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Abstract 

Tandem mass spectrometric methods revolutionized the chemical identification landscape, 

allowing serums and molecules to be separated in two or more dimensions. Ion Mobility Mass 

Spectrometry workflows combined with liquid or gas chromatographic separation have 

continued to progress chemical identification and further increase the amount and confidence of 

these identities. Such advancements have also given birth to a new molecular descriptor: the 

Collision Cross Section, sparking heavy interest in the analytical-computational chemistry to 

compile these values for known molecules. The main shortcoming has been predicting the CCS 

value for new molecules such as Poly-Fluorinated Alkyl Sub-stances.  Preliminary prediction 

software has revealed that predicting CCS values for this molecular class is possible, but it can 

prove temporally, computationally, and financially expensive between different licenses and 

genetic algorithm. This work combines open-source Python modules (NumPy, Mordred, Pandas, 

etc.) to construct an alternative workflow that is completely free and capable of running on a 

mid-specification laptop within a half hour.  Using the M-H and combined M+H and M-H 

datasets taken from the McClean CCS Compendium, median prediction errors of 2.07% and 

1.84%, respectively, were found using Support Vector Regression within 5 minutes on a mid-

spec laptop, satisfying the 2.50% benchmark. This overall success illustrates the power and 

versatility of this workflow to produce low errors with datasets as large as 1300+ molecules and 

as few as 37. This script can be distributed on file-sharing sites like GitHub where other users 

may customize the free source code to fit their experimental needs. 
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Introduction 

 The advent of mass spectrometry (MS) in 1927 reinvented chemical identification, and in 

much the same way, ion mobility MS (IM-MS or IMS) revitalized the field in 1963 and yet again 

in 2016. Despite these new techniques, still only 2-10% of compounds detected in a non-targeted 

metabolomic study can be identified with high certainty.1 Non-targeted metabolomic studies 

focus on identifying as many detected compounds, known as metabolites, as possible within a 

serum or solution that can contain thousands of unique metabolites. By ionizing these 

compounds in a magnetic field, cationic and anionic fragments can be sorted into distinct mass-

to-charge ratios (m/z). The highest degree of uncertainty stems from the resolution of mass 

spectrometers. Thousands of molecules can have a fragment with 100.123 m/z value, and even 

more can have the same molecular formula but different construction. Without the ability to 

increase the accuracy by additional orders of magnitude, many mass spectrometers will struggle 

to separate molecules with a difference of ±0.0001 in their respective m/z values.1 

 In the 1950’s, tandem methods were developed to make a larger distinction between 

compound fragments. By feeding complex samples into liquid and gas chromatography (LC and 

GC, respectively), individual components could be separated before being fed into a mass 

spectrometer to fragment separately from other ions with the same m/z ratio (LC-MS or GC-MS 

methods) facilitating even higher chemical distinction.1-4 IM-MS uses this same logic but instead 

focuses on the size and charge distribution of the molecule. It measures the time required for the 

molecule to cross a detector in the presence of an opposing inert gas, commonly N2 or a noble 

gas.1,5-8 From this methodology, researchers discovered a new dimension of molecular 

annotation called Collision Cross Section (CCS). CCS values are molecular annotations directly 

related to the size and shape of a molecule based on the drag produced in the drift tube, 
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producing a rotationally averaged molecular “shadow.” While powerful in tandem IM-MS, CCS 

shines particularly in workflows such as LC-IM-MS which plot m/z versus tR versus CCS, 

adding a new dimension of refinement to chemical identification.1,4  

The -omics fields have rigorously tested this annotation since the commercialization of 

travelling-wave IMS (TWIMS) by Waters Corp.4 Kanu et al sought to standardize successful 

IM-MS experiments, requiring the completion of 5 basic processes: sample introduction, 

compound ionization, ion mobility separation, mass separation, and ion detection.4,7 Paglia et al. 

performed an interlaboratory evaluation of the Waters Corp. Synapt G2 wherein different labs 

across the United States and Europe analyzed the calculated CCS values of the same 125 

chemical species via TWIMS. Interlaboratory results yielded a relative standard deviation (RSD) 

<2% of the expected CCS value for 97% of the species, indicating a high accuracy.5 

Additionally, results across the different labs showed <5% RSD for 99% of the species and later 

confirmed by similar experiments by Stow et al.6-7  Nye et al. demonstrated that inherent flaws to 

the construction of LC columns ultimately caused inaccuracies in LC-IM-MS-derived CCS 

values that could be avoided using TWIMS-based workflows.17 The combined result cast the 

spotlight on the robustness and reproducibility of the CCS value but also its largest downfall, 

particularly in chromatography-based workflows. However, for as much attention as it had 

garnered, few databases existed with a comprehensive compilation and even fewer predictors.  

 Two schools of thought emerged for these predictors: Quantum Calculation (QC) and 

Machine Learning (ML). The first of the QC approaches was Mobcal in 1996. Mobcal built 

rotationally averaged cross sections from varying atomic coordinate files such as X-Ray 

Diffraction (XRD), Nuclear Magnetic Resonance (NMR), molecular dynamics, and quantum 

calculation, but as programming languages and computing power improved, the database was 
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quickly outmoded 8,18 Zanotto et al. constructed High Performance CCS (HPCCS), a modern 

reworking of Mobcal that uses a Quantum Trajectory Method to improve prediction accuracies 

and run times.8-9,18 These quantum approaches are useful in the lack of available data, facilitating 

ab initio and de novo approaches to CCS prediction, however these workflows tend to be 

computationally demanding. 

ML approaches offer lower computing power requirements with comparable accuracies. 

One of the main caveats is the requirement for a training data set, disallowing the approaches 

offered by the quantum workflows. Proteomic ML approaches began to dominate workflows by 

2016, offering 1-3% median errors in smaller scale databases.20 By the end of 2019, numerous 

metabolomics-focused databases were developed, including ISiCLE, DeepCCS, MetCCS, and 

AllCCS.9-13 However, these databases fall short because they depend on tens to hundreds of 

thousands of predicted CCS values based on training sets limited both by numbers of molecules 

and even moreso by molecular classes. 

A desire to better control these calibration and validation sets arose within the field that 

could theoretically allow more accurate descriptor calculation and thus more powerful CCS 

prediction. Soper-Hopper et al. developed a PLS-based workflow that combined with Dragon 7.0 

molecular descriptor software with genetic algorithm variable selection. Calculated CCS values 

were within <2% median error for 500 molecules of varying class. The primary issue stems from 

the time and computing power required by the genetic algorithm, however there are also 

financial barriers to such analysis as Dragon 7.0 (now alvaDesc) license cost upwards of 

$1,300.15 Genetic algorithms procedurally iterate on a base model that optimize around a set of 

parameters. Specific time measurements for the genetic algorithm were not available, but the 
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evaluation of thousands of individual descriptors would theoretically require significant 

permutations and time commitment on the order of hours to even days. 

 This proposed work aims to recreate the results from Soper-Hopper et al. with minimal 

effort and time expended on the end-user’s behalf. The proposed workflow eliminates the genetic 

algorithm, and replaces PLS regression with support vector regression (SVR). This work also 

adds the ability to automatically randomize the calibration and validation data sets which makes 

resulting prediction less reliant on a particular data set that introduces bias error. This work 

would ultimately unlock real time CCS prediction for raw data. By packing the script using a 

Jupyter Notebook and distributing via GitHub, this work will allow any user direct access to the 

source code and the ability to customize the script to whatever the study requires, improving end-

user accessibility.  
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Literature Review 

Metabolomics—the study of small, molecular products of metabolism—is one of the younger 

-omics fields, established in 1998. Perhaps the greatest hindrance to the field as a whole is the 

“Dark Metabolome” as non-targeted studies seldom identify more than 2-10% of detected 

compounds with high certainty. This problem arises from many molecules producing mass 

fragments with similar m/z values in the ten thousandths place (0.0001), making resolution a 

primary limiting factor.1 To combat this, two hallmark methods in analytical chemistry were 

developed: orthogonal analytical workflows such as Liquid Chromatography linked to Mass 

Spectrometry (LC-MS) and tandem mass spectrometry (MS-MS).1-4 The advent of ion-mobility 

mass spectrometry (IM-MS) and its variants (travelling-wave, drift tube, etc.) added a third 

dimension of coupled analysis by introducing a powerful, new molecular descriptor: Collision 

Cross-Sections (CCS).1,5-7 This new angle was seized by computational laboratories, developing 

new workflows and databases to accurately predict, compile, and transmit these values to other 

groups.9-16 Establishing a reliable means of parsing through the remaining 90% of compounds 

remains an unresolved issue, particularly as new metabolites like poly-fluorinated alkyl 

substances (PFAS) emerge almost daily. 

The modern interpretation of IM-MS has changed quite drastically since its inception by Dr. 

Earl McDaniel in 1963 from a method to facilitate mass spectrometry to an analytical branch 

within MS workflows with its own variances.1-2,4 To focus this rapid broadening, Kanu et al. 

stated successful IM-MS experiments must accomplish 5 basic processes: sample introduction, 

compound ionization, ion mobility separation, mass separation, and ion detection.4 Ion mobility 

and mass separations are of particular note as they represent the groundwork for CCS values 

derivation; they originate from molecular drag against opposing neutral gases such as N2. Waters 
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Corp. commercially introduced Synapt HDMS in 2006 and began to popularize travelling wave 

ion-mobility MS (TWIMS), instrumentation that has since been redesigned into the TWIMS gold 

standard, the Synapt G2.4,7 A 2014 experiment by Paglia et al. and a similar 2017 experiment by 

Stow et al. demonstrated the accuracy and reproducibility of CCS values by performing 

interlaboratory evaluations across different labs in the United States and Europe. These studies 

produced <2% RSD to expected CCS values for 97% of the involved species, indicating high 

accuracy, and <5% RSD for 99% of species when comparing the results between labs, 

illustrating high precision.4-7 These studies served as a launching point for computational CCS 

prediction for molecules. However, the lack of compatible CCS calculation software stymied this 

interest. 

One of the first of these predictors, Mobcal, was developed Dr. M.F. Melseh and coworkers 

in 1996, computing rotationally average molecular cross sections based on experimentally 

determined atomic coordinate files such as NMR data, X-ray scattering, and quantum 

calculations over 15 years.8,11,13 Since then, numerous CCS prediction software packages have 

been developed using a variety of techniques that eventually outmoded Mobcal, leading Zanotto 

and co-workers to construct a modern rendition of Mobcal—High Performance CCS (HPCCS)—

which produced more accurate predictions at a faster rate.11 By 2016, machine learning 

approaches began to dominate workflows, boasting median relative errors between 1-3% in 

smaller scale databases.8-13,16  

Zhiwei Zhou and co-workers realized this trend and called for further development into 

large-scale metabolite CCS predictors with a focus on machine learning techniques.10 

METLIN—a database created in 2005—was one of the first published metabolomics predictor 

packages, adding the CCS prediction functionality.12 ISiCLE, DeepCCS, and MetCCS, and 
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AllCCS followed suit, decreasing relative errors for more of the included molecules. Most 

notably, the latter contains <4% relative error for 84% of the predicted molecules.10-14 One of the 

major shortcomings with all of these predictors is their lack of flexibility which plays a role in 

the higher errors for the other predicted molecules. One of the key components of ML workflows 

is an available training dataset to run the predictions. MetCCS used just under 400 training 

molecules to predict 35,000 CCS values. AllCCS used similar tactics in positive and negative ion 

modes (n = 1851 for positive; n = 795 for negative) alongside an 80% calibration-validation split 

to predict over 2 million molecules. These algorithms calculate the CCS values of new molecules 

using the same algorithm each time. This repetition may not account for the structures and 

tendencies of new classes of molecules, leading to increased errors that lower the effectiveness 

of these ML workflows as new metabolites are reported.10-14  

Soper-Hopper et al. sought to change this trend. Rather than using one fixed dataset to build 

a model and predict CCS values for novel molecules, a workflow capable of downloading a 

custom calibration and validation dataset and built a model was constructed. Two-dimensional 

molecular descriptors for 500 molecules were calculated via Dragon 7.0 software by Kode 

Solutions. Genetic algorithm variable selection and PLS regression predicted molecular CCS 

values within 2% median error.10 This study demonstrated that accurate CCS prediction is 

possible from curated data sets, but the set-up is not seamless. Data set construction and curation 

must be completed outside of MatLab and Dragon 7.0, adding to analysis time. Additionally, 

genetic algorithms are computationally expensive.  

As such, this proposed work aims to develop a streamlined CCS prediction workflow that is 

highly customizable, approachable at any programming skill level, and free of charge to the 

anyone. Python would be the programming language of choice as it is one of the most flexible 
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and current languages available with a broad selection of open-source software packages. In 

particular, the Mordred package is capable of calculating 1800+ 2-dimensional descriptors which 

could be used to train the support vector regression algorithm. Data sets will be constructed from 

entries in the McLean CCS Compendium with randomized calibration and validation sets based 

on a ratio the end user can set.16 After verifying this workflow’s accuracy, CCS values will be 

predicted for newer classes of molecules not found in the compendiums such as poly-fluorinated 

alkyl substances (PFAS) and polycyclic aromatic hydrocarbons (PAH). From start to finish, we 

aim to complete the prediction process in less than an hour on a mid-specification laptop. 
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Methodology 

 The script described in this work was written using Python 3 in Visual Studio Code 

(Microsoft). Due to speed limitations during later stages of development, the script was 

transferred to a Jupyter notebook to process the script more quickly. CCSP 2.0 downloads one of 

two types of molecular data via Excel Spreadsheet (.xlsx; Microsoft): PubChem CID or InChi. In 

CID mode, these codes are translated into InChi codes using the RDKit Python module. Files are 

selected using the Tkinter. InChi codes are then coverted to SMILES codes and then mol objects 

by RDKit. Mordred reads the mol objects and calculates 1613 2-D molecular descriptors for each 

and arranges them in a Pandas dataframe. Descriptors containing any errors or constant values 

were removed. The descriptor matrix is then split randomly into calibration and validation data 

sets set by a percentage (34-66% respectively, for this work). PLSToolbox is then used to 

standardize the values via Z-transform and construct an algorithm using support vector 

regression. This regression pairs penalty (C) and tolerance (ε) parameters to find the best fit. This 

fit can vary between datasets. A k-fold cross-validation was run on the calibration set, and then 

the validation set was run. The primary statistics for consideration are median absolute error 

(MAE) and root mean square error (RMSE), but the script also calculates average percent error, 

mean bias error, average absolute error, median absolute percent error, and R2 for the fit. 

 Initial testing was completed using the McLean Unified CCS Compendium using M+H 

(n = 703) and M-H (n = 599) subsets. The Compendium was selected as it was a publicly 

downloadable resource with diverse sets of molecules that could theoretically generate a more 

robust and flexible algorithm. This was further tested using PAH (n = 61), halogenated 

metabolites (Halogens; n = 102) and PFAS (n = 37) molecules provided by Baker and Foster at 

North Carolina State University. These tests were run 1001 times with the median graphs shown 
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in the Results section of this work. All sets were divided into a 50-50 Calibration-Validation 

splits. 

 A second version of CCSP 2.0 exists where calibration and validation sets are manually 

loaded, allowing for custom datasets to be uploaded and analyzed. This version of the script 

functions identically, lacking only the function that splits a unified dataset into two portions. This 

version was used to run the PFAS set. The PFAS data set was provided by Baker and Foster at 

North Carolina State University, containing 37 molecules tested in their laboratory. Plots for 

both versions are constructed using Pyplot from Matplotlib. The below Figure 1 visualizes the 

overall workflow for CCSP 2.0. 
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Figure 1: CCSP 2.0 Workflow 

The above figure visualizes the approach used in CCSP 2.0. Molecular Identifiers are loaded in 

and converted to SMILES codes. The Mordred Python package calculates 1613 descriptors, and 

invalid descriptors are cleared away. Calibration and Validation sets are formed. The 

Calibration set is used to construct and cross-validate the model, and the Validation set is used 

as a blank test of the model, producing predicted CCS values. 
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Results 

 

 

Figure 2: Compendium Prediction Plots (M+H and M-H) 

These graphs plot the cross validated (top) and validation (bottom) fits for the McLean M-H 
(left) and M+H (right). The primary discussion focusses on the validation sets for these 
measurements as the model did not previously analyze those samples as is not the case with the 

2a 2c 

2b 2d 
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k-fold cross validation sets. Validation errors were <1.7% MAE and <6.0 Å2. These charts were 
taken from the medians of 1001 runs. 

 Accuracy of the model can be visually assessed by the above and following figures where 

the CCS value predicted by CCSP 2.0 is plotted against experimentally measured/provided CCS 

value. A perfect match results in a 1:1 line across the graph as highlighted by the dashed line. 

The combined M-H and M+H Compendium sets provided the most chemically diverse data set 

for testing and were used as benchmarks. Cross Validation for the M-H set (Figure 2a) yielded 

an R2 of 0.98 with 1.22% median absolute error (MAE) and 5.90 Å2 root mean squared error 

(RMSE). The pure Validation set (Figure 2b)—previously unseen by the model—generally 

reported improved results with a 0.99 R2 and 5.78 Å2 RMSE but a slight increase in MAE to 

1.33%. The M+H set yielded opposite results. MAE increased from 1.49% to 1.61%, and RMSE 

rose from 5.33 Å2 to 5.86 Å2.  

Smaller data sets reflected the M+H results, having increased errors from the Cross 

Validation to the pure Validation sets. Of these, the PFAS (Figures 3a and 3b) reported the 

highest errors of the applied datasets with 1.36% MAE and 5.48 Å2 RMSE which are still well-

below the target threshold of 2% and 7.00 Å2, respectively.  

 The Halogens and PAH sets were two newer data sets originally not included at the start 

of this work but produced relevant results that warranted their inclusion. As with the PFAS and 

M+H data sets, the Cross Validation data yielded lower errors, but both were still well within the 

expected parameters. For the Validation sets, MAE was <1% and RMSE <2.50 Å2. The 

immediate reaction tends toward a lower analyte count as each were <100 total while the 

McLean sets had >400 in both Calibration and Validation sets. However, this claim is not fully 

supported when looking at the Halogens (Figure 3c and 3d) and PAH (Figure 3e and 3f) results. 
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PAH sets had fewer associated molecules but had higher errors in both validation RMSE and 

MAE. 

 

Table 2: CCSP 2.0 Error versus Soper-Hopper Workflow (Validation) 

This figure tabulates the MAE and RMSE data from each of the CCSP 2.0 workflows as 
compared to the literature Soper-Hopper workflow.  
 

 

Figure 3: Specialized Data Set plots 

These graphs plot the cross validated (top) and validation (bottom) fits for the PFAS (left), 
Halogens (center), and PAH (right) data sets. The PFAS data set appears as a sort of bridging 

Error 
Soper-Hopper 

Workflow15 

CCSP 2.0:  
M-H 

CCSP 2.0;  
M+H 

CCSP 2.0:  
PFAS 

CCSP 2.0:  
Halogens 

CCSP 2.0: 
PAH 

MAE 2.00% 1.33% 1.61% 1.36% 0.49% 0.78% 

       

RMSE 7.00 Å2 5.78 Å2 5.86 Å2 5.48 Å2 1.46 Å2 2.43 Å2 

3a 

3b 3d 

3c 3e 

3f 
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observation between the specialized and the diverse datasets. The much smaller Halogens and 
PAH sets produced RMSE < 2.5 Å2 with median errors < 1%. This charts were taken from the 
medians of 1001 runs. 

. 

 The PFAS dataset appears very similar to the Combined Compendium even with 

substantially fewer datapoints. This run features the lowest MAE and RMSE values displayed in 

this work at 1.04% and 3.02 Å2 respectively. 

R2 Full Model RFE Model Consensus Model 
Sample List Self-

Calibration 
Cross 

Validation 
Validation  Self-

Calibration 
 Cross 

Validation 
 Validation  Self-

Calibration 
 Cross 

Validation 
 Validation 

PFAS 0.99 0.99 0.98 1.00 0.99 0.97 0.98 0.98 0.98 
Halogens 1.00 0.98 0.98 1.00 0.99 0.99 0.99 0.99 0.99 

PAH 1.00 0.98 0.98 1.00 1.00 0.98 0.99 0.99 0.99 
[M-H]- 0.99 0.99 0.98 0.99 0.98 0.98 0.99 0.98 0.98 
[M+H]+ 1.00 0.99 0.99 1.00 1.00 0.99 0.99 0.99 0.99 

          

          

MAE Full Model RFE Model Consensus Model 
Sample List Self-

Calibration 
Cross 

Validation 
Validation  Self-

Calibration 
 Cross 

Validation 
 Validation  Self-

Calibration 
 Cross 

Validation 
 Validation 

PFAS 0.67 2.19 1.40 0.58 1.21 1.93 1.60 1.77 2.06 
Halogens 0.29 0.88 0.60 0.49 0.34 0.62 0.42 0.44 0.56 

PAH 0.01 0.82 0.86 0.01 0.37 0.87 0.19 0.75 0.65 
[M-H]- 0.79 1.44 1.42 0.68 1.21 1.38 1.67 1.73 1.69 
[M+H]+ 0.79 1.63 1.74 0.61 1.32 1.78 1.73 2.07 2.08 

          

          

RMSE Full Model RFE Model Consensus Model 
Sample List Self-

Calibration 
Cross 

Validation 
Validation  Self-

Calibration 
 Cross 

Validation 
 Validation  Self-

Calibration 
 Cross 

Validation 
 Validation 

PFAS 2.20 4.97 5.10 1.93 3.19 4.95 4.29 4.56 4.66 
Halogens 0.50 2.06 1.75 0.99 1.14 1.57 1.24 1.30 1.36 

PAH 0.01 1.45 1.89 0.32 0.74 1.52 1.13 1.11 1.39 
[M-H]- 5.09 5.82 6.21 5.01 5.60 6.21 6.10 6.39 6.53 
[M+H]+ 4.15 5.71 6.15 4.75 5.23 6.10 6.05 6.40 6.46 
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Table 3: CCSP 2.0 Optimization using RFE and Consensus Features 

The above table set displays the median of 1001 runs for each of data set. The Full Model tables 

indicate the raw result of CCSP 2.0 using 2-parameter linear SVR without the use of Recursive 

Feature Elimination (RFE). The RFE Model columns indicate measurements taken on reruns of 

the dataset using Recursive Feature Selection to narrow down the number of molecular 

descriptors from >1200 to <400. The Consensus Model takes the most popular of these 

remaining descriptors (all that appeared ≥950 times in the 1001 runs and analyzes the dataset 

yet again. 

 The results for which of the three models (Full, RFE, and Consensus) depended on the 

size of the dataset. Initial measurements of the Consensus Model yielded an increase in MAE 

and RMSE for the M+H and M-H models, but the opposite was the case for the smaller, 

specialized molecule sets like PFAS, Halogens, and PAH. In almost all cases, MAE and RMSE 

are equivalent or improved from the Soper-Hopper results.15 

 
 
 
 
 
 
 
 
Table 4: CCSP 2.0 Timing versus Soper-Hopper Workflow  
 
This figure tabulated the time data from each of the CCSP 2.0 workflows as compared to the 
literature Soper-Hopper workflow. The comparison workflow is denoted with * as not all time 
data was available. This is inconsequential as CCSP 2.0 completed all tasks before the previous 
workflow was finished with the Descriptor Calculation step. All data shown is for the combined 
Compendium dataset. 
 The timing of this script is also an important component to this work. Soper-Hopper et al 

set a relative benchmark, reporting that descriptor calculation took just under 600s (regression 

Code Section Soper-Hopper15 
CCSP 2.0: 

M+H 
Descriptor 
Calculation 

<600 s 60 s 

Regression UNK 139 s 

Total <600 s 199 s 
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time was not reported). Of the 5 data sets, the largest was the M+H set, meaning that it would 

take the longest to analyze. The median observed time for an M+H round of analysis was 60 s 

for descriptor calculation and then 139 s to complete the regression section of the code, totaling 

199 s. Soper-Hopper et al did not publish their entire list of timings but did mention that 

descriptor calculation took <600s, nearly 3x as long as the entire analysis time for CCSP 2.0. 

  



Watson 21 
 

Discussion 

 Overall, these results are encouraging for mobile CCS prediction on mid-spec laptops. At 

its longest, 709 molecules were converted to final mol objects and analyzed with 1.14 x 106 total 

entries (709 molecules with 1613 descriptors each) in just over 3 min. The Dragon 7.0-based 

approach conducted by Soper-Hopper et al. completed the calculation of 3608 descriptors for 

approximately 500 molecules (1.8 x 106 total entries) in less than 10 min, indicating a significant 

comparative increase in computation efficiency for CCSP 2.0.15 The original set-ups of this work 

involved directly mirroring the partial least-squares approach used by Soper-Hopper which 

constructed, validated, and graphed the data in 20 s for a combined M+H and M-H dataset. 

While the errors were comparable to Soper-Hopper, the PLS approach was quickly outmoded by 

the SVR method. As spectrometers do not run in both positive and negative ion modes, such a 

combined dataset is not practical. Thus, neither the PLS or combined dataset are described in 

detail for this work. 

 The SVR model is built on a Grid Search optimization of two parameters: C and ε. For a 

particular data point on a fit, there is a certain threshold where the model views the point as 

“correct” even if it does not completely align with the expected 1:1 line, a noted tolerance value 

which was decided from a list of 0.01, 0.05, 0.1, 0.5, and 1. If a point dips outside of this range, 

then an error penalty is applied to the model, the C-parameter, which used values between 2-6 

and 23 progressing via 2n±1. While the C-parameter set the penalty associated for values outside 

of a particular range, epsilon set the threshold for error before the penalty is applied (0.01, 0.05, 

0.1, 0.5, 1. Initial load tests using the combined dataset yielded significant improvement in both 

error quantifications, decreasing to 8.67 Å2 RMSE while MAE also decreased to 1.84%. 

However further improvement was observed when using the more analytically useful individual 
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Compendium sets as MAE decreased to 1.74% and 1.42% for M+H and M-H, respectively. 

Additionally, the RMSE decreased to 6.15 Å2 and 6.21 Å2 in the same respect. These decreases 

were not without the traditional tradeoff however. By expanding the tolerance of the model, the 

increased accepted error in the residuals can decrease the MAE but ultimately lead to an increase 

in the RMSE, whereas increasing the penalty limits the fit of the model to producing lower 

RMSE values but generally increased MAE. As such, this is more of an optimization process 

rather than a minimization. 

 Thus far the discussion has focused on the Compendium datasets, and this stems from 

their increased chance for error due to the diversity of these data sets. As mentioned earlier, the 

Compendium was used as a benchmark for a broad prediction. Once we had a proof of concept 

with the Compendium benchmark, we then implemented the PFAS, Halogens, and PAH into our 

regular testing which was after SVR was fully implemented. This was an important decision as 

the introduction of RFE and the Consensus Model revealed noteworthy results between the large, 

diverse sets and the small, specialized sets.  

 RFE reconstructs the model using an ever-shrinking number of descriptors based on their 

weights (importance) within the model which further decreased errors by limiting overfitting. 

The Consensus Model took in these remaining descriptors (<400 in many cases) and trimmed the 

number to those that appeared in 950 of the 1001 runs. The data is then run through the model 

again. The expectation was this would further limit overfitting and extraneous descriptor 

inclusion, but a divergence between the large and smaller data sets was observed. For the smaller 

sets, the expected decrease in MAE and RMSE were observed, but the error for the Compendium 

sets increased by 0.3-0.4% and 0.3-0.4 Å2. This stems from the nature of each set. The 

Compendium sets specialize in having a large, diverse set of molecules that to make a broader 
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model. This translates to a “jack of all trades, master of none” situation where there is no 

consistent dependence on just a few descriptors. Instead, a variety of descriptors are used to 

better predict all of these which means their relative importance can vary depending on the 

distribution of molecule classifications between the Calibration-produced model and the blind 

test of the Validation set. By eliminating some descriptors to establish the Consensus Model, 

there may be molecules left under-represented in their predictions, leading to the slightly 

increased inaccuracy observed. Despite this, these errors remain on or under par with the Soper-

Hopper benchmark in the RFE and Consensus Models, lending credence to CCSP 2.0’s ability to 

accurately predict with either. This result simply implies that specialized datasets are more likely 

to benefit from the extra Consensus Model as opposed to diverse sets. 
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Future Directions 

 Current efforts are focused on introducing new feature selections methods to investigate 

if such selection has a significant decrease in error to redeem a further increase in analysis time. 

This will be accomplished by randomizing the McLean datasets 1001 times with each feature 

selection technique. Early trials take 15+ hours to complete on modest hardware and is not meant 

to be representative of the laboratory applications. Purely, this portion of the experiment is meant 

to test the viability of these feature selection routes in CCSP 2.0. Higher power computing is 

currently required to complete this task in a timely fashion to make a final recommendation for 

the inclusion of feature selection in the current script and the most analytically useful method. 

 The script in its current form requires a more streamlined approach between its different 

forms. Pending the results of the feature selection efforts, allowing the user to run datasets with 

and without that functionality (either simultaneously or separately depending on computing 

power) could prove a useful addition. Additionally, a streamlined approach to inserting unknown 

data for calculation has been noted. Currently, unknown data must be loaded separately into the 

validation set, requiring a slightly more user-intensive version of the script. Run times are still 

comparative, but this also negates the automatic and random separation of molecules into 

calibration and validation data sets. As such, incorporating a separate block of script to take in 

that unknown set and run the model through it separately would be the ideal approach for this 

issue. 

 CCSP 2.0 currently requires previously gathered data in order to run. A more advanced 

goal would be a direct connection to an IM-MS apparatus such that raw data could be fed into 

the script. Depending on compatibility with open-source Python software, this could be a direct 

connection or via IM-MS software that can export raw data via spreadsheet. Predicted 
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chromatographic retention times were considered in the early stages of this work but ultimately 

did not progress as expected. We believe that CCSP 2.0 builds a general outline for such 

predictions, but the actual execution requires heavy modification of the inner workings of the 

script as well as complex considerations such as temperature, mobile phase composition, etc. 
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Conclusion 

This work has shown the capabilities of an in-house CCS prediction software built 

entirely on open-source Python 3 Modules. While the current workflow calculates less than half 

of the molecular descriptors of paid software like Dragon 7.0, each iteration of this workflow 

from PLS to SVR to SVR with tolerance showed marked increases that were comparable to the 

established Soper-Hopper et al workflow.15 MAE measurements at or below 2% were observed, 

particularly in the SVR-based methods. While more testing is needed, it appears that adding 

tolerances to the SVR model may decrease MAE in larger data sets at the cost of increasing 

RMSE and vice versa. This pattern is consistent with many analytical processes, resulting in an 

efforts geared towards error optimization such that both values decrease with successive 

iterations. 

Furthermore, this workflow has been shown to complete this entire process from 

structure conversion to descriptor calculation to data curation and finally regression in less than 

half of the time the established workflow takes to calculate its set of molecular descriptors before 

the genetic algorithm is even employed, all conducted on a medium specification laptop. Feature 

selection methods are currently being explored which risk longer analysis times but further 

optimized errors. 

The overarching picture is that CCSP 2.0 is an efficient and cost-effective alternative to 

licensed CCS pre-diction software, offering unparalleled access to the source code and thus end 

user customization with potential to further develop. This translates to CCSP 2.0 being fully 

capable of aiding metabolite identification and database creation to assist future novel compound 

screening and beyond.  
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