
Entry, Descent, and Landing System Design for the Mars Gravity Biosatellite

Georgia

Tech

Ashley M. Korzun Georgia Institute of Technology Space Systems Design Laboratory

6th International Planetary Probe Workshop 26 June 2008 – Atlanta, Georgia Christine Hartzell Brandon Smith Scott Martinelli Kyle Hott Laura Place Tony Yu Robert Braun

Outline

- Program and Spacecraft Overview
- Driving Requirements & Objectives
- Configuration and EDL Timeline
- Subsystem Design

Trajectory Optimization

Thermal Protection System (TPS) Design

Parachute Recovery System (PRS) Design **Event Sequencing**

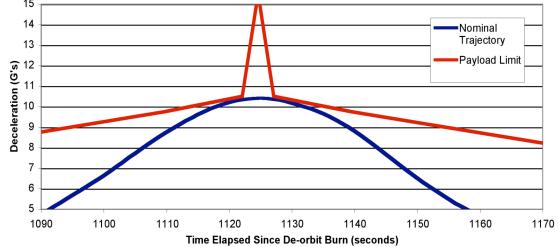
Aerodynamics

Triggers & Mechanisms

Recovery Operations

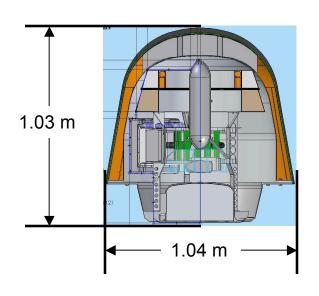
Program Overview

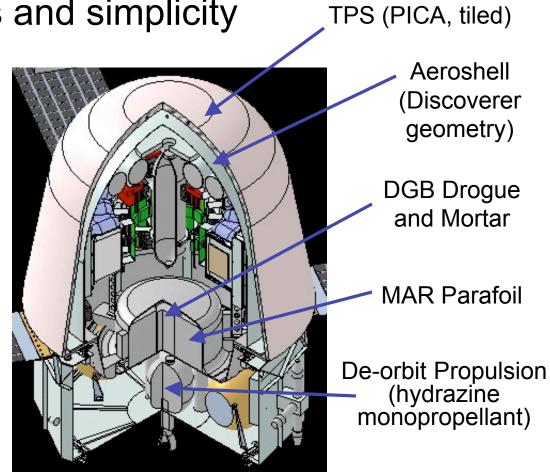
- Who?
 - A joint initiative of MIT and Georgia Tech, with industry partners
 - 500+ students to date, with advisors from academia, industry, and government
- What?
 - 35 days in LEO, simulated 0.38-g environment
 - Recoverable payload of 15 BALB/cByJ female mice
 - Free-flyer spacecraft for partial gravity science
 - Estimated total cost: \$40M
- Why?
 - Investigation of mammalian adaptation to partial gravity ⇒ Support NASA Exploration goals
 - To educate, inspire, and motivate students through space science and engineering



Requirements & Design Objectives

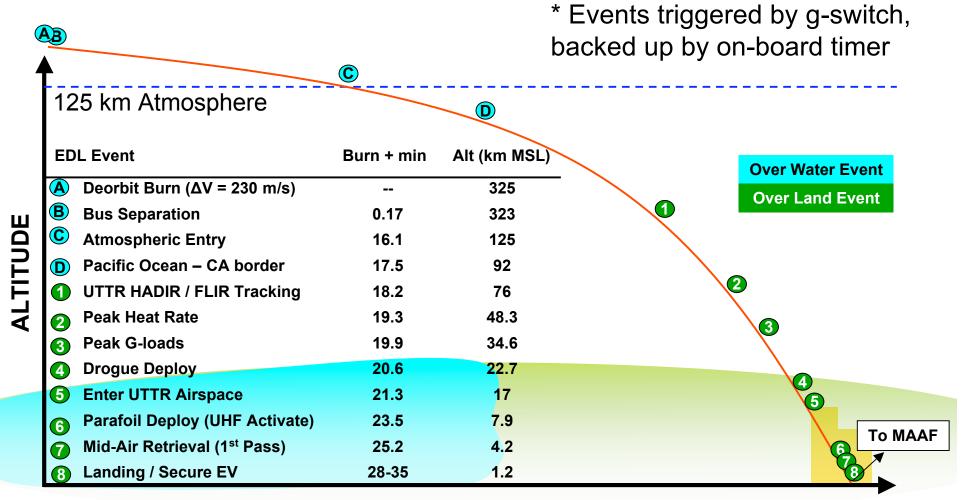
- Recovery of *live* payload from LEO
- Allowable deceleration profile
 - Strict science-derived requirements for magnitude and duration of deceleration events
- Domestic recovery at UTTR


- Recovery time
 - Payload must be fully accessible to science team within 2-4 hours after initiation of de-orbit
- Burn precision for de-orbit
 - *Not an explicit EDL requirement

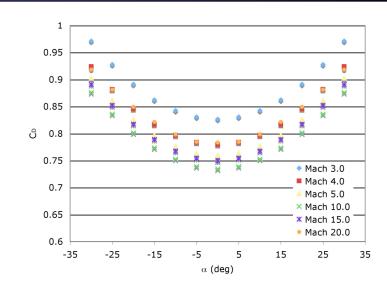


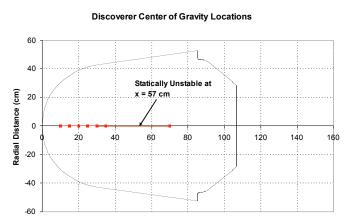
Entry Vehicle Overview

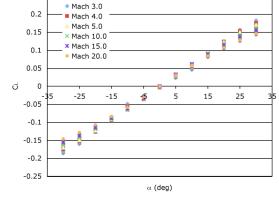
- EV configuration reflects preference for heritage systems and simplicity
- Ballistic LEO return
- EV mass: 260 kg

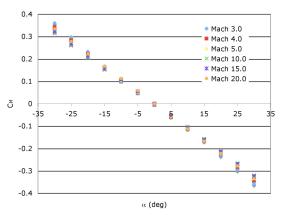


EDL Event Timeline

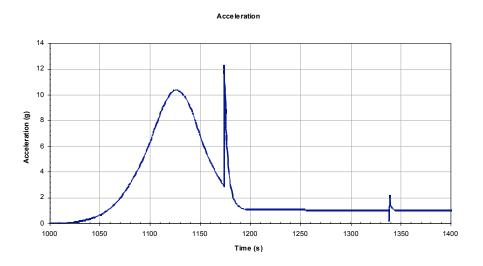

DOWNRANGE




Aerodynamics



- Discoverer aeroshell geometry
 - Flight heritage from Discoverer, Corona
 - Design heritage from METEOR (COMET)
- Payload configuration requires 20 kg of ballast for static stability

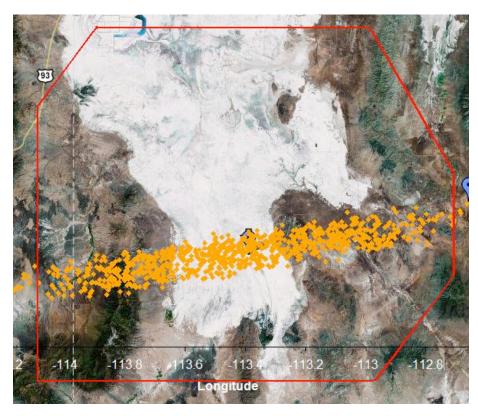


Space Systems Design Lab

Nominal Trajectory

- Ballistic entry from 325 km altitude
- Definition of nominal:
 - Trajectory with max. ΔV where less than 10% of cases fail
 - Dispersions applied
 - Failed case: exceeds g-limit or outside UTTR
 - De-orbit ∆V: 230 m/s
- Entry corridor: 0.16°
- Landing target:
 +40.07°N, -113.43°W

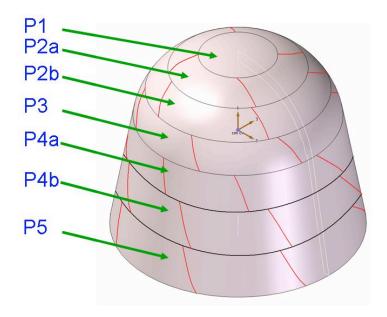
Event	Condition		
Bus Separation	De-orbit burn complete		
Pilot / Drogue Deploy	Mach 2.0		
Parafoil Deploy	Mach 0.18		


Dispersion Analysis

- 900 cases in preliminary MC
- Dispersions applied to the nominal trajectory

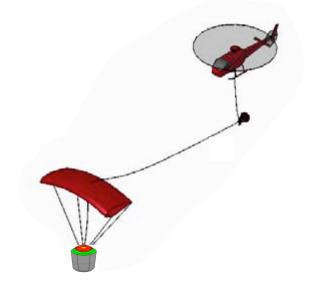
Parameter	Dispersion	
EV Mass	+/- 10 %	
Altitude at Periapsis (km)	+/- 1 %	
Orbital Inclination	+/- 0.05 %	
De-orbit ∆V	+/- 1%	
True Anomaly	+/- 0.05 %	
Longitude of the Ascending Node	+/- 0.05 %	
C _D	+/- 4 %	
Thrust (mag. & dir.)	+/- 0.3 %	
Atmospheric Density	+/- 30 %	

Downrange error: 167 km



Thermal Protection System

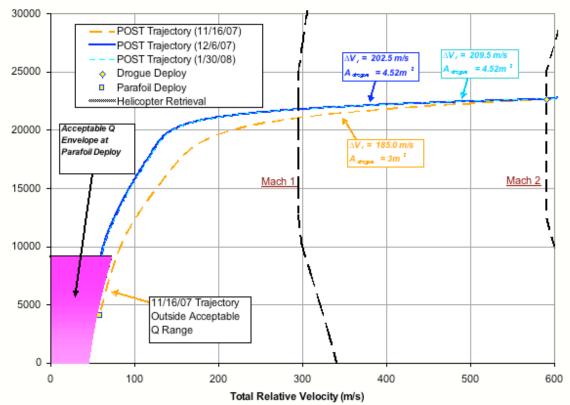
- Benign heating environment
 - Peak heat rate: 191 W/cm²
- Tiled PICA
 - 36 total tiles (max tile dimension: 50.4 cm)
 - Gaps filled with RTV (2 mm thickness)
 - Gaps angled 25° to flow
- Backshell heating expected to be low
 - ~ 3% of stag. pt. heating (Stardust)
- Aluminum alloy carrier structure

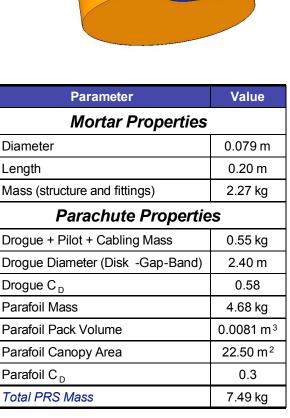


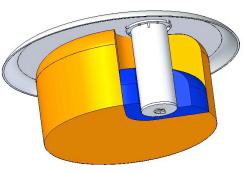
Total TPS Mass: 36.38 kg

Decelerators and Recovery

- Baseline: mid-air retrieval (Vertigo 3GMAR)
 - Heritage from 1960s (Discoverer)
 - Genesis sample return
- Three chute PRS
 - Small transonic pilot parachute
 - Stabilization and deceleration drogue
 - Engagement line attached to parafoil
- Retrieval process: three distinct events
 - Intercept
 - Engagement
 - Pickup
- Since 2005:
 - 34 MAR training missions
 - 22 end-to-end parafoil MAR missions
 - 100% success rate on 1st attempt


C-119J MAR of Discoverer XIV [AIAA 2005-1676]




Decelerators and Recovery

- MAR case study used for initial design point
 - 272 kg study mass vs. 260 kg MG entry mass
 - Fixed parafoil drag area (from study)
 - Optimized drogue drag area

Tracking and Recovery ΕV Tracking Tracking System X UTTR Assets-FLIR HADIR Raw Tracking Data

6th International Planetary Probe Workshop Session X: Cross-Cutting Technologies

Vectors

Recovery Command

(MAAF)

EV Location

MCC

(Hill AFB)

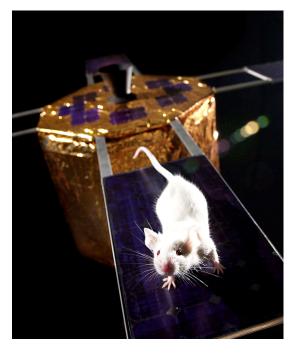
SS

Space Systems Design Lab

System Summary

	Component	Units	Unit Mass (kg)	Total Mass (kg)	Margin	Total Mass (kg), with Margin
Structure				46.47		55.05
	Aeroshell aftbody	1	12.92	12.92	25%	16.15
	Aeroshell forebody	1	11.09	11.09	25%	13.86
	Parachute cover	1	0.5	0.5	25%	0.63
	Aeroshell bolts	4	0.18	0.72	20%	0.86
	Shear pin	3	0.08	0.24	25%	0.30
	O-Ring	4	0.25	1	25%	1.25
	Ballast	1	20	20	10%	22.00
•				0.5		0.62
Avionics				0.5		0.63
	Mechanical Timer	1	0.5	0.5	25%	0.63
Entry				30.32		36.38
	TPS carrier structure	1	6.4	6.4	20%	7.68
	TPS insulation	1	0	0	20%	0.00
	Forebody TPS	1	20.2	20.2	20%	24.24
	Aftbody TPS	1	3.4	3.4	20%	4.08
	TPS pyrobolts	4	0.08	0.32	20%	0.38
Descent				3 6		0.00
Descent	Dilat dragua cabla		0 55	7.5	200/	9.00
	Pilot-drogue-cable	1	0.55	0.55	20%	0.66
	Mortar	1	2.27	2.27	20%	
	Parafoil MAR	1	4.68	4.68	20%	5.62

- 8% wiring margin applied
- Batteries for EDL power in payload


Total EDL System Mass (w/Margin): 109.15 kg

(EDL Allocation: 119 kg)

Questions?

www.marsgravity.org

