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SUMMARY

Universal quantum computation requires precision control of the dynamics of qubits.

Frequently accurate quantum control is impeded by systematic drifts and other errors. Com-

pensating composite pulse sequences are a resource efficient technique for quantum error

reduction. This work describes compensating sequences for ion-trap quantum computers.

We introduce a Lie-algebraic framework which unifies all known fully-compensating se-

quences and admits a novel geometric interpretation where sequences are treated as vector

paths on a dynamical Lie algebra. Using these techniques, we construct new narrowband

sequences with improved error correction and reduced time costs. We use these sequences

to achieve laser addressing of single trapped 40Ca+ ions, even if neighboring ions experience

significant field intensity. We also use broadband sequences to achieve robust control of

171Yb+ ions even with inhomogeneous microwave fields. Further, we generalize compensat-

ing sequences to correct certain multi-qubit interactions. We show that multi-qubit gates

may be corrected to arbitrary accuracy if there exists either two non-commuting controls

with correlated errors or one error-free control.

A practical ion-trap quantum computer must be extendible to many trapped ions. One

solution is to employ microfabricated surface-electrode traps, which are well-suited for scal-

able designs and integrated systems. We describe two novel surface-electrode traps, one

with on-chip microwave waveguides for hyperfine 171Yb+ qubit manipulations, and a sec-

ond trap with an integrated high numerical aperture spherical micromirror for enhanced

fluorescence collection.

xi



CHAPTER I

INTRODUCTION

Recent years have witnessed tremendous progress in the power, scale, and pervasiveness of

computers. Many modern devices now incorporate computing elements, and already com-

puting plays a critical role in many aspects of modern society. Yet despite their widespread

availability and usefulness, computers are currently unable to efficiently solve certain kinds

of problems, such as breaking an RSA encryption by factoring keys [1], or solving a full

configuration-interaction (full CI) problem in quantum chemistry [2]. These problems are

difficult from an algorithmic perspective; although a solution can be quickly verified, no

efficient methods exist to compute a solution in the first place.

Quantum computing is a rapidly emerging technology that may allow these problems to

be solved efficiently. Quantum computers differ from more common (classical) computers

in that they exploit quantum phenomena (such as superposition, interference, and entan-

glement) to process data. These properties enable more efficient algorithms. Quantum

computers were first conceived in the 1980’s by Richard Feynmann [3], Paul Benioff [4, 5]

and others, who mostly focused on using these devices to simulate other quantum systems.

The 1990’s saw important advances in quantum algorithms [6–8] and theoretical quantum

computing [9, 10]. Notably, Peter Shor discovered a factoring algorithm [7] which oper-

ates in polynomial time, which greatly improved on the best known classical algorithms.

These advances stimulated the development of quantum computing devices [11–16], a line

of research which continues to the present day.

Currently multiple quantum computing technologies are under development. Comput-

ers constructed from trapped atomic ions are among the most promising. Early work by

Wolfgang Paul developed the Paul trap [17, 18]. Hans Dehmelt and others advanced laser

cooling and ion imaging techniques [19]. These elements were combined in a proposal by

Ignacio Cirac and Peter Zoller [20], who first described how interactions between trapped
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Figure 1.1: Developments towards an ion-trap quantum computer. Wolfgang Paul de-
veloped the Paul trap in 1953 [17, 18]. Doppler cooling [19] and sideband cooling [23]
techniques were applied to trapped ions in the 1980’s. Cirac and Zoller proposed combining
these elements in a quantum computer [20]. Soon afterwords the first two-qubit gates were
achieved [24, 25]. Recently, quantum teleportation [26], quantum error correction [27], and
microfabricated surface-electrode traps [28] have been demonstrated. The current record
for the largest entangled state is 14 ions [29].

ions could be used for computation. More recent progress by a number of researchers (no-

tably by Dave Wineland, Rainer Blatt, and others) have demonstrated all of the essential

technologies required for universal quantum computation. Current research focuses on im-

proving the quality of quantum logic operations and integrating existing technologies into

a computer architecture amenable to scaling to large numbers of trapped ions [21, 22].

One technology well-suited for scaling is the surface-electrode trap [28, 30]. These de-

vices place trapping electrodes in a common plane and are easily miniaturized using micro-

fabrication techniques. Furthermore, complex electrode geometries may be produced, for

instance geometries compatible with ion transport [31, 32] and ion reordering [33, 34]. Here

at Georgia Tech and the Georgia Tech Research Institute (GTRI) we have built a research

program that develops complex surface-electrode traps. A major focus of this thesis is the

description and testing of these devices.

1.1 Why errors ruin the party

During logic operations quantum computers utilize a continuum of superposition states. If

the system is subjected to a noise process or some kind of systematic error, the computer

tends to produce an incorrect superposition. Overcoming errors is a major challenge in

2



quantum computing, and a serious obstacle towards building practical devices [35]. A

common strategy in classical systems is to use measurement and feedback control to stabilize

a noisy system. This strategy is difficult in quantum systems since measurement itself

irreversibly alters the quantum state.

Quantum error correction (QEC) is a method of protecting quantum information from

noise and decoherence by identifying errors and employing active correction measures [38,

39]. These methods are expected to be an essential tool in future quantum processors,

since they can correct arbitrary errors provided that they occur with a sufficiently low

probability [40] (called the error threshold). QEC employs a kind of quantum redundancy,

in the sense that a single logical bit of information is encoded in the entangled state of

multiple physical bits [35]. These methods are costly in the sense that they lower the

density of stored information, slow the effective speed of the computation, and require

highly-entangled systems which are difficult to achieve in practice.

However, many types of systematic errors can be corrected using a simple technique that

avoids the costly overhead associated with QEC. Compensating composite pulse sequences

reduce systematic errors by choosing operations such that the net error nearly cancels.

These methods require no measurements or additional ancilla bits, and improve accuracy

even when the strength of the error is unknown. Compensating sequences were originally

developed in the context of NMR spectroscopy. Pioneering work in the subject was done by

Malcolm Levitt [41, 42], Ray Freeman [43], Robert Tycko [44, 45], and others. These tech-

niques were first introduced to the quantum information community when they were used

in NMR quantum computers [46]. Currently several researchers are studying compensating

sequences in the context of specific quantum computing models.

1.2 Organization of the thesis

This thesis develops compensating sequences for ion-trap quantum computers. We introduce

a control-theoretic formalism that successfully generalizes all known fully-compensating

composite sequences. Using this framework, novel sequences which correct systematic errors

in ion-trap quantum computers are designed. We demonstrate these methods in several

3



experiments on trapped atomic ions, and describe how they may be extended to improve

pairwise entangling operations.

The thesis is organized as follows. Chapter 2 introduces quantum computing and quan-

tum control theory. Chapter 3 describes ion-trap quantum computers, surface-electrode

traps, and related experimental hardware. Chapter 4 introduces compensating pulse se-

quences, and derives a fundamental set of conditions which all fully-compensating sequences

satisfy. Systematic error models for ion-trap quantum computers are also described here.

Chapter 5 discusses novel narrowband sequences which correct systematic errors associated

with single-ion addressing. We test these sequences in an experiment on single 40Ca+ ions

confined in a surface-electrode trap. Chapter 6 describes a surface-electrode trap with on-

chip waveguides which produce near-field microwaves to manipulate single 171Yb+ ions. We

demonstrate compensating sequences which correct errors associated with the microwave

field. Chapter 7 extends the composite pulse technique to include multi-ion interactions.

Finally, chapter 8 describes a surface electrode trap with an integrated micromirror for

efficient fluorescence measurement of trapped ions.
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CHAPTER II

QUANTUM COMPUTATION AND CONTROL

The following chapter will summarize fundamental concepts in quantum computation, in-

troduce the notion of quantum information and qubits, and describe quantum control and

related techniques.

2.1 Fundamentals of quantum information

2.1.1 Qubits and gates

Modern digital computers store information in bits which exists in one of two states, either 0

or 1, usually corresponding to the voltage or magnetization of an electronic switch or storage

device. The state of a bit is well described as a classical variable related to bulk properties

of many atoms in a device. Unlike classical computers, quantum computers store binary

information in a qubit, a quantum two-level system with states |0〉 and |1〉 corresponding

to two distinguishable eigenstates of an observable, for example distinguishable electronic

states of a single atom [35].

Unlike a classical bit, a qubit can exist in a superposition of states. The span of the

qubit states forms a two-dimensional logical Hilbert space, here denoted as H (2). A qubit

may exit an any normalized state in H (2), specifically any state of the form

|ψ〉 = cos
θ

2
|0〉+ sin

θ

2
eiφ|1〉, (2.1)

where θ and φ are real angles. By convention we always neglect an arbitrary unobservable

global phase, that is, we consider eiγ |ψ〉 and |ψ〉 to be equivalent since for any observable

both states give identical expectation values and probability distributions.

A classical computer retrieves data from memory by measuring the states of bits. Simi-

larly, data is retrieved from a qubit by a measurement on the logical basis. However unlike

a classical measurement, a quantum measurement irreversibly alters the qubit state [47].
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We consider here ideal hard or projective measurements of the qubit, which in the Copen-

hagen interpretation collapse the wavefunction (2.1) into the eigenstate |0〉 with probability

P (0) = cos2(θ/2) and into |1〉 with probability P (1) = 1 − cos2(θ/2). This of course is a

special case of more general measurement models [48, 49] which induce a partial collapse

caused by the joint interaction of a qubit and a measurement apparatus.

Quantum computers require several qubits grouped into a register to perform useful

computational tasks. A register of n qubits exists in a joint quantum state on the Hilbert

space H (2n) =
⊗n

j=1 Hj(2) where j is an index over the individual qubits of the register.

Data storage on a quantum register is fundamentally different than in the classical counter-

part. Consider the task of representing the state of a quantum register on a classical register

of bits. To describe an n-qubit wavefunction requires 2n−1 complex numbers, an extremely

costly task on a classical system. A common error is to conclude that quantum computers

somehow store data more efficiently than their classical counterparts; of course this is false

since measurement involves projection of the wavefunction against the computational basis,

yielding a binary string of length N . It is more accurate to say that quantum computers

exploit quantum phenomena (i.e., superposition, interference and entanglement) to achieve

an algorithmic speedup over classical computers. A discussion of quantum algorithms is

beyond the scope of this work, we refer the reader to [35, 50] for a specific treatment of this

topic.

Computation involves the application of logical gates according to some algorithm to

yield data. Let U represent a quantum logic gate. The application of U to an arbitrary initial

qubit state |ψ〉 yields the resultant state |ψ′〉 = U |ψ〉. However, probability conservation

requires 〈ψ′|ψ′〉 = 〈ψ|U †U |ψ〉 = 1, which implies that all quantum logic gates are unitary

operators. As an example consider the quantum-mechanical analogue of the not gate which

inverts the state of a bit. In the language of quantum mechanics, this mapping is applied

by the Pauli-X operator X = |0〉〈1|+ |1〉〈0|, which is both unitary and Hermitian.

In practice, running a quantum computation reduces to the task of applying a sequence

of unitary transformations to a qubit register. Since quantum gates are unitary operators,

they are always reversible in principle. Equivalently, during a quantum gate every unique
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qubit register state is mapped to a unique final state. This contrasts with several classical

gates, such as nand, which map multiple inputs to the same output [35].

2.1.2 The Bloch sphere

Frequently it is useful to relate an abstract system to a geometric picture leads to an intuitive

approach for problem solving. Here we introduce the Bloch sphere [51], which interprets a

qubit wavefunction as a pseudo spin-1/2 system and single-qubit gates as rotations. The

spin polarization is described by a vector operator ~S = ~~σ/2 where the components of

~σ = (X, Y , Z) are the Pauli operators,

X = |0〉〈1|+ |1〉〈0|, Y = −i|0〉〈1|+ i|1〉〈0|, Z = |0〉〈0| − |1〉〈1|. (2.2)

The Pauli operators are each self-inverse (i.e., an involution), traceless, and transform under

commutation as [X,Y ] = 2iZ. The Pauli operators and the identity operator span the space

of observables, in the sense that the expectation value of any observable may be written

as a function of the expectation values of Pauli operators. However the Pauli operators

themselves are incompatible observables: we may not precisely determine the components

of ~σ using a single preparation of the qubit.

We may rewrite (2.1) as a density matrix ρ = |ψ〉〈ψ| = (1 + ~a · ~σ)/2 where 1 is the

identity operator, ~a = (sin θ cosφ, sin θ sinφ, cos θ) is the Bloch vector. The components of

~a correspond to the expectation values of the Pauli operators, for example 〈X〉 = ~ax. Since

by probability conservation ||~a|| ≤ 1 with equality if an only if ρ is pure, the vectors ~a are

confined to a closed ball called the Bloch sphere, shown in figure 2.1. The computational

basis states |0〉 and |1〉 are antipodal since they correspond to the positive and negative

eigenstates of Z.

It is simple to show that single qubit gates are equivalent to spin-rotations on the Bloch

sphere. Consider the application of a gate U on the state ρ to form the resultant state

ρ′ = (1 +~a ·U~σU †)/2. The transformed vector components U~σjU
† themselves act as Pauli

operators since they satisfy the same properties: each component is self-inverse, traceless,

and all three satisfy an angular momentum commutation relation. The transformation U
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Figure 2.1: A qubit visualized as a vector on a Bloch sphere. The components (~ax,~ay,~az)
uniquely determine the qubit state but are incompatible observables.

only has shifted to a new basis of Pauli operators. Since the vector length ||~a|| is preserved,

U acts as a rotation.

2.1.3 The DiVincenzo criteria

What are the experimental requirements for building a quantum computer? So far, we

have discussed qubits and quantum gates in abstract terms, without regard to a physical

system. In this section, we discuss the DiVincenzo criteria [52, 53], which codify a set of

hardware requirements for universal quantum computation. In chapter 3 we describe the

trapped-ion quantum computing architecture, and explicitly show how this system meets

these requirements. Simply stated, the criteria are:

1. State initialization: It must be possible to initialize the quantum system into a well

defined quantum state. This requirement is easily satisfied if it is possible to cool a

set of relevant quantum degrees of freedom to the ground state.

2. Isolation: The quantum computer must be well isolated from environmental pertur-

bations. Interactions between a (controlled) quantum computer and an (uncontrolled)

environment result in a joint entanglement between the systems. To remain isolated,

computation must occur sufficiently quickly to avoid significant entanglement, or al-

ternatively, active correction measures must be implemented.
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3. Unitary control: It must be possible to efficiently approximate any unitary transform

U ∈ SU(N), where SU(N) is the special-unitary group of transformations on the

logical Hilbert space H (N).

4. Measurement: It must be possible to subject the system to a projective measurement

with distinguishable outcomes. The span of measurement eigenstates should span the

logical Hilbert space H (N).

5. Scalable architecture: The quantum computer must be scalable in the sense that

an exponential increase in the logical Hilbert space dimension is achieved with a

polynomial increase in cost (e.g., hardware, execution time). Typically this is achieved

by adding additional particles to a composite quantum system.

In practice, it is challenging to meet each of these requirements simultaneously. In partic-

ular, unitary control typically requires a strong-coupling interaction between qubits. How-

ever, this frequently complicates qubit isolation, since qubits which interact strongly with

each other usually interact strongly with an uncontrolled environment [49]. Ion-trap quan-

tum computers circumvent this difficulty by using long-lived internal states for long-term

information storage, shifting to strongly-interacting motional states during qubit-qubit in-

teractions [54, 55].

2.2 Fundamentals of quantum control

Quantum computation requires accurate control of the internal states of a register of qubits.

In practice, the task reduces to applying a desired unitary evolution using a finite set of

controls, which may be constrained by the physical limitations of the experimental appa-

ratus [56]. Here we review several fundamental concepts in quantum control and introduce

mathematical techniques that will be used throughout the thesis. Section 2.2.1 introduces

quantum control systems and the notion of controllability. Sec. 2.2.2 reviews Lie groups

and algebras. Sec. 2.2.3 introduces the Baker-Campbell-Hausdorff formula and the related

Magnus expansion. Sec. 2.2.4 introduces several Lie-theoretic decompositions and approxi-

mations.
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2.2.1 Quantum control systems

We briefly review several fundamental properties of control systems, and discuss the mod-

eling of dynamic quantum systems using control-theoretic techniques. Whenever possible,

we adopt notational conventions consistent with both quantum and control theory; however

in the case of disagreement we revert to quantum conventions.

Definition 1. A control system modulates or changes the dynamic response of a state

~x(t) according to a control law, which is modeled as a system of ordinary differential

equations of the form d
dt~x = f(~x, t, ~u) with the components of the control vector ~u(t) =

(u1(t), u2(t), · · · , un(t)) chosen to belong to a set of permissible control functions U .

In classical control, the state ~x(t) is a vector function which completely specifies the

system [57]. In quantum control systems, the state is usually synonymous with the wave-

function [56, 58, 59]. However in quantum computing, the object is not to prepare a specific

state but efficiently simulate a unitary gate. The quantum state of the qubit register is inac-

cessible until the end of computation, and therefore any control scheme should be agnostic

to the qubit state. This subtle distinction leads to an alternate formulation of the control

law [56, 60] where the control state is a unitary propagator U(t), which must satisfy an

operational Schrödinger equation,

U̇(t) = − i

~
H(t)U(t), U(0) = 1. (2.3)

Of special interest are Hamiltonians that admit a decomposition of the form H(t) =

~
∑

µ u
µ(t)Hµ, where the control Hamiltonians Hµ ∈ {H1, H2, . . . ,Hn} are dimensionless

Hermitian operators modulated by real-valued control functions uµ(t) representing the n

available degrees of control for a particular experimental apparatus. We interpret the vector

~u(t) = (u1(t), u2(t), . . . , un(t)) as a vector function over the manifold of control parameters,

with components uµ(t) representing the magnitudes of the control Hamiltonians with units

of angular frequency. For compactness we employ an Einstein summation convention over

repeated Greek indices where the sum over controls is simply written as uµ(t)Hµ. This

notation is motivated by the transformation properties of the Hamiltonian when interpreted

as a member of a dynamic Lie algebra.
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We omit a term which represents the portion of the total Hamiltonian which is outside

of direct control (i.e. a drift Hamiltonian); in principle it is always possible to work in an

interaction picture where this term is removed. Alternatively, one may assign a Hamiltonian

H0 to represent this interaction, with the condition that u0(t) = 1 for all t.

In practice, a desired evolution is prepared by carefully manipulating the coupling of

the system to a control apparatus, such as a spectrometer. The controls may be subject to

a set of constraints imposed by the physics of the system; we say the control must belong

to an admissible set uµ(t) ∈ U [56, 58]. Constraints may include limitations on the total

operation length, control amplitudes or derivatives, or possibly Fourier components. The

constraints indirectly limit the admitted propagator solutions of the Schrödinger equation.

Denote by U(~u; tf )1 the particular solution of (2.3) for the controls ~u(t) over the interval

t ∈ [0, tf ). The set of reachable solutions may be described as follows.

Definition 2. The reachable set at time tf > 0, denoted as R(tf ), is the set of all propaga-

tors U(~u; tf ) ∈ R(tf ) produced by admissible controls uµ(t) ∈ U over the interval t ∈ [0, tf ).

The reachable set R(≤ tf ) is the union of all reachable sets for times less than or equal to

tf , e.g., R(≤ tf ) = ∪0≤τ≤tf R(τ). The reachable set R = ∪τ≥0R(τ) is the union of all sets

over all positive time intervals.

The reachable set determines the controllability of the system. For instance if R =

SU(N) then by an appropriate choice of controls every unitary gate in SU(N) may be

produced. Such a system is called controllable [56, 61]. An equivalent concept exists in

quantum information literature; if every unitary gate may be produced by a quantum

computer, then the computer is universal [35, 62]. Therefore it is important to confirm

whether a quantum computer is actually controllable, and also to determine control schemes

that perform gates in some optimal way.

Constraints on the controls frequently introduce boundaries on the reachable set R(≤

tf ). For instance, consider the control system (2.3) where the control Hamiltonians are

related to the Pauli operators by Hµ ∈ {X/2, Y/2, Z/2} and the magnitude of the control

1Another common notation uses the Dyson time-ordering operator T to write U(~u; tf ) as a time-ordered

exponential of the form U(~u; tf ) = T exp
(
− i

~
∫ tf
0

dt′ H(t′)
)

.
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Figure 2.2: The reachable set R(≤ tf ) for a bounded control problem on the group of
single-qubit gates SU(2). (a) R(≤ tf ) viewed as a subset of SU(2), where the distance
from the identity element 1 corresponds to the angle of rotation provided by a propagator
U ∈ R(≤ tf ). (b) The reachable set viewed as accessible states on a Bloch sphere, starting
from the initial qubit state |0〉.

vector is bounded to not exceed some maximum frequency ||~u(t)|| ≤ Ω. This control prob-

lem is equivalent to the problem of producing single qubit rotations with a time-dependent

field (laser, microwave, etc.) of bounded amplitude. At time tf < π/Ω the largest ac-

cessible qubit rotations are by an angle Ωtf , therefore rotations exceeding this maximal

angle are inaccessible. The minimum time which produces any single-qubit rotation up to a

global phase is tπ = π/Ω, frequently called the π-time in quantum computing experiments.

Figure 2.2 illustrates the reachable set in this control problem.

2.2.2 Lie groups and algebras

So far our discussion on quantum control has repeatedly referred to a Lie group, which may

be thought of as a continuous group of transformations. Here we briefly discuss several

aspects of the theory of Lie groups, with emphasis on conceptual clarity over mathematical

rigor. The interested reader is referred to Refs. [56] and [63] for additional details and a

rigorous treatment of the subject.

Definition 3. A Lie group G is a continuous group which is also a differentiable manifold

with analytic group multiplication and group inverse operations.

Consider the reachable set R for unbounded controls uµ(t). Observe that this set forms
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a representation of a Lie group since the following properties are satisfied: for all solutions

U1 and U2, the product U1U2 is also a solution (see section 2.2.3); the associative property

is preserved (i.e. U1(U2U3) = (U1U2)U3); the identity 1 is a valid solution; and for all

solutions U1, the inverse U †1 is also a valid solution. Moreover, by nature of (2.3) differenti-

ation of propagators is well defined and the set forms a continuous differentiable manifold,

parameterized by the control functions. The set of N -dimensional quantum propagators

forms a representation of the unitary group U(N), which is a Lie group [63]. Without loss

of generality, we may restrict our attention to the special unitary subgroup SU(N), since

every element in U(N) is equivalent to an element in SU(N) with an additional global

phase [63, 64].

Lie groups are also manifolds and therefore have topological properties. For instance,

SU(N) is connected and compact, meaning any two points (unitary operators) on the

manifold may be connected by a curve on the manifold, and any curve may be subdivided

into subcurves that converge to a point as the divisions become infinitesimally small [63].

In particular SU(2) is homomorphic to rotations of the 2-sphere. Any pair of operators

U1, U2 ∈ SU(2) are connected by a curve that converges to a single point as U2 approaches

U1. The curves themselves are related to the controls by (2.3); in the case of controls that

are constant in time, the produced curve is a geodesic on the manifold. Thus we can build a

picture where group elements are transformed into other elements along a continuous path

determined by the application of a set of controls.

Definition 4. A Lie algebra g is a vector space over an associated field F which is closed

under the Lie bracket, e.g., [a,b] ∈ g for all a,b ∈ g. Each Lie group G has an associated

algebra g, whose vector space is the tangent space of G at the identity element.

The Lie algebra for a group G is directly related to the control Hamiltonians {Hµ} [56,

65]. This is easily seen by differentiating the elements U(~u; tf ) in the neighborhood of the

identity element to find a family of tangent curves at U(~u; 0) = 1,

dU(~u; t)

dt

∣∣∣∣
t=0

= −iuµ(0)Hµ = uµ(0)eµ. (2.4)
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The set of skew-symmetrized Hamiltonians {eµ= −iHµ} and the field of real numbers R

(corresponding to the allowed values for the components uµ(0)) form a linear vector space

under matrix addition and the scalar product. We therefore interpret terms u = uµeµ

as vectors on the tangent space of G at the identity, denoted by T1G. On this space is

defined the binary Lie bracket operation between two vectors [a,b], which for our purposes

is synonymous with the operator commutator. If the space T1G remains closed under the

Lie bracket, then it forms a Lie algebra g corresponding to the group G.

We note however that the available control Hamiltonians do not necessarily need to be

closed under commutation in order to generate an algebra. Suppose e = span{eµ}2 and

m = e⊥ are subspaces of an algebra g = e ⊕ m. If e is not an algebra, commutators of

the form [e, e] return elements in both e and m. Once these commutators are calculated,

elements outside of e may be appended to a new larger subspace e′ with a smaller orthogonal

compliment m′. This procedure can be iterated until e′ is closed under the commutator,

or if e′ never converges, we may construct e′ as an infinite vector space of the nested

commutators produced by this procedure. Then e′ ⊆ g and e′ is a Lie algebra. Physically

this means that we need not have direct control over all Hamiltonians that span a Lie

algebra in order to produce any gate within its associated group. In section 2.2.4.1 we

provide explicit constructions that produce any propagator in a Lie group using a finite set

of control Hamiltonians that generate the algebra by repeated Lie brackets.

The power of most Lie algebraic techniques relies on the mapping between group ele-

ments which act on a manifold (such as the manifold of rotations on a Bloch sphere) to

elements in a Lie algebra which are members of a vector space. In the groups we study here,

the mapping is provided by the exponential function G = eg (i.e., every element U ∈ G

may be written as U = etu where tu ∈ g, see figure 2.3). The object of this method is to

study the properties of propagators, which are members of a Lie group, in terms of vector

operations on the associated Lie algebra.

2The operation span denotes all linear combinations with coefficients in the field F , here the field of real
numbers.

14



Figure 2.3: Elements on a Lie algebra are transformed to members of a Lie group by the
exponential mapping. Frequently, calculations are easier to perform on a Lie algebra (a
linear vector space) than the associated group (a manifold).

2.2.2.1 Inner products, norms, and basis transformations

Frequently it is useful to associate an inner product with an algebra in order to form an

inner product space [63]. We shall use the Hilbert-Schmidt inner product (also known as

the Frobenius product), which is a natural extension of the vector inner product over the

field of complex numbers to matrices with complex coefficients. Let A and B be n × n

matrices with entries Aij and Bij respectively. The Hilbert-Schmidt inner product 〈A,B〉

is defined as,

〈A,B〉 =
n∑
i=1

n∑
j=1

A∗jiBij = tr(A†B). (2.5)

This inner product has several properties that closely mirror the inner product for complex

vectors, namely 〈A,B〉 = 〈B,A〉∗, and |〈A, V 〉| ≤ ||A||HS ||B||HS , where the Hilbert-Schmidt

norm ||A||HS =
√
〈A,A〉 also satisfies a corresponding triangle inequality ||A + B||HS ≤

||A||HS + ||B||HS . Also, using the inner product we easily construct a metric tensor gµν =

〈eµ, eν〉 to measure intervals on the Lie algebra.

We also consider basis transformations on a Lie algebra. For instance a set of control

Hamiltonians may form an overcomplete basis; we can switch to a more useful basis, for

instance an orthogonal basis under the Hilbert-Schmidt inner product, by applying a linear

basis transformation. Let {eµ} be a basis that spans an algebra g and let {e′µ} be a new

basis related by an pseudoinvertable transformation e′ν = Aµνeµ. Any vector u = uµeµ =
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(uµ)′e′µ must be invariant under the change of basis, requiring that the coordinates transform

contravariantly as (uµ)′ = uν(A−1)µν , where A−1 is the pseudoinverse basis transformation.

For this reason, we use a notation that writes the controls uµ(t) as contravariant vector

components.

2.2.2.2 The spinor rotation group SU(2)

As a relevant example, we return to the group of single-qubit operations SU(2) which is

generated by the spin operators Hµ ∈ {X/2, Y/2, Z/2}. The skew-symmetrized control

Hamiltonians are closed under the Lie bracket and thus form a representation of the Lie

algebra su(2) = span{−iX/2,−iY/2,−iZ/2}. Therefore, any element in U ∈ SU(2) may be

written as U = exp(−ituµHµ), where −ituµHµ ∈ su(2) may now be interpreted as a vector

on the the Lie algebra. Furthermore, since 〈−iHµ,−iHν〉 = δµν/2, the spin operators form

an orthogonal basis for the algebra.

2.2.3 Exponential formulas

2.2.3.1 The Baker-Campbell-Hausdorff formula

Elements of a Lie algebra are related to members of a Lie group by an exponential mapping.

In the following, it will be useful to relate the product of two members of a Lie group to

a vector on the Lie algebra. The relationship allows us to map products of propagators to

an effective Hamiltonian that generates the net operation. This correspondence is provided

by the Baker-Campbell-Hausdorff (BCH) formula [63, 66], which relates group products

to a series expansion in the Lie algebra. For rapid convergence, it is most convenient

to consider products of infinitesimal unitary operations, that is, operations of the form

eεtu, where tu ∈ g and ε < 1 is a real expansion parameter. We assume ε is sufficiently

small to guarantee that the group product of propagators always lies within the radius of

convergence for the expansion [67]. Let U1 = eεt1u1 and U2 = eεt2u2 be members of a Lie

group G, where the Hamiltonians uµ = −iHµ ∈ g are members of the associated algebra.

The BCH representation for the product U1U2 = U3 involves the calculation of an effective
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Hamiltonian F ∈ g by the expansion

U3 = exp(F) = exp

( ∞∑
n

εnFn

)
, (2.6)

where the terms

εF1 = ε(t1u1 + t2u2)

ε2F2 =
ε2

2
[t1u1, t2u2]

ε3F3 =
ε3

12

(
[t1u1, [t1u1, t2u2]] + [t2u2, [t2u2, t1u1]]

)
,

are calculated from t1u1, t2u2, and nested commutators of elements of the Lie algebra.

A combinatoric formula found by Dykin [68] exists to calculate Fn for arbitrary n. The

expansion may be truncated once a desired level of accuracy is reached. In principle,

group products of arbitrarily length may be approximated to arbitrary accuracy using BCH

formulas; however, these formulas rapidly become unwieldy and difficult to use without the

aid of a computer. The BCH expansion is most useful for systems where the controls

are piecewise constant, meaning that over each constant interval the Hamiltonian is time

independent.

2.2.3.2 The Magnus expansion

A related expansion developed by Magnus [69] may be used to compute the propagator

generated by a general time-dependent Hamiltonian. The solution to a control equation

(e.g. U̇(t) = εu(t)U(t), where εu(t) = −iεuµ(t)Hµ) over the interval t ∈ [0, tf ) may be

written as the power series

U(~u; tf ) = exp(Ω(~u; tf )) = exp

( ∞∑
n

εnΩn(~u; tf )

)
, (2.7)

where the first few expansion terms are,

εΩ1(~u; tf ) = ε

∫ tf

0
dt u(t)

ε2Ω2(~u; tf ) =
ε2

2

∫ tf

0
dt

∫ t

0
dt′ [u(t),u(t′)]

ε3Ω3(~u; tf ) =
ε3

6

∫ tf

0
dt

∫ t

0
dt′
∫ t′

0
dt′′ ([u(t), [u(t′),u(t′′)]] + [u(t′′), [u(t′),u(t)]]).
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Again as a matter of notational convenience, we drop the labels (~u; tf ) on the expansion

terms when there is no risk of confusion. Formulas for higher order terms may be found

in [70]. The BCH and Magnus expansions are in fact intimately related; when considering

piecewise-constant controls the techniques are equivalent. We refer the interested reader to

[67] for further details regarding both the Magnus expansion and BCH formulas.

The BCH and Magnus expansions are very well known in composite pulse literature, and

techniques that utilize these expansions are collectively referred to as average Hamiltonian

theory. A variant of this technique, pioneered by Waugh [71, 72], has been a mainstay of

composite pulse design in the NMR community for decades. In some formalisms, the BCH

expansion of the product of two propagators is interpreted as a power series in the rotation

axis and angle. For the study of composite single-qubit rotations, this picture is extremely

useful as it allows rotations on the sphere to guide the mathematics. However, this picture

of composite rotations can not be generalized to more complex groups, such as the group

of n-qubit operations SU(2n).

In this work, we emphasize a Lie algebraic interpretation of these methods, which also

leads to a second geometric picture for the terms of the expansions. Observe that the first-

order terms F1 and Ω1 may be regarded as simple vector sums on the Lie algebra, i.e., the

sum of t1u1 and t2u2 in the BCH expansion, and the sum of each of the infinitesimal vectors

dtu(t) in the Magnus expansion (see figure 2.4). In an analogous way, one may interpret the

higher order terms as the addition of successively smaller vectors on g. From this insight,

one may construct controls which produce a target unitary from geometric considerations

on the Lie algebra.

2.2.4 Decompositions and approximation methods

Several useful techniques involve decompositions that may be understood in terms of the

structure of a Lie group and its corresponding algebra. In this section we discuss several

important methods and identities.
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Figure 2.4: Vector paths on a Lie algebra g may be used to represent a sequence of prop-
agations. (a) The BCH expansion relates group multiplication of several propagators to
vector addition on g. (b) The Magnus expansion relates continuous controls to an integral
series on g.

2.2.4.1 Basic building operations

Given a limited set of controls {u1,u2} that generate the algebra g, one may produce any

unitary operation in the corresponding Lie group G = eg using only two identities. The first

identity, the Lie-Trotter formula [73], describes how to produce a unitary generated by the

sum of two non-commuting control operators. Using the BCH formula one may compute

that et1u1/net2u2/n = e(t1u1+t2u2)/n + O([t1u1, t2u2]/n2). In terms of physical pulses, this

corresponds to dividing the propagators et1u1 and et2u2 into n equal intervals to produce

the propagators et1u1/n and et2u2/n. Suppose we perform n such successive products, so

that the resulting propagator is(
et1u1/net2u2/n

)n
= et1u1+t2u2 +O([t1u1, t2u2]/n). (2.8)

Although the Hamiltonians u1 = −iuµ1Hµ and u2 = −iuµ2Hµ do not commute in gen-

eral, we may approximate U = et1u1+t2u2 to arbitrary accuracy by dividing the evolution

into n-many time intervals and using the construction (2.8). By extension, it follows that

any unitary generated by a Hamiltonian in the Lie algebra subspace span{u1,u2} may be

approximated to arbitrary accuracy using a Trotter sequence. A number of improved se-

quences were developed by Suzuki [74] that remove errors to higher commutators and scale

more strongly with n.

The second identity, which we refer to as the balanced group commutator, enables
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the synthesis of a unitary generated by the Lie bracket [t1u1, t2u2]. Again the BCH

formula may be used to show et1u1/net2u2/ne−t2u1/ne−t2u2/n = e[t1u1,t2u2]/n2
+ O([t1u1 +

t2u2, [t1u1, t2u2]]/n3). If we now consider n2-many successive balanced group commutator

constructions, the resulting propagator is

(
et1u1/net2u2/ne−t1u1/ne−t2u2/n

)n2

= e[t1u1,t2u2] +O([t1u1 + t2u2, [t1u1, t2u2]]/n). (2.9)

Then, as in the case of the Trotter formula, we may approximate U = e[t1u1,t2u2] to arbitrary

accuracy by increasing the number of intervals n. Since by assumption the entire Lie algebra

may be generated by nested Lie brackets between the Hamiltonians u1 and u2, this implies

that any U ∈ G may be produced by a combination of balanced group commutator and

Trotter formulas. However, we emphasize that in almost all cases much more efficient

constructions exist. The balanced group commutator construction also forms the basis of

the Solovay-Kitaev theorem [75], an important result regarding the universality of a finite

gate set in quantum computation.

2.2.4.2 Euler decomposition

In section 2.2.2.2 it was shown that any one-qubit operation U ∈ SU(2) may be written

in the form U = exp(−ituµHµ) where Hµ ∈ {X/2, Y/2, Z/2}. It is well known that an

alternative representation exists, namely the Euler decomposition

U = exp(−iα3Hx) exp(−iα2Hy) exp(−iα1Hx), (2.10)

which is given by sequential rotations by the angles {α1, α2, α3} about the X, Y , and X

axes of the Bloch sphere. The Euler decomposition gives a method of producing rotations

generated by a Hamiltonian outside of direct control. For example, suppose the Hamiltonian

Hz is outside of direct control so that U = exp(−iθHz) cannot be directly produced; however

if {Hx, Hy} are available, the Euler decomposition U = exp(−iπ2Hx) exp(−iθHy) exp(iπ2Hx)

may be implemented.
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2.2.4.3 Cartan decomposition

Let g be a semi-simple Lie algebra that may be decomposed into two subspaces g = k⊕m,

m = k⊥ satisfying the commutation relations,

[k, k] ⊆ k, [m, k] ⊆ m, [m,m] ⊆ k. (2.11)

Such a decomposition is called a Cartan decomposition of g [56]. Suppose for the moment

there exists a subalgebra a of g which is in a subspace of m. Since a is an algebra of its

own right, it is closed under the Lie bracket [a, a] ⊆ a. However, note a ⊆ m implies that

[a, a] ⊆ [m,m] ⊆ k. Since the subspaces k and m are mutually orthogonal, then [a, a] = {0}

and the subalgebra a must be abelian. A maximal abelian subalgebra a ⊆ m for a Cartan

decomposition pair (k,m) is called a Cartan subalgebra [56].

For brevity, we state without proof an important theorem regarding the decomposition

of an operator in a group G with a Lie algebra admitting a Cartan decomposition. Consider

a Lie algebra g with a Cartan subalgebra a corresponding to the decomposition pair (k,m).

Every U in the group G = eg may be written in the form,

U = K2AK1, (2.12)

where K1,K2 ∈ ek and A ∈ ea. This is called the KAK Cartan decomposition for the

group G. The interested reader is referred to [63] for additional details regarding the KAK

decomposition.

As a relevant example, here we show how the Euler decomposition for a propagator U ∈

SU(2) is a special case of a KAK decomposition. The algebra is spanned by the orthogonal

basis matrices su(2) = span{−iHx,−iHy,−iHz}. Observe that k = span{−iHx} and m =

span{−iHy,−iHz} form a Cartan decomposition for su(2). The maximal abelian subalgebra

of m is one-dimensional; we choose a = span{−iHy} although the choice a′ = span{−iHz}

would serve just as well (i.e. the different axis conventions of the Euler decomposition differ

in the choice of a maximal abelian subalgebra). Then by (2.12), every element U ∈ SU(2)

may be expressed in the form U = exp(−iα3Hx) exp(−iα2Hy) exp(−iα1Hx), where the

parameters αj are real. This is a restatement of (2.10), thus completing the proof. The
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KAK decomposition is an existence theorem, and does not provide a direct method for the

calculation of the required rotation angles αj .

The Cartan decomposition has important implications for universality. For instance, if

one may generate any unitary operation over the subgroups ek and ea, then any gate in

the larger group eg may be produced. Another important application is the decomposition

of large Lie groups into products of more simple ones. Of special interest to quantum

computing is the inductive decomposition of n-qubit SU(2n) gates into products of one-

qubit SU(2) and two-qubit SU(4) rotations [76].

2.3 Summary

In this chapter, we have introduced quantum computing and quantum control theory. Quan-

tum computers encode information in binary strings of two-level systems, called qubits.

Logic operations on qubits are reversible unitary operators. A universal quantum computer

must be able to apply an arbirtary unitary transformation. We treat this problem using

control theory. To apply gates, we modulate a set of interactions (control Hamiltonians)

according to an instruction set (control functions). We have shown that the reachable

set of unitary gates is related to the Lie algebra generated by the control Hamiltonians.

Further, we introduced the Baker-Campbell-Hausdorff and Magnus expansions, and also

discussed Lie-theoretic decompositions and approximation methods. The following chapter

discusses ion-trap quantum computers and describes interactions on trapped ions using a

set of control Hamiltonians. Later, we use these techniques to describe compensating pulse

sequences.
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CHAPTER III

FUNDAMENTALS OF TRAPPED-ION QUANTUM COMPUTING

This chapter provides a brief introduction to trapped-ion quantum computing experiments

and interprets the manipulation of atomic ions as a quantum control problem. Trapped-ion

computers can be understood in terms of three fundamental components: an ion trap which

stores a string of ion qubits, a control field such as a laser or microwave field which couples

the qubit levels during logic operations, and photodetectors which discriminate between

“bright” and “dark” qubit states during a fluorescence measurement. We shall describe

how these components may be used to produce universal quantum computation. Section 3.1

describes the motion of ions in a Paul trap, and required experimental hardware. Section 3.2

describes the internal structure of trapped-ion qubits, the processes of qubit initialization

and readout, and the laser systems used to control atomic ions. Section 3.3 describes how

laser or microwave pulses may be used to implement a universal set of quantum gates.

3.1 Motional degrees of freedom

Quantum computers based on trapped ions use an ion trap to store qubits and to isolate

them from environmental perturbations. Most implementations also require quantum con-

trol of the motional states of trapped ions for conditional two-qubit gates. In this section our

focus will be the motion of charged ions in a Paul trap [17, 18]. Included in this description

are electrode geometries other than a traditional quadrupole configuration; all we require is

an approximately quadrupolar electric potential at the center of the trapping region. The

classical equations of motion for this problem are well studied and are described in detail

by Ghosh [77] and numerous other sources. We review the classical solution in section 3.1.1

before turning our attention to a full quantum description of the problem in section 3.1.2.

Section 3.1.3 describes surface-electrode traps and the experimental apparatus we use to

trap atomic ions.
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3.1.1 Classical treatment

Consider the motion of an ion in an electric field described by the quadrupolar scalar

potential

Φ =
VDC

2

∑
j

αjx
2
j +

VRF (t)

2

∑
j

α′jx
2
j (3.1)

where the index j ∈ {x, y, z} runs over spatial coordinates and the constants αj , α
′
j set the

curvature of the potential. The potential is factored into two parts: a static component

VDC , and a time-dependent component VRF (t) = VRF cos(ΩRF t) that varies sinusoidally at

an RF drive frequency ΩRF . Further, we assume the near-absence of time-varying magnetic

fields so that the electric field is well approximated by the negative gradient of (3.1). The

potential must satisfy Laplace’s equation at every instant in time, requiring that
∑

j αj = 0

and
∑

j α
′
j = 0 are simultaneously satisfied. Since the sign of each αj determines whether

the potential is attractive or repulsive, this implies that an ion experiences a restoring force

in at most two directions at once. No potential minimum exists in three-dimensional space,

so ions may only be trapped in an “average” dynamical way.

A linear Paul trap produces a scalar potential of the form (3.1) by superimposing fields

generated by a set of parallel DC and RF electrodes [77–79]. The Paul trap geometry yields

stable trapping potentials characterized by

−(αx + αy) = αz > 0, α′x = −α′y, α′z = 0. (3.2)

In this configuration, ions are confined in the z (axial) direction by a simple harmonic well,

while in the x-y (radial) directions the confinement is dynamic. A classical treatment of

the radial dynamics problem yields an equation of motion mẍj = −e [VDCαj +VRF (t)α′j ]xj

that may be rewritten in the form of the Mathieu equation,[
d2

dξ2
+ aj − 2qj cos(2ξ)

]
xj = 0 (3.3)

where we have introduced the dimensionless time ξ = ΩRF t/2 and voltages

aj =
4eVDC αj
mΩ2

RF

, qj =
2eVRF α

′
j

mΩ2
RF

. (3.4)
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Figure 3.1: (a) Radial trajectory of a trapped ion with trapping parameters qj = 0.25,
aj = 0.016. The motion is characterized by rapid micromotion oscillations at the RF
drive frequency ΩRF = 2π × 50 MHz and slow secular oscillations at the frequency νj =
2π × 5.4 MHz. The dashed curve is the harmonic trajectory at the secular frequency. (b)
Phase space trajectory of the same solution.

The trapping parameters aj , qj determine the properties of the solutions. Not all solutions

are stable, and three-dimensional confinement is only possible within a set of stability regions

(see [77] for details). The stable solutions are quasiperiodic and can be studied using

Floquet’s theorem. In general, a quasiperiodic solution may be written as xj(ξ) = Auj(ξ)+

Bu∗j (ξ) where A, B are constants determined by boundary conditions and

uj(ξ) =
∞∑

n=−∞
C2neiξ(2n+µj), (3.5)

and the complex conjugate u∗j (ξ) are linearly independent Floquet solutions of (3.3). The

Floquet solutions are special functions related to the Mathieu sine S(qj , aj , ξ) and cosine

C(qj , aj , ξ) functions by uj(ξ) = C(qj , aj , ξ) + iνjS(qj , aj , ξ), where νj = −iu̇j(0) is called

the secular frequency [80]. The characteristic exponent µj and the Fourier coefficients C2n

are determined by qj , aj and converge to
∑∞

n=−∞C2n = 1 so that uj(0) = 1. The Fourier

coefficients may be calculated by a recursion relation that yields solutions in the form of a

continued fraction [81].

Most ion-trap quantum computing experiments work in the first stability region, where

the parameters aj ' 0 and qj < 0.908 [77]. Provided that the trapping parameters are

sufficiently small, the higher Fourier coefficients C2n for |n| > 1 become negligible and (3.5)
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simplifies to

uj(t) ' eiνjt
1 + (qj/2) cos(ΩRF t)

1 + qj/2
(3.6)

where the secular frequency is very nearly νj ' µjΩRF /2 and the characteristic exponent is

nearly µj '
√

aj + q2
j/2 [80]. Then choosing xj = (x0/2){uj(t) + u∗j (t)} yields a quasiperi-

odic ion trajectory that satisfies the boundary conditions xj(0) = x0 and ẋj(0) = 0. In this

limit the radial motion may be decomposed into two components: a slow large-amplitude

secular motion that oscillates at νj , and a superimposed small-amplitude micromotion that

oscillates at the RF drive frequency. Figure 3.1 plots a typical radial trajectory of a trapped

ion, illustrating both the secular motion and superimposed micromotion oscillations.

3.1.2 Quantum-mechanical treatment

A proper description of an ion-trap quantum computer requires a quantum mechanical treat-

ment of ion motion. The axial component of the motion is harmonic and is described by a

simple oscillator. An exact quantum solution of the radial components shows that in certain

limiting cases the motion can be separated into slow, large-amplitude oscillations at the sec-

ular frequency νj and fast micromotion oscillations at ΩRF . In a certain interaction frame

the radial modes may be thought of as simple harmonic oscillators with a time-dependent

phase related to the micromotion [82]. We will follow an elegant approach described by Roy

Glauber [83] which cleverly constructs a radial phonon annihilation operator from Floquet

solutions uj(t) and u∗j (t).

The motion along a radial axis is described by the Hamiltonian,

Hj(t) =
p2
j

2m
+

1

2
mω2

j (t)x
2
j (3.7)

where ωj(t) = ΩRF
2 {aj − 2qj cos(ΩRF t)}1/2 can be thought as a time-varying harmonic

oscillator frequency. Using the Ehrenfest theorem we derive an equation of motion for the

position operator, ẍj+ω
2
j (t)xj = 0, which is a quantum-mechanical analogue of the Mathieu

equation (3.3). Therefore we assume a solution of the form xj(t) = Auj(t) +Bu∗j (t).

Since uj(t) and u∗j (t) are linearly independent, in general the solution xj(t) is inde-

pendent of uj(t) or u∗j (t) but not both. We may apply Abel’s identity or show by direct
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computation that the Wronskian W (uj(t), uj(t)
∗) = uj(t)u̇j(t)

∗ − uj(t)∗u̇j(t) = 2iνj is a

constant. Similarly if we assume xj(t) and uj(t) are both linearly independent solutions of

the Mathieu equation (3.3) the operator

bj(t) = bj(0) = i

√
m

2~νj
{uj(0)ẋj(0)− xj(0)u̇j(0)} (3.8)

is proportional to the Wronskian W (uj(t), xj(t)) and is also constant in time. Inserting

uj(0) = 1 and u̇j(0) = iνj along with ẋj = pj/m into (3.8) yields

bj =

√
1

2~νjm
{mνjxj(0) + ipj(0)}, [bj , b

†
j ] = 1, (3.9)

which we immediately recognize as a boson annihilation operator. Then by solving for

xj(0) =
√
~/2mνj{b†j +bj} and comparing to our trial solution for xj(t), it is simple to infer

the general solutions for the position and momentum operators

xj(t) =

√
~

2mνj
{bju∗j (t) + b†juj(t)}, pj(t) =

√
~m
2νj
{bj u̇∗j (t)− b

†
j u̇j(t)}. (3.10)

The radial modes behave similarly to a quantum harmonic oscillator, now with the sim-

ple periodic motion replaced with a quasiperiodic orbit. For most calculations, we may

substitute the radial mode with a simple harmonic oscillator at the secular frequency [80].

3.1.3 Experimental implementation

A quantum computer should be scalable to many qubits and implement two-qubit entangling

gates between arbitrary qubit parings. In one possible architecture [21], ion qubits are held

in separate trapping wells and are transported to interaction regions, where two trapping

wells are merged and laser pulses entangle ion qubit pairs using common motional modes

(see section 3.3.3). This scheme requires fine control of the positions of many ions, and trap

geometries compatible with ion reordering [84].

Microfabricated surface-electrode traps meet these requirements [22, 28, 30, 85]. In these

traps, electrodes lie in a common plane and produce a local quadrupolar field above the

surface of the trap. We use a five-wire electrode geometry which is related to the traditional

three-dimensional quadrupole geometry by a certain conformal map [86]. The DC electrode

“wires” are segmented into individually controllable electrodes which are biased to create
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Figure 3.2: Trapping region of the GTRI Gen II surface-electrode trap.

several trapping wells in a single device. Ion transport along the trap axis is achieved by

smoothly adjusting the DC potentials [31, 34, 85]. A similar procedure can merge or separate

trapping wells. Microfabrication techniques allow the construction of many identical traps,

and also permit complicated geometries with junction elements for ion reordering.

Figure 3.2 shows the trapping region of a microfabricated surface-electrode ion trap de-

veloped locally at GTRI [32]. Our traps are fabricated from three sputtered 99% Al / 1% Cu

layers separated by insulating SiO2 films. The lowermost aluminum layer forms a ground

plane that prevents RF electric fields from penetrating into the lossy Si substrate. We litho-

graphically pattern a second metal layer to form trapping electrodes, electrode leads, and

bottom plates of integrated capacitive RF filters that shield the DC wires from unwanted

RF pickup. The topmost aluminum layer forms a second ground plane and serves as the

top plates for the on-chip ' 60 pF capacitors. Some trap designs feature large DC “rota-

tion electrodes” fabricated from this layer. These electrodes are typically used to adjust

the orientation of the radial motional axes relative to the trap plane for efficient Doppler

cooling. The topmost layer is removed from a portion of the trapping region, exposing

the underlying trapping electrodes. Each trap design uses a similar fabrication process,

described in detail in section 8.2.
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3.1.3.1 Electrical connections for trap electronics

Our RF source is an amplified signal generator which we filter using a Q ' 60 helical

resonator. Modest RF potentials (VRF ∼ 100 V peak-to-peak, ΩRF ' 2π × 50 MHz for

40Ca+) provide strong radial confinement, achieving secular frequencies of about νx,y '

2π × 5 MHz. DC voltages of about VDC ≤ 10 V achieve axial secular frequencies around

νz ' 2π × 1 MHz.

We apply DC potentials using a system of independent digital-to-analog converters

(DACs) which update in parallel during ion transport1. Typically, we update DAC voltages

at 500 kHz and trigger the start of a transport event with a transistor-transistor logic

(TTL) pulse controlled by a field-programmable gate array2 (FPGA) which serves as the

experiment scheduler (see section 3.2.4.3). The DC voltages are filtered using low-pass

Butterworth filters with a corner frequency of 2π×40 kHz. The filters both smooth transport

potentials and suppress noise pickup on the DC lines. Transport potentials are created from

DC potential sets that produce an axial well at a regular interval (typically every 10 µm)

throughout the trap. Intermediate locations are handled by linearly interpolating DC values

between neighboring potential sets.

A network of traces route electrical connections from the trap electrodes to bondpads

at the edge of the die. After dicing, each trap fits on a 11× 11 mm2 chip. We mount chips

to a 100-pin ceramic pin grid array3 (CPGA) carrier with a 1.2 mm thick slotted alumina

spacer with 80% Au / 20% Sn solder. The spacer raises the height of the chip surface above

the CPGA edge to ensure laser access. We use a wirebonder to wedge-bond two redundant

25 µm diameter Al wires connecting the chip bondpads to the CPGA.
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Figure 3.3: A vacuum apparatus for surface-electrode traps. The ion trap is mounted onto
a 100-pin CPGA which plugs into a socket underneath the imaging viewport. The socket
routes 96 independent DC connections to four 25-pin D-subminiature feedthroughs, and the
RF connections to a feedthrough attached to the helical resonator. A feedthrough provides
electrical connections for the Ca or Yb ovens. Six AR-coated windows provide laser access.
A five-way cross attaches an ion gauge for pressure readout, a titanium sublimation pump,
and a 55 L/s ion pump. The vacuum system achieves pressures below 10−11 torr.
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3.1.3.2 Vacuum chamber for surface-electrode traps

Figure 3.3 shows an ultra-high vacuum (UHV) chamber used in ion trapping experiments.

The ion-trap CPGA plugs into a socket interface housed in a 4.5” diameter spherical oc-

tagon4 near the top of the chamber. Six octagon ports attach anti-reflection (AR) coated

windows5, providing three laser axes parallel with the trap surface. We use the large view-

port6 directly above the CPGA for camera access. The socket routes electrical connections

to various feedthroughs in the vacuum chamber. The socket connects 96 independent DC

pins to two separate 2× 25 pin CF-flange feedthroughs via Kapton c© coated wires. A pair

of wires connect the RF pins to a feedthrough attached to an octagon port. A second

feedthrough provides a DC ground which connects via a wire to a mesh ground shield as-

sembly that clips onto the CPGA. The ground shield surface is 4 mm above the trap surface,

and protects trapped ions from stray electric fields.

The ground shield feedthrough also provides electrical connections for neutral atomic

beam ovens used during ion loading. The ovens are mounted to the socket assembly behind

the ion-trap. During loading, neutral flux passes from the backside through a loading

slot that pierces the trap substrate [85, 87]. The backside loading arrangement avoids

coating trap surfaces with neutral atoms. Above the trap surface, atoms pass through two

intersecting laser beams which eject an electron via a resonant two-photon process. The

photoionization process is isotopically selective, and we deterministically load a particular

isotope by adjusting the laser frequency.

Low pressure is required to avoid ion loss from collisions with residual background

gas. We use a 55 L/s ion pump7 and an auxiliary titanium sublimation pump8 to achieve

pressures below 10−11 torr. In practice, the titanium sublimation pump is only used during

the last stages of chamber bakeout or to clean the chamber after several months of use.

1National Instruments, NI PXI-6733
2Xilinx, Spartan 3E
3Spectrum semiconductor materials, CPG 10039
4Kimball physics, MCF450-SphOct-E2A8
5Kurt J. Lesker, VPZL-133
6Kurt J. Lesker, VPZL-450
7Varian, StarCell 55
8Varian, 916-0009
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The pumping section of the chamber attaches via a five-way cross, which also houses a

hot-filament ion gauge for monitoring the pressure during bakeout.

3.2 Internal degrees of freedom

Ion-trap quantum computers store information in the internal states of trapped atomic ions.

In this section we describe the internal structure of trapped-ion qubits, the process of qubit

initialization and readout, and the laser systems used to control atomic ions.

3.2.1 Choosing an ion

An appropriate ion should have a strong closed optical transition for laser cooling, qubit

state initialization, and for fluorescence readout. In practice this requires an ion with a

single valence electron, typically alkaline-earth metals (Be+, Mg+, Ca+, Sr+, and Ba+)

or certain transition metals (Zn+, Cd+, Hg+, and Yb+) [88]. Although multiply ionized

species may work in principle, most require transitions in the deep UV outside the current

range of laser and detector technologies. In addition to a cooling transition, an ion should

have a pair of long lived states to serve as a qubit. Practically speaking, this requires

two metastable states not coupled by an electric dipole transition. However, to perform

gates we must control qubits through some coherent process, such as an optical quadrupole,

microwave, or perhaps Raman process. In this thesis, we use both 40Ca+ ions and 171Yb+

ions as physical qubits.

3.2.2 The 40Ca+ qubit

Figure 3.4 shows the electronic structure of the 40Ca+ ion. We select two metastable states,

|1〉 = (2S1/2, mJ = −1/2) and |0〉 = (2D5/2,mJ = −5/2) to represent a qubit. A weak

magnetic field (typically |B| ' 0.4 mT) lifts the degeneracy of Zeeman sublevels and serves

as a quantization axis. Decay from the metastable 2D5/2 manifold is slow since the transition

back to the ground state is forbidden by dipole selection rules. Therefore, this choice of

qubit states forms an acceptable quantum memory [89].

We use an external-cavity diode laser9 (ECDL) at λ = 397 nm to address the strong

9Toptica, DL 100. We use this model for all lasers except for the 423, and 729 nm lasers.
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Figure 3.4: Electronic structure of the 40Ca+ ion. (a) Laser configuration for Doppler
cooling, fluorescence measurement, and optical pumping into the |1〉 = (2S1/2, mJ = −1/2)
qubit state. Ions are cooled and imaged using the 397 nm 2S1/2 → 2P1/2 transition. A
repump laser at 866 nm prevents trapping in the metastable 2D3/2 level. (b) Laser configu-
ration for qubit operations. A narrow linewidth 729 nm laser drives an electric quadrupole
transition between |1〉 → |0〉 = (2D5/2,mJ = −5/2).
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2S1/2 → 2P1/2 transition during Doppler cooling [90], state preparation, and qubit state

detection [91]. The Doppler cooling 397 nm beam is unpolarized to avoid pumping the ion

into a dark Zeeman sublevel of the 2S1/2 manifold. Once excited to 2P1/2, the ion quickly

decays into the 2S1/2 or the metastable 2D3/2 state with a branching ratio 18:1. To prevent

population trapping in the metastable state, a second ECDL at λ = 866 nm repumps along

2D3/2 → 2P1/2, effectively closing the cooling cycle. Sideband cooling uses a third ECDL

at λ = 854 nm that drives the 2D5/2 → 2P3/2 transition [92, 93].

Qubit state preparation uses a similar arrangement of lasers. We use a second σ̂−

polarized 397 nm state-preparation beam along with the 866 nm repump beam to initialize

the qubit state by optical pumping [94]. As the ion scatters photons it eventually decays

into |1〉, which is dark to this choice of polarizations. We calibrate the state preparation

by monitoring the scattered fluorescence signal with a photomultiplier tube10 (PMT) as a

function of optical pumping time.

We use a narrow linewidth (γ ' 150 Hz) laser11 to drive the 2S1/2 → 2D5/2 electric

quadrupole transition at λ = 729 nm. We resolve spectral lines corresponding to transitions

between individual magnetic sublevels, including the ∆mJ = −2 transition that couples the

qubit states |1〉 → |0〉. By driving the qubit transition we may selectively transfer population

between the qubit states, implementing quantum gates. This subject is treated in detail in

section 3.3.

Qubit readout uses a state-selective fluorescence measurement to discriminate between

“bright” and “dark” qubit states. We apply the unpolarized 397 nm beam with the 866 nm

repump and record the number of 397 nm photons that arrive at a PMT during a detection

interval (typically between 400 µs and 1 ms). The qubit decoheres (that is, collapses in the

Copenhagen interpretation) and we observe two outcomes: either the ion scatters very few

photons and the qubit is in |0〉 or the ion scatters many photons and the qubit is in |1〉. By

repeating a measurement many times (typically n = 400) for the same qubit preparation,

we extract a population from the fraction of measurements which observe a particular state.

10Hamamatsu, H7360-02
11New Focus 7004 slave laser injection locked to a stabilized Toptica DL 100
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3.2.3 The 171Yb+ qubit

Figure 3.5 shows the electronic structure of the 171Yb+ ion. This isotope has a nuclear

spin I = 1/2 which introduces hyperfine structure when coupled with the electronic angular

momentum. The qubit uses two hyperfine “clock” states on the 2S1/2 ground state manifold,

|0〉 = (2S1/2, F = 0,mF = 0) and |1〉 = (2S1/2, F = 1,mF = 0), where F = I+J is the total

angular momentum. Again we use a weak magnetic field to split magnetic levels and to act

as a quantization axis. At zero magnetic field, the splitting between the qubit levels is first-

order insensitive to magnetic field noise [95], providing the qubit with excellent information

storage properties. Recent experiments have demonstrated qubit coherence times exceeding

several seconds in this system.

The hyperfine interaction introduces a splitting on the order of a few GHz between

states with differing total angular momentum quantum numbers. This hyperfine splitting

further complicates laser cooling, since sufficiently narrow lasers frequently address only one

angular momentum sub-manifold at a time. To simultaneously address multiple angular

momentum states, we use a system of electro-acoustic modulators (EOMs) to produce

frequency sidebands on the main laser frequency. Then, by selectively switching EOMs

we may prepare our lasers for Doppler cooling, qubit initialization, or qubit readout. Our

system closely follows the design of Olmschenk et al. [95].

The laser configuration for Doppler cooling is shown in figure 3.5a. We cool the ion

using an unpolarized beam from an ECDL9 at λ = 369 nm to address the 2S1/2 (F = 1)→
2P1/2 (F = 0) transition. A second-order frequency sideband produced by the 7.37 GHz

“Doppler cooling” EOM12 drives the 2S1/2 (F = 0) → 2P1/2 (F = 1) transition. Once

excited to 2P1/2, the ion decays to 2S1/2 or to 2D3/2 with a branching ratio of 200:1. To

prevent population trapping in the metastable 2D3/2 level, we use an unpolarized repump

laser at λ = 935 nm to drive the 2D3/2 (F = 1)→ 3[3/2]1/2 (F = 0) transition and return the

ion to 2S1/2 (F = 1) by radiative decay. A second “repump” EOM13 at 3.07 GHz produces

a frequency sideband on the 935 nm laser that drives the 2D3/2 (F = 2)→ 3[3/2]1/2 (F = 1)

12New Focus, 4851
13New Focus, 4431
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Figure 3.5: Electronic structure of the 171Yb+ ion. Laser configurations for (a) Doppler
cooling, (b) state preparation, and (d) qubit detection by a fluorescence measurement.
Solid lines designate transitions driven by a central laser frequency, while dashed lines are
transitions driven by sidebands introduced by an EOM. Curved lines mark states linked by
a decay process. Ions are imaged and cooled using the 369 nm 2S1/2 → 2P1/2 transition.
A repump laser at 935 nm prevents population trapping in 2D3/2. (c) During gates a
12.64 GHz microwave field drives the magnetic dipole transition between |0〉 → |1〉.
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transition and returns the ion to the 2S1/2 (F = 0) or F = 1 states after emitting a photon.

This choice of laser frequencies avoids the production of dark states that trap population

and shut off the Doppler cooling process.

Qubit state preparation uses a similar arrangement of lasers (figure 3.5b), only now we

switch off the “Doppler cooling” EOM and instead modulate the 369 nm beam with an

independent 2.10 GHz “state preparation” EOM13, producing a frequency sideband that

drives the 2S1/2 (F = 1)→ 2P1/2 (F = 1) transition. The 935 nm repump beam and EOM

are still applied. As the ion scatters photons it eventually decays into |0〉 and becomes

dark. Similar to state preparation in 40Ca+, we calibrate the optical pumping time (usually

τpump = 4 µs) by monitoring the scattered fluorescence signal with a PMT.

Quantum gates require an interaction that couples the qubit states. For hyperfine qubits,

this coupling is usually provided by a controlled microwave field, or by a pair of Raman

lasers tuned so that the difference frequency is near the hyperfine splitting. We currently

use the former method; a 12.64 GHz microwave field resonantly drives the 2S1/2 (F = 0)→
2S1/2 (F = 1) magnetic dipole transition (figure 3.5c). By tuning the microwave frequency

and polarization, we resolve spectral lines corresponding to transitions between individual

magnetic sublevels, and can selectively drive the ∆mF = 0 qubit transition.

Qubit readout uses a laser arrangement (figure 3.5d) where the 369 nm and 935 nm

EOMs are all shut off [95, 96]. The resulting configuration selectively scatters 369 nm

photons when the ion is prepared in the 2S1/2 (F = 1) manifold, which includes the |1〉

qubit state. Resonant photon scattering events only occur by driving the ion through

F = 0 excited states. Since transitions between two F = 0 states are forbidden by angular

momentum selection rules, the ion cannot decay into the dark qubit state |0〉 = 2S1/2 (F =

0,mF = 0). We record the number of 369 nm photons counted by a PMT during a detection

interval (again, typically between 400 µs and 1 ms). For a general qubit preparation we

observe two outcomes: either the ion scatters many photons and the qubit is in |1〉, or the ion

is dark and the qubit is in |0〉. By repeating a measurement several times for a given qubit

preparation, we extract a population fraction and a standard error for the measurement.
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Figure 3.6: Schematic of the 369 nm laser system for 171Yb+. A polarizing beam splitter
picks off a portion of the beam (P ∼ 100 µW) for the transfer cavity and wavemeter. The
transmitted beam is modulated by a 200 MHz AOM in the double pass configuration, and
two EOMs which produce frequency sidebands to address hyperfine structure. The beam
is sent to the experiment via a polarization-maintaining optical fiber.

3.2.4 Experimental laser control

3.2.4.1 Frequency stabilization

Ion-trap quantum computers require stable laser sources for ion loading, cooling, qubit

initialization and control. We use three methods for frequency stabilization. For coarse

frequency control, we use a wavemeter14 to monitor the laser frequency to a quoted 3σ ≤

60 MHz accuracy. A simple software lock generates a feedback signal that stabilizes the

laser frequency by modulating the ECDL piezo voltage. Our resonant λ = 399 nm laser for

171Yb+ photoionization is stabilized using this method.

Lasers for Doppler cooling and repumping require more accurate frequency control. We

align an unstable laser to a low finesse F ≤ 100 transfer cavity referenced to a stabilized

HeNe laser15 with a maximum frequency drift 1 MHz/hr [97, 98]. We monitor the transmis-

sion of light through the cavity while scanning the cavity length over a HeNe free-spectral

range. Then, by locking the relative positions of the transmission maxima by feedback to

14High Finesse, WS-7
15Research Electro Optics, 32732
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the ECDL piezo voltages, we map the stability of the reference laser to the locked lasers.

The 397, 423, 866, and 854 nm lasers for 40Ca+ are locked to a common cavity; an identical

cavity locks the 369, and 935 nm 171Yb+ lasers. Figure 3.6 illustrates the 369 nm laser

system, including the transfer lock cavity. We routinely stabilize our lasers to better than

≤ 5 MHz using this method.

The stability requirements are most severe for the 729 nm qubit logic laser used in

40Ca+. We lock the 729 nm laser using the Pound-Drever-Hall method [99] to an external

ultra-low expansion (ULE) high finesse cavity F ≤ 105 purchased from Advanced Thin

Films. We achieve a 729 nm laser linewidth of about 150 Hz.

3.2.4.2 Rapid laser switching and control

Fast laser switching, power, phase, and frequency control is achieved using a system of

acousto-optic modulators16 (AOMs). The AOMs impart a frequency and phase shift on the

laser which depends on an RF drive signal. For these applications we use reprogrammable

direct-digital synthesizers17 (DDSs) as an RF frequency source (ωRF ' 2π × 200 MHz).

Then by adjusting the digital RF signal, we achieve control of laser pulses. The 397, 854,

and 729 nm lasers for 40Ca+ are controlled using AOMs. For 171Yb+ only the 369 nm laser

uses an AOM. Typically the AOMs are set up in the double-pass cat-eye configuration to

avoid beam steering issues.

3.2.4.3 Experiment timing and pulse control

We require a timing system to control laser pulses, ion transport DACs, PMTs and other

measurement devices. The pulse control system consists of two parts: a scheduler responsi-

ble for triggering events and recording results, and a controller for the DDS boards used to

modulate laser pulses. The heart of the system is a Spartan 3E FPGA, which we access using

a breakout board18. The FPGA stores an instruction set (pulse program) which schedules

experimental events. During an experiment, the FGPA sequentially triggers devices using

carefully timed TTL pulses. One input pin receives signal from the PMT, allowing for the

16Brimrose, TEM 200-50
17Analog Devices, AD-9910
18Sparkfun, DEV-08458
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FPGA to record the number of detected photons during a qubit measurement event. The

FPGA is clocked at 50 MHz.

The FPGA also controls the DDS sources using a high-speed serial port to reprogram

the DDS amplitude, frequency, and phase. A TTL pulse triggers the DDS board to switch

the generated RF signal. The DDS programming occurs in about 1 µs. To avoid this delay,

we sometimes store the parameters for multiple pulses in the DDS on-board memory. In

this mode of operation, the DDS switches between up to four pre-programmed settings. The

DDS internal clock runs at 1 GHz; this clock signal is divided by 16 and sent to the FPGA

to synchronize events. Some applications require multiple synchronized DDS sources; in

these cases the output of a single “master” DDS clock is sent to a clock distribution board,

where it is routed to synchronize multiple “slave” DDS boards.

3.2.5 Experimental microwave control

We currently use 12.64 GHz microwaves to drive qubit gates in 171Yb+. Our system uses two

independent microwave fields, which we interfere near the ion to achieve polarization control

(see section 6.1.3). A signal generator19 provides a stable microwave source approximately

300 MHz blue-detuned from the qubit transition frequency. The signal is split to supply

the local oscillator inputs to two frequency mixers. The intermediate frequency signals

are provided by two synchronized DDS signals at 300 MHz. The mixers reject the carrier

frequency and produce sidebands spaced by the DDS signal frequency. One sideband is

tuned to match the qubit frequency, while the other is far off resonance. Each microwave

signal is amplified using a high-power microwave amplifier20 and delivered to the experiment

via low-loss coaxial cables.

3.3 Quantum logic gates

Here we discuss the application of quantum gates using a near-resonant laser or microwave

field. Ions experience momentum kicks during the absorption and emission of photons. In

certain cases, this effect may be used to achieve quantum control of both the motional and

19Agilent, 83623B
20Mini-Circuits, ZVE-3W-183+
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internal states of atomic ions. Section 3.3.1 describes the ion–laser interaction. Sec. 3.3.2

describes single-qubit gates. Sec. 3.3.3 describes multi-qubit gates which rely on shared

motional modes to entangle ions.

3.3.1 The ion–laser interaction

The system we consider is a chain of ions trapped in a common harmonic potential well.

For simplicity, we consider only the qubit transition and treat each ion as a two level

system. Due to mutual Coulomb repulsion, the motions of individual ions in the chain

are coupled; however, the total motion can be decomposed into a set of orthogonal modes

which act as independent oscillators. An appropriate Hamiltonian for the ion chain is

H ′ =
∑

iHi +
∑

j Hj where Hi = ~ωiZi/2 is the internal Hamiltonian of the ith ion and

Hj = ~νj(b†jbj + 1/2) describes the jth collective motional mode. Under evolution by H ′

the internal states of the qubits do not become entangled with the motion.

We apply a laser to address the qubit transition during quantum gates. The laser is

described by a single-mode traveling plane wave which couples to internal states of each

ion. In the laboratory frame the net Hamiltonian is

H = H ′ + ~
∑
i

Ωi

(
σi + σ†i

)
cos (k · xi − ωt− φ) (3.11)

where σi = |1i〉〈0i| is the qubit lowering operator, xi = (xi, yi, zi) is the Cartesian coordi-

nate, and Ωi is the Rabi frequency of the ith ion [80, 100]. By choosing an interaction frame

generated by H ′ and applying the rotation-wave approximation we may rewrite (3.11) as

HI =
~
2

∑
i

Ωiσ
†
i e−i(ω−ωi)t e−iφ eiχi + h.c., (3.12)

where now the spatial dependence is carried by the operator χi = (U ′)†k · xi(U ′) and the

normal oscillator terms in the transformation propagator U ′ = exp(−iH ′t/~) modify the

ion coordinate terms. If it were not for the interaction provided by χi the qubits in (3.12)

would remain uncoupled.

Observe that the ion coordinate x` may be written in terms of the oscillator normal

modes by a linear transformation x` =
∑

j Q`jqj . Also, we may replace qj = λj(bj + b†j),

where the lengthscale λj =
√
~/2mνj corresponds to the width of the ground-state oscillator
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wavefunction. These substitutions allow the transformation χi = (U ′)†k·xi(U ′) to be carried

out analytically. The result is

χi =
∑
j

ηij

(
bje
−iνjt + b†je

iνjt
)
, (3.13)

where ηij =
∑

` k`Q`jλj , called the Lamb-Dicke parameter, is proportional to the overlap

of the photon wavevector k with the jth oscillator mode. The Lamb-Dicke parameter sets

the rate of momentum exchange between the laser field and the motional modes of the ion

chain. In typical experiments on 40Ca+ qubits, where qubit operations use the 729 nm

electric quadrupole transition, the Lamb-Dicke parameters are on the order of ηij ∼ 10−2

to 10−1. However, for gates in 171Yb+ the momentum carried by free-space microwave

photons is much lower, yielding Lamb-Dicke parameters on the order of ηij ∼ 10−6.

3.3.1.1 The Lamb-Dicke regime

The Hamiltonian (3.12) describes the complete set of interactions we may apply to an ion

chain using a single laser beam; however, it can be cumbersome to use. Fortunately, an exact

treatment is often unnecessary. The Hamiltonian is considerably simplified if the exp(iχi)

term is replaced with a perturbative expansion in powers of the Lamb-Dicke parameters,

eiχi = 1 + i
∑
j

ηij

(
bje
−iνjt + b†je

iνjt
)

+

−
∑
jk

ηijηik
2

(
bje
−iνjt + b†je

iνjt
)(

bke
−iνkt + b†ke

iνkt
)

+O(η3
ij). (3.14)

The phonon coupling introduces frequency sidebands spaced by integer multiples of the

mode frequency from the qubit transition frequency. If the spectral line is sufficiently narrow

to resolve the motional sidebands (see figure 3.7), we may tune the laser to resonantly drive

a particular interaction, while off-resonant terms oscillate rapidly and contribute negligibly

to the dynamics. When considered with the Hamiltonian (3.12) we identify three classes of

spectral components.

Carrier transitions: When ω = ωi the laser is resonant with the qubit transition. The

carrier transition closely resembles the qubit transition for a free (untrapped) ion, with

only minor second-order corrections to account for motional effects. Fast oscillating terms
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Figure 3.7: Spectrum of the qubit transition for a single 40Ca+ ion with resolved axial
sidebands. In this experiment, Ωi = 2π× 96 kHz, νz = 2π× 1.37 MHz, and ηiz = 0.18. The
radial sidebands are at νx = 4.70 MHz and νy = 5.46 MHz and are outside the range of the
scan.

in (3.14) average out, leaving only terms which preserve the total phonon number. This

averaging simplifies the Hamiltonian to

HCarrier =
~
2

∑
i

(
Ω̃iσie

iφ + Ω̃†iσ
†
i e
−iφ
)
, (3.15)

where the effective Rabi frequency

Ω̃i = Ωi − Ωi

∑
jk

ηijηik
2

(
bjb
†
ke

i(νk−νj)t + b†jbke
i(νj−νk)t

)
+O(η4

ij) (3.16)

now depends on the motional state of the ion chain. The second-order terms in (3.16) either

swap phonons between modes (j 6= k) or preserve the current occupations (j = k).

It is also apparent that “hot ions” with a high motional quantum number evolve with

a slower effective Rabi frequency. For example, for a single mode in the motional ground

state the effective Rabi frequency is 〈Ω̃i〉 = Ωi(1 − η2
ij/2); however, with n phonons the

Rabi frequency is 〈Ω̃i〉 = Ωi(1 − η2
ij(n + 1/2)). Of course in general, the ion chain does

not exist in a state with well-defined phonon numbers in each mode, rather it exists in a

superposition. In these states each component of the motional wavefunction rotates at a

slightly different Rabi frequency, leading to a destructive interference known as motional

dephasing. This destructive interference becomes an important source of error in quantum

computing experiments.
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To avoid motional dephasing and other negative effects, most quantum gates are per-

formed in the Lamb-Dicke regime where η2
ij(2〈n〉 + 1) � 1. This represents the domain

where the motional wavepacket is much smaller than the wavelength of the laser light, and

where second-order and higher motional contributions are negligible. Typically the Lamb-

Dicke regime is reached by sideband cooling the ion chain to the motional ground state or

by using a laser arrangement where the Lamb-Dicke parameters are small.

Red sidebands: The motion of the ion chain induces sidebands on the main carrier

transition, separated in frequency by integer multiples of the mode secular frequency νj .

When ω = ωi − νj the laser is resonant with the first-order red motional sideband and the

Hamiltonian (3.12) simplifies to

HRSB = −i
~
2

∑
ij

Ωiηij

(
σib
†
je

iφ − σ†i bje
−iφ
)

+O(η3
ij). (3.17)

This is identical to the well-known Jaynes-Cummings Hamiltonian from quantum optics [101,

102]. The red-sideband interaction coherently exchanges quanta between the qubit states

and the phonon modes. For example, σib
†
j lowers the internal state of the ith qubit through

stimulated emission while simultaneously creating a phonon in the jth motional mode, while

σ†i bj performs the inverse process.

Blue sidebands: When ω = ωi+νj the laser is resonant with the first-order blue motional

sideband and (3.12) simplifies to

HBSB = −i
~
2

∑
ij

Ωiηij

(
σibje

iφ − σ†i b
†
je
−iφ
)

+O(η3
ij). (3.18)

The blue-sideband interaction also entangles the qubit with its motional state. The term

σibj simultaneously lowers the states of the ith qubit and the jth motional mode, while

σ†i b
†
j performs the inverse operation.

3.3.2 Single-qubit gates

How should the laser amplitude, phase, frequency, and orientation be modulated to produce

a particular unitary gate? We may think of this as a quantum control problem. Consider

a laser which illuminates a single ion, either by tightly focusing the beam or by moving
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the ion to an interaction region with a local beam. If the laser is resonant with the carrier

transition, the system evolves according to the Hamiltonian

H =
~Ωk

2
(Xk cosφ+ Yk sinφ), (3.19)

where Xk = σk +σ†k and Yk = i(σk−σ†k) are Pauli operators and the label k corresponds to

the addressed qubit. We may write (3.19) in the bilinear form H = ~uµHµ, with the controls

ux = Ωk cosφ, uy = Ωk sinφ and spin operators Hµ ∈ {Xk/2, Yk/2}. The spin operators

generate the Lie algebra su(2) by repeated application of the Lie bracket. Therefore any

single-qubit operator U ∈ SU(2) can be produced by adjusting the laser phase. Since

adjusting the laser amplitude scales the controls equally, it is not possible to produce an

arbitrary single-qubit gate by modulating the amplitude alone.

Suppose the laser could be steered to individually address each ion in the chain, or

equivalently suppose each ion may be separated and delivered to an interaction region.

Then on each ion, we may perform an arbitrary single-qubit gate. This corresponds to the

Lie group
⊗

i SU(2), where the index i runs over the ions in the chain.

We denote single qubit rotations as Rk(θ, φ) = exp(− iθ
2 (Xk cosφ + Yk sinφ)), which

modifies the qubit state by rotating the Bloch vector by an angle θ about an axis Xk cosφ+

Yk sinφ in the Xk-Yk plane. For constant-phase pulses, θ =
∫ t

0 dt
′ Ωk(t

′) is proportional to

the pulse area. When there is no risk of confusion, we drop the qubit index k to simplify

notation.

3.3.3 Motional entangling gates

Several gates use motional modes as an “information bus” to entangle ions trapped in a

common well. Here we describe the Mølmer-Sørensen gate [103–105], which is commonly

used in quantum computing experiments since the gate fidelity depends weakly on the ion

temperature. The gate uses a laser pulse which returns the phonon modes to their original

state at the end of the operation. The Mølmer-Sørensen gate behaves like an effective

spin-spin coupling between qubits.

Consider a bichromatic laser beam with frequency components nearly resonant with
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the blue and red sidebands of a motional mode. This laser could be prepared by pass-

ing a beam through an AOM driven by two RF frequencies and combining the first-order

diffracted beams [105]. If we illuminate the ions with equal intensity and choose the fre-

quency components so that they are symmetrically detuned about the carrier transition,

e.g. ω± = ωi ± (νj + δ), then the system evolves according to the Hamiltonian,

H =
~Ωiηij

2

(
bje

iδt + b†je
−iδt
)
Sφ. (3.20)

Here Sφ = Sx sinφ − Sy cosφ, where Sx =
∑

iXi and Sy =
∑

i Yi are total spin operators

and we have simplified the analysis by neglecting off-resonant couplings to neighboring

transitions and other motional modes.

Propagation under (3.20) generates a spin-dependent displacement in the oscillator

phase space. Let γ(t) = −ie−iδt(Ωiηij/2) so that we may write the Schrödinger equa-

tion for the propagator as U̇(t) = (γ(t)b†j − γ∗(t)bj)SφU(t). This is easily solved using a

Magnus expansion (see section 2.2.3.2 for details). The solution is

U(t) = D(α(t)Sφ) exp(iΦ(t)S2
φ) (3.21)

where D(α) = exp(αb†j − α∗bj) is a displacement operator and

α(t) =

∫ t

0
dt′ γ(t′), (3.22)

iΦ(t) =
1

2

∫ t

0
dt′
∫ t′

0
dt′′ {γ(t′)γ∗(t′′)− γ∗(t′)γ(t′′)}. (3.23)

An exact solution is possible since all second-order commutators of the annihilation op-

erators are proportional to the identity, for instance [bj , b
†
j ] = 1. Therefore third-order

and higher commutators are identically zero and the Magnus expansion truncates after two

terms. Equivalently the Lie algebra for the annihilation operators h = span{bj , b†j}, called

the Heisenberg algebra, is nilpotent.

The displacement operator entangles the qubits to the ion motion, however the Mølmer-

Sørensen gate avoids this entanglement by choosing the laser pulse so that D(α(t)Sφ) = 1.

In particular if we apply (3.20) for a duration tf = 2πN/δ, where N ∈ {1, 2, 3, · · · } then
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α(tf ) = 0 and the total operation is

U(tf ) = exp

(
i
Nπ

2

(
Ωiηij
δ

)2

S2
φ

)
. (3.24)

During the gate α(t) traces a circular path in the harmonic oscillator phase space. The

direction α(t) orbits is conditioned by the spin operator Sφ. At tf , the paths return to

the origin and motional state returns to the original value, however the sign of the phase

enclosed by the paths now depends on the total spin.

3.4 Summary

Here we have described ion trapping and ion-trap quantum computing in detail. Paul traps

use an RF quadrupolar field to confine atomic ions; we employ microfabricated surface-

electrode traps since they permit complex electrode geometries compatible with ion shuttling

and rearrangement. The laser and pulse control systems required for quantum gates on

40Ca+ and 171Yb+ qubits were discussed. Also, we considered the interaction of laser

pulses with trapped atomic-ion qubits in the Lamb-Dicke regime, and showed how arbitrary

single qubit rotations could be achieved using focused laser pulses. The Mølmer-Sørensen

interaction generates an effective spin-spin coupling between ions. Later, we show that

universal quantum computation is possible using only pairwise spin-spin couplings and single

qubit rotations. In other words, the effective control Hamiltonians for these interactions

generate the n-qubit Lie algebra su(2n) by repeated Lie brackets.
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CHAPTER IV

THEORY OF COMPENSATING PULSE SEQUENCES

Ion-trap quantum computers require precision control of laser pulses during quantum gates.

In practice, our experiments are susceptible to systematic control errors, for instance errors

caused by a slow drift in the laser frequency or alignment. In this chapter we introduce com-

pensating composite pulse sequences, which relax these precision requirements by reducing

unknown but systematic errors. Section 4.1 describes a general model for systematic control

errors. In section 4.2 we identify a Lie-algebraic property which all compensating sequences

must satisfy. Section 4.3 considers common systematic errors in ion-trap computers.

4.1 Systematic control errors

Quantum computers use a set of controllable interactions to generate arbitrary unitary

gates. In section 2.2 we treated this problem with quantum control theory. Here we con-

sider a control problem where the objective is to produce a target gate UT by modulat-

ing a set of unitless control Hamiltonians {H1, H2, · · · , Hn} via a set of controls ~u(t) =

(u1(t), u2(t), · · · , un(t)). An acceptable set of controls satisfies U(~u; tf ) = UT , where

U(~u; tf ) is the propagator produced by applying the controls ~u(t) over the interval t ∈ [0, tf ).

There are many (infinite in most cases) controls which implement a target unitary trans-

formation [56]. Some controls may be robust under distortion by systematic errors.

Systematic errors arise from imperfect control. These errors are deterministic but un-

known to the experimenter. Suppose during an experiment an unknown systematic error

deforms the applied controls from ~u(t) to ~w(t). In these cases, it is appropriate to introduce

a deterministic model for the control deformation [106, 107].

Definition 5. A systematic error model is a set of maps {Fµ} of the form Fµ : (U n,R)→

U which transform an error-free control vector ~u ∈ U n and an error parameter ε ∈ R into

an imperfect control wµ = Fµ[~u; ε].
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Figure 4.1: Systematic errors induce deformations of the ideal control functions uµ(t) (solid
curves) to the imperfect controls wµ(t) = uµ(t) + εδuµ(t) (dashed curves).

The error model {Fµ} completely specifies the nature of the control deformation and the

functionals Fµ are chosen to model a physical error process [107]. The error parameter ε is

an unknown real number that parametrizes the magnitude of the error, so that when ε = 0

no error occurs. This construction may be generalized to the case of multiple systematic

errors by considering error models of the form Fµ[~u; εi, εj , . . . , εk].

Formally, we may perform the expansion

Fµ[~u; ε] = Fµ[~u; 0] + ε
d

dε
Fµ[~u; ε]

∣∣∣∣
ε=0

+O(ε2), (4.1)

then by the condition that when ε = 0 the control must be error free, it is trivial to identify

uµ(t) = Fµ[~u(t); 0]. Frequently, it is sufficient to consider models which are linear in the

parameter ε. In this case we introduce the shorthand notation δuµ(t) = d
dεF

µ[~u(t); ε]
∣∣
ε=0

and the corresponding vector ~δu(t) to represent the first-order deformation of the controls,

so that the imperfect controls take the form ~w(t) = ~u(t) + ε ~δu(t).

A natural question to ask is what effect systematic errors have on the evolution of the

system. In the presence of unknown errors, the error-free propagators U(~u; tf ) are replaced

with their imperfect counterparts U(~w; tf ) = U(~u+ ε ~δu; tf ), which may be regarded as an

image of the perfect propagator under the deformation of the controls [107]. If an error-

free propagator produces a particular gate, then in general the imperfect propagator only

approximates this operation. In our discussion it will be necessary to calculate the accuracy
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of approximate gates. We use the fidelity defined by

F(U, V ) = min
ψ

√
〈ψ|U †V |ψ〉〈ψ|V †U |ψ〉, (4.2)

where U, V ∈ U(n) are unitary operators. The minimization occurs over normalized states

in the associated Hilbert space H (n). The fidelity returns a real number in the range

0 ≤ F(U, V ) ≤ 1, with F(U, V ) = 1 if and only if V = eiφU where φ is a global phase.

This contrasts with other measures, such as the distance D(U, V ) = ||U − V ||HS , which

discriminate between global phases [35, 108]. The fidelity is the most common measure

used to evaluate gate accuracy in the quantum information community. Our interest lies in

producing extremely accurate gates. Sometimes we use the infidelity defined as 1−F(U, V )

as a measure of the strength of the residual error.

4.2 Compensating pulse sequences

It is obvious that imperfect pulses make accurate manipulation of a quantum state difficult.

One may be surprised to find that for some cases, the effects of errors on the controls

may be systematically removed, without knowledge of the amplitude ε. The method we

describe involves implementing a compensating composite pulse sequence which is robust

against distortion of the controls by a particular error model. In this context, we propose

the following definition of a robust control.

Definition 6. An nth-order robust control for an error model {Fµ} is a set of controls ~u∗

such that U(~u∗ + ε ~δu∗; tf ) = U(~u∗; tf ) +O(εn+1).

As an example, consider a case where an experimentalist would like to approximate the

target unitary UT , where at least one of the controls is influenced by a systematic error.

Suppose there exists an nth-order robust control such that U(~u∗+ε ~δu∗; tf ) = UT +O(εn+1).

The experimenter attempts to apply the ideal control ~u∗, however due to the systematic error

~u∗ + ε ~δu∗ is applied instead. Despite the error, the resulting propagator still approximates

the target operation up to O(εn+1), with the infidelity scaling as O(ε2n+2). The accuracy

of the approximation improves as the order n increases. No knowledge of ε is required on

the part of the experimenter.
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Definition 7. An nth-order fully compensating pulse sequence is a propagator U(~u∗; tf )

derived from an nth-order robust control ~u∗.

Compensating sequences have a long history in NMR spectroscopy [41, 109–112], where

they are frequently used to correct systematic errors in the control of nuclear spins. Most

compensating sequences implement state-to-state control and are unsuitable for quantum

computation. Sequences which implement unitary-control, meaning they produce a par-

ticular unitary gate rather than simply mapping two particular states to each other, are

called fully compensating. Only fully compensating sequences are appropriate for quantum

computation [113].

4.2.1 A fundamental property of fully-compensating sequences

Our approach is to transform the propagator into an interaction frame that moves with

the ideal trajectory. Let us define the interaction frame Hamiltonian H̃(t) = εδuµ(t)H̃µ(t),

where H̃µ(t) = U †(~u; t)HµU(~u; t) is the image of the control Hamiltonian under the frame

transformation; in some literature this is referred to as the toggling frame [114]. We regard

H̃(t) as a perturbation, and we associate the propagator Ũ(ε ~δu; tf ) as the particular solution

to the interaction-frame Schrödinger equation over the interval t ∈ [0, tf ). Then returning

to the original (qubit) frame, we have

U(~u+ ε ~δu; tf ) = U(~u; tf ) Ũ(ε ~δu; tf ). (4.3)

It follows that U(~u∗; tf ) is an nth order fully compensating pulse sequence if and only if

Ũ(ε ~δu∗; tf ) = 1 + O(εn+1). Quite generally, when a fully compensating pulse sequence is

transformed into the toggling frame the resulting propagator must approximate the identity

operation [106].

Our approach uses a Lie-algebraic picture to infer certain geometric properties of ro-

bust controls when viewed in the toggling frame. Recall from section 2.2.2 that the skew-

symmetrized control Hamiltonians {eµ = −iHµ} and other Hamiltonians generated by

repeated Lie brackets form a basis for the dynamic Lie algebra g. When we move to the

toggling frame the basis vectors are transformed as ẽµ(t) = U †(~u; t)eµU(~u; t). The vec-

tors {ẽµ} form a comoving coordinate system for g that moves with the ideal trajectory
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Figure 4.2: Movement of the toggling frame as seen from the qubit frame. The tog-
gling frame is comoving with u(t) but the basis vectors are rotated according to ẽµ(t) =
U †(~u; t)eµU(~u; t). In this illustration u(t) = 2 sin(t)ex + 2 cos(t)ey and {eµ} are the basis
vectors for su(2) described in section 2.2.2.2.

u(t) = uµ(t)eµ, see figure 4.2.

In the toggling frame any propagation is due to the systematic error alone. We identify

the vector path δ̃u(t) = δuµ(t)ẽµ(t) as the path associated with the systematic error viewed

in the interaction frame. Provided that the displacements εδ̃u(t) are sufficiently small

relative to the ideal controls, we may perform a Magnus expansion for the interaction frame

propagator,

Ũ(ε ~δu; tf ) = exp

( ∞∑
n=1

εnΩ̃n( ~δu; tf )

)
(4.4)

where the integration of the expansion terms is performed in the appropriate frame. Suppose

~u∗ is an nth order robust control, which requires Ũ(ε ~δu∗; tf ) = 1 +O(εn+1). It immediately

follows from (4.4) that this condition is satisfied for any ε if and only if the leading n-many

Magnus expansion terms {Ω̃1, Ω̃2, . . . , Ω̃n} simultaneously equal zero at tf .

This condition may also be understood in terms of geometric properties of vector paths

on the Lie algebra. For instance Ω̃1( ~δu∗; tf ) = 0 requires that

0 =

∫ tf

0
dt δ̃u∗(t), (4.5)

or equivalently, that the vector path δ̃u∗ forms a closed geometric figure on the interac-

tion frame Lie algebra [115]. The elimination of higher-order expansion terms will place

additional geometric constraints on the path which will depend on the structure of the

Lie algebra (i.e. the commutators between paths on the algebra) [107]. For instance in

su(2) the commutator is isomorphic to the vector cross product in R3, so in this algebra we
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Figure 4.3: Control geometry viewed in the toggling frame. The distortion δ̃u∗ forms a
vector path on the Lie algebra, here su(2). To cancel Ω̃1 the distorted control must form
a closed loop (left and right paths). One method to cancel Ω̃2 balances the signed areas
enclosed by the path (right path).

interpret the second-order term as a signed area enclosed by the path. One construction

which cancels Ω̃2 chooses a path that encloses regions of equal and opposite sign. Figure 4.3

illustrates paths which cancel Ω̃1 and Ω̃2 respectively.

This Lie theoretic method is a useful tool in determining whether a propagator generated

from a control is a compensating sequence; we may directly calculate the interaction frame

Magnus expansion terms in a given error model and show that they equal zero. The inverse

problem (i.e., solving for control functions) is typically much more difficult. In general, the

interaction frame basis vectors {ẽµ} are highly nonlinear functions of the ideal controls,

which impedes several analytical solution methods.

4.3 Systematic errors in ion-trap quantum computing experiments

In practice, systematic errors in the controls caused by instrumental limitations prohibit the

application of perfect quantum gates. We consider several models for errors in the controls of

an ion-trap quantum computer. Section 4.3.1 describes control errors in single-qubit gates.

Section 4.3.2 describes control errors in multi-qubit gates, such as the Mølmer-Sørensen

gate. Often compensating pulse sequences are optimized for one type of error, but provide

no advantage against a different type of systematic error.
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4.3.1 Error models for single-qubit gates

4.3.1.1 Addressing errors

Most single-qubit gates involve applying a tightly focused laser pulse resonant with the

qubit carrier transition in the Lamb-Dicke limit. In the ideal case, the laser illuminates

only a single ion and the Hamiltonian is given by Hk = ~Ωk
2 (Xk cosφ + Yk sinφ), where

the index k labels the addressed ion (see section 3.3.2). Frequently however neighboring

qubits are partially illuminated, which leads to an unknown but systematic error on the

unaddressed qubits. These addressing errors arise from poor beam focusing and laser

pointing instabilities [107, 116]. In this case, the Hamiltonian for the entire qubit chain is

Hk +
∑

j 6=kHj , and for the case of constant-phase pulses the entire unitary propagator may

be written in terms of tensor products of single-qubit rotations as

Rk(θ, φ)

∏
j 6=k

Rj(εjθ, φ)

 , (4.6)

where θ =
∫ tf

0 dt Ωk(t) is the angle of the rotation applied to the addressed qubit and

εj = Ωj/Ωk � 1 is the fractional Rabi frequency (proportional to laser amplitude) at the

jth unaddressed qubit. In this control problem the objective is to apply some non-trivial

rotation to the addressed qubit, while simultaneously suppressing unwanted rotations on the

unaddressed qubits. Sequences which perform this task are called narrowband [117, 118].

We also may write the Hamiltonian in bilinear form in terms of the control func-

tions {ux = Ωk cosφ, uy = Ωk sinφ} and Hamiltonians Hµ,k ∈ {Xk/2, Yk/2} and Hµ,j ∈

{Xj/2, Yj/2} as

H = uµHµ,k +
∑
j 6=k

εj (uµHµ,j) . (4.7)

We group all of the controls into a vector ~u = (uxk, u
y
k, · · · , u

x
j , u

y
j , · · · ) and require that in

the ideal case the controls for the unaddressed qubits are identically zero. From here it is

simple to identify an error model for the controls, summarized below

Fµk [~u; εj ] = uµ for addressed qubits,

Fµj [~u; εj ] = 0 + εju
µ for unaddressed qubits.
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From a mathematical point of view, addressing errors are simple to consider. Since rotations

on independent qubits commute, we may separate the dynamics and treat the evolution of

each qubit individually. On the addressed qubit the controls are applied perfectly. On

the unaddressed qubits the ideal controls are exactly zero (no operation takes place). This

implies H̃µ,j(t) = Hµ,j , and that the toggling and qubit frames are identical. We may

design a compensating sequence which corrects the systematic control distortion without

the added complication of the passage into the interaction frame.

4.3.1.2 Amplitude errors

A second source of systematic error arises from slow variations in the laser amplitude,

resulting in a small offset in the applied Rabi frequency. Frequently an experimenter adjusts

the laser pulses to match a calibrated Rabi frequency, here denoted by Ω′. If the actual

Rabi frequency Ω differs from the calibrated value then the qubit experiences a systematic

error. In this case, the Hamiltonian may be written as

H = (1 + ε)uµHµ, (4.8)

where {ux = Ω′ cosφ, uy = Ω′ sinφ}, the control Hamiltonians are similar as before, and

ε = (Ω/Ω′)−1 is an error parameter representing the magnitude of the systematic error. The

interaction produces the propagator R(θ(1 + ε), φ), where θ = Ω′tf is the intended angle

of rotation for the gate. Amplitude errors therefore result in systematic over or under-

rotations on the qubit. The objective in this control problem is to perform a non-trivial

rotation while suppressing systematic amplitude errors. Sequences which perform this task

are called broadband [117, 119]. Amplitude errors are represented by the error model,

Fµ[~u; ε] = uµ + εuµ, where µ ∈ {x, y}.

4.3.1.3 Detuning errors

Systematic errors may also arise in the control of the laser frequency. Usually single-qubit

operations use resonant laser pulses, which result in propagators that act as rotations in

the X-Y plane. If however the laser drifts off resonance then the Hamiltonian picks up a
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Z component and the qubit no longer rotates about the intended axis. We parametrize the

Hamiltonian as

H = uxHx + uyHy + εΩHz, (4.9)

where {ux = Ω cosφ, uy = Ω sinφ}, Ω is the Rabi frequency, and ε = (ω− ωi)/Ω is an error

parameter related to the ratio of the laser detuning to the Rabi frequency. For the case of

constant controls the Hamiltonian produces the propagator

U = exp

[
− iθ

2
(X cosφ+ Y sinφ+ εZ)

]
, (4.10)

where θ = Ωtf . This resembles the ideal rotation R(θ, φ), now with an extra Z component

that lifts the rotation axis out of the X-Y plane. The objective in this control problem is to

produce accurate gates despite an unknown laser frequency offset [110, 120, 121]. Detuning

errors are represented by the error model,

Fµ[~u; ε] = uµ for µ ∈ {x, y},

F z[~u; ε] = 0 + εΩ.

4.3.2 Error models for two-qubit gates

4.3.2.1 Spin-spin coupling (Ising) errors

Most multi-qubit gates generate an effective interaction that resembles a spin-spin coupling.

Some systematic errors introduce control distortions that resemble an offset in the effective

spin-spin coupling strength. The Mølmer-Sørensen gate produces the unitary propagator

U = exp(−iΦS2
φ) where

Φ =
Nπ

2

(
Ωη

δ

)2

, (4.11)

Ω is the Rabi frequency, η is the Lamb-Dicke parameter, and δ is the magnitude of the

detuning from the first-order sidebands, see section 3.3.3 for details.

For Mølmer-Sørensen gates there are two types of effective spin-spin coupling errors.

The first involves a systematic uncertainty in the Rabi frequency, similar to single-qubit

amplitude errors. Denote by Ω′ the calibrated Rabi frequency. Then the effective Hamilto-

nian may be written as H = Φ
tf

(1+ ε)2S2
φ, where ε = (Ω/Ω′)−1 is the same amplitude error
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parameter previously considered. Amplitude errors effect both single-qubit and multi-qubit

gates.

The second error involves miscalibration of the Lamb-Dicke parameter, perhaps arising

from an improperly aligned laser relative to the trap normal modes. Let η′ be the ideal

calibrated Lamb-Dicke parameter. Similar to the case of addressing errors, the effective

Hamiltonian may be written as H = Φ
tf

(1+ε)2S2
φ, where ε = (η/η′)−1 is an error parameter

related to the offset in the Lamb-Dicke parameter. However since this error does not depend

on the Rabi frequency, single-qubit gates are unaffected.

4.3.2.2 Addressing errors

Similar to single-qubit gates, the Mølmer-Sørensen gate also requires focused laser beams

that selectively illuminate a collection of addressed ions, here denoted as A . The laser

amplitudes are balanced such that every qubit in the addressed set evolves at the same

Rabi frequency Ω. Frequently however neighboring ions are partially illuminated, which

leads to an unknown but systematic error related to an unwanted entanglement between

the addressed qubits and unaddressed qubits. In this case the effective Hamiltonian is

H =
Φ

tf

∑
k∈A

(Xk sinφ− Yk cosφ) +
∑
j /∈A

εj(Xj sinφ− Yj cosφ)

2

, (4.12)

where εj = Ωj/Ω� 1 is the fractional Rabi frequency at the jth unaddressed qubit. Terms

which generate unwanted entanglement (e.g., εjXkXj) scale linearly with the systematic

error. The unaddressed qubits also see a small unwanted phase of ε2jΦ. We may write a

formal error model using the usual method of expanding the Hamiltonian and grouping

terms by basis elements of the Lie algebra.

4.4 Summary

This chapter discussed compensating composite pulse sequences and error models for ion-

trap quantum computers. Compensating sequences are propagators which are robust to dis-

tortion introduced by systematic control errors. Viewed in the toggling frame, we identified

a general Lie-algebraic property nth-order compensating sequences: the leading n-many

Magnus expansion terms simultaneously cancel. Each Magnus term may be interpreted
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geometrically. In the following chapter we derive narrowband sequences from geometric

considerations on the Lie algebra.
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CHAPTER V

ION ADDRESSING USING COMPENSATING SEQUENCES

In ion-trap quantum computers local addressing of individual qubits is achieved via focused

laser pulses. Single-qubit addressing therefore demands accurate beam steering to avoid

crosstalk between neighboring qubits, a significant engineering challenge in large scalable

systems [122]. These precision requirements may be reduced by replacing simple single-

qubit gates with a narrowband composite pulse sequence [116, 118]. Narrowband sequences

allow manipulation of a single ion, even if neighboring ions are subjected to significant laser

intensity.

In this chapter we describe narrowband pulse sequences for individual ion addressing.

Section 5.1 discusses the SK1 and N2 sequences. In section 5.1.2 we describe a novel family of

augmented sequences, which improve on SK1 and N2 by generalizing their form. Section 5.2

describes related experiments on 40Ca+ qubits, where qubit addressing is enhanced by

using narrowband sequences. To our knowledge, this is the first reported experimental

demonstration of this technique in ion traps.

5.1 Narrowband sequences

The system we consider is a chain of ions with a single addressed ion illuminated by a focused

laser. Neighboring qubits are partially illuminated by the beam, resulting in an addressing

error. Since the dynamics on each ion are correlated but separable (i.e., no entanglement is

generated) we may consider the evolution of each qubit individually. Here we use sequences

of resonant constant-phase pulses, where each pulse produces a spin rotation Rk(θ, φ) on

addressed qubit and simultaneous rotations Rj(εjθ, φ) on unaddressed qubits.

Alternatively a pulse propagator may be represented in terms of a vector on the Lie

algebra. We use the same parameterization used in section 4.3.1.1 for the controls and

control Hamiltonians. The basis vectors eµ,k and eµ,j are proportional to Pauli operators

for the addressed qubit and the unaddressed qubits respectively. The propagators may be
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written as Rk(θ, φ) = erk and Rj(εjθ, φ) = eεjrj where

rk =

∫ tf

0
dt uµ(t)eµ,k, rj =

∫ tf

0
dt uµ(t)eµ,j , (5.1)

are vectors on the distinct su(2) subalgebras corresponding to the addressed and unad-

dressed qubits. Viewed in the Lie algebra, all qubits undergo similar transformations, only

the vectors corresponding to the unaddressed qubits are scaled by a factor εj . Provided

that εj � 1 we may accurately compute products of simple pulses using a Magnus ex-

pansion or a BCH formula. For instance a sequence of n pulses produces the propagator

Uk =
∏n
`=1 exp(rk,`) for addressed qubits and

Uj = exp

(
εj

n∑
`=1

rj,` +
ε2j
2

n∑
`=1

∑̀
m=1

[rj,`, rj,m]

)
+O(ε3j ), (5.2)

for unaddressed qubits. Since ideally Uj should equal the identity, we should construct a

sequence of rotations such that the error terms in (5.2) vanish. This task is considerably

simplified by visualising the vectors {rj,`} as segments of a vector path on su(2).

5.1.1 Simple narrowband sequences

5.1.1.1 SK1

The simplest non-trivial narrowband sequence, called SK1 [107, 114, 123], uses three simple

rotations generated by the vectors

rk,1 = ϑex,k,

rk,2 = (2π cosφSK1)ex,k + (2π sinφSK1)ey,k,

rk,3 = (2π cosφSK1)ex,k − (2π sinφSK1)ey,k,

with similar constructions for the vectors {rj,`}. The phase cosφSK1 = − ϑ
4π is selected so

that
∑

` rj,` = 0 and therefore the controls are first-order robust to addressing errors. Writ-

ten in terms of simple rotations, the sequence is Uk,SK1 = Rk(2π,−φSK1)Rk(2π, φSK1)Rk(ϑ, 0) =

Rk(ϑ, 0) for addressed qubits and Uj,SK1 = 1 + O(ε2j ) for the unaddressed qubits. The ad-

dressing error is suppressed by replacing a simple rotation Rk(ϑ, 0) with a corresponding

SK1 sequence. The trajectory of an unaddressed qubit (e.g., in the limit εj → 0) is related

60



Figure 5.1: Trajectories of unaddressed and addressed qubits during an SK1 sequence
that produces the gate Rk(π/2, 0). Here εj = 0.2, corresponding to a 20% addressing
error. (a) Closed path formed by the vectors {rj,`} on the unaddressed qubit Lie algebra.
(b) Trajectory followed by an unaddressed qubit. (c) Trajectory followed by an addressed
qubit.
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to the vectors rj,` by the exponential map. Figure 5.1 illustrates the trajectories of an

addressed and an unaddressed qubit under a SK1 sequence.

The sequence may produce other net rotations, for instance Rk(ϑ, ϕ), by uniformly

adding a phase ϕ to each pulse in the sequence. Alternatively one may prepare an SK1

sequence for any unitary UT ∈ SU(2) using a similarity transformation. For instance,

we may solve for an operation Υ that performs the planar rotation ΥkUTΥ†k = Rk(ϑ, 0),

where ϑ = 21/2|| argUT ||HS is the net rotation angle for the desired gate. The sequence

Υ†k(Uk,SK1)Υk = UT performs the desired gate on the addressed qubits, while simultane-

ously on the unaddressed qubits Υ†j(Uj,SK1)Υj = 1 + O(ε2). We use this construction in

section 5.1.2 when we describe augmented sequences with improved error suppression and

lower time costs.

5.1.1.2 N2

A second narrowband sequence, which we call N2 [107, 117], uses four simple rotations

generated by the vectors

rk,1 = ϑex,k,

rk,2 = (π cosφN2)ex,k + (π sinφN2)ey,k,

rk,3 = (2π cosφN2)ex,k − (2π sinφN2)ey,k,

rk,4 = (π cosφN2)ex,k + (π sinφN2)ey,k,

with similar vectors {rj,`} on the unaddressed ions. Again the phase cosφN2 = − ϑ
4π is

selected so that
∑

` rj,` = 0. In this arrangement the second and fourth vectors are iden-

tical; with some commutator algebra we may prove this symmetry along with
∑

` rj,` = 0

eliminates the second-order error term in (5.2). Geometrically, these conditions are equiv-

alent to requiring that the path formed by the vectors encloses signed areas of equal

magnitude but opposite sign (see figure 5.2). Therefore the controls are second-order

robust to addressing errors. Written as a sequence of simple rotations, the sequence

Uk,N2 = Rk(π, φN2)Rk(2π,−φN2)Rk(π, φN2)Rk(ϑ, 0) = Rk(ϑ, 0) for addressed qubits and

Uj,N2 = 1 +O(ε3j ) for unaddressed qubits.
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Figure 5.2: Trajectories of unaddressed and addressed qubits during an N2 sequence that
produces the gate Rk(π/2, 0). Here εj = 0.2, corresponding to a 20% addressing error.
(a) Closed path formed by the vectors {rj,`} on the unaddressed qubit Lie algebra. (b)
Trajectory followed by an unaddressed qubit. (c) Trajectory followed by an addressed
qubit.

The N2 sequence was first discovered and applied by Wimperis [117], who called it NB1.

Brown, Harrow, and Chuang [114, 123] later generalized this form to Nn, which compensates

addressing errors toO(εn). We use Brown’s naming convention to avoid confusion with other

established sequences, namely NB2, NB3, etc. [117].

5.1.2 Augmented sequences

Compensating sequences reduce systematic control errors at the cost of increased time

required to produce gates [107]. The natural question arises whether this time cost may

be reduced. Here we present a new method that produces fully-compensating narrowband

sequences with superior error correction properties and lower operation times.

Our method uses a Lie-algebraic construction to generalize existing sequences. We first

write pulses of an existing sequence in terms of a set of vectors {rj,`}. The vector path

perimeter
∑

` ||rj,`||HS =
∑

` θ`/
√

2 is proportional to the total pulse area, i.e., the sum

of rotation angles of each pulse. In most applications where the Rabi frequency is fixed

to some maximum amplitude, the total pulse area is proportional to the duration of the

sequence. We then allow the vector lengths (rotation angles) to vary in such a way that

the error-canceling properties are preserved. Viewed on the Lie algebra, this is equivalent

to requiring paths which preserve certain topological symmetries. We then use numerical
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optimization to find sequences with favorable properties. We call sequences produced from

this method augmented sequences.

5.1.2.1 ASK1

The augmented-SK1 sequence, which we call ASK1, uses three simple rotations generated

by the vectors

rk,1 = θ1ex,k,

rk,2 = (θ2 cosφASK1)ex,k + (θ2 sinφASK1)ey,k,

rk,3 = (θ2 cosφASK1)ex,k − (θ2 sinφASK1)ey,k,

with similar vectors {rj,`} corresponding to the unaddressed qubits. We choose the phase

such that cosφASK1 = − θ1
2θ2

and therefore
∑

` rj,` = 0 provided that the triangle inequality

θ1 < 2θ2 is satisfied. When we apply an ASK1 sequence the addressed qubit transforms

under Uk,ASK1 = Rk(θ2,−φASK1)Rk(θ2, φASK1)Rk(θ1, 0) while unaddressed qubits trans-

form under Uk,ASK1 = 1 + O(ε2j ). The ASK1 sequence produces an identity operation on

unaddressed qubits with a fidelity F = 1− ε4j [(2θ1θ2)2 − θ4
1]/128 +O(ε6j ). ASK1 is a gener-

alization of the original sequence, in the sense that replacing θ2 → 2π recovers SK1. The

special case where θ1 = θ2 = π corresponds to Jones’ recently described NOT pulses [124].

5.1.2.2 AN2

The augmented-N2 sequence, which we call AN2, uses a similar parameterization for the

vectors

rk,1 = θ1ex,k,

rk,2 = (θ2 cosφAN2)ex,k + (θ2 sinφAN2)ey,k,

rk,3 = (2θ2 cosφAN2)ex,k − (2θ2 sinφAN2)ey,k,

rk,4 = (θ2 cosφAN2)ex,k + (θ2 sinφAN2)ey,k.

Similar vectors {rj,`} generate rotations on the unaddressed qubits. The phase is cho-

sen so that cosφAN2 = − θ1
4θ2

and the first-order error term cancels so long as θ1 < 4θ2.

Similar to N2, the symmetry rj,2 = rj,4 results in the cancellation of the second-order
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error term. Written as a sequence of simple rotations, the sequence applies Uk,AN2 =

R(θ2, φAN2)R(2θ2,−φAN2)R(θ2, φAN2)R(θ1, 0) to the addressed qubit and Uj,AN2 = 1 +

O(ε3j ) to the unaddressed qubits. The fidelity of the identity operation on the unaddressed

qubits is F = 1− ε6j (32 θ2
1θ

4
2 + 14 θ4

1θ
2
2 − θ6

1)/9216 +O(ε8j ). We may recover the original N2

sequence by replacing θ2 → π.

5.1.3 Transformed-augmented sequences

One drawback of augmented pulse sequences is that in general the group product Uk =∏
`Rk(θ`, φ`) yields an effective qubit rotation about an axis outside the X-Y plane. This

makes these sequences difficult to use since they cannot serve as drop-in replacements for

a simple resonant pulse, for instance UT = Rk(ϑ, 0). We can arbitrarily rotate the effective

rotation axis by implementing two additional pulses which act as a similarity transformation.

In particular we can choose to add rotations Υk and Υ†k such that sequence ΥkUkΥ
†
k =

R(ϑ, 0) implements a rotation about the X axis. We describe a method for determining

transformed sequences below:

1. Decompose Uk into the form Uk = exp(−iϑaµHµ). The angle ϑ is the net rotation

angle of the sequence. The unit vector ~a = (ax, ay, az) sets the axis of rotation in the

Bloch sphere.

2. Select the rotation Υk = Rk(θ0, π/2 + φ0) that returns the axis ~a to the X-Y plane

while minimizing θ0 (proportional to time). The optimal rotation is given by

θ0 = arctan2
(
az,
√

(ax)2 + (ay)2
)
,

φ0 = arctan2 (ay, ax) ,

where arctan2 is a arctangent function returns an angle in the correct quadrant.

3. Subtract the phase φ0 from each pulse in the sequence ΥkUkΥ
†
k. This aligns ~a along

the X axis. The transformed sequence implements Rk(ϑ, 0) on the addressed qubit.

We call sequences which use similarity transformations to rotate the effective gate trans-

formed sequences. The similarity transform only rotates the net rotation axis of the se-

quence. The net rotation angle, and also error correcting properties, are controlled by the

65



Figure 5.3: The TASK1 family of pulses. Each TASK1 sequence is parameterized by
{θ1, θ2} with θ1 < 2θ2. (a) Contours of the net rotation angle (solid) and pulse area (dashed)
over the parameter space in intervals of π/4. Error-minimal and time-minimal sequences
are plotted. (b) Comparison of sequence time, e.g., total pulse area. (c) Comparison of
sequence infidelity.

compensating sequence Uk sandwiched between the transform pulses.

5.1.3.1 TASK1

We call the transformed-augmented SK1 sequences TASK1. Although TASK1 has a greater

number of individual pulses than SK1, the added flexibility of this construction yields

sequences with improved properties. Figure 5.3a plots the TASK1 family in terms of the

parameters {θ1, θ2}. We plot the net rotation angle applied to addressed qubits (solid

contours, intervals of π/4) and the total pulse area (dashed contours, intervals of π/4) as

a function of the sequence parameters. No valid sequences exist wherever θ1 ≥ 2θ2 since

these fail to satisfy a triangular inequality.

We find optimal TASK1 sequences by numerically performing a constrained optimiza-

tion using a sequential least-squares programming1 (SLSQP) algorithm. Consider the set

1We use the SLSQP routines packaged in the scipy.optimize Python module
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Figure 5.4: The TAN2 family of pulses. Each TAN2 sequence is parameterized by {θ1, θ2}
with θ1 < 4θ2. (a) Contours of the net rotation angle (solid) and pulse area (dashed)
over the parameter space in intervals of π/4. Error-minimal and time-minimal sequences
are plotted. (b) Comparison of sequence time, e.g., total pulse area. (c) Comparison of
sequence infidelity.

of sequences that perform a particular net rotation UT = Rk(ϑ, 0). The error-minimal se-

quence performs the rotation while minimizing the leading order error term of the sequence

infidelity. The time-minimal sequence performs the rotation while minimizing the total

pulse area. In figures 5.3b and 5.3c we plot the pulse area and infidelity for net rotation

angles ϑ ∈ [0, 2π). The two optimal sequences outperform SK1 in both speed and accu-

racy. We find that the optimal sequences perform similarly, and we can produce sequences

that improve both gate fidelity and time simultaneously. In particular for UT = Rk(π, 0),

the optimal sequences perform the gate with a 80% reduction in the infidelity and a 40%

reduction in total pulse area compared to SK1. Further improvements are possible if we

consider sequences constructed of additional (but on average shorter) pulses.

5.1.3.2 TAN2

The transform-augmented N2 sequences are called TAN2. Figure 5.4a plots the TAN2

family in terms of the parameters {θ1, θ2}. Again we plot the net rotation angle applied

to addressed qubits (solid contours, intervals of π/4) and the total pulse area (dashed
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contours, intervals of π/4) as a function of the sequence parameters. Valid TAN2 sequences

require θ1 < 4θ2. We use the same optimization methods to produce error-minimal and

time-minimal TAN2 sequences. Figures 5.4b and 5.4c plot the pulse area and infidelity for

the optimal TAN2 sequences and for N2. Due to the rather constrained parameterization

the improvements over N2 are modest. For UT = R(π, 0) the optimal TAN2 sequence

performs the gate with a 25.2% reduction in the infidelity and a 10.8% reduction in the

total pulse area compared to N2. Further improvements are possible if we consider other

parameterizations which allow additional pulses.

5.2 Experimental demonstration

We have recently demonstrated improved addressing of individual 40Ca+ ions using nar-

rowband compensating sequences. To date, we have successfully tested the technique now

in two separate ion trapping systems. The first system uses a conventional room temper-

ature vacuum chamber, described in detail in section 3.1.3.2. The second system is based

on a closed-cycle liquid helium cryostat; details of our cryostat apparatus are described in

Ref. [125]. The data reported here were collected using the cryostat system.

Both systems use identical microfabricated GTRI Gen II surface electrode traps [32]

(see figure 3.2). These traps contain 44 segmented DC electrodes which allow the location

of the axial potential minimum to be controlled to better than < 500 nm. Qubit operations

rely on a 729 nm laser, which we orient parallel to the trap plane and at a 45◦ angle

from the trap axis. We choose this orientation so each motional mode is accessible during

sideband cooling. In applications with more stringent addressing requirements, during qubit

operations one should use a second 729 nm beam oriented at 90◦ to minimize the beam

cross-section along the trap axis.

5.2.1 Composite sequence inversion profiles

Narrowband sequences behave differently for addressed qubits where the laser field is intense

compared to unaddressed qubits where the laser is weak [107, 116]. To confirm this behavior,

we perform an experiment that measures the population transfer between qubit states

during a gate produced by a narrowband sequence. The experiment uses a single 40Ca+
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Figure 5.5: 2D5/2 population as a function of systematic error for logical gates produced
by narrowband sequences. To simulate different field strengths the pulse areas are uniformly
scaled by adjusting the pulse lengths. In the top panel sequences apply R(π, 0) when εj = 1.
In the lower panel sequences implement R(π/2, 0) when εj = 1. Curves are signals predicted
by theory, adjusted to account for error related to qubit preparation and detection.

ion placed at the center of the 729 nm laser beam. For the data here, the qubit transition

Rabi frequency at the beam center is Ω = 2π × 0.38 MHz. Moderate 729 nm laser powers

are used to avoid off-resonant coupling to other 2S1/2 →2 D5/2 transitions which slowly

transfer population out of the qubit states. Before each experiment, the ion is sideband

cooled near the motional ground state with typically less than 〈n〉 < 0.3 phonons remaining

in each motional mode. The experiment prepares the qubit in |1〉, applies a gate using a

simple rotation or a narrowband sequence, and then determines the population transfer by

measuring the remaining population in |1〉. To simulate the effect of different laser field

strengths, we uniformly scale the pulse area of every pulse in the sequence by adjusting the

pulse duration. Dynamically this is equivalent to probing the ion at different values of the

error parameter εj .
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Figure 5.5 plots the measured excitation profiles produced by compensated gates, over-

layed on the signal predicted from theory. The amplitudes of the theory curves are adjusted

to account for errors related to qubit state preparation and detection. The top graph plots

the response for sequences which implement R(π, 0) on the addressed ion. The lower graph

plots sequences which implement R(π/2, 0). We find that narrowband sequences suppress

population inversion when εj � 1 while still performing the target gate when εj = 1, in

good agreement with theory. In particular the TASK1 sequences and N2 perform especially

well, however since N2 is a second-order sequence it is actually much more accurate.

5.2.2 Compensation of addressing error

A second experiment directly observes addressing error compensation by measuring the

population inversion as a function of the ion position relative to the center of the 729 nm

beam. Since the ion position is accurately controlled by applying appropriate trapping

voltages to the segmented DC electrodes, we control the relative positioning of the system

by fixing the laser in place and moving the ion to a specific location in the beam profile.

This task is facilitated by intentionally expanding the beam along the trap axis so that the

ion may placed accurately relative to the scale of beam waist.

We measure the 729 nm beam waist by observing qubit population transfer as a function

of ion position. The experiment moves the ion to a particular location, sideband cools and

initializes in |1〉, and probes the qubit with a simple pulse that applies R(π, 0) when the ion

is located at the beam center. We measure the qubit population transfer by observing the

remaining population in |1〉. The beam waist is extracted by fitting the observed population

to a theoretical curve valid for Gaussian beams P (z/w0) = 1
2

[
1− cos

(
πe−z

2/w2
0

)]
, where

z is the displacement of the ion from the beam center and w0 is the 1/e2 Gaussian beam

waist measured along the trap axis, in contrast to the waist measured transversely from

the beam axis. Alternatively one could measure the Rabi frequency as a function of ion

position and measure the beam profile directly. In the experiments here, the beam waist is

w0 = 44.2± 0.8 µm.
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Figure 5.6: 2D5/2 population as a function of ion displacement from the 729 nm beam
center. At the center of the beam, the beam applies R(π, 0) using either a simple pulse or a
narrowband sequence. Curves are signals predicted by theory, adjusted similar to figure 5.5.

Figure 5.7: Infidelity of the identity operation on unaddressed qubits as a function of
displacement from the beam center. Each sequence implements R(π, 0) on the addressed
qubit. The sequence order controls the scaling of the infidelity.
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A similar technique measures effective beam profiles for gates implemented using nar-

rowband sequences, now replacing the simple pulse with a pulse sequence that implements

R(π, 0) when the ion is located at the beam center. Figure 5.6 plots the measured excita-

tion profile as a function of ion position, overlayed on the signal predicted from theory. The

theoretical curves assume a Gaussian beam profile and are adjusted to account for fixed

state preparation and detection errors, similar to before. Although physically the beam is

unchanged, narrowband sequences effectively narrow the profile by suppressing unwanted

qubit rotations far from the beam center, where the field is weak.

Assuming that poor ion addressing is the sole source of error, we calculate theoretical

fidelities of R(π, 0) gates produced using simple pulses and also several narrowband se-

quences. Figure 5.7 plots the infidelity as a function of ion displacement from the beam

center. Narrowband sequences alter the scaling of the infidelity with respect to the system-

atic error, for instance, infidelity of the N2 sequence scales as O(ε6j ) whereas a simple pulse

scales as O(ε2j ). Remarkably, the N2 sequence produces local R(π, 0) gates with infidelities

below the ∼ 10−4 error-correction threshold even with nearby ions as close as 1.33w0 from

the beam center. Instead if we implemented the gate using a simple pulse neighboring ions

must be further than 2.17w0 to achieve the same accuracy. Further improvements are pos-

sible by implementing other narrowband sequences. Brown, Harrow, and Chuang [114] and

later Vitanov [118] have studied sequences which may be made arbitrarily narrow, however

these sequences rapidly become too long to be practical in most experiments. A practical

narrowband sequence should balance the often conflicting requirements of gate accuracy and

sequence duration. Further research should consider the design of time-optimal narrowband

sequences.

5.3 Summary

Narrowband sequences are a method of reducing addressing errors caused the spatial width

of laser beams. These pulse sequences could be used with beam steering systems [122]

to achieve robust single ion addressing in an ion-trap quantum computer [126]. We have

described the SK1 and N2 narrowband sequences, and novel constructions which generalize
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their form to yield sequences with lower operation times and improved error compensation.

We demonstrated these techniques in a experiment on 40Ca+ qubits. Currently we are

studying more general sequences which perform time-optimal narrowband compensation.

73



CHAPTER VI

UNIFORM MICROWAVE GATES USING COMPENSATING

SEQUENCES

This chapter describes a microfabricated surface-electrode ion trap with a pair of on-chip

waveguides that generate local microwave magnetic fields [127]. The microwaves drive

transitions between the 2S1/2 hyperfine levels of 171Yb+, enabling arbitrary single-qubit

gates on the hyperfine qubit. Devices with integrated near-field microwave structures offer a

possible simplification since the laser system for qubit operations is no longer required [128–

132]. In addition, high-quality microwave sources are affordable, easily miniaturized, and

are simple to maintain. This technology offers a compelling route to a future “turn-key”

ion-trap quantum processor.

However, these systems are sensitive to systematic errors caused by an imperfect mi-

crowave field. Here we introduce broadband compensating pulse sequences, which we use to

correct amplitude errors caused by the inherent inhomogeneity of the microwave field. Sec-

tion 6.1 describes the trap, integrated waveguides, microwave polarization control, and char-

acterizes the microwave field. Section 6.2 introduces broadband compensating sequences.

Section 6.3 describes an experiment which uses broadband sequences to apply uniform global

single qubit rotations.

6.1 A surface-electrode trap with integrated microwave waveguides

6.1.1 Trap geometry and electrode structures

The trap conforms to a symmetric five-wire surface-electrode Paul trap geometry [30] fabri-

cated on a 11×11 mm2 silicon die (figure 6.1a) similar to the designs reported in [32, 34, 133]

and the description provided in section 3.1.3. Electrodes etched into three sputtered alu-

minum layers separated by insulating silicon dioxide films produce electric fields that trap

the ion. Radio-frequency (RF) potentials applied to two parallel electrodes provide radial

ion confinement (in the x-y plane, figure 6.1b) 59 µm above the electrodes. Quasi-static
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Figure 6.1: GTRI microwave surface-electrode trap with on-chip microwave waveguides.
(a) A schematic of the 11×11 mm2 silicon chip (b) The active trapping region, showing RF
and DC trapping electrodes, the shaped loading slot, and the on-chip microwave waveguides.
(c) A cross section showing internal layers (the vertical direction is scaled by 10× for visual
clarity).
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potentials applied to segmented DC electrodes confine and transport ions along z. The RF

electrodes are 30 µm wide along x with an inner edge-to-edge separation of 92 µm. The

segmented DC electrodes are 56 µm wide along z except for six 100 µm wide electrodes

bordering the loading zone. Two additional DC electrodes traversing the entire length of the

trapping region are used to apply uniform x-y fields and to rotate the radial principal axes.

Each electrode is separated from neighboring conductors by 4 µm gaps. Each DC electrode

incorporates a 60 pF plate capacitor (1 mm2 area) to filter unwanted RF pickup [32]. A

loading slot allows a thermal beam of neutral Yb to reach the trapping volume from a

resistively heated oven located below the trap.

6.1.2 Integrated waveguides

The trap includes a pair of conductor-backed coplanar waveguides that generate local mi-

crowave magnetic fields. Each waveguide includes a 40 µm wide electrode with 4 µm gaps

to neighboring conductors, and 10 µm of SiO2 separate the coplanar layer from the ground

plane below (figure 6.1b). The waveguides support a ωmw = 2π × 12.64 GHz quasi-TEM

guided mode resonant with the hyperfine splitting between the F = 0 and F = 1 manifolds

in the 2S1/2 ground state of 171Yb+ (see figure 3.5c). In the ideal case, currents in each

waveguide generate a magnetic field along the trapping axis

~B(z, t) = I1(z, t)


βx

βy

0

 cosφ1 + I2(z, t)


βx

−βy

0

 cosφ2, (6.1)

where each term corresponds to the field produced by a single waveguide. Here φ1 and φ2

are phases on the microwave current sources, I1(z, t) and I2(z, t) are spatially integrated

axial current densities for each waveguide, and βx ' 0.08 mT/A and βy ' 0.17 mT/A are

constants related to the geometry of the waveguide mode. Due to the symmetric placement

of the waveguides about the trapping axis, the geometric constants along y has equal magni-

tude but opposite orientation for the two waveguides. The waveguides terminate in an open

circuit at a position that is approximately a quarter-wavelength from the trap center, which

produces a standing wave field with maximum amplitude and uniformity in the trapping
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Figure 6.2: Microwave spectroscopy of the 171Yb+ 2S1/2 states. (a) Resolved hyperfine
transitions between 2S1/2(F = 0) →2 S1/2(F = 1) sublevels driven by a microwave field
produced by a single waveguide. The qubit uses the ∆mF = 0 transition. (b) Qubit Rabi
oscillations (Ω = 2π × 0.49 MHz) driven by resonant microwaves from both waveguides.

region. A small traveling wave component also exists due to on-chip attenuation.

Far from the trap center, the waveguides meander to fit a complete wavelength on the

chip and then terminate on wirebond pads at the edge of the chip. Extending the waveguides

to a full wavelength places a current node at the wirebond pads and reduces the potential for

resistive power loss in the connections. A series of 25.4 µm diameter aluminum wirebonds

connect the chip waveguides to two PCB waveguides that route microwaves from the edge

of the trap package Connections between the PCB top level ground and the on-chip metal

1 and metal 2 ground planes are symmetric about each microwave electrode. Quarter-wave

transformers match the 50 ohm impedance of the PCB waveguide to the 27 ohm on-chip

characteristic impedance. The PCB is fabricated using a 254 µm thick Rogers 4350B

substrate with two 18 µm thick copper foil conductive layers and a 3-6 µm electroless nickel

immersion gold (ENIG) finish. The skin depth in the PCB at ωmw is comparable to the

thickness of the lossy nickel layer resulting in ∼ 3 dB of power loss between the microwave

connector and wirebonds.

6.1.3 Microwave spectroscopy and polarization control

The waveguides generate a microwave magnetic field that drives transitions between the

2S1/2 hyperfine levels of 171Yb+. A static 0.74 mT field along y defines the quantization
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Figure 6.3: Polarization control of microwave fields. (a) Each waveguide is calibrated by
measuring the Rabi qubit frequency against the microwave source power. The nonlinearity
at power is due to amplifier saturation. (b) Polarization control via microwave power
balancing and relative phase tuning between the two waveguides.

axis and lifts the degeneracy of the 2S1/2(F = 1) triplet. Each waveguide produces a mag-

netic field which contains both a y-polarized component that couples to the ∆mF = 0 qubit

transition and also a transverse x-polarized component that couples to the ∆mF = ±1

transitions. We resolve each transition in an experiment that measures the hyperfine spec-

trum with microwave power applied to a single waveguide. The experiment prepares a qubit

in |0〉 by optical pumping, applies microwave power for a fixed interval of time, and mea-

sures the resulting population transfer into the 2S1/2(F = 1) states through state-selective

fluorescence of the 369 nm transition. Figure 6.2a shows the resulting hyperfine spectrum

acquired by varying the microwave frequency. From the relative oscillator strengths of

the transitions, we estimate the ratio of polarization components for each waveguide as

|βx|/|βy| ' 0.46, in good agreement with a finite-element model.

We observe Rabi oscillations in a similar experiment, where now both waveguides res-

onantly drive the ∆mF = 0 qubit transition. Figure 6.2b shows Rabi oscillations at a

frequency Ω = 2π × 0.49 MHz observed from an ion located z = 300 µm from the center of

the loading slot.

The polarization of the near-field microwaves may be controlled by adjusting the relative

amplitude and phase of the microwave currents. In particular, the polarization may be

aligned along the quantization axis, thereby maximizing the qubit transition strength while
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Figure 6.4: Measurement of 171Yb+ 2S1/2 coherence lifetime by Ramsey spectroscopy.
Solid markers indicate data taken on stationary ions. Open markers correspond to ions
undergoing transport. The Ramsey fringe contrast decays in T2 = 306 ± 30 µs for the
∆mF = ±1 transitions. The lifetime of the ∆mF = 0 qubit transition far exceeds 105 µs.
No significant difference in coherence lifetimes for stationary versus shuttled ions is observed.

also suppressing off-resonant ∆mF = ±1 transitions. This is especially helpful in preventing

leakage out of the qubit states during short high-power microwave pulses. The active and

passive microwave components supplying microwave currents to the waveguides are not

perfectly power-balanced and phase-matched. We calibrate the microwave sources by first

driving each waveguide independently to map the relationship between source power and

Rabi frequency (figure 6.3a). Once the field amplitudes from the waveguides have been

equalized, the relative phase between microwave currents φ2 − φ1 can be adjusted produce

an arbitrary linear polarization in the x–y plane. Figure 6.3b shows the resonant Rabi

frequency for each of the three transitions as the relative phase is varied, demonstrating

suppression of the ∆mF = ±1 transitions at φ2 − φ1 = π. We suspect that the mismatch

between the ∆mF = ±1 curves in figure 6.3b is caused by a small frequency dependent

dispersion in the microwave electronics.

6.1.4 Hyperfine coherence

We estimate the coherence of the qubit and the ∆mF = ±1 transitions using Ramsey

spectroscopy [134, 135]. The experiment prepares the state |0〉 by optical pumping, applies

R(π/2, 0) where now the rotation is with respect to the transition being probed, waits
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a variable free-precession delay time τ , applies R(π/2, ϕ) where the phase ϕ is variable,

and measures the 2S1/2(F = 1) population by state-selective fluorescence. Scanning the

analysis phase ϕ yields a sinusoidal Ramsey fringe, which we fit to extract a fringe contrast.

The fringe contrast decays as the superposition state decoheres during the free-precession

delay, frequently due to ambient magnetic field noise that causes AC-Zeeman shifts. At

zero magnetic field, the qubit transition is first-order insensitive to this effect. Repeating

the measurement for several delay times yields a decay curve characterizing the coherence

lifetime of the superposition.

We perform two variants of the Ramsey spectroscopy experiment. In the first, the

ion is held stationary at z = 300 µm for the microwave pulses and the free-precession

delay. The second variant is similar, only during the delay the ion is rapidly shuttled

from z = 300 µm to z = 400 µm in 100 µs, held stationary for τ − 200 µs, and then

shuttled back in 100 µs. Figure 6.4 plots the observed Ramsey fringe decay as a function

of the delay time. Superpositions along the ∆mF = ±1 transitions dephase in a 1/e time

T2 = 306 ± 30 µs, while the qubit transition dephases much more slowly (T2 � 105 µs).

No significant difference in coherence lifetimes for stationary ions versus shuttled ions was

observed.

6.1.5 Field uniformity

The standing wave current in the waveguides produces a microwave field with non-uniform

amplitude along the trap axis. This field inhomogeneity introduces systematic amplitude

errors when applying global single-qubit rotations. Figure 6.5 shows the measured Rabi

frequency of the qubit transition at several positions along the trap axis. We observe a

maximum Rabi frequency of 2π×0.52 MHz, corresponding to a field amplitude of 0.037 mT,

located z0 = 957 µm from the loading slot center. Finite element calculations predict an

antinode location at z = 895 µm, in reasonable agreement with the experiment. These

models indicate that the maximum field corresponds to a local current in each electrode of

|Iz(z0)| ' 0.1 A.
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Figure 6.5: Observed qubit Rabi frequency as a function of axial ion position. The
microwave current and polarization is held constant. The solid line is a quadratic fit. We
measure a maximum Rabi frequency of 2π×0.52 MHz located z = 957 µm from the loading
slot center, and a < 6% amplitude variation.

6.2 Broadband compensating sequences

Systematic amplitude errors, such as those introduced by an inhomogeneous microwave

field, limit the fidelity of quantum gates. Gate fidelity could be improved by implementing

broadband compensating pulse sequences [107, 117]. Broadband sequences enable accurate

control even if the field amplitude varies significantly from the ideal value. Section 6.2.1

introduces a mapping that converts narrowband sequences into an analogous broadband

sequence. Section 6.2.2 describes the simple broadband sequences SK1 and B2.

6.2.1 A mapping between the narrowband and broadband sequences

All compensating pulse sequences satisfy certain Lie algebraic properties when viewed in

the interaction (toggling) frame, see section 4.2 for details. Compensating sequences for

separate error models differ in that they satisfy these properties in distinct interaction

frames. In some cases sequences of one type may be converted into another using a frame

transformation.

We developed a method to convert a narrowband sequence composed of simple pulses

into an associated broadband sequence. Let UNB =
∏n
` exp(r`) represent an nth-order

narrowband pulse sequence, where the vectors {r`} are the associated rotation generators on

the Lie algebra. We desire a new set of generators {r′`} which produce a broadband sequence.

These sets of vectors will be images of each other under a certain frame transformation.
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Specifically if,

r′` =

(
`−1∏
m=0

erm

)
r`

(
`−1∏
m=0

erm

)†
(6.2)

where exp(r0) = 1, then UBB =
∏n
` exp(r′`) is a broadband sequence of the same order.

UNB and UBB are related in the sense that the distorted controls trace similar paths in their

respective interaction frame Lie algebras. Further, if the algebra was rotated using a simi-

larity transformation Υ, the generators {Υr`Υ
†} would still produce a broadband sequence

since the interaction frame Magnus terms {ΥΩ̃1Υ†,ΥΩ̃2Υ†, . . . ,ΥΩ̃nΥ†} still simultane-

ously equal zero at the end of the sequence. Interpreted geometrically, compensation relies

on topological properties of the distorted path, but does not depend on the orientation of

the interaction-frame algebra.

6.2.2 Simple broadband sequences

6.2.2.1 SK1

A simple non-trivial broadband sequence results from applying the transformation (6.2) to

SK1 (see section 5.1.1.1), yielding the vectors

r′1 = ϑex

r′2 = 2π cosφSK1

(
er1exe−r1

)
+ 2π sinφSK1

(
er1eye

−r1)
r′3 = 2π cosφSK1

(
er2er1exe−r1e−r2

)
− 2π sinφSK1

(
er2er1eye

−r1e−r2
)
.

Further simplification if possible if we rotate the Lie algebra basis vectors according to

the similarity transformation ΥeµΥ†, where we choose Υ = exp(−r1) = R(−ϑ, 0). Rec-

ognizing that exp(r2) = −1 since r2 generates a 2π rotation, we find that {r′`} = {r`}.

Since the transformed vectors {r′`} are identical to the narrowband case, they generate the

same sequence of rotations; the SK1 sequence is both a first-order broadband sequence and

also a first-order narrowband sequence. Sequences with both broadband and narrowband

character are called passband [107]. Written in terms of simple rotations, the sequence is

USK1 = R(2π,−φSK1)R(2π, φSK1)R(ϑ, 0) where the phase satisfies cosφSK1 = − ϑ
4π .

Figure 6.6 draws the trajectory of qubit under an SK1 sequence acting to compensate a

20% amplitude error. In the qubit frame, the net evolution approximates the correct gate
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Figure 6.6: Qubit trajectory during an SK1 sequence used to compensate an amplitude
error. Here ε = 0.2, corresponding to a 20% error in the field amplitude. (a) Trajectory
followed in the qubit frame. (b) Trajectory followed in the interaction (toggling) frame.

with fidelity F = 1 − ε4θ2(16π2 − θ2)/128 + O(ε6). In the interaction frame the controls

are chooses so that the distortion nearly produces the identity over the duration of the

sequence. Reorienting the algebra using Υ only rotates the basis vectors; on the Bloch

sphere this aligns Z̃ to point along ΥZ̃Υ† = −Ỹ .

6.2.2.2 B2

A second-order broadband sequence results from applying the transformation (6.2) to N2

(see section 5.1.1.2). Choosing to rotate the Lie algebra according to Υ = exp(−r1) yields,

r′1 = ϑex

r′2 = π cosφB2ex + π sinφB2ey

r′3 = 2π cos(3φB2)ex + 2π sin(3φB2)ex

r′4 = π cosφB2ex + π sinφB2ey,

where cosφB2 = cosφN2 = − ϑ
4π is the same phase for N2. Written as a sequence of

simple rotations, UB2 = R(π, φB2)R(2π, 3φB2)R(π, φB2)R(ϑ, 0). We call this sequence B2,

recognizing that it may be thought of as a broadband analogue of N2. Like N2, the B2

sequence was first discovered by Steven Wimperis [117], who called it BB1. Brown later

generalized B2 to Bn [114, 123], which compensates amplitude errors to order O(εn).
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Figure 6.7: 2S1/2(F = 1) population as a function of systematic error for logical X gates
produced by broadband sequences. The pulse areas are uniformly scaled by adjusting the
pulse lengths. The solid curves are the signals predicted by theory, adjusted to account for
a known qubit-detection error. The shaded area encloses the range of systematic microwave
amplitude error observed over the entire trapping region.

6.3 Global rotations using broadband sequences

We return to our previous discussion regarding the uniformity of the microwave field pro-

duced by the on-chip waveguides. The field non-uniformity acts as a position-dependent

amplitude error. This is problematic when implementing global single-qubit rotations on

multiple ions located at different positions in the trap. To improve single-qubit gate uni-

formity, we implement global gates using broadband compensating pulse sequences. The

excitation profiles of broadband pulse sequences enable global rotations on many qubits,

although the microwave amplitude may differ significantly between distant ions.

6.3.1 Composite sequence inversion profiles

We demonstrate compensated X-gates constructed from first-order SK1 [114] and second-

order B2 [117] sequences. Since R(π, 0) = −iX, these gates are equivalent to a π-rotation

with an additional global phase. The experiment prepares the qubit in |0〉, applies a logical

X-gate, and then measures the population in the F = 1 manifold. To simulate the effect

of systematic over/under rotations, we uniformly scale the pulse areas of every pulse in the

sequence by adjusting the pulse duration. Figure 6.7 plots the measured excitation profiles

produced by compensated gates, overlayed on the signal predicted by theory. Assuming the
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Figure 6.8: 2S1/2(F = 1) population after application of n sequential Pauli X-gates, with
each gate implemented via a (a) simple rotation operator, (b) SK1 composite pulse sequence,
or (c) B2 composite pulse sequence. Lines are fits to curves predicted by theory given the
position-dependent Rabi frequency shown in figure 6.5.

field non-uniformity is the sole source of error, we calculate theoretical fidelities of X-gates.

For the 6% amplitude deviation observed at z = 300 µm (see figure 6.5), a simple rotation

performs a global X-gate with a minimum fidelity F ≥ 0.995, whereas SK1 and B2 perform

the same gate with minimum fidelities of F ≥ 1 − 1.5 × 10−4 and F ≥ 1 − 2.2 × 10−7

respectively.

6.3.2 Compensated global microwave gates

As a demonstration of uniform global gates, we perform an experiment where n sequential

effective X-gates are applied to a qubit initialized in |0〉. We calibrate gate times so that

an ion located at the microwave amplitude maximum (z0 = 957 µm) experiences nearly

perfect rotations. Qubits displaced from the field maximum rotate at lower Rabi frequencies,

acquiring an under-rotation error that accumulates as n increases. We measure the F = 1

population as a function of ion axial position and number of sequential gates. For gates
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implemented by simple rotations we observe fringes (figure 6.8a) arising from the local qubit

falling behind by an entire Rabi cycle relative to the maximal Rabi frequency. Instead by

implementing SK1 or B2 pulses (figures 6.8b and 6.8c) error accumulates so slowly that the

excitation profile remains flat over the trapping region after n = 55 logical X-gates. Our

ability to resolve fringe structure in these cases is currently limited by systematic state-

preparation and measurement errors and by the number of simple pulse operations we can

implement.

We analytically calculate the fidelity scaling of the sequential logical X-gates as a func-

tion of the microwave field strength. For simple rotations, the fidelity drops as F =

| cos[ε(z)πn/2]|, where ε(z) = [Ω(z) − Ω(z0)]/Ω(z0) is the fractional difference in Rabi

frequencies between the ion location z and the field maximum. For SK1 pulses the fi-

delity scales as F = 1 − 15
128π

4ε(z)4n + O(ε(z)6), and for B2 the fidelity scales as F =

1− 5
1024π

6ε(z)6n+O(ε(z)8).

6.4 Summary

We have developed a microfabricated surface-electrode ion trap with integrated microwave

waveguides for performing arbitrary single-qubit gates on the 171Yb+ hyperfine qubit. The

polarization of the local microwave field can be tuned to minimize off-resonant coupling to

adjacent hyperfine states. Broadband compensating sequences were discussed. We use these

sequences to reduce amplitude errors introduced by microwave inhomogeneity. Instead, by

implementing narrowband sequences one could apply local gates, thereby enabling single-ion

addressing without requiring perfect field suppression at neighboring ions.
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CHAPTER VII

MULTI-QUBIT COMPENSATING SEQUENCES

In principle, compensating pulses can be used to correct unknown systematic errors in

single-qubit gates to arbitrary order [114]. In this chapter we extend compensating se-

quences to multi-qubit interactions. Our approach uses an inductive Cartan decomposition

for the dynamical Lie algebra. This decomposition informs the construction of compos-

ite sequence for multi-qubit gates. We show compensating sequences may be used correct

multi-qubit operations to arbitrary accuracy, provided that there exists two non-commuting

control Hamiltonians with proportional error or one error-free Hamiltonian. The chapter is

organized as follows: Section 7.1 describes the multi-qubit system, and simplifies the control

problem using a Cartan decomposition. Section 7.2 considers two-qubit gates. Section 7.3

generalizes to n qubits and proves inductively that only two systematic errors need to be

correlated to achieve arbitrary correction in all systematic errors.

7.1 Control theory and geometry of n qubits

The system we consider is n qubits with a set of dimensionless control Hamiltonians. In

the absence of errors the system is universally controllable if the Hamiltonians generate the

entire algebra su(2n) by addition and the Lie bracket [56, 58]. The very same technique can

be used to determine if a composite pulse sequence exists [136]. Additionally, the Lie bracket

can be used to constructively build pulses sequences, e.g. the balanced group commutator

construction described in section 2.2.4.1.

For n qubits the corresponding Lie algebra is su(2n). As a convenient representation of

the algebra we introduce the control Hamiltonians,

Hµ =
1

2
σµ

Hµν =
1

2
σµ ⊗ σν

Hµνρ... =
1

2
σµ ⊗ σν ⊗ σρ ⊗ . . . , (7.1)
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where σ1 = 1 is the identity on the qubit and σx = X, σy = Y , and σz = Z are the single

qubit Pauli operators. For single-qubit Hamiltonians, the set {Hµ} matches the previously

used control Hamiltonians for su(2). The set (7.1) is known as the product operator ba-

sis [137]. The Lie algebra itself is spanned by a basis of skew symmeterized Hamiltonians,

e.g. {eµνρ... = −iHµνρ...}. Furthermore since 〈eµνρ..., eµ′ν′ρ′...〉 = 2n

4 δµµ′δνν′δρρ′ . . . , the basis

is orthogonal under the Hilbert-Schmidt inner product. The algebra is a 4n−1 dimensional

vector space since since the generator of the global phase e111... = − i
2

⊗n
k=1 1k is outside of

the algebra of su(2n). For any two generators ei and ej , we find that either they commute

[ei, ej ]=0 or [ei, ej ] = εijkek, where εijk is a Levi-Civita tensor. If they do not commute,

the two operators generate a representation of su(2).

The Lie algebra then imposes that given Pauli-operator generators with the same sys-

tematic control error, arbitrarily accurate composite pulses can be created, if and only if

they do not commute. Furthermore, if they do not commute the resulting pulse sequence

may have the same form as a single qubit pulse sequence, for example a two-qubit analogue

of B2 [136]. A geometrical interpretation is that controlling two elements that do not com-

mute is homomorphic to rotations on a sphere while the space for commuting elements is a

2-torus [138, 139].

7.1.1 Cartan decomposition of two-qubit gates

The Lie group of two-qubit gates is SU(4). The corresponding algebra su(4) is spanned by

the vectors {eµν}, excluding e11, forming a 15-dimensional space. Rather than considering

all fifteen controls simultaneously, we simplify the problem by dividing the algebra into

subspaces. Choose su(4) = k⊕m where

k = span{ex1, ey1, ez1, e1z, e1z, e1z}

m = span{exx, exy, exz, eyx, eyy, eyz, ezx, ezy, ezz}.

Since [k, k] ⊆ k, [m, k] = m, and [m,m] ⊆ k the decomposition su(4) = k ⊕ m is a Cartan

decomposition (see section 2.2.4.3 for details). The subspace k = su(2)⊕ su(2) corresponds

to Hamiltonians which generate single-qubit rotations on either qubit, while m corresponds

to Hamiltonians which produce entanglement between the paired qubits. Our interest is
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in the abelian subalgebra a = span{exx, eyy, ezz}, a ⊂ m which corresponds to spin-spin

coupling interactions. In ion-traps these effective interactions are generated by two-qubit

gates such as the Mølmer-Sørensen gate or the phase gate [105, 140].

This admits a KAK decomposition U = K2AK1 for any U ∈ SU(4), where the

Kj ∈ SU(2) ⊗ SU(2) are formed from independent single-qubit rotations and A ∈ ea

are propagators generated by spin-spin interactions. The KAK form serves as a framework

for a pulse sequence to generate any arbitrary two-qubit rotation. Furthermore, if K2, A,

and K1 are each implemented by a compensating sequence then their product will also be

a compensating sequence.

7.2 Two qubits and multiple errors

Jones extended B2 to two-qubit gates in NMR quantum computers [141], where the natural

two-qubit Hamiltonian is Hzz. We consider Mølmer-Sørensen type interactions where the

effective Hamiltonian is Hyy or Hxx, depending on the laser phase. Ultimately the dis-

tinction is unimportant since both choices yield equivalent algebras. Jones uses the KAK

construction

R1,2(θ, φ) = R1(φ, 0) exp(−iθHyy)R
†
1(φ, 0), (7.2)

where R1(φ, 0) is a single-qubit rotation on the first qubit. Since R1(φ, 0)HyyR
†
1(φ, 0) =

cosφHyy + sinφHzy, the generator for the rotation R1,2(θ, φ) belongs to the subalgebra

j = span{eyy, ezy,−ex1}, which is a representation of su(2). Alternatively one could instead

choose to implement single-qubit rotations on the second qubit, e.g. R2(φ, 0), to yield

generators in the algebra j′ = span{eyy, eyz,−e1x}. It is unimportant which representation

of su(2) is used, only that the choice remains constant throughout the duration of the

sequence.

Suppose the system is subjected to a systematic spin-spin coupling error, see sec-

tion 4.3.2.1 for details. If the systematic error is related to the Lamb-Dicke parameters,

then only the two-qubit interaction is affected and the propagator (7.2) is replaced with

R1,2(θ(1 + εyy), φ). However if the error is related to the laser amplitude, single-qubit ro-

tations are also likely to experience a systematic error since both operations use the same
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laser. In this case the replacements R1(φ(1 + εx), 0) and R1,2(θ(1 + εyy), φ(1 + εx)) are

used. We treat εx and εyy as unknown error parameters, however in the case of pure laser

amplitude errors they are related by (1 + εx)2 = 1 + εyy.

7.2.1 B2-J

Jones’ extension of the B2 sequence, which we call B2-J, assumes perfect single-qubit rota-

tions (e.g., εx = 0). The sequence is constructed of four two-qubit rotations generated by

the vectors

r1 = ϑeyy

r2 = π cosφB2−Jeyy + π sinφB2−Jezy

r3 = 2π cos(3φB2−J)eyy + 2π sin(3φB2−J)ezy

r4 = π cosφB2−Jeyy + π sinφB2−Jezy.

The phase cosφB2−J = − ϑ
4π is identical to B2. There is a one-to-one correspondence

between the generators of B2-J and B2. Written as a sequence of two-qubit rotations,

UB2−J = R1,2(π, φB2−J)R1,2(2π, 3φB2−J)R1,2(π, φB2−J)R1,2(ϑ, 0). In the presence of un-

known spin-spin errors, UB2−J = R1,2(ϑ, 0) + O(ε3yy) so long as εx = 0, and the infidelity

scales as O(ε6yy) when εx is small and as O(ε2xε
2
yy) when εyy is small [142]. As long as

the single-qubit error is zero, in principle we can apply R1,2(ϑ, 0) + O(εn+1
yy ) to arbitrary

accuracy by replacing the B2 scaffold with higher order sequences, for example Bn [114].

Bn-J sequences therefore implement arbitrarily accurate gates, provided there exists two

non-commuting controls, one of which is free of error. These sequences are distinguished

by the use of effective rotations constructed by KAK-style pulses.

7.2.2 B2-WJ

More realistic models consider both single-qubit and two-qubit errors. One problem with

Bn-J is the accuracy advantage reduces when εx > εn+1
yy . This may be improved by mod-

ifying (7.2) by replacing R1(φ, 0) with a compensating sequence that corrects single-qubit

errors. Bn sequences provide arbitrarily accurate gates, provided there exists two non-

commuting controls with proportional errors [142]. In the case of single qubit rotations the
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errors corresponding to Hx1 and Hy1 are usually correlated since physically these interac-

tions are only distinguished by a relative phase with respect to the laser field.

The sequence B2-WJ is

UB2−WJ = W1,2(π, φB2−WJ)W1,2(2π, 3φB2−WJ)W1,2(π, φB2−WJ)W1,2(ϑ, 0) (7.3)

where W1,2(θ, φ) = UB2(φ, 0) exp(−θHyy)U
†
B2(φ, 0) is analogous to (7.2) with now the

single-qubit rotations R1(θ, φ) replaced by a corresponding B2 sequence. Similar to be-

fore cosφB2−WJ = − ϑ
4π . B2-WJ may be thought of as a concatenated compensating

pulse sequence. The lower layer of concatenation consists of B2 pulses which take two

correlated error single-qubit controls to synthesize an compensated single-qubit control.

The higher layer of concatenation is a B2-J sequence which corrects the two-qubit cou-

pling using compensated one-qubit controls. In the presence of unknown systematic errors,

UB2−WJ = R1,2(ϑ, 0)+O(αε3yy+βε3x) and the infidelity scales as O((αε3yy+βεyyε
3
x)2), where

α and β are constants that depend on ϑ and the control Hamiltonians.

For B2-WJ the infidelity at small εyy for fixed εx scales as O(ε2yy). This is the same

order as the uncorrected pulse R1,2(ϑ(1 + εyy), 0), although with a substantially smaller

infidelity. In the case of εx = 0.01, the infidelity in this regime is a factor of 108 smaller

than the uncorrected pulse (see Figure 7.1). For B2-WJ, the infidelity scales as O(ε2yy)

when εyy <
β2

α2 ε
3/2
x . However, we can replace the B2 sequences in W1,2 with higher order

pulse sequences, for example the Bn sequences. In this case, the infidelity will scale as

O((αε3yy+γnεyyε
(n+1)
x )2), where γn is a constant that depends on ϑ and Bn. As a result, the

value of εyy where the scaling changes from ε6yy to ε2x becomes smaller and smaller. In Figure

7.1, we compare the scaling properties of the B2-WJ and the higher order B2-W̃J where we

have replaced the W1,2 B2 sequence with the B4 sequence [114, 143]. As expected, the error

εyy where the scaling changes from ε6yy to ε2yy changes from ' 10−2 for B2-WJ to ' 10−4

for B2-W̃J. In principle, given a target infidelity and systematic errors ε < 1 [114], we can

construct a pulse sequence with an infidelity guaranteed below the target infidelity. We

note that in practice other errors including random control errors and decoherence typically

limit the fidelity.
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Figure 7.1: Comparison of B2-WJ and the higher order B2-W̃J pulse sequences applied
to a exp(−iπ4Hyy) operation. For a fixed Hx1 and Hy1 error εx, the infidelity after a B2-WJ

correction scales as O((αε3yy + βεyyε
3
x)2) (see text). For the same εx the B2-W̃J sequence

scales as O((αε3yy + γ4εyyε
5
x)2), extending the regime where the infidelity scales as O(ε6yy).

In Figure 7.2, we compare the ideal unitary UT = exp(−iπ4Hyy) to the composite se-

quences assuming errors equivalent errors in Hx1, Hy1 and uncorrelated errors in Hyy. B2-J

outperforms B2 when either error is low. B2 is preferable when the systematic errors are

identical. B2-WJ results in low errors over the range of two errors. Initial compensation of

the Hx1 pulses results in better compensation of Hyy.

7.3 Extension to many qubits

Given a control operator with a systematic error and a perfect rotation that transforms

that operator to an orthogonal independent operator, we can perform compensation, e.g.

B2-J. Given two control operators with correlated errors that are generators of su(2), we

can perform compensation, e.g. B2. As a result, in principle one can perform arbitrarily

accurate composite pulses on a controllable quantum system where all the controls have

independent errors except two.

As an example, imagine n qubits in a row with single qubit operators and pairwise

Mølmer-Sorensen couplings. The Hamiltonians are Xj , Yj on each qubit and YjYj+1 between

neighbors. If for the qubit n, Xn and Yn have uncorrelated error, there does not exist a
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Figure 7.2: Comparison of (a) B2, (b) B2-J, and (c) B2-WJ pulse sequences applied on
exp(− iπ

4 Hyy) operation on a pair of qubits. B2-WJ assumes Hx1 and Hy1 have equivalent
systematic errors.

compensation pulse [136]. However, if the X and Y systematic errors are correlated on the

the first qubit but otherwise independent, the following sequence can be used to generate

an arbitrarily accurate X rotation on the nth qubit.

For the initial qubit with correlated X1 and Y1 errors, B2 is used. To correct Y1Y2, B2-J

is used with B2 corrected X1 pulses. This is the sequence B2-WJ. X2 on the second qubit

is then corrected via B2-J using B2-WJ corrected Y1Y2 pulses. We denote this sequence as

B2-WJJ or B2-WJ2. Errors on the nth qubit can be compensated by repeated use of B2-J

along the chain, first correcting Xj , then YjYj+1 and then Xj+1 until Xn is reached. The

total sequence correcting the nth X rotation is denoted B2-WJ2(n−1).

Figure 7.3 compares correcting a π/4 X rotation as a function of chain length assuming

equal magnitude errors for all operators but with a random sign except for X1 and Y1. The

correlated and anti-correlated lines serve as references. If Xn and Yn have correlated errors,

then local B2-W greatly reduces the infidelity. In the worst case scenario, the errors are

anticorrelated and the compensation pulses add additional error to the initial overrotation.

Xn rotations can still be corrected using B2-WJ2(n−1), if only X1 and Y1 are correlated.

The error increases with position (comparing B2-WJ2 to B2-WJ10) on the chain for large

errors but approaches an equivalent fidelity for small errors. Asymptotically, the correction

of Xn rotations by sequential correction (B2-WJ2(n−1)) is equivalent to the B2-W correction

93



10−3 10−2 10−1 100
10−20

10−15

10−10

10−5

100

Error

In
fid

el
ity

uncorrected
anticorrelated (W)
correlated (W)

−WJ2B2
B2−WJ6

B2−WJ10

Figure 7.3: Compensation of exp(− iπ
8 Xn) by application of B2-WJ2(n−1). Compensation

by B2-W pulses using Yn works only when the errors are correlated. Anticorrelated errors
between Xn and Yn increase the infidelity. B2-WJ2(n−1) uses the correlated errors of X1

and Y1 and a chain of YjYj+1 interactions to compensate the Xn rotation. The results for
X2, X4 and X6 are shown.

composed of correlated Xn and Yn rotations. Replacing B2 with the pulse sequences from

[114] allows for the creation of arbitrarily accurate pulse sequences.

Although, this is not practical on a large scale, it can lead to a constant reduction in the

number of gates that need to be calibrated at the beginning of an experiment for a large

quantum system. Per region of computation, only a few highly reliable quantum gates can

be used to reduce systematic errors in their neighbors.

7.4 Summary

We have shown that arbitrarily accurate compensation is possible with a fully controllable

system if either two non-commuting Hamiltonians that generate su(2) have equivalent sys-

tematic errors or if a single Hamiltonian is error free. The underlying pulse sequences are

equivalent to sequences for single qubits. We can generate arbitrarily accurate two-qubit

gates using B2-J type sequences. These can interact with their neighbors, etc. This is

impractical but it does suggest that a system with a few low-error controls could efficiently

compensate neighboring high-error control.
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The su(2) algebra underlying these compensating pulse provides additional incentive to

continue development of single qubit compensation pulses. Shaped pulse sequences or con-

tinuous time control can lead to further improvements [144]. The question remains how to

develop composite pulses that do not rely on a su(2) or so(3) subalgebra. The development

of compensation pulses that do not use the geometry of the sphere and the development of

techniques for identifying compensation compatible systems are both interesting challenges.
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CHAPTER VIII

INTEGRATED MICROMIRRORS FOR RAPID DETECTION

Ion qubit state-detection relies on efficient collection of laser-induced ion fluorescence [91,

145–147]. Measurement times for high-fidelity readout are set by the collection efficiency,

frequently limited by a small light collection solid-angle. In large arrays of cotrapped ions,

it will be necessary to detect the states of multiple ions simultaneously in order to keep

operation times low. However with most light collection optics, increasing the collection

efficiency from a single ion restricts the field of view (FOV), limiting the ability to perform

parallel measurements over many ions.

This chapter examines a multi-scale fluorescence collection system where high numerical

aperture (NA) micromirrors are coupled to a macroscopic, low NA lens for efficient light

collection over a large FOV [133]. An array of these mirrors could be integrated into a

large trap, permitting simultaneous collection of light from many ions. Towards this end,

we developed a microfabricated surface-electrode ion trap with an integrated micromirror.

The chapter is organized as follows: Section 8.1 describes the design of the microfabricated

mirror trap and optics. Section 8.2 describes the trap architecture and fabrication proce-

dure. Section 8.3 presents measurements of the collection enhancement of a trapped atomic

ion over the mirror. Section 8.4 concludes with proposed improvements and potential ap-

plications.

8.1 Trap and optics design

The design consists of a five-wire surface-electrode Paul trap with an integrated reflective

mirror component for improved photon collection (see figure 8.1). Similar to our other traps,

a radio-frequency RF potential applied to a pair of rail electrodes confines the ions radially.

Axial confinement is achieved by biasing a subset of 42 independent DC control electrodes

which lie adjacent to the RF rails. Typical trapping potentials utilize five electrodes per

side to generate harmonic wells with secular frequencies between 0.5 and 2 MHz. As before,
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Figure 8.1: Trap layout showing the integrated miromirror, RF rails, and the DC control
electrodes. Scattered fluorescent photons from a trapped 40Ca+ ion are collected by a relay
optic and detected by a CCD camera and a PMT. The micromirror improves collection
efficiency by locally increasing the collection solid-angle.

by slowly varying the potentials applied to the control electrodes, a trapped ion can be

smoothly transported to distinct regions of the device, including to regions that contain

specialized structures for efficient state readout.

An approximately spherical micromirror directly incorporated into the central DC ground

electrode reflects a large NA cone of fluorescence from a trapped ion near the focus. Any

mirror misalignment or deviation from an ideal profile results in a divergent cone of light.

The alignment of the optical focus and the ion is entirely the product of design and micro-

fabrication of the trap and is not sensitive to thermo-mechanical misalignment. We place a

macroscopic relay optic outside the vacuum chamber to collect and focus fluorescent light

onto a detector. In this role, rather than imaging the ion, the relay lens images the mi-

cromirror onto the detector. As such, the relay lens spot size is only required to match

the selected detector size, making it simple to design and assemble. The relay optics are

designed to be tolerant of misshaped and misaligned micromirrors. Furthermore, this multi-

scale light collection system can direct light from a multitude of micromirrors distributed

across a large FOV to independent detectors.
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8.1.1 Designing traps for micromirror integration

For compatibility with VLSI fabrication techniques [87], we consider only designs in which

no electrode edges are patterned inside the micromirror and where the electrode forming

the mirror surface is grounded. We estimate the solid-angle coverage provided by the mirror

and its dependence on the electrode configuration by examining two analytic models in the

gapless plane electrostatic approximation [86]: a ring trap geometry which enables a high

collection efficiency of reflected photons and a linear-strip electrode geometry compatible

with ion shuttling. These models represent the design extremes; features of both designs

are combined in a hybridized wrapped-electrode geometry which is numerically optimized

to minimize the influence of the mirror on the pseudopotential tube.

8.1.1.1 Ring trap geometry

Consider a trap geometry where the mirror is surrounded by a narrow RF ring electrode.

Neglecting the depression of the mirror cavity (mirror sag), we use the gapless plane elec-

trostatic approximation to calculate the inner radius of the RF rail r (equal to half the

mirror diameter) as a function of the ion height h above the trap surface

r = h

[
3

4
sin−2

(π
6

+ θ
)
− 1

]1/2

, 0 < θ < π/6, (8.1)

where θ is proportional to the angular width of the RF electrode as seen from the ion

(see [86]). We immediately note that the collection angle ϕ = arctan(r/h) does not depend

on the mirror shape or size. The upper bound (θ = 0◦, corresponding to an RF electrode

with an infinitesimal width) gives ϕ = 54.7◦ (NA = 0.82, 21% geometric collection effi-

ciency). For a reasonable but small rail angle, θ = 16◦, ϕ = 50◦ (NA = 0.76, 18% geometric

collection efficiency). These analytic results neglect the effect of the micromirror depression

on the fields. The influence of the micromirror on the trapping fields will lower the ion

height and is therefore expected to somewhat improve the collection efficiency. Moving any

portion of the RF rails away from the mirror will raise the ion height, therefore the insertion

of small isolation gaps between electrodes as required for real traps will reduce collection

efficiency.
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8.1.1.2 Linear trap geometry

While the maximum collection efficiency is achieved with a surface ring trap, we require a

mirror compatible with a scalable architecture that allows for the shuttling of ions. Figure

8.2a shows an example of such an architecture in which the mirror is tangent to the RF

rails of a linear section. In this design, any ion in the linear section may be transported over

the mirror for readout. Once again using the gapless plane electrostatic approximation, we

find the relationship between the ion height and mirror radius for this configuration,

r = h tan(π/4− θ). (8.2)

Again, r/h is a function only of the RF electrode angle, and the radius of curvature (ROC)

of the mirror is linearly proportional to the ion height. The upper bound for the mirror

acceptance angle, ϕ = 45◦, is again found when θ = 0◦ (NA = 0.71, 15% collection effi-

ciency). For a reasonable rail angle, θ = 4◦, ϕ = 41◦ (NA = 0.66, 12% geometric collection

efficiency).

8.1.1.3 Hybrid trap geometry

Figure 8.2b shows a concept for a hybrid of the two analytic models that improves the

collection efficiency by wrapping the RF rail around the mirror. We choose a conservative

design, with a target ion height of 63 µm, θ = 16◦, and a 45◦ wrapping of the RF rail

around the mirror. Approximate values of the mirror ROC (150 µm) and radius (60 µm)

were found from the above analytic forms after including a 6 µm gap around the edge of the

RF electrodes and a 4 µm flat shelf around the edge of the mirror. The resulting optimal

micromirror sag is 12 µm and the NA is 0.69 (geometric collection efficiency 14%). These

parameters represent an idealized target geometry for fabricated micromirrors. Errors in

microtrap fabrication may lead to significant deviations in the mirror profile.

We performed numerical simulations on these candidate designs using our own method-

of-moments electrostatics code. Similar methods were used to optimize trapping electrode

geometries. Starting with the design in figure 8.2b, the RF rail width was adjusted until the

mirror focus was aligned with the pseudopotential null (17 µm rail width) while keeping the
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Figure 8.2: Illustration of the geometry of the trap and micromirror for various design
iterations. (a) a trap with linear RF rails tangent to the mirror, (b) RF rails wrapped
around the mirror, (c) RF rails with a pinch and taper to a linear section, (d) the final
geometry with genetic algorithm optimized RF electrodes.

inner edge of the rail and mirror profile constant. Next, the spacing between the RF rails in

the linear section was optimized so that the ion height over the linear section approximately

matched the height in the mirror. A pinch in the RF electrodes was inserted at the transition

region between the linear and wrapped rail geometries (figure 8.2c) to reduce variation in

the ion height. This adjustment did not change the location of the RF null over the mirror.

Finally, a genetic algorithm was used to optimize the RF rail geometry near the wrap-

ping region. The algorithm uses a fitness function that minimizes the RF-noise motional

heating rate [31] while maintaining a nearly uniform ion height down the linear section.

The fitness function is proportional to
∫
C [∂E2(z)/∂z]2dz, where E(z) is the applied electric

field and the contour C follows the pseudopontential minimum along the axial coordinate

z. Perturbations to the rail geometry are parametrized by a set of edge points which are

systematically displaced from the input geometry. A spline function was used to interpolate

the RF rail edge between these points. The optimizer was allowed to adjust the number

of points and the distance of the points from the axial center line of the trap, under the

constraint that the width of the RF rail was held constant and the RF null location was
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Figure 8.3: Figures of merit for various design iterations. (a) Residual pseudopotential at
the minimum in the transverse plane as a function of axial displacement from the mirror
center for various design iterations. The residual pseudopotential vanishes at points where
the confining fields cancel. (b) Height of the calculated pseudopotential minimum as a
function of position along the trap axis. Far from the mirror, the pseudopotential height
asymptotically approaches a limiting value controlled by the RF rail spacing in the linear
region.

maintained within 0.25 µm of the mirror focus. The resulting optimization produced several

candidate solutions. The solution with the fastest decline in the RF field along the trap

axis was selected for fabrication. This design is shown in figure 8.2d.

8.1.2 Design of relay optics for scalable state detection

An important component of the multi-scale detection system is the macroscopic relay lens

assembly. In a proposed trap design with an array of mirrors, the relay lens directs light

reflected from each micromirror site located to an independent sensor (e.g., a single element

in a PMT or APD array) in the image plane, allowing independent, asynchronous readout

for each mirror (see figure 8.4). The required complexity of the relay optic depends on the

mirror spacing in the ion trap and the required insensitivity of the system to misalignment.

To illustrate the simplicity and robustness of this approach, a 1:1, NA = 0.14 relay lens

was designed using 2” diameter stock plano-convex lenses in a commercial optics simula-

tion package (Zemax R©). In the simulations, a spherical mirror matching the ideal target

geometry is placed at the object point of the relay optic. The optic is designed so that

light collected from each measurement region is focused onto independent 0.25 mm radius
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Figure 8.4: (a) Diagram of a multi-scale light collection system for a proposed trap with
an array of mirrors. Collected fluorescence from each individual micromirror (b) is relayed
to an independent detector (c). The relay lens assembly can image mirrors over the entire
11 × 11 mm2 trap chip with minimal cross-talk between detectors. For clarity, the trap
electrodes have not been drawn and only a small number of mirrors were included. The
micromirrors are not drawn to scale.

detectors in the image plane. Individual micromirrors distributed anywhere on the 11× 11

mm2 chip are resolvable with zero cross-talk so long as no two mirrors are placed closer

than 0.5 mm center-to-center. This distance corresponds to six DC control electrode widths

in the current trap (see figure 8.1b).

To estimate the tolerance of the light collection system under various misalignments, we

calculate the distribution of directly emitted and specularly reflected rays projected onto the

detector plane. We consider transverse displacements of the micromirror from the optical

axis of the relay lens (field height). In figure 8.5a, we show that for mirror displacements

exceeding the dimensions of the trap chip the light specularly reflected by the micromirror

forms a localized spot less than 0.25 mm in radius in the image plane (the lens does not

vignette any light reflected from the mirror). The image plane is assumed to be distortion

free. That is, if the mirror is placed 8 mm from the axis of the relay lens, the detector is

placed 8 mm from the axis in the opposite direction.

Photons directly emitted by the ion are not well collimated and may arrive at one of
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Figure 8.5: (a) Simulated geometric spot radii of the ray bundle specularly reflected from
a spherical micromirror for transverse displacements of the mirror from the relay optic axis
(field height). Guides illustrating the detector radius and maximum field height set by the
chip dimensions (

√
2 × 11/2 mm) are provided. (b) Cross-talk ratio (fraction of collected

light that reaches the image plane outside of the detector radius) versus mirror displacement
from the relay optic axis. The ratio is an upper bound on the cross-talk; in practice the
actual cross talk will be smaller. The calculation includes rays directly emitted by the ion
and assumes 85% mirror reflectivity with negligible transmission losses.

Figure 8.6: (a) Simulated specularly reflected spot radii for ion displacements along the
trap axis z from a mirror center. The reflected ray distribution is calculated for mirrors at
field heights 0 mm and 8 mm. The position of the detector is not adjusted to compensate
for misalignment of the ion to the mirror. (b) Spot radii for vertical ion displacements along
the y axis from the vertex of a mirror located on the relay lens axis.
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several detectors, introducing a cross-talk error during state detection. The relay optics

have been designed to reduce this effect. Figure 8.5b shows that for all transverse mirror

displacements within the chip dimensions, light from an individual ion relayed by the lens

may be collected by a single 0.25 mm radius detector with a cross-talk of less than 0.05%.

Therefore, the designed multi-scale detection system is efficient for mirrors placed anywhere

within the design FOV of the relay lens. Note that larger, denser arrays of micromirrors are

possible as fast, high fidelity readout is still possible with non-negligible cross-talk [145].

We also consider misalignments of the ion relative to the micromirror either in the

transverse x-z plane (e.g., the ion is not centered on the optical axis) or longitudinally (e.g.,

the mirror ROC is incorrect, the mirror sag is incorrect, or the RF rails are incorrectly

sized). The magnitudes of these misalignments are bounded by the characteristic errors

from trap fabrication. We conservatively estimate the transverse misalignment to be less

than 4 µm and the mirror sag error to be less than 3 µm. Nondestructive measurement of

the micromirror profile outside NA = 0.3 is not currently possible, leading to uncertainty in

the longitudinal alignment of the mirror focus with the RF null. However, it is possible to

accurately measure the sag of the mirror and post-select a chip that is closest to the design

objective (within 1 µm). In figures 8.6a-b the specularly reflected spot radius is plotted as a

function of transverse and longitudinal misalignment. We find that the design performance

of the collection system is not degraded for misalignments within the expected fabrication

tolerances. Finally, we note that increased FOV, improved misalignment tolerances, and

other detector sizes and configurations may be accessible by redesign of the relay lens.

8.2 Trap architecture and fabrication

The ion trap fabrication process is based on well established silicon VLSI processing tech-

niques which enable the production of complex scalable structures. The traps are fabricated

on the surface of a 〈100〉 p-doped Si substrate and use sputtered Al electrodes with PECVD

SiO2 dielectric layers. Architecturally the device is similar to traps reported in [32, 34, 87]

with several important design improvements, including integrated capacitive filters (∼ 60
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Figure 8.7: (a) Trap cross section along the x radial direction at the center of the mirror.
A logarithmic plot of the pseudopotential including equipotential lines is superimposed. (b)
Detail of trap fabrication on a silicon substrate. For clarity, only features in the vertical
direction are drawn to scale. The trapping electrodes are isolated from the Si substrate by
a 1 µm Al ground plane and 10 µm of insulating SiO2. Two additional patterned metal
layers separated by 1 µm SiO2 define the trapping electrodes (2nd level) and the integrated
capacitive filters (3rd level). (c) SEM image of the mirror on the prototype trap used in
the experiment. A lithography error in the final metal patterning step left 1 µm of residual
aluminum from the capacitor layer in the center of the mirror.

pF) to reduce RF pickup on the DC electrodes and asymmetric DC electrodes to simplify ro-

tation of the secular axis for effective laser cooling. The design also features a through-chip

loading slot.

Fabrication begins by defining the mirror profile in the silicon substrate. The process

for producing recessed micromirrors in silicon uses an HF, HNO3 and acetic acid (HNA)

solution to etch isotropically through circular apertures patterned on a LPCVD silicon

nitride mask [148–150]. The wafer is etched in a room temperature HNA bath without

agitation for 22 minutes after which the nitride mask is removed in HF. The overall etch

rate and final surface morphology are highly dependent on the concentrations of each of

the etchant components and must be carefully optimized to provide a smooth, controllable

etch [151]. We have selected a 1 HF : 8 HNO3 : 1 CH3COOH (by vol.) solution for an etch

with an anisotropy of ∼ 10% [152] and a low occurrence of surface defects. We find that

the mirror diameter and radius of curvature can be controlled to within ±2 µm by choosing

the appropriate circular aperture size and HNA etch time. Following wet processing, the

frontside of the wafer is thinned using a combination of lapping and chemical mechanical
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polishing techniques to independently control the mirror sag. The mirror surface is protected

during thinning with a sacrificial 15 µm SiO2 layer.

Following mirror fabrication, the trapping electrode structures are patterned over the

polished substrate. The spherical mirror profile is translated to the surface electrodes during

build-up. A cross-section of the device is shown in figure 8.7b. To prevent coupling of the

trapping electrodes to the lossy Si substrate, a 1 µm Al ground plane and a thick 10 µm SiO2

dielectric layer are deposited over the substrate. RF and DC electrodes are lithographically

patterned and plasma etched from a 1 µm Al film deposited above the insulating oxide

surface. This layer of aluminum also serves as the mirror coating; the mirror surface itself

is part of the central DC electrode. A final pair of 1 µm thick SiO2 and aluminum layers

are patterned to form on-chip capacitive filters for grounding RF potentials on the control

electrodes. Isolation trenches separating the trapping electrodes are formed with a plasma

etch which removes exposed SiO2 between the electrode structures. The removal of excess

oxide from the trap surface also reduces sites where stray charges may accumulate and

perturb the trapping potential [153, 154]. An ICP Bosch process [155] is used to etch the

loading slot through the substrate, resulting in a nearly vertical etch profile.

An SEM image of the micromirror in the prototype device used in this study is shown

in figure 8.7c. During fabrication, a lithography error resulted in the incomplete removal of

the final metal level in the center of the mirror. The presence of this rough (σRMS > 40 nm,

measured by a Veeco Dimension 3100 AFM in tapping mode) residual metal is expected

to severely degrade the optical performance of the device. Among the batch of roughened

mirrors, we selected traps for testing by the mirror surface finish rather than the geometry

of the mirror profile. For the trap tested in this study, the mirror geometry (ROC = 178

µm, r = 50.5 µm, NA = 0.63) differs substantially from the ideal profile. Despite the poor

quality of the mirror, the device was still able to demonstrate significant photon collection

improvement (factor of 1.9 enhancement). We expect to demonstrate larger collection

enhancements as our fabrication processes are improved.
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8.3 Trapping and demonstration of collection enhancement

The integrated mirror structure is characterized with single ions of 40Ca+ fluorescing on the

397 nm 2S1/2 → 2P1/2 cycling transition. An additional optical repumping laser at 866 nm

is used to prevent population trapping in the metastable 32D3/2 manifold [55, 156]. Ions

are loaded into the trap 600 µm from the mirror by photoionization of neutral 40Ca flux

entering through the backside loading slot, preventing the deposition of metallic calcium

over the trap surface. Stray photoelectrons may charge exposed insulators inside the vacuum

chamber, affecting trapping potentials. A mesh ground plane 4 mm above the trap surface

shields ions from stray fields while allowing the transmission (T ≥ 80 %) of fluorescent

photons. The RF trapping potential (V0 ≈ 200 V, Ωrf = 2π × 62.3 MHz) is applied by a

waveform generator filtered by a helical resonator. Radial and axial mode frequencies were

measured to be 2π×(2.9, 2.2, 1.0) MHz.

Ion shuttling is achieved by applying a set of slowly varying transport potentials (|V | ≤

6V) to the DC control electrodes, producing a moving pseudopotential well which may be

held stationary along any axial position in the trap, see section 3.1.3.1 for details. Typical

shuttling operations include 103 transport potential update steps and last approximately 2

ms, with a success probability P ≥ 99.98%. After shuttling, a computer controlled piezo

driven mirror steers the 397 nm cooling beam (aligned at a 45◦ angle from the trap axis)

to track the ion. The 866 nm beam is aligned to illuminate the entire trap axis.

In the multi-scale approach, the collection enhancement from reflected light is controlled

by the micromirror, while the FOV is dependent on the relay optics. While an ideal relay

optic for simultaneous readout over many distributed mirrors is described in section 8.1.2,

for demonstrating collection enhancement over a single mirror, we elected to use the relay

optic system already present on the apparatus (1:10, design NA = 0.43, FOV < 0.25 mm).

Collected fluorescence is directed through a 45:55 beam splitter to both a Princeton In-

struments Photonmax 512B EMCCD camera and a Hamamatsu H7360-02 photomultiplier

tube (PMT), operating in photon counting mode. The PMT has a quantum efficiency of

.205 at λ = 397 nm.

Figure 8.8 compares CCD images of ions above a planar region of the trap and over the
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Figure 8.8: False color CCD images of ions above (a) the trap surface, and (c) the
integrated micromirror. Background calibration images taken without an ion have been
subtracted from the above images. (b,d) Counts from the images in (a,c) integrated across
each vertical line of pixels. The sharp peaks are the direct image of the ion while the wide
pedestals are produced from the light reflected from the surfaces. Each pixel is 1.6 × 1.6
µm2 at the magnification used in the experiment.

mirror. Resonant fluorescent light directly collected from the ion appears as a well localized

spot on the detector. Photons scattered from the surface of the planar region and of the

mirror face form a diffuse reflected image. We observe a factor of 1.9 photon collection

enhancement for an ion over the mirror compared to an ion above the planar region (see

figure 8.9b). To measure the dependence of the collection enhancement on ion position, we

shuttle ions across the trapping zone while monitoring the fluorescence with the PMT.

Any RF micromotion that has a component parallel to the 397 nm cycling transition

beam’s propagation direction will induce RF sidebands on the fluorescence profile and reduce

the on-resonant fluorescence. Stray electric fields and small control potential errors can

displace the ion from the micromotion minimum. To counter this effect, we measure and

compensate [157] the electric field in the radial x direction required to minimize the sideband

at each point in the scan. The corrections are less than 300 V/m and have a strong

dependence on the ion position, likely due to a slight misalignment of the mirror to the

trap axis. Though minimizing the sideband does not guarantee that the ion is on the
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Figure 8.9: (a) Fluorescence versus frequency at the center of the mirror (z = 0). Static
fields have been applied to minimize the RF sideband. The remaining micromotion peak
is 0.06 ± 0.02 of the peak intensity. This corresponds to a micromotion modulation index
β = 0.3 ± 0.1. The smooth curve is the least squares fit of the sum of two Lorentzian
functions. (b) Relative collection intensity as a function of the ion position over the mirror.
The mirror is centered roughly at 0. For each position in the scan, a field in the x direction
was applied to minimize the RF sideband, thus maximizing the carrier intensity.

micromotion minimum (there can be motion perpendicular to the laser), it does maximize

the fluorescence. Since the 397 nm beam is at an angle of 45◦ with the trap axis, the

remaining micromotion seen by the laser beam is an upper bound on any axial micromotion

at the ion location and the resulting pseudopotential barriers. A scan of the 397 nm laser

beam frequency with the compensation applied shows only a small remnant of a micromotion

sideband (see figure 8.9).

Figure 8.9b shows light collection versus ion position over the mirror with the compen-

sating field applied. The vertical scale gives the relative intensity collected by the PMT

referenced to the intensity when the ion is sufficiently far from the mirror that the mirror

no longer contributes, and a compensation is made for the slight dependence of the PMT

collection efficiency on the ion position. This dependence is due to the PMT aperture and

is determined by measuring the ion fluorescence versus position on a section of the trap far

from the mirror. Fluorescence measurements on the micromotion sideband as a function of

ion position (see figure 8.9b) show that the ion remains largely compensated at all the mea-

surement locations even with the presence of the mirror. The peak light collection shows

109



a factor of 1.9 improvement as compared to collection without the mirror. In general, the

mirror reflectance has a spatial dependence from the local topography of the aluminum film.

It is postulated that the drop in collected fluorescence observed directly over the mirror is

related to the rough aluminum defect at the mirror center (see section 8.2 and figure 8.7c)

caused by a fabrication error. Future testing with high-quality aluminum films produced by

improved fabrication techniques may clarify the role of mirror surface topography in light

collection.

8.4 Summary

We have developed a surface-electrode trap with an integrated micromirror, and observed

a factor of 1.9 fluorescence collection enhancement for 40Ca+ ions trapped above the mirror

surface. The trap design is optimized to improve the solid-angle coverage of the reflective

optic under the constraints that no electrode edges be patterned inside the mirror cavity and

that the electrode geometry remains compatible with ion shuttling. A relay optic system

has been designed to efficiently collect fluorescence over a 16 mm FOV using a multi-scale

approach, enabling enhanced ion fluorescence collection over multiple mirrors distributed

across a trap.

Although a significant enhancement in fluorescence collection has been demonstrated,

several improvements with the current implementation may be made, including improving

the profile and roughness of mirror surfaces. With improved fabrication, we believe it is

feasible to produce an integrated micromirror with greater than 85% reflectivity at λ = 397

nm, which collects ∼ 12% of emitted photons into a cone of fluorescence. For a trap

with an 85% surface reflectivity, we estimate the collection efficiency of the system when

coupled to the relay optic used in the experiment (NA ≤ 0.43, FOV < 0.25 mm) to be 17%

over the mirror, and 9% over a planar region (∼ 1.8× enhancement). The same analysis

using the relay lens described in section 8.1.2 (NA = 0.14, FOV = 16 mm) yields estimate

collection efficiencies of 12% and 0.9% for an ion above a micromirror and a planar region

respectively (∼ 13× enhancement). We emphasize that a large FOV relay optic coupled to

a micromirror array is expected to allow efficient, asynchronous readout over multiple ions.
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We are currently considering trap designs with several integrated mirrors, and are planning

experiments to demonstrate the feasibility of the multi-scale optics approach to scalable

qubit detection.
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