
ǫ-PPI: Searching Information Networks with

Quantitative Privacy Guarantee

Yuzhe Tang † Ling Liu † Arun Iyengar ‡

†Georgia Institute of Technology, GA, USA, Email: {yztang@, lingliu@cc. }gatech.edu
‡IBM T.J. Watson Research Center, NY, USA, Email: aruni@us.ibm.com

Abstract

In information sharing networks, having a privacy pre-

serving index (or PPI) is critically important for providing

efficient search on access controlled content across dis-

tributed providers while preserving privacy. An understud-

ied problem for PPI techniques is how to provide control-

lable privacy preservation, given the innate difference of

privacy of the different content and providers. In this paper

we present a configurable privacy preserving index, coined

ǫ-PPI, which allows for quantitative privacy protection

levels on fine-grained data units. We devise a new common-

identity attack that breaks existing PPI’s and propose an

identity-mixing protocol against the attack in ǫ-PPI. The

proposed ǫ-PPI construction protocol is the first without

any trusted third party and/or trust relationship between

providers. We have implemented our ǫ-PPI construction

protocol by using generic MPC techniques (secure multi-

party computation) and optimized the performance to a

practical level by minimizing the costly MPC computation

part.

I. Introduction

In information networks, autonomous service providers

store private personal records on behalf of individual own-

ers and enable information sharing under strict enforce-

ment of access control rules. Such information networks

have the following salient features: 1) providers, each

under a different administrative domain, do not mutually

trust each other, 2) providers have the responsibility of

protecting owners’ privacy and 3) it is crucial to share

information between providers from an application per-

spective.

An example of the information network is the emerging

Nationwide eHealthcare Information Network (NHIN [1]

and Healthcare software CONNECT [2]), in which patients

delegate their personal medical records to the hospitals

where they have visited. Different hospitals may com-

pete for customer patients and have conflicting economic

interests, which renders it hard to build full trust re-

lationships between them. Hospitals are responsible for

protecting patient privacy, which is regulated by Federal

laws (e.g. HiPPA [3]). On the other hand, to provide

immediate and accurate medical diagnosis and treatment,

it is important to have an information sharing service; for

example, when a patient who is unconscious is sent to

a hospital, such information sharing can help the doctor

be able to retrieve the patients’ medical history that in-

volves multiple (untrusted) hospitals. Another example is

cross-university online course management systems (e.g.

StudIP [4], Swiki [5]). Such online systems allow sharing

of access-controlled materials within groups of students

and teachers; while the information sharing is crucial for

collaborative learning and improved learning efficiency,

it may pose a threat to student privacy; on the other

hand, protection of student privacy is required by Federal

laws (e.g. FERPA [6]). In these untrusted networks with

needs of cross-domain collaborations, it calls for a global

mechanism to protect privacy of a patient or a student,

while enabling effective information sharing.

AuthSearch(s,{p0, p1},t0)

Searcher s

p1

p0

p2

p3

QueryPPI(t0) p0, p1

Where’re owner t0’s 

records?

PPI ConstructPPI

Owner t0 Owner t1

Provider network

Delegate Delegate

Third-party 

domain

Fig. 1: The system of PPI and the provider network



To support and promote information sharing among

mutually untrusted providers, privacy preserving index

or PPI [7], [8], [9], [10] is proposed. The PPI aims at

supporting a global search facility hosted on a third-party

entity; the design of PPI should respect the providers’

complete access control on personal records and protect

their privacy. The typical working of a PPI, as will be

elaborated in Section II, is a two-phase search procedure.

As in Figure 1, a searcher, in the hope of finding certain

owners’ records, first queries the PPI, and obtains a list

of providers that may or may not have the records of

interest. Then for each provider in the list, the searcher

attempts to get authenticated and authorized before she

can locally search the private records there. A PPI is

usually hosted on a third-party and untrusted entity, mainly

because of the difficulty to find a global entity trusted by all

(mutually untrusted) providers; for example, consider the

U.S. government as a candidate; various scandals including

the recent PRISM program [11] have made the government

lose the public trust. Hence, it is desirable to construct

the PPI in such a way that the data owners’ privacy is

protected.

Quantitatively Differentiated Privacy Preservation

While existing PPI’s have addressed privacy preserva-

tion, none of these approaches recognize the needs of

differentiating privacy preservation for different owners

and providers. To be specific, the privacy goals addressed

by a PPI system are about a private fact whether “an

owner tj has his/her record stored on provider pi”. It is

evident that disclosing the private fact regarding different

owners and providers causes different levels of privacy

concerns. For example, a woman may consider her visit

to a women’s health center (e.g., for an abortion) much

more sensitive than her visit to a general hospital (e.g.,

for cough treatment). Similarly, different owners may have

different levels of concerns regarding their privacy: while

an average person may not care too much about their visit

to a hospital, a celebrity may be more concerned about it,

because even a small private matter of a celebrity can be

publicized by the media (e.g., by paparazzi). To address the

innate privacy difference of owners, it is therefore critical

to differentiate privacy protection to address the innate

different privacy concerns in a PPI system. That being said,

using existing PPI approaches can not provide quantitative

guarantees on the privacy preservation degree, let alone on

a fine-grained per-owner basis. The cause, largely due to

the degree-agnostic way of constructing PPI systems, is

analyzed in Appendix B.

In this paper, we propose a new PPI abstraction for

differentiated and quantitative privacy control, coined ǫ-

PPI. Here, ǫ is a privacy aware knob that allows each

owner to mark a desired privacy level when delegating data

to the providers. Specifically, ǫj is a value in a spectrum

from 0 to 1, where value 0 is for the least privacy concern

(in this case, the PPI returns the list of exactly those “true

positive” providers who truly have the records of interest)

and value 1 for the best privacy preservation (in this case,

PPI returns all providers, and a search essentially goes to

the whole network). By this means, an attacker observing

the PPI search result can only have a bounded confidence

by ǫ in successfully identifying a true positive (and thus

vulnerable) provider from the obscured provider list.

Challenges: To construct the new ǫ-PPI abstraction,

it poses challenges. On one hand, achieving quantitative

privacy guarantee typically requires the index construction

to know more about providers’ data (e.g. owner identity

distribution across the provider network), which entails

information exchange between providers. On the other

hand, providers do not trust each other and may feel

reluctant to disclose too detailed information. Therefore,

it is essential to draw a clear line between what is private

information and what is not during the index construction,

and to fully utilize the non-private information to provide

as much quantitative guarantee as possible. In our proposed

construction protocol, we utilize the owner frequency (i.e.

the number of providers an owner has delegated her

records to). Our unique insight in protocol design is that

the owner frequency is private only when the value is big

(i.e., when the owner’s record appears almost everywhere).

This is because knowing such “common” owners would

give an adversary confidence to make successful guesses

regarding any provider. By only releasing the small-value

frequency, we can protect providers’ privacy and deliver a

quantitative guarantee.

In realizing the design protocol in a mutually untrusted

network, we rely on MPC computation (i.e., secure multi-

party computation [12], [13], [14], [15]) which addresses

the input privacy for generic computation. However, it

raises performance issues when directly applying MPC

techniques in our problem setting. On one hand, current

MPC computation platforms can only scale to small work-

loads [16]; they are practically efficient only for simple

computation among few parties. On the other hand, a

typical PPI construction may involve thousands of own-

ers and tens or hundreds of providers, which entails an

intensive use of bit-wise MPC computation. It is therefore

critical to a practical MPC protocol to efficiently carry out

the computation for ǫ-PPI construction. In this regards,

we propose to minimize the expensive MPC computation

by using a parallel secure sum protocol. The secure sum

can be efficiently carried out by a proposed secret shar-

ing scheme with additive homomorphism. Based on the

proposed MPC primitive, our index construction protocol

protects providers’ privacy and can tolerate collusion of up



to c providers (c is configurable).

The contributions of this paper can be summarized as

follows,

• We propose ǫ-PPI that differentiates the needs of

privacy protection in a quantitative manner. The ǫ-

PPI exposes a new delegate operation to owners,

which allows them to specify their different levels of

privacy concerns. This new privacy knob, coined ǫ,

can give quantitative privacy control while enabling

information sharing.

• We propose ǫ-PPI construction protocol for an un-

trusted environment. As far as we know, this is the

first PPI construction protocol without assumption on

trusted parties or mutual trust relationships between

providers. The performance of ǫ-PPI construction

protocol is extensively optimized by reducing the

use of costly generic MPC and using the proposed

domain-specific protocols. The proposed construction

protocol is implemented and evaluated with verified

performance superiority.

• We introduce a new privacy attack (called common-

owner attack) that can break generic PPI systems.

The new attack model targets vulnerable common

owners. Our proposed ǫ-PPI is the first to resist

common-owner attacks by using a proposed term-

mixing protocol.

The rest of this paper proceeds as follows: Section II

formulates the ǫ-PPI problem. Section III and IV respec-

tively describe the computation model and distributed im-

plementation of the ǫ-PPI construction protocol. Section V

presents evaluation results, and Section VI surveys the

related work before the conclusion in Section VII.

II. Problem Formulation

A. System Model

We formally describe our system model, which involves

four entities: 1) a set of n data owners, each of whom,

identified by tj , holds a set of personal records, 2) a

provider network consisting of m providers in which a

provider pi is an autonomously operating entity (e.g. a

hospital or a university), 3) a global PPI server in a third-

party domain, 4) a data searcher who wants to find all the

records of an owner of interest. The interactions between

these four entities are formulated in the following four

operations.

• Delegate(< tj , ǫj >, pi): A data owner tj can

delegate her records to provider pi based on her trust

relationship (e.g. such trust can be built based on her

visit to a hospital). Along with the record delegation,

the owner can specify her preferred privacy degree

ǫj . Here ǫj indicates the level of privacy concerns,

ranging from 0 up to 1. For example, a VIP user (e.g.

a celebrity patient in the eHealthcare network) may

want to set the privacy level at a high value while an

average patient may set the privacy level at a medium

value 1

• ConstructPPI({ǫj}): After data records are popu-

lated, all m providers in the network join a procedure

ConstructPPI to collectively construct the privacy

preserving index. The index construction should com-

ply with owner-specified privacy degree {ǫj}. As will

be elaborated, the constructed PPI contains noises or

false positives for the purpose of privacy preservation

and {ǫj} is materialized as the false positive rate of

owner tj .

• QueryPPI(tj)→ {pi}: At data serving time, a

searcher s, in the hope of finding owner tj’s records,

initiates a two-phase search procedure consisting of

two operations, QueryPPI(tj)→ {pi} and Auth-

Search(s, {pi}, tj). This is illustrated in Figure 1.

For the first phase, the searcher poses query request,

QueryPPI(tj), and the PPI server returns a list of

providers {pi} who may or may not have records

of the requested owner tj . The query evaluation

in PPI server is trivially done since the PPI, once

constructed, contains the (obscured) mapping between

providers and owners.

• AuthSearch(s, {pi}, tj): The second phase in the

search is for searcher s to contact each provider in list

{pi} (i.e. the result list from the first phase) and to find

owner tj’s records there. This process involves user

authentication and authorization regarding searcher s;

we assume each provider has already set up its local

access control subsystem for authorized access to the

private personal records. Only after authorization can

the searcher search the local repository on provider

pi.

We describe the internal data model in a PPI. Each

personal record contains an owner identity tj
2 (e.g. the

person’s name). As shown in Figure 2, a provider pi sum-

marizes its local record repository by a membership vector

Mi(·); it indicates the list of owners who have delegated

their records on provider pi. For example, provider p0 who

has records of owner t0 and t1 maintains a membership

vector as Mi = {t0 : 1, t1 : 1, t2 : 0}. In our model,

the same owner can have records spread across multiple

providers (e.g., a patient can visit multiple hospitals). The

constructed PPI maintains a mapping between providers

1To prevent every user from setting the highest value of ǫ, one possible
way is to differentiate prices for different privacy settings. The system
has incentive to do so, since high privacy settings incur more overhead
in the provider networks.

2In this paper, we use “owner” and “identity” interchangeably.



and owners; it is essentially a combination of all provider-

wise membership data, yet with noises. The PPI mapping

data is an m × n matrix M ′(·, ·), in which each row

is of an owner, each column of a provider and each

cell of a Boolean value to indicate the membership/non-

membership of the owner to the provider. For the purpose

of privacy preservation, there are noises or false positives

added in the matrix; for example, regarding provider p1
and owner t0, value 1 in the published PPI M is a false

positive in the sense that provider p1 does not have any

records of owner t0 but falsely claims to do so. The false

positive value is helpful for obscuring the true and private

membership information.
Provider network

PPI M’

Local vector M0

ConstructPPI

`

`

`

`

1 1

1 1

0 1

p0 p1 p0 p1

1

1

Local vector M1

1

1

t0 t1 t2

t0

t1 t2

t1
t1

t0

t2

Fig. 2: ǫ-PPI model

Table I summarizes the notations that will be used

throughout the rest of the paper.

TABLE I: Notations

Symbols of system model

tj The j-th owner (identity) n Number of owners

ǫj Privacy degree of tj
pi The i-th provider m Number of providers

Mi(·) Local vector of pi M ′(·, ·) Data matrix in the PPI

Symbols of ǫ-PPI construction

βj Publishing probability of
tj

σj Frequency of owner tj

λ Percentage of common
owners

fpj Achieved false positive
rate of tj

B. Threat Model

Privacy goals: In our work, we are mainly con-

cerned with the owner-membership privacy; for an owner

tj , the owner-membership privacy is about which providers

the owner tj’s records belong to, that is, M(i, j) = 13.

Knowing this information, one can develop the private

personal knowledge; for example, knowing that a sport

celebrity has records stored in a surgery hospital allows

one to infer that he or she may have had a medical

condition possibly requiring surgery and may be absent

in the rest of the season. Other privacy goals related

to the PPI system but not addressed in this work in-

clude searcher anonymity and record content privacy. The

searcher anonymity prevents an attacker from knowing

3We use M·(·) and M(·, ·) interchangeably.

which owner(s) a searcher has searched for, which can

be protected by various anonymity protocols [17]. The

record content privacy [7] involves the detailed content of

an owner’s record.

In order to attack the owner-membership privacy, we

consider a threat model in which an attacker can exploit

multiple information sources through different channels. In

particular, we consider the following privacy-threatening

scenarios:

• Primary attack : The primary attack scenario is

that an attacker randomly or intentionally chooses a

provider pi and an owner tj , and then claims that

“owner tj has delegated his/her records to provider

pi”. To determine which providers and owners to

attack, the attacker learns about the publicly available

PPI data M ′, and attacks only those with M ′(i, j) =
1. Given an owner tj , the attacker can randomly or

intentionally (e.g. by her prior knowledge) picks a

provider pi so that M ′(i, j) = 1. To further refine the

attack and improve the confidence, the attacker can

exploit other knowledge through various channels,

such as colluding providers. Due to space limit, we

focus on the attack through the public channel in this

paper (the colluding attack and analysis can be found

in the tech report [18]).

• Common-identity attack : This attack focuses on

the common identity which appears in almost all

providers in the network. The attacker can learn about

the truthful frequency of owner identity σj from the

public PPI matrix M ′ (as will be analyzed many

PPI’s [9], [7], [8] reveals the truthful frequency)

and choose the owners with high frequency. By

this means, the attacker can have better confidence

in succeeding an attack. For example, consider the

following extreme case: by learning an owner identity

is with frequency σj = 100%, the attacker can choose

any provider and be sure that the chosen provider

must be a true positive (i.e., M(i, j) = 1).

This paper focuses on attacks on a single owner, while

a multi-owner attack boils down to multiple single-owner

attacks.

C. Privacy Metric and Degrees

Privacy metric: We measure the privacy disclosure

by the confidence an attacker can succeeding an attack.

Formally, given an attack on an owner tj and provider pi,

we measure the privacy disclosure by the probability that

the attack can succeed, that is, Pr(M(i, j) = 1|M ′(i, j) =
1). To measure the privacy protection level of a specific

owner tj , we use the average probability of successful

attacks against all possible providers that are subject to



M ′(i, j) = 1. The privacy metric is formulated as follow-

ing.

Pr(M(·, j)|M ′(·, j)) = AVG
∀i,M′(i,j)=1

(

Pr(M(i, j) = 1|M ′(i, j) = 1)
)

= 1− fpj

Here, fpj is the false positive rate of providers in the

list of providers M ′(i, j) = 1. The privacy disclosure

metric on owner tj is equal to 1− fpj , because the false

positive providers determines the probability that an attack

can succeed/fail. For example, if the list {pi|M(i, j) = 1}
is completely without any false positive providers (i.e.

fpj = 0%), then attacks on any provider can succeed,

leading to 100% = 1−fpj success probability/confidence.

Based on the privacy metric, we further define four

discrete privacy degrees. The definition of privacy degrees

are based on an information flow model of our privacy

threat model, in which an attacker obtains information

from the information source through different channels.

• UNLEAKED: The information can not flow from the

source, and the attacker can not know the information.

This is the highest privacy protection level.

• ǫ-PRIVATE: The information can flow to attack-

ers through the channel of public PPI data or PPI

construction process. If this occurs, the PPI design

protects privacy from being disclosed. The PPI can

provide a quantitative guarantee on the privacy leak-

age. Formally, given a privacy degree ǫj , this privacy

degree requires the quantitative guarantee as follows.

Pr(M(·, j)|M ′(·, j)) ≤ 1− ǫj (1)

In particular, when ǫ = 0%, the attacker might

be 100% confident about success of the attack, and

privacy is definitely leaked.

• NOGUARANTEE: The information can flow to the

attacker and the PPI design can not provide any

guarantee on privacy leakage. That is, the achieved

value of privacy leakage metric may be unpredictable.

• NOPROTECT: The information can flow to the at-

tacker and the PPI design does not address the privacy

preservation. That is, the privacy is definitely leaked

and the attack can succeed with 100% certainty. This

is equivalent to the special case of NOGUARANTEE

where ǫj = 0%. This is the lowest level of privacy

preservation.

Based on our privacy model and metric, we can summa-

rize the prior work in Table II. Due to the space limitation,

we put the analysis in Appendix B.

TABLE II: Comparison of ǫ-PPI against existing PPI’s

Primary attack Common-identity attack

PPI [7], [8] NOGUARANTEE NOGUARANTEE

SS-PPI [9] NOGUARANTEE NOPROTECT

ǫ-PPI ǫ-PRIVATE ǫ-PRIVATE

D. Index Construction of Quantitative Pri-
vacy Preservation

In the ǫ-PPI, we aim at achieving ǫ-PRIVATE on a

per-identity basis (i.e. differentiating privacy preservation

for different owners). The formal problem that this paper

address is the index construction of quantitative privacy

preservation, which is stated as below.

Proposition 2.1: Consider a network with m providers

and n owners; each provider pi has a local Boolean vector

Mi of its membership of n owners. Each owner tj has

a preferred level of privacy preservation ǫj . The problem

of quantitative privacy preserving index construction is to

construct a PPI that can bound any attacker’s confidence

(measured by our per-owner privacy metric) under ǫj , with

regards to all attacks on owner tj as described in our threat

model.

III. ǫ-PPI Construction: the Computation

Our ǫ-PPI construction is based on a proposed two-

phase framework in which providers first collectively cal-

culate a global value β, and then each provider indepen-

dently publishes its local vector randomly based on prob-

ability β. This framework requires complex computations.

In this section, we introduce them at different levels of

granularity: First we take an overview of our two-phase

construction framework with emphasis on describing the

second phase. We then introduce the first phase (called the

β calculation) in details; we present the detailed calculation

of β under two kinds of owner identities, namely the

common and non-common owners. At last, we conduct

the privacy analysis.

A. A Two-Phrase Construction Framework

We propose a two-phase framework for the ǫ-PPI con-

struction. First, for each owner identity tj , all m providers

collectively calculate a probability value βj . In the second

phase, the private membership value regarding owner tj
and every provider pi is published. In this paragraph, we

assume βj is already calculated and focus on describing

the second phase – how to use βj to publish private data.

Recall that in our data model, each provider pi has a

Boolean value M(i, j) that indicates the membership of

owner tj in this provider. After knowing value of βj ,

provider pi starts to publish this private Boolean value



by randomly flipping it at probability βj . To be specific,

given a membership Boolean value (i.e. M(i, j) = 1), it

is always truthfully published as 1, that is, M ′(i, j) = 1.

Given a non-membership value (i.e. M(i, j) = 0), it is

negated to M ′(i, j) = 1 at probability βj . We call the

negated value as the false positive in the published PPI.

The following formula describes the randomized publi-

cation. Note when Boolean value M(i, j) = 1, it is not

allowed to be published as M ′(i, j) = 0.

0 →

{

1, with probability β

0, with probability 1− β

1 → 1 (2)

The truthful publication rule (i.e. 1 → 1) guarantees

that relevant providers are always in the QueryPPI result

and the 100% query recall is ensured. The false-positive

publication rule (i.e. 0 → 1) adds noises or false positives

to the published PPI which can help obscure the true

owner-to-provider membership and thus preserves owner-

membership privacy. For multiple owners, different β’s are

calculated and the randomized publication runs indepen-

dently.

An example: Consider the case in Figure 2. For

owner t0, if the β0 is calculated to be 0.5, then provider p1
would publish its negative membership value M1(0) = 0
as value 1 with probability 0.5. In this example, it is

flipped and the constructed ǫ-PPI contains M ′(1, 0) = 1.

Similarly for identity t2 and provider p0, it is also subject

to flipping at probability β2. In this example, it is not

flipped, and the constructed ǫ-PPI contains M ′(0, 2) = 0.

B. The β Calculation

In the randomized publication, βj determines the

amount of false positives in the published ǫ-PPI. For

quantitative privacy preservation, it is essential to calculate

a βj value that makes the false positive amount meet the

privacy requirement regarding ǫj . In this part, we focus on

the calculation of β which serves as the first phase in ǫ-PPI

construction process. Concretely we consider two cases:

the common identity case and the non-common identity

case. Recall that the common identity refers to such an

owner who delegates her records to almost all providers

in the network. The general PPI construction is vulnerable

to the common-identity attack and it needs to be specially

treated.
1) The Case of Non-common Identity: In the case of

non-common identity, negative providers suffice to meet

the desired privacy degree. We consider the problem of

setting value βj for identity tj in order to meet the desired

ǫj . Recall the randomized publication: Multiple providers

independently runs an identical random process, and this

can be modeled as a series of Bernoulli trials (note that the

publishing probability β(tj) is the same to all providers).

Our goal is to achieve privacy requirement that fpj ≥ ǫj
with high level success rate pp, that is, pp = Pr(fpj ≥ ǫj).
Under this model, we propose three policies to calculate

β with different quantitative guarantees: a basic policy βb

that guarantees fpj ≥ ǫj with 50% probability, and an

incremented expectation based policy βd, and a Chernoff

bound based policy betac that guarantees fpj ≥ ǫj with γ

probability where success rate γ can be configured.

Basic policy: The basic policy sets the β value

so that the expected amount of false positives among m

providers can reach a desired level, which is, ǫj ·m(1−σj).
We can have the following,

ǫj =
(1− σj) · βb(tj)

(1− σj) · βb(tj) + σj

⇒ βb(tj) = [(σ−1
j − 1)(ǫ−1

j − 1)]−1 (3)

The basic policy has poor quality in attaining the desired

privacy preservation; the actual value fpj is bigger than

ǫj with only 50% success rate.

Incremented expectation-based policy: The incre-

mented expectation-based approach is to increase the

expectation-based βb(tj) by a constant value, that is,

βd(tj) = βb(tj) + ∆ (4)

Incremental ∆ can be configurable based on the quality

requirement; the bigger the value is, the higher success

rate pp is expected to attain. However, there is no direct

connection between the configured value of ∆ and the

success rate pp that can be achieved, leaving it a hard task

to figure out the right value of ∆ based on desired pp.

Chernoff bound-based policy: Toward an effective

policy to calculate β, we apply the Chernoff bounds to

the Bernoulli trial model of the randomized publication

process. This policy allows direct control of the success

rate. Formally, it has the property described in Theorem 3.1

(with the proof in Appendix A-A).

Theorem 3.1: Given desired success rate γ > 50%, let

Gj =
ln 1

1−γ

(1−σj)m
and

βc(tj) ≥ βb(tj) +Gj +
√

G2
j + 2βb(tj)Gj (5)

Then, randomized publication with β(tj) = βc(tj) sta-

tistically guarantees the published ǫ-PPI with privacy

requirement fpj ≥ ǫj with success rate larger than γ.

2) The Case of Common Identities: With the above β

calculation for non-common identities, the constructed ǫ-
PPI is vulnerable to the common-identity attack. Because

the β∗
4 bears information of identity frequency σj , and

during our index construction framework, β needs to be

released to all participating providers. A colluding provider

4We use β∗ to denote the probability value calculated by any of the
three policies for non-common identities.



would release such information to the attacker who can

easily obtain the truthful identity frequency σ (e.g., from

Equation 3 assuming ǫj is publicly known) and effectively

formulates the common-identity attack.

To defend against the common-identity attack, ǫ-PPI

construction employs an identity-mixing technique for

common identities. The idea is to mix common identities

with certain non-common identities by exaggerating the

calculated βj (i.e. falsely increasing certain βj to 100%)

from which one can not distinguish common identities

from the rest. To be specific, for a non-common identity tj ,

we allow its βj to be exaggerated to 100% with probability

λ, that is,

β =











{

β∗, 1− λ

1, λ
, β∗ < 1

1, β∗ ≥ 1

(6)

Given a set of common identities, we need to determine

how many non-common identities should be chosen for

mixing, in other words, to determine the value of λ. While

a big value of λ can hide common identities among the

non-common ones, it incurs unnecessarily high search cost.

On the other hand, a value of λ which is too small would

leave common identities unprotected and vulnerable. In

ǫ-PPI, we use the following heuristic-based policy to

calculate λ.

• In the set of mixed identities, the percentage of

non-common identities should be no smaller than ξ.

Since there are
∑

β∗≥1 1 common identities and thus
∑

β∗<1 λ non-common identities in the set, we have

the following formula.

ξ ≤

∑

β∗<1 λ
∑

β∗≥1 1 +
∑

β∗<1 λ
(7)

⇒ λ ≥
ξ

1− ξ
·

∑

β∗≥1 1

n−
∑

β∗≥1 1

3) β Calculation: Putting It Together: We summarize

the β calculation in the ǫ-PPI construction. For each

identity tj , β(tj) is calculated based on Equation 6, which

follows the computation flows as below. The underline

symbol indicates the variable is private and ⇒ indicates

the computation is fairly complex (e.g. involving square

root when calculating β∗).

Frequency σ ⇒ Raw probability β∗ → (8)

→
∑

β∗≥1 1 → Common id percentage λ → Final probability β

C. Privacy Analysis of Constructed ǫ-PPI

We present the privacy analysis of the constructed ǫ-PPI

under our threat model.

Privacy under primary attack: The property of the

three policies of calculating β∗ suggests that the false

positive rate in the published ǫ-PPI should be no smaller

than ǫj in a statistical sense. Recall that the false positive

rate bounds the attacker’s confidence; it implies that ǫ-

PPI achieves an ǫ-PRIVATE degree against the primary

attack. It is noteworthy that our ǫ-PPI is fully resistant

to repeated attacks against the same identity over time,

because the ǫ-PPI is static; once constructed and having

privacy protected, it stays the same.

Privacy under common-identity attack: For

common-identity attack, the attacker’s confidence in

choosing a true common identity depends on the

percentage of true common identities among the (mixed)

common identities in the published ǫ-PPI. Therefore

the privacy preservation degree is bounded by the

percentage of false positives (in this case, it depends

on the percentage of the non-common identities which

is mixed and published as common identities in the

published ǫ-PPI), which equals ξ. By properly setting λ,

we can have ξ = max∀tj∈{common identities} ǫj . By this way,

it is guaranteed to achieve the per-identity ǫ-PRIVATE

degree against the common-identity attack.

IV. ǫ-PPI Construction: Realization

The information network lacks mutual trusts between

providers, which poses new challenges when putting the

ǫ-PPI construction in practice. This section describes the

design and implementation of a distributed and secure pro-

tocol that realizes the computation of ǫ-PPI construction

described in the previous section.

A. Challenge and Design

The goal of our protocol is to efficiently and securely

compute the publishing probability {βj} among a set of

mutually untrusted providers who are reluctant to ex-

change the private membership vector with others. On

one hand, the secure computation would require multi-

party computation (or MPC) which respects the per-party

input privacy. Current techniques for MPC only support

small computation workloads [16]. On the other hand,

the computation required in ǫ-PPI construction is big and

complex; the computation model involves large number

of identities and providers; even for a single identity

involves fairly complex computation (e.g., square root and

logarithm as in Equation 5). This poses a huge challenge to

design a practical protocol for secure ǫ-PPI construction.

To address the above challenge, we propose an efficient

and secure construction protocol by following the design

principle of minimizing the secure computation. Given

a computation flow in Equation 8, our secure protocol



design has three salient features: 1) It separates the secure

and non-secure computations by the last appearance of

private variables in the flow (note that the computation

flows from the private data input to the end of non-private

result). 2) It reorders the computation to minimize the

expensive secure computation. The idea is to push down

complex computation towards the non-private end. To be

specific, instead of first carrying out complex floating point

computations for raw probability β, as in Formula 8, we

push such computations down through the flow and pull

up the obscuring computations for private input, as in

Formula 9. 3) To scale to a large number of providers, we

propose an efficient protocol for calculating secure sum,

and use it to reduce the “core” of the MPC part in ǫ-PPI
construction.

σ →
∑

σ<σ′ 1 → λ →

{

→ β = 1

⇒ β = β∗

(9)

B. The Distributed Algorithm

Following our design, we propose a practical distributed

algorithm to run the two-phase ǫ-PPI construction. The

overall workflow is illustrated in Figure 3. For simplicity,

we focus on phase 1 for β calculation. The β calcula-

tion is realized in two stages by itself: As illustrated in

Algorithm 1, the first stage is a SecSumShare protocol

which, given m input Boolean from the providers, outputs

c secret shares whose sum is equal to the sum of these

m Boolean. Here, c is the number of shares that can be

configurable based on the tolerance on provider collusion.

The output c shares have the security property that a party

knowing x < c shares can not deduce any information

about the sensitive sum of m Boolean. For different iden-

tities, the SecSumShare protocol runs multiple instances

independently and in parallel, which collectively produce

c vectors of shares, denoted by s(i, ·), where i ∈ [0, c−1].
The c vectors are distributed to c coordinate providers (for

simplicity we assume they are providers p0, . . . , pc−1) on

which the second-stage protocol, CountBelow, is run. As

shown by Algorithm 2, given c vectors s(0, ·), . . . s(c−1, ·)
and a threshold t, the CountBelow algorithm sums them

to vector
∑

i s(i, ·) and counts the number of elements that

are bigger than t.

1) Distributed Algorithm for SecSumShare: We use

an example in the top box in Figure 3 to illustrate the

distributed algorithm of SecSumShare. In the example

c = 3 and there are five providers p0, . . . p4. The example

focuses on a single identity case for tj (e.g. j = 0). Out

of the 5 providers, p1 and p2 have records of owner t0
(i.e., M(1, 0) = M(2, 0) = 1). SecSumShare requires

modular operations; in this example, the modulus divisor

is q = 5. It runs in the following 4 steps.

TABLE III: Distributed algorithms for ǫ-PPI construction

Algorithm 1 calculate-beta(M0, . . .Mn−1)

1: {s(0, ·), . . . s(c− 1, ·)} ← SecSumShare(M0, . . .Mn−1)
2: σ′(·) is calculated under condition β∗ = 1, by either

Equation 3, or 4 or 5.
3:

∑

σ≥σ′ 1←CountBelow(s(0, ·), . . . s(c− 1, ·), σ′(·) ·m)
4: {β0, . . . βm−1} ←

∑

σ≥σ′ 1 ⊲ By Equation 9

Algorithm 2 CountBelow(s(0, ·), . . . s(c− 1, ·), threshold t)

1: count← 0
2: for ∀j ∈ [0, m− 1) do
3: S[j]←

∑

i
s(i, j)

4: if S[j] < t then
5: count++
6: end if
7: end for
8: return count

M(i,0)

S(i,0,2)

S(i,0,1)

S(i,0,0)

S(i-2,0,2)

S(i-1,0,1)

S(i,0,0)

∑kS(i-

k,0,k)

0 1 1 0

0 4 0 3

3 3 2 1

2 4 4 1

3 1 0 4

4 3 3 2

2 4 4 1

4 3 2 2

0

1

4

0

0

1

0

1

1 4 2

Term
s

p0 p3p1 p4p2

q=5

c=3

p0 p1 p2

MPC: CountBeow

β0 0.3 0.3 0.3 0.3 0.3

p0 p3p1 p4p2

P
u

b
lic

a
ti
o

n

P
u

b
lic

a
ti
o

n

P
u

b
lic

a
ti
o

n

P
u

b
li
c
a

ti
o

n

P
u

b
lic

a
ti
o

n

Providers

Phase 1.1: SecSumShare

Phase 1.2: Calculate β

Phase 2: Randomized publication

σ0 2

Calculation:

Non-Common/Common Id

Phase 1 

s(i,0)

Fig. 3: An example of ǫ-PPI construction algorithm

1 Generating shares: each provider pi decomposes its

private input Boolean M(i, j) into c shares, denoted

by {S(i, j, k)}, with k ∈ [0, c− 1]. The first c − 1
shares are randomly picked from interval [0, q] and

the last share is deterministically chosen so that the

sum of all shares equals the input Boolean M(i, 0)
in modulo q. That is, (

∑

k∈[0,c] S(i, j, k)) mod q =

M(i, j). In Figure 3, as depicted by arrows 1 ,

p0’s input M(0, 0) is decomposed to c = 3 shares,

{S(0, 0, k)|k} = {2, 3, 0}. It ensures (2 + 3 + 0)
mod 5 = 0.

2 Distributing shares: each provider pi then distributes

her shares to the next c − 1 neighbor providers; k-



th shares S(i, j, k) will be sent out to k-th successor

of provider pi, that is, p(i+k) mod m. As shown by

arrows 2 in Figure 3, p0 keeps the first share 2
locally, sends her second share 3 to her successor p1
and the third share 0 to 2-hop successor p2.

3 Summing shares: each provider then sums up all

shares she has received in the previous step to obtain

the super-share. In Figure 3, after the step of share

distribution, provider p0 receives 3 from p3, 4 from

p4 and 2 from herself. As depicted by arrows 3 , the

super-share is calculated to be 3+4+2 mod 5 = 4.

4 Aggregating super-shares: each provider sends her

super-share to a set of c coordinators. These coordi-

nators receiving super-shares then sum the received

shares up and output the summed vector s(i, ·) to

the next-stage CountBelow protocol. In Figure 3,

provider p0, p1, p2 are chosen as coordinators and

arrow 4 shows that the sum of super-shares on

provider p0 is s(0, 0) = (4 + 2) mod 5 = 1. The

sum of all the values on coordinators should be equal

to the number of total appearances of identity t0. That

is, 1 + 4 + 2 mod 5 = 2. Note two providers have

identity t0. This total appearance number or identity

frequency may be sensitive (in the case of com-

mon identity) and can not be disclosed immediately,

which is why we need the second stage protocol,

CountBelow.

2) Implementation of CountBelow computation: The

secure computation of CountBelow (in Algorithm 2) is

implemented by using a generic MPC protocol. Each party

corresponds to a coordinate provider in the ǫ-PPI system.

Specifically, we choose a Boolean-circuit based MPC

protocol FairplayMP [13] for implementation. The reason

is that compared to an arithmetic-circuit based protocol,

it lends itself to the computation of comparison required

in Algorithm 2 (i.e., in Line 4). In particular for c = 2,

the computation in CountBelow essentially boils down to

a comparison operation (i.e., s(0, i) > t − s(1, i)), and

the problem is reduced to a Millionaire problem [19]. The

distributed algorithm to carry out MPC (and thus our MPC-

based CountBelow computation) can be found in [12],

[13]. Since Algorithm 2 is implemented by expensive

MPC it normally becomes the bottleneck of the system;

in practice, c ≪ m and thus the network can scale to large

number of providers m while the MPC is still limited to

small subset of the network.

C. Privacy Analysis of Constructing ǫ-PPI

We analyze the privacy preservation of ǫ-PPI construc-

tion process. We mainly consider a semi-honest model,

which is consistent with the existing MPC work [13].

The privacy analysis is conducted from three aspects:

1) The privacy guarantee of SecSumShare protocol. It

guarantees: 1.1) (2c − 3)-secrecy of input privacy [9]:

With less than c providers in collusion, none of any

private input can be learned by providers other than its

owner. 1.2) c-secrecy of output privacy: the private sum

can only be reconstructed when all c shares are used.

With less than c shares, one can learn nothing regarding

the private sum. The output privacy is formally presented

in Theorem 4.1 with proof in Appendix A-B. 2) The

security and privacy of CountBelow relies on that of the

MPC used in implementation. The generic MPC technique

can provide information confidentiality against colluding

providers on c participating parties [13]. 3) The final output

β does not carry any private information, and is safe to

be released to the (potentially untrusted) providers for

randomized publication.

Theorem 4.1: The SecSumShare’s output is a

(c, c) secret sharing scheme. Specifically, for an

owner tj , SecSumShare protocol outputs c shares,

{s(i, j)|∀i ∈ [0, c− 1]}, whose sum is the secret vj . The

c shares have the following properties.

• Recoverability: Given c output shares, the secret value

vj (i.e. the sum) can be easily reconstructed.

• Secrecy: Given any c − 1 or fewer output shares,

one can learn nothing about the secret value, in the

sense that the conditional distribution given the known

shares is the same as the prior distribution,

∀x ∈ Zq, P r(vj = x) = Pr(vj = x|V ⊂ {s(i, j)}))

where V is any proper subset of {s(i, j)}.

V. Experiments

To evaluate the proposed ǫ-PPI, we have done two

set of experiments: The first set, with simulation-based

experiments, evaluates how effective the ǫ-PPI can be in

terms of delivering quantitative privacy protection, and

the second set evaluates the performance of our index

construction protocol. For realistic performance study, we

have implemented a functioning prototype for ǫ-PPI con-

struction.

A. Effectiveness of Privacy Preservation

Experimental setup: To simulate the informa-

tion provider network, we used a distributed document

dataset [20] of 2, 500−25, 000 small digital libraries, each

of which simulates a provider in our problem setting. To

be specific, this dataset defines a “collection” table, which

maintains the mapping from the documents to collections.

The documents are further derived from NIST’s publicly

available TREC-WT10g dataset [21]. To adapt to our



problem setting, each collection is treated as a provider

and the source web URLs (as defined in TREC-WT10g

dataset) of the documents are treated as owner’s identity.

If not otherwise specified, we use no more than 10, 000
providers in the experiments. Using the collection table, it

also allows us to emulate the membership matrix M . The

dataset does not have a privacy metric for the query phrase.

In our experiment, we randomly generate the privacy

degree ǫ in the domain [0, 1]. We use a metric, success

ratio, to measure the effectiveness. The success rate is the

percentage of identities whose false positive rates in the

constructed PPI are no smaller than the desired rate ǫj .

Due to space limit, the experiment results of different β

calculation policies can be found in Appendix C-A.

1) ǫ-PPI versus Existing Grouping-based PPI’s: The

experiments compare the ǫ-PPI with existing PPI’s. The

existing PPI’s [7], [8], [9] are based on a grouping

abstraction; providers are organized into disjoint privacy

groups so that different providers from the same group are

indistinguishable from the searchers. By contrast, ǫ-PPI

does not utilize grouping technique and is referred to in this

section as a non-grouping approach. In the experiment, we

measure the success rate of privacy preservation and search

performance. Grouping PPI’s are tested under different

group sizes. Given a network of fixed providers, we use

the group number to change average group size. We test

grouping PPI with the Chernoff bound-based and the

incremented expectation-based policy under the default

setting. The expected false positive rate is configured at

0.8, and the number of providers is 10, 000. We uniformly

sample 20 times and report the average results.

Results are illustrated in Figure 4. Non-grouping PPI

generally performs much better and is more stable than the

grouping approach in terms of success ratio. With proper

configuration (e.g. ∆ = 0.01 for incremental expectation-

based policy and γ = 0.9 for Chernoff policy), the non-

grouping ǫ-PPI always achieves near-1.0 success ratio.

By contrast, the grouping PPI’s display instability in their

success ratio. For example, as shown by the “Grouping

(#groups 2000)” series in Figure 4a, the success rate

fluctuates between 0.0 and 1.0, which renders it difficult to

provide a guarantee to the system and owners. The reason

is that with 2000 groups, sample space in each group is

too small (i.e., with 50 providers) to hold a stable result for

success ratio. When varying ǫ, similar behavior is shown

in Figure 4b; the success rate of grouping PPI’s quickly

degrades to 0, leading to unacceptable privacy quality. This

is due to the owner agnostic design in grouping PPI. This

set of experiments shows that the privacy degree of non-

grouping PPI’s can be effectively tuned in practice, imply-

ing the ease of configuration and more control exposed to

applications.

1.0 34.0 67.0 100.0 134.0 176.0 234.0 446.0
Identity frequency

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 
ra
tio

Nongrouping-IncExp-0.01

Nongrouping-Chernoff-0.9

Grouping-400

Grouping-1000

Grouping-2500

(a) Varying identity frequency

0.1 0.3 0.5 0.7 0.9
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
tio

Nongrouping-IncExp-0.01

Nongrouping-Chernoff-0.9

Grouping-400

Grouping-1000

Grouping-2500

(b) Varying ǫ

Fig. 4: Comparing non-grouping and grouping

B. Performance of Index Construction

3.0 5.0 7.0 9.0
Number of parties

0

1

2

3

4

5

6

7

8

Ex
ec

ut
io
n 
tim

e(
se

c) e-PPI

Pure-MPC

(a) Execution time with
single identity

3.0 11.0 21.0 31.0 41.0 51.0 61.0
Number of parties

0

200

400

600

800

1000

1200

Ci
rc
ui
t s

iz
e

e-PPI

Pure-MPC

(b) Circuit size with single
identity

1.0 10.0 100.0 1000.0
Number of identities

0

200

400

600

800

1000

Ex
ec

ut
io
n 
tim

e(
se

c) e-PPI

Pure-MPC

(c) Scale up identity num-
ber

Fig. 5: Performance of index construction protocol

Experimental setup: We evaluate the performance

of our distributed ǫ-PPI construction protocol. Towards

that, we have implemented a functioning prototype. The

CountBelow is implemented by using an MPC software,

FairplayMP [13], which is based on Boolean circuits.

The implemented CountBelow protocol is written in

SFDL, a secure function definition language exposed by

FairplayMP, and is compiled by the FairplayMP runtime

to Java code, which embodies the generated circuit for

secure computation. We implement the SecSumShare

protocol in Java. In particular, we use a third-party li-

brary Netty [22] for network communication and Google’s

protocol buffer [23] for object serialization. We conduct

experiments on a number of machines in Emulab [24],

[25], each equipped with a 2.4 GHz 64-bit Quad Core

Xeon processor and 12 GB RAM. In the experiments,

the number of machines tested is varied from 3 to 9 (due

to limited resource at hand). For each experiment, the

protocol is compiled to and run on the same number of

parties. Each party is mapped to one dedicated physical

machine. The experiment uses a configuration of c = 3.

To justify the standpoint of our design that MPC is

expensive, we compare our reduced-MPC approach as

in the ǫ-PPI construction protocol against a pure MPC

approach. The pure MPC approach does not make use of

SecSumShare protocol to reduce the number of parties

involved in the generic MPC part and directly accepts

inputs from the m providers. The metric used in the



experiment is the start-to-end execution time, which is the

time duration from when the protocol starts to run to when

the last machine reports to finish. The result is shown as

in Figure 5a. It can be seen that the pure MPC approach

generally incurs longer execution time than our reduced-

MPC approach (used in ǫ-PPI construction): As the in-

formation network grows large, while the execution time

of pure MPC approach increases super-linearly, that of

reduced-MPC approach increases slowly. This difference is

due to the fact that the MPC computation in our reduced-

MPC approach is fixed to c parties and does not change

as the number of providers m grows. And the parallel

SecSumShare in reduced-MPC approach is scalable in

m as well, since each party runs in constant rounds, and

each round sends a constant number (at most c − 1) of

messages to its neighbors. For scaling with more parties,

we use the metric of circuit size, which is the size of

the compiled MPC program. As a valid metric, the circuit

size determines the execution time5 in real runs. By this

means, we can show the scalability result of up to 60
parties as in Figure 5b. Similar performance improvement

can be observed except that the circuit size grows linearly

with number of parties involved. Finally, we also study

the scalability from running the protocol with multiple

identities in a three-party network. The result in Figure 5c

shows that ǫ-PPI construction grows with the number of

identities at a much slower rate than that of the pure MPC

approach.

VI. Related Work

This section surveys related work on indexing support

on untrusted servers. We focus on information confiden-

tiality or privacy on secure index design, and do not survey

the issues of integrity and authenticity.

Non-encryption based privacy preserving index: PPI

is designed to index access controlled contents scattered

across multiple content providers. While being stored on

an untrusted server, PPI aims at preserving the content

privacy of all participant providers. Inspired by the privacy

definition of k-anonymity [26], existing PPI work [7],

[8], [9] follows the grouping-based approach; it organizes

providers into disjoint privacy groups, such that providers

from the same group are indistinguishable to the searchers.

To construct such indexes, many existing approaches [7],

[8], [27] assume providers are willing to disclose their

private local indexes, an unrealistic assumption when there

is a lack of mutual trust between providers. SS-PPI [9] is

proposed with resistance against colluding attacks. While

5Regarding the detailed definition of circuit size and the exact cor-
relation between circuit size and execution time, it can be found in
FairplayMP [13].

most existing grouping PPI’s utilize a randomized ap-

proach to form groups, its weakness is studied in SS-

PPI but without a viable solution. Though the group size

can be used to configure grouping-based PPI’s, it lacks

per-owner concerns and quantitative privacy guarantees.

Moreover, organizing providers in groups usually leads to

query broadcasting (e.g, with positive providers scattered

in all groups), rendering search performance inefficient.

By contrast, ǫ-PPI is a brand new PPI abstraction without

grouping (i.e. non-grouping PPI as mentioned before),

which provides quantitative privacy control on a per-owner

basis.

Secure index and search-able encryption: Building

searchable indexes over encrypted data has been widely

studied in the context of both symmetric key cryptogra-

phy [28] and public key cryptography [29], [30], [31]. In

this architecture, content providers build their local indices

and encrypt all the data and indices before submitting

them to the untrusted server. During query time, the

searcher first gets authenticated and authorized by the

corresponding content provider; the searcher then contacts

the untrusted server and searches against the encrypted

index. This system architecture makes the assumption that

a searcher already knows which provider possesses the data

of her interest, which is unrealistic in the PPI scenario.

Besides, unlike the encryption-based system, performance

is a motivating factor behind the design of our PPI, by

making no use of encryption during the query serving time.

VII. Conclusion

In this paper, we propose ǫ-PPI for quantitative privacy

control in information networks. The privacy of our ǫ-

PPI can be controlled by each individual in a quan-

titative fashion. We identify a vulnerability of generic

PPI on protecting common owner identities and address

this vulnerability in our ǫ-PPI design by proposing an

identity mixing technique. We have implemented the index

construction protocol without any trusted party and applied

a performance-optimization design that minimizes the

amount of secure computation. We have built a generic pri-

vacy threat model and performed security analysis which

shows the advantages of ǫ-PPI over other PPI system in

terms of privacy preservation quality.

References

[1] “Nhin: http://www.hhs.gov/healthit/healthnetwork.”
[2] “Nhin connect, http://www.connectopensource.org/.”
[3] “Hippa, http://www.cms.hhs.gov/hipaageninfo/.”
[4] “Studip, http://www.studip.de/.”
[5] “Swiki, http://en.wikipedia.org/wiki/swiki.”
[6] “Ferpa, http://www2.ed.gov/ferpa.”



[7] M. Bawa, R. J. B. Jr., and R. Agrawal, “Privacy-preserving indexing
of documents on the network,” in VLDB, 2003, pp. 922–933.

[8] M. Bawa, R. J. Bayardo, Jr, R. Agrawal, and J. Vaidya, “Privacy-
preserving indexing of documents on the network,” The VLDB

Journal, vol. 18, no. 4, 2009.

[9] Y. Tang, T. Wang, and L. Liu, “Privacy preserving indexing for
ehealth information networks,” in CIKM, 2011, pp. 905–914.

[10] S. Zerr, E. Demidova, D. Olmedilla, W. Nejdl, M. Winslett, and
S. Mitra, “Zerber: r-confidential indexing for distributed docu-
ments,” in EDBT, 2008, pp. 287–298.

[11] “Prism, http://en.wikipedia.org/wiki/prism (surveillance program).”

[12] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay - secure
two-party computation system,” in USENIX Security Symposium,
2004, pp. 287–302.

[13] A. Ben-David, N. Nisan, and B. Pinkas, “Fairplaymp: a system for
secure multi-party computation,” in ACM Conference on Computer

and Communications Security, 2008, pp. 257–266.

[14] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehren-
berg, “Tasty: tool for automating secure two-party computations,”
in ACM CCS, 2010, pp. 451–462.

[15] I. Damgård, M. Geisler, M. Krøigaard, and J. B. Nielsen, “Asyn-
chronous multiparty computation: Theory and implementation,” in
Public Key Cryptography, 2009, pp. 160–179.

[16] A. Narayan and A. Haeberlen, “DJoin: differentially private join
queries over distributed databases,” in OSDI, Oct. 2012.

[17] M. Wright, M. Adler, B. N. Levine, and C. Shields, “An analysis
of the degradation of anonymous protocols,” in NDSS, 2002.

[18] Y. Tang and L. Liu, “Searching information networks with quan-
titative privacy guarantee,” Gerogia Tech Technical Report 2012,

http://www.cc.gatech.edu/˜ytang36/docs/techreport-12.pdf .

[19] A. C.-C. Yao, “Protocols for secure computations (extended ab-
stract),” in FOCS, 1982, pp. 160–164.

[20] J. Lu and J. P. Callan, “Content-based retrieval in hybrid peer-to-
peer networks,” in CIKM, 2003, pp. 199–206.

[21] D. Hawking, “Overview of the trec-9 web track,” in TREC, 2000.

[22] “Netty: http://netty.io.”

[23] “Protobuf: http://code.google.com/p/protobuf/.”

[24] “http://www.emulab.net/.”

[25] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. New-
bold, M. Hibler, C. Barb, and A. Joglekar, “An integrated experi-
mental environment for distributed systems and networks,” in OSDI,
2002.

[26] L. Sweeney, “k-anonymity: A model for protecting privacy,” Inter-

national Journal of Uncertainty, Fuzziness and Knowledge-Based

Systems, vol. 10, no. 5, pp. 557–570, 2002.

[27] M. Bawa, R. J. B. Jr., S. Rajagopalan, and E. J. Shekita, “Make it
fresh, make it quick: searching a network of personal webservers,”
in WWW, 2003, pp. 577–586.

[28] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in IEEE SSP, 2000, pp. 44–55.

[29] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked
keyword search over encrypted cloud data,” in ICDCS, 2010, pp.
253–262.

[30] M. Li, S. Yu, N. Cao, and W. Lou, “Authorized private keyword
search over encrypted data in cloud computing,” in ICDCS, 2011,
pp. 383–392.

[31] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” in INFO-
COM. IEEE, 2011, pp. 829–837.

[32] M. Mitzenmacher and E. Upfal, Probability and computing -

randomized algorithms and probabilistic analysis. Cambridge
University Press, 2005.

Appendix A

Proof of theorems

A. Proof of Theorem 3.1

Proof: We model the problem as Bernoulli trials and

prove the theorem by applying Chernoff bound. For a term

tj , the total number of false positive providers is modeled

as sum of T = m(1 − σj) Bernoulli trials, because there

are m(1 − σj) negative providers for term tj and each

negative provider independently and randomly publishes

its own bit, a process that can be modeled as a single

Bernoulli trials. In the trial, when the negative provider

becomes a false positive (i.e., 0 → 1) which occurs at

probability β(tj), the Bernoulli random variable, denoted

by X , takes on value 1. Otherwise, it takes the value 0.

Let E(X) be the expectation of variable X , which in our

case is,

E(X) = m(1− σj) · β(tj) (10)

We can apply the Chernoff bound for the sum of Bernoulli

trials, Pr(X ≤ (1− δ)E(X)) ≤ e−δ2E(X)/2 [32], where

δ > 0 is any positive number. For term tj , the expected

success rate, denoted by pp(tj), is equal to the probability

of a publication success, that is, pp(tj) = Pr(fpj > ǫj).
Note fpj =

X
X+σj ·m

, we have,

pp(tj) = 1− Pr(fpj ≤ ǫj)

= 1− Pr(X ≤ m
σj

ǫ−1
j − 1

)

≥ 1− e−δ2jm(1−σj)β(tj)/2 (11)

In here, δj = 1− 1
(ǫ−1

j
−1)(σ−1

j
−1)

· 1
β(tj)

= 1−
βb(tj)
β(tj)

. Recall

that γ is the required minimal success rate. If we can have

1− e−δ2jm(1−σj)β(tj)/2 ≥ γ (12)

for all indexed terms, then ∀j, pp(tj) ≥ γ. This means

in the case of large number of terms, the percentage of

successfully published terms or pp is expected to be larger

than or equal to γ, i.e., pp ≥ γ, which is the proposition.

Hence, by plugging δj in Equation 12, we can derive,

(βc(tj))
2−2

(

βb(tj)+
ln 1

1−γ

(1− σj)m

)

βc(tj)+(βb(tj))
2 ≥ 0

Note
ln 1

1−γ

(1−σj)m
= Gj , and βc(tj) should be bigger than

βb(tj) since success ratio is larger than 50%. Solving

the inequality and taking only the solution that satisfies

βc(tj) > βb(tj), we have,

βc(tj) ≥ βb(tj) +Gj +
√

G2
j + 2βb(tj)Gj



B. Proof of Theorem 4.1

Proof: Recoverability can be trivially proved based

on the fact that
∑

∀i∈[0,c−1] s(i, j) = vj .

To prove secrecy, we examine the process of gen-

erating super-shares s(i, j). It is easy to see that the

SecSumShare protocol uses a (c, c) secret sharing to

split each private input M(i, j). The generated c shares

for each input value are distributed to c different output

super-shares. For each private input M(i, j), an output

super share s(i, j) has included one and only one share

from it. Therefore, when an adversary knows at most

c − 1 outputs, at least one share of each private input is

still unknown to her. This leaves the value of any input

completely undetermined to this adversary, thus the secret

or the sum of input values completely undetermined.

Appendix B

Analysis of Conventional PPIs

We analyze the privacy of existing PPI work and

compare it with that of ǫ-PPI. Here, we consider the

primary attack and the common-term attack . Before that,

we briefly introduce the construction protocol of existing

PPI. To be consistent with terminology, we use term to

refer to owner’s identity in this section, for example, the

common-identity attack is referred to as the common-term

attack.

Grouping PPI: Inspired by k-anonymity [26], exist-

ing PPI work [7], [8], [9] constructs its index by using a

grouping approach. The idea is to assign the providers into

disjoint privacy groups, so that true positive providers are

mixed with the false positives in the same group and are

made indistinguishable. Then, a group reports binary value

1 on a term tj as long as there is at least one provider in

this group who possesses the term. For example, consider

terms are distributed in a raw matrix M as in Figure 2. If

providers p2 and p3 are assigned to the same group, say

g1, then in the published PPI group g1would report to have

term t0 and t2 but not t1, because both p2 and p3 do not

have term t1.

a) Privacy under primary attack: To form privacy

groups, existing PPIs randomly assign providers to groups.

By this means, the false positive rate resulted in the PPI

varies non-deterministically. Furthermore, grouping based

approach is fundamentally difficult to achieve per-term

privacy degree. Because different terms share the same

group assignment, even if one can tune grouping strategy

(instead of doing it randomly) to meet privacy requirement

for one or few terms, it would be extremely hard, if not

impossible, to meet the privacy requirement for thousands

of terms. For primary attack, the privacy leakage depends

on the false positive rate of row at term tj in PPI M ′.

This way, the grouping based PPI can at best provide a

privacy level at NOGUARANTEE for primary attacks. Our

experiments in Section V-A1 confirms our analysis as well.

b) Privacy under common-term attack: The group-

ing based PPI work may disclose the truthful term-to-

provider distribution and thus the identity of common

terms. We use a specific example to demonstrate this

vulnerability.

Example In an extreme scenario, one common term is

with 100% frequency and all other terms show up in only

one provider. For group assignment, as long as there are

more than two groups, the rare terms can only show up in

one group. In this case, the only common term in M ′ is

the true one in M , in spite of the grouping strategy. This

allows the attacker to be able to identify the true common

terms in M and mount an attack against it with 100%
confidence.

Given information of term distribution, one can fully

exploit the vulnerability to amount common-term attacks.

And the privacy degree depends on availability of term

distribution information. For certain existing PPI [9], it

directly leaks the sensitive common term’s frequency

σj to providers during index construction, leading to a

NOPROTECT privacy level. Other PPI work, which does

not leak exact term distribution information, still suffers

from data-dependent privacy protection, resulting in a

NOGUARANTEE privacy level.

Appendix C

Extra Experiment Results

A. Effectiveness of different β-calculation
policies

We evaluate the effectiveness of three β-calculation

policies with ǫ-PPI, and the result shows the advantages

of Chernoff bound-based policy in meeting desired privacy

requirements. In the experiments, we have tested various

parameter settings. We show representative results with the

following values: ∆ = 0.02 in incremented expectation-

based policy and expected success rate γ = 0.9 in the

Chernoff bound based policy. The default false positive

rate is set at ǫ = 0.5. The experiment results are reported

in Figure 6; we consider success rate as the metric. In Fig-

ure 6a, we vary identity frequency from near 0 to about 500
providers with the number of providers fixed at 10, 000,

and in Figure 6b we vary the number of providers with the

identity frequency held constant at 0.1. It can be seen from

the results that while Chernoff bound-based policy (with

γ = 0.9) always achieves near-optimal success rate (i.e.,

close to 1.0), the other two policies fall short in certain

situations; the expectation-based policy is not configurable



and constantly has its success rate to be around 0.5. This is

expected because the expectation-based approach works on

an average sense. For the incremented expectation-based

policy, its success ratio, though approaching 1.0 in some

cases, is unsatisfactory for common identities with high

frequency (as in Figure 6a) and in the relatively small

network of few providers (as in Figure 6b). On the other

hand, the high-level privacy preservation of the Chernoff

bound policy comes with reasonable extra search overhead.

Due to space limit, this part of experiments can be found

in technical report [18].

0 100 200 300 400 500

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
u

c
c
e

s
s
 r

a
te

 p
p

Term frequency

 basic

 inc-exp

 chernoff

(a) Varying frequency under 10, 000
providers

8 32 128 512 2048 8192

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
u

c
c
e

s
s
 r

a
te

 p
p

Number of providers

 basic

 inc-exp

 chernoff

(b) Varying provider numbers under fre-
quency 0.1

Fig. 6: Quality of privacy preservation


