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SUMMARY 

The biogenic reduction of Mn(IV) oxides is one of the most favorable anaerobic 

electron transfer processes in aquatic systems and likely plays an important role in the 

redox cycle of both carbon and nitrogen in anaerobic environments; yet, the different 

pathways involved in the microbial transformation of Mn(IV) oxides remain unclear.  

The coupling between the reduction of Mn(IV) to Mn(II) and the oxidation of 

organic carbon to CO2 is largely catalyzed by microorganisms in various environments 

such as redox stratified water columns and sediments. The recent discovery that soluble 

Mn(III) exists in natural systems and is formed during biological oxidation of Mn(II) 

implies the possibility that Mn(III) is formed as an intermediate during the microbial 

reduction of Mn(IV). In this dissertation, mutagenesis studies and kinetic analysis were 

combined to study the mechanism of microbial reduction of Mn(IV) by Shewanella 

oneidensis MR-1, one of the most studied metal-respiring prokaryotes. We show for the 

first time that the microbial reduction of Mn(IV) proceeds step-wise via two successive 

one-electron transfer reactions with soluble Mn(III) as intermediate produced in solution. 

The point mutant strain Mn3, generated via random chemical mutagenesis, presents a 

unique phenotype that reduces solid Mn(IV) to Mn(III) but not to Mn(II), suggesting that 

these two reduction steps proceed via different electron transport pathways. Mutagenesis 

studies on various in-frame deletion mutant strains demonstrate that the reduction of both 

solid Mn(IV) and soluble Mn(III) occurs at the outer membrane of the cell and Mn(IV) 

respiration involves only one of the two potential terminal reductases (c-type cytochrome 

MtrC and OmcA) involved in Fe(III) respiration. Interestingly, only the second electron 

transfer step is coupled to the respiration of organic carbon, which opposes the long-

 xvi



 xvii

standing paradigm that microbial reduction of Mn(IV) proceeds via the single transfer of 

two electrons coupled to the mineralization of carbon substrates. 

The coupling between anaerobic nitrification and Mn reduction has been 

demonstrated to be thermodynamically favorable. However, the existence of this process 

in natural system is still in debate. In this dissertation, characterization of coastal marine 

sediments was combined with laboratory incubations of the same sediments to investigate 

the effect of Mn oxides on the redox cycle of nitrogen. Our slurry incubations 

demonstrate that anaerobic nitrification is catalyzed by Mn oxides. In addition, mass 

balance calculations on NH4
+ link the consumption of NH4

+ to anaerobic ammonium 

oxidation in the presence of Mn oxides and confirm the occurrence of Mn(IV)-catalyzed 

anaerobic nitrification. The activity of anaerobic nitrification is greatly affected by the 

initial ratio of Mn(IV) to NH4
+, the reactivity of Mn oxides, and the reducing potential of 

the system. Overall, Mn(IV)-catalyzed anaerobic nitrification may be an important source 

of nitrite/nitrate in anaerobic marine sediments and provide an alternative pathway for 

subsequent nitrogen losses in the marine nitrogen cycle.  

 

 

 

 



 

CHAPTER 1 BACKGROUND AND INTRODUCTION 

 1.1 Manganese in natural systems 

The element manganese (Mn), with an atomic number of 25 and electron 

configuration [Ar] 3d54s2, is the fifth most abundant metal and the second most abundant 

transition metal on Earth (Nealson et al., 1988), contributes on average 0.072% by mass 

to surface rocks (Martin and Meybeck, 1979), and is ubiquitous in natural waters and 

sediments (Emelyanov, 2001, Aller, 1994, Davison, 1993). Due to its high abundance and 

redox reactivity, transformations of manganese influence the biogeochemical cycling of 

carbon, nitrogen, phosphate, and other toxic elements (Zhang et al., 2007, White et al., 

2008, Neretin et al., 2003, Luther et al., 1997). Mn is also an essential trace element for 

life and plays an important role in catalyzing oxygen transformation in enzymatic 

photosynthesis (Dismukes, 1986). Therefore, understanding the properties and the 

biogeochemical cycle of manganese is of great environmental significance.  

Theoretically, Mn may exist in any of the redox states ranging from 0 to +7, but it 

is primarily present under the three oxidation states +II, +III, and +IV in natural 

environments (Davison, 1993). Mn(II) is thermodynamically stable under anoxic 

conditions, usually as free hydrated cation in fresh waters, MnCl+ in marine environments, 

or incorporated in insoluble phosphate and carbonate minerals (Tebo et al., 2004, Otero et 

al., 2009, Davison, 1993). The free hydrated Mn(II) cation is considered biologically 

available and required in trace amounts by organisms (Sunda and Huntsman, 1986); 

however, high concentrations of Mn(II) can be toxic (Millaleo et al., 2010). Mn2+ also 

displays a strong affinity for solid surfaces, including Mn oxides (Nealson et al., 1988, 

Tebo et al., 2004). The most common Mn(II) mineral in natural systems is the Mn(II) 
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carbonate, rhodochrosite, the formation of which is largely driven by microbial Mn(IV) 

reduction (Neumann et al., 2002).  

Natural Mn(III) species are dominated by solid Mn(III) oxides, which are formed 

as meta-stable intermediates of birnessite due to kinetic limitations (Davison, 1993). 

Soluble Mn(III), although considered rare in natural environments, may be produced as 

the intermediate during the chemical and photochemical reduction of Mn(IV) (Perez-

Benito, 2002, Ruppel et al., 2001) and during microbial oxidation of Mn(II) (Anderson et 

al., 2009, Webb et al., 2005, Learman et al., 2011). Generally, soluble Mn(III) is 

extremely unstable and rapidly disproportionates to yield Mn(II) and Mn(IV) under 

acidic conditions, or precipitates as Mn(III) oxides at pH >7 (Davison, 1993, Klewicki 

and Morgan, 1998). Soluble Mn(III), however, can be stabilized in soluble phases in the 

presence of several inorganic or organic ligands, such as pyrophosphate (Kostka et al., 

1995), citrate (Klewicki and Morgan, 1998), hydroxycarboxylic acid (Heintze and Mann, 

1947), and siderophores (Parker et al., 2004, Duckworth and Sposito, 2005a). Due to its 

extreme reactivity and the lack of appropriate analytical techniques, soluble Mn(III) was 

only recently discovered in low concentrations in the sub-oxic zone of natural systems 

(Trouwborst et al., 2006, Madison et al., 2011). The existence of soluble Mn(III) in these 

conditions motivates more research on the processes responsible for the production of 

Mn(III) under oxygen-limited conditions. 

Due to the lack of ligands to complex Mn(IV) in aquatic systems at circum-

neutral natural pH, soluble Mn(IV) has yet to been found, (Morgan, 2000a). Various 

oxides and oxyhydroxides of Mn(IV), sometimes incorporating Mn(III), form manganese 

nodules, which are important constituents of soils and sediments and serve as sources or 
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sinks for bioavailable Mn in natural environments (Murray, 1974). These Mn oxides are 

generally generated during diagenetic processes or the oxidation of Mn(II), which 

diffuses upward into the oxic zone (Mouret et al., 2009). In addition to their high 

reactivity, Mn oxides also show extremely high adsorption capacity for various heavy 

metals (such as Pb, Co, Cu, Ni, and Cd) and are considered to be the most important 

repositories for a wide variety of metals in soils and sediments (Stumm and Morgan, 

1996, Tebo et al., 2004).  Therefore, the formation and dissolution of manganese minerals 

play important roles in the oxic/anoxic transition zones of various natural waters and 

sediments. 

1.2 Oxidation/reduction (redox) of Mn 

The redox transformation of Mn in natural systems includes the oxidation of 

Mn(II) to Mn(IV) and the reduction of Mn(IV) to Mn(II), with Mn(III) as possible 

intermediates in either process, and is mediated via both chemical and microbial 

processes (Figure 1.1) (Luther, 2005). The redox cycle of manganese facilitates the 

transport of electrons across the oxic-anoxic transition zone and drives the redox cycles 

of many other elements in various sediments (Aller, 1990, Neretin et al., 2003, Aller, 

1994, Van Cappellen et al., 1998).  
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1.2.1 Oxidation of Mn(II) 

In natural systems, Mn(II) diffuses across oxic/anoxic interfaces and is oxidized 

to Mn(IV) either chemically or biologically by dissolved oxygen (Figure 1.1) (Thamdrup, 

2000b). The chemical oxidation rate of Mn(II) by dissolved oxygen (Eq. 1.1) is slow at 

pH below or around 8 due to the large activation energy required for transferring 

electrons to oxygen (Morgan, 2005, Luther, 2005). Mn(II) usually exists in the form of 

‘free’ hydrated ion Mn(H2O)6
2+ at low pH, and electrons have to be transferred from the 

Mn eg* (σ) (HOMO) to the O2 π* orbital (LUMO). The poor symmetry between these 

orbitals slows down the reaction at pH below 8 (Luther, 2005).  In turn, the oxidation of 

Mn(II) is thermodynamically favorable at pH > 8 (Stumm and Morgan, 1996), as the 

hydrolysis of Mn(II) generates Mn(OH)x
(2-x) complexes that carry electron-donor type of 

ligands and facilitate the electron transfer even when the overlap between the orbitals is 

Mn (II) O2

Chemical or biological oxidation

·······
Oxic zone

Anoxic 
zone

Mn(III) PrecipitationUpwelling

O2 Mn (IV)

·······

Chemical or biological reduction

Mn (II) Mn (IV)

Mn (III)

Mn (III) ?

Mn (II) O2

Chemical or biological oxidation

·······
Oxic zone

Anoxic 
zone

Mn(III) PrecipitationUpwelling

O2 Mn (IV)

·······

Mn (III)

?Mn (II) Mn (IV)Mn (III)

Chemical or biological reduction

 

Figure 1.1. Conceptual model of the redox cycle of Mn at oxic-anoxic interfaces in 
aquatic systems. The upward flux of Mn(II) to the oxic zone is accompanied by the slow 
oxidation of Mn(II), while the downward flux of Mn oxides supplies a strong oxidant to 
the anoxic zone. Microorganisms are largely involved in both the reduction and oxidation 
of Mn. 
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not optimal (Luther, 2005). Mn(II) hydroxide species formed under basic conditions are 

readily transformed by aerobic oxidation processes to Mn(III/IV) species (Cotton et al., 

1999). This process is autocatalytic, as the adsorption of Mn(II) to Mn(IV) oxides 

accelerates the rate of oxidation  (Sun and Morgan, 1981), but too slow to be of 

environmental relevance at circumneutral pH (Stumm and Morgan, 1996). As a result, 

the oxidation of Mn(II) is proposed to be largely catalyzed by microorganisms in most 

natural environments (Tebo et al., 2005). 

 

Mn2+ + ½ O2 + H2O  MnO2 + 2 H+    ΔG°’ = -80.8 kJ/mole Mn   (Equation 1.1) 

 

Indeed, microorganisms are able to increase the oxidation rate of Mn(II) by 

several orders of magnitude compared to the abiotic Mn(II) oxidation (Bargar et al., 

2005). Among the physiologically diverse microorganisms involved in Mn(II) oxidation, 

three phylogenetically distinct types of bacteria have been well-studied, including: 1) the 

sheath-forming β-Proteobacterium, such as Leptothrix discophora strain SS-1 (Adams 

and Ghiorse, 1987), 2) the spores formed by the Gram-positive Bacillus sp. Strain SG-1 

(Devrind et al., 1986), and 3) the γ-proteobacterium Pseudomonas putida strains MnB1 

and GB-1 (Okazaki et al., 1997). Interestingly, the physiological reason for bacteria to 

oxidize Mn(II) remains unclear (Tebo et al., 2005, De Schamphelaire et al., 2007). 

Although chemolithoautotrophic growth on Mn(II) was proposed, no evidence has been 

reported to directly link Mn(II) oxidation to energy generation (Tebo et al., 2005). In 

addition, the biochemical pathways involved in the aerobic oxidation of Mn(II) have yet 

to be completely identified. Multi-copper oxidase (MCO) enzymes located on the cell 
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surface are considered to be essential in Mn(II) oxidation (Brouwers et al., 1999); 

however, it was recently demonstrated that Roseobacter sp. AzwK-3b indirectly oxidizes 

Mn(II) by first producing extracellular superoxide radicals to oxidize Mn(II) via a 

secondary abiotic reaction (Learman et al., 2011). Finally, production of Mn(III) during 

the aerobic oxidation of Mn(II) by spores of the marine Bacillus sp. Strain SG-1 or newly 

isolated Mn(II)-oxidizing strains Aurantimonas manganoxydans, sp. nov. and 

Aurantimonaas litoralis, sp. nov. or Roseobacter sp. AzwK-3b indicate that two 

consecutive one-electron-transfer reactions are taking place during bacterial oxidation of 

Mn(II) (Anderson et al., 2009, Webb et al., 2005, Learman et al., 2011). These findings 

suggest that the electron transfer pathway of Mn(IV) reduction to Mn(II) may proceed as 

the reverse process of that for Mn(II) oxidation, producing Mn(III) as intermediate.  

1.2.2 Reduction of Mn(IV) oxides 

In anaerobic conditions, Mn(IV) is reduced to Mn(II) either chemically by organic 

compounds, Fe(II), and sulfide (Stone and Morgan, 1984a, Villinski et al., 2003, Yao and 

Millero, 1993) or biologically by dissimilatory reducing microorganisms at circumneutral 

pH (Myers and Nealson, 1988, Lovley and Phillips, 1988, Lovley et al., 1993, Greene et 

al., 1997). The standard reduction potentials of the MnIIMnIII
2O4/Mn2+ and δ-

MnIVO2/Mn2+ couples are slightly higher (618 mV) than those of the β-MnIVO2/Mn2+ and 

γ-MnIIIOOH/Mn2+ couples (555 mV) (Thamdrup, 2000b). These reduction potentials, 

close to that of nitrate reduction, indicate that Mn(III) and Mn(IV) represent some of the 

strongest oxidants in anaerobic environments.  
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Chemical reduction of Mn(IV) 

 The chemical reduction of Mn(IV) occurs rapidly in the presence of a wide 

spectrum of organic and inorganic reductants (Stone and Morgan, 1984a, Stone and 

Morgan, 1984b). Ferrous ion and hydrogen sulfide are the most important reductants of 

Mn oxides in natural environments (Thamdrup, 2000b). The reduction of Mn oxides by 

Fe(II) is relatively fast at pH < 4; however, formation of Fe(III) precipitate may block the 

β-MnO2 surface sites and in turn slow or even inhibit the reaction at pH > 4 (Postma, 

1985). Reduction of Mn oxides by solid Fe(II) at higher pH, either FeS or FeS2, was 

proposed to proceed via Fe(II)/Fe(III) cycling that transport electrons between two solids 

(Mn oxides and FeS/FeS2) for further oxidation of S2- and S2
2- (Schippers and Jorgensen, 

2001). The reduction of Mn(IV) by  dissolved sulfide is much faster, however, as it 

involves the transfer of two paired electrons (Luther, 2010).  This reaction follows a first 

order rate law with respect to both surface site and the H2S concentration and forms 

inner-sphere surface complexes  >MnIVS- and >MnIVSH as intermediates (Yao and 

Millero, 1993). Sulfate is the main product of the oxidation of hydrogen sulfide by 

Mn(IV) oxides at low pH, and elemental sulfur is the main product at neutral pH 

(Herszage and Afonso, 2003). The rate of this reaction decreases as pH increases due to 

the repulsion of HS- and the negatively charged solid Mn oxides (Yao and Millero, 1993, 

Luther, 2010). Colloidal MnO2 can also be reduced by Mn2+ in acidic conditions to form 

Mn(III), according to Eq. 1.2 (Perez-Benito, 2002). 

MnO2 + Mn2+ + 4H+  2 Mn3+ + H2O                                               (Equation 1.2) 

Several organic compounds are able to reduce manganese oxides chemically but at a 

much lower rate (Stone and Morgan, 1984a). Natural organic compounds and microbial 

 7



metabolites, such as ascorbate, hydroquinone, or oxalate, may reductively dissolve Mn 

oxides by forming a surface complex prior to the electron transfer (Stone and Morgan, 

1984b, Stone and Morgan, 1984a). In addition, desferrioxamine B, a trihydroxamate 

siderophore produced by microorganisms, reduces MnO2 through a single electron 

transfer step to solid Mn(III) and solubilize Mn(III)  by complexation (Duckworth and 

Sposito, 2007).  

Biological reduction of Mn(IV) – Mn(IV) respiration 

In addition to the uptake of manganese for assimilation, microorganisms can also 

gain energy during the dissimilatory reduction of Mn(IV) in anaerobic conditions (Lovley 

et al., 2004b). Anaerobic manganese respiration by prokaryotes, first demonstrated with 

Alteromonas putrefaciens MR-1 (Myers and Nealson, 1988). Dissimilatory Mn-reducing 

bacteria (DMRB) span a wide phylogenetic diversity of microorganisms residing in the 

redox-stratified aqueous and sedimentary environments (Lovley et al., 2004b, DiChristina 

et al., 2005). Some DMRB are fermenting bacteria, which channel only a small part of 

electrons from the organic matter to Mn oxides and do not conserve energy from the Mn 

reduction (Lovley, 1991); others (respiratory organisms), including most of DMRB, 

oxidize organic compounds with Mn oxides as terminal electron acceptor (Thamdrup, 

2000b) and conserve energy from Mn reduction to support growth (Lovley et al., 1993, 

Nealson et al., 1988).  

Due to the high abundance and reduction power of Mn(IV), Microbial Mn(IV) 

reduction contributes significantly to the global oxidation of organic matter in natural 

systems (De Schamphelaire et al., 2007, Davison, 1993). The respiration of organic 

carbon proceeds by a sequence of redox reactions according to the free energy yield of 
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the reactions with the different available electron acceptors (Froelich et al., 1979). In oxic 

zones, the oxidation of organic carbon is typically efficient, considering the high energy 

yield during aerobic respiration (ΔG°’ = -3190 kJ/mol) (Froelich et al., 1979, De 

Schamphelaire et al., 2007). Below the oxygen penetration zone, denitrification (ΔG°’ = -

3030 kJ/mol), Mn-oxide reduction (ΔG°’ = -3090 ~ -2920 kJ/mol), Fe-oxide reduction 

(ΔG°’ = -1410 ~ -1330 kJ/mol), sulfate reduction (ΔG°’ = -380 kJ/mol), and 

methanogenesis (ΔG°’ = -350 kJ/mol) may contribute to the oxidation of organic carbon 

depending on the free energy yield of the reaction, bioavailablility of the electron 

acceptors, and environmental conditions (Schulz et al., 1994, De Schamphelaire et al., 

2007). Direct oxidation of organic matter by Mn oxides in aquatic systems was 

demonstrated by the simultaneous production of alkalinity and Mn(II) in stoichiometric 

ratio (2:1) and the increasing amount of Mn and Fe reducing microorganisms in the oxic-

anoxic transition zone of the Orca Basin (Van Cappellen et al., 1998). Reduction of Mn 

was found to account for up to 100% of organic carbon oxidation in the hemipelagic 

deposits of the Panama Basin (Aller, 1990) and the upper 10 cm-layer sediments of the 

Fjord, Skaggerak, Denmark (Canfield et al., 1993). In contrast, other studies argued that 

Mn oxides play a minor role in the oxidation of carbon with a maximum contribution of 

6% of the total organic carbon oxidation in Galveston Bay on the Upper Gulf Coast of 

Texas (Warnken et al., 2008) and less than 2% in the Gotland Deep, Baltic Sea (Neretin 

et al., 2003). These differences in the contribution of Mn reduction to total carbon 

oxidation may depend on the total Mn content and the reactivity of different Mn species 

(i.e. Mn(II) carbonate v.s. Mn(IV) oxides in anoxic sediments) (Thamdrup, 2000b). 
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 Compared to other respiratory processes, such as denitrification, sulfate reduction, 

and methanogenesis, the biochemistry of anaerobic manganese respiration remains poorly 

understood (Madigan et al., 2003). Furthermore, the mechanism by which electrons are 

transferred from the cells to solid Mn(IV) oxides has yet to be identified (DiChristina et 

al., 2005). The low solubility of Mn (IV) oxides at circumneutral pH prevents the inner 

membrane (IM)-localized electron transport systems to contact Mn(IV). Thus, bacteria 

must adopt specific strategies to transfer electrons from the inner membrane to solid 

terminal electron acceptors (TEAs) located on the outside of the cell (DiChristina et al., 

2002) over a distance of at least 8 nm (Prescott et al., 1996).  

Three main electron transfer strategies have been postulated for either Mn(IV) 

oxides or Fe(III) oxides or both (Myers and Myers, 2003a, Newman and Kolter, 2000, 

DiChristina et al., 2005) (Figure 1.2). First, bacteria are able to directly reduce metal 

oxides such as Mn(IV) by localizing the terminal reductase to the outer membrane 

(Myers and Myers, 2001) (Figure 1.2). The type II secretion system, which transports 

proteins from the periplasm to the outer membrane (Desvaux et al., 2004) is critical to the 

direct enzymatic reduction of Mn(IV) and Fe(III) oxides (DiChristina et al., 2002). 

Mutant strains of S. putrefaciens lacking the type II secretion gene ferE cannot respire on 

Fe(III) and Mn(IV) oxides but retain the ability to reduce soluble electron acceptors such 

as nitrate (DiChristina et al., 2002). Mutant strains of S. oneidensis lacking the type II 

secretion system genes gspE and gspG decrease the extracellular release of the c-type 

cytochromes MtrC and OmcA (Shi et al., 2008). These two outer membrane c-type 

cytochromes, are proposed to be involved in the terminal steps of electron transfer during 
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dissimilatory reduction of Mn oxides (Beliaev and Saffarini, 1998, Myers and Myers, 

2002, Myers and Myers, 2003a, Heidelberg et al., 2002).  
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Organic ligand 

Soluble Fe(III) reductase 

OmcA MtrC OmcA

 

 

Figure 1.2. A working model for the three potential electron transfer strategies ((I) direct 
enzymatice reduction, (II) electron shuttling, and (III) solubilization) adopted by 
Shewanella to reduction Fe(III) or Mn(IV) oxides, modified from (DiChristina et al., 
2005). 

 

 

Second, some organic compounds such as AQDS (DiChristina et al., 2005), 

quinones (Newman and Kolter, 2000), and riboflavin (von Canstein et al., 2008) may act 

as electron shuttles by being first enzymatically reduced and chemically re-oxidized by 

solid Mn(IV) or Fe(III) oxides in a second (abiotic) electron transfer reaction (Figure 1.2). 

A mutant strain of S. putrefaciens MR-1 deficient in menaquinone production is unable to 

reduce solid Mn(IV) and Fe(III), suggesting that endogenous menaquinones or small 
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compounds related to menaquinones shuttle electrons to solid terminal electron acceptors 

(Newman and Kolter, 2000).  

Third, microorganisms may reduce iron oxides by first dissolving Fe(III) with 

exogenous or endogenous organic ligands, then reducing the soluble Fe(III) species either 

on the outer membrane or inside the periplasm (Pitts et al., 2003, Taillefert et al., 2007a) 

(Figure 1.2). Recently, mutants of S. oneidensis deficient in the production of soluble 

organic-Fe(III) complexes have been found to be impaired in the respiration of Fe(III) 

oxides, supporting the hypothesis that soluble organic-Fe(III) complexes are produced as 

intermediates during anaerobic respiration of solid Fe(III) by endogenous organic ligands 

(Jones et al., 2010). These ligands are still elusive, but evidence suggests that the 

mechanism is distinct from assimilatory metal intake, as mutants of S. oneidensis lacking 

the genes involved either in the production of siderophores or the reduction of 

siderophore-Fe(III) complexes still retain wild-type production of soluble organic-Fe(III) 

complexes (Fennessey et al., 2010). In the case of Mn(IV), ligands promoting the non-

reductive dissolution of Mn(IV) oxides have yet to be identified in natural environments 

at circumneutral pH (Morgan, 2000a, Duckworth et al., 2009). In turn, a variety of 

exogenous compounds including pyrophosphate and naturally-existing ligands such as 

citrate and siderophores can stabilize Mn(III) at a pH ranging between 5 and 8 (Kostka et 

al., 1995, Klewicki and Morgan, 1998, Parker et al., 2004). Mn(IV) oxides may be first 

reductively dissolved by microbial metabolites, such as pyruvate or siderophore (see 

previous section) (Stone, 1987b, Duckworth and Sposito, 2007), and form soluble Mn(III) 

complexes for dissimilatory reduction. In addition, Mn(III)-siderophore complexes are 

proposed to play a role in bacterial Mn(II) oxidation (Parker et al., 2007). Recently, 
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siderophores have also been suggested to be involved in microbial reduction of solid 

Mn(IV) oxides (Kouzuma et al., 2012). These findings imply that microorganisms may 

have to adopt a solubilization strategy that first reduces solid Mn(IV) oxides to soluble 

Mn(III) complexes as intermediates during the anaerobic respiration of Mn(IV). Yet 

direct evidence for the production of soluble Mn(III) complexes during microbial 

respiration of Mn(IV) oxides is still lacking.  

One-electron transfer versus two-electron transfer reduction 

Despite the fact that the physicochemical properties of Fe and Mn are different 

(Luther, 2010), similar electron transfer strategies have been proposed for the anaerobic 

respiration of solid Mn(IV) and Fe(III) by members of the Shewanella genus (Myers and 

Myers, 2000, Newman and Kolter, 2000, Bretschger et al., 2007, Shi et al., 2007). Indeed, 

the mechanism of bacterial Mn(IV) reduction may be more complex than that of Fe(III) 

considering that the electronic configuration of both elements is different and that Mn(IV) 

has to accept a total of two electrons. In addition, the fact that bacterial Mn(II) oxidation 

is proposed to proceed via two steps of one-electron transfer (Webb et al., 2005) raises 

the possibility the reduction of Mn(IV) involves two consecutive steps of one-electron 

transfer.  

According to the molecular orbital theory, two steps of one-electron transfer 

during the reduction of Mn(IV) to Mn(II) may proceed by the addition of the first 

electron to one of the two empty eg orbitals of Mn(IV) with a change of the orbital’s 

geometry from purely octahedral Mn(IV) to octahedral Mn(III) and then to tetragonal 

Mn(III) (Figure 1.3 (A)) (Luther, 2005). For a two-electron transfer reaction with 

formation of octahedral Mn2+, the two electrons are donated by the reductant either as a 
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lone pair to an empty orbital, followed by electron rearrangement to satisfy Hund’s Law 

(Pathway A – C – B in Figure 1.3 (B)), or as two distinct electrons from separate orbitals 

(Figure 1.3 (B)). The later electron transfer pathway is thought to be less favorable 

because it requires a reductant with two orbitals filled with one electron (Luther, 2005). 

Indeed, chemical reduction of MnO2 by Mn(II) under highly acidic conditions (Perez-

Benito, 2002) or by organic reductants (e.g. oxalate and pyruvate) at neutral pH (Stone, 

1987a), and the electrochemical reduction of MnO2 (Ruppel et al., 2001) have been 

proposed to follow the one-electron transfer pathway with production of Mn(III) 

intermediates. Interestingly, Mn(III) has also been suggested to be produced as the 

intermediate during dissimilatory Mn(IV) reduction (Lovley, 1991), but evidence for the 

one-electron-transfer pathway has yet to be demonstrated during anaerobic Mn(IV) 

respiration. 
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Figure 1.3.(A) Orbital energy diagrams showing the orbital structural change from Mn (IV) 
to octahedral Mn (III) then to tetragonally distorted Mn (III); (B): Orbital energy diagrams 
showing the possible ways that Mn (IV) can add two electrons to its eg* orbital set with 
electron rearrangement to satisfy Hund’s Law. The second electron transfer pathway (B) is 
thought to be less favorable than the first one (A), because the second pathway requires a 
reductant with two orbitals filled with one electron (Luther, 2005). 
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1.4 Interactions of Mn and nitrogen cycles 

1.4.1 The Role of Manganese in the Nitrogen Cycle 

Nitrogen is one of the essential elements for life. It is a major constituent of 

nucleic acids and proteins, which determine both the genetic and metabolic properties of 

every living cell, and accounts for typically 6.25% of dry-cell mass (Galloway and 

Cowling, 2002, Bothe et al., 2007). Interestingly, the portion of nitrogen that is available 

to living organisms on Earth, the so-called ‘fixed nitrogen’, represents only 10% of the 

total nitrogen on Earth (Galloway et al., 1995), suggesting that the transformation of 

fixed nitrogen is relatively fast compared to the transformation of dinitrogen gas.  

The balance of the marine nitrogen budget is still under debate. Some studies 

estimated that denitrification rates are higher than nitrogen fixation and suggested a 

significant unbalance between oceanic nitrogen inputs (nitrogen fixation) and outputs 

(denitrification) (Codispoti et al., 2001). Other studies, however, showed that nitrogen 

fixation may be underestimated in nitrogen budgets and that the oceanic nitrogen inputs 

and outputs should be in balance (Gruber and Sarmiento, 1997, Deutsch et al., 2007). 

These findings indicate limitations in our understanding of the nitrogen cycle (Ward et al., 

2009) and that alternative N-transformation pathways that are presently not accounted for 

in the marine nitrogen budget may exist (Capone and Knapp, 2007).   
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Figure 1.4. Simplified biogeochemical cycle of nitrogen, including processes of (1) 
nitrogen fixation, (2) mineralization of organic nitrogen (Org-N), (3) assimilation of 
nitrogen, (4) aerobic nitrification, (5) denitrification, (6) dissimilatory nitrate reduction to 
ammonium, and (7) anammox (modified from (Kuypers et al., 2003)). 

 

The conventional biogeochemical cycle of nitrogen generally includes (1) 

nitrogen fixation, (2) mineralization of organic nitrogen, (3) assimilation of nitrogen, (4) 

aerobic nitrification, and (5) denitrification (Figure 1.4). Because of the triple bond that 

stabilizes both nitrogen atoms, dinitrogen gas (N2) is the most dominant nitrogen species 

in natural environments and constitutes approximately 78% of the atmosphere. N2 gas is 

unavailable to most organisms, leading to nitrogen limitations for photosynthesis in 

various environments (Galloway et al., 2004). Nitrogen fixation that converts di-nitrogen 

to reactive nitrogen therefore plays a crucial role in controlling global primary 

productivity (Borucki, 1984). While lightning may fix nitrogen (Borucki, 1984, Bothe et 

al., 2007), biological nitrogen fixation (BNF) by diazotrophs, which are able to produce 

reduced forms of nitrogen, such as ammonium, amines, and amino acids (Bothe et al., 

2007, Galloway and Cowling, 2002), represents the main process of nitrogen fixation on 

Earth. Organic nitrogen produced via nitrogen fixation is converted to ammonium 

through mineralization ((2) in Figure 1.4) (Bothe et al., 2007). Aerobic nitrification ((4) 
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in Figure 1.4) is a two-step process, including the aerobic oxidation of ammonium to 

nitrite (Eq. 1.3) and nitrite to nitrate (Eq. 1.4) (Bothe et al., 2007, Mosier et al., 2002).  

 

NH4
+ + 3/2 O2  NO2

- + H2O + 2H+                                                (Equation 1.3) 

NO2
- + 1/2 O2  NO3

-                                                                       (Equation 1.4) 

These two oxidation steps are conducted by different groups of microorganisms, named 

ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) (Bothe et al., 

2000). One of the essential steps during nitrification is the activation of ammonia to 

hydroxylamine (NH2OH) by ammonium mono-oxygenase (AMO) (Bothe et al., 2007). 

Most of the microorganisms involved in aerobic nitrification are chemolithoautotrophs 

such as Nitrosomonas (AOB) and Nitrobacter (NOB), which use the energy released 

from nitrification for cell growth (Bothe et al., 2007). However, some heterotrophic 

microorganisms can also aerobically oxidize ammonia to nitrite and nitrate (Richardson 

et al., 1998). In fact, nitrifiers are suggested to display versatile metabolism, including 

other pathways that are not strictly lithotrophic and aerobic (Schmidt et al., 2002). For 

example, some AOB have been demonstrated to oxidize ammonium in the presence of 

pyruvate and nitrite under anaerobic conditions (Abeliovich and Vonshak, 1992), and 

ammonium oxidizing archaea (AOA) are also found to widely exist in marine waters and 

sediments including in oxygen-limited zones (Francis et al., 2005). So far, nitrification is 

considered one of the least understood steps of the nitrogen cycle (Bothe et al., 2007).  

Denitrification ((5) in Figure 1.4) refers to the dissimilatory reduction of nitrate 

and nitrite to N2 via a series of intermediates (nitric oxide, NO, and nitrous oxide, N2O) 

(Knowles, 1982). A taxonomically diverse group of bacteria synthesizes a series of 
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enzymes, including a nitrate reductase, a nitrite reductase, or a NO reductase to 

successively reduce these different N species (Bothe et al., 2000). Denitrifiers are 

generally dominated by heterotrophs, which utilize organic carbon as terminal electron 

donor and produce reductase enzymes only under anaerobic conditions (Mosier et al., 

2002). Denitrification is widely regarded as taking place under strict anaerobic conditions, 

such as in the oxygen minimum zones (OMZs) of the ocean (Mosier et al., 2002). 

Dissimilatory nitrate reduction to ammonium (DNRA) ((6) in Figure 1.4), which refers to 

the direct reduction of nitrate to ammonium, also exists in marine sediments and may be 

comparable to denitrification, especially under high sulfidic conditions (An and Gardner, 

2002).  

 Anammox ((7) in Figure 1.4), a recent addition to the nitrogen cycle, refers to the 

anaerobic respiration of ammonium on nitrite or nitrate to produce N2 as end product 

(Jetten et al., 2009). Although thermodynamic calculations suggest the possibility of 

ammonia oxidation by nitrite or nitrate (Broda, 1977), ammonium was considered an 

inert molecule under anaerobic conditions until the mid 1990’s when the first evidence of 

anaerobic ammonium oxidation to N2 (patented as the ‘anammox’ process) was found in 

a wastewater treatment plan (Mulder et al., 1995, deGraaf et al., 1996). In marine systems, 

the anammox process was first demonstrated in the anoxic zone of the Black Sea using 

15N tracer experiments (Kuypers et al., 2003). Since then, anammox bacteria have been 

proposed to play an important role in the removal of reactive nitrogen in various marine 

environments (Hamersley et al., 2007, Thamdrup et al., 2006). For example, the 

anammox process was suggested to contribute up to 50% of the global loss of fixed 

nitrogen from the oceans (Brandes et al., 2007), even though other studies suggested that 
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denitrification rather than anammox dominates the nitrogen loss in marine systems (Ward 

et al., 2009). Though in debate, anammox is generally considered to be an important 

process that significantly impacts the global nitrogen cycles and may improve wastewater 

treatment techniques (den Camp et al., 2006). 

Although anammox has been intensively studied, the molecular pathway 

responsible for this reaction remains poorly understood (Jetten et al., 2009). In addition, 

the source of nitrite for anammox in oxygen-limited environments remains to be 

identified (Jetten et al., 2009, Mortimer et al., 2004). Most studies of anammox in marine 

environments have been based on anoxic incubations with addition of nitrate or nitrite 

(Dalsgaard et al., 2005, Engstrom et al., 2005, Kuypers et al., 2003). However, nitrate and 

nitrite are generally scarce in anoxic marine sediments and the pervasive distribution of 

anammox activity in sediment columns (Engstrom et al., 2005, Thamdrup and Dalsgaard, 

2002) suggests that other processes supply these electron acceptors continuously. Aerobic 

ammonium oxidizers near oxic/anoxic interfaces may provide nitrite for anammox 

bacteria (Schmidt et al., 2002). However, the total production of NOx
- by aerobic 

ammonium-oxidizing bacteria is not always able to sustain the loss of NH4
+ through 

anammox, which requires an equivalent amount of moles of ammonium and nitrite (Lam 

et al., 2007). In addition, anammox is inhibited above 2 - 25 µM oxygen (Strous et al., 

1997, Jensen et al., 2008, Kalvelage et al., 2011), implying that aerobic nitrification and 

anammox may be vertically separated in sediments. These findings indicate that sources 

other than aerobic nitrification may exist to supply nitrite or nitrate for anammox 

microorganisms. Several lines of evidence indeed suggest nitrite and nitrate may be 

formed anaerobically in marine sediments. First, nitrate was found to rebound below the 
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oxygen penetration depth in a variety of organic-rich sediments (Mortimer et al., 2004, 

Anschutz et al., 2000, Mortimer et al., 2002). Second, anaerobic nitrification, 

demonstrated by the production of nitrate, nitrite, and N2 in anoxic NH4
+ incubations, was 

proposed to represent a substantial source of nitrite for anammox (Lam et al., 2007). 

These studies did not identify the electron acceptor involved in anaerobic nitrification but 

proposed Mn oxides as potential candidate given their high abundance and oxidative 

power in sediments (Anschutz et al., 2005, Luther et al., 1997, Mortimer et al., 2004). 

Besides Mn oxides, other less thermodynamically favorable electron acceptors, such as 

Fe(III) (Park et al., 2009, Clement et al., 2005) and sulfate (Fdz-Polanco et al., 2001, 

Schrum et al., 2009), have also been suggested to be coupled to the anaerobic oxidation 

of ammonium. 

1.4.2 Links between anaerobic ammonium oxidation and the Mn redox cycle 

Interestingly, oxidation of organic-N or NH4
+ to N2 (but not NO3

-) by MnO2 in the 

presence of dissolved oxygen has been observed in both field and laboratory studies and 

this process was proposed to dominate the nitrogen cycle in Mn-rich continental margin 

sediments (Luther et al., 1997). The coupling between MnO2 reduction and direct 

ammonium oxidation to N2, however, has yet to be demonstrated under anaerobic 

conditions (Thamdrup and Dalsgaard, 2000, Thamdrup and Dalsgaard, 2002). While the 

oxidation of ammonium to N2 by MnO2 is thermodynamically favorable over a wide 

range of pH, the formation of nitrate is only favorable at pH < 7.8 (Luther et al., 1997, 

Hulth et al., 1999). Therefore, marine sediments may provide appropriate environments 

for Mn(IV)-promoted anaerobic oxidation of ammonium to nitrate. Indeed, several other 

laboratory and field studies suggested that Mn(IV) oxides promote anaerobic ammonium 
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oxidation to nitrate/nitrite (anaerobic nitrification) in marine sediments (Anschutz et al., 

2000, Hulth et al., 1999, Mortimer et al., 2004). This conclusion was drawn from the 

good correlation between the production of dissolved Mn2+ and a second nitrate 

maximum found below the oxygen penetration zone in marine sediments (Anschutz et al., 

2000). Nitrite/nitrate production was also stimulated by extra amendment of Mn oxides 

during anaerobic incubations of sediments from Long Island Sound (USA) (Hulth et al., 

1999). In addition, the production of nitrate and nitrite during anaerobic incubations of 

sediments from Humber Estuary (UK) (Bartlett et al., 2008) and Arcachon Bay (France) 

(Javanaud et al., 2011) was accompanied by the simultaneous reduction of manganese 

oxides.  

Unfortunately, the link between anaerobic nitrification and reduction of Mn 

oxides is difficult to make from field (in situ) observations alone (Bartlett et al., 2008, 

Bartlett et al., 2007), especially when considering the following: (1) Nitrate and nitrite act 

as transition species in anoxic environments and are consecutively consumed by several 

processes such as denitrification (Knowles, 1982), anammox (Kuypers et al., 2003), and 

dissimilatory nitrate reduction to ammonium (Bothe et al., 2007); (2) Ammonium may be 

consumed or produced by a variety of parallel processes, including assimilation (Bothe et 

al., 2007), adsorption/desorption (Mackin and Aller, 1984), and ammonification (Hulth et 

al., 1999, Bartlett et al., 2008), making it difficult to recognize the contribution from 

anaerobic ammonium oxidation; and (3) Other thermodynamically favorable electron 

acceptors, such as Fe(III) oxides (Park et al., 2009, Clement et al., 2005) and sulfate 

(Fdz-Polanco et al., 2001, Schrum et al., 2009), have also been proposed to be coupled to 

anaerobic ammonium oxidation.  
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The inconsistent observations of Mn-catalyzed anaerobic nitrification in different 

sediments (Thamdrup and Dalsgaard, 2000, Bartlett et al., 2008) imply that the onset of 

this process may be facilitated by specific geochemical conditions. For example, it has 

been proposed that the lack of evidence from extensive sediment incubations (Thamdrup 

and Dalsgaard, 2000) may have been caused by nitrogen-limitation in the sediments 

(Hulth et al., 2005). Similarly, the perturbation of sediments by microorganisms or burial 

events of freshly formed Mn oxides has also been proposed to affect the occurrence of 

Mn-catalyzed anaerobic nitrification in different sediments from Humber Estuary (UK) 

(Bartlett et al., 2008). Thus, laboratory incubations that manipulate the key factors 

involved in Mn-catalyzed anaerobic nitrification are needed to demonstrate the coupling 

between anaerobic nitrate/nitrite production and Mn-oxides reduction.  

Besides the link between Mn reduction and anaerobic ammonium oxidation, 

another pathway that couples Mn(II) oxidation to nitrate reduction has also been found in 

anaerobic sediments and suboxic water column (Aller, 1990, Schulz et al., 1994, Murray 

et al., 1995). Significant oxidation of Mn(II) is observed in the surface layer of sediments 

below the oxygen penetration zone, suggesting the oxidation of Mn(II) by nitrate, the 

only thermodynamically favorable electron acceptor available in the absence of oxygen 

(Aller, 1990). This coupling, so-called chemo-denitrification process (Eq. 1.5) (Sorensen 

et al., 1987), may also be involved in the interaction between the redox cycles of Mn and 

N. 

5 Mn2+ + 2 NO3
- + 4 H2O  5 MnO2 + N2 + 8 H+                           (Equation 1.5) 
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1.5 Objectives of the Thesis 

Anaerobic respiration of Mn oxides plays a significant role in the cycling of 

carbon, nitrogen, and other toxic elements (White et al., 2008, Neretin et al., 2003, Luther 

et al., 1997); however, the mechanism of electron transfer from the electron donor to the 

terminal acceptor (Mn oxides) remains poorly understood. The overall objective of the 

present research was to investigate the mechanism of microbial Mn(IV) reduction 

coupled to the oxidation of organic carbon and establish the link between Mn reduction 

and ammonium oxidation under anaerobic conditions. Two main hypotheses studied in 

this dissertation included that: 

(1) The electron transfer pathway of microbial Mn(IV) reduction proceeds 

via two consecutive steps of one-electron transfer, similar to the reversal pathway of 

microbial Mn(II) oxidation.  

(2) Mn(IV) acts as electron acceptor for anaerobic nitrification and provides 

an alternative source of nitrite/nitrate in anaerobic environments. 

In this work, Shewanella oneidensis strain MR-1 was employed as a model 

Mn(IV)-reducing bacterium to test hypothesis (1) and study the mechanism of electron 

transfer to Mn(IV) oxides during anaerobic respiration of Mn(IV) oxides. The specific 

goals for this study include, 1) exploration of the electron transfer pathway during the 

anaerobic Mn(IV) respiration, 2) comparation of the anaerobic respiration of Mn(IV) 

oxides with the respiration of soluble Mn(III) to better understand the two electron 

transfer steps during Mn(IV) reduction, 3) demonstration that a new mutant strain of S. 

oneidensis MR-1 is deficient in one of the two electron-transfer steps involved in the 
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reduction of Mn(IV), and 4) understanding the coupling between Mn(IV) reduction and 

organic carbon oxidation during the anaerobic respiration of Mn(IV) oxides. 

In the second part of this thesis, the surface layer of sediments from Skidaway salt 

marsh in Savannah, Georgia was sampled and incubated in the laboratory to test the 

hypothesis (2) that Mn reduction could be coupled to nitrification below the oxygen 

penetration zone. Sediment slurries amended with two different forms of Mn(IV) oxides 

in the presence of NH4
+ were conducted under anaerobic conditions, and the chemical 

speciation of both Mn and N species was measured as a function of time to (1) determine 

evidence for Mn(IV)-mediated anaerobic nitrification and (2) investigate the key 

geochemical conditions that may affect the onset and activity of anaerobic ammonium 

oxidation in natural sediments. 

The thesis is structured in six different sections. After the introduction (Chapter I), 

the different methods used in this dissertation are presented in Chapter II. In Chapter III, 

a suite of point mutant strains of S. oneidensis identified for their inability to reduce 

Mn(III) (strain Mn3) or solubilize Fe(III) oxides (strain Sol d29 and d64) were utilized to 

study the mechanism of Mn(IV) reduction. Chapter IV presents new findings on the 

mechanism of electron transfer during the anaerobic respiration of Mn(IV) oxides and its 

impact on carbon mineralization using known mutant strains of S. oneidensis. This 

chapter was recently submitted to Geochimica et Cosmochimica Acta and is under peer 

review. The role of Mn(IV) reduction in the anaerobic oxidation of ammonium to nitrite 

and nitrate in marine sediments is presented in Chapter V. Finally, Chapter VI 

summarizes the findings of this dissertation and provides recommendations for future 

studies.  
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CHAPTER 2  ANALYTICAL TECHNIQUES AND METHODS 

2.1  Voltammetry 

Oxygen and reduced species, such as Fe2+, Mn2+, and ΣH2S, were analyzed 

voltammetrically by a computer-operated DLK-100A or DLK-60 potentiostat (Analytical 

Instrument Systems, Inc.) with microelectrodes or an Autolab instrument including a 

data-acquisition system and a potentiostat (ECO CHEMIE). The voltammetric 

measuremnt was performed with a three-electrode system: a hanging mercury drop 

electrode (HMDE) (Metrohm VA 663) or an Au/Hg solid-state microelectrode as 

working electrode, a 0.5 mm diameter glassy carbon (for HMDE) or a platinum wire as 

counter electrode, and a 0.5 mm diameter Ag/AgCl reference electrode. The Au/Hg solid-

state microelectrode was fabricated following the procedure described previously 

(Brendel and Luther, 1995). The working microelectrodes consisted of a 100-μm-

diameter Au wire held in epoxy into a 3-mm PEEKTM tubing connected via a copper 

conducting wire to the potentiostat. The Au surface was polished sequentially with 

diamond pastes of 15, 6, 1, and 0.25 μm (Buehler) to generate a flat and smooth surface. 

The polished electrode was then plated with Hg for 4 min at -0.1V in a 0.1 M Hg(NO3)2 

solution. The Hg-plated electrode was polarized at -9 V for 60 seconds in NaOH solution 

to form a good amalgam between the Au and Hg. 

In voltammetry, a potential varying with time is applied between the working and 

reference electrodes to initiate the oxidation or reduction of different species at specific 

potentials, and the resulting currents from the redox reactions are read at the counter 

electrode. The specific reduction potentials of species of interest in the current studies are 

provided in Table 2.1  (Brendel and Luther, 1995). Voltammetry parameters used during 
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scans included: conditioning for 10 sec at -0.1 V, 200 mV/s scan rate from -0.1 to -1.8 V, 

and a pulse height of 0.05 V. Voltammograms were integrated using the semi-automatic 

integration program VOLTINT in Matlab (Bristow and Taillefert, 2008). The integrated 

peak heights were calibrated by calibration curves made daily with Mn2+ standards 

(Figure 2.1-A). At least three scans were obtained for each standard and sample. The 

Mn2+ calibration curve was also applied to quantify the concentrations of Fe2+ and ΣH2S 

using the adjusting factors according to the Pilot Ion Technique (Brendel and Luther, 

1995). The adjusting factors from the slope of Mn2+ calibration curve are 0.36 for Fe2+ 

calibration and 12.6 for ΣH2S calibration. The matrix consisted either of 0.1M KNO3 for 

HMDE or 50% seawater salt for the microelectrode at a pH around 7-8. O2 was measured 

by linear sweep voltammetry with a 200 mV/s scan rate from -0.1 to -1.8 eV (Figure 2.1-

B). 

 

Table 2.1. Voltammetric half reactions of the species of interest in the current study and 
their reduction potentials at the Hg-plated gold wire surface of the microelectrode 
(Brendel and Luther, 1995). 

Reactions 
Reduction 
potentials 

O2 + 2H+ + 2e- + Hg  H2O2 (Hg) - 0.3 

H2O2 (Hg) + 2H+ + 2e-  2H2O -1.30 

HS- + Hg  HgS + H+ +2e- < - 0.60 

HgS + H+ +2e-  HS- + Hg -0.60 

Fe2+ + Hg + 2e-  Fe (Hg) -1.43 

Mn2+ + Hg + 2e-  Mn (Hg) -1.55 
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Figure 2.1. Examples of voltammogram scans (A) square wave scans of a Mn(II) 
calibration in a concentration ranging from 0 to 160 µM at pH 7 in diluted seawater. (B) 
the linear sweep scan of dissolved oxygen by microelectrodes with O2 and H2O2 reduction 
waves at around -0.4 V and -1.3 V, respectively 
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2.2  Total Dissolved inorganic carbon (DIC) 

Total dissolved inorganic carbon (Eq. 2.1) was measured by a flow injection 

analysis system with conductivity detection (Hall and Aller, 1992) coupled to an 

Analytical Instruments System (AIS, Inc.) LCC100 integrator. A small volume (~100 µl) 

of sample was inject into a flowing reagent stream (20 mM of HCl) to transform all 

carbonate species to gas phase CO2. The carrier stream (10 mM of NaOH) was then 

passed over a gas-permeable hydrophobic membrane on the other side of the HCl stream 

to capture the CO2 produced (Hall and Aller, 1992). The receiving carrier stream was 

then transferred to a conductivity detector (EC meter Model 1054, VWR Scientific) for 

quantification of the change in conductivity. A peristaltic pump (Model RP-1, Dynamax) 

was utilized to produce relatively low-pulse reagent streams (a flow rate of ~1.0 ml min-1 

in both streams). A porous Teflon membrane strip was used as the gas exchange 

membrane to permeate only the gas phase CO2. 

A calibration curve to quantifiy DIC in a concentration range of 1 - 20 mM was 

generated every 20 measurements (Figure 2.2). The production of DIC in all incubations 

was subtracted from the background noise and normalized to the volume of the filtered 

sample. 
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Figure 2.2. An example of the calibration curve for quantification of DIC in sample matrix 
solutions, using bicarbonate standards ranging from 1 mM to 20 mM. Circle symbols are 
measured standard signals and solid line is the linear fitted calibration curve. Standard 
deviations with upper and lower 95% prediction limit curves were shown as well.  

2.3 pH  

pH was measured with a pH/ISE meter (SB301 SympHony pH meter, VWR 

Scientific). The potential and temperature of the samples were recorded for the 

calculation of pH from the Nernst equation (Eq. 2.1): 

pHsample = pH std – [F×(Esample – Estd)]/(2.303×R×T)                           (Equation 2.1) 

where E is the measured potentials of the samples and standards (std), F is the Faraday’s 

constant (96485.31 C/mol), R is the gas constant (8.3144 J/mol/K), and T is the 

temperature in K. The pH standards ranging from 5 to 9 were used for calibration with 

pH values. 
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2.4  Atomic Adsorption Spectrometer 

 Graphite Furnace Atomic Absorption Spectrometry (GFAAS) with atomizer 

pyrolytic coated partitioned graphite tube and Zeeman background corrections was used 

to determine the concentrations of total Mn and total dissolved Mn (TDM). The furnace 

operating conditions are listed in Table 2.2. Instrument parameters were as following: 5 

mA lamp current, 0.2 nm spectral bandwidth, 279.5 nm wavelength, and 1.2 of maximum 

absorbance. Blanks and calibration curves were obtained every 20 samples, using Mn 

standards from 0 to 0.18 µM, and SLRS (St. Laurent’s River Standard, Canada Certified 

Reference) samples were utilized for quality control.  

 

Table 2.2. The graphite furnace operating conditions for the measurement of total Mn or 
TDM under Graphite Furnace Atomic Absorption Spectrometry (GFAAS). 

Step No. 
Temperature 

(°C) 
Time (sec)

Gas Flow 
(L/min) 

Gas Type 
Read 

Command

1 85 5 3.0 Normal NO 
2 95 40 3.0 Normal NO 
3 120 10 3.0 Normal NO 
4 700 5 3.0 Normal NO 
5 700 1 3.0 Normal NO 
6 2400 2 0 Normal NO 
7 2400 1.1 0 Normal YES 
8 2400 5 0 Normal YES 
9 2400 2 3.0 Normal NO 
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2.5  Colorimetry 

2.5.1  Mn(III) pyrophosphate 

Due to the high reactivity of Mn(III), stock solution of soluble Mn(III) must be 

stabilized by addition of ligands such as pyrophosphate (Kostka et al., 1995). Mn(III) 

pyrophosphate stocks were made by adding Mn(III) acetate dihydrate (97% Sigma 

Aldrich, ACS grade) to sodium pyrophosphate (Sigma Aldrich, ACS grade) solutions 

with a molar ratio of 1 Mn(III) : 5 pyrophosphate in N2-purged de-ionized water (DI 

water). The Mn(III) standards made from the Mn(III) stock were then used to calibrate 

Mn(III) measurement by UV absorption spectrophotometry  (Milton Roy spectronic 501) 

at a wavelength of 480 nm (Kostka et al., 1995). 

2.5.2  NH4
+ 

The concentration of ammonium was determined by colorimetric analysis 

described previously (Weatherb Mw, 1967). Measurements were conducted at a 

wavelength of 640 nm on a Milton Roy Spectronic 601 spectrophotometer with NH4
+ 

standards of 0 to 20 μM made from a stock solution of NH4Cl (Fisher) in DI water. The 

NH4Cl was dried at 55°C overnight prior to preparation. Reagents used included phenol 

(8.5 mM; Sigma), nitroprusside (2.5 mM in 95% ethanol, Sigma Aldrich), and an alkaline 

solution containing 50 mM sodium citrate (Sigma Aldrich) and 20 mM NaOH (Fisher). A 

2.5 mL of 4-6% sodium hypochlorite (NaOCl, Fisher) was added to 10 mL of the alkaline 

reagent immediately prior to analysis to create an oxidizing reagent. All the reagents were 

added in the following order to 1 mL of each sample and standard: phenol (500 μL), 
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nitroprusside (500 μL), and oxidizing reagent (1 mL). The samples with addition of all 

reagents were then heated at 45°C for 1 hour before analysis. 

2.5.3 NO2
- 

Nitrite concentrations were determined by a colorimetric approach described 

previously (Grasshoff et al., 1983). Measurements were conducted at 540 nm on a Milton 

Roy Spectronic 601 spectrophotometer. Nitrite standards, ranging from 0 to 20 μM, were 

made from a stock solution of anhydrous NaNO2 (Fisher) in DI water. The NaNO2 was 

dried at 100°C for 1 hour prior to preparation. The reagents used included sulphanilamide 

(Fisher) and N-1-napthylethylenediamine dihydrochloride (NED) (Sigma). 

Sulphanilamide solution (5.8 mM) with 1 M of HCl and NED solution (0.97 mM) in a 

brown bottle were both stored in the refrigerator. The sulphanilamide solution (20 μL) 

was added to 1 mL of each standard and sample, and the mixture was well mixed and left 

to equilibrate for 1 minute to allow the reaction to proceed. The NED solution (20 μL) 

was then added and the sample was allowed to develop its color for at least 30 minutes 

before analysis at 540 nm. Minimum detection was 0.5 μM and analytical error on 

duplicate samples was < 5% RSD. 

2.5.4 Fe(II) 

The measurement of Fe(II) was also carried out via colorimetric analysis with 

ferrozine (Stookey, 1970). Fe(II) standards ranging between 5 and 20 µM were made 

from a 1 mM ferrous ammonium sulfate (Fe(NH4)2(SO4)2·6H2O, Fisher) stock solution 

(pH = 2 with trace metal grade HCl). A 5 mM ferrozine stock solution, composed of 5 

mM ferrozine (3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine, Aldrich) and 0.5 M ammonium 

acetate, were added into each standard or sample containing to make a final concentration 
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of 2.5 mM of ferrozine solution. The purple color developed after addition of the 

ferrozine was quantified colorimetrically at 562 nm wavelength (Stookey, 1970). 

2.6 Ion Chromatography (IC) 

2.6.1 Nitrite and nitrate measurements 

An anion chromatography technique coupled to ultraviolet detection was used to 

determine the concentration of nitrite (NO2
-) and nitrate (NO3

-) in high salinity solutions 

(Rozan and Luther, 2002). All measurements were conducted in an ion chromatograph 

(Dionex, DX-300 Series) with an Alltech Anion/R 10 µm (150 × 4.6 mm) 

chromatography column and Alltech All-Guard Anion/R 7.5 × 4.6 mm guard. A Waters 

2487 Dual λ Absorbance Detector was used for ultraviolet detection at a wavelength of 

220 nm with a sensitivity gain of 0.010 absorbance units to maximize the nitrite and 

nitrate signals. Filtered samples were pumped at a rate of 2 mL/min by a Waters 1525 

Binary HPLC pump to the chromatography column to separate nitrite and nitrate before 

reaching the detector. A sodium perchlorate solution (2.5 mM NaClO4, pH 10) was used 

as the eluent, due to its ability to rapidly elute anions and its low affinity for metal 

complexation and precipitation (Rozan and Luther, 2002). The pH of the eluent was 

maintained at 10 to ensure that all sulfide species are in the form of HS-. The eluent 

solution was prepared freshly every 3 days due to the degradation of ClO4
- and 

simultaneous decrease in pH. All samples were diluted in 1/5 or 1/10 proportions to 

reduce the interference of Cl- to the sensitivity of nitrite (Beckler et al., 2012). Nitrate and 

nitrite species were separated based on charge affinity and size with retention times of 

10.52 ± 0.19 mins for nitrite and 11.90 ± 0.08 mins for nitrate. Nitrite and nitrate 

standards ranging from 0 to 10 µM were used for calibration (Figure 2.3). 

 34



 

0.00E+00

2.00E+04

4.00E+04

6.00E+04

8.00E+04

1.00E+05

1.20E+05

1.40E+05

1.60E+05

1.80E+05

2.00E+05

0 2 4 6 8 10

Std. Conc. uM

A
b

so
rb

an
ce

12

Nitrite

Nitrate

Linear (Nitrite)

Linear (Nitrate)

 
 

Figure 2.3. Calibration curves for nitrate (triangles) and nitrite (circles) in a seawater 
matrix (10 times of dilution) from the UV/Vis absorbance signals at 200 nm after 
separation by HPLC. The eluent contained 2.5 mM NaClO4 at pH 10 and was purged 
with UHP N2 gas.  

 

2.6.2 Low-molecular-weight organic acid measurements 

The consumption of lactate and production of acetate and other possible low 

molecular weight organic acids during the respiration of lactate by Shewanella oneidensis 

MR-1 were measured by ion chromatography with conductometric detection. The ion 

chromatograph (Dionex, DX-300 series) was equipped with a Dionex IonPac® ICE-AS6 

ion-exclusion column. The column, composed of a 8 µm cross-linked 

styrene/acrylate/divinylbenzene resin, is designed for efficient separation of low 

molecular weigh aliphatic organic acids based on an ion exclusion mechanism, which 

allows retention and separation of weakly ionized acids according to their different pKas. 
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The signal was detected by a CDM II detector with suppressed conductivity detection. 

Parameters for the measurement, such as eluent and regenerant solutions, flow rate, and 

background conductivity are listed in Table 2.3. 

 

Table 2.3. Ion chromatograph parameters for the measurement of lactate, acetate and 
other low molecular weight organic acids. 

 

Parameters Read Command 

Sample loop volume 50 µL 
Analytical column IonPac ICE-AS6  

Eluent 0.4 mM Heptafluorobutyric acid 
Pump Dionex GP50 Gradient Pump 

Eluent Flow rate 1.0 mL/min 
Expected back pressure < 500 psi 

Temperature 21 °C 
Suppressor Anion-ICE MicroMembrane Suppressor II 
Regenerant 5 mN Tetrabutylammonium hydroxide 

Detector Dionex Conductivity detector CDM-2 
Background Conductivity 18 – 20 µS 

 

As the retention times of different organic acids depend on the pKa values, lactic 

acid with a pKa of 3.66 shows a retention time of 9.67 min, pyruvic acid with a pKa of 

2.26 shows a retention time of 5.00 min, and acetic acid with a pKa of  4.56 shows a 

retention time of 13.33 min (Figure 2.4-A). The standards ranging from 0 mM to 0.8 mM 

of pyruvate, lactate, and acetate were used for calibrations (Figure 2.4-B). Due to the high 

background lactate concentrations in the incubation samples (18 mM of initial lactate 

concentration), calibration of lactate was based on external standard addition method by 

adding extra lactate standard (0 to 0.8 mM) to diluted (a dilution factor of 10) background 

growth media (see section 2.10 for content of the media). 
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Figure 2.4. (A) Examples of chromatograms of standards containing 0.2 mM (blue) or 0.8 
mM (red) acetate, lactate, and pyruvate in 10× diluted growth media (see section 2.10) as 
the bulk solution contained background lactate concentrations around 1.8 mM. (B) 
Calibration curves for acetate, lactate and pyruvate with standard concentrations ranging 
from 0 to 0.8 mM. 
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2.7 Membrane Inlet Mass Spectrometer (MIMS) 

Concentrations of 29N2 and 30N2 were measured by MIMS following the approach 

described previously (Kana et al., 1994). MIMS requires no degassing step, a relatively 

small sample size (8-10 mL), and performs at relatively high efficiency and precision 

(Kana et al., 1994). The mechanism of MIMS has been reported previously (Kana et al., 

1994) and is only briefly described here. A liquid or gas sample is put in contact with a 

semi-permeable membrane that separates the sample from the high vacuum of a mass 

spectrometer. Molecules that permeate the membrane follow a vacuum gradient and enter 

the mass spectrometer for detection. The mass spectrometer puts a charge on the gas 

molecules and filters out all masses except the one that has a stable path to the detector 

(Kana et al., 1994). A quadrupole mass spectrometer was used to (1) separate ions in an 

oscillating electrical field generated by 4 parallel rods and (2) rapidly sweep across 

masses from mass 1 to mass 45. In the current study, MIMS was used to differentiate N2 

with masses 28, 29, and 30, which were derived from various combinations of the stable 

isotopes of N (14N and 15N) in N2. As mass 28 can also be attributed to carbon monoxide 

(CO) gas, produced during fragmentation of CO2 gas, a liquid N2 trap was used to 

remove water vapor and CO2 to prevent interference of CO with 28N2. All the samples 

were maintained under anaerobic conditions such that the interference of O2 caused by 

the formation of NO with mass of 28 in the mass spectrometer was neglected. The liquid 

samples and standards were pumped by a peristaltic pump (IsmaTec, cole-Parmer 

Instrument Company) through a gas permeable silicone membrane located in a vacuum. 

The gases that are able to permeate the silicone membrane include water vapor, nitrogen, 

oxygen, argon, carbon dioxide, and any low molecular weight organic compounds, such 
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as methane. For nitrogen, oxygen and argon detection, liquid nitrogen was used to freeze 

out all of the other components. Gases were then transferred into the quadrupole mass 

spectrometer to separate them by mass before reaching the detector. 

Five masses, including 28, 29, 30, 32, and 40, were detected in the mass 

spectrometer. All concentrations were calculated by normalizing the ratios of the N2 

species to Ar, as Ar, with high stability, can be used as an internal standard to correct the 

drift caused by the change of environment (salinity and temperature). The concentrations 

of gases in the standards were calculated based on the solubility of the species under 

saturated conditions at certain salinity and temperature (Weiss, 1970). Two water baths 

open to the atmosphere were used as the two temperature points (21°C and 30°C) for 

calibration.  

The sampling process was conducted carefully to avoid contamination. Samples 

were generally stored in tall, narrow, and rubber-capped glass vials to limit air 

contamination. Prior to capping the container, a 0.1% volumetric addition of saturated 

ZnCl2 solution was added as a preservative. The samples were then capped without 

entrapping any bubble and stored underwater at a temperature below the experimental 

temperature to avoid outgassing. The standards were run every four injections to monitor 

the instrument drift. 

Conversion of the measured signal (AMU) to gas concentrations (µmol/L) was 

first based on the calculation of saturated gas concentrations of N2, O2, and Ar according 

to temperature and salinity (Eq.2.2) (Weiss, 1970) .   

2
* 0

001 2 3 4 1 2 3

100
ln ln

100 100 100 100

T T T T
C A A A A S B B B

T

                  
                (Equation 2.2)  

 39



Where C is the gas concentration in solution (µmol/L), T is temperature (K), S is 

salinity, and Ai and Bi are constants as listed in Table 2.4. 

Table 2.4. Constants for the calculation of the saturated gas concentrations (Weiss, 1970). 

 

Saturated concentrations of N2, O2, and Ar at different temperatures (21°C and 

30°C) and different salinities (0 and 18‰) are listed in Table 2.5.  

 

Table 2.5. Saturated concentrations of N2, O2, and Ar at different temperature (21°C and 
30°C) and different salinity (0 and 18‰). 

T (°C) S (‰) [N2] µmol/L [O2] µmol/L [Ar] µmol/L N2/Ar O2/Ar 
21.0 0.0 521.70 278.08 13.64 38.25 20.39 
30.0 0.0 449.26 235.61 11.56 38.86 20.38 
21.0 18.0 465.32 250.24 12.27 37.93 20.40 
30.0 18.0 403.44 213.43 10.47 38.53 20.38 

 

 

All the gas concentrations or ratios calculated according to Eq. 2.2 were used in 

the following conversions to obtain concentrations from AMU signals. A converting 

factor (CF, unitless) was calculated based on the ratio of calculated N2/Ar value (µmol/L) 

to measured N2/Ar value (atomic mass unit, AMU) (Eq. 2.3). 

    
 
 

2

2

/

/
measured

calculated

N Ar
CF

N Ar
                                                                             (Equation 2.3) 

Averaged CF value (CFaverage) based on the CF values of all standards was used for 

calculation of 28N2 concentrations in the samples, following Eq. 2.4 
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              (Equation 2.4) 

Where N2delta is determined by comparing the AMU28 signal of each sample to the 

standard signal (Hall, 2009). 

The calculation of 29N2 was based on the measured 29N2/
28N2 ratio in the samples. 

As the natural abundance of N-15 is 0.366%, a the theoretical 29N2/
28N2 ratio of 0.00723 

can be calculated in natural samples (An et al., 2001). In this study, a 29N2/
28N2 ratio of 

0.0072 was determined from the different standards (Figure 2.5), consistent to the 

theoretical ratio. The excess of AMU29 (29N2) signal was calculated as the deviation of 

29N2/
28N2 ratio in the sample signal from the linear regression curve generated from the 

standards (Figure 2.5). Concentration of 29N2 was then calculated according to Eq. 2.5. 
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Figure 2.5. Linear correlation of 28-N2 to 29-N2 in seawater standards at 21 and 30°C. 
Star symbols (red and blue) are sample signals, below and above the linear regression 
curve (solid black line). Deviation of the sample signals the linear regression curve 
represents the Excess29N2, which can be either positive (blue) or negative (red). 

The concentration of 30N2 was derived from the excess AMU 30 signals, 

calculated following Eq. 2.6. The AMU30 signal in MIMS is complicated by reactions 

between N2 and O2 in the ion source of the mass spectrometer (Jensen et al., 1996, An et 

al., 2001). The NO+ ions (AMU 30) formed from N2 and O+ inside the mass spectrometer 

generates a linear relationship between AMU and (AMU28 × AMU32)0.5(Jensen et al., 

1996) (Figure 2.6). This relationship was used to determine the excess AMU 30 signal in 

the samples by comparing sample signals to the value of (AMU28 × AMU32)0.5 

calculated from the standard signals, in a similar fashion to the calculation for the excess 

AMU 29. 
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Figure 2.6. Linear correlation between AMU 30 signals and (AMU28 × AMU32)0.5 in 
seawater standards at 21 and 30°C. 

 

2.8 AVS measurement 

 FeS/FeS2 and acid volatile sulfide (AVS) were extracted by the distillation 

method described previously (Henneke et al., 1991). The operational definition of AVS 

includes amorphous forms of FeS, such as mackinawite ((Fe, Ni)S0.9), greigite (Fe2S4), 

and pyrrhotite (Fe(1-X)S, X=0 - 0.2) (Henneke et al., 1991).  

The sediment in 1.5 ml of mixed slurry from the Mn and N reactors was 

centrifuged and transferred into a reaction vessel. Each vessel was connected to a 30 mL 

Hungate tubes containing 15 mL of 1 M NaOH, sealed and purged with UHP N2 gas 

heated through a reduced copper trap at 350oC (Millero, 1986) to avoid oxygen 
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contaminations from the atmosphere. Concentrated HCl (3M) was added to each vessel 

through a nylon septum after the entire apparatus had been degassed with N2 for at least 

one hour. The volatile H2S gas produced due to the reaction between the concentrated 

HCl and the sediment was distilled at normal temperature with N2 gas as the carrier and 

trapped in the 1M NaOH solution in the Hungate tubes (Henneke et al., 1991). 

The sediment was reacted with concentrated HCl for four hours while stirring 

with a magnetic stir bar to ensure the completion of the reaction.  After completion of the 

extraction, 100 µl of the NaOH solution was quickly transferred to 10 ml of N2 purged 

0.1 M NaCl solution and the concentration of sulfide was measured by voltammetry as 

described in the previous section (section 2.1). 

2.9 Preparation of Mn oxides 

2.9.1 Preparation of colloidal Mn oxides 

Dark-brown colloidal Mn oxides solutions (10 mM) were prepared by reducing 

KMnO4 with a stoichiometric amount of Na2S2O3 according to Eq. 2.7 (Perezbenito et al., 

1987): 

8 MnO4
- + 3 S2O3

2- + 2 H+ = 8 MnO2 + 6 SO4
2- + H2O                    (Equation 2.7) 

For incubations with S. oneidensis, a modified method was used as described 

below. Two 500 ml solutions, one containing 1 g/l yeast extract and 10 g/l gum arabic 

and the other containing 1 g/l yeast extract, 10 g/l gum arabic, and 7.5 mM of sodium 

thiosulfate, were prepared and autoclaved. After cooling the solutions to 55 °C, the first 

solution was amended with KMnO4 to a 20 mM final conenration and slowly mixed with 

the second solution. Finally, 20 ml of Westlake media stock (50×) was added to the 

mixture, and the pH was adjusted to 8.0 with NaOH (10 N).  This colloidal solution of 
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Mn oxides remained perfectly transparent during the entire incubation. For slurry 

incubations, the recipe was similar but without addition of yeast extract and Westlake 

media. 

2.9.2 Preparation of amorphous Mn oxides 

The amorphous Mn oxide was prepared by the oxidation of Mn2+ by 

permanganate, according to following the reaction (Eq. 2.8) (Murray, 1974). 

3 Mn2+ + 2 MnO4
- + 10 H2O = MnO2 + 4 H+                                   (Equation 2.8) 

The synthesis procedure was modified to maintain sterile conditions (Lovley and 

Phillips, 1988). Two separate 100 ml solutions, one with 0.30 M of MnCl2·4H2O and the 

other with 0.20 M of KMnO4, were prepared in volumetric flasks. The Mn(II) solution 

was slowly dripped (≈ 2 drips/sec) into an autoclaved bottle containing a KMnO4 solution 

to form black MnO2 particles. The protons produced during the reaction were neutralized 

by NaOH (10 N) to maintain the pH around 10 throughout the reaction. After completion 

of the reaction, the synthesized particles were washed three times with MgCl2 (0.1M) and 

DI water to remove the excess Mn2+. The amorphous Mn oxide (20 mM) was stored in 

either Westlake media or 50% of artificial seawater (see the use of amorphous Mn 

oxides). As amorphous Mn oxide tends to aggregate after 2 to 3 weeks, fresh amorphous 

Mn oxide was synthesized for each batch of incubations.  

2.9.3 Preparation of soluble Mn(III)-pyrophosphate 

Mn(III) pyrophosphate stocks were made by adding Mn(III) acetate dihydrate 

(Sigma Aldrich, ACS grade) to sodium pyrophosphate (Sigma Aldrich, ACS grade) 

solution with a molar ratio of 1 Mn(III) : 5 pyrophosphate. The pH of the sodium 

pyrophosphate was adjusted to around 8.2 before addition of Mn(III) acetate dihydrate. 
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The final Mn(III) pyrophosphate stock was maintained at ph 7.8. Due to the high 

reactivity of Mn(III) (Luther et al., 1998), the actual concentration of the Mn(III) stock 

was analyzed by standard Winkler titration, first proposed by Winkler (Winkler, 1888) 

and modified by Strickland and Parsons (1968). 

2.9.4 Modified Winkler titration 

Based on the concentration of Mn(III) or Mn(IV), an excess amount of KI 

solution (10 mM) was added to reduce all Mn(III)/(IV) to Mn(II) in experimental 

solutions, following equations (Eq. 2.9 and 2.10). 

 2 Mn(III) + 2 I-  2 Mn(II) + I2                                                    (Equation 2.9) 

  Mn(IV) + 2 I-  Mn(II) + I2                                                         (Equation 2.10)        

HCl was added simultaneously to facilitate this reaction. Due to the formation of I2, the 

solution turns blue in presence of several drops of 0.1% starch solution. Iodine was then 

titrated by 2 mM of Na2S2O3 solution to form tetrathionate (Eq. 2.11), untill the 

disappearance of the blue color. 

 I2 + 2 S2O3
2- = 2 I- + S4O6

2-                                                             (Equation 2.11) 

2.9.5 Determination of oxidation state of synthesized Mn oxides 

The oxidation states of Mn in synthesized Mn oxides were determined according 

to a modified Winkler titration method used to calculate the oxidation states of metal 

oxides (Murray et al., 1984, Murray, 1974). Briefly, synthesized Mn oxides were 

dissolved in 10 M of nitric acid for detection of the concentration of total Mn via graphite 

furnace atomic adsorption spectrometry (GFAAS). The total amount of electrons 

transferred during the reduction of Mn oxides to Mn(II) was titrated through Winkler 

titration, as described previously. By using this method, the stoichiometry of the 
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synthesized Mn oxides was determined to be MnO1.98. The stoichiometry of the 

synthesized Mn(III)-pyrophosphate complexes was quantified using the same method. 

2.10 Preparation of Shewanella oneidensis MR-1 and mutant strains 

2.10.1 Bacterial strains and growth media 

Shewanella oneidensis strain MR-1 (ATCC No. 700550), provided by Dr. 

DiChristina’s laboratory, was originally isolated from Oneida Lake, NY (Myers and 

Nealson, 1988). All strains, including the wild type MR-1 strain and mutant strains,  were 

grown at 30˚C in a defined salt medium (SM) (Myers and Nealson, 1988) supplemented 

with 18 mM lactate as carbon/energy source. For SM solid medium, Bacto agar was 

added at 1.5% (w/v). The Westlake media, containing the following constituents: 2.87 

mM K2HPO4, 14.1 mM Na2SO4, 18.7 mM NH4Cl, 0.61 mM MgSO4· 7H2O, 1.36 mM 

CaCl2· 2 H2O, 1.0 g/l yeast extract, 1.8 mg/l sodium lactate syrup, and 100 μM FeCl3 

solution, was used during all the batch incubations. 

Mutant strains of Shewanella oneidensis MR-1 applied in the current studies 

included two groups, the in-frame deletion mutant strains (Chapter 4) and newly isolated 

mutant strains via random chemical mutagenesis (Chapter 3). The known in-frame 

deletion mutant strains utilized included (1) the mutant ΔmtrB, an S. oneidensis strain 

without the mtrB gene that encodes the outer membrane -barrel protein MtrB postulated 

to anchor the decaheme c-type cytochromes MtrC and OmcA on the cell surface (Beliaev 

and Saffarini, 1998), (2) the mutant ΔmtrC, a S. oneidensis strain without the mtrC gene 

that encodes MtrC located on the surface of the outer membrane (Myers and Myers, 

2001), (3) mutant ΔomcA, a S. oneidensis strain without the omcA gene that encodes 

OmcA (Myers and Myers, 2001), (4) mutant ∆omcAmtrC, a S. oneidensis strain without 
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both mtrC and omcA genes, (5) mutant ΔgspD is a S. oneidensis strain without the gspD 

gene, one of the key genes involved in the Type II secretion system (DiChristina et al., 

2002), and (6) mutant T121, isolated via transposon mutagenesis of S. putrefaciens 200R 

(Saffarini et al., 1994), an anaerobic respiratory mutant strain, capable of aerobic growth 

only, that has been used as a negative control strain in a variety of studies (Burnes et al., 

1998, DiChristina et al., 2002) (Table 2.6). Newly isolated mutant strains, generated via 

random chemical mutagenesis, were studied as well due to their specific phenotypes, 

including Sol mutant D29 and D64 deficient in producing soluble Fe(III) during reduction 

of solid Fe(III) (Jones et al., 2010) and a point mutant strain Mn3 deficient in reducing 

soluble Mn(III) (Table 2.6). 

Table 2.6. Description of different Shewanella oneidensis strains used in the current 
studies, including wild-type S. oneidensis MR-1, mtrB, mtrC, omcA, omcAmtrC, 
gspD, T121, Sol mutant strains d29 and d64, and point mutant strain Mn3. 

 

Strain Features Source 

Shewanella oneidensis   
MR-1 Wild-type strain ATCC 

∆mtrB in-frame mtrB gene deletion mutant
(Burns, 2010, Burns and Dichristina, 

2011) 
∆mtrC in-frame mtrC gene deletion mutant (Burns, 2010, Wee et al., 2011) 

∆omcA in-frame omcA deletion mutant (Burns, 2010, Wee et al., 2011) 

∆omcAmtrC 
in-frame omcAmtrC double 

deletion mutant 
(Burns, 2010, Wee et al., 2011) 

T121 Deficient in anaerobic respiration (Burnes et al., 1998) 

Sol mutant D29 
Deficient in producing soluble 

Fe(III) and reducing solid Fe(III) 
(Jones et al., 2010) 

Sol mutant D64 
Deficient in producing soluble 

Fe(III) and reducing solid Fe(III) 
(Jones et al., 2010) 

Mn3 
Deficient in reduction of soluble 

Mn(III) 
Current study 
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CHAPTER 3   USING POINT MUTANT STRAINS OF 

SHEWANELLA ONEIDENSIS MR-1 TO STUDY THE MECHANISM 

OF MICROBIAL MN(IV) REDUCTION 

Abstract  

The wild-type strain of S. oneidensis MR-1 and three novel mutant strains 

generated via chemical mutangenesis, Mn3, Sol d29, and Sol d64, were incubated 

anaerobically with either Mn(IV) or Mn(III) as terminal electron donor to study the 

mechanism of microbial Mn(IV) reduction. Reduction capabilities of these mutant strains 

on Mn(IV/III) were compared with each other and also to those on other electron 

acceptors, including Fe(III). The two Sol mutant strains d29 and d64, deficient in their 

ability to produce soluble Fe(III) and reduce solid Fe(III), did not reduce solid Mn(IV) 

oxides, suggesting that microbial Mn(IV) reduction may also require an initial 

solubilization step to facilitate the whole process. The mutant strain Mn3, deficient in its 

ability to reduce Mn(III), produced only 17% of the wild-type Mn(II) production, yet 

retained the ability to produce Mn(III) at wild-type levels during the incubations with 

Mn(IV) oxides as the electron acceptor. The phenotype of this newly found point mutant 

Mn3 suggests that the electron transport chain involved in the reduction of Mn(IV) and 

Mn(III) in S. oneidensis may not be identical. Components of the electron transport chain 

included in the reduction of Mn(III) but not Mn(IV) may be identified via genetic 

analysis of this point mutant strain. 
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3.1. Introduction 

Shewanella oneidensis MR-1, a widely-distributed gram-negative γ-proteobacteria 

(Venkateswaran et al., 1999), is well-known for its ability to utilize a wide range of 

electron acceptors including insoluble manganese and iron oxides for anaerobic 

respiration (Lovley and Phillips, 1988, Myers and Nealson, 1988). Anaerobic respiration 

of manganese oxides significantly influences the biogeochemical cycling of carbon, 

nitrogen, phosphate, and toxic elements (Zhang et al., 2007, White et al., 2008, Neretin et 

al., 2003, Luther et al., 1997). Compared to other respiration processes such as aerobic 

respiration and anaerobic respiration on soluble electron acceptors, however, the 

mechanism of anaerobic respiration on solid Mn/Fe oxides remains poorly understood 

(Madigan et al., 2003, Borloo et al., 2007, DiChristina et al., 2005). To reduce insoluble 

Mn(IV)/Fe(III) oxides, bacteria have to transfer electrons from the conventional 

cytoplasmic membrane (CM)-localized electron transport systems via the periplasm and 

across the outer membrane (OM) to the extracellular face of the OM. The mechanism for 

this electron transfer pathway is of particular interest due to the potential applications in 

microbial fuel cells and bioremediation strategies (von Canstein et al., 2008). Generally, 

three electron transfer strategies have been postulated for either Mn(IV) oxides or Fe(III) 

oxides or both (Myers and Myers, 2003a, DiChristina et al., 2005, Newman and Kolter, 

2000, Jones et al., 2010).  

First, bacteria are proposed to directly reduce Mn oxides by localizing the 

terminal reductase to the outer membrane (Myers and Myers, 2001). Indeed, the type II 

secretion system, transporting protein from the periplasm to the outer membrane 

(Desvaux et al., 2004), appears to be critical to the direct enzymatic reduction of Mn and 
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Fe oxides (DiChristina et al., 2002). The OM c-type cytochromes MtrC and OmcA are 

proposed to be involved in the terminal steps of electron transfer during dissimilatory 

reduction of Mn oxides (Beliaev and Saffarini, 1998, Myers and Myers, 2002, Myers and 

Myers, 2003a). Interestingly, a mutant strain of S. oneidensis lacking a serine protease 

(SO3800) for bacterial adhesion to solid surfaces was shown to be incapable of adhering 

to Fe(III) oxides but reduce Fe(III) oxides at wild type rates, indicating that S. oneidensis 

may also be able to reduce Fe(III) oxides via alternative pathways than the direct contact 

mechanism (Burns et al., 2010).  

Second, some organic compounds such as AQDS (DiChristina et al., 2005), 

quinones (Newman and Kolter, 2000), and riboflavin (von Canstein et al., 2008) may act 

as electron shuttles by being first enzymatically reduced and chemically re-oxidized by 

solid Mn(IV) or Fe(III) oxides in a second (abiotic) electron transfer reaction. A mutant 

strain of S. putrefaciens MR-1 deficient in menaquinone production is unable to reduce 

solid Mn(IV) and Fe(III), suggesting the possibility that endogenous menaquinones or 

small compounds related to menaquinones shuttle electrons to solid terminal electron 

acceptors (Newman and Kolter, 2000).  

Third, microorganisms may reduce iron oxides by first dissolving Fe(III) with 

exogenous or endogenous organic ligands, then reducing the soluble Fe(III) species either 

on the outer membrane or inside the periplasm (Pitts et al., 2003, Taillefert et al., 2007a). 

Recently, mutants of S. oneidensis deficient in the production of soluble organic-Fe(III) 

complexes have been found to be impaired in the respiration of Fe(III) oxides, supporting 

the hypothesis that soluble organic-Fe(III) complexes are produced as intermediates 

during anaerobic respiration of solid Fe(III) by endogenous organic ligands (Jones et al., 
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2010). The ligands for solubilizing Fe(III) are still elusive, but evidence suggests that 

siderophores are not involved in this process (Fennessey et al., 2010). Evidence for a 

similar solubilization strategy to reduce solid Mn(IV) has yet to be provided. In the case 

of solid Mn(IV), however, ligands that are able to complex Mn(IV) to facilitate the non-

reductive dissolution of Mn(IV) oxides have yet to be identified in aqueous and 

sedimentary environments at circumneutral pH in aquatic systems (Morgan, 2000a, 

Duckworth et al., 2009). These findings suggest that if anaerobic respiration of solid 

Mn(IV) proceeds via a solubilization strategy, the process should be different than the 

anaerobic respiration of Fe(III) oxides. 

A variety of exogenous compounds such as pyrophosphate and naturally-existing 

ligands such as citrate and siderophores are able to stabilize Mn(III) at a pH ranging 

between 5 and 8 (Kostka et al., 1995, Klewicki and Morgan, 1998, Parker et al., 2004). In 

addition, the reductive dissolution of Mn(IV) oxides by natural organic compounds and 

microbial metabolites such as oxalate and pyruvate is well known (Stone, 1987a, Stone 

and Morgan, 1984a). For example, desferrioxamine B, a trihydroxamate siderophore 

produced by microorganisms, is able to reduce MnO2 through a single electron transfer 

step to solid Mn(III) and solubilize Mn(III) by complexation (Duckworth and Sposito, 

2007). Recently, siderophore were proposed to be involved in both the bacterial Mn(II) 

oxidation (Parker et al., 2007) and microbial reduction of solid Mn(IV) oxides (Kouzuma 

et al., 2012). These findings imply that microorganisms may have to adopt a reductive 

solubilization strategy that reduces solid Mn(IV) oxides to soluble Mn(III) complexes as 

intermediates during the microbial reduction of Mn(IV).  
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Respiratory reduction of Mn(IV) should be more complicated than that of Fe(III), 

considering that a total of two electrons can be transferred through either two steps of 

one-electron transfer or one step of two-electron transfer. According to the molecular 

orbital theory, Mn(IV) is able to accept the first electron to one of the two empty eg 

orbitals of Mn(IV) and rearrange the orbitals to form the Mn(III) intermediate which 

further accepts the other electron to form Mn(II) (Luther, 2005). Mn(III) has been 

demonstrated to be produced as intermediates during chemical or photochemical 

reduction of Mn(IV) (Perez-Benito, 2002, Ruppel et al., 2001) and during the aerobic 

oxidation of Mn(II) by spores of the marine Bacillus sp. Strain SG-1 (Webb et al., 2005).  

In the present study, Shewanella oneidensis strains including the wild type strain 

MR-1 and a suite of mutant strains generated via chemical mutagenesis were incubated 

under anaerobic conditions with either solid Mn(IV) oxides, soluble (colloidal) Mn(IV) 

oxides, or soluble Mn(III)-pyrophosphate complexes as terminal electron acceptor to gain 

new insights into the mechanisms of anaerobic Mn(IV) respiration by Shewanella 

oneidensis MR-1. Phenotype of these novel mutant strains provided evidence that two 

steps of one-electron transfer are involved in the reduction of Mn(IV) oxides and 

suggested that microbial reduction of Mn(IV) may require an initial solubilization step to 

produce soluble Mn(III) for further reduction of Mn(III) to Mn(II). 

3.2 Material and experimental Design 

3.2.1. Materials  

All glassware and plastic ware were soaked in 10% nitric acid overnight and washed 

with sterile DI water prior to use. All batch reactors were autoclaved before incubation. 

All solutions were prepared with ACS or trace metal grade chemicals in 18 MΩ-DI water 
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(Barnstedt). Preparation of colloidal and amorphous MnO2 and soluble Mn(III)-

pyrophosphate was described in Chapter 2. 

3.2.2 Bacterial strains and growth media 

Shewanella oneidensis strain MR-1 was originally isolated from Oneida Lake, NY 

(Myers and Nealson, 1988). The S. oneidensis strains used in the present study include 

the wild-type strain (displaying normal Mn(IV) and Mn(III) reduction activities), the 

anaerobic respiratory mutant strain T121 (incapable of growing in anaerobic conditions), 

and three mutants generated via random chemical mutagenesis, Sol d29, Sol d64, and 

Mn3 (Jones et al., 2010) (Table 3.1). All strains were grown at 30˚C in a defined salt 

medium (SM) (Myers and Nealson, 1988) supplemented with 18 mM lactate as 

carbon/energy source.  For SM solid medium, Bacto agar was added at 1.5% (w/v). 

Anaerobic respiratory mutant strain T121 (capable of aerobic growth only) was 

isolated via transposon mutagenesis of S. putrefaciens 200R (Saffarini et al., 1994) and 

was used as a negative control strain for anaerobic conditions (Burnes et al., 1998, 

DiChristina et al., 2002). Concentrations of Mn(II) remained at background levels in 

either the background solution or the two solid extracts in the T121 incubations, 

accounting for merely 4.5 ± 0.6% of the wild-type production (Table 3.2). This result 

confirmed that anaerobic conditions were maintained during all the incubations. Sol 

mutant strains d29 and d64 were identified for their growth deficiencies on 2L-

ferrihydrite or soluble Fe(III)-citrate, yet retain the ability to respire all other alternative 

electron acceptors, such as O2, NO3
-, NO2

-, DMSO, S2O3
2-, TMAO, fumarate) (Jones et 

al., 2010). At least one component of the soluble organic-Fe(III) production system, as a 

part of the electron transport strategy for the respiration of Fe(III) oxides by Shewanella 
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oneidensis MR-1, was impaired in the mutant strains Sol d29 and d64 (Jones et al., 2010). 

Details of the construction and isolation of d29 and d64 were described previously (Jones 

et al., 2010). 

Table 3.1. Description of strains of Shewanella oneidensis MR-1 used in current 
incubations, including wild-type strain of S. oneidensis MR-1, Sol mutant D29 and D64, 
and Mn3 mutant. 

Strain Features Source 
Shewanella oneidensis   

MR-1 Wild-type strain ATCC 

T121 Deficient in anaerobic respiration (Burnes et al., 1998) 

Sol mutant d29 
Deficient in producing soluble 

Fe(III) and reducing solid Fe(III) 
(Jones et al., 2010) 

Sol mutant d64 
Deficient in producing soluble 

Fe(III) and reducing solid Fe(III) 
(Jones et al., 2010) 

Mn3 
Deficient in reduction of soluble 

Mn(III) 
Current study 

 

Isolation of Mn(III) reduction-deficient mutant strains (Mn3) of S. oneidensis.  Ethyl 

methane sulfonate (EMS) was used as a chemical mutagen following previously 

described procedures (Burnes et al., 1998, DiChristina et al., 2002). Liquid cultures of 

wild-type S. oneidensis were grown in SM medium to late exponential phase (2x109 cells 

mL-1), harvested by centrifugation at 10,000 xg (4˚C), washed twice, and re-suspended in 

fresh SM medium. EMS was added (19 mg/mL) and the cell suspension was incubated 

45 min to achieve 90% kill. The surviving EMS-treated cells were plated on SM agar and 

the colonies were subsequently subjected to a mutant screening technique to detect loss 

of Mn(III) reduction activity. Approximately 5,000 EMS-treated colonies were 

transferred to SM agar medium supplemented with 18 mM lactate as electron donor and 5 
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mM Mn(III)-pyrophosphate as electron acceptor (which imparts a distinctive pink color 

to the agar medium; Figure 4.1). After 48 hours of incubation in a Coy anaerobic 

chamber (atmosphere of 5% CO2, 10% H2, 85% N2), wild-type colonies produced a 

distinctive clearing zone in their colony peripherey (an indication that pink-colored 

Mn(III)-pyrophosphate had been reduced to colorless Mn(II) end-products). Five putative 

Mn(III) reduction-deficient mutants were identified by their inability to produce a 

clearing zone (Figure 4.1), and one of them (designated strain Mn3) was selected to first 

study its phenotype on the overall respiratory capability and then investigate the kinetics 

of Mn(IV) and Mn(III) reduction. In the study of the overall anaerobic respiratory 

capability of strain Mn3, batch liquid cultures were grown in SM medium supplemented 

with 18 mM lactate under either aerobic or anaerobic conditions achieved through 

continuous flushing of nitrogen gas. The following compounds  were tested as anaerobic 

electron acceptors at the indicated initial concentration: Mn(III)-pyrophosphate, 10 mM; 

NO3
-, 15 mM; NO2

-, 0.5 mM; colloidal MnO2, 5 mM; TMAO, 25 mM; DMSO, 10 mM; 

fumarate, 10 mM; FeOOH 40 mM, Fe(III)-citrate, 50 mM; MnO2, 10 mM; SO3
2-,10 mM; 

S2O3
2-,10 mM. In the kinetics study, the point mutant strain, Mn3, was incubated in 

anaerobic liquid cultures supplemented with 18 mM lactate and either 7 mM Mn(IV) 

oxide or 7 mM Mn(III)-pyrophosphate. 

3.2.3. Anaerobic incubations of Mn(IV)/Mn(III) with the wild-type and point 

mutant strains  

Incubations were conducted anaerobically in at least duplicates in 100 ml sealed 

reactors gently mixed with magnetic stirring bars. In each of the incubations, 1×107 

cells/ml of Shewanella oneidensis MR-1 or its mutant strains (Sol d29, Sol d64, or Mn3) 
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were incubated in 50 ml of defined media, 18 mM of lactate as the electron donor, either 

solid Mn(IV) or colloidal Mn(IV) or soluble Mn(III) as the electron acceptor. Abiotic 

controls were conducted simultaneously with all incubations. Soluble Fe(III) deficient 

mutant strains Sol d29 and d64 were fed with 7 mM of either colloidal (soluble) or 

amorphous Mn(IV) oxides under identical conditions to test the reduction capability of 

these two Sol mutants on different types of Mn(IV) oxides. The point mutant Mn3 were 

incubated with 7 mM of either amorphous Mn(IV) oxides or soluble Mn(III) 

pyrophosphate as the sole terminal electron acceptor to study the phenotype of strain 

Mn3 on Mn reduction. Pyrophosphate (10 mM) was added in a few incubations with S. 

oneidensis MR-1 and mutant strain Mn3 to scavenge Mn(III) (Klewicki and Morgan, 

1998) and investigate the production of Mn(III) as an intermediate during the anaerobic 

Mn(IV) respiration. The procedure of the sampling scheme during the incubations is 

described in Chapter 4.  

3.3. Results and Discussion 

3.3.1. Reduction of mutant strains Sol d29 and d64 on different types of Mn(IV) 

oxides  

Amorphous Mn(IV) incubations 

The microbial reduction of solid (amorphous) Mn(IV) by the wild-type strain of S. 

oneidensis was reproducible among different batches of incubations. In the incubations, 

reduction of solid Mn(IV) by the wild-type strain represented the normal reduction 

capacity (Figure 3.1-a). Concentrations of soluble Mn(II) produced in the wild-type 

incubations increased rapidly during the first 5 days and saturated at around 3.42 ± 0.27 
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mM, while production of soluble Mn(II) remained below 0.5 mM in the abiotic control 

(Figure 3.1-a). Concentrations of soluble Mn(II) in the incubations of the two point 

mutant strains (Sol d29 and d64) barely increased during the initial 72 hours, accounting 

for merely 10.9 ± 2.5% (Sol d29) and 7.9 ±  0.3% (Sol d64) of the wild-type production at 

72 hour of the incubations (Table 3.2). The production of soluble Mn(II) in the two 

mutant incubations, however, increased significantly after a 72-hour phase lag (compared 

to the abiotic control), and reduced a maximum of  37.1 ± 8.1 % (Sol d29) and 24.3 ± 

4.9% (Sol d64) of the wild-type Mn(II) production (Figure 3.1-a and Table 3.2). In 

addition, concentrations of soluble Mn(III) remained at background levels in the two Sol 

mutant incubations (Figure 3.1-a), compared to the significant production of soluble 

Mn(III) found in the wild-type production (see Chapter 4). These results suggest that the 

first reduction step of solid Mn(IV) was impaired in the two Sol mutant strains.  
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Figure 3.1. Concentration of soluble Mn(II) (black, left y-axis) and Mn(III) (blue, right y-
axis) produced as a function of time during the anaerobic incubations of S. oneidensis 
MR-1 (solid circles), point mutant Sol d29 (solid upward triangles), point mutant Sol d64 
(solid downward triangles), and the abiotic control (open circles) in the presence of (a) 
amorphous (solid) Mn(IV) oxides and (b) colloidal (soluble) Mn(IV) oxides as sole 
terminal electron acceptor. Error bars represent standard deviations from at least 
duplicates. 

 

    

The Sol mutant strains d29 and d64 were isolated for their inability to produce 

soluble organic-Fe(III) complexes (Jones et al., 2010) which is proposed to be required 

for microbial reduction of solid Fe(III) (Jones et al., 2010, Taillefert et al., 2007a). Sol 

d29 presented 35% of the wild-type organic-Fe(III) production rate and 32% of the wild-

type Fe(II) production rate during the anaerobic incubations with solid Fe(III) as the 
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terminal electron acceptor (Jones et al., 2010). Comparatively, the Sol mutant d64 was 

found to be more severely impaired in its ability to produce both organic-Fe(III) 

complexes (3% of the wild-type rate) and Fe(II) (9% of the wild-type rate) (Jones et al., 

2010). These two Sol mutants display similar behavior when grown on solid Mn(IV) 

oxides, as both mutant strains were incapable of producing soluble Mn(III) and Sol d64 

presented a relatively lower reduction capacity than strain d29 on either Mn(IV) or Fe(III) 

(Figure 3.1-a and Table 3.2). These findings suggest that the components deleted in these 

Sol mutants may also be required in the microbial reduction of solid Mn(IV). A 

solublization step may also be able to facilitate the reduction of solid Mn(IV) by either (1) 

lowering the activation energy of the formation of the intermediate or (2) preventing 

passivation of the binding sites on solid Mn(IV) surfaces by the strong adsorption of 

Mn(II) on Mn(IV) oxides (Tebo et al., 2004), or (3) providing a more bioavailable 

electron acceptor (i.e. soluble Mn(III)) than solid Mn(IV) as proposed for Fe(III) 

reduction (Taillefert et al., 2007a, Jones et al., 2010). The solubilization step for Mn(IV), 

however, should be different than the non-reductive Fe(III) dissolution involved in the 

reduction of solid Fe(III) (Jones et al., 2010) to account for the absence of Mn(IV)-

complexing ligand in aqueous and sedimentary environments at circumneutral pH 

(Morgan, 2000a, Duckworth et al., 2009).  

The Mn(IV) reduction capacities of these two Sol mutants were similar to those of 

the in-frame deletion mutant strains ΔgspD and ΔmtrB (described in Chapter 4), 

presenting 20.4 ± 3.5% and 37.4 ± 14.5% of the wild-type reduction capacity, 

respectively, but much lower than those of the OM c-type cytochrome mutant strains 

Δmtrc, ΔomcA and ΔomcAmtrC (Table 3.2). The findings suggest that the missing 
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components in these two Sol mutants may play more essential roles than MtrC and OmcA 

in the reduction of solid Mn(IV).  

 

Table 3.2. Relative production of Mn(II) by different mutant strains of S. oneidensis MR-
1, normalized to the corresponding wild-type production during incubations with either 
soluble (colloidal ) Mn(IV) oxides, solid (amorphous) Mn(IV) oxides, or soluble Mn(III) 
as terminal electron acceptor. For the microbial reduction of solid Mn(IV), the extent of 
Mn(II) production was provided for both the initial 72 hrs of incubations and the entire 
incubations to account for the phase lag observed with some of the mutant strains. Errors 
represent standard deviations of at least duplicate culture incubations. 

solid Mn(IV) reduction S.oneidensis strains soluble Mn(IV) 
reduction 72 hrs Final 

Mn(III) 
reduction 

Sol d29 98.7 ± 27.0 % 10.9 ± 2.5% 37.1 ± 8.1 % - 

Sol d64 79.5 ± 19.6 % 7.9 ± 0.3% 24.3 ± 4.9% - 

Mn3 - 10.1 ± 2.2% 17.3 ± 2.9% 11.8 ± 1.4% 

T121 - 3.5 ± 1.0% 4.5 ± 0.6% - 

mtrB - 30.0 ± 15.0% 37.4 ± 14.5% 44.3 ± 0.2% 

gspD - 19.9 ± 10.4% 20.4 ± 3.5% 20.3 ± 4.4% 

omcA - 100.1 ± 19.3% 88.3 ± 23.7% 99.0 ± 1.0% 

mtrC - 85.7 ± 8.9% 92.6 ±9.1% 59.4 ± 0.9% 

omcAmtrC - 35.1 ± 15.3% 74.5 ± 21.5% 74.1 ± 0.6% 

 

 

Colloidal Mn(IV) incubations 

 Due to the lack of soluble Mn(IV) complexes in circumneutral environments 

(Morgan, 2000a), colloidal Mn(IV) oxides with particle diameters in the range of 89-193 

nm (Perez-Benito et al., 1996) were generally considered to represent the stable soluble 

phases of Mn(IV) at neutral pH (Perezbenito and Arias, 1992). Otherwise identical 

incubations of the mutant strains Sol d29 and d64 fed with colloidal Mn(IV) oxides were 

conducted to compare the reduction behavior of these two mutant strains on different 
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types of Mn(IV) oxides (Figure 3.1-b). Reduction of colloidal Mn(IV) oxides by the 

wild-type was completed more rapidly (in 36 hrs) than that of solid MnO2 while the 

production of Mn(II) in the abiotic control incubations was maintained at low levels 

(Supplementary Figure A.1). Concentration of soluble Mn(II) produced by the wild-type 

strain decreased after 36 hrs, which may be due to the secondary precipitation of Mn(II) 

with inorganic carbonate produced during the respiration of organic carbon (Chapter 4). 

In the two Sol incubations, the reduction of colloidal MnO2 was initially blocked during 

the first 48 hours, as observed in the amorphous MnO2 incubations (Figure 3.1-a), and 

this phase lag was shorter with strain Sol d64 than with strain Sol d29 (Figure 3.1-b). 

Reduction of colloidal MnO2 by the two mutant strains, however, increased significantly 

after the phase lag and was completed in 172 hrs, with a maximum Mn(II) production as 

high as 98.7 ± 27.0 % (Sol d29) and 79.5 ± 19.6 % (Sol d64) of the wild-type level 

(Figure 3.1-b and Table 3.2), while the reduction rates of colloidal MnO2 by these two 

Sol mutants remained low, accounting merely c.a. 40% (Sol d64) and 20% (Sol d29) of 

the wild-type reduction rate (Figure 3.1-b). These findings suggest that the reduction of 

colloidal MnO2 may also require an initial solubilization step. Finally, the significant 

phase lags observed in the Sol incubations (Table 3.2) suggest that the mutant strains may 

either be able to repair themselves on the Mn(IV) reduction capability of Mn(IV) or to 

switch to an alternative electron transfer strategies (DiChristina et al., 2005). 

Gene complementation of these two Sol strains has revealed that a single gene 

was missing in each of the Sol d29 and Sol d64 mutant strains and that Sol d29 lacks gene 

gspG while Sol d64 lacks gene gspE (Fennessey et al., in prep). Both of the genes encode 

one of the components of the Type II secretion system (protein GspG or GspE). 
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Therefore, the Type II secretion system may be involved in the extracellular translocation 

of not only the potential terminal reductases (OmcA or MtrC) (Shi et al., 2008) but also 

the protein components involved in the production of Fe(III)-solubilizing ligands and the 

reductase for reductive solubilization of Mn(IV). 

3.3.2. The novel point mutant strain Mn3 reduces Mn(IV) to Mn(III) only 

Reduction of Mn(IV) may proceed either through a one-electron transfer via 

Mn(III) as the intermediate or through a direct two-electron transfer to Mn(II), depending 

on the availability of a single or two electrons from the reductant (Luther, 2005). 

Production of soluble Mn(III) as a transition intermediate during the incubations fed with 

Mn(IV) oxides demonstrated that Mn(IV) is reduced by two consecutive steps of one-

electron transfer (Chapter 4 and Figure 3.1-a). To confirm these two consecutive steps of 

microbial Mn(IV) reduction, a point mutant strain Mn3 generated via chemical 

mutagenesis was identified for its deficiency in reducing soluble Mn(III) (Figure 4.1).  

Overall anaerobic respiratory capability of Mn(III) reduction-deficient mutant strains 

Mn3.  

Mutant strain Mn3 was able to reduce a wide range of soluble electron acceptors 

at wild-type rates, including O2, NO3
-, NO2

-, colloidal MnO2, TMAO, Fe(III)-citrate, 

SO3
2-, and S2O3

2-, yet was unable to grow on soluble Mn(III), DMSO, fumarate, and 

FeOOH (Table 3.3). The phenotype of stain Mn3 was different than that of the Sol 

mutant strains d29 and d64, which were unable to reduce both soluble and solid Fe(III) 

(Jones et al., 2010) and both colloidal and amorphous Mn(IV) oxides (Figure 3.1 and 

Table 3.3). The different reduction capability of strain Mn3 with different electron 
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acceptors did not exactly follow the predictions based on the reduction potential of the 

different electron acceptors (Dale et al., 2007). For example, the reduction potentials of 

soluble Mn(III) and DMSO are higher than that of TMAO, while Mn3 retained its ability 

to reduce TMAO (Table 3.3). Interestingly, the reduction capabilities of strain Mn3 on 

different species of Mn and Fe were different: Mn3 was able to reduce soluble Fe(III) and 

solid Mn(IV) but not solid Fe(III) and soluble Mn(III) (Table 3.3). Although similar 

electron transfer strategies were proposed for the reduction of solid Mn(IV) and Fe(III) 

(Myers and Myers, 2000, Newman and Kolter, 2000, Bretschger et al., 2007, Shi et al., 

2007), the phenotype of the mutant strain Mn3 suggests that the component deleted in 

Mn3 is involved in the reduction of soluble Mn(III) but not soluble Fe(III). These 

findings confirm that the electron transport pathway of S. oneidensis MR-1 during the 

anaerobic respiration of Mn(IV) and Fe(III) oxides are not identical.  

 

Table 3.3. Overall anaerobic respiratory capability of Mn(III) reduction-deficient mutant 
strain Mn3 compared with S. oneidensis MR-1. Concentrations of the electron acceptors 
are: Mn(III)-pyrophosphate, 10 mM; NO3

-, 15 mM; NO2
-, 0.5 mM; colloidal MnO2, 5 

mM; TMAO, 25 mM; DMSO, 10 mM; fumarate, 10 mM; FeOOH 40 mM, Fe(III)-citrate, 
50 mM; SO3

2-,10 mM; and S2O3
2-,10 mM. 

  

Strains O2 MnO2 
Mn(III)-

pp 
NO3

- 
Fe-
cit

NO2
- DMSO TMAO Fumarate SO3

2- FeOOH S2O3
2-

MR-1 +  +  +  +  +  +  +  +  +  +  +  + 

Mn3 +  +  ‐  +  +  +  ‐  +  ‐  +  ‐  + 

 

Kinetic studies of the reduction of soluble Mn(III) complexes and solid Mn(IV) oxides by 

mutant strain Mn3.  
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In the incubations fed with soluble Mn(III)-pyrophosphate complexes, 

concentrations of Mn(III) decreased from 7.3 mM initially to approximately 0.2 mM in 

48 hours due to the rapid respiration of Mn(III) complexes by S. oneidensis MR-1 

(Kostka et al., 1995) (Figure 3.2), and the Mn(III)-pyrophosphate solution simultaneously 

turned from pink to colorless (Supplementary Figure A.2). In contrast, soluble Mn(III) 

concentrations remained relatively constant in the abiotic control reactors and during the 

incubations of mutant strain Mn3, accounting for merely 11.8 ± 1.4% of the wild-type 

reduction (Figure 3.2), indicating that pyrophosphate stabilizes Mn(III) without 

dismutation throughout the incubations and confirming the phenotype of strain Mn3 

(Table 3.3) as a Mn(III) reducing-deficient mutant strain.  
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Figure 3.2. Anaerobic respiration of soluble Mn(III)-pyrophosphate by the wild-type 
strain (solid circles) and mutant strain Mn3 (solid ) as a function of time, compared to 
the chemical control (open circles). Error bars represent standard deviations from at least 
duplicates. 

 

In the incubations with solid Mn(IV) oxides, reduction of Mn(IV) oxides by the 

wild-type strain was evidenced by a gradual change from the black color of Mn(IV) 

oxides to white precipitates in the latter period of the incubation, while the black color 

remained during the incubations of mutant strain Mn3 (not shown). According to the 

speciation of Mn, Mn(II) generated during anaerobic respiration of Mn(IV) oxides 

existed in three phases, including soluble Mn(II), exchangeable Mn(II), and carbonate 

bound Mn(II) (Figure 3.3). Concentrations of soluble Mn(II) in the presence of the wild-

type strain increased rapidly and saturated around 3.4 mM (ca. 45% of total Mn), while 

concentrations of soluble Mn(II) remained low (< 0.3 mM) in the abiotic controls (Figure 

3.3-a). Similarly, little exchangeable Mn(II) was extracted in the control reactor 
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throughout the incubations (Figure 3.3-b), but concentrations of the exchangeable Mn(II) 

in the wild-type incubations increased as a function of time during the first 48 hrs and 

stabilized at relatively low concentrations (i.e., 0.3 mM), constituting approximately 4% 

of total Mn at the end of the incubations. In parallel to the production of soluble Mn(II), 

concentrations of Mn(II) bound to carbonate increased significantly in the presence of the 

wild-type strain and reached as much as 3 mM at the end of the incubation, compared to 

the abiotic control which formed negligible concentrations of MnCO3 (Figure 3.3-c). 

Concentrations of both soluble Mn(II) and solid extracted Mn(II) in incubations with the 

point mutant strain Mn3 increased at much slower rate (compared to the wild-type 

incubations) (Figure 3.3). The maximum total Mn(II) production by strain Mn3 

accounted for merely 17.3 ± 2.9% of the wild type production (Table 3.2), including 

11.1% in solution, 1.3% adsorbed onto solid surface, and 3.6% precipitated as Mn(II) 

carbonate of the corresponding wild-type production (Figure 3.3-a, b, and c). The 

production of Mn(II) in both soluble and solid phase was severely impaired during the 

reduction of solid Mn(IV) by strain Mn3. 

Although the deletion of genes involved in the reduction of Mn(III) significantly 

impaired the capability of mutant strain Mn3 to produce Mn(II) during the reduction of 

solid Mn(IV) (Figure 3.3), Mn3 retains the ability to produce Mn(III) at the same rate as 

the wild type (Figure 3.4-a), suggesting that the first step of Mn(IV) reduction to Mn(III) 

was not inhibited in this mutant strain (compared to the significant inhibition of Mn(II) 

production in Mn3). 

As Mn(III) is able to dismutate rapidly (Davison, 1993), the ligand pyrophosphate, 

which forms stable complexes with Mn(III) (Kostka et al., 1995), was added to the 
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incubations fed with Mn(IV) oxides to investigate its effect on Mn(III) accumulation 

during microbial reduction of solid Mn(IV). Concentrations of Mn(III) remained at 

baseline level throughout the incubations with the wild-type in the presence 10 mM 

pyrophosphate (Figure 3.4-b), compared to significant Mn(III) accumulation in the wild-

type incubations without pyrophosphate (Figure 3.4-a). In contrast, concentrations of 

Mn(III) increased to as much as 0.3 mM when incubating mutant strain Mn3 on solid 

Mn(IV) in the presence of pyrophosphate (Figure 3.4-b), or approximately 50% higher 

than that in the Mn3 incubations without pyrophosphate (Figure 3.4-a and b). The 

increase in the rate of reduction of Mn(III) by the wild-type in the presence of 

pyrophosphate was shown previously (Kotska et al., 1995) and indicates that the 

complexation of Mn(III) by pyrophosphate does not empede electron transfer from the 

terminal reductase. These findings suggest that the terminal reductase is designed to 

handle stable Mn(III) complexes that could be produced by the enzymatic reductive 

dissolution of Mn(IV) in the presence of organic chelators. In turn, the increase 

production of Mn(III) by mutant strain Mn3 in the presence of high concentration of 

pyrophosphate is attributed to the impaired capability of Mn3 to reduce Mn(III) coupled 

with the ability of pyrophosphate to prevent dismutation of Mn(III) (Figure 3.4). Overall, 

these results demonstrate the unique phenotype of this point mutant strain Mn3 that 

reduces Mn(IV) half-way to Mn(III) but not to Mn(II). This phenotype confirms that the 

anaerobic respiration of Mn(IV) proceeds through two steps of one electron transfer and 

suggests that the two steps may be carried on via different electron transfer pathways. 
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Figure 3.3. The concentration of Mn(II) produced as a function of time during anaerobic 
respiration of solid Mn(IV) by the wild-type strain of S. oneidensis MR-1 (solid circles) 
and point mutant strain Mn3 (solid squares), compared to the chemical control (open 
circles). (a) Soluble Mn(II) concentrations (mM) in different batch reactors. (b) 
Concentrations of exchangeable Mn(II) extracted with 0.5 M MgCl from the solid phase. 
(c) Concentrations of Mn(II) extracted from the residual solid with 0.1 M NaOAc. Error 
bars represent standard deviations from at least duplicates.  
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Figure 3.4. Concentrations of Mn(III) produced as a function of time during anaerobic 
respiration of solid Mn(IV) by the wild-type strain of S. oneidensis MR-1 (solid circles) 
and point mutant strain Mn3 (solid squares) compared to the chemical controls (open 
circles), in the presence (a) or without (b) 10 mM of pyrophosphate. Error bars represent 
standard deviations from at least duplicates. 
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3.4 Conclusions 

In summary, a novel point mutant strain Mn3 generated via random chemical 

mutagenesis presents a unique phenotype that only reduces Mn(IV) to Mn(III) but not 

Mn(III) to Mn(II). These findings indicate that microbial reduction of Mn(IV) oxides by 

Shewanella oneidensis MR-1 proceeds via two consecutive steps of one-electron transfer 

with Mn(III) production as intermediate. Interestingly, the stabilization of Mn(III) by the 

addition of a redox inactive Mn(III)-complexing ligand in the presence of strain Mn3 and 

the accelerated Mn(III) reduction of the same complex by the wild-type strain suggest 

that a possible endogenic ligand is involved in the process to prevent dismutation of 

Mn(III). The mutant strains Sol d29 and d64, involved in the non-reductive solubilization 

of Fe(III) oxides by Shewanella, did not produce Mn(III) intermediates in the reduction 

of Mn(IV) oxides, suggesting that an enzymatic solubilization strategy requiring the Sol 

system may also be involved to respire Mn(IV) oxides. Due to the paucity of Mn(IV)-

stabilizing ligands in natural environments, the anaerobic respiration of Mn(IV) oxides 

may require a reductive dissolution of Mn(IV) oxides to Mn(III) as alternative strategy to 

the non-reductive dissolution mechanism involved with solid Fe(III) oxides. We therefore 

propose that S. oneidensis may first reductively dissolve solid Mn(IV) to the more 

bioavailable soluble Mn(III), which can then be rapidly respired. The prevalent activity of 

microbial Mn(IV) reduction in oxygen depleted environments may provide an alternative 

natural source of Mn(III) in suboxic sediments. The genetic identification and nucleotide 

sequence analyses of the Mn(III) reduction-deficient mutant strain Mn3 are currently 

ongoing to characterize the biochemical mechanism involved in the reduction of Mn(III). 
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CHAPTER 4   MICROBIAL MN(IV) REDUCTION REQUIRES AN 

INITIAL ONE-ELECTRON REDUCTIVE DISSOLUTION STEP 

Reproduced in part from Lin, H.; Szeinbaum, N.H.; DiChristina, T.J.; Taillefert, M. 
Microbial Mn(IV) reduction requires an initial one-electron reductive dissolution step. 

Submitted to Geochimica et Cosmochimica Acta. 

Abstract 

Mn(IV) and Mn(II) are the most stable and prevalent forms of manganese in natural 

environments. The occurrence of Mn(III) in minerals and the detection of soluble Mn(III) 

in natural waters, however, suggest that Mn(III) is an intermediate in both the oxidation 

of Mn(II) and the reduction of Mn(IV). Mn(III) has recently been proposed as an 

intermediate during the oxidation of Mn(II) by Mn-oxidizing bacteria but has never been 

considered as an intermediate during the bio-reduction of Mn(IV). Here we show for the 

first time that microbial Mn(IV) reduction proceeds step-wise via two successive one-

electron transfer reactions with production of soluble Mn(III) as transient intermediate. 

Mutagenesis studies demonstrate that the reduction of both solid Mn(IV) and soluble 

Mn(III) occurs at the outer membrane of the cell. In addition, kinetic analysis indicates 

that Mn(IV) respiration involves only one of the two potential terminal reductases (c-type 

cytochrome MtrC and OmcA) involved in Fe(III) respiration. More importantly, only the 

second electron transfer step is coupled to production of dissolved inorganic carbon, 

suggesting that the first electron transfer reaction is a reductive solubilization step that 

increases Mn bioavailability. These findings oppose the long-standing paradigm that 

microbial Mn(IV) reduction proceeds via a single two-electron transfer reaction coupled 

to organic carbon oxidation, and suggest that diagenetic models should be revised to 

correctly account for the impact of manganese reduction in the global carbon cycle. 
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4.1 Introduction 

Manganese is the third most abundant transition metal in the Earth’s crust and 

plays an essential role in the biogeochemical cycling of carbon, nitrogen, phosphorus, 

and other metals (Neretin et al., 2003, Luther et al., 1997, White et al., 2008, Tebo et al., 

2004). Manganese is primarily present under the three oxidation states +II, +III, and +IV 

in natural systems (Cotton et al., 1999). Manganese (IV) produced by Mn(II) oxidation 

generally exists as highly insoluble oxides at circum-neutral pH and constitutes a 

considerable fraction of soils and sediments (Davison, 1993). Soluble forms of Mn(IV), 

noted as colloidal Mn, are generally formed as products in permanganate reactions in 

aqueous solutions at circum-neutral pH (Perezbenito et al., 1987). Due to its larger 

specific surface than amorphous MnO2 (water-insoluble forms), colloidal MnO2 (or 

water-soluble form of Mn oxides) was thought to be more active in catalytic and 

oxidizing activities (Perezbenito et al., 1987, Perezbenito and Arias, 1992, Perez-Benito, 

2002). 

Mn(II) is thermodynamically more stable under anoxic conditions, usually as free 

hydrated cation (Mn2+) or as insoluble phosphate or carbonate minerals (Tebo et al., 2004, 

Otero et al., 2009). Mn(IV) is reduced to Mn(II) in anaerobic conditions either chemically 

by Fe(II) and sulfide (Villinski et al., 2003, Yao and Millero, 1993) or biologically by 

dissimilatory reducing microorganisms at circumneutral pH (Myers and Nealson, 1988). 

Soluble Mn(III) is proposed to be produced as intermediate during the chemical and 

photochemical reduction of Mn(IV) (Perez-Benito, 2002, Ruppel et al., 2001) and during 

the aerobic oxidation of Mn(II) by spores of the marine Bacillus sp. Strain SG-1 and 
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newly isolated Mn(II)-oxidizing strains Aurantimonas manganoxydans, sp. nov. and 

Aurantimonaas litoralis, sp. nov. (Anderson et al., 2009, Webb et al., 2005).  

Solid Mn(III) oxides (MnOOH or Mn3O4), produced as metastable products due 

to kinetic limitations, also exist as common forms of Mn oxides in natural aqueous 

environments (Davison, 1993). Soluble Mn(III) rapidly disproportionates to yield Mn(II) 

and Mn(IV) under acidic conditions or precipitates as Mn(III) oxides in basic 

environments (Davison, 1993). Soluble Mn(III), however, can be stabilized in soluble 

phases in the presence of certain inorganic or organic ligands, such as pyrophosphate 

(Kostka et al., 1995), citrate (Klewicki and Morgan, 1998), hydroxycarboxylic acid 

(Heintze and Mann, 1947), and siderophores (Parker et al., 2004, Duckworth and Sposito, 

2005a). Due to its extreme reactivity and the lack of appropriate analytical techniques, 

soluble Mn(III) was only recently discovered in low concentrations in natural aquatic 

systems in the suboxic zone of the Black Sea (Trouwborst et al., 2006). The existence of 

soluble Mn(III) in these conditions suggests that microbial Mn(IV) reduction in oxygen-

limited environments may be a candidate source of soluble Mn(III). 

Microbial Mn(IV) reduction, first demonstrated with Alteromonas putrefaciens 

MR-1 (Myers and Nealson, 1988), is central to the biogeochemical cycling of manganese 

in aquifers (Coates et al., 1999), redox stratified water columns (Van Cappellen et al., 

1998), and fresh water (Krishnan et al., 2009) and marine (Thamdrup, 2000b) sediments, 

yet the mechanism of dissimilatory Mn(IV) reduction by metal-reducing bacteria remains 

poorly understood. The ability to reduce Mn(IV) oxides is found in both domains of the 

prokaryotic world (Lovley et al., 2004b), including metal-reducing members of the genus 

Shewanella which reduce solid Mn(IV) (Myers and Nealson, 1988, Burnes et al., 1998), 
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soluble Mn(III) (Kostka et al., 1995), and a wide variety of alternate electron acceptors, 

such as solid and soluble forms of Fe(III) (DiChristina et al., 2005, Hau and Gralnick, 

2007).  

Fe(III)- and Mn(IV)-reducing gram-negative bacteria are presented with a unique 

physiological problem at circumneutral pH: they are required to reduce electron acceptors 

found largely as amorphous or crystalline (oxy)hydroxide particles (Morgan, 2000b) 

presumably unable to contact inner membrane (IM)-localized electron transport systems. 

To overcome this problem, metal-reducing bacteria employ a variety of novel electron 

transport strategies not found in other gram-negative bacteria that reduce soluble electron 

acceptors (DiChristina et al., 2005, Lovley et al., 2004b), including 1) direct enzymatic 

reduction of solid metal oxides via metal reductases localized on the outer membrane 

(OM) or on electro-active appendages (DiChristina et al., 2002, Myers and Myers, 2003a, 

Gorby et al., 2006, Reguera et al., 2005, Shi et al., 2008), 2) a two-step, solubilization and 

reduction pathway in which solid metal oxides are first dissolved by organic complexing 

ligands, followed by uptake and reduction of the soluble organic-metal complexes by 

periplasmic metal reductases (Jones et al., 2010, Fennessey et al., 2010, Taillefert et al., 

2007a), and 3) a two-step, electron shuttling pathway in which exogenous or endogenous 

electron shuttling compounds are first enzymatically reduced and then chemically 

oxidized by the solid metal oxides in a second (abiotic) electron transfer reaction 

(Newman and Kolter, 2000, Lovley and Woodward, 1996, Marsili et al., 2008). 

The mechanism of microbial Mn(IV) reduction is generally described as a single 

two-electron transfer reaction producing Mn(II) as end-product (Thamdrup, 2000a, 

Lovley et al., 2004a). According to the molecular orbital theory, two steps of one-
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electron transfer during the reduction of Mn(IV) to Mn(II) may proceed by the addition 

of the first electron to one of the two empty eg orbitals of Mn(IV) and the rearrangement 

of the orbitals to form Mn(III) intermediates (Luther, 2005). Indeed, chemical reduction 

of MnO2 by Mn(II) under highly acidic conditions (Perez-Benito, 2002) or by some 

organic reductants (e.g. oxalate and pyruvate) at neutral pH (Stone, 1987a) and 

electrochemical reduction of MnO2 (Ruppel et al., 2001) have been proposed to follow 

the one-electron transfer pathway with production of Mn(III) intermediates. In the present 

study, we demonstrate that the gram-negative, metal-reducing bacterium S. oneidensis 

MR-1 reduces Mn(IV) to Mn(II) step-wise via two successive one-electron transfer 

reactions with Mn(III) as transient intermediate. The Mn(IV) reduction pathway of S. 

oneidensis therefore appears to be a reversal of the Mn(II) oxidation pathways of a 

Bacillus species and two recently isolated alphaproteobacteria which oxidize Mn(II) to 

Mn(IV) step-wise via two successive one-electron transfer reactions also with Mn(III) as 

transient intermediate (Webb et al., 2005, Anderson et al., 2009).   

4.2. Material and experimental Design 

4.2.1. Materials  

All glassware and plasticware were soaked in 10% nitric acid overnight and washed 

with sterile DI water prior to use. The reactors were autoclaved before incubations. All 

solutions were prepared with ACS or trace metal grade chemicals in 18 MΩ-de-DI 

(Barnstedt). Amorphous Mn(IV) oxides were synthesized using the permanganate 

oxidation method (Murray, 1974), modified to maintain sterile conditions (Lovley and 

Phillips, 1988). A 0.30 M of Mn(II) solution was slowly dripped (~ 2 drips/sec) into an 

autoclaved bottle containing a 0.2 M KMnO4 solution to form black MnO2 particles. The 
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protons produced during the reaction were neutralized by NaOH (10 N) to maintain a pH 

of 10. After completion of the reaction, the synthesized particles were washed three times 

with MgCl2 (0.1M) and de-ionized water, to remove the excess Mn2+, and dried at 40°C 

for 3-5 days. The synthesized Mn oxides contained 7.30 ± 0.06 mmol Mn g-1 solid, 

measured by graphite furnace atomic adsorption spectrometry (GFAAS). The 

stoichiometry of the synthesized Mn oxides was determined to be MnO1.98, according to a 

modified Winkler titration method used to calculate the oxidation states of metal oxides 

(Murray et al., 1984, Murray, 1974). Soluble Mn(III) was prepared by dissolving Mn(III) 

acetate dihydrate (Alfa Aesar) in a defined medium with sodium pyrophosphate (Sigma 

Aldrich) in a molar ratio of one Mn(III) to four pyrophosphate. The solution was then 

filtered through a 0.2 µm polycarbonate filter. 

4.2.2 Bacterial strains and growth media 

Shewanella oneidensis strain MR-1 was originally isolated from Oneida Lake, 

NY (Myers and Nealson, 1988). The S. oneidensis strains used in the present study 

included the wild-type strain (displaying normal Mn(IV) and Mn(III) reduction activities), 

point mutant strain Mn3, and a set of in-frame deletion mutant strains (gspD, mtrB, 

mtrC, omcA, omcAmtrC (Table 4.1). S. oneidensis gspD and mtrB mutants are 

severely impaired in the ability to reduce Mn(IV) oxides, Fe(III) oxides (Beliaev and 

Saffarini, 1998, DiChristina et al., 2002, Shi et al., 2008) and Mn(III) (from results of the 

present study). gspD encodes an outer membrane porin required for secretion of the 

decaheme c-type cytochromes MtrC and OmcA to the cell surface (DiChristina et al., 

2002, Shi et al., 2008), while mtrB encodes an outer membrane -barrel protein that is 

postulated to anchor MtrC and OmcA on the cell surface (Beliaev and Saffarini, 1998) 
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where they are involved in electron transfer to external Mn(IV) and Fe(III) oxides 

(Hartshorne et al., 2009). The Mn3 point mutant was recently identified in a genetic 

screen of chemically-mutagenized S. oneidensis strains selected for their inability to 

reduce Mn(III) (Figure 4.1).  

 

 

Figure 4.1. Identification of mutant strain Mn3 by Mn(III) reduction-deficient mutant 
screening (located at row 1, column 3).  Wild-type strain MR-1 [row 3, column 2] and a 
previously isolated anaerobic respiratory mutant strain T121 (DiChristina et al., 2002, 
Burnes et al., 1998)  [row 3, column 1] were included as Mn(III) reduction-positive and 
Mn(III) reduction-negative control strains, respectively. Note the clearing zone 
(indicative of wild-type Mn(III) reduction activity) in the colony periphery of all strains 
except Mn(III) reduction-deficient mutant strain Mn3 and anaerobic respiratory mutant 
strain T121. 
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All strains were grown at 30˚C in a defined salt medium (SM) (Myers and Nealson, 

1988) supplemented with 18 mM lactate as carbon/energy source.  For SM solid medium, 

Bacto agar was added at 1.5% (w/v). 

Construction of markerless, in-frame gene deletion mutants of S. oneidensis.  

Targeted S. oneidensis genes (listed in Table 4.1) were deleted from the S. oneidensis 

genome via application of a newly constructed gene deletion system (Burns and 

DiChristina, 2009). Briefly, regions corresponding to ~750 bp upstream and downstream 

of each open reading frame (ORF) were independently PCR-amplified and subsequently 

joined using overlap-extension PCR. The resulting fragment was cloned into suicide 

vector pKO2.0 (which does not replicate in S. oneidensis) and the construct was 

mobilized into wild-type S. oneidensis via conjugal transfer from E. coli donor strain 

β2155 λ pir. S. oneidensis strains with the plasmid integrated into the genome were 

selected on solid LB medium containing gentamycin (15 μg mL-1). Single integrations 

were verified via PCR with primers flanking the recombination region. Plasmids were 

resolved from the genomes of single integrants by plating on solid LB medium 

containing sucrose (10% w/v) with NaCl omitted. In-frame deletions were verified by 

PCR and direct DNA sequencing (University of Nevada, Reno Genomics Center). Details 

on primers used in mutant construction and DNA sequencing are found in the references 

listed in Table 4.1. Each gene deletion mutant was subsequently tested for Mn(IV) 

reduction, Mn(III) reduction, and DIC production activities in anaerobic liquid cultures 

supplemented with 18 mM lactate and either 7 mM Mn(IV) oxide or 7 mM Mn(III)-

pyrophosphate. 
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Table 4.1. Description of strains of Shewanella oneidensis MR-1 used in current 
incubations, including wild-type S. oneidensis MR-1, mtrB, mtrC, omcA, 
omcAmtrC, gspD, and Mn3 mutant. 

Strain Features Source 

Shewanella oneidensis   

MR-1 Wild-type strain ATCC 

∆mtrB 
in-frame mtrB gene 

deletion mutant 
(Burns, 2010, Burns and 

Dichristina, 2011) 

∆mtrC 
in-frame mtrC gene 

deletion mutant 
(Burns, 2010, Wee et al., 2012) 

∆omcA 
in-frame omcA deletion 

mutant 
(Burns, 2010, Wee et al., 2012) 

∆omcAmtrC 
in-frame omcAmtrC 

double deletion mutant
(Burns, 2010, Wee et al., 2012) 

Mn3 
Deficient in reduction 

of soluble Mn(III) 
Current study 

 

Isolation of Mn(III) reduction-deficient mutant strains (Mn3) of S. oneidensis.   

Ethyl methane sulfonate (EMS) was used as a chemical mutagen following 

previously described procedures (Burnes et al., 1998, DiChristina et al., 2002). Liquid 

cultures of wild-type S. oneidensis were grown in SM medium to late exponential phase 

(2x109 cells mL-1), harvested by centrifugation at 10,000 xg (4˚C), washed twice, and 

resuspended in fresh SM medium. EMS was added (19 mg/mL) and the cell suspension 

was incubated 45 min to achieve 90% kill. The surviving EMS-treated cells were plated 

on SM agar and the colonies were subsequently subjected to a mutant screening 

technique to detect loss of Mn(III) reduction activity. Approximately 5,000 EMS-treated 

colonies were transferred to SM agar medium supplemented with 18 mM lactate as 

electron donor and 5 mM Mn(III)-pyrophosphate as electron acceptor (which imparts a 

distinctive pink color to the agar medium; Figure 4.1). After 48 hours of incubation in a 

Coy anaerobic chamber (atmosphere of 5% CO2, 10% H2, 85% N2), wild-type colonies 

produced a distinctive clearing zone in their colony peripherey (an indication that pink-
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colored Mn(III)-pyrophosphate had been reduced to colorless Mn(II) end-products), 

while five putative Mn(III) reduction-deficient mutants were identified by their inability 

to produce a clearing zone (Figure 4.1). One of the five putative Mn(III) reduction-

deficient mutants (desgnated strain Mn3) was selected and subsequently tested for Mn(IV) 

reduction, Mn(III) reduction, and DIC production activities in anaerobic liquid cultures 

supplemented with 18 mM lactate and either 7 mM Mn(IV) oxide or 7 mM Mn(III)-

pyrophosphate. 

4.2.3 Anaerobic incubations of S. oneidensis wild-type and mutant strains with 

Mn(IV) oxide or Mn(III)-pyrophosphate as electron acceptor. 

Duplicate liquid cultures were incubated anaerobically in 100 ml sealed reactors 

gently mixed with magnetic stirring bars. Each incubation contained 1×107 cells/ml of 

Shewanella oneidensis wild-type or mutant strains incubated in 50 ml of SM medium 

with 18 mM lactate as electron donor and either 7 mM Mn(IV) oxide or 7 mM soluble 

Mn(III)-pyrophosphate as electron acceptor. Duplicate abiotic (purely chemical) control 

incubations were conducted simultaneously with all biotic incubations. 

Duplicate liquid cultures were incubated anaerobically in sealed reactors gently 

mixed with magnetic stirring bars. Each incubation contained 1×107 cells/ml of 

Shewanella oneidensis wild-type or mutant strains incubated in 50 ml of SM medium 

with 18 mM lactate as electron donor. Either 7 mM Mn(IV) oxide (colloidal or 

amorphous) or 7 mM soluble Mn(III)-pyrophosphate was added into the reactor as sole 

terminal electron acceptor. Duplicate abiotic (purely chemical) control incubations were 

conducted simultaneously with all biotic incubations. 
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4.2.4. Sampling and chemical analyses 

At each time point, a 2-ml aliquot was sampled with a sterile needle syringe from 

each batch reactor. 100 μl of unfiltered subsample was used to measure pH (MI-414 

combination pH microelectrode, Microelectrodes, Inc. and SB301 SympHony pH meter, 

VWR Scientific). Another 1.5 ml subsample was filtered onto a 0.2 µm polyethersulfone 

membrane (Whatman) and divided into three aliquots to measure dissolved inorganic 

carbon (DIC), soluble Mn(II), and soluble Mn(III). In addition, concentrations of organic 

acids (lactate, pyruvate, and acetate) were measured in the wild-type incubations (lactate 

as the carbon source) to demonstrate the coupling of DIC production with carbon 

respiration. The precipitate on the filter membrane was digested sequentially, first by a 

0.5 M MgCl2 solution to extract exchangeable Mn2+ ions adsorbed onto the solid surfaces, 

then by a 0.1 M NaOAc-HOAc solution (pH 5) for Mn species bound to carbonate 

(Tessier et al., 1979). Each extraction was conducted in duplicate. Mn(II) concentrations 

in all sequential extractions were normalized to the volume of filtered solution to convert 

to concentration. 

Total DIC was measured by a flow injection analysis system with conductivity 

detection (Hall and Aller, 1992) coupled to an Analytical Instruments System, Inc. (AIS, 

Inc.) LCC-100 integrator. Mn(II) concentrations in both the solution and solid extracts 

were determined by cathodic square wave voltammetry with a hanging mercury drop 

electrode (V663, Metrohm, Inc.) using an AIS, Inc. Model DLK-60 potentiostat. Square 

wave voltammetry parameters included a conditioning step for 10 sec at -0.1 V, a scan 

rate of 200 mV/s from -0.1 to -1.8 V, and a pulse height of 0.05 V. Voltammograms were 

integrated using the semi-automatic integration program VOLTINT in Matlab (Bristow 
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and Taillefert, 2008). Mn(III) concentrations were monitored spectrophotometrically at 

480 nm (Milton Roy spectronic 501) in the presence of pyrophosphate (Kostka et al., 

1995). Total Mn concentrations were measured by Graphite Furnace Atomic Absorption 

Spectrometry (GFAAS) with a pyrolytic-coated partitioned graphite tube (CPI 

international). Lactate, pyruvate, and acetate concentrations were measured by ion 

chromatography equipped with a Dionex IonPac® ICE-AS6 ion-exclusion column, 

Anion-ICE MicroMembrane Suppressor II, and CDM-2 conductivity detector. A solution 

of 0.4 mM heptafluorobutyric acid was used as the eluent at a flow rate of 1.0 ml/min; 

while the regenerant was made of a 5 mN tetrabutylammonium hydroxide solution at a 

flow rate of 3.0 ml/min. 

4.2.5. Calculation of pseudo-first order reduction rate constants 

Mn(IV) and Mn(III) reduction rates depend on pH, cell density, and 

concentrations of electron donor and acceptor (Dollhopf et al., 2000), and can be written 

as Eq. 4.1, 

/
/

[ ]
[ ] [ ] [ ] [ ]a b cIV III

IV III

d Mn
k H lactate cell Mn

dt
  d                                (Equation 4.1) 

As cell density, pH, and lactate concentration can be considered constant at the 

beginning of the incubations, they may be included in the apparent rate constant, kobs, and 

the initial rate law can be simplified to: 

[ ]
[ dIV

obs IV

d Mn
k Mn

dt
  ]                                                                      (Equation 4.2)    
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[ ]
[ dIII

obs III

d Mn
k Mn

dt
  ]                                                                      (Equation 4.3)        

Mn(IV) concentrations used in Eq. 4.2 were determined using mass balance and 

the measured concentrations of Mn(III) and total Mn(II) as a function of time.  Mn(III) 

concentrations used to solve Eq. 4.3 were measured directly. The linear representation of 

the integrated form of these rate laws (natural log of concentrations versus time, 

assuming first order with respect to Mn(IV) or Mn(III) reduction) confirms the initial 

pseudo-first order kinetics of both Mn(IV) and Mn(III) reduction, in agreement with 

previous studies conducted with Black Sea isolate S. putrefaciens MR-4 (Dollhopf et al., 

2000). Values of kobs were derived from the slopes of these representations. 

4.3 Result and Discussion 

4.3.1. Kinetics of Mn(IV) and Mn(III) reduction by S. oneidensis wild-type and 

mutant strains fed solid Mn(IV) as electron acceptor 

Chemical speciation analysis of Mn showed no significant change of each species 

of Mn in both solid and soluble phases in the abiotic control. Mn(IV) reduction by the 

wild-type strain produced soluble Mn(III) as intermediate and Mn(II) as end-product in 

both soluble and solid phases (Figure 4.2). Concentrations of soluble Mn(II) in the 

presence of the wild-type strain increased rapidly and saturated around 3.0 mM (ca. 40% 

of total Mn) (Figure 4.2). Similarly, concentrations of exchangeable Mn(II) in the wild-

type incubations increased as a function of time during the first 48 hrs but stabilized at 

relatively low concentrations (i.e., 0.3 mM), constituting approximately 9% of total Mn at 

the end of the incubations. In parallel to the production of soluble Mn(II), concentrations 

of Mn(II) bound to carbonate increased significantly in the presence of the wild-type 
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strain and reached as much as 3 mM at the end of the incubation (Figure 4.2). The 

accumulation of low concentrations of Mn(III) (3.4%) compared to total Mn(II) (9% 

surface-bound, 40% soluble, and 51% carbonate-bound) by the wild-type strain fed 

Mn(IV) oxides is consistent with the relatively low Mn(III) concentrations determined in 

natural waters (Trouwborst et al., 2006). The low Mn(III) concentrations may be due to 

either the rapid disproportionation of Mn(III) into Mn(II) and Mn(IV) (Davison, 1993) or 

the rate-limiting nature of the reduction step from solid Mn(IV) to soluble Mn(III).  

To investigate the mechanism of Mn(IV) reduction, incubations of the S. 

oneidensis wild-type strain were compared to incubations of a suite of markerless, in-

frame gene deletion mutants lacking mtrB, omcA, mtrC and both omcA and mtrC (Table 

4.1) under identical Mn(IV)-reducing conditions (Figure 4.3). Mn(II) produced by 

different mutant strains partitioned in a similar fashion as the wild-type strain between 

the soluble and solid phases (Figure 4.3) and the majority of solid phase Mn(II) was 

precipitated under the form of MnCO3 (e.g. Figure 4.2). Steady-state production of total 

Mn(II) by the omcA, mtrC, and omcAmtrC mutants reached 88(± 23)%, 92(± 9)%, 

and 75(± 21)% of the wild-type Mn(II) levels (Figure 4.3). Pseudo-first order rate 

constants for Mn(IV) oxide reduction by omcA were similar to that of the wild-type 

strain, while rate constants for mtrC were only 43(±3)% of the wild-type strain (Figure 

4.3 and Table 4.2). Pseudo-first order rate constants for Mn(IV) oxide reduction by 

omcA were similar to that of the wild-type strain, while rate constants for mtrC were 

only 43(±3)% of the wild-type strain (Table 4.2). In turn, the rate constant obtained with 

omcAmtrC was similar to that of mtrC (although omcAmtrC displayed a 24-hr phase 

lag prior to onset of Mn(II) production (Table 4.2)). Results of previous studies have 
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indicated that the c-type cytochromes MtrC and OmcA display overlapping roles for 

reduction of both Mn(IV) (Myers and Myers, 2001, Myers and Myers, 2003b) and Fe(III) 

oxides (Borloo et al., 2007, Bretschger et al., 2007); however, the present results indicate 

that OmcA is not required for Mn(IV) reduction and MtrC is involved in the reduction of 

solid Mn(IV). MtrC and OmcA, therefore, appear to play different roles in the reduction 

of Fe(III) and Mn(IV) oxides, in contrast to the conventional view that S. oneidensis 

employs similar mechanisms to reduce these two electron acceptors (Myers and Myers, 

2000, Newman and Kolter, 2000, Bretschger et al., 2007, Lovley et al., 2004b). 

Production of both total Mn(II) and Mn(III) was significantly impaired during 

Mn(IV) oxide reduction by gspD and mtrB (Figure 4.4 and Figure 4.5). These findings 

suggest that GspD and MtrB are both required to reduce Mn(IV) oxides in a fashion 

similar to that found for Fe(III) oxide reduction (DiChristina et al., 2002, Beliaev and 

Saffarini, 1998, Shi et al., 2008). Rate constants for Mn(IV) oxide reduction by the 

omcA, mtrC or omcAmtrC are significantly higher than rate constants for Mn(IV) 

oxide reduction by gspD and mtrB (Table 4.2), suggesting that gspD, the gene that 

encodes an outer membrane porin required for the secretion of decaheme c-type 

cytochromes MtrC and OmcA to the cell surface (DiChristina et al., 2002, Shi et al., 

2008), and mtrB, the gene encoding an outer membrane -barrel protein that is postulated 

to anchor MtrC and OmcA on the cell surface (Beliaev and Saffarini, 1998),  are more 

central to Mn(IV) reduction than omcA and mtrC genes. These results also suggest that, 

in the absence of MtrC and OmcA, an alternative Mn(IV) reduction pathway requiring 

both GspD and MtrB is involved in Mn(IV) reduction. Mn(III) concentrations increased 

during the Mn(IV) reduction by strains ΔmtrC and ΔomcA, but remained at lower level 
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than those produced by MR-1 (Figure 4.5). The levels of soluble Mn(III) accumulated by 

the mtrC during Mn(IV) reduction were approximately 2-fold higher than either omcA 

or omcAmtrC (Figure 4.5), implying that MtrC and OmcA also play different roles in 

Mn(III) reduction.  

Production of soluble Mn(III) during reduction of Mn(IV) by the wild-type strain 

and some of the in-frame gene deletion mutants tested (ΔmtrC and ΔomcA, but not gspD 

and mtrB) indicated that microbial reduction of Mn(IV) by S. oneidensis proceeds via 

two consecutive steps of reduction 1) Mn(IV) to Mn(III) and 2) Mn(III) to Mn(II) and 

these two steps may be subjected to different electron transfer pathways. To verify these 

two successive one-electron transfer reactions, Mn(III) reduction-deficient point mutant 

Mn3 was tested for Mn(IV) reduction activity. Mn(III) reduction-deficient mutant strain 

Mn3 produced Mn(II) at levels only 17% of the wild-type strain (Figure 4.3 and Figure 

4.4), yet retained the ability to produce Mn(III) at wild-type levels (Figure 4.5) when 

provided with Mn(IV) oxide as electron acceptor. The inability of Mn3 to reduce Mn(III) 

was verified in anaerobic liquid incubations with soluble Mn(III) as electron acceptor 

(Figure 4.6). This newly found point mutant Mn3 suggests that S. oneidensis does not 

share all of the components of the electron transport chain for reduction of Mn(IV) and 

Mn(III). The point mutation in Mn(III) reduction-deficient mutant strain Mn3 is currently 

being identified via genetic and nucleotide sequence analyses. 
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Figure 4.2. Concentrations of reduced Mn species produced as a function of time during 
anaerobic respiration of solid Mn(IV) by wild-type Shewanella oneidensis MR-1. The Mn 
species detected include soluble Mn(II) (open circles), soluble Mn(III) (open triangles), 
and sequentially exchangeable Mn(II) extracted from the solid phase with 0.5 M MgCl2 
(grey symbols) and MnCO3(s) extracted with 0.1 M NaOAc-AcOH (pH 5) from the 
residual solid (black symbols). Error bars represent correlations of at least duplicate 
culture incubations. 
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Figure 4.3 Concentration of Mn(II) produced as a function of time during anaerobic 
respiration of solid Mn(IV) by wild type S. oneidensis MR-1 (solid circles), mtrC (open 
up-triangles), omcA (solid up-triangles), omcAmtrC (half-filled up-triangles), gspD 
(left-triangles), mtrB (solid down-triangles), Mn3 mutant (open diamonds), and abiotic 
controls (open circles). (A) Soluble Mn(II) concentrations (mM) in different batch reactors. 
(B) Concentrations of Mn(II) in solid phase extracted with 0.5 M MgCl2 and 0.1 M 
NaOAc. Error bars represent standard deviations from duplicate culture incubations. 
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Figure 4.4. Total Mn(II) production at steady-state by different mutant strains of S. 
oneidensis MR-1 relative to the wild-type during incubations with either soluble Mn(III) 
(open bars) or solid Mn(IV) (filled bars) as terminal electron acceptor. Error bars 
represent standard deviations of at least duplicate culture incubations. 

 

 

Table 4.2. Pseudo-first order rate constants for the reduction, in separated incubations, of 
solid Mn(IV) and soluble Mn(III)-pyrophosphate by S. oneidensis wild-type and mutant 
strains.  

kobs     (×10-2 hr-1) Wild-type omcA mtrC omcAmtrC mtrB gspD 

Mn(IV) reduction 3.7±0.20 3.2±0.12 1.6±0.05 1.2±0.11 0.4±0.04 0.1±0.01 

Mn(III) reduction 4.6±0.72 8.1±2.4 0.80±0.06 1.0±0.20 0.5±0.07 0.38±0.08 
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Figure 4.5. Production of soluble Mn(III) during anaerobic respiration of solid Mn(IV) by 
wild-type S. oneidensis MR-1 (solid circles), mtrC (open up-triangles), the omcA (solid 
up-triangles), omcAmtrC (half-filled up-triangles), gspD (left-triangles), mtrB (solid 
down-triangles), Mn3 mutant (open diamonds), and abiotic controls (open circles).  Error 
bars represent standard deviations from duplicate culture incubations. 

4.3.3. Kinetics of Mn(III) reduction by S. oneidensis wild-type and mutant strains 

fed Mn(III) as electron acceptor 

The S. oneidensis wild-type and mutant strains were incubated on soluble 

Mn(III)-pyrophosphate complexes (Kostka et al., 1995) as a model soluble Mn(III) 

compound (Figure 4.6). The concentrations of Mn(III) maintained at background level 

with less 7% change compared to the initial concentration of Mn(III) in the abiotic 

controls, compared to complete reduction of soluble Mn(III) in 110 hours of the 
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incubations with the wild-type strain (Figure 4.6). Soluble Mn(III) reduction activity is 

impaired in mtrB and gspD (20 (± 4)% and 44 (± 0.2)% of wild-type activity, 

respectively; Figure 4.4 and Figure 4.6). Involvement of MtrB and GspD in reduction of 

both solid Mn(IV) and soluble Mn(III) indicates that the reduction of both Mn(IV) and 

Mn(III) proceeds at the outer membrane of S. oneidensis. S. oneidensis most likely 

reduces soluble Mn(III) at the OM to avoid energetic costs associated with importing 

Mn(III) or exporting Mn(II) across the OM, or to avoid problems associated with 

intracellular Mn(II) toxicity after Mn(III) reduction (Gruzina et al., 1997, Davison, 1993). 

mtrC was severely impaired in Mn(III) reduction activity, while omcA reduced 

Mn(III) at wild-type rates (Figure 4.4 and Figure 4.6). This finding confirms that MtrC is 

required for Mn(III) reduction while OmcA is not required. The pseudo-first order rate 

constant for Mn(III) reduction by the wild-type strain and omcA was  respectively, 25% 

and almost 3-fold higher than their corresponding constant for Mn(IV) reduction (Table 

4.2). In contrast, the pseudo-first order rate constant for Mn(III) reduction by mtrC was 

approximately 50% lower than that for Mn(IV) oxide reduction, suggesting that MtrC is 

central to Mn(III) but not Mn(IV) reduction. These results explain the accumulation of 

Mn(III) during anaerobic incubation of mtrC with solid Mn(IV) oxides (Figure 4.5). 

The rate constant for Mn(III) reduction by omcA was nearly two-fold higher than the 

wild-type strain (Table 4.2), indicating that the absence of OmcA may accelerate Mn(III) 

reduction rates (by an as yet unknown mechanism). The pseudo first order rate constant 

for Mn(III) reduction by the omcAmtrC is slightly higher than mtrC (Table 4.2), a 

finding attributed to the net effect of lacking both the omcA and mtrC genes. These 
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findings indicate that MtrC (but not OmcA) is a critical component of the Mn(III) 

reduction pathway of S. oneidensis.  
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Figure 4.6. Consumption of soluble Mn(III) during anaerobic respiration of soluble 
Mn(III) by wild type S. oneidensis MR-1 (solid circles), mtrC  (open up-triangles), 
omcA (solid up-triangles), omcAmtrC (half-filled up-triangles), gspD (left-triangles), 
mtrB (solid down-triangles), Mn3 mutant (open diamonds), and abiotic controls (open 
circles).  Error bars represent standard deviations from duplicate culture incubations. 

 

4.3.4 DIC production by S. oneidensis wild-type and mutant strains fed Mn(IV) 

oxide or Mn(III) pyrophosphate as electron acceptor 

Results of the present study indicate that Mn(IV) reduction by S. oneidensis 

proceeds via two successive one electron transfer reactions, with the possibility that 
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either one or both is coupled to DIC production (carbon mineralization). Previous studies 

have reported that lactate, the carbon-energy source supplied in the anaerobic incubations, 

is oxidized to acetate and CO2 by S. oneidensis during Mn(IV) oxide respiration (Myers 

and Nealson, 1988), suggesting that production of dissolved inorganic carbon (DIC) may 

be used as a proxy for S. oneidensis Mn(IV) reduction activity. In the present study, 

production of DIC linearly correlated to the consumption of lactate and production of 

acetate during incubations with the wild-type strain under identical conditions, indicating 

that the production of DIC is coupled to respiration activities (Figure 4.7). DIC 

concentrations increased to approximately 10 mM during anaerobic incubations of S. 

oneidensis on 18 mM lactate and either solid Mn(IV) oxides or soluble Mn(III), while 

production of DIC in the chemical controls remained at low levels (Figure 4.8-a and b). 

The pH simultaneously increased by approximately 1.5 units (data not shown), reflecting 

lactate oxidation and proton consumption during Mn(IV) or Mn(III) reduction (Dollhopf 

et al., 2000). DIC concentrations correlated significantly with total Mn(II) produced 

during the reduction of either solid Mn(IV) oxide or soluble Mn(III)-pyrophosphate as 

electron donor (Figure 4.9-a and b), indicating that Mn(II) production is tightly coupled 

to lactate oxidation as previously reported for Mn(III) reduction by S. oneidensis (Kostka 

et al., 1995). In turn, DIC produced during Mn(IV) oxide reduction correlated poorly 

with Mn(III) produced (Figure 4.9-c), suggesting that the first reduction step of Mn(IV) 

to Mn(III) is not linked to DIC production. Assuming both electron-transfer steps are 

coupled to DIC production, Mn(IV) reduction is expected to produce twice as much CO2 

than that generated by Mn(III) reduction. However, similar concentrations of DIC were 

produced by S. oneidensis and its mutant strains incubated anaerobically with the same 
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concentration of either Mn(IV) oxides or dissolved Mn(III) (Figure 4.8-a and b). These 

results indicate that S. oneidensis couples only Mn(III) reduction to DIC production and 

that electron transfer to Mn(IV) is not coupled to DIC production. The electron transport 

pathway resulting in the reductive solubilization of Mn(IV) to Mn(III) is presently 

unknown but may originate with lactate oxidation to pyruvate (as opposed to direct 

oxidation to acetate and CO2) by two recently discovered lactate oxidases (Pinchuk et al., 

2009). 

The present study demonstrates for the first time that the initial reduction step of 

Mn(IV) to Mn(III) is not coupled to DIC production by S. oneidensis. These findings 

imply that S. oneidensis first reductively solubilizes manganese prior to Mn(III) reduction 

(in a manner analogous to that recently proposed for the anaerobic reduction of Fe(III) 

oxides (Taillefert et al., 2007a, Jones et al., 2010). While Shewanella may reduce Fe(III) 

oxides by non-reductively dissolving Fe(III) with exogenous (Haas and Dichristina, 2002) 

or endogenous organic ligands (Pitts et al., 2003, Taillefert et al., 2007a, Jones et al., 

2010), we propose that the paucity of ligands able to non-reductively solubilize Mn(IV) 

oxides at circumneutral pH in aquatic systems (Morgan, 2000a) has forced S. oneidensis 

to evolve a Mn(IV) reductive solubilization-based strategy that produces soluble Mn(III) 

intermediates whose subsequent reduction is linked to organic carbon oxidation. The 

Mn(IV) reduction pathway of S. oneidensis appears to involve the OM c-type cytochrome 

MtrC (Myers and Myers, 2003b, Shi et al., 2007), electron-shuttling compounds (Marsili 

et al., 2008), and potentially siderophores (Duckworth and Sposito, 2007). The 

siderophore desferrioxamine B (Def-B), for example, reduces Mn(IV) and stabilizes 

Mn(III) by complexation with the oxidized form of Def-B (Duckworth and Sposito, 
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2007). A random transposon-insertion mutant strain of Shewanella oneidensis MR-1, 

N22-7, identified as deficient in siderophore biosynthesis, was also deficient in MnO2 

reduction, suggesting the involvement of siderophore in microbial reduction of Mn((V) 

by Shewanella oneidensis (Kouzuma et al., 2012). In the present study, the pseudo first 

order rate constant for Mn(III) reduction by wild-type S. oneidensis is higher than the 

corresponding constant for Mn(IV) reduction (Table 4.2), an indication that the initial 

reductive solubilization step, which most likely depends on the bioavailability of the solid 

phase electron acceptor Mn(IV), is rate-limiting.  

These findings have important implications for our understanding of the 

biogeochemical cycling of manganese in aquatic systems. First, Mn(III) production 

during Mn(IV) oxide reduction may explain the existence of soluble Mn(III) in suboxic 

or anoxic water columns (Trouwborst et al., 2006) and sediments (Madison et al., 2011). 

Second, Mn(IV) oxide is a readily available terminal electron acceptor for the 

mineralization of organic compounds in anaerobic environments (De Schamphelaire et al., 

2007). If the first electron transfer reaction proceeds via a reductive solubilization step to 

activate Mn while the second step is coupled to CO2 production, then diagenetic models 

which estimate the contribution of manganese reduction to carbon remineralization based 

on the transfer of two electrons (Neretin et al., 2003, Warnken et al., 2008, Bender et al., 

1989) should be revised to more accurately quantify the global carbon cycle. 
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Figure 4.7. Evolution of carbon source, lactate (open circles), the by-product of lactate 
respiration, acetate (solid circles), pyruvate (solid squres) and total dissolved inorganic 
carbon (DIC, open triangles) as a function of time during anaerobic respiration of 3.5 mM 
of solid Mn(IV). Error bars represent standard deviations from duplicate culture 
incubations. 
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Figure 4.8. Production of total dissolved inorganic carbon (DIC) as a function of 
time during anaerobic respiration of solid Mn(IV) (A) and soluble Mn(III) (B) by 
wild-type S. oneidensis MR-1 (solid circles), mtrC (open up-triangles), omcA 
(solid up-triangles), omcAmtrC (half-filled up-triangle), gspD (left-triangles), 
mtrB (solid down-triangles), Mn3 mutant (open diamonds), and abiotic controls 
(open circles). Error bars represent standard deviations from duplicate culture 
incubations. 
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Figure 4.9. Total Mn(II) (a and b) and dissolved Mn(III) (c) versus dissolved inorganic 
carbon produced during anaerobic respiration of solid Mn(IV) oxides (a and c) and 
soluble Mn(III)-pyrophosphate (b) by wild-type S. oneidensis MR-1. Regression 
coefficients are provided in each case. Error bars represent standard deviations from 
duplicate culture incubations. 

 
 

 99



4.4. Conclusions 

In contrast to the recent progress made on anaerobic Fe(III) respiration, the 

mechanism of electron transfer from bacterial cells to solid Mn(IV) oxides remains 

poorly defined. In this study, the mechanism of Mn(IV) reduction by S. oneidensis was 

investigated by comparing  the kinetics of Mn(IV) and Mn(III) reduction by S. oneidensis, 

and a variety of markerless, in-frame gene deletion mutants fed either Mn(IV) or Mn(III) 

as electron acceptor. These experiments reveal for the first time that microbial Mn(IV) 

reduction proceeds step-wise via two successive one-electron transfer reactions with 

production of soluble Mn(III) as transient intermediate. Investigations with the in-frame 

gene deletion mutants show that MtrB (an outer membrane -barrel protein) and GspD 

(an outer membrane porin) are required for the reduction of both solid Mn(IV) and 

soluble Mn(III) and indicate that the reduction of both Mn(IV) and Mn(III) proceeds at 

the outer membrane of S. oneidensis. Mn(IV) respiration, however, involves only one of 

the two potential terminal reductases (c-type cytochrome MtrC and OmcA) involved in 

Fe(III) respiration, as OmcA is not required to reduce either Mn(IV) or Mn(III). More 

importantly, production of dissolved inorganic carbon during the reduction of Mn(III) but 

not Mn(IV) indicates that the second electron transfer step only is coupled to energy 

generation in contrast to the long-standing paradigm that Mn(IV) reduction occurs via a 

single two-electron transfer reaction coupled to the mineralization of organic carbon. If 

applicable to all manganese-reducing microorganisms, these finding suggest that 

conventional diagenetic models should be revised to correctly account for the impact of 

manganese reduction in the global carbon cycle. 
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CHAPTER 5   EVIDENCE FOR MN(IV)-CATALYZED ANAEROBIC 

NITRIFICATION IN MARINE SEDIMENTS 

Abstract 

The recent debate on the marine nitrogen budget has motivated studies to 

investigate alternative pathways of nitrogen transformation. In this study, surface 

sediments from an intertidal salt marsh were incubated with colloidal and amorphous Mn 

oxides in the presence of elevated concentrations of NH4
+ to test the hypothesis that 

anaerobic ammonium oxidation to nitrite and nitrate is coupled to the reduction of Mn(IV) 

oxides. The net production of nitrate was stimulated under anaerobic conditions with 

external addition of colloidal but not amorphous Mn oxides. Mass balance calculations 

indicate that the net consumption of NH4
+ in the incubations amended with colloidal Mn 

oxides (compared to unamended controls) is partially caused by anaerobic ammonium 

oxidation and confirm the occurrence of Mn(IV)-catalyzed anaerobic nitrification. 

Factors such as the initial ratio of Mn(IV) to NH4
+, the type of Mn oxides, and 

background levels of nitrate and sulfate, may also affect anaerobic nitrification. 

Anaerobic production of nitrate occurs in the incubations amended with colloidal MnO2 

but not in incubations amended with amorphous MnO2. In addition, anaerobic 

nitrification was stimulated by the amendment of small concentrations of nitrate or by 

lowering initial sulfate levels, suggesting that suboxic conditions may facilitate the onset 

of anaerobic ammonium oxidation. Therefore, the occurrence and activity of anaerobic 

nitrification may not only depend on the abundance of Mn-oxides in sediments but also 

the redox potential of the sediment. These results suggest that Mn(IV)-catalyzed 

anaerobic nitrification may be an important source of nitrite and nitrate in anoxic 
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sediments and, in turn, provide an alternative pathway for subsequent marine nitrogen 

loss. Microbial communities responsible for anaerobic nitrification have to be isolated to 

demonstrate their importance in the nitrogen cycle. 

5.1 Introduction 

The balance of the marine nitrogen budget is still under debate. Some studies 

estimated that denitrification rates are higher than nitrogen fixation and suggested a 

significant unbalance between oceanic nitrogen inputs (nitrogen fixation) and outputs 

(denitrification) (Codispoti et al., 2001). Other studies, however, showed that nitrogen 

fixation may be underestimated in nitrogen budgets and that the oceanic nitrogen inputs 

and outputs are in balance (Gruber and Sarmiento, 1997, Deutsch et al., 2007). These 

findings suggest that alternative N-transformation pathways may exist that are presently 

not accounted for in the marine nitrogen budget (Capone and Knapp, 2007).   

Most of the research on alternative pathways of N2 formation (nitrogen loss) in 

natural environments focuses on the production of N2 via anaerobic ammonium oxidation 

(anammox) using nitrite or nitrate as terminal electron acceptor (Dalsgaard et al., 2005, 

Jetten et al., 2009, Kuypers et al., 2003). Despite the fact that nitrate and nitrite are 

generally scarce in oxic marine sediments, anammox is found pervasively across 

sediment columns (Engstrom et al., 2005, Thamdrup and Dalsgaard, 2002), suggesting 

that other processes supply these electron acceptors continuously. Aerobic ammonium 

oxidizers near oxic/anoxic interfaces may provide nitrite for anammox bacteria (Schmidt 

et al., 2002). However, the total production of NOx
- by aerobic ammonium-oxidizing 

bacteria is not always able to sustain the loss of NH4
+ through anammox, which requires 

an equivalent moles of ammonium and nitrite (Lam et al., 2007). In addition, anammox is 
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inhibited above 2 - 25 µM oxygen (Strous et al., 1997, Jensen et al., 2008, Kalvelage et 

al., 2011), implying that aerobic nitrification and anammox may be vertically separated in 

sediments. These findings suggest that sources other than aerobic nitrification may exist 

to supply nitrite or nitrate for anammox microorganisms. Several lines of evidence indeed 

suggest nitrite and nitrate may be formed anaerobically in marine sediments. First, nitrate 

was found to rebound below the oxygen penetration depth in a variety of organic-rich 

sediments (Mortimer et al., 2004, Anschutz et al., 2000, Mortimer et al., 2002). Second, 

anaerobic nitrification, demonstrated by the production of nitrate, nitrite, and N2 in 

anoxic NH4
+ incubations, was proposed to represent a substantial source of nitrite for 

anammox (Lam et al., 2007). These latter studies did not identify the electron acceptor 

involved in anaerobic nitrification but proposed Mn oxides as potential candidate given 

their high abundance and oxidative power in sediments (Anschutz et al., 2005, Luther et 

al., 1997, Mortimer et al., 2004).  

Interestingly, oxidation of organic-N or NH4
+ to N2 (but not NO3

-) by MnO2 in the 

presence of dissolved oxygen was evidenced in both field and laboratory studies, and this 

process was proposed to dominate the nitrogen cycle in Mn-rich continental margin 

sediments (Luther et al., 1997). The coupling between MnO2 reduction and direct 

ammonium oxidation to N2, however, has yet to be demonstrated under anaerobic 

conditions (Thamdrup and Dalsgaard, 2000, Thamdrup and Dalsgaard, 2002). While the 

oxidation of ammonium to N2 by MnO2 is thermodynamically favorable over a wide 

range of pH, the formation of nitrate is only favorable at pH < 7.8 (Luther et al., 1997, 

Hulth et al., 1999), suggesting that marine sediments may provide appropriate 

environments for Mn(IV)-promoted anaerobic oxidation of ammonium to nitrate. Thus, 
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instead of directly converting ammonium to N2 (Luther et al., 1997), several other 

laboratory and field studies suggested that Mn(IV) oxides promote anaerobic ammonium 

oxidation to nitrate/nitrite (anaerobic nitrification) (Anschutz et al., 2000, Hulth et al., 

1999, Mortimer et al., 2004). This conclusion was drawn from the good correlation 

between the production of dissolved Mn2+ and a second nitrate maximum found below 

the oxygen penetration zone in marine sediments (Anschutz et al., 2000). Nitrite/nitrate 

production was stimulated by extra amendment of Mn oxides during anaerobic 

incubations of sediments from Long Island Sound (USA) (Hulth et al., 1999). In addition, 

production of nitrate and nitrite accompanied with manganese reduction were also 

observed in anaerobic incubations of sediments from Humber Estuary (UK) (Bartlett et 

al., 2008) and Arcachon Bay (France) (Javanaud et al., 2011).  

Unfortunately, the link between anaerobic nitrification and reduction of Mn 

oxides is difficult to make from field (in situ) observations alone (Bartlett et al., 2008, 

Bartlett et al., 2007), especially when considering the following: (1) Nitrate and nitrite act 

as transition species in anoxic environments and are consecutively consumed by several 

processes such as denitrification (Knowles, 1982), anammox (Kuypers et al., 2003), and 

dissimilatory nitrate reduction to ammonium (Bothe et al., 2007); (2) Ammonium may be 

consumed or produced by a variety of parallel processes, including assimilation (Bothe et 

al., 2007), adsorption/desorption (Mackin and Aller, 1984), and ammonification (Hulth et 

al., 1999, Bartlett et al., 2008), making it difficult to recognize the contribution from 

anaerobic ammonium oxidation; and (3) Other thermodynamically favorable electron 

acceptors, such as Fe(III) oxides (Park et al., 2009, Clement et al., 2005) and sulfate 
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(Fdz-Polanco et al., 2001, Schrum et al., 2009), have also been proposed to be coupled to 

anaerobic oxidation of ammonium.  

The inconsistent observations of Mn-catalyzed anaerobic nitrification in different 

sediments (Thamdrup and Dalsgaard, 2000, Bartlett et al., 2008) imply that the onset of 

this process may be facilitated by specific geochemical conditions. For example, it has 

been proposed that the lack of evidence from extensive sediment incubations (Thamdrup 

and Dalsgaard, 2000) may have been caused by nitrogen limitations in the sediments 

(Hulth et al., 2005). It was suggested that Mn-catalyzed anaerobic nitrification is likely to 

occur in disturbed marine sediments via perturbations such as turbidity currents or burial 

events of Mn oxides (Bartlett et al., 2008). Thus, laboratory incubations that manipulate 

the key factors involved in Mn-catalyzed anaerobic nitrification are needed to 

demonstrate the coupling between anaerobic nitrate/nitrite production and Mn-oxides 

reduction.  

In this study, sediment incubations amended with external Mn(IV) oxides, NH4
+, or 

both were conducted under anaerobic conditions to investigate the appropriate 

geochemical conditions that stimulated anaerobic nitrification in marine sediments. 

Interactions between Mn(IV) reduction and ammonium consumption were investigated 

via analysis of the chemical speciation of both Mn and N species. Evidence for anaerobic 

nitrification was evaluated by comparing the net production or consumption of Mn(II), 

ammonium, and oxidized-forms of nitrogen species in the amended treatments to 

corresponding control incubations. Factors such as the ratio of Mn(IV) to NH4
+, types of 

Mn oxides, and background levels of sulfate and nitrate on the anaerobic oxidation of 

ammonium were investigated. 
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5.2 Materials and methods 

5.2.1 Study site and sediment sampling 

All sediments used in the current study were collected from the Salt-marsh 

Ecosystem Research Facility (SERF) of Skidaway Institute of Oceanography on 

Skidaway Island, Georgia (USA) (Figure 5.1). This salt marsh is dominated by 

monospecific stands of the halophyte Spartina alterniflora. The interior platform of the 

marsh is dominated by low Spartina, while the levees adjacent to the creeks are vegetated 

by high Spartina. Fiddler crab Uca pugnax is abundant throughout the salt marsh 

(Gribsholt et al., 2003). Semidiurnal tides (a maximum range of about 2m) and the 

geomorphology of the marsh significantly affect the redox geochemistry of the site 

(Taillefert et al., 2007b). High hydrostatic pressure gradients during tidal cycles maintain 

creek bank sediments at generally suboxic conditions. Iron and manganese reduction 

provide most of the oxidative power for carbon re-mineralization in creek bank sediments 

of the marsh. In contrast, mud flat sediments which are not exposed to significant 

hydrostatic pressures are dominated by sulfate reduction (Taillefert et al., 2007b). 

Triplicate sediment cores were collected within 1 meter from each other at a  creek 

bank site (CB) (Figure 5.1) (Newton, 2006, Taillefert et al., 2007b) in both March and 

October, 2010 (Core-M and Core-O) using a home-made corer (50 cm long and 7.5 cm 

diameter) with a long handle to sample submerged sediments without disturbing the 

nearby sediment. The creek bank site (CB) is located in a perennial creek (2.5 m wide at 

high tide and 1.5 m deep) next to the main creek (Figure 5.1). All sediment cores were 

collected with a large volume of overlying salt mash water to avoid disturbing the 

sediment-water interface (SWI). Salinity and temperature of the overlying water captured 
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by the sediment corer were measured immediately after sampling. Vertical pore-water 

profiles of the main redox species involved in diagenesis (O2, Fe2+, Mn2+, ΣH2S, and 

other complexes) were obtained voltammetrically (Taillefert et al., 2000b). After 

profiling, the sediment cores were sectioned in slices of ~0.8-1 cm thickness in a N2 gas-

filled polypropylene glove bag (Aldrich), and pore waters of the different layers extracted 

by centrifugation and filtration (0.2 m filters, Puradisc, Whatman). The remaining 

sediment layers were stored at -20oC for further laboratory incubations. Extracted pore 

waters were analyzed for the nitrogen species (NH4
+, NO2

-, and NO3
-).  

5.2.2 Sediment slurry incubations 

As burial events of Mn oxides into sediments were proposed to trigger anaerobic 

oxidation of ammonium (Anschutz et al., 2000, Mortimer et al., 2004), sediments 

amended with Mn oxides were incubated in slurries in closed batch reactors (~ 30 ml) to 

promote Mn-mediated anaerobic nitrification (Hulth et al., 1999). Mn(IV) oxides and 

ammonium were amended to the original sediment in different combinations, including 

(1) unamended reactors with original sediment only (control), (2) reactors amended with 

NH4
+ only, (3) reactors amended with Mn oxides only, and (4) reactors amended with 

both NH4
+ and Mn oxides (Table 5.1). Each reactor contained approximately 8 g of wet 

homogenized sediment and 30 ml of artificial sea water (ASW) diluted with DI water to 

simulate the in situ salinity of 18. The ASW was composed of NaCl (0.43 M), Na2SO4 

(29 mM), KCl (11 mM), MgCl2·6H2O (55 mM), CaCl2·2H2O (11 mM), and NaHCO3 

(2.3 mM). Batch reactors were flushed with Ar gas after all amendments and sealed with 

rubber stopper and aluminum crimps (National Scientific. 20 mm). The slurry in each 
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sealed reactor was maintained well-mixed on a rotary shaker in the dark and at room 

temperature.  

According to previous studies, an initial ratio of NH4
+ : Mn(IV) of 2 - 4 was optimal 

to induce the apparent coupling between Mn(IV) and anaerobic ammonium oxidation 

(Newton, 2006). Both colloidal (smaller particle size, with particle diameters in the range 

of 89-193 nm (Perez-Benito et al., 1996)) and amorphous (larger particle size, c.a. 1 µm 

(Murray, 1974)) Mn oxides were utilized to investigate the effect of different types of Mn 

oxides on the nitrogen cycle under anaerobic conditions. As redox conditions may 

significantly affect Mn-mediated anaerobic nitrification, modifications in the composition 

of ASW (increase of nitrate or decrease of sulfate levels) were also considered to inhibit 

or delay the onset of sulfate reduction during the incubations (Javanaud et al., 2011, van 

de Vossenberg et al., 2008) or to maintain the redox potential relatively high during the 

incubations. Two independent sets of incubations with modified medium containing 

either higher nitrate (50 µM) or lower sulfate concentrations (1 mM) were conducted to 

investigate the effect of nitrate and sulfate on anaerobic ammonium oxidation. Each set of 

incubations were performed with both the modified medium and the original 50% ASW 

incubations. Both the modified an the 50% ASW incubations included four treatments, 

including an unamended control with sediment only (T1), a treatment amended with 

NH4
+ only (T2), a treatment amended with colloidal MnO2 only (T3), and a treatment 

amended with both colloidal MnO2 and NH4
+ (T4). In addition, the isotope pairing 

technique (Nielsen, 1992) with N-15 ammonium or nitrate was used to trace the 

formation of N2 under the form of 29N2 or 30N2 in some of the reactors. The evolution of 

Mn2+, NH4
+, NO3

-, NO2
-, pH, 29N2, 

30N2, and dissolved inorganic carbon (DIC) was 
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monitored as a function of time throughout the incubations. All treatments were 

replicated independently at least three times.  

Thermodynamic calculations were conducted to determine which reaction could be 

coupled to the anaerobic oxidation of ammonium in the conditions of the experiments 

(Table 5.2). According to these calculations, the anaerobic oxidation of NH4
+ is 

thermodynamically favorable with several alternative electron acceptors such as MnO2, 

FeOOH, or SO4
2- (Table 5.2). The oxidation of NH4

+ by MnO2 presented the most 

negative ΔGr values, compared to those with Fe(III) or sulfate as the electron acceptor. 
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Figure 5.1. (a) Map of Skidaway Island (blue box) in Savannah, Georgia. (b) Zoom-in 
view of Skidaway Island. (c) Zoom-in view of the salt marsh study area with locations 
of the sediment sampled in the current study (stars). The dark green regions indicate 
dense Spartina grass, the light green regions indicate low Spartina grass, and the yellow 
regions indicate areas without vegetation. CB represents the creek bank and MF 
represents the mud flat. All sediments used in the current study were sampled from the 
creek bank (CB), where metal reduction dominated anaerobic respiration processes. 
(Newton, 2006, Taillefert et al., 2007b). 

 
 
 

 111



Table 5.1. Different treatments conducted to investigate the MnO2-mediated anaerobic 
oxidation of ammonium, including (1) an unamended control containing sediments and 
50% of diluted ASW only; (2) a sediment amended with 800 µM NH4

+ only; (3) a 
sediment amended with approximately 300 µM of Mn(IV) oxides only; and (4) a 
sediment amended with both NH4

+ and Mn(IV) oxides. 

Treatments Control NH4
+ Mn(IV) oxides NH4

+ + Mn(IV) 

Sediments (~2.5 ml) + + + + 
50% ASW in DI water + + + + 

NH4
+ (800 µM) - + - + 

Mn(IV) oxides (300 µM) - - + + 
 

 

Table 5.2. Gibbs free energy of the reactions R (ΔGR; kJ mol-1) that could be involved in 
the current incubations. Organic material is for simplicity represented as carbohydrate, 
CH2O. Conditions used for calculations: [CO2] = 50 µM, [HCO3

-] = 1000 µM, pN2 = 
0.781 atm, [NH4

+] = 800 µM, [Mn2+] = 10 µM, [Fe2+] = 5 µM, [SO4
2-] = 15 mM, [H2S] = 

25 µM, [HS-] = 5 µM, [NO3
-] = 5 µM, [NO2

-] = 5 µM, and pH = 7. * ΔGR /e- refers to the 
Gibbs free energy per moles of electron transferred.  

Reactions ΔGR ΔGR /e- * 

5/4 CH2O + NO3
- + H+  5/4 CO2 + ½ N2 + 7/4 H2O -596 -119 

5/3 NH4
+ + NO3

-  4/3 N2 +3 H2O + 2/3 H+ -435 -87 

CH2O + 3 CO2 + H2O + 2 MnO2  2 Mn2+ + 4 HCO3
- -391 -98 

4 MnO2 + NH4
+ + 6 H+   4 Mn2+ + NO3

- + 5 H2O -206 -26 

3 MnO2 + NH4
+ + 4 H+   3 Mn2+ + NO2

- + 4 H2O -181 -30 

3/2 MnO2 + NH4
+ + 2 H+  3/2 Mn2+ +1/2 N2 + 3 H2O -241 -80 

NH4
+ + 6FeOOH + 10H+  NO2

- + 6Fe2+ + 10H2O -39.5 -6.6 

NH4
+ + 8FeOOH + 12H+  NO3

- + 8Fe2+ + 13H2O 68.5 8.6 

CH2O + ½ SO4
2-  ½ H2S + HCO3

- -121 -30 

4/3 NH4
+ + ½ SO4

2-  2/3 N2 + 2 H2O + 1/3 H+ +1/2 H2S -6.7 -1.7 
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5.2.3 Methods 

All glass and plastic wares were soaked in 10% nitric acid overnight and washed 

with sterile DI water prior to use. The glass batch reactors were autoclaved before 

incubations. All solutions were prepared with ACS or trace metal grade chemicals in 18 – 

Ohm de-ionized water (Barnstedt). Colloidal Mn oxides (diameter range of 89-193 nm) 

solutions were prepared by reducing KMnO4 with a stoichiometric amount of Na2S2O3 

(Perez-Benito et al., 1996, Perezbenito et al., 1987). Amorphous Mn oxides (particle 

diameter range of 0.2-1.0 µm) were generated by the oxidation of Mn2+ by permanganate 

(Murray, 1974). 

Salinity and temperature of the overlying water in each salt marsh sediment core 

were measured with a RHS-10ATC portable refractometer. Oxygen, soluble organic-

Fe(III) (Taillefert et al., 2000a), Fe2+, Mn2+, and ΣH2S (= H2S + HS- + S(0) + Sx
2-) 

(Brendel and Luther, 1995) were analyzed voltammetrically by a computer-operated 

DLK-100A or DLK-60 potentiostat (Analytical Instrument Systems, Inc.) using a three-

electrode system that included a Hg/Au microelectrode as working electrode, an Ag/AgCl 

reference electrode, and a Pt counter electrode. Linear sweep (for O2) and square wave 

(for soluble organic-Fe(III) complexes, Fe2+, Mn2+, and ΣH2S) voltammetry were used 

from -0.1 to -1.8 V at a rate of 200 mV/s with a conditioning step at -0.1 V for 10 sec 

before each scan. When soluble organic-Fe(III) complexes or dissolved sulfide signals 

were detected, an additional conditioning step was applied at -0.9 for 10 s to clean the 

electrode surface prior to the next measurement. Voltammograms were integrated using 

the semi-automatic integration program VOLTINT in Matlab (Bristow and Taillefert, 

2008).  A computer-operated DLK MAN-1 micromanipulator (AIS, Inc.) coupled to the 
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DLK-100 potentiostat was used to obtain depth profiles of these redox species in intact 

sediment cores. 

Nitrate concentrations in pore waters were analyzed by high pressure liquid 

chromatography (HPLC) with ultraviolet detection (Rozan and Luther, 2002). 

Measurements were conducted with a 10 µm Anion/R (150 × 4.6 mm) anion exchange 

column and an All-Guard Anion/R (7.5 × 4.6 mm) guard column (Altech) coupled to a 

DG50 pump (Dionex) and a dual λ Absorbance UV Detector (Waters 2487) at a 

wavelength of 220 nm. A sodium perchlorate solution (2.5 mM NaClO4, pH 10) pumped 

at a rate of 2 mL/min was used as the eluent. All slurry incubation samples were diluted 

in 1:5 proportions to reduce the interference of Cl- to the sensitivity of the detector. 

Concentrations of NH4
+ and NO2

- were determined by colorimetric analysis as described 

previously (Grasshoff et al., 1983, Weatherb Mw, 1967). Total dissolved inorganic 

carbon (DIC) was measured by a flow injection analysis system with conductivity 

detection (Hall and Aller, 1992) coupled to an AIS, Inc. LCC-100 integrator. 

Concentrations of 29N2 and 30N2 were obtained based on the excess atomic mass unit 

(AMU) of the 29 and 30 signal measured on a membrane inlet mass spectrometer (MIMS) 

(Kana et al., 1994, An et al., 2001). The concentration of gases in the standards diluted in 

ASW were calculated according to the solubility of the species under saturated conditions 

at certain salinity and temperature (Weiss, 1970). Two water baths open to the 

atmosphere at two different temperatures (21°C and 30°C) for calibration were used. 

Acid volatile sulfide (AVS) in the solid phase of the incubation slurries was extracted by 

3 M HCl under a N2 gas at room temperature using a distillation procedure with 

voltammetric detection (Henneke et al., 1991). 
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5.2.4 Estimates of NH4
+ production and consumption processes in the slurry 

incubations. 

To determine the proportion of NH4
+ consumption attributed to the Mn-catalyzed 

anaerobic oxidation of NH4
+ (Δ[NH4

+]an.-oxid.), a mass balance approach that accounts for 

the change of ammonium in solution during the incubations was used. Three major non-

redox sinks and sources of ammonium: (1) adsorption/desorption (Δ[NH4
+]adsorption, sink), 

(2) NH4
+ assimilation (Δ[NH4

+]assimilation, sink), and (3) ammonification 

(Δ[NH4
+]ammonification) were considered to balance the anaerobic oxidation of ammonium 

(Δ[NH4
+]an.-oxid.) (Eq. 5.1): 

Δ[NH4
+]solution = Δ[NH4

+]ammonification - Δ[NH4
+]adsorption - Δ[NH4

+]assimilation - Δ[NH4
+]an.-oxid                           

                                                                                                                           (Eq. 5.1) 

(1) Adsorption/desorption (exchange between solid/soluble phase) 

Reversible adsorption on sediment solids is one of the most important processes 

that affect the distribution of dissolved ammonium in marine sediments. The Freundlich 

Asorption Isotherm reproduces this process efficiently (Eq. 5.2) (Mackin and Aller, 1984) 

Ѓ = KF * C1/n     (n ≥ 1)                                                                                 (Eq. 5.2) 

where KF is the adsorption constant (unitless); Ѓ is the concentration of adsorbed NH4
+ 

ions (mol/L); and C is the concentration of NH4
+ in solution (mol/L).  

As NH4
+ is a minor cation in marine sediments, its ion-exchange behavior can be 

simplified to a linear adsorption isotherm, in which n ≈ 1 (Mackin and Aller, 1984). The 

adsorption equation is then written as: 

 Ѓ = KF * C                                                                                                   (Eq. 5.3) 
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In the current incubations, the concentration of DIC measured (as a proxy of 

respiration activity) remained constant during the initial 5 days in the control treatment 

(T1, natural sediment only) and the treatment amended with ammonium only (800 µM) 

(T2) (Fig. 5.3). Therefore, the activity of assimilation and ammonification are negligible 

in these two treatments (T1 and T2) and the distribution of ammonium was assumed to be 

dominated by adsorption/desorption processes in these two treatments. The adsorption 

equilibrium constant (KF) was calculated from the slope of the adsorption density as a 

function of the concentration in solution.  

The concentration of total NH4
+ (Ctotal) is equal to the sum of NH4

+ in the solid 

phase (Ѓ) and in solution (C) (Eq. 5.4).  

Ctotal = Ѓ + C = KF * C + C                                                                         (Eq. 5.4) 

Therefore, total NH4
+ (Ctotal) in treatment T1 and T2 can be written as, 

Ctotal-T1 = ЃT1 + CT1 = KF * CT1 + CT1                                                          (Eq. 5.5) 

Ctotal-T2 = ЃT2 + CT2 = KF * CT2 + CT2                                                          (Eq. 5.6) 

As additional 800 µmol/L of NH4
+ was added into T2 (Table 5.1),  

Ctotal-T2 = Ctotal-T1 + 800 (µmol / L)                                                               (Eq. 5.7)  

Therefore, KF can be solved by combining Eq. 5.5-5.7, 

KF = (800+CT1-CT2)/(CT2-CT1)                                                                     (Eq. 5.8)  

Using this approach, a KF value of 0.27 ± 0.08 was determined, which was 

consistent with previous studies (Mackin and Aller, 1984).  The consumption of NH4
+ via 

adsorption was correlated to the change of soluble NH4
+ measured in solution (Eq. 5.9), 

and this equation was used to estimate the change in NH4
+ concentration due to the 
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adsorption onto the sediment in the other incubations (T3 – T6), as the same sediment 

was used in each treatment. 

Δ[NH4
+]adsorption (Δ Ѓ) = Δ[NH4

+] solution*KF                                                 (Eq. 5.9) 

(2) Ammonification (R-NH2  NH4
+) 

During respiration, organic carbon is oxidized to produce inorganic carbonate 

species, ammonium, and orthophosphates according to Eq.5.10. 

(CH2O)a(NH3)b(H3PO4)c a HCO3
- + b NH4

+ +c HPO4
2-                                    (Eq. 5.10) 

Therefore, rates of ammonification depend on rates of DIC production and the 

C:N ratio of organic matter (a:b coefficients in Eq. 5.10). In this study, the production of 

NH4
+ via ammonification (Eq. 5.11) was calculated based on the production of DIC 

measured (ΔDIC) and a C/N ratio (R) of 12.4 ± 0.04 reported for the creek banks of 

SERF (Gribsholt et al., 2003).  

Δ[NH4
+]ammonification = ΔDIC/R                                                                   (Eq. 5.11) 

 (3) NH4
+ assimilation 

Assimilation of NH4
+ by microorganisms during growth is another non-redox 

process of ammonium consumption, and rates of NH4
+ assimilation depend on the C/N 

ratio in the biomass synthesized and the yield coefficient (YXD) during respiration (Fdz-

Polanco et al., 2001). The yield coefficient (YXD) represents the number of moles of 

carbon assimilated into biomass per mole of carbon oxidized during respiration (i.e. 

ΔDIC) (Pavlostathis and Giraldogomez, 1991, Heijnen and Vandijken, 1992). Therefore, 

the amount of carbon assimilated into biomass (Δ[Carbon]assimilation) can be calculated as 

(Eq. 5.12).  

Δ[Carbon]assimilation = ΔDIC*YXD                                                            (Eq. 5.12). 
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In general, the C/N ratio in biomass is considered to be 5 according to an average 

biomass composition of C5H7O2N (Madigan et al., 2003). Therefore, the concentration of 

NH4
+ assimilated by microorganisms can be calculated as,  

Δ[NH4
+]assimilation = ΔDIC*YXD/5                                                             (Eq. 5.13)  

Thus, the fraction of ammonium consumed via anaerobic oxidation (Δ[NH4
+]an.-

oxid., Eq. 5.1) can be explicitly written by the difference between the change in ammonium 

concentration in solution and the three major non-redox sinks/sources of ammonium, 

according to Eq.5.9, Eq. 5.11, and Eq. 5.13.  (Eq. 5.14): 

 

Δ[NH4
+] an.-oxid. = ΔDIC/R - Δ[NH4

+] solution*KF - ΔDIC*YXD/5 - Δ[NH4
+] solution   (Eq. 5.14) 

 

where Δ[NH4
+] solution and ΔDIC are the change of soluble NH4

+ and DIC measured 

during the incubations (µmol/L), KF is the adsorption equilibrium constant of NH4
+ onto 

the sediment calculated from control experiments, 0.27 ± 0.08, R is the C/N ratio of 

natural organic matter measured at the site, 12.4 ± 0.04 (Gribsholt et al., 2003), and YXD 

(mol C biomass/mol C respired) is the yield coefficient of NH4
+ assimilation by microbial 

communities. 

The yield coefficient is the only constant from Eq. 5.14 that is not well 

characterized, as it may vary significantly depending on different carbon sources 

(Heijnen and Vandijken, 1992) and different respiration processes (sulfate reduction, 

Mn(IV) reduction, or aerobic respiration) (Lensing et al., 1994, Pradeep and Jinno, 2010). 

In the current incubations, the composition of organic carbon was likely to be similar in 

the different treatments, as the same homogenized sediment was used in all experiments, 
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suggesting that YXD could only vary if changes in respiration process occurred. The six 

incubations were then divided into three sets according to the composition of the main 

terminal electron accepting processes involved: (1) unamended with MnO2 (T1 and T2), 

(2) amended with colloidal MnO2 (T3 and T4), and (3) amended with amorphous MnO2 

(T5 or T6) (Table 5.1), and YXD was assumed to be the same for each set. Apparent 

values of YXD (YXD-0 for T1 and T2, YXD-c for T3 and T4, and YXD-a for T5 and T6) were 

obtained by assuming that the consumption of NH4
+ via anaerobic oxidation was 

negligible in the treatments without NH4
+ amendment (Δ[NH4

+]an-oxid. = 0 in T1, T3, and 

T5). These YXD values (YXD-0, YXD-c, and YXD-a), calculated from T1, T3, and T5 

according to Eq. 5.14, were then applied correspondingly to the treatments amended with 

NH4
+ (T2, T4, and T6) to calculate the amount of NH4

+ consumed via anaerobic 

oxidation (Table 5.5). 
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5.3 Results 

5.3.1 Pore water profiles 

Pore water profiles sampled in the Spring (Core M) and Fall (Core O) of 2010 

generally displayed similar geochemical characteristics over the top 15 cm of sediment 

(Figure 5.2-a and b). The Depths of oxygen penetration into the sediment reached 3 mm 

in both sediment cores. After the disappearance of O2, soluble Mn2+ and Fe2+ were 

generated in sequence, which was consistent with the predictions based on the free 

energy yields of oxidation of natural organic matter by different terminal electron 

acceptors (Froelich et al., 1979) (Figure 5.2). In both sediment cores, Mn2+ was found 

well below the maximum depth of O2 penetration. Concentrations of Mn2+ reached a 

maximum of ca. 300 µM around 20 to 30 mm depth and decreased in the deeper layers, 

suggesting the dominance of Mn(IV) reduction in the 10 to 40 mm depth interval. The 

onset of iron reduction, measured by the production of Fe2+ in the pore waters, was 

always below the zone of Mn2+ production and the concentration of Fe2+ was much less 

in Core O than Core M sediments (Figure 5.2). Voltammetric signals for soluble organic-

Fe(III) complexes coincided with the production of Fe2+ in the deep layers of both 

sediment cores, and the intensities of the signals reflected the concentrations of Fe2+ 

produced at each season (Figure 5.2-a and b). These organic-Fe(III) complexes may be 

produced as intermediates during microbial Fe(III) reduction (Jones et al., 2010), and the 

two profiles suggested that microbial iron reduction was much more intense in the fall 

season (Core O). According to thermodynamic considerations (Froelich et al., 1979), 

dissolved sulfides should be produced below the zone of microbial iron reduction. 

Concentrations of dissolved sulfides and their oxidized intermediates, however, were 
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below minimum detection limit in the top 100 mm of both sediment cores (Figure 5.2-a 

and b).  

NH4
+ concentrations in the pore waters of both cores increased from 5 M at the 

sediment water interface (SWI) to a maximum of ca. 100 µM at a depth of 50 mm below 

the SWI, and stabilized around this value in the deeper zone (Figure 5.2). Concentrations 

of nitrite and nitrate were maintained at around 10 and 25 µM throughout both sediment 

cores (Figure 5.2) and comparable with those found in other sediments (Mortimer et al., 

2004, Luther et al., 1997). Interestingly, two small subsurface peaks of nitrate (as 

indicated by the arrows) were found around 20-40 mm and 80-100 mm depth in both 

cores (Figure 5.2-a and b), with a more dramatic change in concentration in Core O, 

suggesting the possibility of anaerobic nitrification in these sediments.  
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Figure 5.2. Pore water geochemistry of two sediment cores sampled from the tidal creek 
bank (CB) of SERF in the Skidaway salt marsh in March 2010 (Core M) (a) and October 
2010 (Core O) (b). Concentrations of O2(aq), Mn2+, and Fe2+, as well as the current 
intensities of soluble organic-Fe(III) complexes were determined by ex situ voltammetry 
with Au/Hg microelectrodes. Concentrations of NO2

-, NO3
-, and NH4

+ were determined in 
extracted pore waters using conventional techniques. No significant sulfide species were 
detected in the top 14 cm layer of the sediment cores. Arrows showed the peaks of nitrate 
below the oxygen penetration zone. 

 122



5.3.2 Batch sediment incubations amended with colloidal or amorphous Mn oxides 

 

0

100

200

300

400

0

200

400

600

0

10

20

30

40

0

10

20

0 4 8 12 16 20
0

300

600

900

1200

0

2000

4000

6000

8000

0.00

0.04

0.08

0 4 8 12 16 20
0.00

0.02

0.04

 

 

F
e2+

 -
 [
M

]

   (T1)  Control     (T3) MnIV colloidal     (T5) MnIV amorphous     (T2) NH4+      (T4) MnIV (c) +NH4+    (T6) MnIV(a) + NH4+

 

 

M
n

(I
I)

 -
 [
M

]

(a)

 

N
O

3

-  -
 [
M

]

 

N
O

2

-  -
 [
M

]

 Time days

(f)

(e)

(d)

(c)

 

 

N
H

4

+
 -

 [
M

]

(b)

 

 

D
IC

 -
 [
M

]

(g)

 

 

2
9
N

2
 -

 [
M

]

(h)

 

30
N

2 
- 

[
M

]

Time days  

Figure 5.3. Evolution of (a) Mn2+, (b) Fe2+, (c) dissolved inorganic carbon (DIC), (d) 
NH4

+, (e) NO3
-, (f) NO2

-, (g) 29N2, and (h) 30N2 in solution as a function of time in 
anaerobic slurry incubations conducted without any amendment (T1, control, open circles) 
or in the presence of  800 µM 15NH4

+ (T2, solid circles), 300 µM colloidal MnO2 (T3, 
open blue upward triangles), 800 µM 15NH4

+ and 300 µM colloidal MnO2 (T4, solid blue 
upward triangles), 400 µM amorphous MnO2 (T5, open red downward triangles), and 
800 µM 15NH4

+ and 400 µM amorphous MnO2 (T6, solid red downward triangles). The 
error bars represent the standard deviations of duplicate incubations. 

 

 The sediment layers between 20 and 40 mm depth of each sediment core were 

incubated under anaerobic conditions in diluted artificial sea water to reflect the salinity 

of the marsh pore waters. The pH was generally maintained around 7.5 but slightly 
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increased (approximately 0.1-0.2 pH unit) during the later part of the incubations 

(Supplementary Figure C.1) due to the consumption of protons and production of DIC 

during respiration in the treatment amended with Mn oxides. Respiration activities were 

evidenced by the simultaneous production of Mn(II), Fe(II), and DIC and the 

consumption of DOC in solution (Figure 5.3-a,b,c and Table 5.3). Reduction of MnO2 

was completed within the first 10 days (Figure 5.3-a), and production rates of Mn(II) in 

incubations amended with either colloidal or amorphous MnO2 (T3 and T6) were 

significantly higher than in the control treatments without MnO2 (T1 and T2) (Table 5.3). 

Simultaneously, production rates of DIC were also higher in the MnO2 treatments (T3 

and T6) than in the controls (T1 and T2) (Table 5.3 and Figure 5.3-c), suggesting a link 

between Mn(IV) reduction and DIC production. Interestingly, higher rates of Mn(II) 

production were observed in incubations amended with both colloidal MnO2 and NH4
+ 

(T4) compared to the incubations with colloidal MnO2 only (T3). In contrast, similar 

Mn(II) production rates were obtained in the amorphous MnO2 incubations either 

amended or not with NH4
+ (T5 and T6) (Table 5.3). Mn(II) production rates were 

approximately 50% higher in the amorphous MnO2 treatments (T5 and T6) than the 

colloidal treatments (T3 and T4). In turn, carbon mineralization, evidenced by DIC 

production and DOC consumption, was generally slower in the treatments amended with 

amorphous MnO2 (T5 and T6) than the treatments amended with colloidal MnO2 (T3 and 

T4) (Table 5.3). Rates of DIC production were higher in the incubations amended with 

both NH4
+ and MnO2 (T4 and T6), compared to those treatments amended with MnO2 

only (T3 and T5) (Table 5.3), indicating that respiration is increased by external addition 

of NH4
+. Due to the high content of solid Fe(III) oxides of the sediments at this site 

 124



(Taillefert et al., 2007b), reduction of Fe(III) oxides was also observed during the first 10 

days of the incubations (Figure 5.3-b). The rates of Fe2+ production were similar among 

all treatments, except for the slightly lower rates in the amorphous MnO2 treatments (T5 

and T6) (Table 5.3), which may be due to the adsorption of Fe(II) to solid MnO2 (Tebo et 

al., 2004).  

 

Table 5.3. Net rates (µM day-1) of change in dissolved concentration of Mn2+, NH4
+, NO3

-, 
and inorganic (DIC) and organic (DOC) carbon during the first 10 days of the anaerobic 
slurry incubations conducted with colloidal (T3 and T4) and amorphous (T5 and T6) 
MnO2 in the presence (T4 and T6) or absence (T3 and T5) of NH4

+ compared to their 
respective unamended controls (T1 and T2). 

Treatments Mn2+ Fe2+ NH4
+ NO3

- DIC DOC 
(T1) Control 2.4 ± 1.5 10 ± 1.7 25 ± 4.2 -0.14 ± 0.16 41 ± 5 -8.9 ± 2.3
(T2) NH4

+ 1.5 ± 0.7 13 ± 1.2 22 ± 0.7 -0.23 ± 0.11 109 ± 18 -6.5 ± 1.6
(T3) MnO2 colloidal 18 ± 1.0 15 ± 0.7 -2.0 ± 0.8 0.17 ± 0.03 198 ± 70 -43 ± 12 
(T4) NH4

+ + MnO2 (c) 26 ± 1.3 12 ± 3.7 -31 ± 2.1 4.6 ± 0.52 279 ± 34 -41 ± 11 
(T5) MnO2 amorphous 43 ± 1.7 9.8 ± 0.5 23 ± 5.0 -0.01 ± 0.06 115 ± 11 -17 ± 8.9 
(T6) NH4

+ + MnO2 (a) 44 ± 4.5 9.4 ± 0.1 20 ± 1.6 0.03 ± 0.10 205 ± 44 -18 ± 9.8 

 

Net production of NH4
+ was observed in all the incubations except the ones 

amended with colloidal MnO2 (T3 and T4) (Figure 5.3-d and Table 5.3). Production of 

NH4
+ was also observed in previous incubations of anaerobic NH4

+ oxidation and was 

attributed to carbon mineralization (Dalsgaard and Thamdrup, 2002, Bartlett et al., 2008), 

suggesting that similar processes may be responsible for the production of NH4
+ in these 

incubations (T1, T2, T5, and T6). In contrast, the consumption rate of NH4
+ in the 

colloidal MnO2 treatments (T3 and T4) during the first 10 days was approximately 15 

fold higher in the presence of NH4
+ (T4) than that without NH4

+ (T3) (Table 5.3). In the 

later period of the incubations (after 10 days), however, concentrations of NH4
+ 

recovered in both T3 and T4 and the production rate of NH4
+ was higher in T4 than T3 
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(Figure 5.3-d). Simultaneously, the production of nitrate and nitrite were significantly 

higher in the incubations amended with colloidal MnO2 and NH4
+ (T4) than those in the 

controls without either colloidal MnO2 or NH4
+ or both (T1, T2, and T3) (Figure 5.3 e 

and f). A maximum of 30 µM nitrate was detected during the first 5 days of the 

incubations in T4, followed by a slight decrease and subsequent rebound after 12 days 

(Figure 5.3-e), and the production rate of nitrate during the first 10 days was higher in the 

colloidal (T3 and T4) than the amorphous (T5 and T6) treatments (Table 5.3). The 

temporal evolution of nitrite mirrored that of nitrate in the same incubation (T4) (Figure 

5.3 e and f). Nitrite was produced around 5 days, though with a maximum of 5 µM only, 

and consumed in the latter part of the incubations (Figure 5.3-f). Production of nitrite, but 

not nitrate, was also detected in the incubations amended with both amorphous MnO2 and 

NH4
+ (T6), compared to its corresponding controls (T1, T2, and T5), albeit after a longer 

phase lag than for the colloidal MnO2 incubations. As N2 is also proposed as an 

alternative product of Mn(IV)-catalyzed anaerobic NH4
+ oxidation (Luther et al., 1997), 

production of 29N2 and 30N2 due to the oxidation of 15NH4
+ was also measured in all the 

treatments (Figure 5.3-f and g). Although slightly higher concentrations of 29N2 and 30N2 

were detected in the treatment amended with both colloidal MnO2 and NH4
+ (T4), 

compared to other treatments, concentrations of 29N2 and 30N2 in the incubations were 

generally maintained at background levels (less than 0.1 µM) (Figure 5.3). 

Production of DIC increased dramatically after 10 days (Figure 5.3-c), which may 

be due to sulfate reduction observed in the later period of the incubations. Significant 

decrease of soluble Fe2+ (Figure 5.3-b) was accompanied by the formation of black 

precipitates after 10 days in both treatments amended with colloidal MnO2 (T3 and T4) 
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(Figure 5.4), suggesting that FeS precipitated during the incubations despite the fact that 

dissolved sulfide was not detected in these incubations (not shown). Acid volatile sulfide 

(AVS) extraction of the solid phase detected 3.0 ± 0.1 mmol sulfide /L in these two 

treatments (T3 and T4) at the end of the incubations, while less than 0.1 mmol sulfide /L 

was extracted from the other treatments. These results confirmed the production of 

sulfide via sulfate reduction and suggested a significant change of electron accepting 

processes at around 10 days. This transition at around 10 days may also be observed from 

the temporal evolution patterns of Mn and N species in the colloidal treatments (T3 and 

T4) (Figure 5.3).  

 

 
 

Figure 5.4. Formation of black precipitates in the colloidal treatments (red arrows) after 
10 days of incubation compared to the amorphous treatments. 

 

To determine whether amorphous MnO2 is able to catalyze anaerobic nitrification 

over longer periods of time, the amorphous MnO2 incubations (T5 and T6) along with 

their control treatments (T1 and T2) were incubated up to 100 days with periodic 
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replenishment of each reactant (NH4
+, amorphous MnO2, or both) (Figure 5.5). The 

evolutions of all species (DIC, Mn2+, NH4
+, NO2

-) during these extended incubations, 

however, yielded similar patterns as observed in the 18 day long incubations and showed 

insignificant levels of anaerobic nitrification (T5 and T6 in Figure 5.3). Concentrations of 

NH4
+ generally remained slightly higher in the incubations amended with amorphous 

MnO2 (T5 and T6) compared to their corresponding controls (T1 and T2) (Figure 5.5-a). 

Simultaneously, the reduction of amorphous MnO2 and the production of DIC were 

continuously observed after each replenishment in T5 and T6 (Figure 5.5-b and d), while 

the production of nitrite was maintained at low levels (< 2 µM) except for a couple of 

time points after each replenishment (Figure 5.5-c). Nitrite production was slightly higher 

in T6 than other treatments during the first 50 days; however, this difference diminished 

after the second replenishment at around 50 days (Figure 5.5-c). Finally, nitrate 

concentrations were close to the detection limit in all the treatments (T1, T2, T5, and T6) 

(data not shown), as already demonstrated during the 18-day incubations.  
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Figure 5.5. Evolution of (a) Mn2+, (b) NH4
+, (c) NO2

-, and (d) dissolved inorganic carbon 
(DIC) as a function of time in extended anaerobic slurry incubations conducted without 
any amendment (T1, control, open circles) or in the presence of 800 µM NH4

+ (T2, solid 
circles), 300 µM amorphous MnO2 (T5, open red downward triangles), and 800 µM 
NH4

+ and 300 µM amorphous MnO2 (T6, solid red downward triangles). Black arrows 
indicate the days (14, 51, and 75) at which each treatment was replenished with their 
corresponding reactants. The error bars represent the standard deviations of duplicate 
incubations. 
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5.3.3 Batch incubations under different initial conditions of sulfate and nitrate 

The effect of nitrate and sulfate on Mn-mediated anaerobic nitrification was 

investigated by two independent sets of incubations, including (1) incubations amended 

with excess nitrate (50 M) and the control incubations without nitrate (Figure 5.6) and 

(2) incubations depleted in sulfate (1 mM compared to 15 mM) as well as their original 

control incubations (15 mM sulfate) (Figure 5.7). In these control incubations, the 

consumption of NH4
+, accompanied by an increase in Mn(II) and nitrate concentrations, 

was only observed in the incubations amended with colloidal MnO2 and NH4
+ (T4) 

(Figure 5.6-(a0 and d0) and Figure 5.7-(a0 and d0)). In the incubations with low sulfate 

concentrations (1 mM), the concentrations of Mn(II) and NH4
+ in all the different 

treatments (i.e. unamended control (T1), NH4
+-only (T2), MnO2(c)-only (T3), and NH4

+ 

and MnO2(c) (T4)) were similar to those of the original incubations conducted in the 

presence of 15 mM of sulfate (Figure 5.6-a and b), but concentrations of nitrate increased 

in the treatment amended with both NH4
+ and MnO2(c) (T4) compared to their respective 

controls (T1, T2, and T3) (Figure 5.6-d). In addition, concentrations of DIC and nitrite 

were generally lower in all low-sulfate incubations than their respective treatments in the 

high-sulfate incubations (original control) (Figure 5.6-c and e). In the incubations 

amended with 50 µM nitrate, the concentrations of nitrite and DIC in all treatments (T1 – 

T4) were similar to their respective treatments conducted in the original incubations 

without initial nitrate amendment (Figure 5.7-c and e). At the end of these nitrate-

amended incubations, however, concentrations of Mn(II) were higher and NH4
+ 

concentrations lower in the treatments amended with both NH4
+ and MnO2(c) (T4), 

compared to the nitrate-unamended incubations (Figure 5.7-a and b). In addition, while 
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the initial concentrations of nitrate were much higher in the nitrate-amended incubations, 

the least decrease in nitrate during these 10-day long incubations was detected in the 

presence of NH4
+ and MnO2(c) (T4) (Figure 5.7-d).  
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Figure 5.6. Concentrations of dissolved Mn2+, NH4
+, NO3

-, NO2
-, and inorganic carbon 

(DIC) initially (open columns) and after 10 days (closed columns) in anaerobic slurry 
incubations conducted in high (original sulfate level, 15mM, left column, (a0) – (e0)) and 
low (modified sulfate level, 1mM, right column, (a) – (e)) sulfate concentrations. The x-
axis represents different treatments, including the no amendment control (T1) and the 
treatments amended with 600 µM NH4

+ (T2), 200 µM colloidal MnO2 (T3), and 600 µM 
NH4

+ and 200 µM colloidal MnO2 (T4). The error bars represent the standard deviations 
of duplicate incubations. 
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The changes in concentration (ΔC) of each species in the different treatments were 

obtained from the difference in concentrations between the end (10 days) and the 

beginning (0 day) of the incubations. Considering the high background noise in the slurry 

incubations, a differentiated change ([ΔC]D) for the colloidal MnO2 incubations (T3 and 

T4) was calculated by subtracting the change in concentration of each species in their 

corresponding controls (T1 or T2) from their change in the amended incubations (T3 or 
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Figure 5.7. Concentrations of dissolved Mn2+, NH4
+, NO3

-, NO2
-, and inorganic carbon 

(DIC) initially (open columns) and after 10 days (closed columns) in anaerobic slurry 
incubations conducted in without (original, left column, (a0) – (e0)) and with (modified, 
right column, (a) – (e)) 50 µM of initial nitrate addition. The x-axis represents different 
treatments, including the no amendment control (T1) and the treatments amended with 
600 µM NH4

+ (T2), 200 µM colloidal MnO2 (T3), and 600 µM NH4
+ and 200 µM 

colloidal MnO2 (T4). The error bars represent the standard deviations of duplicate 
incubations. 
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T4). (Eq. 5.15 and 5.16). The differentiated change of each species, representing the 

production or consumption caused by the amendment of colloidal MnO2 in the presence 

(T4) or without NH4
+ (T3), was then used to evaluate the effect of the two modifications 

of the medium (i.e. decrease in sulfate and increase in nitrate) on the Mn-mediated 

anaerobic nitrification (Figure 5.8).  

[ΔCT3]D = ΔCT3 – ΔC T1                                                                             (Eq. 5.15) 

[ΔCT4]D = ΔCT4 – ΔC T2                                                                             (Eq. 5.16) 

While the production of Mn(II) and nitrite and the consumption of NH4
+ in the 

treatment amended with colloidal MnO2 only (T3) and both MnO2(c) and NH4
+ (T4) were 

similar between the original (15 mM) and low-sulfate (1 mM) incubations, the production 

of DIC in these two colloidal treatments (T3 and T4) decreased approximately 33% (T3) 

and 8% (T4) in the low sulfate incubations (Figure 5.8-a and b), likely due to the 

inhibition of sulfate reduction. More importantly, a slight increase in the nitrate 

production was observed in the low-sulfate incubations amended with MnO2(c) only (T3) 

compared to the high sulfate incubations (Figure 5.8-a), and this increase was much more 

pronounced in the presence of both colloidal MnO2 and NH4
+ (T4) (Figure 5.8-b). 

When nitrate was initially added to the incubations, the changes in the production or 

consumption of each species in the incubations amended with colloidal MnO2 only (T3) 

were trivial (Figure 5.8-c). In contrast, the effect of nitrate addition on the incubations 

amended with both colloidal MnO2 and NH4
+ (T4) was more pronounced (Figure 5.8-d). 

The production of Mn(II) and the consumption of NH4
+ were significantly increased 

when the incubations were spiked with 50 M nitrate initially, while the production of 

DIC was much less significant (Figure 5.8-d). More importantly, the initial addition of 
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small concentrations of nitrate also enhanced the final production of nitrate in the 

incubations amended with colloidal MnO2 and NH4
+ (T4) (Figure 5.8-d). 
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Figure 5.8. Differentiated changes (production or consumption) ([ΔC]D) of Mn2+ (left 
y-axis), NH4

+ (left y-axis), NO3
- (right y-axis), NO2

- (right y-axis), and dissolved 
inorganic carbon (DIC) (right y-axis) during two separate sets of independent 
incubations modified or not with (1) less sulfate (a and b) and (2) more nitrate (c and d) 
in the incubation medium. (a) and (c) showed [ΔC]D of each species in both the 
original and modified incubations amended with colloidal MnO2 (T3). (b) and (d) 
showed [ΔC]D of each species in both the original and modified incubations amended 
with colloidal MnO2 and NH4

+ (T4). The calculation of [ΔC]D was shown in the text. 
The error bars represent the standard deviations of duplicate incubations and the 
calculations. 
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5.3.4 Batch incubations amended with 15NO3
- only 
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Figure 5.9. Production (ΔC) of Mn2+, NH4
+, Fe2+ (a, left y-axis), NO2

- (a, right y-axis), 
and 29N2 and 30N2 (b) during separate sets of independent incubations amended with 
increasing initial concentrations of 15NO3

-. ΔC represents the change in each species 
between the beginning and end of these 20-day incubations. The error bars include error 
propagation of the different incubations conducted in duplicate. 

Different levels of nitrate (but no MnO2, nor NH4
+) were initially amended in 

independent incubations to determine whether denitrification plays an important role in 

these sediments (Figure 5.9). At the end of these 20-day long incubations, the 

consumption of nitrate was complete in all incubations, regardless of the initial 

concentration of nitrate (0, 100, 500, or 1000 µM). Simultaneously, the production of 

NH4
+ was significantly enhanced as nitrate levels were increased in the different 

treatments, while the production of Fe(II) and Mn(II) remained similar and the 
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concentration of nitrite was maintained at low levels (< 0.5 µM) (Figure 5.9-a). As 15NO3
- 

was amended into the current incubations, 29N2 and 30N2 were produced as a result of 

anammox and denitrification (Thamdrup et al., 2006) (Figure 5.9-b). The production of 

29N2 was much less than that of 30N2, suggesting denitrification but not anammox as the 

main N2 formation pathway in these incubations. The differentiated change ([ΔC]D), or 

the control-subtracted change of each species in the nitrate amended incubations, was 

also used to evaluate the effect of nitrate addition on nitrate reduction and denitrification 

(Table 5.4). Only 10-25% of total 15NO3
- was converted to 30N2, which represented the 

denitrification activity in the current incubations (Table 5.4). In turn, the differentiated 

production of NH4
+ was positively correlated to the initial concentration of nitrate in each 

treatment (Table 5.4), which implied the possibility of ammonium production via 

dissimilatory nitrate reduction to ammonium (DNRA) in these incubations (An and 

Gardner, 2002). DNRA may account for as much as 80% of nitrate consumption in the 

treatment amended with 100 µM of 15NO3
- (Table 5.4). These results suggested that 

DNRA may be more significant than denitrification in the current sediment incubations, 

especially in low initial nitrate conditions (100 µM).   

Table 5.4. Differentiated change ([ΔC]D, µM) of 29N2, 
30N2, and NH4

+ in the incubations 
amended with different levels of 15NO3

- (100, 500, or 1000 µM). The differentiated 
change (([ΔC]D) was obtained by subtracting the change in the control without nitrate 
from the change in each of the 15NO3

- amended incubations. Error bars represent the error 
propagation from duplicate incubations.  

15NO3
- amended  
(µM) 

([ΔC]D) - 29N2  
( µM) 

([ΔC]D) - 30N2 
( µM) 

([ΔC]D) - NH4
+  

( µM) 
100 0.3 ± 0.01 5.3 ± 0.2 78 ± 28 
500 1.5 ± 0.3 48 ± 4 195 ± 14 

1000 2.7 ± 0.1 135 ± 9 234 ± 32 
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5.4 Discussion 

The anaerobic oxidation of ammonium coupled to MnO2 reduction has been 

proposed more than a decade ago (Hulth et al., 1999, Mortimer et al., 2004, Bartlett et al., 

2008, Javanaud et al., 2011, Luther et al., 1997), yet direct evidence of this process from 

both field and laboratory studies is still lacking (Thamdrup and Dalsgaard, 2000, Bartlett 

et al., 2007). To investigate the effect of Mn(IV) oxides on the redox cycle of nitrogen, 

laboratory incubations were conducted with sediments selected for their ability to reduce 

manganese oxides and produce nitrite and nitrate well below the oxygen penetration 

depth. Factors that may affect the interaction between Mn and N species were also 

considered to investigate the existence of anaerobic nitrification by MnO2 in marine 

sediments.  

5.4.1 Evidence for Mn-mediated anaerobic nitrification 

Production of nitrite and nitrate via aerobic nitrification was likely negligible in 

the current incubations, considering the following: (1) all the incubations were conducted 

in sealed serum bottles initially purged with Ar gas and stored under a N2:H2:CO2 

atmosphere, (2) concentrations of dissolved O2 were consistently below the detection 

limit of electrochemical measurements (~ 4 µM) (Taillefert et al., 2007b) and such levels 

of dissolved oxygen should not produce more than 2.5 µM nitrite or nitrate according to 

the stoichiometry of aerobic nitrification, and (3) soluble Fe2+, the most reactive reductant 

of dissolved oxygen, was present in significant concentrations (> 100 µM) during the 

incubations (Figure 5.3 - b). Therefore, the increase in nitrite or nitrate concentrations in 

the current incubations can be attributed to anaerobic production of nitrite or nitrate.  
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Evidence of anaerobic nitrification was observed in the incubations amended with 

colloidal MnO2 (Figure 5.3 and Figure 5.10). The significant production of Mn2+, NO2
-, 

and NO3
- and the removal of NH4

+ over the first 10 days (Figure 5.3) suggest that 

anaerobic nitrification occurs in the first part of the incubations amended with colloidal 

MnO2 and NH4
+ (T4). The production of FeS(s) at the end of incubations, along with the 

large increase in dissolved inorganic carbon suggest that the dominant electron accepting 

processes may shift from Mn(IV) reduction to sulfate reduction after 10 days. Therefore, 

the results of the current slurry incubations appear to represent two distinct biological 

processes, and only the first 10 days were considered to investigate the effect of Mn 

oxides on the cycle of nitrogen species (Figure 5.10-a and b). The differentiated change 

([ΔC]D, net production or consumption) of each species during the incubations was used 

to compare the effect of the different MnO2 treatments (T3, T4, T5, and T6) (Figure 5.10). 

During the first 10 days of the incubations, addition of colloidal MnO2 resulted in 

significant consumption of NH4
+ and production of nitrate (Figure 5.10-a), indicating that 

anaerobic nitrification is catalyzed by addition of colloidal MnO2. Incubations amended 

with colloidal MnO2 and high initial concentration of NH4
+ (T4) displayed more NH4

+ 

consumption, more production of nitrate and Mn(II), but similar DIC production, 

compared to the incubations amended with colloidal MnO2 only (T3, Figure 5.10-a). A 

previous study, that investigated the effect of the initial ratio of NH4
+ and MnO2 on the 

correlation of MnO2 reduction and NH4
+ consumption proposed that a N:Mn ratio 

between 2 and 10 was optimal to promote anaerobic nitrification (Newton, 2006). Thus, 

the enhanced formation of nitrate and the higher consumption of NH4
+ when ammonium 

was added to the incubations (T4 compared to T3) may be due to the different initial 
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N:Mn ratio in these two treatments. Although production of Mn(II) was higher in the 

sediment amended with amorphous MnO2 (T5 and T6) than colloidal MnO2 (T3 and T4) 

irrespective of the presence or absence of NH4
+, the consumption of NH4

+ and production 

of nitrate were much lower in the presence of amorphous MnO2 (T6, Figure 5.10-a). In 

addition, 274 ± 11 µM of Mn(II) was produced in treatment amended with colloidal 

MnO2 and ammonium (T4), which should have accounted for approximately 60 µM of 

nitrate production if Mn(IV) reduction was entirely linked to anaerobic nitrification. As 

only 10 µM of nitrate was produced in these incubations (Figure 5.10-a) and the initial 

rates of Mn(II) and nitrate production also present similar disparities (Table 5.3), these 

results demonstrate that Mn(IV) reduction is partly heterotrophic. The higher rate of 

initial DIC production during the first 10 days in all MnO2-amended incubations (T3 to 

T6) compared to their unamended counterparts (T1 and T2) corroborates these findings 

(Table 5.3). Although heterotrophic Mn(IV) reduction coupled to DIC production was 

proposed to compete with Mn(IV)-catalyzed anaerobic nitrification (Bartlett et al., 2007), 

the current results imply no competition between these two Mn(IV) reduction processes. 

In the second period of the incubations (10 - 18 days), reduction of Mn(IV) 

stopped due to the depletion of MnO2 and concentrations of Mn(II) decreased (Figure 

5.10-b), which may be caused by a secondary precipitation of soluble Mn(II) under 

conditions of increasing carbonate production (Van Cappellen et al., 1998). Loss of NH4
+ 

and production of nitrate were repressed during this period in the treatments amended 

with colloidal MnO2 (Figure 5.10-b). Indeed, after depletion of colloidal MnO2 around 10 

days, anaerobic nitrification became insignificant in both incubations amended with 

colloidal MnO2 (T3 and T4) (Figure 5.10-b). Simultaneously, the net balance of NH4
+ 
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turned positive during this period, which may be attributed to the increase in 

ammonification during the mineralization of organic matter as evidenced by the increase 

in DIC production during the latter part of these incubations (Figure 5.10-b). The Mn-

mediated denitrification of ammonium (Javanaud et al., 2011) was not observed in the 

current incubations as the production of both 29N2 and 30N2 remained trivial throughout 

the incubations (Figure 5.3). These results suggest that denitrification and anammox may 

be insignificant in the current incubations, as a result of either (1) competitive nitrate 

consumption via dissimilatory nitrate reduction to ammonium (DNRA) (Table 5.4) (An 

and Gardner, 2002), (2) a switch in the dominant terminal electron accepting process 

from Mn(IV) reduction to sulfate reduction (Bartlett et al., 2008), or (3) the inhibitory 

effects of sulfide on denitrification (Brunet and GarciaGil, 1996) or anammox (Jetten et 

al., 2009).  

In summary, production of nitrate and consumption of NH4
+ were stimulated by 

the addition of colloidal MnO2, suggesting the occurrence of Mn-catalyzed anaerobic 

nitrification. However, due to the complexity of sediment incubations, consumption of 

NH4
+ may be affected by several other processes, such as adsorption on solid surface or 

assimilation of NH4
+ by microorganisms, which are not directly related to the oxidation 

of ammonium. In the next section, the fate of NH4
+ was investigated to demonstrate that 

consumption of NH4
+ in the colloidal treatments (T4) is at least partially caused by 

anaerobic oxidation of NH4
+. 

 

 140



-600

-400

-200

0

200

400

600

 

D
if

fe
re

n
ti

a
te

d
 M

n
(I

I)
 p

ro
d

u
ct

io
n

 o
r 

N
H

4
-  c

o
n

su
m

p
ti

o
n

 -
 [
M

]

Treatments

-30

-20

-10

0

10

20

30

D
if

fe
re

n
ti

at
ed

 p
ro

d
u

ct
io

n
 o

f 
D

IC
 -

 [
10

0 
M

] 
o

r 
N

O
x- 



M
]

(b) Balance between t = 18 and t= 10 days

-600

-400

-200

0

200

400

600

T6, MnO
2
(a) + NH

4

+T5, MnO
2
 amorphousT4, MnO

2
(c) + NH

4

+  

 
 MnII   NH

4

+

T3, MnO
2
 colloidal

T6, MnO
2
(a) + NH

4

+T5, MnO
2
 amorphousT4, MnO

2
(c) + NH

4

+T3, MnO
2
 colloidal

-30

-20

-10

0

10

20

30
 DIC  NO

2

-  NO
3

-

(a) Balance between t = 10 and t = 0 days

 
 

Figure 5.10. Differentiated changes ([ΔC]D, production or consumption) of Mn2+ (µM, 
left y-axis, grey bars), NH4

+ (µM, left y-axis, shaded bars), NO3
- (µM, right y-axis, 

triangles), NO2
- (µM, right y-axis, stars), and dissolved inorganic carbon (DIC) (mM, 

right y-axis, circles) during the incubations amended with either colloidal (T3 and T4) or 
amorphous (T5 and T6) MnO2, including (A) the first 10 days and (B) the second part of 
the incubations. A negative value represents a decrease in production compared to the 
control. The error bars represent the error propagation calculated from duplicate 
incubations. 

5.4.2 Fate of NH4
+ in the incubations 

Processes that may affect the distribution of NH4
+ in each treatment were divided 

into two categories, (1) redox processes, including denitrification, nitrification, nitrogen 
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fixation, anammox, dissimilatory nitrate reduction to ammonium (DNRA), and anaerobic 

oxidation of NH4
+ and (2) non-redox processes, including adsorption/desorption, 

ammonification, and assimilation of NH4
+ during growth of microorganisms. As all the 

incubations were conducted under strict anaerobic conditions in the dark with initial 

concentrations of nitrate or nitrite less than 5 µM, denitrification, DNRA, aerobic 

nitrification, nitrogen fixation, and anammox can be considered minor processes initially. 

Therefore, during the first part of the incubations, the major sources of NH4
+ in the slurry 

solutions were likely non-redox processes, including the release from solid phase 

sediments (Mackin and Aller, 1984) and ammonification (mineralization) (Dalsgaard and 

Thamdrup, 2002), while the sinks of NH4
+ included either anaerobic oxidation of NH4

+ or 

non-redox processes (i.e. adsorption and assimilation of NH4
+). A mass balance approach 

(described in method section 5.2) that accounts for the consumption of ammonium via 

anaerobic NH4
+ oxidation (Δ[NH4

+]an.-oxid) and three major non-redox sinks and sources 

of ammonium was employed to estimate the possible NH4
+ consumption attributed to the 

Mn-catalyzed anaerobic oxidation of NH4
+ (Eq. 5.1 and Eq. 5.14). According to the mass 

balance equation (Eq. 5.1), any positive value of Δ[NH4
+]an.-oxid. indicates an alternative 

NH4
+ consumption process that can be attributed to the anaerobic oxidation of NH4

+. The 

mass balance calculation for NH4
+ was considered only during the first 10 days of the 

incubations to assess the effect of Mn(IV) reduction on the balance of NH4
+ (Table 5.5).  

Changes in the different sink and source terms in the different incubations are 

reported in Table 5.5, along with the contribution of anaerobic oxidation to the removal 

of NH4
+. These calculations reveal that the incubations amended with NH4

+ only (T2) and 

with both amorphous MnO2 and NH4
+ (T6) are approximately balanced with respect to 
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NH4
+, suggesting that anaerobic nitrification was not significant in these incubations. In 

turn, a significant consumption of NH4
+ (Δ[NH4

+] anaerobic = 157 ± 60 µM) is evident in 

the incubations amended with both colloidal Mn(IV) and NH4
+ (T4), indicating that 

anaerobic ammonium oxidation accounts for a significant fraction of NH4
+ consumption 

in this  incubation (Table 5.5).  

 

Table 5.5. Changes in NH4
+ concentrations in solution (Δ[NH4

+]solution, µM) measured 
during the first 10 days of incubations in each treatment along with the changes in NH4

+ 
concentrations due to non-redox processes (i.e. adsorption, ammonification, and 
assimilation) estimated from theoretical considerations, and anaerobic nitrification 
(Δ[NH4

+]an.-oxid., µM) estimated from mass balance (Eq. 5.13). Positive values represent 
alternative consumption of NH4

+ while negative values represent alternative production 
of NH4

+ in the slurries. *YXD (apparent yield coefficient) for NH4
+ assimilation was 

calculated based on the assumption that it was not affected by the addition of NH4
+ and 

that no other processes were involved in the removal/production of NH4
+ in treatments 

without addition of NH4
+ (T1, T3, and T5). Errors associated with the different 

calculations are shown in parenthesis. 

Treatments 
Δ[NH4

+] 

solution 
Δ[NH4

+] 

adsorption 
Δ[NH4

+] 
ammonification

Δ[NH4
+] 

assimilation 
YXD

* Δ[NH4
+] an.-oxid. 

µM/L 

(T1) Control 33 (± 11) 9 (± 3) 33 (± 9) -9 (± 3) -0.11 0 (± 15) 

(T2) NH4
+ 83 (± 13) 22 (± 3) 88 (± 1) -24 (± 0.3) -0.11 8 (± 14) 

(T3) MnIV c -176 (± 11) -47 (± 3) 159 (± 30) 382 (± 51 ) 0.97 0 (± 57) 

(T4) MnIV c + NH4
+ -372 (± 28) -99 (± 7) 225 (± 27) 539 (± 45) 0.97 157 (± 60) 

(T5) MnIV a 41 (± 9) 11 (± 2) 93 (± 11) 41 (± 4) 0.18 0 (± 14) 

(T6) MnIV a + NH4
+ 79 (± 8) 21 (± 2) 165 (± 2) 72 (± 1) 0.18 -8 (± 8) 

 

5.4.3 Factors that affect Mn(IV)-catalyzed anaerobic nitrification 

Direct field observation of Mn-catalyzed anaerobic nitrification is difficult, 

considering the complexity of the redox cycles of N and Mn and the high reactivity of 

nitrite and nitrate in anaerobic environments. As a result, sediment manipulations in the 

laboratory have been used extensively to investigate the coupling between Mn reduction 

and anaerobic ammonium oxidation (Bartlett et al., 2008, Hulth et al., 2005). The current 
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laboratory incubations provided clear evidence that addition of colloidal Mn oxides 

results in the consumption of NH4
+ and production of nitrate and nitrite, suggesting that 

the reduction of colloidal MnO2 is coupled to the anaerobic nitrification of ammonium. 

Interestingly, a similar effect was not observed in the incubations amended with 

amorphous Mn oxides (Figure 5.10). Previous studies have suggested that the 

perturbation of sediments, such as slumping or fresh burial events of Mn oxides, may 

stimulate anaerobic nitrification (Mortimer et al., 2004, Anschutz et al., 2000). The 

results of the present study reveal that the reactivity of Mn oxides may also play an 

important role in triggering the Mn(IV)-catalyzed anaerobic nitrification process. Indeed, 

soluble forms of Mn oxides (colloidal MnO2), with their large specific surface area, may 

enhance the reactivity and oxidizing capacity of Mn oxides compared to amorphous 

MnO2 (Perezbenito et al., 1987, Perezbenito and Arias, 1992, Perez-Benito, 2002). 

Similarly, fresh Mn(III) oxyhydroxides have been shown to display higher reactivity in 

catalyzing anaerobic nitrification than Mn(IV) oxides (Anschutz et al., 2005). Results 

from the present study indicate that the reactivity of Mn oxides, which may also be 

affected by physical perturbations in natural sediments (Mortimer et al., 2004), may be 

the most important constraint on the Mn(IV)-catalyzed anaerobic nitrification process.  

Besides the property of Mn oxides, anaerobic nitrification may also be affected by 

the occurrence of sulfate reduction and the presence of nitrate. Sulfate reduction during 

Mn(IV)-catalyzed anaerobic nitrification was already observed in previous slurry 

incubations (Hulth et al., 1999, Bartlett et al., 2008) but its effect never discussed. Other 

incubations that demonstrated Mn(IV)-mediated anaerobic nitrification were conducted 

in sulfate-free artificial seawater or in the presence of high concentrations of molybdate 
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to inhibit sulfate reduction (Javanaud et al., 2011). In the present study, anaerobic 

nitrification in the presence of colloidal MnO2 and NH4
+ in low sulfate conditions was 

more significant compared to identical incubations in high sulfate conditions (Figure 5.8-

b). Low sulfate environments may either lead to (1) a delay of sulfate reduction or (2) an 

increase in the reduction potential of the sediment, which may in turn facilitate the 

coupling of Mn(IV) reduction to anaerobic nitrification. Indeed, slurry incubations 

amended with small concentrations of nitrate have been found to promoted Mn-catalyzed 

anaerobic nitrification (Newton, 2006, Javanaud et al., 2011), despite the fact that such 

incubations were not compared to unamended controls. In the current study, anaerobic 

nitrification was significantly higher in the presence of ammonium and colloidal Mn 

oxides (T3 and T4) when 50 µM of nitrate were initially added to the incubations, 

compared to identical incubations performed without nitrate addition (Figure 5.8-d). 

These findings suggest that addition of nitrate increases the initial redox potential in the 

slurry system (Froelich et al., 1979) and may favor the anaerobic oxidation of ammonium. 

Simultaneously, addition of nitrate stimulated dissimilatory nitrate reduction to 

ammonium (DNRA) in these sediments (Figure 5.9), which may also enhance anaerobic 

nitrification catalyzed by Mn(IV) oxides.  

Overall, the anaerobic nitrification catalyzed by Mn(IV) oxides is likely to be of 

great importance in anaerobic sediments with high ammonium concentrations, active 

recycling of Mn(IV) oxides and NH4
+, and a moderate redox potential. This alternative 

pathway may be able to provide nitrite/nitrate for anammox bacteria and, in turn, promote 

anammox activity in these sediments. The nitrite/nitrate supply for anammox bacteria in 

anaerobic sediments may play an important role in regulating the significance of 
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anammox versus denitrification as the main nitrogen loss pathway in the marine nitrogen 

budget, a controversial topic in the literature (Lam et al., 2009, Ward et al., 2009). The 

maximum anaerobic production rate of nitrate was estimated as 4.6 ± 0.5 µM/day based 

on the current incubations (Table 5.3). Therefore, considering a sediment dilution factor 

of 12 used in these experiments (2.5 ml of salt marsh sediments into 30 ml of slurry) and 

depth of the sediments tested in the current incubations (2 cm), Mn(IV)-catalyzed 

anaerobic nitrification may account for (1.1 ± 0.1) × 10 -7 mol nitrate/cm2/day of the 

nitrate flux in these sediments. If applicable to global scale, anaerobic nitrification may 

contribute 5.0 ± 0.57 Tg N/yr of nitrate input for subsequence nitrogen loss in the marine 

nitrogen budget.  This number only balances 2% of total benthic denitrification in the 

oceans. In coastal sediments, however, the contribution of anaerobic nitrification to the 

nitrogen budget should be much more significant as the upward flux of ammonium to the 

sediment surface is much higher than in the average ocean. 

5.5 Conclusions 

The uncertainty in current understanding of marine nitrogen budget suggests that 

alternative N-transformation pathways may exist in marine environments. Among these 

processes, the reduction of Mn(IV) oxides coupled to anaerobic ammonium oxidation has 

been proposed for more than a decade to contribute to the fixed nitrogen pool in marine 

sediments, yet the existence of this process is still under debate. Results from the present 

study demonstrate the existence of anaerobic nitrification in sediments (from Skidaway 

salt marsh) with elevated concentrations of Mn-oxides. Anaerobic nitrification was 

enhanced in the presence of high initial concentrations of NH4
+, suggesting that the initial 

ratio of MnO2 and NH4
+ has a significant effect on this process. In addition, anaerobic 
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nitrification was only observed when Mn oxides with larger specific surface area 

(colloidal MnO2) were used in the incubations, suggesting that freshly formed Mn(IV) 

oxides with smaller particle size may be needed to catalyze this reaction in natural 

sediments. Finally, moderately reducing environments, as revealed by incubations 

performed in the presence of small nitrate concentrations or low sulfate concentrations, 

may favor the onset of anaerobic nitrification and dissimilatory nitrate reduction to 

ammonium may play an important role on this process in nitrate-rich environments. 

These findings provide possible explanations to the inconsistent observations of 

anaerobic nitrification in different Mn-rich sediments and should be considered in future 

experiments. More importantly, the Mn(IV)-catalyzed anaerobic nitrification of 

ammonium may act as a source of nitrite and nitrate for anammox microorganisms in 

anoxic environments, and, in turn, contribute to the marine nitrogen loss in the global 

nitrogen cycle. The enrichment of a pure culture is now required to identify the 

microorganisms involved in this process. 

Acknowledgments 

This work was supported by NSF geobiology and low temperature geochemistry 

programs. 

 

 

 147



CHAPTER 6   CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

As a result of their high abundance and reactivity, Mn oxides constitute one of the 

most powerful electron acceptors in anaerobic natural systems. The reduction of Mn 

oxides plays an essential role in the biogeochemical cycling of many other elements, 

including carbon and nitrogen. This dissertation investigates the processes that couple Mn 

reduction to the redox cycle of both carbon and nitrogen. Microbial Mn reduction is one 

of the main processes that link Mn reduction to carbon mineralization and has been 

demonstrated for decades. Compared to the recent progress made on microbial Fe(III) 

reduction, the mechanism of microbial reduction of solid Mn(IV) oxides remains unclear. 

Recently, Mn oxides have also been proposed to act as the electron acceptor for 

anaerobic nitrification, which provides an alternative source of nitrite or nitrate in anoxic 

systems. The oxidation of ammonium to nitrate by MnO2 is thermodynamically favorable 

under environmentally realistic conditions; however, its existence in natural system is 

still in debate. Therefore, the main hypotheses tested in this dissertation included: 

(1) The electron transfer pathway of microbial Mn(IV) reduction proceeds 

via two consecutive steps of one-electron transfer, similar to the reversal pathway of 

microbial Mn(II) oxidation and,  

(2) Mn(IV) acts as electron acceptor for anaerobic nitrification and provides 

an alternative source of nitrite/nitrate in anaerobic environments. 

The current study reveals for the first time that microbial Mn(IV) reduction 

proceeds step-wise via two successive one-electron transfer reactions by demonstrating 
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the production of soluble Mn(III) as intermediate compound during the respiration of 

Mn(IV). Phenotype studies of a novel point mutant strain Mn3 showed that strain Mn3 

reduces Mn(IV) to Mn(III) but not Mn(III) to Mn(II) and thus confirmed that there are 

two independent steps of one electron transfer during Mn(IV) reduction. The 

accumulation of low concentrations of Mn(III), compared to total Mn(II) production 

during the microbial reduction of amorphous MnO2, is consistent with the relatively low 

Mn(III) concentrations determined in natural waters and sediments and suggests that the 

first reduction step from Mn(IV) to Mn(III) may be the rate-limiting step in the reduction 

of Mn(IV) oxides. Mn(III) produced by strain Mn3 was stabilized by the addition of a 

non-redox Mn(III)-complexing ligand, while the reduction of Mn(III) by the wild-type 

strain was promoted under identical conditions. These results imply that a possible 

endogenic ligand that stablizes the Mn(III) intermediates is involved in the reduction 

process.  

Incubations of the in-frame gene deletion mutants with either solid Mn(IV) or 

soluble Mn(III) revealed that the OM -barrel protein MtrB and the OM porin GspD 

involved in the type II protein secretion system are required for the reduction of both 

solid Mn(IV) and soluble Mn(III). These findings indicate that the reduction of both 

Mn(IV) and Mn(III) proceeds at the outer membrane of S. oneidensis. Microbial Mn(IV) 

reduction, however, involves only one of the two potential terminal reductases (c-type 

cytochrome MtrC and OmcA) involved in Fe(III) respiration, as OmcA is not required to 

reduce either Mn(IV) or Mn(III). The OM cytochrome MtrC also appears to play a more 

important role in the reduction of Mn(III) than in the reduction of Mn(IV). 
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More importantly, dissolved inorganic carbon is produced during the reduction of 

Mn(III) to Mn(II) but not during the reduction of Mn(IV) to Mn(III), indicating that only 

the second electron transfer step is coupled to the mineralization of organic carbon. These 

results are in contrast to the long-standing paradigm that Mn(IV) reduction occurs via a 

single two-electron transfer reaction coupled to organic carbon oxidation. If applicable to 

all manganese-reducing microorganisms in natural systems, conventional diagenetic 

models that couple both electrons transferred to Mn(IV) to carbon mineralization should 

be revised to correctly account for the impact of manganese reduction in the global 

carbon cycle. 

In a parallel study, the link between Mn reduction and anaerobic ammonium 

oxidation was studied in laboratory slurry incubations amended with either MnO2, 

ammonium, or both to (1) test the hypothesis that anaerobic ammonium oxidation to 

nitrite and nitrate is coupled to the reduction of Mn(IV) oxides and (2) investigate the 

factors that affect the coupling of anaerobic ammonium oxidation and reduction of Mn 

oxides. 

Results from this study show the net production of nitrate was stimulated under 

anaerobic conditions with external addition of Mn oxides, suggesting the existence of 

anaerobic nitrification in the sediments from the Skidaway salt marsh. Mass balance 

calculations on NH4
+ concentrations indicate that anaerobic ammonium oxidation 

contributes to the net consumption of NH4
+ observed in the incubations amended with 

Mn oxides, which confirms the occurrence of Mn(IV)-catalyzed anaerobic nitrification. 

Interestingly, anaerobic nitrification was only found in the incubations amended with 

colloidal Mn oxides (smaller particle size) but not amorphous Mn oxides (larger particle 
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size), suggesting that the activity and aging of the Mn(IV) oxides may control this 

process in natural sediments. In addition, anaerobic nitrification was enhanced in the 

presence of high initial concentrations of NH4
+, indicating that the initial ratio of MnO2 

and NH4
+ may greatly affect this process. Finally, moderately reducing environments, 

maintained either by a decrease of sulfate levels or a slight increase of initial nitrate level, 

may facilitate the onset of anaerobic nitrification.  These findings therefore suggest the 

occurrence and activity of anaerobic nitrification may not only depend on the abundance 

of Mn-oxides in sediments but also the type of Mn oxides, the background level of 

ammonium, and the redox potential of the sediment, which should be considered in future 

studies. More importantly, these results suggest that Mn(IV)-catalyzed anaerobic 

nitrification may provide nitrite and nitrate for anammox microorganisms in anoxic 

sediments and could enhance the contribution of anammox in sediments to the nitrogen 

loss in the marine nitrogen cycle.  

6.2 Recommendations for future research 

Microbial Mn(IV) reduction coupled to carbon oxidation has been demonstrated 

to proceed via two steps of one-electron transfer process in the current study and future 

research in this area is required to characterize the mechanism of these two electron 

transfer step. 

(1) Point mutant strain Mn3 presents a unique phenotype that reduces Mn(IV) to 

Mn(III), but not to Mn(II). Therefor, genetic identification and nucleotide sequence 

analyses of strain Mn3 should be conducted to confirm the phenotype and provide 

information on the genes and proteins required in the reduction of Mn(III). 
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(2) In the current study, we propose that the paucity of ligands that non-

reductively solubilize Mn(IV) oxides at circumneutral pH in aquatic systems has forced S. 

oneidensis to evolve a Mn(IV) reductive solubilization-based strategy that produces 

soluble Mn(III) intermediates. The ligands eventually produced by the microorganism to 

reductively dissolve solid Mn(IV) should be identified. Siderophores have been 

suggested to be involved in microbial reduction of Mn(IV) (Kouzuma et al., 2012) but 

not Fe(III) (Fennessey et al., 2010). Studies on the Mn(IV/III) reduction activity of 

mutant strains of S. oneidensis deficient in producing siderophores could be used to study 

the role of siderophores in the reductive dissolution of solid Mn(IV).  

 (3) Although the existence of colloidal MnO2 is limited in natural systems, 

studies on the microbial reduction of colloidal Mn(IV) may be employed to understand 

the effect of reactivity or bioavailability of Mn(IV) on the two electron transfer steps 

involved in Mn(IV) reduction (Appendix A). Unfortunately, difficulties in quantifying 

Mn(III) by colorimetry when using colloids limit the scope of these studies. In addition, 

efforts to develop electrochemical approaches for Mn(III) measurement (Trouwborst et 

al., 2006) have been unsuccessful in this study. The calibration of Mn(III) has been 

confounded by bad reproducibility, ligand competition problems, and unpredictable peak 

shifts (Appendix B). Development of alternative approaches for Mn(III) measurements 

(Madison et al., 2011) should facilitate these investigations. 

(4) Speciation of Mn in solid phase could be further explored. A XPS technique 

has been utilized to detect the oxidation states of Mn at the solid surface (Appendix A). 

However, XPS only provides information on the speciation of Mn in the top 10 nm from 

the surface. Other techniques such as X-ray absorption spectroscopy should then be 
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employed in future to study the composition of Mn(II), Mn(III), and Mn(IV) in the solid 

phase.  

In the study on the coupling of Mn and N redox cycles, Mn-catalyzed anaerobic 

nitrification was demonstrated via laboratory incubations. Several questions have arisen 

from the findings of the slurry incubations. Processes in the slurry incuabtions that may 

interfere the anaerobic ammonium oxidation include (1) the coupling of Mn reduction to 

carbon mineralization, (2) alternative ammonium production/consumption processes, 

such as ammonium assimilation, ammonification, and ammonium adsorption on solid 

phase, and (3) alternative processes of anaerobic ammonium oxidation that are coupled to 

other electron acceptors (Fe(III) or sulfate). In the future, enrichments of the microbial 

community involved in the Mn(IV)-coupled anaerobic nitrification should be conducted 

to definetely demonstrate that this process exists in marine sediments and to study the 

mechanism of this process. One of the essential questions for this process, which has yet 

been addressed, is the origin of the oxygen atom for the first step of enzymatic 

ammonium oxidation, during which ammonium is oxidized to hydroxylamine (NH2OH) 

by ammonia mono-oxygenase (AMO) (Bothe et al., 2007). Recently, a novel pathway has 

been proposed to couple the anaerobic oxidation of methane to a modified nitrite 

reduction pathway, during which nitric oxide as the intermediate is converted to 

dinitrogen and oxygen (Ettwig et al., 2010). This finding may cast a fresh insight into the 

study for the origin of oxygen during the pathway coupling Mn(IV) reduction and 

anaerobic ammonium oxidation. 

In collaboration with Dr. DiChristina’s group, serial dilutions in batch reactors 

were conducted to enrich the microbial communitites involved in the Mn-catalyzed 
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ammonium oxidation. Salt marsh sediments were independently incubated in artificial 

sea water amended with Mn(IV), Mn(III), ammonium, or both since May 2010. After 400 

days of incubation, the enrichment fed with 1 mM ammonium and 0.2 mM soluble 

Mn(III) retained its Mn(III) reduction capability in the absence of organic carbon sources 

(Appendix C). The behavior of these enrichment cultures is currently under investigation, 

and molecular analyses coupled to these culture experiments should help characterize the 

microbial community and provide more information on the process that links Mn 

reduction to anaerobic ammonium oxidation. 
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APPENDIX A  SUPPLEMENTAL INFORMATION FOR CHAPTER 3 

A.1 Kinetics of Mn reduction by S. oneidensis MR-1 fed with colloidal Mn(IV) 

Shewanella oneidensis MR-1 was fed with colloidal Mn oxides as terminal 

electron acceptor under anaerobic conditions to study the mechanism of Mn(IV) 

respiration. The initial addition of colloidal Mn(IV) in each reactor was approximately 10 

mM, with concentrations of total Mn maintaining at 9.92 ± 0.67 mM in both the abiotic 

control and the wild-type incubations (Figure A.1-A). The pH was consistent around 7.30 

± 0.11 in the abiotic control, while a significant increase in pH was observed in the wild-

type incubations (Figure A.1-A). The pH in the wild-type incubations increased 

approximately 0.5 pH unit after 18 hours of incubation, and then decreased back to the 

background level at the end of the incubation. Simultaneously, significant amounts of 

Mn2+ were produced in the wild-type incubations, suggesting that the increase in pH may 

be caused by the proton consumption during the reduction of colloidal MnO2 (Figure 

A.1-B) (Van Cappellen et al., 1998).   

Concentration of soluble free Mn2+ in the wild-type incuabtions increased 

significantly compared to those in the abiotic control (Figure A.1-B), suggesting the 

reduction of colloidal Mn oxides to Mn(II). Concentrations of Mn2+ reached a maximum 

(971.59 ± 19.01 μM) during the first 24 hours, and slightly decreased to 470.5 ± 130 μM 

after 24 hours (Figure A.1-B). In turn, no significant production of Mn2+ was found in the 

abiotic control, which maintained a background level of soluble Mn2+ at 183.71 ± 44.97 

(Figure A.1-B).  
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As colloidal Mn oxide, with a particle diameter generally less than 0.2 μm, stays 

in the soluble phase after filtration with 0.2 μm filter (Perez-Benito et al., 1996), total 

dissolved Mn (TDM) in the incubations with colloidal Mn oxides included soluble Mn(II), 

soluble Mn(III) and Mn(IV) colloids. In turn, the concentrations of TDM were not 

expected to change significantly during the incubation, which was confirmed by the 

consistent concentrations of TDM in the abiotic controls at around 8.90 ± 0.43 mM 

(Figure A.1-B). Interestingly, concentrations of total dissolved Mn (TDM) changed 

remarkably in the wild-type incubations, especially after 18 hours, from the initial value 

of 8.91 ± 1.15 mM to 1.44 ± 0.12 mM at the end of the incubation (Figure A.1-B). This 

decrease of TDM indicated the removal of Mn species from solutions, which may be due 

to either aggregation/precipitation, or diffusion into the cells, or adsorption on cell 

surfaces, or secondary precipitation of Mn(II) produced. Porins, as channel proteins at 

outer membranes of cells, form small pores of about 1 nm in diameter (Madigan et al., 

2003); therefore, colloidal Mn oxides, with a diameter about 100 nm (Perez-Benito et al., 

1996) should not be able to diffuse into the cells. In addition, no significant change in the 

TDM concentrations in the abiotic control (Figure A.1-B) indicated that precipitation or 

aggregation of colloidal Mn(IV) during the incubations is negligible. As the incubations 

on solid Mn(IV) oxides have demonstrated significant secondary precipitation of Mn 

carbonate during the respiration of the wild-type strain, the significant decrease in TDM 

observed in the current incubations with colloidal MnO2 may be caused by secondary 

precipitation of Mn(II), which was evidenced by the change of the brown color of 

colloidal Mn oxides to cloudy white precipitate during the wild-type incubations. 
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Unfortunately, quantification of Mn3+ concentrations by spectrophotometry 

during the colloidal incubations was impossible due to the scattering of light by colloids. 

Instead, pyrophosphate, which can form stable Mn(III)-P2O7
4- complexes with a pink 

color (Kostka et al., 1995), was used to visually determine whether Mn(III) was produced 

during the incubations. The color of the samples from the abiotic control remained dark 

brown (colloidal Mn oxides) over time (Figure A.2). The color of the live reactor samples 

with pyrophosphate changed from dark brown at time zero to slightly pink (but not clear) 

at 12 hours, then to clear pink color after 18 hours, indicating the formation of Mn(III)-

P2O7
4- complexes (Figure A.2). After 24 hours, samples of the two live reactors turned 

from pink to transparent (Figure A.2) and remained transparent until the end of the 

incubation. These results suggested the formation of soluble Mn(III) between 12 to 18 

hours and disappeared after 24 hours (Figure A.2), when concentrations of Mn(II) reach a 

plateau (Figure A.1-B). This initial production and ultimate consumption of Mn(III) 

indicated that soluble Mn(III) is produced as an intermediate during the reduction of 

colloidal Mn(IV) by MR-1, suggesting the dissimilatory reduction of colloidal Mn oxides 

may proceed in two consecutive steps of one-electron transfer with Mn(III) as the 

intermediate. 
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Figure A.1. (A) Concentration of total Mn (circles, left y-axis) and pH (triangles, right y-
axis) as a function of time during incubations with colloidal Mn oxide. (B) Concentrations 
of Mn2+ (circles, left y-axis) and total dissolved Mn (TDM) (triangles, right y-axis) as a 
function of time during incubations. The incubations included both chemical control 
(without bacteria) (open symbols) and live reactors with 107 cells/ml Shewanella oneidensis 
MR-1 (solid symbols). Error bars represent standard deviations from at least duplicates.  
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Figure A.2. Changes in color of the supernatant from incubations with colloidal Mn 
oxides after addition of pyrophosphate (the samples were extracted from Hungate tubes 
at each time point, and pyrophosphate was added after filtration with 0.2 µm filter) (C is 
the abiotic control, A and B are two replicates of the live incubations with wild-type 
strain of Shewanella oneidensis MR-1). 
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A.2. Application of XPS on determining the oxidation state of Mn in solid surface 

during anaerobic incubations with S. oneidensis MR-1. 

A surface sensitive technique XPS (X-ray photoelectron spectroscopy) was used 

to detect the oxidation state of Mn in the surface layer (1-10 nm) of the solid phase in the 

anaerobic incubations with MR-1. XPS spectras were obtained in a SSX-100 X-ray 

photoelectron spectrometer (Surface Science centre), with a monochromatized Al Kα X-

ray source (1487 eV) and a base pressure of 1 × 10-9 Torr in the analytical chamber. 

Survey scans were recorded using a 600 µm spot size and fixed pass energy of 160 eV to 

survey all elements presenting in the sample surface (Figure A.3). Each element was 

identified according its specific binding energy. Narrow scans were recorded 

subsequently for interesting elements, including C, O, and Mn. The shape and the binding 

energy of each peak were used to determine the chemical state of the emitting atom and 

the composition of chemical states (in percentage) of the element. 

The XPS (Mn) (2p3/2) spectra obtained via narrow scans (Figure A.3) were used 

to analyze the percentage of Mn(II), Mn(III), and Mn(IV) at the sample surface. 

Parameters for Mn(2p) spectrum of Mn(II), Mn(III), and Mn(IV) were listed in Table A.1 

(Nesbitt and Banerjee, 1998). All peaks were fitted using 70:30 (Gaussian : Lorentzian) 

peak shape with fixed full width at half maximum (FWHM) (Figure A.4). Summary of 

the fit was listed in Table A.2. The composition of Mn in the surface of a solid sample 

from incubations of MR-1 at 24 hours was calculated as 12% of Mn(II), 20% of Mn(III), 

and 68% of Mn(IV). 
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Figure A.3. Survey scan (C_1. SPE) and narrow scans of C, O, and Mn (C_2. SPE) in 
solid samples from incubations of amorphous MnO2 with Shewanella oneidensis MR-
obtained from  SSX-100 X-ray photoelectron spectrometer. 
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Table A.1. Peak parameters for Mn free ions and Mn bound oxyhydroxides measured in 
XPS (Nesbitt and Banerjee, 1998). 
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Table A.2. Summary of fitted binding energies and peak intensities obtained from the 
Mn(2p) spectrum of the samples to calculate the proportions of Mn(II), Mn(III), and 
Mn(IV) at the solid surface. The percentage of each species was calculated based on the 
summary of peak intensities (counts) for all the peaks of the specific species (Mn(II), (III), 
or (IV) 

 
MnII peaks 

eV 
Counts 

MnIII peaks 
eV 

Counts
MnIV peaks  

eV 
Counts 

640.00 2944.00 640.70 3937.00 641.90 12301.00

641.30 2213.89 641.40 3937.00 642.90 8204.77 

642.40 1495.55 642.30 5314.95 643.80 4096.23 

643.10 741.89 643.10 2755.90 644.80 1660.64 

647.60 441.60 644.90 1181.10 646.80 2866.13 

MnIIIMnII 

 
 

Figure A.4. Fitted Mn2p3/2 spectrum of the solid sample from incubations of amorphous 
MnO2 with S. oneidensis MR-1. The fitting parameters were used according to the 
procedures described in reference (Nesbitt and Banerjee, 1998). The insect displays an 
example of fitting spectrum from the literature (Banerjee and Nesbitt, 2001). The red solid 
curve represents the best fit to the spectral data. 
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APPENDIX B  SUPPLEMENTAL INFORMATION FOR CHAPTER 4 

Electrochemical measurement of Mn(III) during the incubations with  mutant 

strains Sol d29 and d64 

 
The addition of desferrioxamine B (Def-B) that forms strong Mn(III)-Def-B 

complexes and out-competes natural Mn(III) complexes has been proposed for 

quantification of Mn(III) via the electrochemical measurement of Mn(III)-Def-B 

(Trouwborst et al., 2006). Desferrioxamine B is a common trihydroxamate siderophore 

and exists mostly in the fully protonated form of H4Def-B at physiological pH (structure 

and binding constants shown in Figure B. 1) (Duckworth and Sposito, 2005b, Faulkner et 

al., 1994). Def-B is a linear molecule and contains three hydroxamate functions with a 

primary amino group at one end (Figure B. 1). During complexation, Def-B ligand wraps 

around Mn(III) ion to form high stability complexes of 1:1 stoichiometry (MLH) 

(Faulkner et al., 1994). 

 

 

 
Figure B. 1. structure and binding constants of Def-B (Faulkner et al., 1994). 
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An electrochemical approach was utilized to measure the Mn(III)-Def-B complex 

and quantify the concentration of soluble Mn(III) in natural systems (Trouwborst et al., 

2006). Def-B generally presents a signal at -1.34 eV Vs SCE and Mn(III)-DEF-B 

complexes present a signal at -1.19 eV Vs SCE (Trouwborst et al., 2006). Voltammetric 

measurements were constituted with a DLK-60A electrochemical analyzer using a 0.5 

mm diameter Ag/AgCl reference electrode, a mercury drop electrode as working 

electrode, and a Pt electrode as counter electrode. Voltammetric parameters used in the 

current study included: cyclic voltammetry, N2 purged seawater as the electrolyte, scan 

rate of 500 mV/s, and 3 second deposition time at -0.1eV.  

 
Difficulties associated with the Mn(III)-Def-B measurement:  

1. The pH affected Def-B signals by voltammetry (Figure B.2). Def-B signals 

shifted to more negative voltages at higher pH. Buffered electrolyte should be 

used to maintained the pH around 8. 

2. Def-B was able to complex with not only Mn(III) but also Mn(II) (Duckworth and 

Sposito, 2005a, Duckworth and Sposito, 2005b) (Figure B.3). The Mn(II)-Def-B 

signal (at -1.52 eV) found in the Mn(III) standards with addition of Def-B may be 

caused by either dispropornation of Mn(III) in seawater electrolyte or internal 

reaction of Mn(III) with Def-B (Duckworth and Sposito, 2005a). 

3. Electrochemical signals showed bad reproducibility and the calibration of Mn(III) 

showed much lower sensitivities than those reported (Trouwborst et al., 2006), 

which may be affected by the competition between pyrophosphate (soluble Mn(III) 

standards used) and Def-B in complexing Mn(III).  
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Def-B was added into sub-samples (after filtration) for the detection of Mn(III) by 

voltammetry during anaerobic incubations of S. Oneidensis MR-1 strains (including the 

wild-type strain and mutant strains Sol d29, and Sol d64) with either amorphous or 

colloidal MnO2, (Figure B.4 and Figure B.5). The signal at around -1.15 - 1.20 eV 

(Mn(III)-Def-B signal) showed significant decrease during the wild-type incubations with 

either amorphous or colloidal MnO2 (Figure B.4 and Figure B.5). Besides the Mn(III)-

Def-B signal, two other signals were also detected after addition of Def-B, the putative 

Def-B signal and Mn(II)-Def-B signal, which suggested the possibility of internal 

reaction of Mn(III) with Def-B (Figure B.4 and  Figure B.5). In addition, the 

conventional Mn(III) measurement (colorimetric approach) showed different results in 

the evolution of Mn(III) in incubations of colloidal MnO2 in the presence of the wild-

type strain, or mutant strain d29, or d64. Concentrations of Mn(III) increased in the wild-

type incubations and remained at background levels in the two Sol incubations. Therefore, 

due to the uncertainty in peak shift, interference of Mn(II)-Def-B complexation, and the 

difficulty with the calibration of Mn(III)-Def-B, the electrochemical approach was not 

used for Mn(III) quantification in the other incubations. 

 
 
 

 166



 

p

0.00

40.00

80.00

120.00

160.00

-1.70-1.50-1.30-1.10-0.90-0.70-0.50-0.30

c
u

rr
e
n

t 
n

A 100 uM

60 uM

40 uM

20 uM

 

0

20

40

60

80

-1.70-1.50-1.30-1.10-0.90-0.70-0.50-0.30

potential eV

cu
rr

en
t 

n
A

60 uM

100 um

 
Figure B.2. Effect of pH (pH 10, the upper figure, and pH 8, the bottom figure) on the 
electrochemical signal of Def-B. 
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Figure B.3. (a) Voltammograph of 100 µM Def-B at pH 8 with (red) or without (blue) 
50 µM Mn(III)-pyrophosphate (soluble Mn(III) standards). The calibration curves of 
complexes Mn(III)-Def-B (at -1.17 V, (b)) and Mn(II)-Def-B (at -1.52 V, (c)). 
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Figure B.4. Evolution of current signals obtained by voltammetry (in presence of 100 µM 
Def-B) as a function of time during the incubations of amorphous MnO2 with the wild-
type strain (solid circles), Sol d29 (upward triangles), Sol d64 (downward triangles), and 
the abiotic control (open circles). Three peaks were found in the voltammogram after 
addition of Def-B, including Mn(II)-Def-B peak at -1.50 eV, Mn(III)-Def-B peak at -1.15 
eV, and Def-B peak at -1.24 eV). 
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Figure B.5. Evolution of current signals obtained by voltammetry (in presence of 100 µM 
Def-B) as a function of time during the incubations of colloidal MnO2 with the wild-type 
strain (solid circles), Sol d29 (upward triangles), Sol d64 (downward triangles), and the 
abiotic control (open circles). Three peaks were found in the voltammogram after 
addition of Def-B, including Mn(II)-Def-B peak at -1.50 eV, Mn(III)-Def-B peak at -1.15 
eV, and Def-B peak at -1.24 eV). 
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APPENDIX C  SUPPLEMENTAL INFORMATION FOR CHAPTER 5 
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Figure C.1. Evolution of pH in solution as a function of time in anaerobic slurry 
incubations conducted without any amendment (T1, control, open circles) or in the 
presence of  800 µM 15NH4

+ (T2, solid circles), 300 µM colloidal MnO2 (T3, open blue 
upward triangles), 800 µM 15NH4

+ and 300 µM colloidal MnO2 (T4, solid blue upward 
triangles), 400 µM amorphous MnO2 (T5, open red downward triangles), and 800 µM 
15NH4

+ and 400 µM amorphous MnO2 (T6, solid red downward triangles). The error bars 
represent the standard deviations of duplicate incubations. 

  

Enrichment culture of Mn-reducing anaerobic nitrifying microorganisms 

 
Enrichment experiments were conducted in collaboration with Dr. DiChristina’s 

group. For these enrichment experiments, approximately 1 g of sediment (Skidaway salt 

marsh, Core M) was incubated with 20 ml of artificial seawater (50% diluted in DI water) 

in a sealed Hungate tubes. The artificial seawater is composed of 0.5M NaCl, 10 mM 

MgCl2, 14 mM Na2SO4, 9 mM KCl, 1 mM CaCl2, 2 mM NaHCO3, 2 mM MOPS, 2 mM 
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KH2PO4, 0.8 mM KBr, 2.5 mM SrCl2, 0.4 mM H3BO3, 0.001 mM KF, 1 ml/L trace 

elements, and 2 ml/L vitamins. Different combination of Mn, NH4
+, and acetate were 

amended in a total of 12 different treatments (Table C.1). Either amorphous MnO2 or 

soluble Mn(III)-pyrophosphate was used as electron acceptor in these slurry incubations. 

Three types of control incubations were conducted simultaneously with each treatment, 

including (1) without sediment, (2) with heat-killed sediment, and (3) with sediment and 

molybdate (10 mM). Every 30 days, each reactor was transferred into fresh medium 

under identical conditions (with a dilution factor of 20). The enrichment strategy was to 

dilute sediments under controlled conditions (Mn, N, and carbon source) to purify the 

microbial community that are involved in reducing Mn and oxidizing NH4
+ under 

anaerobic conditions  

The initial 120-days of serial dilution 

After 120-days of incubations (4 dilution transfers), reduction capability of 

Mn(IV) and Mn(III) were maintained in the enrichments (Figure C.2 and Figure C.3). 

Proportionally higher activity of Mn(IV/III) reduction was observed in treatments 

amended with 0.2 mM of Mn(IV) or Mn(III), compared to the corresponding 5 mM 

treatments (Figure C.2 and Figure C.3). In addition, little difference was found between 

treatments amended or not with acetate (Figure C.2 and Figure C.3). Therefore, in the 

following enrichment experiment, each of the enrichment was transferred into a 120ml-

sealed serum bottle under identical conditions but without amendment of acetate.  
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Batch reactor incubations of the 120-day enrichment culture 

A 180-days incubation of the 120-days enrichment were then conducted in serum 

bottles in the presence of either soluble Mn(III) or solid Mn(IV). Significant Mn(III) 

reduction was observed in treatments amended with 0.2 mM Mn(III)-pyrophosphate 

(Figure C.4). As all reactors were incubated in the absence of organic carbon, electron 

donor, other than organic carbon, must be coupled to Mn(III) reduction. In addition, more 

Mn(II) was produced in the enrichment amended with 1 mM NH4
+ compared to the 

enrichment without NH4
+ (Figure C.4). The reduction activity of Mn(III) was also 

visually observed in a following spiking experiment, in which an extra 0.2 mM of 

Mn(III)-pyrophosphate were added to the enrichment amended with both Mn(III) and 

NH4
+ (Figure C.5). Reduction of Mn(III) finished in the live reactor in 5 hrs and the two 

types of controls (abiotic and heat-killed) maintained the brown color (the color of 

Mn(III)) during the 8-hr experiment (Figure C.5). Interestingly, molybodate reactors 

(Live + Mo) presented slower reduction rates of Mn(III), compared to the live reactors 

(Figure C.5), which may be due to the inhibition of sulfate reduction by molybodate. 

These results imply that sulfate reduction may also influence the redox cycles of Mn and 

N in these enrichment. The microbial community structure of these enrichments is now 

investigated in the microbiology lab. 

Effect of different sulfur sources 

The final enrichment of in the Mn(III) and NH4
+ reactor was incubated with 

different sulfur sources (cysteine, cystine, methionate, and sulfate) to investigate the 

involvement of sulfur in the redox cycle of Mn and N. The capability of Mn(III) 

reduction was retained in the enrichment fed with different sulfur sources but presented 
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different phase lag (Figure C.6). Compared to the original incubation with high sulfate 

concentration (15 mM), the cysteine and cystine incubations both showed a phase lag of 

15 days. The methione incubations showed a phase lag of 21 days (Figure C.6). In the 

incubations without any sulfur source, Mn(II) production was not detected until 29 days 

of the incubations (Figure C.6). The maximum production rate of Mn(II) were similar 

among different S sources, with 4.2 ± 1.4 µM Mn2+/day (high sulfate), 5.2 ± 1.5 µM 

Mn2+/day (no sulfur sources), 3.7 ± 0.2 µM Mn2+/day (cystine), 4.9 ± 2.4 µM Mn2+/day 

(methionine), and 5.4 ± 2.8 µM Mn2+/day (cysteine). Therefore, sulfur may be involved 

in the redox cycle of Mn, by initially inhibit the reduction of Mn(III); but its role remains 

still unclear. 

 

 

Table C.1. Treatments conducted for serial enrichment experiments, including with or 
without (1) 1 mM acetate, (2) Mn(III)/Mn(IV), and (3) NH4

+. The ratio of Mn:NH4
+ was 

set at either 0.2:1 (mM) or 5:5 (mM). Oxidized form of Mn included amorphous MnO2 
and soluble Mn(III)-pyrophosphate. 
 
Treatments 1 2 3 4 5 6 7 8 9 10 11 12 
Mn(IV) or 

Mn(III) (mM) 
0 0 0.2 0 0.2 0.2 0.2 5 0 5 5 5 

NH4
+ (mM) 0 0 0 1 0 1 1 0 5 0 5 5 

Acetate (mM) 0 1 0 0 1 0 1 0 0 1 0 1 
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Figure C.2. Concentrations of soluble Mn(II) and NH4

+ in each transfer (1, 3, and 4 
month) during the first 120 days of enrichment, in treatments amended with (a) 0.2 mM 
and (b) 5 mM of amorphous MnO2. The x-axis shows the combination of the MnO2, 
NH4

+, or acetate amendment. For example, 0.2/0/1 represents the treatment containing 
0.2 mM of MnO2, 0 mM of NH4

+, and 1 mM of acetate. 
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Figure C.3. Concentrations of soluble Mn(III), Mn(II), and NH4
+ in each transfer (1, 3, 

and 4 month) during the first 120 days of enrichment, in treatments amended with 0.2 
mM and 5 mM of soluble Mn(III)-pyrophosphate complexes. The x-axis shows the 
combination of the MnO2, NH4

+, or acetate amendment. For example, 0.2/1/1 represents 
the treatment containing 0.2 mM of Mn(III), 1 mM of NH4

+, and 1 mM of acetate. 
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Figure C.4. The production of soluble Mn(II) over a 180 days long set of batch 
incubations with the enrichment treated with 0.2 mM of soluble Mn(III)-pyrophosphate. 
The x-axis represents different treatments, including additional amendment of 1 mM 
NH4

+ and  an abiotic control. 
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Figure C.5. A 8-hr spiking-experiment of the enrichment treated with 0.2 mM of 
Mn(III) and 1 mM of NH4

+, including duplicates of live reactors, duplicates of abiotic 
control (no enrichment), duplicates of heat-killed control, and duplicates of live 
reactors with 10 mM of molybdate. 
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Figure C.6. The production of soluble Mn(II) during an independent set of 27-days 
incubations with the 120 days enrichment treated with 0.2 mM of soluble Mn(III)-
pyrophosphate and 1 mM NH4

+ but different sulfur sources, including no sulfur sources 
(solid circles), cystine (open squares), methionine (solid downward triangles), and 
cysteine (open upward triangles).  
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