coefficient on Credit Rating decreases by a
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third to 6.18. We also find a substantial increase in adjusted R2 when CDS Spread

is added to the list of explantory variables —from 58.3 to 71.5 percent. We conclude

that CDS spreads significantly help explain the cross-sectional variations in primary

market bond yields in addition to credit ratings.

Because the Credit Rating variable is discrete while the CDS Spread is a con-

tinuous variable, we facilitate their comparison by expressing them as credit rating

classes, which range from 1 to 6. The mapping between credit rating scales to credit

rating classes is shown in Table B.1. For CDS spreads, we use the CDS-implied rating

classes calculated non-parametrically in Section 2.5.1. Regression models (III) and

(IV) in Table B.9 report results where both CDS spreads and credit ratings are con-

verted to the same unit of measurement, i.e., credit rating classes. We find that the

results remain qualitatively similar when using rating classes to define credit ratings

and CDS spreads. There is a substantial increase in adjusted R2 when CDS-implied

rating class is added to the list of explantory variables – from 57.9 percent in re-

gression model (III) to 71.1 percent in regression model (IV). Overall, we find that

CDS spreads provide incremental information for the pricing of primary market bond

issuance.

B.1.10 CDS-implied equity risk premia

This Appendix section describes how we empirically estimate the equity risk pre-

mia implied from CDS spreads as shown in equation (22) of the main paper. For

convenience, we replicate the equation below

ERP T
t+τ ≡ −

 logEP
t

[
STt+τ

]
− logEQ

t

[
STt+τ

]√∫ t+τ
t

σ2
S,udu

 ·√∫ t+τ

t

σ2
E,udu, (25)

The equation above shows that calculating implied equity premium requires evaluat-

ing the Q- and P-measure expectations of future T -year CDS spreads. The expected

risk-neutral CDS spreads can be represented using the firm’s forward CDS spread,
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logEQ
t

[
STt+τ

]
= F τ×T

t , where F τ×T
t is the forward T -year CDS spread contracted at

time t for delivery at time t+ τ .

As a result, we can write the CDS Sharpe ratio in equation (25) as

SRt+τ =
logEP

t

[
STt+τ

]
− F τ×T

t√∫ t+τ
t

σ2
S,udu

. (26)

Relying on the established approach in [38] who estimated bond risk premia using

the term structure of forward rates, [62] suggest that CDS Sharpe ratio in equation

(26) can be estimated from the term structure of forward CDS spreads for contracts

with maturities Tk ∈ T = {1, 3, 5, 7} ,

SRt+τ =
1

4

∑
Tk∈T

logSTkt+τ − F
τ×Tk
t

SDt+τ

,

where SDt+τ refers to the sample standard deviation of daily CDS spread returns

between t and t + τ. The above method yields time-series of CDS Sharpe ratio esti-

mated from daily cross-maturity CDS spreads and CDS forward spreads. In order to

extract the common component similar to that in [38], we regress daily time-series

of SRt+τ on Ft =
(
1, S1

t , F
3×1
t , F 5×1

t , F 7×1
t

)
, a vector of one-year CDS spread and

one-year CDS forward spreads that start in 1, 3, 5, and 7 years. That is, we estimate

SRt+τ = γ′ · Ft + εt+τ . (27)

The fitted value of the estimated Sharpe ratio is then used for the implied equity

premium calculation, which according to equation (22), is given by

ÊRP t+τ = −γ̂ · Ftσ̂E,t,τ , (28)

where σ̂E,t,τ denotes the time-t conditional equity volatility estimated as the sample

standard deviation of daily equity returns from t− τ to t.

For our empirical analysis, we estimate one-year CDS-implied equity risk premium

in equation (28) on a daily basis for each firm in the sample. We use a one-year
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estimation window in the regression model (27) to obtain ÊRP t+τ with τ equal to

one year. In order for firms to be eligible for the ÊRP t+τ calculation, it must have

sufficient data on CDS quotes at maturities 1, 3, 5, 7, and 10 years.

Table B.12 reports results from constructing monthly portfolio sorts based on

CDS-implied equity risk premia (ERP). In Panel A, we report the mean characteristics

of quintile sorted portfolios that are formed monthly based on ERP. The means of

portfolio characteristics are calculated using equal weights. Because the start dates

of CDS trading differ across firms, the number of firms available in monthly cross-

sections also varies, but mostly increase from 2001 through 2010. On average, there

are 72 firms available for quintile portfolio sorting each month. Panel A of Table B.12

shows no monotonic pattern in portfolio characteristics sorted based on CDS-implied

equity premia. The equity risk premia estimated from CDS spreads are not related to

firms’ size or market-to-book values. We also do not find that ERP is monotonically

explained by firms’ cross-sections of credit ratings, as well as CDS spread levels.

Panel B of Table B.12 reports average one-year return of five portfolios sorted

monthly based on ERP, credit ratings, and CDS spreads. We assign equal weight

to firms in each porfoltio. We find a clear and distinct monotonic pattern in equity

returns across the five portfolios. Firms with higher equity risk premia implied by

their CDS spreads earn higher returns, consistent with the prediction of structural

models, e.g. [104]. The difference in one-year average returns between the highest

(5) and lowest (1) ERP portfolios is economically large, with the magnitude of about

24% per year. The t-statistic associated with this magnitude is 13.0, suggesting an

overwhelmingly strong statistical significance. [62] find the difference between the

highest and lowest portfolios sorted by one-month ERP is about 1.51% per month

after the risk-free rate (i.e., 18.12% per year). Thus, our results are roughly in line

with theirs.

Panel B also shows that average one-year returns of portfolios sorted monthly
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based on credit ratings and CDS spreads do not monotonically explain the cross-

section of equity returns. The finding is similarly weaker when we sort portfolios

based on the level of CDS spreads alone. We do not find any significant difference in

one-year portfolio returns between the highest (5) and lowest (1) CDS spread firms.

Overall, Panel B shows that ERP estimated from CDS term structures are informative

of equity returns, while the level of CDS spreads alone are not. Further, the findings

suggest that ratings issued by credit rating agencies are not a good measure of default

risk premium, and hence cannot explain cross-section of equity returns equally well

relative to the ERP estimated from CDS spreads.
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Table B.4: Distribution of bond rating changes

The sample consists of 4,665 downgrades and 2,171 upgrades of taxable corporate bonds issued by

U.S. firms from January 1996 to December 2010. The sample is split between rating changes that

occur in the presence of CDS trading (post-CDS period) and in the absence of CDS trading (pre-

CDS period) on the underlying firm’s debts. Panel A reports year-by-year distribution of rating

changes. Count represents the number of rating changes. Size represents the mean of the cardinal

value of the new rating minus the cardinal value of the old rating. Bond ratings are converted to

a cardinal scale measured on a 23-point scale (see Appendix A for the mapping). Panel B reports

the number of rating changes and the average sizes of rating changes for the “Full Sample” and the

“Traded-CDS”. The full sample represents the entire sample period consisting of firms that have

and do not have CDS traded on their debts. Traded-CDS sample consists only of firms that have

CDS trading at any point in our sample period, i.e from 1996 to 2010.

Panel A: Distribution of number and size of bond rating changes by year

Downgrades Upgrades

Year Pre-CDS Post-CDS Pre-CDS Post-CDS

Count Size Count Size Count Size Count Size

1996 16 1.31 31 1.23
1997 149 1.39 206 1.35
1998 251 1.65 195 1.52
1999 310 1.63 147 1.23
2000 428 1.73 128 1.34
2001 556 1.92 12 1.25 99 1.42
2002 510 1.74 72 1.25 66 1.45 4 1.00
2003 226 1.76 109 1.25 85 1.47 20 1.05
2004 131 1.63 108 1.31 97 1.33 73 1.25
2005 110 1.49 128 1.59 71 1.76 95 1.25
2006 98 1.23 170 1.60 95 1.22 132 1.17
2007 101 1.60 181 1.56 81 1.26 134 1.22
2008 112 1.56 290 1.62 58 1.24 77 1.31
2009 178 1.70 258 1.83 35 1.57 43 1.81
2010 73 1.42 88 1.27 88 1.38 111 1.28

Total 3249 1.69 1416 1.55 1482 1.38 689 1.27

Panel B: Distribution of number and size of bond rating changes by sub-sample

Downgrades Upgrades

Sample Pre-CDS Post-CDS Pre-CDS Post-CDS

Count Size Count Size Count Size Count Size

Full sample 3249 1.69 1416 1.55 1482 1.38 689 1.27
Traded-CDS sample 803 1.45 1029 1.49 300 1.22 574 1.29
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Table B.5: Sample distribution by magnitude of rating changes

The sample consists of 4,665 downgrades and 2,171 upgrades of taxable corporate bonds issued by

U.S. firms from January 1996 to December 2010. The sample is split between rating changes that

occur in the presence of CDS trading (post-CDS period) and in the absence of CDS trading (pre-CDS

period) on the underlying firm’s debts. In Panel A, Freq represents the number of rating changes.

Bond ratings are converted to a cardinal scale measured on a 23-point scale. Scale change represents

the absolute change, in cardinal value, of the new rating minus the old rating. Pct represents the

percentage of rating changes observed in each scale change group. Panel B reports the distribution

of rating changes for three rating-change classifications. A rating change is classified as “Within

letter grade” if it is within the same letter group (e.g., A+, A, A-). All other rating change events

are classified as “Across letter grade” as their change is from one letter group to a different letter

group. We classify a rating change as“Across Inv Grade” if the change is from an investment grade

to a speculative grade or vice-versa. Investment grade rating for S&P and Fitch corresponds to

rating levels of BBB and above. Investment-grade rating for Moody’s corresponds to rating levels

of Baa and above.

Panel A: Sample distribution by absolute magnitude of rating changes

Downgrades Upgrades

Scale change Pre-CDS Post-CDS Pre-CDS Post-CDS

Freq Pct(%) Freq Pct(%) Freq Pct(%) Freq Pct(%)

1 1945 59.86 979 69.14 1168 78.81 557 80.84
2 802 24.68 272 19.21 206 13.90 102 14.80
3 299 9.20 82 5.79 56 3.78 19 2.76
4 106 3.26 39 2.75 26 1.75 4 0.58
5 42 1.29 22 1.55 7 0.47 5 0.73
6 20 0.62 10 0.71 5 0.34
7 15 0.46 7 0.49 5 0.34
8 10 0.31 2 0.14 1 0.07 2 0.29
9 5 0.15 2 0.13
10 3 0.09 1 0.07
11 2 0.06 2 0.14 3 0.20
12 1 0.07
14 1 0.07 1 0.07

Total 3249 100.00 1416 100.00 1482 100.00 689 100.00

Panel B: Sample distribution within and across rating

Downgrades Upgrades

Pre-CDS Post-CDS Pre-CDS Post-CDS

Freq Pct(%) Freq Pct(%) Freq Pct(%) Freq Pct(%)

Within letter grade 1714 52.75 655 46.26 592 39.95 258 37.45
Across letter grade 1535 47.25 761 53.74 890 60.05 431 62.55
Across Inv grade 367 11.30 206 14.55 167 11.27 79 11.47
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Table B.6: Stock price reactions to bond rating changes: Robustness I

This table reports regression results of stock price reactions to bond rating changes. The sample

consists of credit rating change events on taxable corporate bonds issued by U.S. firms from January

1996 to December 2010. The dependent variable is the cumulative abnormal return (CAR) calculated

over the 3-day event window (-1,+1) using the market model. Panel A consists of the full sample and

includes Industry×Year fixed effects to control for time-varying industry-level fixed effects. Panel

B consists of only non-financial firms. All the variables are defined in B.1. dCDS is an indicator

variable equal to one when the firm has CDS contracts traded on its debt, and zero otherwise.

Coefficients on other controls have been omitted to conserve space. Robust t-statistics are clustered

at the firm-level and reported in brackets below each estimate. *, **, and *** indicate significance

at the 10%, 5%, and 1% confidence levels, respectively.

Panel A: Time-varying industry-level FE

Downgrades Upgrades

Full sample Full sample

(I) (I)

dCDS 1.25* 0.14
(1.80) (0.53)

Rating controls X X
Firm controls X X
CDS-trading controls X X

Fixed effects Ind×Year Ind×Year
Observations 4176 1972
Adjusted R2 0.126 0.009
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Table B.7 (continued)

Panel B: Pooled Downgrades & Upgrades

Full sample Traded-CDS

(I) (II) (III) (IV)

dCDS×dDowngrade 1.61*** 1.65*** 1.48** 1.38*
(2.70) (2.81) (2.56) (1.83)

dDowngrade -3.23*** -3.30*** -3.09*** -3.13***
(-8.51) (-8.14) (-7.16) (-4.29)

dCDS 0.28 0.05 -0.18 0.88
(0.76) (0.13) (-0.44) (1.62)

Rating controls X X X X
Firm controls X X X X
CDS-trading controls X X X X

Fixed effects Ind Ind & Year Ind ×Year Ind
Observations 6148 6148 6148 2609
Adjusted R2 0.133 0.134 0.138 0.091

262



Table B.8: Diff-in-diff downgrade CAR regression: 1–to–1 matching
without replacement

This table reports diff-in-diff regression analysis of stock price response CAR(-1,1) to bond down-

grades for the propensity-score matched sample. One non-traded-CDS (control) firm is matched to

one traded-CDS (treated) firm without replacement, with a caliper of 10% and common support.

Panel A reports the main diff-in-diff regression results for the matched sample. Panel B reports

matching diagnostics via a probit regression before and after matching. All the variables are defined

in B.1. Coefficients on other controls have been omitted to conserve space. For Panel A, robust

t-statistics are clustered at the firm-level and are reported in brackets below each estimate. *, **,

and *** indicate significance at the 10%, 5%, and 1% confidence levels, respectively.

Panel A: 1:1 Matched Sample

Diff-in-diff Subsamples (diagnostics)

Treatment Control Post-CDS Pre-CDS

(I) (II) (III) (IV) (V) (VI)

dTreatment×dCDS 3.19*** 3.02**
(2.60) (2.53)

dCDS -0.22 -1.65 2.41** -0.14
(-0.20) (-1.05) (2.18) (-0.11)

dTreatment -1.12 -1.46 2.18** -0.78
(-1.25) (-1.53) (2.34) (-0.93)

Rating controls X X X X X X
Firm controls X X X X X X
CDS-trading controls X X X X X X

Fixed effects Ind Ind & Year Ind Ind Ind Ind
Observations 1368 1368 793 575 855 513
Adjusted R2 0.110 0.111 0.111 0.108 0.111 0.129
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Table B.9: Primary market bond yields regression

This table reports regression results for the determinants of primary market bond yields. The

sample consists of coporate bonds issued by firms that have CDS contracts trading on their debt.

The dependent variables are corporate bond yield spreads (in bps) observed at issuance. Regression

models (I) and (II) examine the explanatory power of credit rating levels and lagged CDS spreads.

Credit Rating is the rating level, in cardinal scale, issued by the credit rating agency. CDS Spread

is the firm’s 5-year CDS spread (in bps) last observed prior to the bond issuance date. In regression

models (III) and (IV), credit rating and CDS-implied rating are expressed as rating class, i.e. between

1 to 6; see Table B.1 for mapping. CDS-implied rating class is calculated using the nonparametric

method described in Section 2.5.2. We include various issuance-level and firm-level controls in the

regressions. Subordinate is an indicator variable equal to one if the issued bond is a subordinate

debt, and zero otherwise. Callable is an indicator variable equal to one if the issued bond has a

callable option. Issue Size is the log of the notational amount (in $) of the bonds issued. Maturity

is the maturity of the issued bond. Firm-level characteristics are calculated using information in the

quarter prior to bond issuance; see C.2 for details. Treasury Slope is the difference between 10-year

and 1-year Treasury yields. All regressions include industry, year, and rating agency fixed-effects.

Robust t-statistics are clustered at the firm level and reported in parentheses. *, **, and *** indicate

significance at the 10%, 5%, and 1% confidence levels, respectively.
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Table B.9 (continued)

Dependent variable: Primary market bond yields (bps)

(I) (II) (III) (IV)

Credit Rating (cardinal scale) 17.18*** 6.18***
(9.84) (4.57)

CDS Spread (bps) 0.58***
(9.91)

Credit Rating class 49.23*** 12.76***
(9.13) (2.97)

CDS-implied Rating class 56.34***
(15.51)

Issuance-level controls

Subordinated 23.66** 23.87*** 21.44** 25.61***
(2.30) (3.10) (2.21) (3.19)

Callable -3.83 -0.42 -1.57 -1.23
(-0.52) (-0.07) (-0.21) (-0.20)

Issue Size (log) 51.16*** 48.86*** 49.99*** 46.89***
(5.40) (4.89) (5.37) (5.27)

Maturity (yrs) 0.87*** 1.09*** 0.90*** 1.17***
(3.70) (5.77) (3.92) (5.62)

Other controls

Sales (log) -19.57*** -21.89*** -19.13*** -21.04***
(-4.24) (-5.30) (-4.06) (-5.41)

Profitability -17.88 -11.96 -21.07 -18.18*
(-1.49) (-1.05) (-1.62) (-1.75)

Long-Term Debt-to-Assets 8.89 -43.01 7.69 -43.84
(0.27) (-1.55) (0.24) (-1.61)

Leverage 0.83 -1.89 0.48 -2.59**
(0.65) (-1.57) (0.36) (-2.16)

Treasury Slope (10yr-1yr) 5.02 1.43 7.17 3.05
(0.68) (0.21) (0.98) (0.46)

Rating-type FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Observations 2208 2208 2208 2208
Adj. R2 0.583 0.715 0.579 0.711
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Table B.10: Distribution of bond rating changes: Bond market reaction sample

We report the distribution of bond rating change events used in the bond market reaction analysis.

The full sample consists of 2,336 downgrades and 1,019 upgrades of taxable corporate bonds issued

by U.S. firms from January 1996 to December 2010. The sample is split between rating changes

that occur in the presence of CDS trading (post-CDS period), and in the absence of CDS trading

(pre-CDS period) on the underlying firm’s debts. Panel A reports year-by-year distribution of rating

changes. Count represents the number of rating changes. Size represents the mean of the cardinal

value of the new rating minus the cardinal value of the old rating. Bond ratings are converted to

a cardinal scale measured on a 23-point scale (see Table B.1 for the mapping). Panel B reports

the number of rating changes and the average sizes of rating changes for the “Full Sample” and the

“Traded-CDS”. The full sample represents the entire sample period consisting of firms that have

and do not have CDS traded on their debts. Traded-CDS sample consists only of firms that have

CDS trading at any point in our sample period, i.e from 1996 to 2010.

Panel A: Distribution of number and size of bond rating changes by year

Downgrades Upgrades

Year Pre-CDS Post-CDS Pre-CDS Post-CDS

Count Size Count Size Count Size Count Size

1996 3 1.00 2 1.00
1997 8 1.25 16 1.31
1998 22 1.50 23 1.35
1999 35 1.43 21 1.14
2000 71 2.15 17 1.82
2001 140 2.31 11 1.18 29 1.97
2002 208 1.96 47 1.26 16 1.19 3 1.00
2003 94 1.93 83 1.22 32 1.41 15 1.07
2004 48 1.56 92 1.33 40 1.40 38 1.16
2005 81 1.65 122 1.64 43 1.67 74 1.26
2006 71 1.38 164 1.80 82 1.48 133 1.11
2007 79 1.59 151 1.74 64 1.69 130 1.22
2008 95 1.48 240 1.66 32 2.69 70 1.69
2009 160 1.87 244 1.70 33 2.18 53 2.51
2010 36 1.44 31 1.23 16 1.25 37 1.59

Total 1151 1.81 1185 1.61 466 1.64 553 1.40

Panel B: Distribution of number and size of bond rating changes by sub-sample

Downgrades Upgrades

Sample Pre-CDS Post-CDS Pre-CDS Post-CDS

Count Size Count Size Count Size Count Size

Full sample 1151 1.81 1185 1.61 466 1.64 553 1.40
Traded-CDS sample 237 1.48 465 1.58 55 1.09 296 1.35
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Table B.11: Bond price response to credit rating downgrades and upgrades

This table reports cumulative abnormal returns (CAR) of bond price to credit rating downgrades

and upgrades.The full sample consists of 2,336 downgrades and 1,019 upgrades of taxable corporate

bonds issued by U.S. firms from January 1996 to December 2010. Table B.10 in the appendix reports

the distribution of bond rating changes used in this analysis. Panel A reports results for the full

sample, while Panel B reports results for the traded-CDS sample. The traded-CDS sample (Panel

B) consists only of firms that have CDS trading at any point in our sample period. In each panel, the

sample is split between rating changes that occur in the presence of CDS trading (Post-CDS period)

and in the absence of CDS trading (Pre-CDS period) on the underlying firm’s debts. Cumulative

abnormal bond return is defined as the firm’s value-weighted bond portfolio’s excess return against

the bond return of a matching portfolio based on Moody’s six major rating categories (Aaa, Aa, A,

Baa, Ba, and B). The event window is the shortest trading window within (-7,+7) calendar days

relative to the rating change event day. T-statistics are displayed in square brackets. *, **, and ***

indicate significance greater than 10%, 5%, and 1%, respectively.

Panel A: Full sample

Downgrades Upgrades

Mean CAR(%) Count Mean CAR(%) Count

Pre-CDS -3.37*** 1151 0.12 466
(-10.25) (1.11)

Post-CDS -1.44*** 1185 -0.11 553
(-4.44) (-1.10)

Difference (Pre−Post) 1.93*** -0.23
(4.18) (-1.57)

Total -2.39*** 2336 -0.00 1019
(-10.32) (-0.06)

Panel B: Traded-CDS sample

Downgrades Upgrades

Mean CAR(%) Count Mean CAR(%) Count

Pre-CDS -2.61*** 237 0.09 55
(-4.01) (0.26)

Post-CDS -1.61*** 465 -0.25** 296
(-3.46) (-1.74)

Difference (Pre−Post) 1.00 -0.34
(1.35) (-0.93)

Total -1.94*** 702 -0.20 351
(-5.14) (-1.49)
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Table B.12: CDS-implied equity risk premium and portfolio characteristics

This table reports means of portfolio characteristics and one-year average portfolio returns sorted by

CDS-implied equity risk premia (ERP). The sample consists of U.S. firms that have CDS contracts

with maturity of 1, 3, 5, 7, 10 years trading on their debts. We calculate daily CDS-implied ERP

with one-year horizon for each reference entity using its CDS term structure. We follow the method

in [62] for calculating ERP, which is motivated by [38] who estimated bond risk premia using the

term structure of forward rates. Section 2.7 describes the procedure for calculating ERP. In Panel A,

we report the mean characteristics of quintile sort portfolios that are formed monthly based on based

on CDS-implied ERP. The means of portfolio characteristics are calculated using equal weights and

the sorting is done at the beginning of each month. Because the start dates of CDS trading differ

across firms, the number of firms available in monthly cross-sections also varies, but mostly increase

from 2001 through 2010. We require a minimum of 20 firms in the cross section to execute the

portfolio sorts. Size is the log of firm’s market capitalization. Mkt-to-Book is the ratio of a firm’s

market value of total assets to its book value of total assets. Credit rating is the average firm’s

credit ratings, in cardinal scale, given by the three agencies: Moody’s, Fitch, and S&P. CDS spread

is the 5-year CDS spread level of the firm. In Panel B, we report average one-year equity returns

of portfolios sorted monthly based on ERP, credit ratings, and CDS spreads. The fifth (highest)

quintile portfolio corresponds to firms with the highest ERP, lowest-rated firms, and largest CDS

spreads. Newey-West t-statistics adjusted for 11 lags are reported in brackets below the average

portfolio returns in Panels B–C. *, **, and *** indicate significance greater than 10%, 5%, and 1%,

respectively.

Panel A: Portfolio characteristics sorted by CDS-implied ERP

Average values
ERP Size Mkt-to-Book Credit rating CDS spread

1 (lowest ERP) -0.005 15.753 2.486 9.105 0.015
2 0.005 21.289 2.931 7.913 0.006
3 0.009 22.842 2.806 8.151 0.007
4 0.016 18.925 2.635 8.739 0.011
5 (highest ERP) 0.034 12.095 2.392 10.016 0.025

Panel B: Average one-year returns of single-sorted portfolios

Average one-year return
Sorted by ERP Sorted by Credit ratings Sorted by CDS spreads

1 (lowest) -0.141*** -0.044*** -0.011*
(-10.81) (-3.80) (-1.44)

2 -0.042*** -0.018* -0.015**
(-4.76) (-1.53) (-1.89)

3 -0.012* -0.023** -0.018**
(-1.55) (-1.97) (-1.90)

4 0.020** -0.018* -0.032***
(2.31) (-1.44) (-2.75)

5 (highest) 0.086*** 0.012 -0.020
(7.10) (0.69) (-1.12)

5−1 0.227*** 0.056*** -0.009
(13.16) (2.64) (-0.46)
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APPENDIX C

MISCELLANEOUS SECTION FOR CHAPTER 3

C.1 Variable Definitions

• Total assets = atq

• Average assets = ((Total assets) + (lagged Total assets))/2

• Market value = prccq*cshoq - ( Total assets-ltq + txditcq) + total assets

• Market-to-book ratio = (Market value)/(Total assets)

• Total debt = dltcq + dlttq

• Leverage ratio = (Total debt)/(Total assets)

• Macro q = (prccq*cshoq+dlttq+dlcq-invtq)/lagged ppentq

• Net worth = atq - ltq

• Tangible net worth = actq + ppentq + aoq - ltq

• Current ratio = actq/lctq

• Cash scaled by assets = cheq/(Total assets)

• Operating income scaled by average assets = oibdpq/(Average assets)

• Interest expense scaled by average assets = xintq/(Average assets)

• Capital expenditures quarterly = capxy adjusted for fiscal quarter accumulation

• Cash acquisitions quarterly = aqcy adjusted for fiscal quarter accumulation

• Capital expenditures scaled by average assets = Capital expenditures quarterly/(Average

assets)
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• Investment = Capital expenditures quarterly/(Lagged ppentq)

• Net debt issuance = (Total debt-Total lagged debt)/(Lagged total assets)

• Sales = saleq

• Operating costs = Sales-(Operating income)

• Sales scaled by average assets = Sales/(Average assets)

• Operating costs scaled by average assets = Sales/(Average assets)

• Beta = Borrower’s market model beta calculated using daily stock returns for a given

firm over the estimation period of one year ranging from one month prior to the loan

announcement day and extending back one year.

• Runup = Cumulative return of the borrower’s stock during the estimation period of

one year ranging from one month prior to the loan announcement day and extending

back to one year.

• Idiosyncratic risk = Standard deviation of the prediction errors (i.e., borrower’s stock

return residual) during the estimation period of one year ranging from one month prior

to the loan announcement day and extending back to one year.

• Loan Size = The total deal amount in a given package.

• Relative Loan Size = The total deal amount divided by total assets of the firm at the

point when the loan is made.

• Maturity = The maturity of a package or deal, measured in months.

• Loan Spread = The all-in-drawn spread over LIBOR in basis points for a given loan.

• Number of lenders = The number of lenders at loan syndication.

• Lending Relationship = The number of loans to borrower i by bank m scaled by the

total number of loans to the borrower made until then.
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• Loan Types = Loans are classified as (a) Revolvers: if the LoanType field in Dealscan

consists of Revolver, 364-Day, Demand Loan, or Limited Line; (b) Term loan A: if

the LoanType field in Dealscan consists of Term Loan A; (c) Term Loan B: if the

LoanType field in Dealscan consists of Term Loan, Term Loan B to Term Loan E.

• CR Distance = 1CurrentRatioit×(CurrentRatioit−CurrentRatio0
it) where 1CurrentRatioit

is an indicator variable equal to one if the firm-quarter observations are bound by a

current ratio covenant. CurrentRatio0
it is the current ratio covenant threshold and

CurrentRatioit is the current ratio in quarter t for firm i.

• NW Distance = 1NetWorthit × (NetWorthit − NetWorth0
it) where 1NetWorthit is an

indicator variable equal to one if the firm-quarter observations are bound by a net

worth covenant. NetWorth0
it is the net worth covenant threshold and NetWorthit is

the net worth in quarter t for firm i.

• Analyst Coverage = The number of analyst EPS forecasts made in the 90 days prior to

the earnings announcement date. It is calculated using I/B/E/S unadjusted estimates

and actual files. We adjust for any stock splits using adjustment factors obtained from

the CRSP dataset (cfacshr) to ensure that EPS values in the Estimates and Actuals

are on the same basis.

• Analyst Dispersion = The standard deviation of analyst EPS estimates made in the

90 days prior to the earnings announcement date scaled by the actual reported EPS.

It is calculated using I/B/E/S Unadjusted Estimates and Actual files.

• Institutional Ownership = The ratio of total shares held by institutional investors to

the total shares outstanding for a given stock. Institutional holding data are obtained

from Thomson-Reuters Institutional Holdings (13F) Database.

• Stock Illiquidity = The monthly average stock illiquidity defined as the squared root

of the Amihud measure. It is the monthly average of the following daily values:

√
1000000 ∗ |Rett|/ (Volume× Pricet),

272



where Rett and Pricet are daily return and price of the stock.

• Forex Derivative Hedging = The average amount of foreign exchange derivatives used

for hedging purposes (i.e., non-trading purposes) relative to total assets of the lead

syndicate banks and bond underwriters that the firm has done business with in the

past five years. Banks’ derivatives usage data is obtained from Bank Holding Com-

pany (BHC) Y9-C filings. Data on the firm’s lead bank syndicate are obtained from

LPC Dealscan, and the firm’s underwriter information is obtained from Mergent

FISD.

• Non-Interest Income = Item number BHCK4079 from the FR Y-9C reports expressed

as a percentage of total income (BHCK4074 + BHCK4107)

• Loans Securitized = Sum of residential loans sold and securitized (BHCKB705), other

consumer loans sold and securitized (BHCKB709), commercial loans and industrial

loans (C&I loans) sold and securitized expressed as a percentage of total loans and

leases (BHCK2122). Data for these items is available from 2001 Q2 onwards.

• CD Bought = the total credit derivatives on which the reporting bank is the benefi-

ciary, which is reported as item number BHCKA535 from 1997 Q1 to 2005 Q4, and

the sum of item numbers BHCKC969, BHCKC971, BHCKC973, BHCKC975 from

2006 Q1 onwards expressed as a percentage of total assets (BHCK2170).

• CD Sold = the total credit derivatives on which the reporting bank is the guarantor,

which is reported as item number BHCKA534 from 1997 Q1 to 2005 Q4, and the

sum of item numbers BHCKC968, BHCKC970, BHCKC972, BHCKC974 from 2006

Q1 onwards expressed as a percentage of total assets (BHCK2170).

C.2 Additional Tables & Figures
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Figure C.1: Investment vs distance to violation: Polynomial Fit

This figure plots investment vs distance to covenant violation. Distance to covenant violation

is defined as the negative of the relative covenant distance for every firm-quarter observation

(−Ratio−CovenantThresholdRatioCovenantThresholdRatio ). In case both, net worth and current ratio covenants are present,

the tighter of the two is chosen to compute the distance to covenant violation. The plot displays the

mean investment for bins defined along the distance to covenant violation. The solid lines represent

the fitted values of a third-degree polynomial in distance to covenant violation.
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Table C.1: 2SLS IV regressions: Distress and outperformance

This table conducts a 2SLS IV regression using a linear probability model for firms after a covenant

violation in the presence and absence of traded CDS on its underlying debt. Firm exits in our sample

are classified based on the CRSP delisting codes and Moody’s URD database. Financial failure from

the CRSP codes is defined as liquidation (400 – 490), bankruptcy (574). Failure in URD is defined

as missed/delayed interest/principal payments, bankruptcy, or distressed exchange. Other forms of

firm exit include mergers (200 – 290) or going private (573). Distress and outperformance is defined

based on [66] and [67] as the firms in the bottom and top 5% of the entire universe of firms in the

CRSP based on the past three-year of cumulative return. The instrument for CDS trading is the

average amount of forex derivatives used for hedging purposes relative to total assets of the lead

syndicate banks and bond underwriters with which the firms have conducted business in the past

five years.

The data is constructed at firm-quarter level. The main independent variable of interest is CDS IV,

which is obtained from the first stage where d CDS is instrumented. d CDS is an indicator variable

equal to one if a CDS is traded on the underlying firm’s debt for that firm-quarter observation,

and zero otherwise. t-statistics displayed in parentheses are robust to within-firm correlation and

heteroscedasticity. *, **, and *** indicate significance greater than 10%, 5%, and 1%, respectively.

All Distress Non-distress Equity Equity
Exits Related Related Distress Outperformance

(1) (2) (3) (4) (5)

CDS IV -0.05* -0.01 -0.04 0.08 -0.10**
(-1.81) (-0.86) (-1.58) (1.45) (-2.16)

d Rated -0.00 0.00 -0.00 -0.04 0.01
(-0.00) (0.27) (-0.17) (-1.41) (0.18)

Assets(log) 0.00 0.00 0.00 -0.02 0.01
(0.71) (0.34) (0.63) (-1.45) (1.16)

Profitability -0.15** -0.14*** -0.00 -0.30*** 0.06
(-2.36) (-2.65) (-0.12) (-4.52) (0.76)

Book Leverage -0.03 0.02 -0.05 0.17* -0.02
(-0.72) (0.43) (-1.60) (1.65) (-0.26)

Interest Expense/Assets 0.95** 0.55 0.40 -0.10 -0.37
(2.08) (1.42) (1.24) (-0.11) (-0.50)

Market-to-Book -0.00 0.00 -0.01 -0.04*** 0.10***
(-0.21) (0.63) (-0.82) (-3.74) (5.23)

Initial Covenant Tightness -0.00 0.00 -0.01 0.01 -0.01
(-0.22) (1.55) (-1.26) (0.57) (-1.10)

N 14506 14506 14506 14358 14358
Adj. R2 0.04 0.06 0.02 0.10 0.16

Industry FE X X X X X
Year FE X X X X X
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Table C.2: Propensity of CDS trading: First-stage IV regression

This table conducts the first stage of the IV regression (reported in Table C.1) using a probit

model. The instrument for CDS trading is the average amount of forex derivatives used for hedging

purposes relative to total assets of the lead syndicate banks and bond underwriters with which the

firms have conducted business in the past five years. The independent variable is d CDS, which

is an indicator variable equal to one if a CDS is traded on the underlying firm’s debt for that

firm-quarter observation, and zero otherwise. t-statistics displayed in parentheses are robust to

within-firm correlation and heteroscedasticity. *, **, and *** indicate significance greater than 10%,

5%, and 1%, respectively.

Probit Model
(1) (2)

Instrument

Forex Derivative Hedging (%, log) 0.16***
(2.64)

Firm-level controls

d Rated 1.00*** 0.99***
(9.31) (9.19)

Assets(log) 0.75*** 0.74***
(13.54) (13.09)

Profitability -0.13 -0.12
(-0.44) (-0.41)

Book Leverage 0.82*** 0.81***
(3.70) (3.65)

Market-to-Book -0.10** -0.11**
(-2.39) (-2.54)

Monthly Volatility (log) -0.26*** -0.26***
(-5.37) (-5.44)

Monthly Trading Volume (log) 0.20*** 0.21***
(4.47) (4.49)

Monthly Return -0.02 -0.02
(-0.29) (-0.24)

CDS-trading controls

Analyst Coverage (log) 0.03 0.03
(0.79) (0.81)

Institutional Ownership 0.07 0.07*
(1.61) (1.65)

Stock Illiquidity 0.17 0.17
(1.22) (1.24)

Analyst Dispersion 0.00 0.00
(0.26) (0.26)

N 74330 74330
Pseudo R2 0.5810 0.5820

Industry FE X X
Year FE X X
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Table C.3: Firm quality at loan issuance

This table regresses various measures of firm quality on d CDS at loan issuance dates. d CDS is

an indicator variable equal to one if the loan announcement occurs when CDS is traded on the

underlying firm’s debt, and zero otherwise. Controls include firm-level characteristics, such as

whether the firm has a rating, which may indicate different access to credit markets, firm size,

leverage, market-to-book, profitability, and current ratio, and CDS-trading controls that may affect

the probability of CDS trading such as analyst coverage, institutional ownership, stock illiquidity,

and analyst dispersion. The control variables are defined in detail in the Appendix. t-statistics

displayed in parantheses are robust to within-firm correlation and heteroscedasticity. *, **, and ***

indicate significance greater than 10%, 5%, and 1%, respectively.

Risk measures regressed on 1-quarter lagged variables

Altman Intangible Interest Cash-Flow
Z-score Assets Coverage Volatility

(1) (2) (3) (4)

d CDS 0.178*** 0.001 0.020 0.001
(3.35) (0.14) (1.41) (0.46)

d HasRating 0.007 -0.011 0.009 -0.002
(0.14) (-1.18) (0.67) (-0.84)

Assets (log) 0.122*** 0.076*** 0.010 -0.011***
(3.17) (9.10) (1.17) (-5.42)

Book Leverage -5.536*** 0.026 0.416*** 0.019**
(-29.66) (1.03) (10.71) (2.56)

Market-To-Book 1.563*** -0.030*** -0.022*** 0.010***
(34.39) (-5.20) (-3.64) (6.88)

Profitability 1.516*** 0.026 -0.141** -0.045***
(7.40) (1.24) (-2.23) (-4.47)

Current Ratio 0.657*** -0.027*** -0.006 0.001
(17.50) (-7.77) (-1.11) (0.90)

Analyst Coverage (log) 0.011 -0.001 -0.002 0.000
(0.60) (-0.42) (-0.47) (0.45)

Institutional Ownership 0.001 -0.001 -0.013* -0.005***
(0.04) (-0.49) (-1.72) (-3.28)

Stock Illiquidity -0.054 0.001 0.006 0.001
(-0.63) (0.03) (0.17) (0.24)

Analyst Dispersion -0.008 -0.001 0.007* -0.000
(-0.97) (-1.58) (1.94) (-0.01)

N 17060 8302 17544 17648
Adj. R2 0.905 0.889 0.287 0.685

Industry FE X X X X
Year FE X X X X
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Table C.4: Loan Announcement CAR Regressions: Within-Lender Analysis

The table report regression results of stock price reactions to firm loan announcements. The de-

pendent variable is the cumulative abnormal return (CAR) calculated over the 3-day event window

(-2,+2), where day 0 represents the loan announcement event day. CAR is calculated using the

market model. Our main variable of interest is d CDS, which is an indicator variable equal to

one if the loan announcement occurs when CDS is traded on the underlying firm’s debt, and zero

otherwise. d TradedCDS is an idicator variable equal to one if the firm in our sample has CDS

traded on the debt at any point during our sample period, and zero otherwise. We control for

Loan-level characteristics, Pre-announcement characteristics, Firm-level characteristics, and CDS-

Trading characteristics which are defined in detail in the appendix section. The observations in this

sample are at lender-package level. t-statistics displayed in parentheses are robust to within-firm

correlation and heteroscedasticity. *, **, and *** indicate significance greater than 10%, 5%, and

1% , respectively.

Lender FE Lender FE & Firm FE

(1) (2) (3) (4)

d CDS -0.35*** -0.41*** -0.34* -0.39**
(-2.78) (-2.99) (-1.92) (-2.14)

d TradedCDS 0.23** 0.19
(1.97) (1.55)

N 26755 21108 26755 21108
Adj. R2 0.048 0.046 0.199 0.208

Deal Purpose FE X X X X
Year FE X X X X
Firm FE 7 7 X X
Lender FE X X X X
Loan Controls X X X X
Firm Controls X X X X
Pre-announcement Controls X X X X
CDS-trading Controls 7 X 7 X
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APPENDIX D

MISCELLANEOUS SECTION FOR CHAPTER 4

D.1 Variable Definitions

D.1.1 Risk Measures

• ES = the negative of the average of the firms daily returns on 5% worst return

days during the calendar year for the firm expressed in percentage terms

• MES = the negative of the average firms daily return on 5% worst return days of

the market (S&P 500 instead of for the firm) during the calendar year expressed

in percentage terms

• ESidio = the residual plus constant upon regressing ES on MES separately for

each firm-type expressed in percentage terms

• Volatility = the standard deviation of daily firm equity return over the calendar

year expressed in percentage terms

• Beta = the estimate of the coefficient upon regressing the firms daily return on

markets daily return (S&P 500) expressed in percentage terms

D.1.2 Firm-level Variables

• Total debt = long-term debt + short-term debt

• Market value of assets = (stock price × shares outstanding) at bond issuance

+ Book value of debt

• Term spread = yield spread between the 10- and 1-year treasury bonds

• Profitability = operating income after depreciation ÷ sales
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• Long-term debt to total assets (book leverage) = long-term debt ÷ book value

of total assets

• Leverage (market leverage) = market value of assets ÷ market value of equity

• Market-to-Book = market value of equity ÷ by the book value of equity

• Asset growth = log(
assetsi,t
assetsi,t−1

) for firm i in quarter t
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D.2 : A Simple Model.

Following is a simple model that derives bond yields as a function of expected shortfall

(ES ). This serves as a motivation for our baseline regression specification in Equa-

tion 4.4.1.

Let equity - e be given for a firm (Adrian and Shin, 2011)

Let d be the amount of debt to be raised

Let v be the face-value of debt to be repaid by the firm

Let c be the cost of raising too much debt/bankruptcy/financial distress costs

Let r̃ be the random return per dollar invested by the firm with mean µ and

variance σ2

Let rf be the risk-free rate (opportunity cost of the investor)

Using the above notation, the wealth of the firm can be written as the following.

Wfirm = (e+ d)r̃ − v − cd2

The firm’s problem is to maximize it’s wealth over all cases when wealth is greater

than zero as the firm is protected by limited liability.

Firm’s problem taking into account the incentive constraint for investors is:

max
{d,v}

E(Wfirm · 1Wfirm>0)

s.t.

E[min{v, [r̃(e+ d)− cd2]} ≥ rfd

Using Lagrangian multiplier λ > 0 we can write the optimization problem in the

following manner:
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max
{d,v,λ}

(e+ d)

∞∫
v+cd2

e+d

rf(r)dr − (v + cd2)

[
1− F

(
v + cd2

e+ d

)]
+

λ

[1− F (v + cd2

e+ d

)]
v + (e+ d)

v+cd2

e+d∫
cd2

e+d

[
r − cd2

(e+ d)

]
f(r)dr − rfd


Differentiating w.r.t v we get:

∴ (λ− 1)[1− F
(
v + cd2

e+ d

)
] = 0 =⇒ λ = 1

Differentiating w.r.t. d we get:

∞∫
cd2

e+d

rf(r)dr − cd2f

(
cd2

e+ d

)
d

dd

(
cd2

e+ d

)
+ cd2f

(
cd2

e+ d

)
d

dd

(
cd2

e+ d

)

− 2cd

[
1− F

(
cd2

e+ d

)]
− rf = 0

∴

∞∫
cd2

e+d

rf(r)dr − 2cd

[
1− F

(
cd2

e+ d

)]
− rf = 0

If cd2 � (e+ d) (i.e., bankruptcy costs are small compared to assets of the firm),

then:

cd2

e+ d
≈ 0 =⇒ d ≈ [1− F (0)]µ− rf

2c[1− F (0)]

If r̃ ∼ N(µ, σ2) then:

d ≈
Φ
(
µ
σ

)
µ− rf

2cΦ
(
µ
σ

) =
1

c

[
µ− rf

Φ(µ
σ
)

]
Briefly, the comparative statics are:

• If the cost of raising debt c is high then, less debt is raised
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• If the expected return from the investment is high, then more debt is raised

• If the volatility of the investment is high, then less debt is raised

• If the sharpe ratio of the investment is high, then more debt is raised

To solve for the yield, the participation constraint is binding as λ = 1.

[
1− F

(
v + cd2

e+ d

)]
v +

v+cd2

e+d∫
cd2

e+d

[r(e+ d)− cd2]f(r)dr = rfd

i.e.,

[
1− F

(
v + cd2

e+ d

)]
v +

v+cd2

e+d∫
cd2

e+d

[r(e+ d)− cd2 − v]f(r)dr +

v+cd2

e+d∫
cd2

e+d

vf(r)dr = rfd

As W = (e+ d)r − v − cd2; e+ d = a (assets)

∴

[
1− F

(
cd2

e+ d

)]
v +

[
F

(
v + cd2

e+ d

)
− F

(
cd2

e+ d

)]
E(W |W < 0) = rfd

where E(W |W < 0) is the expected shortfall of wealth

∴

[
1− F

(
cd2

a

)]
v +

[
F

(
v + cd2

a

)
− F

(
cd2

a

)]
wfirm,0E(r̃firm|W < 0) = rfd

Let E(r̃firm|W < 0) = −es where r̃firm =
w̃firm

wfirm,0
is the equity return of the firm.

∴ v =
rfd+ (es)wfirm,0

[
F
(
v+cd2

a

)
− F

(
cd2

a

)]
[
1− F

(
cd2

a

)]
Again, if cd2

a
≈ 0; F (0) = 1 − Φ

(
µ
σ

)
≈ 0 for typical values (e.g., µ = 1.15; σ =

0.25), and F
(
v
a

)
≈ F

(
d
a

)
, then y ≈ rf +

(es)wfirm,0

d

[
F
(
d
a

)]
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∴ log(y − rf ) ≈ log(es) + logF

(
d

a

)
− log (d) + log(wfirm,0)

or using the log expansion one can write the following:

y − rf = α + β.es+ controls

Further Defining:

Tail-risk of the market is defined as : esmkt,t = −E [rmkt,t|rmkt,t < −V ARmkt,α]

Tail-risk of the firm is: esi,t = −E [ri,t|ri,t < −V ARi,α]

Market’s return can be written as: rmkt,t = ωirit

Therefore tail-risk of the market can be written as:

esmkt,t = −E [ωiri,t|rmkt,t < −V ARmkt,α]

Taking partial derivatives we can define mes as the following:

∂esmkt,t
∂ωi

= mesi,t = −E [ri,t|rmkt,t < −V ARmkt,α]
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