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SUMMARY

An experimental investigation was conducted to study the thermal perfor-

mance of boiling of water in a compact two-phase dual chamber thermosyphon for

localized high heat flux applications. The thermosyphon had a three-dimensional

porous boiling structure integrated in the evaporator, where each layer of the structure

was of dimensions 12.7 × 12.7 × 1 mm (length × breadth × thickness). The effects

of sub-atmospheric pressures on thermal performance were investigated at 9.7 kPa,

15 kPa and 21 kPa. Sub-atmospheric pressure boiling of water achieved heat fluxes

in excess of 100 W/cm2 with negligible incipience superheat, while keeping boiling

surface temperatures below 85 oC. Reduced pressures also resulted in reduction of heat

transfer coefficient with decrease in saturation pressure. Four different geometries of

the structure were used, each having 1, 2, 4 and 6 layers respectively. The boiling

curves from the enhancement structures were compared to sub-atmospheric pressure

boiling from plain surface. The boiling enhancement structure showed considerable

heat transfer enhancement compared to boiling from plain surface and also increased

the critical heat flux (CHF). Increased height of the structure decreased the heat

transfer coefficient and suggested the existence of an optimum structure height for a

particular saturation pressure. A numerical simulation was performed to compare the

heat transfer from the structures with respect to experimental results. The surface

heat fluxes obtained from the numerical model matched closely with the experimental

results. A parametric study was conducted to understand the effect of evaporator

liquid-fill level on thermal performance. A reduction in liquid level of water increased

the CHF for boiling with plain surfaces. In case of enhanced structures, the results

suggested the existence of an optimum liquid level for maximum heat transfer. The
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optimum liquid level increased with increase in the height of the enhanced structure.

A numerical model has been developed to study condensation of water in

horizontal rectangular microchannels. The model incorporated surface tension, axial

pressure gradient, liquid film curvature, liquid film thermal resistance, gravity and

interfacial shear stress, and implemented successive solution of mass, momentum and

energy balance equations for both liquid and vapor phases. The study is done for

rectangular channels of sidewalls varying between 100-500 µm (corresponding to Dh

= 150-375 µm) and mass flow rates of 70-110 kg/m2s with a fixed wall temperature.

The results showed that significantly higher heat transfer coefficient can be achieved

from a rectangular microchannel compared to a circular channel of similar hydraulic

diameter. Increasing the inlet mass flow rate leads to higher heat transfer coefficient,

while increasing the inlet temperature difference between wall and vapor also leads

to a thicker film and a gradually decreasing heat transfer coefficient. Increasing the

channel dimensions leads to higher heat transfer coefficient, with a reduction in the

vapor pressure drop along the axial direction of the channel.

The unique contributions of the study are: extending the knowledge base and

contributing unique results on the effects of sub-atmospheric pressures, enhance-

ment structure geometry and liquid-fill volume on the thermal performance of

thermosyphons with water as the working fluid and development of a unique model

for condensation of water in rectangular microchannels and identifying the system

parameters that affects the flow and thermal performance during condensation.

xvii



CHAPTER I

INTRODUCTION

Micro-electronic parts are the heart of most of the electronic systems which are used

in our daily life. The current trend in micro-electronic part design is to increase the

level of integration, miniaturize the microprocessor size, increase the clock speed and

thus provide low cost solutions. The design topology has increased the functionality

of the devices significantly, however, numerous issues have also appeared regarding

electrical performance, interconnect reliability and thermal performance. These issues

need to be addressed for designing a reliable and functionally efficient final product.

The continuous advancement in design for higher performance microelectronic

chip is responsible for generating higher transistor switching speeds and reduction in

the chip size, which has resulted in an increase in total power dissipation as well as the

the heat flux from the silicon device, typically in the range of 100 W/cm2. According

to the predictions of the International Technology Roadmap for Semiconductors,

2006 [1], the power dissipation from chips for high performance desktop applications

will cross 190 W by 2007 and is expected to reach 200 W in the next five years.

The predictions follow a general trend observed over the years - with increase in the

performance of chips, there has been a steady escalation in the power dissipation,

as seen in Figure 1. This growing heat dissipation from the chips raises various

design issues, as chip performance is dependent on the operating temperature. It is

well-known that with reduction in chip operating temperature, the reliability of the

chip increases exponentially. Apart from that, lower operating temperatures induces

higher switching speeds in the semiconductor gates and also is responsible for lower

leakage power. So a lower thermal budget will provide better yield in reliability and

1



performance. As a result, design of thermal solutions capable of dissipating large

surface heat fluxes and volumetric heat generation rates from electronic parts has

become an important issue. Novel ways of heat dissipation are required which can

keep chips well below the acceptable temperature, typically in the range 85 oC.

Thermal management of electronics can be achieved by passive or active means, by

employing either air or liquid coolants. Air cooling through forced convection by fans

has been the most popular way of thermal management for electronics applications.

Fans are generally attached to the electronic devices and their popularity is due to

their cost, reliability, efficiency and ease of implementation. However, air cooling

has the inherent limitations of noise, bulky size and inefficient cooling performance.

Liquid cooling on the other hand is a very attractive alternative solution for heat

dissipation from electronics and it achieves very high heat transfer coefficients. Liquid

cooling can be achieved through direct or indirect contact of liquid with the electronic

equipments, either through single-phase or two-phase heat transfer. In direct-contact

liquid cooling, the electronic device is immersed in the working fluid and as such,

the cooling system is designed to be integral with the device. On the other hand, in

indirect-contact liquid cooling, heat transfer takes place by conduction (through an

interface) from the electronics to the working fluid and this process introduces higher

thermal resistance to heat flow between electronics and working fluid. However,

proper choice of highly conducting working fluid and use of thermally-conductive

interface material in the electronics-cooling system junction may mitigate the thermal

resistance. On the other hand, choice of two-phase heat transfer over single-phase

can also be beneficial in achieving very high heat transfer coefficients, typically in the

range of 106 W/m2, as the latent heat component is responsible for bulk of the heat

transfer during phase change.

Clearly, there is a need to design highly efficient and compact thermal solutions

to address the issues of high heat dissipation, size, placement and reliability with the

2
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exciting prospect of using two-phase heat transfer.

1.1 Motivation for the Current Study

As we have seen in the previous section, the increase in the heat dissipation from

newer generation of electronics and the decrease in the overall system size is making

thermal management of electronics an important issue in the overall design of the

system. Highly efficient and compact thermal solutions will be needed to address the

issues of heat dissipation, size, placement and reliability. In this respect, a two-phase

liquid cooling system provides an exciting thermal solution through combination of

the various categories described in the previous chapter.

A thermosyphon is a device, which implements two-phase heat transfer through

successive evaporation and condensation of the working fluid in a closed loop system.

Thermosyphon consists of two separate chambers - an evaporator and a condenser

connected to each other in a closed loop. The two most common configurations

of thermosyphons are single chamber and dual chamber thermosyphons. In the

single chamber configuration, the direction of vapor flow is opposite to the direction

of condensate flow, which may create a dry-out situation in the evaporator at

high heat fluxes (¿ 30 W/cm2). As a result, single chamber configurations are

not suitable for high heat flux applications. The dual chamber thermosyphon, as

shown in Figure 2, has the inherent advantage of handling liquid and vapor in two

separate chambers and thus addresses the disadvantageous issue of the single chamber

thermosyphon. Moreover, there is flexibility in the placement of the two chambers,

which helps in designing a configuration for tackling space constraints in modern

compact electronic systems. The evaporator is placed in direct contact with the

heat source. The absorbed heat from the source helps in vaporizing the working

fluid. An internal pressure head, generated due to difference in density of liquid

and vapor (the condenser is placed above the evaporator in this configuration) is
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responsible for the transport of the vapor from the evaporator to the condenser. The

vapor gets condensed back to the liquid in the condenser by releasing the absorbed

heat to the ambient. The condensed liquid then returns back to the evaporator

through the connecting tubing and the cycle continues. The density driven pressure

head makes the thermosyphon an attractive thermal management solution as a

passively run system. Considerable research has been done on the suitability of using

thermosyphon as a thermal management solution. Research done under laboratory

setting has shown the importance and prospect of thermosyphon as a compact, high

performance thermal management device, both in terms of flexibility afforded through

the independent placement of the evaporator and the condenser and cooling capacity

range. Proper design considerations of the thermosyphon needs to incorporate the
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fundamental understanding of boiling and condensation, which will help in designing

the two most important chambers of the thermosyphon - evaporator and condenser.

Over the years two distinct type of studies have emerged on boiling - boiling with

enhanced structures and boiling at sub-atmospheric pressures. Extensive research

has been done to understand the boiling phenomena with enhancement structures.

The studies have involved boiling enhancement structure of various configurations -

surface enhancements, stacked porous structures, commercial enhancement structures

like Gewa-T, Hitachi Thermoexcel etc. The studies have highlighted the reduction

of incipience overshoot and higher heat flux capability as the beneficial aspects of

using boiling enhancement structures (one of the studies is highlighted in Figure 3).

Moreover, some studies have shown that the use of boiling enhancement structure

may lead to a reduction in the size of the evaporator. Most of the studies done

on enhancement structures used dielectric liquids like PF5060, FC72 as the working

fluid. Water on the other hand, has been shown to possess better thermal properties

with respect to dielectric liquids. Moreover, with respect to electronics cooling

applications, low temperature initiation of boiling is desired. This will necessitate

the creation of sub-atmospheric conditions in the evaporator, which will lower the

saturation temperature of water and thus aid in low temperature initiation of boiling.

Pal et al. [3] demonstrated a thermosyphon prototype implemented in a commercial

desktop PC, incorporating boiling enhancement structures with water as the working

fluid. Their study showed that water at reduced pressures performed as a better

working fluid than PF5060 (Figure 4). However, few works exist in the area of sub-

atmospheric boiling of water with enhancement structure, so there is a definite need

for thorough understanding in this area. Moreover, the operational characteristics of

thermosyphon at reduced pressures are poorly understood. As a result, a closer

look into the fundamentals of boiling of water at reduced pressures is required,

which will provide considerable knowledge base for optimizing the performance of

6



Figure 3: Comparison of heat transfer between enhanced and plain polished surface
with FC-72 as working fluid (Adapted from Ph.D. thesis of C. Ramaswamy, A compact
two-phase thermosyphon employing microfabricated boiling enhancement structures,
University of Maryland, College Park, 1999 )

the thermosyphon under varying conditions of internal temperature and pressure,

enhancement structure geometry and external heat loads.

Apart from the operating pressure and geometry of the boiling structure, the

liquid-fill volume is also an important criteria for the design of closed loop thermal

solutions like the thermosyphon. Previous studies on boiling of liquids at atmospheric

pressures have shown that the liquid-fill volume should be sufficient to keep the boiling

structure completely immersed. However, in a closed system at sub-atmospheric

pressures, the liquid-fill volume also affects the pressure inside the system. The

volume of the liquid will affect the volume of the vapor space available and depending

on the rate of vapor generation, the vapor pressure inside the system will vary

accordingly. However, the effects of the liquid-fill levels on the thermal performance
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of thermosyphons have largely been overlooked. So a detailed parametric study on

the thermal performance at various liquid-fill levels will help in understanding the

optimum liquid volume with respect to pressure and enhancement structure geometry

and thus aid in designing a compact evaporator.

While a proper design of the evaporator will address the heat transfer issues from

the source to the sink, a proper design of the condenser would address the issue of

dissipating the heat from the heat sink to the ambient atmosphere. Countering the

thermal resistance in the air-side of the condenser is a major issue in the design of

heat sinks. However, for in-tube condensation, the heat transfer coefficient has a

substantial effect on the overall heat transfer characteristics of the condenser. Use

of micro-channels for the transport of working fluid would certainly increase the

surface area of heat transfer. Moreover, for non-circular channels, an additional heat

transfer enhancement mechanism, the “Gregorig Effect” [4] comes into play because

of surface tension in small length scales. Some recent modeling studies have shown

that condensation heat transfer can be improved with the use of micro-configured

channels of non-circular cross-section. The studies are preliminary in nature and do

not present an integrated approach in accounting for the combined effects liquid and

vapor transport. As such, more detailed studies are required to validate the previous

studies and also provide new insights into the condensation phenomenon.

1.2 Literature Review

1.2.1 Thermosyphon as a thermal management solution

Considerable prior work exists on the use of thermosyphon as a cooling device. Studies

on the operation of thermosyphons have targeted both experimental and theoretical

fronts. The experimental research were conducted for studying the effect of the various

operational parameters like liquid-fill volume, inclination, geometric dimensions, and

working fluids for obtaining optimum thermal performance. The modeling studies, on
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the other hand, have focussed on gaining an understanding of the interaction between

the flow parameters and heat transfer.

Palm and Tengblad [5] reviewed simple and advanced thermosyphon loops and

also thermosyphons involving cooling by immersion boiling and by use of an external

thermosyphon. A thermosyphon design with multiple evaporators was proposed by

Tengblad and Palm [6]. The thermosyphon was used for cooling of hot components

on vertical printed circuit boards (PCB) and utilized R142b and R22 as working

fluids flowing through copper evaporators and copper sheet condensers, which were

either air-cooled or water-cooled. Later, Ramaswamy et al. [7] investigated the

thermal performance of a dual-chamber thermosyphon with respect to evaporator

inclination, liquid fill volume and contact resistance. In their design, they used

boiling enhancement structure, similar to the design proposed by Nakayama et

al. [9]. Using a similar thermosyphon setup, Ramaswamy et al. [10] studied

the effect of evaporator confinement and transient loads on the performance of

a enhanced structure based thermosyphon. Later, Ramaswamy et al. [11] also

studied the combined effects of subcooling and operating pressure (40-350 kPa)

on the performance of the thermosyphon. Webb and Yamauchi [12] proposed a

different design of a thermosyphon, which utilized automotive type condenser. Their

condenser design had an aluminum construction and used R143a as the working

fluid. Under laboratory conditions, their system was able to dissipate 100 W for a

maximum boiling surface temperature of 70 oC. While the previous studies looked

into the fundamental principles of thermosyphon operation, Garner and Patel [13]

concentrated on the applicability of thermosyphons in high density packaging. They

showed that thermosyphons are capable of removing high heat fluxes, with minimal

volume requirement at the evaporator and can remove heat effectively from core

electronics module while being flexible in its arrangement. Later Yuan et al. [15] used

a thermosyphon configuration, similar to Ramaswamy et al. [8] and looked into the

10



evaporator and condenser location-specific design issues for the thermosyphon. All the

studies mentioned so far were laboratory implementations of various thermosyphon

configurations. Pal et al. [3] were the first in implementing a thermosyphon

configuration in a commercial desktop PC. Their design used water as the working

fluid and incorporated boiling enhancement structure in the evaporator. Their system

was capable of dissipating 85 W while keeping chip temperature below 85 oC. The

studies mentioned above shows that the operating principle of a thermosyphon can

be utilized in designing high heat flux thermal management solutions. However, a

detailed understanding of the operating principles will require the fundamental studies

of evaporation and condensation. A listing of the previous research on thermosyphons

is shown in Table 1.
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1.2.2 Review of boiling under sub-atmospheric conditions

Boiling of water at sub-atmospheric pressures has been investigated in the past by

researchers. The studies have been done mostly on plain surfaces or wires and in

some cases on machine roughened surfaces and were focused mainly on the effects

of reduced pressures on the bubble generation process, the critical heat flux, the

incipient superheat and surface temperature. One of the early works on boiling at

sub-atmospheric pressures was by Van Stralen [17], who studied boiling of water

and a mixture of methylethylketone on an electrically heated platinum wire within

a pressure range of 13-101 kPa. His observations pointed to reduced heat transfer

characteristics during boiling at sub-atmospheric pressures. He observed that the

transition period to the onset of nucleate boiling decreased with increasing pressure.

Decrease in pressure led to increase in the bubble sizes, while reducing the maximum

heat flux attained. All these characteristics, depicted a general shift in the boiling

curve towards lower heat transfer with reduction in pressure. Ponter and Haigh [18]

visualized boiling of water for the pressure range of 13-101 kPa with a tubular

stainless steel heater in a stainless steel cylinder. Similar to Van Stralen [17],

they also observed a reduction in potentially active bubble nucleation sites. Their

observations confirmed that bubble formation at low pressures differ markedly from

that at atmospheric pressure. Further, they also observed that the increase in

pressure led to an increase in the critical heat flux. Another notable study on the

mechanism of nucleate boiling at atmospheric and sub-atmospheric pressures was

by Miyauchi and Yokura [19], who suggested that a rapidly growing bubble would

accelerate the liquid surrounding the bubble, which will increase the pressure inside

the bubble with respect to the outside pressure. They believed that the process

would induce a higher saturation pressure inside the bubble, leading to a higher wall

superheat, which will suppress the bubble growth rate. Later, Van Stralen et al. [20]
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experimentally investigated the growth rate of vapor bubbles in water using a nickel-

plated copper-heating surface for a pressure range of 2-26.7 kPa. They observed

that the bubble departure time and departure radius increased substantially with

decrease in operating pressure. Joudi and James [21] focused on a pressure range

of 25-101.3 kPa for boiling in water, R-113 and methanol, and observed fluctuations

in the surface temperature during incipience. They noted that decreasing pressure

lowered the incipience superheat. They also observed that the number of incipient

bubbles greatly reduced with deceasing pressure. The incipient bubbles become

intermittent in generation, unpredictable in location and duration and deformed in

shape. Temperature fluctuations were also noticed with reduction in pressures at sub-

atmospheric pressures where bubble population greatly reduced. Fath and Judd [22]

investigated micro-layer evaporation and found higher wall superheats with decrease

in operating pressure. With increase in surface heat flux, they found an increase in

the bubble generation site density, which facilitated transfer of additional heat. With

increase in surface heat flux, they found an increase in the site density in bubble

generation, which facilitated transfer of additional heat. The frequency of bubble

varies with heat flux, however, decreases with pressure. Moreover, bubble flux density

increases with increasing system pressure. Latsch et al. [23] investigated subcooled

boiling in turbulent annular flow within a pressure range of 0.25-4 bar. They observed

that the ability of water to absorb air decreases rapidly at sub-atmospheric conditions,

so the difference between degassed and saturated water becomes considerably small.

They also observed that there is no difference between saturated and degassed water as

regards the initial boiling point. However, influence of pressure was not noted beyond

80 kPa. Tewary et al. [24] observed that the heat transfer coefficient decreases with a

decrease in saturation pressure in the nucleate boiling regime, within a pressure range

of 60-100 kPa. They studied nucleate boiling on a horizontal tube at atmospheric

and sub-atmospheric pressure with water and NaCl solution. McGillis et al. [25]
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investigated the boiling of water in a thermosyphon configuration at sub-atmospheric

pressures using a plain surface with surface enhancements. They observed that

lower pressure generated larger nucleation bubbles, which impeded growth of active

nucleation sites, resulting in larger wall superheats. However, surface enhancements

improved the heat transfer with lower wall superheat and increased the critical heat

flux. More recently, Rainey et al. [26] did experiments with FC-72 at reduced pressures

from microporous structures in the pressure range of 30-150 kPa for liquid subcooling

range of 0-50 oC and observed that increase in pressure brings an increase in CHF

with a decrease in boiling incipience.

A selective listing of the previous research on boiling at sub-atmospheric pressures

is shown in Table 2.
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1.2.3 Review of boiling with enhancement structures

The high heat flux capability of enhanced structures for boiling with dielectric liquids

and refrigerants makes them excellent candidates for integrating in the evaporator

of compact thermosyphons. Surface microstructures have been shown to enhance

the boiling heat transfer in liquid cooling of miniature heat sources by reducing

the incipience excursion and increasing the critical heat flux. Boiling enhancement

structures may employ microroughness, or porous and re-entrant cavities to increase

the number of active nucleation sites and also increase the effective heat transfer area.

However, heat flux capability of enhanced structures for boiling with water is not fully

understood. Existing literature on boiling with enhancement structures shows that

the enhancement varied from machine-induced roughness to more complex structure

of interconnected pores and channels. Most of these studies were done at atmospheric

pressure. A list of some of the research employing boiling enhancement structures for

electronics cooling is provided in Table 3.

Nakayama et al. [27] studied boiling from enhanced structures at atmospheric

pressures with R-11, water and liquid nitrogen. The boiling enhancement structure

was made of interconnected internal cavities in the form of tunnels and small pores,

connecting the pool liquid and the tunnels. They did their experiments at decreasing

heat fluxes, and found that hysteretic behavior was less pronounced than that

observed in boiling from plain surfaces. For enhanced surfaces, the wall superheat

remained much lower than for plain surfaces for the range of heat flux applied for

the experiments. Bergles and Chyu [29] investigated pool boiling of water and R-113

from surfaces with porous metallic coatings. Their observations revealed hysteresis

in the boiling process; however, surface enhancements improved the heat transfer.

They also found that surface aging, surface sub-cooling and changes in heat flux

affect temperature overshoot and the resultant boiling curve hysteresis. Experiments

on boiling with commercial enhanced surfaces, Gewa-T and Thermoexcel-E, were
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done by Marto and Lepere [30]. The enhanced surfaces always produced higher heat

transfer coefficients than plain surfaces, though they noticed some variation in the

level of the performance among the various surfaces at low and high heat fluxes. They

also found that the surface, which was allowed to cool for the maximum amount of

time between successive boiling experiments, required the largest superheat prior to

bubble nucleation. Later, Nakayama et al. [9] experimented on enhancement of boiling

heat transfer using a stud, which has fine surface structures and was attached to the

back of the heat-dissipating device. Their experiments were done at atmospheric

pressure with both flourinert (FC-72) and refrigerant (R-11). They observed that the

boiling curve has a steeper slope prior to established nucleation than is expected in

natural convection. Anderson and Mudawar [31] used FC-72 as a working fluid and

found that boiling incipience increased with more non-boiling time (idle time between

successive boiling experiments). They found that their microstructures significantly

shifted the boiling curves toward lower superheats, while increasing the incipience

excursion. However, increasing roughness of the boiling surface initiated incipience

earlier and reduced the excursion.
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1.2.4 Review of boiling with various liquid-fill levels

For closed-loop systems, the liquid-fill ratio (defined as the volume of the working

fluid in the evaporator to the total volume of the evaporator) of the working fluid

in the evaporator is also an important design parameter. In a closed system like the

thermosyphon, the fill ratio of the working fluid will affect the volume of the vapor

space available and depending on the rate of vapor generation it will also affect the

vapor pressure inside the system. Moreover, optimizing the liquid-fill ratio will also

aid in the design of a compact boiling chamber. However, studies on the effects of the

liquid-fill ratio (or liquid-fill level) on the thermal performance of a thermosyphon are

very few and they are mostly concentrated on a particular internal pressure condition

with plain boiling surface.

Abou-Ziyan et al. [34] studied a two-phase closed loop thermosyphon with water

and R134a as working fluids for fill ratios of 0.4-0.8 (defined with respect to evaporator

volume). For water, they found that a fill ratio of 0.5 gave the highest heat output

flux. They found that the thermosyphon was sensitive to over-filling and under-filling

for variable input heat fluxes with respect to a fill ratio of 0.5. As a consequence,

the temperature of the adiabatic section was the lowest for the fill ratio of 0.5. Zuo

et al. [35] studied a pulsating heat pipe mechanism, which utilized thermally driven

movement of water in a serpentine loop. Their system achieved the highest heat flux

of 220 W/cm2 at fill-ratio of 0.7. A numerical model was proposed, which closely

predicted the optimum fill ratio, however, detailed thermal characterization of the

heat pipe with respect to the fill ratio was not provided. Ong and Haider-E-Alahi [36]

also studied heat pipes with R134a as the working fluid for fill ratios of 0.35 to 0.8.

The overall heat transfer coefficient of the thermosyphon increased with increase in

fill ratio. Beyond a fill ratio of 0.4, the heat transfer coefficient showed the greatest

increase. They found that the overall heat transfer coefficient increased monotonically

with respect to the overall temperature difference of liquid bath temperature and
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condenser temperature at a particular fill ratio. However, beyond a fill ratio of 0.5,

the heat transfer coefficient was almost invariant with respect to bulk temperature

difference. Park et al. [37] studied two-phase closed thermosyphon with FC-72 as the

working fluid for fill ratios of 0.1-0.7. They found that the effect of fill charge ratio

on the heat transfer coefficient in the evaporator was negligible. The fill charge ratio

had influence on the heat transfer coefficient in the condenser, where the fill charge

ratio was directly proportional to the condensation heat transfer coefficient.

The influence of fill levels, however, was quite different for dual chamber

thermosyphons. Previous studies [6, 7] on dual chamber thermosyphons have shown

that the thermal performance is independent of the liquid fill volume, as long

as the boiling structure remains completely immersed. Tengblad and Palm [6]

conducted experiments using refrigerants R142b and R22, in a closed loop two-phase

thermosyphon at 11 W of input power. They found that beyond an optimum fill-

ratio, the temperature in the evaporator was insensitive to the amount of liquid-

fill. However, they observed a sharp increase in the evaporator temperature at very

low fill-ratios, which they attributed to inadequate liquid supply to the evaporator.

Contrary to the behavior observed in the evaporator, the authors observed a decline in

performance of the condenser, even after increasing the liquid-fill beyond the optimum

level. They noted that at higher fill ratios, more liquid reached the condenser and thus

lined the walls of the condenser, which deteriorated its performance and increased its

temperature. Ramaswamy et al. [7] studied boiling heat transfer from a dual-chamber

thermosyphon, using PF5060 as the working fluid in the heat flux range 2-68 W/cm2.

They used four different liquid-fill levels, in which the boiling structure was kept

either fully-submerged or partially-submerged. Their observations were similar to the

observations of Tengblad and Palm [6]. They observed that the thermal performance

of the thermosyphon was largely unaffected by the liquid-fill levels, as long as the

structure was fully immersed in the working fluid. At very high heat fluxes, due to
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vigorous boiling, the bubbles near the surface might block the liquid from reaching

the surface, which resulted in a lower effective liquid-fill level, in which the structure

stays immersed.

1.2.5 Review of modeling approaches on in-tube condensation

Microchannel devices are an attractive solution for high heat flux thermal man-

agement, because of their compact size and high heat transfer capability. Recent

experimental works on small-scale channels and capillary pumped loops have shown

that microchannel based condensers can achieve very high heat transfer coefficients.

Interfacial tension at small scales is considered to be the primary factor for the

enhancement of condensation heat transfer through the Gregorig effect [4], as

discussed by Carey [38] and Rose [39]. Analytical studies on condensation have

been mostly confined to the annular flow model in circular channels in horizontal and

vertical configurations. While the most common approach is the Nusselt type analysis,

studies have also incorporated interfacial and wall shear stress [40, 41, 42, 43], no

liquid entrainment in the vapor core [44], surface tension [45], surface curvature,

surface waviness [46], condensate subcooling [43] and change in momentum between

vapor and fluid flow [47]. Moreover, gravity [48] creates an important difference

between the treatment of condensation in horizontal and vertical channels.

Compared to circular channels, condensation in non-circular channels/microchannels

has been much less studied. Chiou et al. [49] studied condensation in a horizontal

elliptical tube and showed that surface tension plays an important part in controlling

condensate thickness and provides better performance than circular channels. Guo

and Anand [50] presented one of the first studies on condensation in horizontal

rectangular channels by incorporating vapor shear force and gravity in the model.

The authors used Nusselt’s approach to obtain the condensate profile for the vertical

walls only, while the condensation on the horizontal walls were treated through
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correlations and mass balance. As a result, the liquid-vapor interface profiles were

not obtained for the top and bottom horizontal walls. Riehl et al. [51] considered

convective condensation in horizontal parallel rectangular microchannels having a

porous boundary on one vertical side. Their investigation concluded that the inertial

forces impart negligible influence on the Nusselt number. A detailed model for

condensation in vertical triangular mini channels (Dh = 0.58-1.16 mm) was proposed

by Zhao and Liao [52] taking surface tension into account. They divided the cross-

section of the channel into six symmetrical parts and solved for the condensation. The

condensate layer was divided They analyzed the liquid and vapor layers separately

and considered mass, momentum and energy conservation between them. Their model

predicted a gradual increase in the thickness of the liquid layer at the corner of the

channel, while thinning of the condensate layer occurred along the walls. The vertical

orientation of the channel led to a simplified model because of six-fold symmetry of

the triangular channel. With a horizontal rectangular/triangular channel, only two-

fold symmetry can be achieved, which was studied by Wang and co-workers [53, 54]

following a similar line of approach as Zhao and Liao [52]. Their model predicted

a thicker liquid zone at the corners of the channel compared to the channel walls

(similar to [52]), while showing a gradual increase in the thickness of the condensate

pool at the bottom of the channel. Using a similar modeling approach, Wang and

Rose [55] found that gravity has an effect on the condensate distribution along the

vertical and horizontal walls of a channel. They found that for rectangular channels

with aspect ratio (height/length) < 1, the condensate tends to accumulate along the

bottom wall of the channel, with thin films in the top and vertical walls, while for

aspect ratio > 1, thin condensate film tends to adhere to the vertical wall, while

the top and bottom walls are “flooded” with condensate. The model of Wang and

co-workers [53, 54, 55] however, did not solve the energy equation for the vapor core

and also did not mention how the coupling between the liquid and vapor phases was
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achieved. Moreover, their numerical analysis of the liquid in the corners of the channel

lead to a discontinuous profile of the condensate and heat transfer coefficient, which

might influence interfacial tension and ultimately, the profile of the condensate.

1.3 Objectives

The previous studies on enhanced structures were mainly performed at atmospheric

pressures, however the effect of sub-atmospheric pressures on enhanced structures

are not properly understood. Moreover, there is also a lack of understanding on the

effects of enhanced structure and sub-atmospheric pressures in a compact system like

dual-chamber thermosyphon. One of the main objectives of the current study is to

perform a comprehensive characterization of boiling of water at reduced pressures

in a compact thermosyphon loop using boiling enhancement structures. Since water

possesses better thermal properties than dielectric liquids, the thermal performance of

a thermosyphon using water is explored experimentally for various system pressures,

enhancement structure geometries and external heat loads and is part of the objective.

A part of the objective is also to compare the thermal performance of the boiling from

enhanced structures to boiling from a plain surface.

The previous experiments on the effect of fill ratio were mostly performed at

atmospheric pressures, and as such the effects of pressure were ignored. Moreover,

the effect of boiling enhancement structure in presence of different liquid-fill levels is

not fully understood. In this regard, another main objective of the current study is to

understand the influence of liquid-fill levels on the heat transfer in a thermosyphon

utilizing boiling enhancement structures at sub-atmospheric pressures. In a two-

phase system with heat exchange between the evaporator and condenser, volume of

the two phases will affect the condensation heat transfer, which will in turn affect the

surface heat flux conditions and vice versa. In that respect, the current study will

incorporate varying saturation conditions inside the thermosyphon at different heat
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fluxes at different liquid volumes.

So the main objectives of the experimental study on boiling will be to:

1. Investigate the boiling process from enhanced structures at varying system

pressures.

2. Investigate effect of the boiling enhancement structure geometry.

3. Investigate effect of liquid fill on the thermal performance.

The literature survey shows that the present state-of-the-art in modeling of

condensation in rectangular microchannels lacks an integrated approach in combining

the transport behavior of fluid and vapor phases and needs further validation with

new modeling approaches. In this regard, the main objective of the numerical

study will be to develop a detailed model of condensation in rectangular channels

through simultaneous solving of the mass, momentum and energy equations and by

incorporating gravity, surface tension, interfacial shear stress, axial pressure gradient,

saturation temperatures and interfacial thermal resistance. As a whole, the numerical

work will focus on the following objectives:

1. Characterization of heat transfer performance during condensation in mi-

crochannels.

2. Development of a model to simulate the condensation in rectangular microchan-

nel.

1.4 Summary and Organization of the Current Study

The trend in increasing heat flux from high performance microelectronic parts

has motivated the development of efficient two-phase thermal management devices

through more detailed studies on two-phase heat transfer. Dual-chamber ther-

mosyphons are very attractive solutions for implementing two-phase heat transfer.
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The proper design of thermosyphon would need detailed understanding of the

mechanism of boiling and condensation in the thermosyphon. Existing literature

shows a lack in the understanding of boiling at sub-atmospheric pressures with

water. Moreover, condensation in microchannels requires a detailed understanding

for designing compact condensers with high in-tube heat transfer coefficient. The

current study attempts to address the above issues through detailed studies on the

boiling of water at sub-atmospheric pressures with enhanced structures and also on

condensation in microchannels. A brief literature review is also presented to give a

perspective on the existing state-of-the-art on boiling and condensation studies and

the areas in which improvements are sought. All the issues mentioned above are

discussed in the present chapter.

In chapter 2, the details of the experimental setup designed to carry out the

boiling experiments are discussed. The fabrication of the experimental setup, the

experimental procedures, the data acquisition system and the uncertainty in the

measured data are discussed.

In chapter 3, the results of the experimental study on the effects of pressure and

enhanced structure on thermal performance are discussed. The details of a baseline

study on boiling of water from a plain surface at sub-atmospheric pressures are also

discussed. In this chapter, the discussions are done with respect to boiling curves at

the pressures of interest.

In chapter 4, the effects of liquid-fill volume on the thermal performance of the

thermosyphon are discussed. The boiling curves and the thermal resistance data are

discussed to study the effects of three liquid-fill levels for all the boiling structures

and saturation pressures under consideration.

In chapter 5, the detailed numerical model for studying condensation in rectan-

gular microchannels is discussed. The assumptions made for the numerical model

are discussed, the governing equations for mass, momentum and energy transport are
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derived from the conservation equations, the discretization steps are discussed and

finally the solution procedure is also discussed.

In chapter 6, the results of the numerical simulation of condensation in a

rectangular microchannel is discussed. The transport and heat transfer phenomena

in a rectangular microchannel are discussed with respect to the profiles of the liquid-

vapor interface profile along the channel and also with spatial variation of various flow

and thermal parameters like heat transfer coefficient, quality, void fraction, liquid and

vapor phase velocities, pressure drop etc.

In chapter 7, final conclusions are drawn from the present study and an overall

summary is given for the study. The unique contributions of the study are highlighted

and the recommendations for future work to improve upon the present work are also

discussed in this chapter.
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CHAPTER II

EXPERIMENTAL SETUP AND PROCEDURES

Boiling experiments were conducted in a thermosyphon prototype, which was

designed to accommodate a wide range of external heat flux and simultaneously allow

measurement of pressure and temperature at various locations in the system. The

evaporator was the main focus of the experimental study. An important component

of the evaporator was the boiling enhancement structure. Different geometries of

the structure were considered to assess their effect on the boiling heat transfer.

Another important design parameter for the evaporator was the volume of working

fluid, which was studied by subjecting the evaporator to various amounts of liquid

charge. Moreover, the operating pressure was also changed to find the optimum

operating envelope. In the following sections detailed descriptions are provided of the

components, the data acquisition process and the measurement uncertainty in the

parameters.

2.1 Experimental Setup

The test setup, seen in Figure 5, consisted of the evaporator and the condenser

connected through flexible copper tubing (external diameter 6.35 mm). A full

view of the experimental setup is shown in Figure 6. This arrangement created

a thermosyphon loop with the condenser placed at a higher elevation than the

evaporator, which helped in gravity-assisted draining of the condensed liquid from

the condenser to the evaporator. The experimental setup was designed to monitor

and control the various process parameters through a data acquisition system.

A detailed sketch of the evaporator along with the heat-generating unit is shown in

Figure 7. A fully assembled heater block housing is shown in Figure 8. The evaporator
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Figure 6: Full view of experimental Setup
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was an annular cylindrical chamber, 65 mm in height (height of the cavity inside was

∼ 42 mm) and 38 mm in inner diameter, made of translucent polycarbonate, which

allowed the viewing of the liquid level inside the chamber and the initiation of bubble

generation. The top and bottom of the evaporator chamber were enclosed by two

polycarbonate caps, each one press-fitted with two Buna-n o-rings. The top cap

allowed passing of the vapor to the condenser, while the bottom cap was press-fitted

to the heat input block and allowed the introduction of the enhancement structure

into the evaporator chamber. The heat input block was a cylindrical copper rod, 20

mm in diameter and 82 mm in length, press-fitted to the bottom cap with double

o-rings. One end of the block was machined to a 12.7 mm square cross-section of

around 2 mm height. After fitting the copper rod in the bottom cap (through a

square shaped hole ∼ 12.7 mm), the square surface was flush with the top surface of

the bottom cap. The exposed square surface was used as the boiling surface in the

baseline study. Boiling enhancement structures were soldered to the square surface

for the rest of the experiments. The other end of the block had a drilled-hole for

accommodating the heat source. A cartridge heater (maximum power of 200 W)

was used as the heat source. A high thermal conductivity paste (k = 2.3 W/m-k,

temperature resistant up to 200 oC) was used between the cartridge heater surface

and the drilled-hole surface to reduce thermal contact-resistance between them.

For the present study, de-ionized water was chosen as the working fluid and for all

the experimental runs the evaporator was charged almost to its full capacity with

approximately 0.06 kg of water. The power to the cartridge heater was supplied from

a variac (0-140 V), connected in series to a 1 Ω precision resistor. The voltage drops

across the cartridge heater and the precision resistor were measured separately to

obtain the power input to the heater. Temperatures at various points in the system

were measured with type-T (Copper-Constantan) sheathed thermocouples (diameter

∼ 0.08 mm). The temperature gradient along the copper block was calculated from
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Figure 8: Fully assembled view of the heater block housing
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the temperatures measured by 8 thermocouples, which were fitted inside small grooves

along the length of the copper block at varying distances from the boiling surface.

Grounded type-T thermocouple probes were placed at following points inside the

system: evaporator chamber, in the flow path between evaporator and condenser,

condenser entry and condenser exit. The pressure inside the system was measured by

a high precision current output (4-20 mA) pressure transmitter (0-200 kPa absolute),

which was accurate up to 0.13% of the full scale.

2.1.1 Boiling Enhancement Structure

A principal focus of the study was to investigate the effect of enhancement structure

on boiling at sub-atmospheric pressures. The structure used in the present study

is similar in construction to the ones used by Nakayama et al. [9], Ramaswamy et

al. [33] and Launay et al. [56]. A detailed sketch of the enhancement structure used

in the present study is shown in Figure 9. The basic component of the structure

was a single layer of copper (12.7 × 12.7 × 1 mm), in which an array of rectangular

channels (width 0.35 mm) was cut in mutually perpendicular directions (pointed in

Figure 9 as “channel”, which is cut on one side of the copper layer and “cross-cut”

channel, which is cut on the other side of the copper layer) on both sides. The depth

of each channel is more than half the thickness of the copper layer, resulting in the

intersection of channels from both sides, forming an array of square pores.

The copper structure layers were fabricated using the wire EDM (electro discharge

machining) method. The individual copper layers were stacked on the square surface

of the copper block with a layer of 63Pb-37Sn ribbon-solder in between them. The

stacked structure was bonded to the copper block by achieving a junction temperature

greater than 200 oC. The enhancement structure thus formed (Figure 9), resulted in

geometrical features that are different from the geometries of surface enhancements

used in previous studies on sub-atmospheric pressure boiling. For the present study,
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four different geometries of the structure were considered - 1 layer, 2 layers, 4 layers

and 6 layers.

2.1.2 Condenser Section

The evaporator and the heating block assembly were connected to a aluminum

fin-tube single-pass condenser (140 fins) with copper tubing. Figure 10 shows the

condenser location in the experimental setup, with transparent tubing (used during

trial experiments). The fins were 50 mm × 25 mm (height × width) in dimension,

with a gap of approximately 5 mm between a pair of fins. The inner diameter of the

condenser tube was 4.25 mm and the wall thickness was 1 mm. The condenser was

kept above the evaporator and the height between the plain boiling surface (flush with

the bottom of the evaporator cavity) and the centerline of the inlet to the condenser

was approximately 180 mm. The condenser tube is slanted downwards from the inlet

to the outlet to allow gravity-assisted drainage of the condensate. The size of the

condenser was sufficient for rejecting heat loads in excess of 180 W (the highest heat

load tested). The heat transfer from the condenser to the ambient was controlled
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Figure 10: Location of condenser in the experimental setup
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throughout each experimental run for maintaining a constant saturation condition

inside the evaporator. At low heat fluxes, the condenser was kept covered with foam

insulation. With increase in heat flux, the covered area was decreased and beyond 100

W, the condenser was totally exposed. Forced air cooling (using two fans, as shown in

Figure 10) was sufficient to cool the condenser till 150 W. Beyond 150 W, evaporative

cooling was employed (water droplets dripping on the condenser tube with air blown

from the fans, not shown in Figure 10). The combination of foam insulation, forced

air and evaporative cooling helped in maintaining a constant saturation temperature

in the evaporator throughout the entire heat flux range for each experimental run.

2.2 Experimental Procedure

Great care was taken to ensure that the setup was leak proof over a long period of

time. Leakage test was done by evacuating the thermosyphon to 2 kPa pressure, then

closing the system valve and leaving the setup at idle condition at room temperature

for a 24 hour period. After one day, the system pressure increase was found to be

negligible (∼0.1-0.2 kPa), which was considered as an acceptable amount of pressure

loss, as the running time for all the experimental runs for a particular set of pressure-

structure geometry was typically 2-3 hours. After each experimental run, the system

was allowed to cool down for 2 hours; after that time, the pressure inside the system

returned back to the initial pressure at the beginning of the experiment, which also

showed that the setup was leak-proof.

Repeatability of measured data was checked for boiling with single-layer structure

at 9.7, 15 and 21 kPa. The experimental data was found to be within a maximum

variation of 5% of the baseline data. It was observed that leak-proof setup achieved

excellent repeatability of data from experiment to experiment with same set of

parameters.

Every experimental run was preceded by a degassing operation of the working
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fluid. The degassing was done in a separate setup. The evaporator chamber for the

degassing operation was similar in construction to the one used in the experimental

runs and was connected to a spiral tube reflux condenser through a quick coupling

(valved) connection. Vigorous boiling was initiated in the degassing chamber by

supplying a heat input of around 80 W for about 1 hour. During boiling, the

reflux condenser was cooled by ice-cold water to trap the vapor from the expelled

gas mixture. The condensed liquid returned back to the evaporator due to gravity.

After completion of boiling, the degassing chamber was disconnected from the reflux

condenser by releasing the quick coupling. The liquid was allowed to cool for more

than 2 hours. The degassed liquid reached room temperature by that time.

After the degassing procedure, the thermosyphon was evacuated to 2 kPa pressure

(traces of water inside the system didn’t allow the pressure to go lower than 2 kPa),

followed by closing of the system valve. Next, the chamber containing the degassed

liquid was connected to the system valve of the thermosyphon. Then the system

valve of the setup was opened and the thermosyphon was charged with water till the

chamber was filled to the desired liquid level corresponding to the experiment. The

pressure difference ( 99 kPa) between the degassing chamber (atmospheric pressure)

and the thermosyphon allowed the degassed water to flow from the degassing chamber

to the thermosyphon. Because of pressure equalization during the charging procedure,

the pressure inside the thermosyphon increased slightly during charging. After

charging, the system valve was closed and the degassing chamber was disconnected

from the valve. Then the vacuum pump was connected to the system valve and by

opening the valve, the thermosyphon was evacuated again to a pressure of 2.5 kPa.

After the evacuation, the system valve was closed and thermosyphon was ready for the

start of experiments. Foam insulation was applied over the evaporator, the condenser

and the tubing before starting the heat input to the system.

Before the start of the experiments, the desired saturation temperature in the
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evaporator was attained by raising the liquid temperature with the help of a thermo-

foil heater, wrapped around the evaporator chamber. The existence of saturation

condition inside the system was checked with the correspondence between the

temperature and pressure measured at a particular point in the loop (Figure 5).

After the saturation temperature was reached in the evaporator, the experiments

were started with initial heat input of 2 W and incremented in steps of 2 W till 10 W,

then 10-20 W in steps of 5 W, 20-50 W in steps of 10 W, 50-150 W in steps of 20 W,

and beyond 150 W in steps of 10 W to a maximum of 180 W. Around 15-17 runs were

performed during boiling at each system pressure, unless critical heat flux (CHF) was

encountered or the highest temperature recorded in the copper block reached 140 oC.

The CHF condition was defined by a temperature rise of 20 oC in 20 s of the top-most

thermocouple in the heater block. The choice of 140 oC was dictated by the thermal

property of the polycarbonate in the heater block housing, parts of which began to

melt around 140 oC. After reaching the limiting condition, the power input to the

system was slowly decreased to 0 V and the system was allowed to cool down and the

system was allowed to cool down till system pressure reached an equilibrium condition

with the ambient temperature. The heat flux at the onset of CHF was noted for each

case.

Temperatures were recorded every 3 s throughout the running time of each

experimental run. Steady state at a particular heat flux was defined by a variation of

less than ±0.3 oC of the heater block temperatures about a steady mean value. After

the system had reached steady state, the parameters were recorded and the analysis

was done with the data recorded in the last 120 s.

A listing of the system parameters for the experiments is given in Table 4.
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Table 4: System Operating and Geometrical Parameters

Parameter Values
Vapor pressure 9.7 kPa, 15 kPa, 21 kPa

Liquid fill height 20 mm, 29 mm, 39 mm
Structure height 0 mm, 1 mm, 2 mm, 4 mm and 6 mm

2.3 Data Acquisition

Data acquisition consisted of monitoring the temperature and pressure inside the

thermosyphon and power input to the heater. The measurements were carried out

using a computerized data acquisition system. The system consisted of an Agilent

34970A Data Acquisition switch unit, which can house up to three individual Agilent

34901A 20 channel multiplexer modules. The thermocouples and the electrical wires

were fed into a multiplexer module. The switch unit converts the multiplexed analog

signal from the module to a digital signal and sent the signal through a GPIB cable

to a Agilent 82350A PCI-GPIB interface card housed in a PCI port of a Pentium 2.8

GHz PC.

The signal received from the switch unit was displayed in the computer with the

help of Agilent Benchlink software. The sampling rate for the temperature readings

was 300 per second, per channel and 900 samples were averaged per channel for one

temperature reading. This resulted in one averaged temperature reading every three

seconds per thermocouple. A 20 Hz filter is used on the channels measuring AC

voltage to optimize the AC measurement accuracy corresponding to the frequency of

the supplied voltage.

The voltage and current input to the system were measured with the data

acquisition system. The current input to the heater was obtained by measuring

the voltage drop across a precision resistor (1 Ω ± 0.01 Ω) placed in series with the

heater. The output from the pressure gauge was in mA, which was converted to
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absolute pressure using a linear scale for the full range of the gauge output.

2.4 Uncertainty Analysis

The maximum uncertainty in the electrical heat input was ±1%. The precision

resistor used to measure the current in the circuit was accurate to 1%. The

thermocouples and the data acquisition system were calibrated with respect to

a resistance temperature device (RTD) probe calibration system at five different

temperatures (20 oC, 40 oC, 60 oC, 80 oC and 100 oC) to a maximum uncertainty

of 0.1 oC. Heat flux through the test surface was determined through a combination

of electrical and thermal measurements. Eight type-T thermocouples were spaced

at distances of 7 mm, 9.9 mm, 13 mm, 16 mm, 19.5 mm, 23 mm, 27 mm and

31 mm from the test surface to measure the temperatures and help in calculating

the heat flux through the surface. The tip of the thermocouple probes were kept

in contact with the bottom of the probe holes before epoxy was applied to attach

the probes to the holes, to reduce the thermal contact resistance at probe contact

points. A numerical heat conduction model showed that the heat flow through the

copper rod could be assumed to be one-dimensional with reasonable accuracy. So,

the heat flux at the test surface was obtained by calculating the slope of a fitted

line through the thermocouple measurements. The power input to the system was

obtained by the product of the voltage drop across the cartridge heater and the current

flow through the precision resistor. The difference between the heat flux calculated

from temperature measurements and the electrical heat input was less than 5% at

higher heat fluxes (> 20 W/cm2). This was largely attributed to the uncertainty in

the location of the thermocouples. The measurements at very low heat fluxes (< 5

W/cm2) showed a larger scatter (maximum of 20%), which produced slightly higher

uncertainty in the heat flux measurement. The uncertainty in the heat flux measured

from the electrical data was±10.0% (see Appendix A). The corresponding uncertainty
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in the wall temperature measurement was about ±0.5 oC. The vapor pressure in the

evaporator was obtained from NIST data, corresponding to the temperature in the

vapor zone. The variation in the temperature of the vapor zone was less than 0.5

oC, while the pressure measured by the transmitter showed a variation of less than

10%, based on the theoretically predicted saturation temperature compared to the

measured temperature at that location.

2.5 Summary

In this chapter, the details of the experimental setup were discussed. The important

components of the experimental setup were identified and their fabrication and

assembly details were described. This was followed by a description of the data

acquisition system, in which the arrangement of the various components of the system

along with the specific settings required for measuring some of the parameters were

discussed. A step-by-step procedure for the execution of the experiments followed

next, which was succeeded by a tabular representation of the different values of

the thermosyphon design parameters investigated in the present study. Finally,

the measurement techniques employed for monitoring the various parameters was

discussed.
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CHAPTER III

EFFECT OF PRESSURE AND ENHANCEMENT

STRUCTURE ON THERMOSYPHON PERFORMANCE

The effect of pressure and enhancement structure on the thermosyphon performance

will be discussed in the present chapter. All the experiments were done by increasing

heat flux until either the inception of CHF condition or the highest temperature

recorded by the thermocouples embedded in the copper heater exceeding 140 oC. The

air-side thermal resistance of the condenser also limited the system heat rejection,

and the maximum heat flux that could be applied to the structure. The liquid level

was kept at 39 mm from the boiling surface in all the runs, which represented a full-

fill condition of the evaporator. The boiling curves are shown on linear scale as the

variation of heat flux with respect to the wall superheat.

All the experiments were done at increasing heat flux conditions. Trial runs

were performed with decreasing heat fluxes for some pressure-structure geometry

combination, which produced similar boiling curves with respect to increasing heat

flux cases, with a a maximum variation of 5% for heat fluxes greater than 20 W/cm2.

Similar to the present study, Nakayama et al. [27] found that hysteretic behavior is

less pronounced for boiling with enhancement structures.

3.1 Baseline Study

Boiling at sub-atmospheric pressures was first studied with an emery polished plain

copper surface of dimension 12.7 mm × 12.7 mm at pressures of 9.7 kPa, 15 kPa and

21 kPa, with a full-fill (liquid height = 39 mm) condition. From visual observation, it

was found that intermittent bubbles were generating from the surface at long intervals
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during the initial stages of power input (2-6 W/cm2), which changed to fully developed

boiling at approximately 12 W/cm2. By that time, the liquid pool was fully agitated

from large sized bubbles generating from the plain surface. Beyond 55 W/cm2, the

power input was gradually increased in steps of 3 W/cm2, until it reached the desired

power, at which temperatures were recorded. This was done to closely monitor the

point at which CHF was initiated.

Figure 11 shows the resulting boiling curves at the pressures of 9.7 kPa, 15 kPa

and 21 kPa. Data from McGillis et al. [25] and Latsch et al. [23], as well as the

boiling curve of FC-72 (nucleate boiling zone only) derived from the correlation

developed by Rainey et al. [26] are also shown for comparison. The improvement

in heat transfer obtained with boiling of water with respect to FC-72 is clearly

evident. At 80 W/cm2 the wall superheat for water was around 20 oC compared

to 55 oC for FC-72. Existence of incipience superheat is a common phenomenon in

boiling of dielectric liquids before the start of nucleate boiling (Rainey et al. [26],

Anderson and Mudawar [31], Ramaswamy et al. [33]), and is found to depend on

the saturation pressure. However, the present study shows that saturation pressure

has negligible effect on the incipience superheat in boiling of water. Gebhart and

Wright [57, 58] noticed a similar absence of incipience in boiling of water with micro-

configured surfaces and suggested the existence of early incipience and micro-boiling

from the observations. Moreover, water is less wetting on copper surfaces compared

to dielectric liquids, which also led to negligible incipience superheat noticed in the

current study. However, McGillis et al. [25] noticed wall superheats in excess of 5 oC

in their study on boiling of water from a plain surface of dimensions 12.7 mm × 12.7

mm (the results at 9 kPa are shown in Figure 11). It is to be noted that the evaporator

chamber of McGillis et al. [25] was not insulated. Due to heat loss from the evaporator

wall, a large wall superheat was required to reach saturated conditions at 9 kPa. This

is markedly different from the present study, where the heat loss from the evaporator
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Figure 11: Boiling curve for water on a plain surface at full-fill level in the evaporator

wall was compensated with a guard heater, which kept the bulk liquid temperature

close to the saturation temperature. As a result, the wall superheat was very low

during the initial stages of boiling (compared to McGillis et al. [25]). The effect of

pressure is clearly evident, as the heat flux capability is considerably decreased with a

reduction in saturation pressure. However, the effect of pressure is not noticed below

20 W/cm2. Beyond 20 W/cm2, the boiling curves show linear behavior until CHF is

reached. Van Stralen [17] observed a similar decrease in the maximum heat flux with

decrease in pressure, which was attributed to the larger size of bubbles generating

from the heating surface. Joudi and James [21] observed a reduction in the number of

bubbles generated from the boiling surface at reduced pressures. Fath and Judd [22]

observed similar increase in heat flux with increase in system pressure, though their

experiments were with dichloromethane. Bubble generation frequency increased with

increase in pressure. Other studies, which corroborate the above observations, are of

Tewary et al. [24], Latsch et al. [23] and Gorodov et al. [59]. However, the decrease in
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the heat flux is offset by the reduction in saturation temperature inside the evaporator

chamber with decrease in saturation pressure. This is particularly interesting for

electronics cooling applications, as very low surface temperature can be obtained in

these conditions. The maximum wall temperature recorded for the pressures of 9.7

kPa, 15 kPa and 21 kPa were 68 oC, 76 oC and 83 oC respectively.

Critical heat flux (CHF) was reached for all the cases under consideration. For

9.7 kPa, the CHF was 62 W/cm2, while for 15 kPa and 21 kPa it was 78 W/cm2

and 87 W/cm2 respectively. However, McGillis et al. [25] obtained a higher CHF (>

80 W/cm2) at 9 kPa from a plain copper surface. As discussed above, the absence

of insulation in the evaporator chamber can explain the high CHF obtained with

respect to the present study. Because of heat transfer through the evaporator wall,

the effective heat transfer coefficient in the evaporator was much higher in their

case, which resulted in higher CHF than that observed in the present study. In this

respect, it is believed that the current study documents a more controlled investigation

of boiling at sub-atmospheric pressures. A recent study by Pal and Joshi [60] has

shown that the CHF can be increased in sub-atmospheric pressure boiling of water

by lowering the effective liquid level in the evaporator. The liquid level in the case of

McGillis et al. [25] was much lower than the present study, which might also explain

the higher CHF obtained by them.

In Figure 12 a comparison of the CHF values with respect to existing correlations

is shown. The experimental results of Ponter and Haigh [18] match the predictions

of the Lienhard and Dhir [61] correlation very closely. The CHF values of the present

study are higher by a factor in the range of 1.1-1.3 with respect to the CHF values

obtained from Lienhard and Dhir’s correlation [61]. However, the CHF values of the

present study are within 20-25% of the correlation values, which is close to range of

scatter (±20%) as suggested by Carey [38]. The correlation of Lienhard and Dhir [61]

applies to boiling from plain surfaces in motionless liquid. The current results are for
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experiments in which liquid from the condenser was swept over the boiling surface,

which might be responsible for the improvement of CHF values. Moreover, the high

liquid column height (76 mm) used by Ponter and Haigh [18] might also lead to lower

CHF values, following the observations of Pal and Joshi [60].

With decrease in the operating pressure, the density of the vapor decreases. As a

result, the bubble sizes during boiling at low pressure are larger compared to boiling at

atmospheric pressures. Visual observation during degassing showed that the bubbles

are dislodged from the surface at a slower rate than boiling from a plain surface at

atmospheric pressure. Miyauchi and Yokura [19] observed similar suppressed bubble

growth rates at sub-atmospheric pressures. According to them, a rapidly growing

bubble will accelerate the liquid surrounding it, which will induce a pressure increase

inside the bubble. It was hypothesized that the increase in pressure will increase the

saturation temperature and will lead to higher wall superheats, leading to suppressed

bubble growth rates. Moreover, the larger size of the bubbles might also inhibit

the growth of bubbles from neighboring sites, leading to bubble generation from

some preferred sites. This might lead to fluctuations in temperature in the boiling

surface. An interesting finding in this respect was by Joudi and James [21], which

focused on the surface temperature during the initial boiling stages. They found

that the surface temperature was not uniform across the boiling surface or steady at

a particular location. In the current experiments, surface temperature fluctuations

were not recorded, instead average surface temperatures obtained from the linear fit

of the copper block temperature measurements were used to report the boiling data.

3.2 Effect of Pressure

The present section will describe the study on various enhancement structures at the

pressures of 9.7 kPa, 15 kPa and 21 kPa and compare the results with the baseline

study reported earlier. Four boiling enhancement structures were used, which have
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different numbers of stacked layers - 1, 2, 4 and 6, with geometries as described

earlier. The experiments described in this section were done at full-fill level for all

the pressures and the different enhancement structure geometries.

In Figure 13, the effect of pressure on the saturated nucleate boiling curves is

compared between the single layer enhanced structure and the plain surface. The

results from McGillis et al. [25] at 9 kPa are also shown for comparison. Both the

studies employed the footprint area of the boiling structure (stacked porous structure

of the present study and finned-structure of McGillis et al. [25]) as the base area

in obtaining the heat flux. McGillis et al. [25] performed their experiments with

finned structures, where the lowest gap between the fins was kept at 0.3 mm. This

result is included for comparison, as the fin gap of 0.3 mm closely resembles the

gap (0.35 mm) of the channels in the enhancement structure used in the present

study. They found better performance with the lowest fin gap. As noticed in case of

the plain surface, incipient superheat is not noted for the enhanced structure in the

present study. This observation corroborates the results of Gebhart and Wright [57]

mentioned previously. The wall superheat of 4 oC at 9 W/cm2 observed by McGillis
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et al. [25] agrees roughly with the wall superheat of 6.2 oC at 9.3 W/cm2 observed in

the present study. However, a significant difference is noted in the wall superheat at

higher heat fluxes. Whereas, CHF was not reached in both the studies, a difference

of approximately 13 oC was noted in the wall superheat at around 90 W/cm2, with

McGillis et al. [25] showing the lowest wall superheat. A possible explanation can be

the configuration of the thermosyphon used in the two studies. McGillis et al. [25]

used a single chamber thermosyphon, or “wickless heat pipe” configuration, where the

condenser was placed directly above the evaporator and was an integral part with the

evaporator cylinder. This allowed easy draining of the condensed liquid directly to the

evaporator. In the present study, a dual chamber configuration of the thermosyphon

was used, in which the condenser tube was inclined with respect to the horizontal.

Condensed liquid drained from the condenser only when enough pressure gradient

was generated in the condenser. As a result, the condenser was lined with liquid

most of the time, which reduced the condensation heat transfer coefficient. Though

a vertically oriented condenser will aid in draining the liquid quickly, its added size

may be undesirable in compact microsystems.

The nucleate boiling curves for the 2, 4 and 6 layer enhancement structures are

shown in Figure 14, 15 and 16 respectively. As for the single layer case, incipient

superheat was absent in all the cases. An increase in the saturation pressure led to

a corresponding increase in the saturation temperature, which was responsible for an

increase in the wall temperature. This behavior was found to be consistent for all

the structures tested. Moreover, for a particular structure, with increase in the wall

heat flux, the wall temperature increased at a greater rate for 9.7 kPa compared to

21 kPa. This behavior is more apparent at higher heat fluxes (> 60 W/cm2). For the

single layer structure at 9.7 kPa, the wall temperature increased by 15 oC (24%) as

the heat flux increased from 60 W/cm2 to 100 W/cm2, while the increase was 8 oC

(12%) and 6 oC (8%) for 15 kPa and 21 kPa respectively. The effect of pressure at a
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particular heat flux is also apparent. For the single-layer structure at 60 W/cm2, the

wall temperature increased by 11 oC (24% increase) from 9.7 kPa to 21 kPa. With

increase in heat flux to 80 W/cm2, the difference dropped slightly to 10 oC (15%

increase), while for 100 W/cm2, the difference dropped sharply to 4 oC (8% increase).

This shows that increasing saturation pressure at a particular heat flux will result in a

smaller change of wall temperature. Similar trends were seen for the other structures

too. This behavior can be better understood by observing the variation of heat

transfer coefficient with wall superheat for single-layer structure shown in Figure 17.

A significant trend of decrease in heat transfer coefficient with decrease in pressure is

noticed. For 9.7 kPa, the heat transfer coefficient increases monotonically until a wall

superheat of 15 oC, then slowing until 20 oC and reducing beyond that. It is interesting

to note the existence of maximum heat transfer coefficient for the 9.7 kPa and 15 kPa

cases. However, the heat transfer coefficient for 21 kPa increases rapidly until 10 oC

and with a slightly slower rate subsequently. The bubble generation phenomena may

provide an explanation for worse thermal performance at 9.7 kPa. At lower pressures,
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the bubble sizes are large, preventing the liquid from coming in contact with the

boiling surface and a resulting decrease in heat transfer coefficient. The current

configuration of the boiling enhancement structure also generates bubbles from the

vertical side-walls, which add to the turbulence in the pool. So the reduction in boiling

surface temperatures obtained by operating the thermosyphon at low pressures is

offset by the deteriorating heat transfer coefficient.

3.3 Effect of Enhancement Structure

We can see clearly from Tables 5 and 6, that the enhancement structures were able

to dissipate high heat fluxes, while keeping surface temperatures very close to the

threshold value of 85 oC (desired in electronics cooling applications). However, the

performance became worse at 100 W/cm2 for structures having more than 2 layers.

The CHF was not reached for the enhancement structure geometries until the end

of the experimental steps (usually 100 W/cm2). A general trend is noticed towards
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increase in wall superheat with increase in the number of layers of the structure,

which relates to a decrease in heat transfer coefficient. This trend can be noticed in

Figure 18, where the effect of the stack height on the heat transfer coefficient, h, at

9.7 kPa is shown, where:

have =
Q′

As

·∆T (1)

where, Q′ is the heat dissipation, As is the surface area of the structure exposed

to liquid and ∆T is the wall superheat (= Tw - Tsat). The superior performance

of the single layer structure is evident from the comparison. For the single layer

structure, the heat transfer coefficient increases monotonically at low wall superheat,

then slowing down in between 10 oC - 20 oC and finally decreasing monotonically

at higher wall superheats. Visual observation showed that at low wall superheats,

the bubbles emerged from some preferred spots, however at higher wall superheats,

the bubble generation resembled that of fully developed boiling. The generation of

bubbles affected the liquid movement close to the boiling structure. So at higher heat

fluxes, vigorous bubble generation decreased the liquid supply close to the structure,
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which decreased the heat transfer coefficient. Ramaswamy et al. [62] observed similar

behavior for boiling with a single layer structure of similar geometry, using PF5060

as the working fluid. Compared to the single layer structure, the 2, 4 and 6 layer

structures show a weaker change in heat transfer coefficient with wall superheat and

achieve lower values of heat transfer coefficients. Increase in the stack height is also

seen to limit the maximum value of the heat transfer coefficient. This implies that

there exists a certain stack height, which will produce the maximum heat transfer

coefficient for a particular saturation pressure. McGillis et al. [25] also observed

similar optimum height with finned structures, and found that the heat transfer was

insensitive to fin height beyond a certain fin height. In the current study, however,

the heat transfer was influenced by the height of the structure. Following from the

above discussion, this behavior can be attributed to the bubble generation dynamics

from the enhancement structure used in the present study.

Table 5: Wall temperatures recorded at 80 W/cm2

Pressure 1 layer 2 layers 4 layers 6 layers
(kPa) Tw ∆T Tw ∆T Tw ∆T Tw ∆T
9.7 68 21.7 72 25.7 72 25.7 72 25.7
15 73 18 78 23 78 23 78 23
21 78 15.5 84 21.5 84 21.5 84 21.5

∆T = Tw - Tsat, Tw and Tsat are in oC

Table 6: Wall temperatures recorded at 100 W/cm2

Pressure 1 layer 2 layers 4 layers 6 layers
(kPa) Tw ∆T Tw ∆T Tw ∆T Tw ∆T
9.7 77 30.7 79 32.7 82 35.7 83 36.7
15 77 22 82 27 83 28 85 30
21 81 18.5 87 24.5 89 26.5 90 27.5

∆T = Tw - Tsat, Tw and Tsat are in oC
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Figure 18: Heat transfer coefficient vs. wall superheat at 9.7 kPa for all layers

Increasing the number of layers increases the convection heat transfer area,

however, due to the conduction thermal resistance encountered in the stack, it

is hypothesized that the temperature of the top layer will be less than the base

temperature, potentially resulting in a decrease in heat transfer coefficient. A similar

observation was also noted by Ramaswamy and co-workers [62, 33] in their studies

with dielectric fluids. Using FC-72 as the working fluid, Nakayama et al. [63] noted

that for higher heat fluxes (> 15 W/cm2), the boiling curves of porous structures

closely resembled that of plain surfaces. They attributed the deterioration in heat

transfer coefficient with increase in stack height of the porous structures to the

“dried-up” mode of boiling. In a recent study with PF5060, Ghiu and Joshi [64]

didn’t observe any decrease in performance due to the “dried-up” mode, however, the

maximum heat flux for their study was 35 W/cm2. In the present study, experiments

were performed beyond 100 W/cm2, where vigorous bubble generation was observed.

Moreover, compared to dielectric liquids, water has higher surface tension, so it has

less wetting characteristic. Due to increased bubble generation from the side-walls

(with increasing stack height) and top surface of the structure, and increased surface
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tension of water, there will be less liquid coming in contact with the porous structure,

which would decrease the overall heat transfer from the structure. In this regard, the

current results corroborates with the previous observations of Nakayama et al. [63].

3.4 Fin Model

The enhanced structure was modeled as a fin with specified heat transfer coefficient.

The following additional assumptions were made:

• Heat losses from the sides of the chamber were considered negligible.

• Uniform heat flux was assumed from the heater surface.

• The heat transfer coefficient was obtained by considering the exposed surface

of the structure to be at the wall temperature.

• Uniform heat transfer coefficient was assumed over the entire exposed surface

of the boiling structure.

Three-dimensional steady heat conduction was solved for the configuration shown

in Figure 19, using the following boundary conditions:

Input heat flux :

q′′heater =
Q′

As

(2)

Convective heat transfer:

kcopper
∂T

∂z

∣∣∣∣
s

= have,ex (Tsat − Ts) (3)

where, Q′ is the input power to the system, As is the heater surface area, which was

in contact with the copper block, have,ex is the average heat transfer coefficient at the

exposed surfaces of the enhanced structure (obtained from the experimental results),

Tsat is the saturation temperature of the working fluid and Ts is the temperature at

the surfaces of the enhanced structure. The solution procedure involved solving the
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temperature profile throughout the assembly and then obtaining the heat flux from

the base of the structure. The commercial multi-physics software package CFD-ACE+

was used to solve the temperature profile of the assembly. The q′′heater vs. ∆T curves

for layers 1, 4 and 6 obtained from the numerical simulation are shown in Figure 20,

alongside experimental data. The trends of the predicted q′′heater vs. ∆T curves

match closely with that of the experimental results, which shows that the numerical

simulation predicted the enhancement obtained from the structures. However, the

numerical simulation over-predicted the surface heat flux by approximately 5% at

the higher heat fluxes. One of the reasons for this over-prediction might be the

assumption of uniform heat transfer coefficient throughout the exposed surface of

the enhancement structure. Moreover, adiabatic conditions were assumed for all the

side-walls and the bottom walls of the assembled structure shown in Figure 19. In

reality, some amount of heat loss will occur through the sidewalls, which will reduce

the actual heat flux through the boiling surface. Ramaswamy et al. [62] performed a

two-dimensional analysis of the heat transfer through the enhanced structures using

a finite volume approach. Their predicted surface heat flux values had a minimum

of 10% variation with respect to their experimental results. A more realistic three-

dimensional analysis in this study might be responsible for the better agreement

between predicted and experimental results. This study shows that the fin-effect of

the enhancement structures cannot be neglected. The combined effect of the fin-

like structures and the boiling phenomena from stacked porous structures might be

responsible for the observed reduction in heat transfer coefficient with increase in the

layers of the enhancement structure.

Increasing the layers of the structures also affects the flow field inside the

evaporator, which might also explain the deterioration of heat transfer for higher stack

heights. A tall structure would create a barrier to the flow coming from the inlet.

During boiling, such a structure would also generate more bubbles from the sides,
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Figure 19: Model configuration for calculation of wall heat flux with enhanced
structures

which would create a sweeping motion and would create resistance to the incoming

liquid from coming in contact with the structure. Structures with lower heights would

provide smaller resistance to the incoming flow. The top-side of the structure would

be the main contributor to heat dissipation. Haider et al. [16] performed a numerical

study of flow and heat transfer of a closed loop thermosyphon and observed that

the heat transfer phenomena in a similar thermospyhon configuration resembled flow

boiling.

3.5 Discussion

As discussed previously, an optimum height of the structure might be able to produce

the maximum heat flux for a particular system pressure. One of the evaporator design

parameter, that might affect the height of the structure is the vertical location of the

condensate-inlet port of the evaporator. Condensate entering the evaporator will
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sweep away the bubbles and hot liquid from the faces of the structures close to the

condensate inlet. The flow field of the condensate will change depending on the height

of the structure and also the vertical height of the condensate inlet from the base of

the evaporator cavity. A similar scenario has been described by Haider et al. [16]

as “flow boiling” in their modeling of the flow and heat transfer in a dual chamber

thermosyphon. Measurement of the condensate inlet velocity to the evaporator will

ascertain whether the sweeping motion is tangible to affect the surface heat flux. In

the current experimental study, the inlet velocity of the condensate to the evaporator

was not measured. It is believed that the bubble generation from the sides of the

structure

3.6 Summary

In this chapter, boiling of water at sub-atmospheric pressures in a thermosyphon,

which employed enhancement structures was discussed. First the results of a baseline

configuration was discussed, followed by results from boiling at various pressures and

enhancement structure geometries. The relative importance of the structure geometry
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and the system pressure on the thermal performance was discussed. The results were

compared with existing correlations. A numerical simulation was performed on the

heat transfer from the enhanced structure, whose results were used to compare the

data obtained from experimental observations. The main conclusions of the study

are as follows:

1. Boiling at sub-atmospheric pressures results in lowering of saturation temper-

ature, which leads to lower wall temperatures. Heat fluxes greater than 100

W/cm2 can be achieved through boiling at sub-atmospheric pressures, while

keeping the surface temperatures below the threshold temperature of 85 oC.

2. Incipience superheat was found to be negligible for boiling at sub-atmospheric

pressures with enhanced structures.

3. The heat transfer coefficient increased with an increase in the operating

pressure. With increase in heat flux, the performance at lower pressure was

worse compared to higher pressure.

4. The lowering of surface temperature with decrease in pressure is offset by the

deterioration of heat flux with lowering of pressure. The bubble generation

physics plays an important part in this scenario. In this respect, the current

results corroborate previous investigations on boiling of water at low pressures,

which concentrated on visualization of bubble generation at low pressures.

5. The enhancement structures were found to achieve increased heat flux and CHF

with respect to boiling from a plain surface at sub-atmospheric pressures. The

single layer structure achieved better heat flux than higher layer structures

(2,4 and 6 layers). However, as the height of the structure was increased

beyond single layer, the heat transfer coefficient reduced. The increased bubble

generation from the sides of the higher layer structures is considered responsible

60



for preventing liquid from replenishing the interior pores of the structure and

thus reduce surface heat flux. This implies the existence of an optimum height of

the structure, which will allow replenishment of the pores of the structure with

the working fluid, while achieving the maximum heat transfer corresponding to

a particular saturation pressure.

6. With increase in the operating pressure, the enhancement in heat transfer

achieved by the porous structure over the plain surface tends to decrease.
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CHAPTER IV

EFFECT OF LIQUID FILL ON THE THERMOSYPHON

PERFORMANCE

4.1 Experimental Procedure

For each boiling enhancement structure, three different liquid-fill levels were tested -

39 mm (Fill-1), 29 mm (Fill-2) and 20 mm (Fill-3), the height of the liquid column

being measured from the base of the evaporator cavity at zero heat flux condition

(Figure 7). Fill-1 represented a fully filled evaporator cavity, in which the gap between

the top of the evaporator cavity and the top surface of the water layer was ∼2 mm.

For each liquid-fill level, the thermosyphon was subjected to three pressures and the

subsequent experimental runs were performed. Then the liquid was drained and

the next structure was introduced to the system and the experimental runs were

repeated for the range of pressure and liquid-fill volume. For fill-1 and fill-2 conditions,

the experiments were started with an initial heat input of 2 W and then gradually

increased by 2 W till 10 W, and subsequently followed the same incremental pattern

as described earlier.

However, for the fill-3 experiments, the initial heat input was 10 W, as it was

very difficult to maintain saturation temperature below 10 W of input power. It

was observed that boiling didn’t start at lower heat fluxes (< 6 W/cm2), so the

vapor generation was mostly through evaporation. Because of slow vapor generation

rate at lower heat fluxes, the mass flow rate of vapor to the condenser was also

low. The condensed liquid drained from the condenser periodically, which suggested

that the liquid drained due to gravity only after reaching a critical buildup-volume.

The condensed liquid drained periodically every 1-2 min at sub-cooled (23-25 oC)
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conditions. As the volume of liquid in the evaporator at fill-3 was small, this might

have reduced the bulk temperature of the liquid and consequently, the saturation

temperature in the evaporator. Increasing the input power beyond 6 W/cm2, boiling

was initiated, which decreased the temperature fluctuations in the evaporator. So for

the fill-3 experiments, the initial heat input was chosen as 10 W.

All the experiments were done at increasing heat flux conditions. Trial runs

were performed with decreasing heat fluxes for some pressure-structure geometry

combination, which produced similar boiling curves with respect to increasing heat

flux cases, with a a maximum variation of 5% for heat fluxes greater than 20 W/cm2.

Similar to the present study, Nakayama et al. [27] found that hysteretic behavior is

less pronounced for boiling with enhancement structures.

4.2 Baseline Study

A baseline set of experiments was performed to study the effect of liquid fill levels

on boiling from a plain surface at sub-atmospheric pressures. Research on effect of

liquid fill on boiling from a plain surface in a confined evaporator is nearly absent.

The results from the baseline study will help in comparing the boiling performance

of enhanced structures at similar liquid fill levels. The boiling curves for a plain

surface at 9.7, 15 and 21 kPa pressures with fill-1, fill-2 and fill-3 levels are shown in

Figure 21. The boiling curves for 9.7 kPa do not show a significant dependency on

the liquid fill levels, however the inception of the CHF condition was delayed with a

decrease in fill level. The influence of the fill levels are apparent for the cases of 15

and 21 kPa, where an increase in boiling performance was observed with a decrease

in liquid-fill levels. The inception of CHF was similarly delayed with reduction in

the liquid fill-levels for 15 and 21 kPa pressures, except for fill-3 case at 21 kPa, for

which CHF was not encountered before the limiting temperature in the copper block

was reached. Visual observation showed that the liquid pool in the evaporator was
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Figure 21: Effect of liquid-fill levels on boiling from a plain surface at different
pressures. Results for 21 kPa shown with error bars for range of standard error.

highly agitated at 21 kPa, which forced liquid into the connecting tubing between

the evaporator and condenser for fill-1 and fill-2 conditions. Shear stress from the

vapor flow carried the liquid into the condenser. Since the design of the condenser

allowed only periodic draining of the condensate after sufficient pressure build-up,

the additional liquid from the evaporator would reduce the heat transfer coefficient

in the condenser. If we assume annular flow in the condenser, the additional liquid

from the evaporator would form a thin film in the condenser and would thus impede

the condensation heat transfer coefficient. A reduction in condensation heat transfer

coefficient would consequently reduce the heat transfer from the evaporator. For fill-

3, the height difference between the liquid pool and the connecting tubing was large

enough to prevent any upward liquid flow from the pool. As a result, the condensation

heat transfer coefficient has higher than fill-1 and fill-2 cases.

It is also observed that the inception of CHF for each pressure is correspondingly

delayed with decrease in fill levels, as shown in Table 7. For fill-3 case, most of the
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Table 7: Comparison of CHF (W/cm2) at different pressures and different fill-levels
(plain surface)

Pressure (kPa) CHF (W/cm2)
Fill-1 Fill-2 Fill-3

9.7 62 81 90
15 68 93 105
21 87 105 CHF not reached

heat transfer in the evaporator was latent. The sub-cooled liquid from the condenser

was heated to the saturation temperature and then vaporized, thereby transferring

the energy as latent heat to the vapor, which was carried to the condenser. In case

of fill-1 and fill-2, after the sub-cooled liquid was heated to saturation temperature,

a portion of the liquid was carried to the condenser due to upward vapor movement,

while the rest of the mass flux was vaporized. Fill-1 and fill-2 levels thus resulted in

lower heat transfer in the evaporator and consequently wall temperature was higher

than the fill-3 case. This might lead to increasing the CHF for lower fill conditions.

Moreover, with the lower fill levels similar to fill-3, there is less chance of liquid

entering the connecting tubing between evaporator and condenser. This will lead to

higher heat transfer coefficients in the condenser, as the heat transfer would occur

mostly through transfer of latent heat in the condenser.

The thermal resistance values before the onset of CHF are listed in Table 8. The

boiling surface thermal resistance is defined as:

Rt =
Tw − Tsat

Q′ (4)

where, Rt is the thermal resistance, Tw is the wall temperature, Tsat is the saturation

temperature and Q′ is the input power. The boiling thermal resistances showed similar

trends for 9.7, 15 and 21 kPa. The thermal resistance curves at 21 kPa for all fill levels

are shown as representative curves in Figure 22. The thermal resistance values for all

fill levels at the initiation of each experimental run decreased with increasing pressure

respectively. The improvement obtained in heat transfer coefficient with reduction
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Table 8: Overall thermal resistance (oC/W) at different pressures and liquid fill
levels for plain surface

Pressure (kPa) Overall Thermal Resistance (oC/W)
Fill-1 Fill-2 Fill-3

9.7 0.24 0.21 0.20
15 0.19 0.17 0.16
21 0.16 0.15 0.14

in liquid fill-level is depicted by the lower thermal resistances obtained with decrease

in fill levels. For all pressures, the fill-3 level achieved the lowest thermal resistance,

before CHF was achieved. In general, the thermal resistance values approached an

asymptotic value before the onset of CHF. The thermal resistance values clearly

show that lowering the liquid-fill level from fill-1 to fill-3, the heat transfer coefficient

increases 200% within 20 W/cm2. However, beyond 50 W/cm2, the effect of fill-level

on the heat transfer coefficient tends to have negligible influence. From Figure 22,

we can also notice the high thermal resistance for heat fluxes < 10 W/cm2. Beyond

10 W/cm2, the thermal resistance drops rapidly, which might signify the increase

in heat transfer coefficient at the onset of boiling. It is interesting to note that the

thermal resistance for fill-3 (for 21 kPa case only) showed a small change of 0.18 oC to

0.14 oC, which amounts to 22% decrease in thermal resistance throughout the entire

heat flux range, as shown in Figure 22. This might suggest that the decrease in fill

level generates more uniformity in surface heat transfer coefficient for a plain surface.

In this respect, these results also suggest the existence of an optimum fill-level for

a particular operating pressure, which will lead to a uniform heat transfer in the

evaporator.

4.3 Study on Enhancement Structure

Experiments were done at pressures of 9.7, 15 and 21 kPa on three different enhanced

structures - 1, 4 and 6 layer structures. The results are compared with respect to
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Figure 22: Effect of liquid-fill levels on thermal resistance for boiling with plain
surface at 21 kPa

the baseline study. For each enhanced structure, the experiments were done for the

full-fill level first. After the completion of all the experimental runs, the system valve

was slowly opened to equalize the pressure inside the system with the atmospheric

pressure. Then the drain valve was opened to drain the liquid. After draining,

high pressure air was blown through the opening of the system valve, to remove the

remaining water from the system. Trace amounts of water might have remained in

the system in places where tube fittings were placed. After this step, the drain valve

was closed and the system was charged to fill-2 level in the same way as described in

the earlier section. This same procedure was applied for filling to fill-3 level.

4.3.1 Study on single-layer boiling enhancement structure

The effects of liquid-fill level on the single layer enhanced structure at 9.7 and 21 kPa

are shown in Figure 23 and 24 respectively. The trends of the boiling curves for

the 15 kPa case were similar to the 9.7 and 21 kPa cases, with wall superheat values
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Table 9: Comparison of wall superheats (Tw - Tsat) at 80 W/cm2 at various pressures
and fill levels for 1-layer structure

Fill Level Wall superheat (oC)
9.7 kPa 15 kPa 21 kPa

Fill-1 21.0 [CHF] 18.5 [CHF] 15.0 [21.5]
Fill-2 21.0 [CHF] 18.5 [CHF] 16.0 [20.0]
Fill-3 20.0 [26.0] 17.0 [22.0] 16.5 [18.5]

Plain surface conditions shown within [ ]

falling in between the values achieved for 9.7 and 21 kPa. So the extreme pressure

cases of 9.7 and 21 kPa are shown here. The boiling curves at different fill levels are

shown with respect to the boiling curves for plain surfaces. A comparison of the wall

superheat (Tw - Tsat) values at 80 W/cm2 at different pressures and fill levels is also

listed in Table 9.

For the case of 9.7 kPa, the boiling curves of the enhanced structure do not show

significant difference with respect to the plain surface below 20 W/cm2. Beyond 20

W/cm2, the enhancement in heat transfer of the single layer structure is clearly visible.

With increase in heat flux, enhancement structure achieves lower wall superheats

than the plain surface. The wall superheat values also showed a dependency on the

fill level with increase in the surface heat flux beyond 60 W/cm2. However, beyond

100 W/cm2, the performance for the fill-1 level started to degrade. After 60 W/cm2,

fill-3 showed marginally better thermal performance than fill-2, but after 80 W/cm2

fill-2 showed better performance than fill-3. Beyond 100 W/cm2, the enhancement of

fill-2 with respect to fill-3 can be seen from the difference in wall superheat values,

which reached a value of 6 oC. This behavior can be attributed to liquid movement

to the condenser at higher heat fluxes from fill-1 level, which will in turn reduce the

condensation heat transfer coefficient.

For the 21 kPa pressure case, the influence of the fill levels is observed beyond 10

W/cm2. However, contrary to the 9.7 kPa case, degradation in thermal performance
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Figure 23: Effect of liquid-fill levels on boiling from a 1-layer structure at 9.7 kPa
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Figure 24: Effect of liquid-fill levels on boiling from a 1-layer structure at 21 kPa
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Table 10: Overall thermal resistance (oC/W) at different pressures and liquid fill
levels for single-layer structure for the highest heat flux achieved

Pressure (kPa) Overall thermal resistance (oC/W)
Fill-1 Fill-2 Fill-3

9.7 0.19 0.16 0.15
15 0.14 0.13 0.13
21 0.11 0.11 0.12

is noticed for fill-3 (Figure 24). The difference in wall superheat values between fill-1

and fill-3 was 2-3 oC at the same heat flux. Recently Pal and Joshi [60] have shown

that the single-layer structure (similar to the one used in the present study) achieves

the best thermal performance with increase in saturation pressure. Van Stralen et

al. [20] has shown that an increase in saturation pressure leads to a decrease in the

radius of the bubbles dislodged from the surface. At higher heat fluxes this leads to

vigorous boiling activity in the pool. From visual observation, it was observed that

vigorous bubble generation generates a lot of agitation on the top surface of the liquid

pool, resulting in a reduction in the effective height of the liquid pool. A reduced

effective pool height would also lead to a decrease in the net buoyancy force exerted

on the bubbles for dislodging from the boiling surface. This would reduce the heat

flux from the surface.

The thermal resistance values for the single-layer structure at three difference fill

levels are shown in Table 10. The heat transfer enhancement with increase in pressure

is clearly noticed from the decreasing thermal resistance values with decreasing fill-

levels. In all the cases, the thermal resistance values reach an asymptotic value

beyond 80 W/cm2. As previously mentioned, the degradation of thermal performance

at fill-3 for 21 kPa is noticed with an increase in the thermal resistance values to

0.12 oC/W. The thermal resistance curves for 15 kPa pressure is shown in Figure 25.

The heat transfer at lower heat fluxes (< 20 W/cm2) is clearly visible from the thermal

resistance curves.
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Figure 26: Effect of liquid-fill level on boiling from a 4-layer structure at 9.7 kPa

4.3.2 Study on 4-layer boiling enhancement structure

The boiling curves for 9.7, 15 and 21 kPa cases are shown in Figure 26, 27 and

28 respectively. The effectiveness of the fill levels on the heat transfer can be

observed from the listing of the wall superheat values at 80 W/cm2, as shown in

Table 11. Overall fill-2 achieved the best thermal performance followed by fill-3 and

fill-1. However, with increase in the saturation pressure, the difference in thermal

performances decreased, evident in the decreasing difference in wall superheat values,

as shown in Table 11. At 9.7 kPa, the wall superheat for fill-2 is lower by 4-5 oC with

respect to fill-1 and fill-3, however, the difference reduced to 1 oC at 21 kPa. This

shows that the liquid fill levels have a reducing influence on thermal performance

with increase in saturation pressure. The heat flux range of 20-30 W/cm2 can be

considered as the transition zone beyond which the influence of the fill levels is seen

on the heat transfer. The dependence of wall heat flux on the liquid fill-level can

be explained if the effective height of the liquid column above the top surface of the
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Figure 27: Effect of liquid-fill level on boiling from a 4-layer structure at 15 kPa
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Figure 28: Effect of liquid-fill level on boiling from a 4-layer structure at 21 kPa
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Table 11: Comparison of wall superheats at 80 W/cm2 at various pressures and fill
levels for 4-layer structure

Pressure (kPa) Wall superheat (oC)
9.7 kPa 15 kPa 21 kPa

Fill-1 26.0 [CHF] 23.5 [CHF] 21.5 [21.5]
Fill-2 21.0 [CHF] 19.0 [CHF] 19.0 [20.0]
Fill-3 25.0 [26.0] 21.5 [22.0] 20.0 [18.5]

Plain surface conditions shown within [ ]

enhanced structure is taken into account. The heights of the liquid columns for fill-

1, fill-2 and fill-3 were 35 mm, 25 mm and 16 mm respectively. Visual observation

showed that at higher heat fluxes, the pool was highly agitated due to vigorous

boiling, which reduces the effective height of the liquid column above the boiling

surface. As a result, for lower fill cases (like fill-3), the entire boiling surface might

not stay fully submerged under the working fluid during vigorous boiling. So, better

thermal performance is expected from higher liquid fill levels, which is corroborated

by the heat fluxes achieved by fill-2 level. However, increasing the liquid level further

might prove detrimental to heat transfer. The agitation of the pool sometimes forces

liquid in the connecting tubing between evaporator and condenser, which is taken

further downstream by the shear force from the vapor flow. As the condenser used in

the experiment didn’t allow continuous draining of the condensate, the liquid coming

from the evaporator will provide extra thermal resistance to heat transfer from the

condenser. This process will reduce the heat flux from the evaporator. The 4-layer

structure also achieves higher heat flux with respect to the plain surface, however the

heat transfer enhancement decreases as the saturation pressure was increased. The

increase in the number of layers in the boiling structure generated more nucleation

points with respect to a single-layer structure. However, increasing the layers in a

stacked structure also leads to a reduction in heat transfer coefficient, due to the fin

effect from the layered structure, as reported by Ramaswamy [62]. With a stacked
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Table 12: Overall thermal resistance (oC/W) at different pressures and liquid fill
levels for 4-layer structure for the highest heat flux achieved

Pressure (kPa) Overall thermal resistance (oC/W)
Fill-1 Fill-2 Fill-3

9.7 0.22 0.17 0.20
15 0.18 0.15 0.17
21 0.16 0.15 0.16

structure, the bulk of the boiling takes place at the top-most layer. Due to thermal

resistance encountered as a result of fin-effect in the stacked layers, the temperature

of the top layer will be less than the base temperature of the structure. If we assume

that the boiling from each layer is dependent on the local wall superheat, then a

higher stacked structure will have lower heat transfer coefficient.

The thermal resistances at the highest heat flux for boiling with the 4-layer

structure at three different liquid fill levels are shown in Table 12. The higher heat

transfer coefficient achieved for the fill-2 case is also evident from the lower values of

thermal resistance for fill-2, as shown in Table 12. In fill-1 and fill-3 cases at 9.7 kPa,

the thermal resistance is found to increase after reaching a global minimum value of

0.19 oC/W at 50 W/cm2, as shown in Figure 29. However, fill-2 level on the other

hand, reaches for an asymptotic thermal resistance value of 0.17. For 15 and 21 kPa,

the thermal resistances are found to tend towards as asymptotic value, as shown in

Table 12. These results also might suggest the existence of an optimum liquid level

in the evaporator. A liquid height lower than the optimum height will reduce the

buoyancy force on the bubbles resulting in reduction of the bubble generation rate.

On the other hand, a liquid height higher than the optimum height will result in

liquid reaching the condenser, lining the walls of the condenser and thus reducing the

condensation heat transfer coefficient.
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Figure 29: Effect of liquid-fill level on thermal resistance for boiling with 4-layer
structure at 9.7 kPa

4.3.3 Study on 6-layer boiling enhancement structure

The boiling curves for the 6-layer structure at saturation pressures of 9.7, 15 and

21 kPa for different fill levels are shown in Figure 30, 31 and 32 respectively.

The boiling curves for the plain surface at 9.7, 15 and 21 kPa pressures are also

shown for comparison. At lower heat fluxes (< 40 W/cm2), the boiling curves are

closely packed, which shows negligible influence of the fill levels on the heat transfer.

Beyond 40 W/cm2, the influence of the fill levels is clearly seen and fill-1 shows the

best performance for all the pressures, followed by fill-2 and fill-3 levels. For the

6-layer structure, the heights of the liquid column above the top surface of the boiling

structure were 33, 23 and 14 mm for fill-1, fill-2 and fill-3 levels respectively. With a

reduced liquid column height at fill-3 level, the buoyancy force acting on the bubbles

will be the least of all the cases under consideration, which will result in a slow bubble

dislodging process. Moreover, during vigorous boiling, the effective height of the liquid
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Figure 30: Effect of liquid-fill level on boiling from a 6-layer structure at 9.7 kPa

column decreases (as observed previously for other structures), which would create

a situation where the liquid would not be able to keep the structure fully wetted.

This situation will lead to a reduction in the heat transfer coefficient at higher heat

fluxes. So with an increase in the height of the 6-layer boiling enhancement structure,

a higher liquid level (fill-1) was required for improved performance. This suggests an

optimum liquid fill level depending on the height of the boiling structure, where the

optimum height of the liquid level increases with the height of the boiling structure.

The wall heat transfer for a 6-layer structure compared to the plain surface is worse

than that of the 4-layer structure. From the curves, it is observed that the boiling

performance from the 6-layer structure resembles that of boiling from a plain surface

at approximately 80 W/cm2 and gets worse with further increase in the heat flux.

Though CHF was not observed in the case of 6-layer structure, the wall superheat

values were more than 5 oC than the wall superheat values obtained at CHF condition

for the plain surface at 21 kPa. The variation in heat flux with respect to changes
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Figure 31: Effect of liquid-fill level on boiling from a 6-layer structure at 15 kPa
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Figure 32: Effect of liquid-fill level on boiling from a 6-layer structure at 21 kPa
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in liquid fill-level noticed in the present study is a marked departure from the results

reported by Ramaswamy et al. [7]. They performed their experiments with PF5060

at atmospheric pressure and found that heat flux is insensitive to liquid fill level, as

long as the boiling surface stays fully covered with the working fluid. The present

study employs water as the working fluid, however it is apparent from the present

observations that the bubble generation dynamics in a closed loop thermosyphon is

responsible for this marked departure in heat transfer.

The thermal resistances for the 6-layer structure are shown in Table 13. The

highest liquid level, fill-1 achieved the lowest thermal resistances for all pressures

under consideration. However, an interesting observation from the thermal resistance

values for the 6-layer structure is the increase of thermal resistance at higher heat

fluxes. Previously, we have noted that the thermal resistance values reach an

asymptotic value for the 1 and 4 layer structures as the heat flux reached 100 W/cm2.

However, for the 6-layer structure, the thermal resistances are found to increase

beyond 60 W/cm2 for all the fill levels. A typical example is shown for 9.7 kPa

in Figure 33. This might be related to the height of the structure and the liquid

fill levels. At higher heat fluxes, vigorous boiling generates lots of agitation in the

boiling pool, and the emerging bubbles might be impeding the liquid contact of the

boiling surfaces. As a result the heat transfer decreases, which is reflected in the

monotonous increase of thermal resistance at higher heat fluxes. It can be concluded

that increasing the layers of the enhanced structure does not aid in heat dissipation

by removing higher heat flux. The effect of the liquid level, coupled with the height of

the enhanced structure might create a situation detrimental to high heat flux removal.
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Table 13: Overall thermal resistance (oC/W) at different pressures and liquid fill
levels for 6-layer structure for the highest heat flux achieved

Pressure (kPa) Overall thermal resistance (oC/W)
Fill-1 Fill-2 Fill-3

9.7 0.21 0.23 0.23
15 0.19 0.19 0.19
21 0.16 0.17 0.16
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Figure 33: Effect of liquid-fill level on thermal resistance for boiling with 6-layer
structure at 9.7 kPa
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4.3.4 Comment

The height of the evaporator significantly contributed to the transport of working

fluid from the evaporator to the condenser during vigorous boiling conditions at fill-1

and fill-2 levels. A taller evaporator would however, restrict the liquid entrainment

in the condenser. In that case, the heat transfer in the condenser would be mostly

latent, and thus would produce a higher heat transfer coefficient compared to the case

for liquid entrainment with similar liquid levels. In the absence of liquid entrainment,

the heat transfer in the evaporator would be dependent on the buoyancy force exerted

on the bubble during dislodging from the surface. However, taller evaporators may

not be suitable for designing compact thermosyphons required for the current and

next generation thermal management systems.

4.4 Summary

In this chapter, the effect of liquid-fill volume on the heat transfer in a thermosyphon

is discussed. Experiments were done with 3 different liquid levels at pressures of

9.7, 15 and 21 kPa using 1-layer, 4-layer and 6-layer structures. The results were

compared with a baseline study of boiling with a plain surface, using similar liquid

levels in the evaporator. The details of the experimental procedure was discussed.

The study was presented with the help of boiling curves at all the heat fluxes and

saturation conditions under consideration. Thermal resistance curves for all the cases

were also presented. The following are the main observations from the study:

• For boiling from a plain surface, a reduction in liquid fill-levels is seen to increase

the heat transfer with a corresponding increase in CHF also. It is found that the

change in liquid-fill levels has a more pronounced effect for the higher pressure

case (21 kPa), whereas for lower pressures (9.7 and 15 kPa), the effects are

negligible.
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• The heat transfer is observed to be dependent on the liquid level for boiling

with enhanced structures. The height difference between the liquid level and

the top of the structure influences the hydrostatic pressure head on the boiling

surface and thus affect the bubble generation. Higher buoyancy force will thus

aid in bubble generation and increased heat transfer.

• Results from the study on three structures suggest that an optimum liquid level

might exist for each structure. With increase in the height of the structure, the

liquid level producing the best performance is also seen to increase.

• For lower fill levels, vigorous boiling at higher heat fluxes (> 60 W/cm2) might

prevent the liquid from wetting the structure. As a result, the performance

would be worse for such cases.
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CHAPTER V

CONDENSATION MODEL

A schematic of the physical problem for a horizontal rectangular channel of height H

and width W is shown in Figure 34, in which the expected profiles of liquid and vapor

phases along the axial direction are shown. Saturated vapor at temperature of Tsat,

corresponding to pressure, psat, enters the channel at z = 0 and gets condensed along

the length of the channel as it comes in contact with the channel wall maintained at a

fixed wall temperature, Tw (< Tsat). As the liquid-vapor mixture progresses along the

length of the channel, thickness of the liquid film along the walls increases while the

area of the vapor core decreases. The vapor pressure changes along the axial direction,

which also influences the saturation temperature, Tsat. Considering symmetry with

respect to the vertical plane passing through the axis of the channel, the liquid film is

divided into five different regions - (1) top film zone, (2) top corner zone, (3) vertical

film zone, (4) bottom corner zone and (5) bottom film zone, as shown in Figure 35.

The configuration of the corner liquid zones and the thin film zones is similar to the

configuration adopted by Zhao and Liao [52] in their model of condensation in vertical

triangular channel. However, the current model analyzes condensation in a horizontal

rectangular channel, which introduces additional thin liquid zones and corner zones

compared to the analysis of only one thin film zone and one corner zone required

for vertical triangular channel. The interaction of multiple corner zones and thin

film zones with each other also add to the complexity in the analysis of condensation

in horizontal rectangular channel. Wang and co-workers [53, 54, 55] considered 5

zones in describing the condensate along the walls of a rectangular channel, however,

the numerical treatment adopted by them for the corner liquid zones was different
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from the current analysis, as discussed in Section 5.3. Moreover, the mass balance

of the vapor core was not analyzed in their model, compared to the current model,

as discussed in Section 5.4. In the current model, it is assumed that the vapor gets

condensed and forms thin films along the top, side and bottom walls. Interfacial

tension in the free surface generates a pressure gradient in the liquid film, which

drives liquid flow in the film zones (1, 3 and 5) towards the corners through the

phenomenon, commonly known as Gregorig effect [4]. The current model takes into

account the surface tension in the modeling of condensation along the wall, coupled

with Nusselt [65] approximations. Gravity is included in the model, which allows

the draining of the condensate from the vertical zone into the bottom corner zone.

Because of capillary action, both the top and bottom corner zones have condensate

flow interaction with the horizontal and the vertical thin film zones. Moreover, the

film and the corner zones receive condensate from the vapor core. It is assumed

that a portion of the condensate accumulated in the corner zones is responsible for

increasing the volume of the zone along the axial direction, while the rest is carried

along the axial direction because of interfacial shear stress.

The following assumptions have been incorporated in the model for simulating

film condensation:

1. Steady state profile is considered

2. Heat transfer across liquid film is by conduction only

3. Gravity forces are neglected in the top and bottom thin liquid film zones

4. Axial 1-d incompressible fully developed flow exists in vapor core

5. Axial 1-d flow exists in the liquid zone at corners

6. Inertia forces are neglected in the vapor and liquid zones

7. 2-d laminar flow exists in the liquid film
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8. No pressure gradient exists normal to walls

9. Thermophysical properties of liquid and vapor are constant

10. No liquid entrainment exists in the vapor core.

5.1 Geometric Parameters

The geometry of the channel and locations of the zones are shown in Figure 35. X and

Y are fixed orthogonal coordinates with the origin at the top corner of the channel.

The thin liquid film zones (1, 3 and 5) are shown in their respective frames (x-y, x’-y’

and x”-y”), which are right-handed with the axial direction (z) along the direction of

flow. This treatment allowed the representation of the governing equations in a single

reference frame (x-y). The corner zones are represented by the radii of curvature of

the zones (rc,i, i = 2 and 4 representing zones 2 and 4 respectively). It is assumed

that the liquid-vapor interface at the junction of the thin-liquid and corner zones

is tangential to the radii of curvature of the corner-liquid zones. The liquid-vapor

interface profile is defined by the film thickness parameter, δ(y,z). The thicknesses

of the liquid films at the ends of zone 1, 3 and 5 are numbered in an anti-clockwise

sense, with 0 and 1 representing the two ends of the zones as shown in Figure 35.

Corresponding to the channel configuration, we can define the following geometrical

parameters:

Ach =
1

2
·W ·H

Alf,j =

∫ Lj

0

δ(y, z)dy

where Ach is the area of the channel, Alf,j is the area of the jth liquid film zone, j =

1, 3, 5.

Alc,2 = (rc,2 + δ1,1) · (rc,2 + δ3,0)− π

4
r2
c,2

Alc,4 = (rc,4 + δ3,1) · (rc,4 + δ5,0)− π

4
r2
c,4
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where Alc,j is the area of the jth corner liquid zone, j = 2, 4. Then the area of the

vapor core zone, Av, is given by,

Av = Ach − Alf,1 − Alc,2 − Alf,3 − Alc,4 − Alf,5

The hydraulic diameters of the entire channel, Dh, the corner zones, Dlc,k (k = 2, 4)

and the vapor core, Dh,v are given by,

Dh =
4Ach

Pch

Dlc,k =
4Alc,k

Plc,k

Dhv =
4Av

Pv

where Pch is the perimeter of the channel, Plc,k (k = 2, 4) and Pv are the wetted

perimeters of the kth corner zone and the vapor core respectively, and defined by the

following relations,

Pch = 2 · W

2
+ H = W + H

Plc,2 = 2 · rc,2 + δ1,1 + δ3,0

Plc,4 = 2 · rc,4 + δ3,1 + δ5,0

Pv = 2 · W

2
+ H = W + H

5.2 Thin liquid film along the wall

In the thin film zone, incompressible, two-dimensional flow is assumed (along the y

and z directions). Following Zhao and Liao [52], the conservation equations for the

liquid film can be written as:

Continuity:

∂ul

∂x
+

∂vl

∂y
+

∂wl

∂z
= 0 (0)
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where u, v and w are the velocities in the x, y and z directions respectively.

y-momentum:

µl
∂2vl

∂x2
− ∂plf

∂y
+ Bρlg = 0 (1)

where, B = 1 for vertical thin-film zone and 0 for horizontal thin film zones, µl is the

dynamic viscosity of the liquid, ρl is the density of the liquid and g is the acceleration

due to gravity.

z-momentum:

µl
∂2wl

∂x2
− ∂plf

∂z
= 0 (2)

Energy conservation:

∂2Tlf

∂x2
= 0 (3)

where Tlf is the temperature in the liquid film.

The pressure in the liquid film, plf is related to the surface tension, σl, and radius

of curvature of the liquid-vapor interface (rc) in the x−y plane by the Young-Laplace

equation as follows:

∂plf

∂y
=

∂

∂y

(
pv − σl

rc

)
(4)

where,

rc =
1

κ
=

[
1 +

(
∂δ
∂y

)2
]3/2

∂2δ
∂y2

where κ is the curvature at the liquid-vapor interface.

From our assumption, ∂pv/∂y = 0, and putting Eq. 4 in Eq. 1 to eliminate the

liquid film pressure, plf , we get:

The modified y-momentum equation:

µl
∂2vl

∂x2
= −σl

∂κ

∂y
−Bρlg (5)
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The velocity along y axis is governed by the following boundary conditions:

x = 0, vl = 0 ⇒ C2 = 0

x = δ, ∂vl

∂x
= 0 ⇒ C1 =

(
σl

∂κ
∂y

+ Bρlg
)

δ
(6)

So integrating Eq. 5, we get,

vl =
1

µl

[
σl

∂κ

∂y
+ Bρlg

](
xδ − x2

2

)
(7)

Similarly, integrating Eq. 2 subjecting to the following boundary condition:

x = 0, wl = 0

x = δ, µl
∂wl

∂x
= τi

(8)

we get,

wl =
1

µl

[(
∂pv

∂z

)
x2

2
+

(
τi − δ

∂plf

∂z

)
x

]
(9)

where τi is the interfacial shear stress.

Considering infinitesimal increment of ∆z along the axial direction, the radius of

curvature of the liquid film can be neglected along the z direction. Then liquid

pressure gradient along the z direction, ∂plf/∂z can be expressed by the vapor

pressure gradient as follows,

∂plf

∂z
=

∂pv

∂z
(10)

Eliminating ∂plf/∂z from Eq. 9, we get,

wl =
1

µl

[(
∂plf

∂z

)
x2

2
+

(
τi − δ

∂pv

∂z

)
x

]
(11)

The boundary conditions for the energy conservation equation are given by:

x = 0, Tlf = Tw

x = δ, Tlf = Tli

(12)

where, Tli is the local temperature at the liquid-vapor interface.
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Apart from that, the mass transfer across the liquid-vapor interface, ṁi, can be

expressed as:

ṁihfg = kl
∂Tlf

∂y
(13)

where, kl is the thermal conductivity of the liquid and hfg is the latent heat of

vaporization of the liquid.

Using the above boundary conditions and the assumption that the temperature

varies linearly in the liquid layer, we can integrate Eq. 3, to get the following

expression of the mass flux at the liquid-vapor interface:

ṁihfg = kl
Tli − Tw

δ

⇒ ṁi =
kl

hfg

Tli − Tw

δ
(13)

where Tli is the temperature of the liquid at the liquid-vapor interface.

The liquid-vapor interface temperature differs from the saturated bulk vapor

temperature because of the interfacial resistance and effects of curvature on saturation

pressure over liquid [66].

From the analysis of Stephan and Busse [67] (also employed by Zhao and Liao [52]),

we get the expression of Tli as,

Tli = Tvi − ṁihfg

[
Tsat

√
2πRgTsat

h2
fgρv

(
2− ν

ν

)]
(14)

where, Rg is the universal gas constant, ν is the accommodation coefficient and Tvi

is the local interfacial vapor temperature, and is defined as,

Tvi = Tsat

(
1 +

pc

hfgρl

)
(15)

where, pc is the capillary pressure, and is defined as,

pc = σlκ +
β

δ3
(16)

where, κ is the curvature of the liquid-vapor interface and β is the dispersion constant

with respect to the disjoining force [67].
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The local condensate mass flux, ṁi, can also be obtained by integrating the

continuity equation (Eq. 0) for the whole thickness of the liquid film:

ṁi = ρl

[
∂

∂y

(∫ δ

0

vl · dx

)
+

∂

∂z

(∫ δ

0

wl · dx

)]
(17)

Putting the expressions of vl (Eq. 7) and wl (Eq. 11) in Eq. 17, we get,

ṁi =
ρl

µl

[
∂

∂y

{
δ3

3

(
σl

∂κ

∂y
+ Bρlg

)}
+

∂

∂z

{
τi

δ2

2
− δ3

3

∂plf

∂z

}]
(18)

The mass flow rate is also obtained by replacing the expressions of Tli (Eq. 14) in

Eq. 13,

ṁi =

kl

δ·hfg

[
Tsat

(
1 + pc

hfg ·ρl

)
− Tw

]

1 +
klTsat

√
2πRgTsat

δ·h2
fg ·ρv

(
2−ν

ν

) (19)

Combining Eq. 18 and 19 and eliminating ṁi between them, we get an expression

for the local condensate thickness, δ(y, z), in the form of a partial differential equation

as follows,

∂

∂y

[
δ3

3

(
σl

∂κ

∂y
+ Bρlg

)]
+

∂

∂z

[
τi

δ2

2
− δ3

3

∂plf

∂z

]
=

µl

[
Tsat

(
1 + pc

hfg ·ρl

)
− Tw

]

ρlhfg

[
δ
kl

+
Tsat

√
2πRgTsat

h2
fgρv

· 2−ν
ν

](20)

The above equation is an implicit one, so the unknown parameters are to

be simultaneously determined and consequently updated to get the liquid-vapor

interface profile. The unknown parameters ∂pv/∂z, τi and Tsat will be determined by

simultaneously solving Eq. 20 with the equations describing the mass and momentum

balances in the vapor core and corner zones.

Eq. 20 is fourth-order in y, and the required boundary conditions (shown in

Figure 36), are:

y = 0 : ∂δ
∂y

= 0, ∂3δ
∂y3 = 0

y = yend : ∂δ
∂y

= 0, ∂2δ
∂y2 = 1

rc

(21)

where rc is the radius of curvature of the corner zone adjacent to the thin liquid film

zone. Similar boundary conditions were also applied for zone 1 and zone 3.
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At z = 0, the thickness of the condensate would be unaffected due to changes

along the z direction, so δ(y, 0) is obtained from the following expression:

∂

∂y

[
δ3

3

(
σl

∂κ

∂y
+ Bρlg

)]
=

µl

[
Tsat

(
1 + pc

hfg ·ρl

)
− Tw

]

ρl · hfg

[
δ
kl

+
Ts

√
2πRgTsat

h2
fg ·ρv

· 2−ν
ν

] (22)

The above equation can be solved using similar boundary conditions as stated in

Eq. 21. At z = 0, the corner radius (rc) has to be provided as a boundary condition.

Zhao and Liao [52] calculated the initial radius of curvature by assuming the existence

of a liquid fraction permanently residing in the corners, termed as “irreducible residual

saturation”. Wang and Rose [55] also obtained a fourth-order non-linear equation

describing the liquid-vapor interface profile, however, their handling of the radii of

curvature at channel inlet was not discussed. In the current model, the formation of

the condensate profile is modeled from the channel inlet, so initial values were assigned

to the corner radii (10% of the width). However, the results were not dependent on

the initial value, after the first few steps along z (10-15).

5.3 Condensate Flow in the Corners

The condensate flow in the corner regions is assumed to be one-dimensional, driven

along the axial direction by the shear stress exerted by the flow of the vapor core. The

mass transfer in the corner zones will occur with the thin liquid zones (capillary action
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combined with gravity for the vertical zone) and from condensation occurring at the

liquid-vapor interface. Accumulation of condensate will increase the cross-sectional

area of the corner zone (Alc) along the axial direction and eventually the thin liquid

film zones will cease to exist. Following a similar analysis by Zhao and Liao [52], the

hydrodynamics of the corner zones can be obtained through conservation of mass and

momentum:

Momentum conservation equation for the corner zone can be expressed as,

− d

dz
(plcAlc)− τlwPlc + τiPi = ρl

d

dz

(
w̄2

lcAlc

)
(23)

where, plc is the pressure in the corner zone, τlw and Plw are the shear stress and

wetted-perimeter at the liquid-wall interface respectively, w̄lc is the mean velocity

of the corner zone, τi and Pi are the shear stress and perimeter at the liquid-vapor

interface respectively. Neglecting the change in radius of curvature of the corner

liquid zone in the axial (z) direction, we can express plc = pv. Replacing plc in Eq. 23

and considering negligible change in the area of the corner zone, Alc, we get the

momentum equation of the corner zone as,

−dpv

dz
+

d

dz

(
σl

rc

)
− τlwplc

Alc

+
τiPi

Alc

= ρl
d

dz

(
w̄2

lcAlc

)
(24)

The shear stress at the liquid-wall interface can be expressed as:

τlw =
1

2
ρl · w̄2

lc · fl (25)

where, the friction factor, fl can be expressed as follows:

fl =
13.3 · µl

ρl · w̄lc ·Dlc

The mean velocity in the corner zone, w̄lc, can be obtained from a mass balance

in the corner zones. This can be achieved through equating the amount of change of

mass in the corner zones to the mass accumulated due to condensation (ṁ′′
con) and
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the amount of mass transfer with the neighboring liquid film zones (ṁ′′
lf ). This mass

transfer interaction can be expressed as follows:

ρl
d

dz
(w̄lcAlc) = ṁ′′

lf + ṁ′′
con (26)

where,

ṁ′′
lf = ṁ′′

ver + ṁ′′
hor (27)

ṁ′′
con =

(rc + δ1) (rc + δ2) hlc(z)∆T (z)

hfg

(28)

where, rc is the radius of curvature of the corner zone, hlc is the mean condensation

heat transfer coefficient of the corner zone (discussed in a later section), ∆T (z) is

the temperature difference between the saturation temperature and wall temperature

(Tsat − Tw) at each axial location z, δ1 and δ2 are the thicknesses at the two ends

of the corner zones interfacing with the vertical and horizontal thin liquid film zones

respectively and ṁ′′
ver, ṁ′′

hor are the mass fluxes entering the corner zones from the

vertical and horizontal thin-film liquid zones respectively, and are expressed as:

ṁ′′
ver =

[∫ δ1

0

ρl · vl · dx

]

y=yend

=
ρl · δ3

1

3µl

[
σl

∂κ

∂y
+ Bρlg

]

y=yend

(28)

ṁ′′
hor =

[∫ δ2

0

ρl · vl · dx

]

y=yend

=
ρl · δ3

2

3µl

[
σl

∂κ

∂y

]

y=yend

(28)

The analysis of mass transfer to the corner zones from two adjacent dissimilar thin

film zones is a unique aspect of the current model. Zhao and Liao [52] were able to

use the symmetry of a vertical channel leading to mass transfer interaction between

similar thin films. Wang and Rose [55], on the other hand treated the corner zone

by applying a circumferential pressure gradient through the use of polar coordinates.

This approach, however, required that liquid thickness be measured in the radial
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direction, resulting in thicknesses being measured oblique to the channel walls. As a

result, the profiles of the condensate thickness and heat transfer coefficient along the

walls showed discontinuity. In the present study, a bulk flow model is adopted for the

corner zone (similar to Zhao and Liao [52]), where the radius of curvature is obtained

from the momentum conservation equation. This analysis also allows the inclusion of

mass flow from the neighboring thin film zones.

5.4 Vapor Core Flow

The flow in the vapor core is considered to be one-dimensional and along the axial

direction, driven by the combined interaction of the vapor pressure gradient and

the vapor-liquid interfacial shear stress. The change in vapor momentum due to the

condensation is assumed to be negligible. Along the axial direction, the cross-sectional

area of the vapor core will decrease due to continuous condensation, till the channel

is flooded after complete condensation. With these assumptions and following the

analysis of Zhao and Liao [52], the momentum conservation equation for the vapor

core can be obtained as follows:

−dpv

dz
− τiPi

Av

=
ρv

Av

d

dz

(
w̄2

vAv

)
(29)

where pv is the pressure in the vapor core, Pi is the perimeter of the liquid-vapor

interface, Av is the area of the vapor core, w̄ is the mean velocity of the vapor core

and τi is the shear stress at the liquid-vapor interface and expressed as,

τi =
1

2
ρv · w̄2

v · fv

where, fv is the friction factor and is expressed as

fv = c ·Re−m
v

with c and m being empirical constants. The values of c and m are taken as, c = 16

and m = 1 for laminar vapor flow, and c = 0.046 and m = 0.2 for turbulent vapor
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flow. Rev is the Reynolds number for the vapor flow, and expressed as

Rev =
ρv · w̄v ·Dhv

µv

The mean vapor velocity, w̄, can be obtained from the energy conservation of the

vapor flow. The energy balance can be obtained by equating the energy lost from

the vapor core through condensation to the energy dissipated through the channel

perimeter and can be expressed as,

ρvhfg
d

dz
(w̄vAv) = −h(z)(Tsat − Tw)[H + W ] (29)

where, ρv is the density of the vapor, h(z) is the cross-sectional average heat transfer

coefficient. The negative sign in Eq. 29 is applied to accommodate the reduction

in the mass flow rate of the vapor flow (ṁv) along the axial direction (ṁv|zi
<

ṁv|zi−1
). Wang and Rose [55] obtained the mean vapor velocity at each cross-section

by subtracting the condensed mass flow rate from the inlet mass flow rate.

5.5 Heat Transfer Coefficients

The heat transfer coefficients are divided into three categories - the local average, the

zone average and the overall cross-sectional average values. The local heat transfer

coefficients are obtained for the thin film zone (hlf (y, z)) with the following expression:

hlf (y, z) =
q
′′
c (y, z)

Tsat − Tw

=
ṁihfg

Tsat − Tw

(30)

where, q
′′
c (y, z) is the local condensation heat flux at the liquid-vapor interface and

ṁi is the mass flow rate through the liquid-vapor interface. Replacing the mass flow

rate at the liquid-vapor interface, ṁi from Eq. 19 in Eq. 30, we get

hlf (y, z) =
(Tiv − Tw)/(Tsat − Tw)

δ
kl

+
Tsat

√
2πRgTsat

h2
fgρv

(
2−ν

ν

) (31)

Then zone average heat transfer coefficient for the thin film zone, h̄lf (z), can be

obtained by integrating the local heat transfer coefficient for the length of the thin
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film zone and can be written as,

h̄lf (z) =
1

Lj

∫ Lj

0

hlf (y, z)dy (32)

where Lj is the length of the jth liquid film zone (j = 1, 3, 5). In the corner zones,

there will be a net mass flow of the condensate along the axial direction along with

accumulation of the condensate from the neighboring zones due to capillary forces.

In the absence of a suitable expression for heat transfer coefficient, the correlation

of heat transfer coefficient around the perimeter for flow in the bottom portion of a

horizontal tube, suggested by Rosson and Meyers [68], is applied to obtain the zone

average heat transfer coefficient of the corner zone as:

hlc(z) =
φl,vt(kl/Dh) · (8Rels)

1/2

5 + 5 [ln(5Prl + 1)] Pr−1
l

(33)

where, φl,vt is the two-phase multiplier for viscous (laminar) liquid flow and turbulent

vapor flow, Rels is the superficial Reynolds number of the condensate flow in the

channel, Prl is the Prandtl number of the liquid. Following Zhao and Liao [52], the

parameters are expressed as follows,

Rels =
ρlw̄lsDh

µl

φl,vt =

√
∆plv

∆pl

=

√
dpv/dz

dpl/dz

where, w̄ls is the mean superficial liquid velocity, ∆plv is the pressure drop of the

two-phase flow and ∆pl represents the pressure drop of the liquid flowing alone in a

rectangular channel, which can be expressed as:

dpl

dz
=

Pch

Ach

τl

where τl represents the shear stress of the liquid flowing alone in the rectangular

channel and is defined as:

τl =
6.65µlw̄ls

Dh
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Finally the cross-sectional average heat transfer coefficient, h(z), is obtained by

averaging the heat transfer coefficients of the liquid-film and corner-liquid zones with

the following relationship,

h(z) =
h̄lf,1.L1 + hlc,2.Pc,2 + h̄lf,3.L3 + hlc,4.Pc,4 + h̄lf,5.L5

H + W
(32)

5.6 Numerical Solution

The mass, momentum and energy conservation equations are implicit in nature, as all

the parameters are not known in a particular step in z. As such an iterative approach

is adopted, which obtains the process parameters initially with respect to previous

axial position values and then with subsequent iterations, the converged values of the

process parameters are arrived for the next axial position. This process is repeated

until the convergence criterion is satisfied at each step in the axial direction. In the

present model, the liquid and vapor phases are treated separately and the respective

conservation equations of the two phases are coupled with respect to common system

parameters like heat transfer coefficient and interfacial parameters like saturation

temperature, shear stress etc. In every step along the axial direction, conservation is

sought in the mass, momentum and energy equations of respective phases.

The variation in the axial direction (z) is expressed by discretizing the variation

using forward finite difference method with an increment of ∆z. Eq. 20 describes the

profile of the liquid-vapor interface for the thin liquid zones. However, at each axial

location, the analysis is done with parameter values from the previous axial step. So

at each axial location, the profile is defined by a fourth order ordinary differential

equation.

5.6.1 Solution Procedure

The mass, momentum and energy conservation equations of the liquid and vapor core

are inter-dependent. A unique solution procedure has been adopted, which calculates

99



the process parameters at zi step through an iterative approach by simultaneous

solving of the governing equations, initializing with the process parameters from

previous axial position, zi−1. The iterative approach is continued until the convergence

criterion is satisfied at each step in the axial direction. The profiles of the liquid-vapor

interface for zones 1, 3 and 5 are expressed by Eq. 20, which is a non-linear fourth

order ordinary differential equation (as parameter values are known at previous zi−1

step) and represents a boundary value problem (BVP). Eq. 20 is expressed as a series

of linear ordinary differential equations and then solved using non-linear Newton-

Raphson method.

The vapor is considered to be at saturated condition at the inlet of the channel.

The saturation temperature of the vapor is interpolated from standard steam tables.

The solution procedure is as follows:

1. z = 0: Initial conditions at the inlet of the condenser are utilized to obtain the

liquid-vapor interfacial profile for the thin liquid zones 1, 3 and 5.

• The initial vapor pressure gradient at z = 0 is obtained from the following

relation:

dpv

dz
= −fv

2G2χ2

ρvDh

where, χ is the vapor quality, and

fv = cRe−m
v





c = 16 m = 1 laminar flow

c = 0.046 m = 0.2 turbulent flow

• Next the liquid-vapor profiles of zone 1 and 5 are solved. The radii of

curvature, rc,2 and rc,4 are assumed to be 10% of the channel width.

According to the assumptions, δ3,0 = δ1,1 = 0. Then liquid-vapor profiles

of zone 1 and 5 are obtained from Eq. 22.

• The length of zone 3 is obtained and the interface profile is solved using

the boundary conditions described earlier.
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• After obtaining the liquid-vapor interface profile, the following parameters

are obtained: Alc,2, Alc,4, Av, dpv/dz, Rev, τi, χ and α.

• w̄lc obtained from continuity:

w̄lcAlcρl + w̄vAvρv = ṁv

• Finally, the local averaged heat transfer coefficients, hlf (z), hlc(z) and h(z)

are obtained using the above parameters.

2. z = z + ∆z: Next axial vapor pressure gradient is obtained from the guessed

vapor pressure.

3. Areas of the corner zones are obtained by simultaneously solving Eq. 24 and

Eq. 26. The new radii of curvature (rc,2 and rc,4) are obtained from the corner

areas, Alc,2 and Alc,4 respectively. .

4. The profiles of the thin liquid zones (1, 3 and 5) are solved using rc,2, rc,4.

5. The local and overall average heat transfer coefficients are then obtained. Dlc,2,

Dlc,4, Dhv are updated. Subsequently, the average vapor velocity, wv is obtained

from Eq. 29. Rev, τi, χ and α are updated.

6. Finally the vapor pressure gradient for the current axial location is obtained

using Eq. 29. If the value didn’t match with dpv/dz obtained from the guessed

pressure at step 2 or from previous iteration within a specified tolerance (10−5),

process is repeated from step 3.

7. The solution is then taken to the next axial location and the steps are repeated

along the axis.

5.7 Summary

In this chapter, a detailed analytical model was developed for simulating conden-

sation in a rectangular microchannel. The model describes an iterative approach
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incorporating successive solution of mass, momentum and energy balance equations

for both liquid and vapor phases. The condensate layer along the wall is divided into

five distinct regions - thin liquid layers along top, vertical and bottom wall, and the

corner zones at the top and bottom. The liquid-vapor interface profile is expressed as a

4th order non-linear differential equations, which was solved using non-linear Newton-

Raphson technique by discretizing the equations using finite difference method. The

basic features of the condensation model are as follows:

1. The effect of surface tension and gravity is incorporated in describing the

transport of the condensate film.

2. The heat and mass transfer in the corner zones takes into account the mass

transfer between the film zones and the corner zones and also the mass transport

occurring through the liquid-vapor interface due to condensation.

3. The heat transfer in the film zone along the wall is considered to be conduction

dominated.
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CHAPTER VI

RESULTS OF CONDENSATION MODELING

Five different geometries were considered - square section of 300 µm (300W × 300H,

Dh = 300 µm) and rectangular sections of 300 × 500 µm (300W × 500H, Dh = 375

µm), 500 × 300 µm (500W × 300H, Dh = 375 µm), 100 × 300 µm (100W × 300H,

Dh = 150 µm) and 300 × 200 µm (300W × 200H, Dh = 240 µm). Saturated steam at

100 oC temperature is introduced at the inlet of the channel (Figure 34) for uniform

wall temperatures of 92 and 96 oC. The thermophysical properties of water necessary

for calculation are listed in Table 14.

6.1 Thin liquid film profiles

Figure 37 shows the liquid film profiles of zone 1 at five different locations (z = 1

mm, 8 mm, 16 mm, 24 mm and 32 mm from the inlet of the channel) along the axial

length of a square channel (300 × 300 µm). Zone 1 occupies most of the length of the

top wall near the channel inlet, and gradually decreases along the axial length. The

thickness of the liquid film increases along the axial direction due to accumulation of

the condensate. Similar phenomenon also happens for the bottom wall. Eventually,

the thin film zones end and the corner zones occupy all the surfaces of the channel.

Apparently, in Figure 37 the profiles of the thin film zone appear parallel to the

horizontal wall. However, a closeup in Figure 38 reveals a curve whose curvature

changes sign in the middle of the zone (profile shown at inlet). The surface tension

force acting parallel to the wall, which draws in liquid towards the corner zone is

considered to be responsible for this profile. Similar kind of profile is also seen in [52],

where triangular channels of dimensions 1-2 mm were used to model the condensate

profile. The axial variation of the profile for the half-section of the channel is shown in
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Table 14: Thermophysical properties of water

Gas constant, Rg 462 (J/kg-K)
Dispersion constant, β 2.0 × 10−21 (J)
Accommodation coefficient, γ 0.03
Surface tension, σl 0.05886 (N/m)
Latent heat of vaporization, hfg 2257.1 × 103 (J/kg)
Liquid specific heat, cpl 4220 (J/kg-K)
Density of liquid, ρl 958.4 (kg/m3)
Density of vapor, ρv 0.5977 (kg/m3)
Dynamic viscosity of liquid, µl 2.825 × 10−4 (N-s/m2)
Dynamic viscosity of vapor, µv 1.202 × 10−5 (N-s/m2)
Thermal conductivity of liquid, kl 0.683 (W/m-K)
Prandtl number of liquid, Prl 1.75

Figure 39. The increase in the radii of the corner zones is visible, with corresponding

decrease in length of the thin film zones. The thicknesses of the top and bottom

layers are nearly identical. This shows that the effect of gravity is almost negligible

in condensation in rectangular microchannels, and the liquid movement is entirely

driven by surface tension.

6.2 Heat transfer coefficients

As seen in Figure 40, the local heat transfer coefficient of the thin film zone is inversely

proportional to the thickness of the condensate layer, and is seen to decrease along

the axial length. Correspondingly, the corner liquid zone increases in area through

mass accumulation from condensation and mass transfer from the thin film zones due

to surface tension driven flow lateral to the channel cross-section, which reduces the

heat transfer coefficient along the length of the channel (represented by the lines

at the bottom of the graph). The enhancement of the thin film zone is clearly

seen by comparing with the heat transfer coefficient of the corner zone at each

axial location. The discontinuity (sudden drop in heat transfer coefficient values)

noticed at the interface of the film zone and corner zone is due to the difference in
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Figure 39: Condensate profiles for half-section channel along axial length

numerical treatments of an one-dimensional analysis for the corner zones compared

to a two-dimensional analysis for the thin film zones. The calculation of heat transfer

coefficients of the thin film zone and the corner liquid zone from two separate analysis

is similar to the analysis done by Zhao and Liao [52], who also noticed a similar

discontinuity in heat transfer coefficients of the separate zones. However, Wang et

al. [53] used polar coordinates in the corner region to obtain a continuous profile of

the heat transfer coefficient, which has the drawback of defining thickness oblique to

the corner walls.

In Figure 41 the variation of the average heat transfer coefficient for the thin-film

(hlf,1) and corner liquid zone (hlc,2) of the square-section channel are shown for the

case of G = 90 kg/m2-s and ∆Ti = 8 oC. Correspondingly, on the secondary axis, the

radius of curvature (rc,2) and the length of zone 1 (L1) are shown. Along the axial

direction, we can see that the length of the thin film zone is decreasing, along with a

corresponding increase in the radius of curvature of the adjacent corner liquid zone.
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Similar behavior is also noticed for the other thin liquid zones (zone 2 and 4) and

the corner liquid zone 4. This is due to the condensation of vapor along the axial

length, which gets drained into the corner zones. From the figure, we also observe the

monotonic decrease of the heat transfer coefficients of the thin liquid zone (hlf,1(z))

and the corner liquid zone (hlc,2(z)). The effect of surface tension is clearly visible

in the attainment of high values of heat transfer coefficient in the thin film zone. As

the two-phase mixture moves downstream, the enhancement seems to fade away with

gradual thickening of the film, which is visible from the gradual decrease of slope

of the heat transfer coefficient. Along the axial direction, the gradual thickening of

the corner liquid zone is also reflected in the monotonic decrease of the heat transfer

coefficient, hlc,2(z).

The enhancement in heat transfer achieved due to the thin film formation in

the square channel can be better noticed through a comparison with a heat transfer

correlation for a circular tube having same hydraulic diameter (300 µm) as the square

107



0

0.5

1

1.5

2

2.5

3

0 5 10 15
Z (mm)

h
 x

 1
05  (

W
/m

2 -K
) 

0

20

40

60

80

100

120

140

160

L
e

n
g

th
 (

 µ
 m

)

hlf,1

hlc,2

rc,2

L1

∆T = 8oC, G = 90 kg/m2-s, 300W x 300H
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channel (Figure 42). The Shah correlation [69] is used for the comparison at an

inlet subcooling of 8 oC and inlet mass flow rate of G = 70 kg/m2-s. The heat

transfer coefficient for the square-section channel is significantly higher compared to

the circular channel in the initial section of the channel (until 12 mm from the inlet).

This enhancement in the initial length is primarily due to the presence of thin film

zones. With continuous accumulation of condensation along the axial length, the

film zones end, and the channel gets flooded with the corner zones occupying all the

surfaces of the channel. This change is reflected in the flattened profile of the heat

transfer coefficient after z = 12 mm. From this point onwards, the order of the heat

transfer coefficient for the square channel is similar to that of the circular channel.

This shows the influence of surface tension in shaping the interface profile through the

formation of the thin film zone and thus achieving a very high heat transfer coefficient,

compared to the continuous annular profile of the bulk condensate flow obtained in

a circular channel.
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The effect of inlet mass flow rate and inlet subcooling on the profile of the liquid-

vapor interface of zone 1 for a square channel (300 µm × 300 µm) is shown in

Figure 43. Two inlet flow-rates of 70 kg/m2-s and 90 kg/m2-s, which correspond to

Reynolds number of 1500 and 1950 respectively, and inlet subcooling of 4 oC and 8 oC

are imposed at the inlet of the channel. The profiles are obtained at z = 10 mm from

the inlet of the channel. With an increase in mass flow rate (keeping inlet subcooling

constant), the thickness of the condensate in the thin film region decreases. The

length of the thin film zone also increases with an increase in mass flow rate, with

a corresponding decrease in the area of the corner zone. The higher vapor velocity

associated with a higher inlet mass flow rate, will exert more shear stress on the liquid-

vapor interface, resulting in more liquid being carried downstream with a decrease

in the condensate layer thickness. The thinner liquid film at higher mass flow rate

produces a higher heat transfer coefficient, as shown in Figure 44. On the other hand,

an increase in inlet subcooling (keeping inlet mass flow rate constant) is associated
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Figure 43: Effect of inlet mass flow rate and inlet subcooling on thickness of
condensate

with an increase of film thickness along the axial direction. Higher inlet subcooling

induces more condensation, which increases the condensate thickness, resulting in a

decrease in heat transfer coefficient, as seen in Figure 44. Zhao and Liao [52] also

obtained higher heat transfer coefficient for higher inlet Reynolds number, which

they attributed to the longer thin film zone obtained at higher Reynolds number.

Similar to the present results, they also found that a decrease in the inlet subcooling

(keeping inlet Reynolds number constant) resulted in a higher heat transfer coefficient

compared to a larger inlet subcooling.

Figure 45 depicts the effect of inlet mass flow rate (G = 70 kg/m2-s and 90 kg/m2-

s) and inlet subcooling (∆T = 4 oC and 8 oC) on the cross-sectional average heat

transfer coefficient for a square channel (300 µm × 300 µm). An increase in the inlet

mass flow rate (keeping inlet subcooling constant) shows an increased average heat

transfer coefficient in the channel. The higher mass flow rate generates a thinner

condensate layer in the channel, due to the higher shear stress applied on the liquid
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Figure 44: Effect of inlet mass flow rate and inlet subcooling on local heat transfer
coefficient

by the vapor core, resulting in higher heat transfer coefficient. However, with gradual

build-up of condensate causes a gradual decline in the average heat transfer coefficient.

This behavior is common for both the inlet subcooling of 4 oC and 8 oC. On the other

hand, with an increase in inlet subcooling (keeping inlet flow rate constant), the

average heat transfer coefficient is found to decrease. A larger subcooling leads to a

thicker condensate layer (Figure 43) resulting in lower local heat transfer coefficient

(Figure 44). Along the axial direction, the rate of decrease in heat transfer coefficient

monotonically decreases, as the flow regime transfers from film based to annular flow.

A similar decline in average heat transfer coefficient with increased inlet subcooling

was reported by Zhao and Liao [52]. They found that the increase in inlet flow rate

(higher Reynolds number) exerted higher shear stress on the liquid layer and extended

the length of the condensate layer along the axial direction. Wang and Rose [55] also

reported a decline in mean heat transfer coefficient with increasing ”vapor-to-surface”
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Figure 45: Effect of inlet mass flow rate on cross-sectional average heat transfer
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temperature difference.

The effect of channel sizes on the cross-sectional average heat transfer coefficient

is shown in Figure 46 for three channel dimensions (300 µm × 300 µm, 300 µm

× 500 µm and 500 µm × 300 µm) for a subcooling of ∆T = 4 oC at mass flow

rate, G = 90 kg/m2-s. The graphs depict the values before the end of the thin film

zones and beginning of the annular flow regime, where the top and bottom walls get

“flooded” by the gradual increase in the corner zones. The thin film zones (top and

bottom walls) of the wider channel and the taller channel (vertical wall) are extended

beyond that available in the square-section channel, which delays the flooding of

the channel (end of thin film zones) for the wider and taller channel. As a result,

the average heat transfer coefficient is higher for both the wider and taller channel

with respect to the square-section channel. The enhancement in heat transfer is

approximately 1.5 times, which starts to decrease beyond 20 mm from the inlet. The

taller channel (300 µm × 300 µm) shows slightly higher heat transfer coefficient than
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the wider channel (500 µm × 300 µm) till 15 mm from the inlet, after which the

behavior reverses. Similar behavior is also noted for an lower mass flow rate of G

= 70 kg/m2-s. This behavior can be explained by studying the local condensate

thickness and heat transfer coefficients, as shown in Figure 47 and Figure 48. For a

larger channel, because of higher surface area, the condensate thickness will be less

compared to a smaller channel. This behavior is seen in Figure 47 from the thickness

profiles as the height of the channel is increased. Similar decrease in condensate

thickness and corresponding increase in local heat transfer coefficient is also noticed

for the wider channel. Zhao and Liao [52] also noted a similar decline in the cross-

sectional average heat transfer coefficient along the axial direction with reduction in

the channel dimensions, however in the initial region of the channel, they found that

surface tension plays a role in increasing the heat transfer coefficient for the smaller

sized channel (equilateral triangular channel with dimension of 1 mm compared to a

2 mm channel).

6.3 Two-phase pressure drops

Figure 49 presents the variations of two-phase pressure drops in the square-section

horizontal microchannel along the axial distance for mass fluxes of 70 kg/m2-s, 90

kg/m2-s and 110 kg/m2-s, at inlet subcooling of 4 oC. With increase in the mass flow

rate, the shear stress experienced at the liquid-vapor interface also increases, which

leads to a higher two-phase pressure drop. Moreover, higher inlet mass flow rate

allows faster heat transfer in the axial direction from the vapor to the channel walls

(Figure 44), which leads to quicker condensation of the vapor flow. This leads to

a quicker reduction in the velocity of the vapor, and thus the pressure drop in the

channels decreases more rapidly.

In Figure 50 the effect of channel geometry on the two-phase pressure drop is

shown for a mass flux of G = 70 kg/m2-s at an inlet subcooling of 4 oC. A decrease in
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the height of the channel from 500 µm to 200 µm increased the pressure drop roughly

two times after 10 mm from the inlet. For a particular mass flux, velocity of the

vapor core will be more in the case of smaller cross-section channel, which will induce

higher interfacial shear stress resulting in higher pressure drop. The observed trend

in the pressure drop shows that the model have been able to capture the physics of

the condensation properly.

6.4 Comparison with existing literature

In the absence of a suitable empirical correlation describing condensation in rec-

tangular microchannels, the current model is compared with the condensation

model of Wang and Rose [55] and with the experimental results of Garimella and

Bandhauer [70], Shin and Kim [71] and Cavallini et al. [72]. A baseline case is

considered with a 1 mm × 1 mm square cross-section horizontal channel, with R134a

as the working fluid for G = 500 kg/m2-s, ∆T = 4 oC and Tsat = 50 oC. In Figure 51,
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the axial variation of overall heat transfer coefficient and quality is shown. Wang and

Rose [55] noticed a sharp decline in the heat transfer coefficient until 50 mm from

the channel inlet and then a constant value until 200 mm along the axial direction.

They believed that surface tension might be responsible for producing a uniform heat

transfer coefficient between 50 mm-200 mm. However, the current model predicts

a gradual decline in heat transfer coefficient along the channel length. A similar

trend as the present study is also noticed by Lu and Suryanarayana [73]. Continuous

condensation along the channel length will increase the cross-sectional area of the

corner liquid zone, as well as increase the thicknesses of the thin film zones, thus

decreasing the heat transfer coefficient. In this respect, it is believed that the current

study depicts a more realistic variation of heat transfer coefficient. The variation in

quality shows similar trend for both the studies. Since quality is related to the mass

of liquid, the above results might suggest that the mathematical treatment of the

different zones is responsible for different distribution of liquid along the wall, thus

affecting the overall heat transfer coefficient.

In Figure 52 the variation of Nu with quality is shown. The Nu predictions from

the current model are seen to follow the trend shown by Garimella and Bandhauer [70]

and Shin and Kim [71]. Within a quality range of 0.2-0.8, current results show similar

variation with respect to Garimella and Bandhauer [70]. However, the Nusselt number

variation at the entry region of the channel cannot be compared as the experiments

were conducted with partially condensed vapor at the inlet. The current model under-

predicts the heat transfer coefficient data of Cavallini et al. [72], who used a multi-port

channel condenser. This result corroborates with the numerical simulation of Cavallini

et al. [72], who observed similar behavior for G > 600 kg/m2-s. Moreover, the

unknown mass flow rate through each channel may also contribute to the discrepancy

in the measured and predicted heat transfer coefficient values.

117



0

5

10

15

20

25

0 100 200 300 400 500 600

Z (mm)

h
 (

kW
/m

2 -K
)

0

0.2

0.4

0.6

0.8

1

1.2

χ 

Wang and Rose [54]

Present study

Figure 51: Comparison of heat transfer coefficient and quality vs. axial channel
length

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1 1.2

χ

N
u

Garimella and Bandhauer [70]

Data extrapolated for [70-72] at G=500 kg/m2-s

Cavallini et al. [72]
Dh = 1.4 mm

Shin and Kim [71]

Dh = 0.76 mm

Dh = 0.97 mm

Present study

Figure 52: Comparison of Nusselt number vs. quality

118



6.5 Summary

A detailed analytical study on the condensation in rectangular microchannel has

been discussed in this chapter. The present model takes into account the effect of

surface tension, gravity, vapor pressure gradient, interfacial shear stress, saturation

temperatures and interfacial thermal resistance. The primary findings from the study

are as follows:

1. Significantly higher heat transfer coefficient is obtained for the rectangular

channel compared to condensation in a circular channel, as long as thin film

zones are sustained along the walls.

2. Increase in the mass flow rate at the channel inlet is associated with higher

interfacial shear stress on the liquid-vapor interface, which results in sustaining

thin film zones in the early part of the channel, which leads to a higher

condensation heat transfer coefficient and thus a thicker film in the later part

of the channel. This also results in a higher vapor pressure drop.

3. Increasing the inlet subcooling results in a thicker film in the channel, which is

responsible for a gradually decreasing heat transfer coefficient along the channel.

4. Increasing the channel dimensions is responsible for increasing the length of the

thin film zones, which also results in increased heat transfer coefficient.

5. Increase in channel dimensions is related to lower vapor pressure drop. This

is attributed to the higher Reynolds number achieved in a smaller channel

at similar inlet flow rate. As a result, a channel of smaller cross-section will

experience a higher pressure drop.
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CHAPTER VII

CONCLUSIONS, UNIQUE CONTRIBUTIONS AND

RECOMMENDATIONS FOR FUTURE WORK

A dual chamber thermosyphon is a compact device, which incorporates boiling and

condensation and can dissipate high heat fluxes. A fundamental understanding of the

boiling and condensation phenomena in confined regions is required for designing such

systems. The present work identified the boiling of water at sub-atmospheric pressures

and condensation in microchannels as two important areas needing detailed study to

aid in designing evaporator and condenser for optimized performance (Chapter 1).

A detailed test setup was designed and assembled for carrying out experiments on

boiling with water at sub-atmospheric pressures using boiling enhancement structures.

The pressure was varied from 9.7 kPa to 21 kPa, with heat fluxes varying from 0-105

W/cm2. A porous boiling enhancement structure (12.7 mm × 12.7 mm) was used,

whose height was varied from 1-6 mm. The initial height of the working fluid in

the evaporator was also varied from 20-39 mm, corresponding to fill-ratios of 0.5-

0.9 respectively (Chapter 2). The effect of the sub-atmospheric pressures and the

enhancement structure geometry on the boiling heat flux was studied for varying

heat fluxes, and compared with the boiling heat transfer from a plain surface. The

results were also compared with existing literature and the observations from the

comparison are discussed. A model was also developed for the surface heat flux,

based on the experimental heat transfer coefficient and the numerical results were

compared with the experimental results (Chapter 3). The effect of the liquid-fill level

on the boiling heat transfer at varying pressures and geometries of the enhancement

structure is discussed and compared with existing literature (Chapter 4).

120



A detailed analytical study on the condensation in rectangular microchannel (Dh

= 150 µm to 375 µm) has been undertaken, which involved an iterative solution

approach of the mass, momentum and energy equations of liquid and vapor phases.

The present model takes into account the effect of surface tension, gravity, vapor

pressure gradient, interfacial shear stress, saturation temperatures and interfacial

thermal resistance (Chapter 5). The effect of the inlet flow rate, channel dimensions

and inlet subcooling were investigated and the results were also compared with

existing models and correlations on condensation (Chapter 6).

7.1 Conclusions

7.1.1 Effect of enhancement structure and sub-atmospheric pressures on
the thermal performance

The current study showed that boiling enhancement structure geometry plays an

important part in influencing the thermal performance of a thermosyphon. The

operating system pressure also influences the thermal performance. The following

conclusions can be drawn from the experimental results:

1. Boiling at sub-atmospheric pressures results in lowering of saturation temper-

ature, which leads to lower wall temperatures. Heat fluxes greater than 100

W/cm2 can be achieved through boiling at sub-atmospheric pressures, while

keeping the surface temperatures below the threshold temperature of 85 oC.

2. Incipience superheat was found to be negligible for boiling at sub-atmospheric

pressures with enhanced structures. All the boiling curves exhibited monotonic

behavior throughout the range of heat fluxes for all the experimental runs.

3. The heat transfer coefficient increased with an increase in the operating

pressure. This behavior is more apparent at the higher heat flux range (>

50 W/cm2), where increased heat transfer coefficient was noticed with a slower

rate of change in wall superheat.
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4. The lowering of surface temperature with decrease in pressure is offset by the

deterioration of heat flux with lowering of pressure. The bubble generation

physics plays an important part in this scenario. In this respect, the current

results corroborate previous investigations on boiling of water at low pressures,

which concentrated on visualization of bubble generation at low pressures.

5. The enhancement structure is found to increase the heat flux with respect to

boiling from a plain surface at sub-atmospheric pressures. However, as the

height of the structure was increased beyond single layer, the heat transfer

coefficient reduced. This implies the existence of an optimum height of the

structure, which will achieve the maximum heat transfer corresponding to a

particular saturation pressure.

6. The enhanced structure achieved improved performance with respect to the

plain surface and also increased the CHF.

7. With increase in the operating pressure, the enhancement in heat transfer

achieved by the porous structure over the plain surface tends to decrease.

7.1.2 Effect of liquid-fill level on the thermal performance

Contrary to existing literature, in the present study, the liquid fill-level is found to

influence the heat transfer characteristics. The following conclusions can be drawn

from the experimental results:

1. For boiling from a plain surface, a reduction in liquid fill-levels increases the

heat transfer with a corresponding increase in CHF also. It is found that the

change in liquid-fill levels has a more pronounced effect for the higher pressure

case (21 kPa), whereas for lower pressures (9.7 and 15 kPa), the effects are

negligible.
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2. The heat transfer is observed to be dependent on the liquid level for boiling

with enhanced structures. At 21 kPa pressures, vigorous boiling activity was

noticed in the evaporator, which generated a lot of agitation in the top surface

of the pool, resulting in the reduction of the effective height of the pool. The

height difference between the liquid level and the top of the structure influences

the hydrostatic pressure head on the boiling surface and thus affect the bubble

generation. A reduced effective pool height would also lead to a decrease in

the net buoyancy force exerted on the bubbles for dislodging from the boiling

surface. This would reduce the heat flux from the surface. On the other hand,

higher buoyancy force will thus aid in bubble generation and increased heat

transfer.

3. Results from the study on structures having 1, 4 and 6 layers suggest that an

optimum liquid level might exist for each structure. With increase in the height

of the structure, the liquid level producing the best performance is also seen to

increase.

4. For lower fill levels, vigorous boiling at higher heat fluxes (> 60 W/cm2) might

prevent the liquid from wetting the structure. As a result, the performance

would be worse for such cases.

5. The height of the evaporator significantly contributes to the transport of

working fluid from the evaporator to the condenser through entrainment in the

connecting tubing. For high liquid fill levels, the entrained liquid will reach the

condenser resulting in reduction of condensation heat transfer. This result also

suggests an optimum liquid fill level for the structure-evaporator configuration.
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7.1.3 Condensation in rectangular microchannels

The principal conclusions from the study of condensation in rectangular microchan-

nels are:

1. Significantly higher overall heat transfer coefficient is obtained for the rectangu-

lar channel compared to condensation in a circular channel of similar hydraulic

diameter, as long as thin film zones are sustained along the walls. After the

rectangular channel gets “flooded” (no thin film zone exists along the walls),

the order of magnitude of the heat transfer coefficient for the rectangular and

circular channels are approximately similar.

2. With increase in the thickness of the condensate along the channel, the local

heat transfer coefficients of the thin film zone (along the walls) and the corner

liquid zones decreases monotonically.

3. Increase in the mass flow rate at the channel inlet is associated with higher

interfacial shear stress on the liquid-vapor interface, which results in sustaining

thin film zones in the channel. As a result, higher inlet mass flow rate results

in higher overall heat transfer coefficient.

4. Increasing the inlet subcooling results in a thicker film, which is responsible for a

lower heat transfer coefficient compared to the case with lower inlet subcooling.

5. Increasing the channel dimensions is responsible for increasing the length of the

thin film zones, which also results in increased overall heat transfer coefficient,

compared to a square cross-section channel.

6. Increased inlet flow rate results in a higher interfacial shear stress at the

liquid-vapor interface, which leads to higher vapor pressure drop. This can

be attributed to the higher Reynolds number flow associated with higher inlet

flow rate.
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7.2 Unique Contributions

The unique contributions of the current work are as follows:

7.2.1 Experimental work on boiling

1. Providing a better understanding of the thermal performance of a thermosyphon

at varying sub-atmospheric pressures, enhancement structure geometries and

liquid-fill levels.

2. Identifying the presence of optimum geometrical, system and design parameters

for improved thermal performance.

3. Demonstration of the effectiveness of system parameters with respect to baseline

configuration.

7.2.2 Numerical work on condensation

1. Development of a condensation model, which includes the detailed analysis of

the liquid and vapor phases combined through an iterative non-linear approach

for obtaining condensate profiles in rectangular microchannels.

2. Demonstration of model validation through comparison with existing correla-

tions and model.

7.3 Recommendations for future work

The current study presents a detailed analysis of boiling under sub-atmospheric

pressures for varying conditions of liquid fill levels and boiling enhancement structure

geometry. The study on condensation in rectangular microchannels was done

for various channel geometries, inlet flow rates and inlet subcooling. However,

further studies are required to complement the present study for comprehensive

understanding of boiling and condensation in a thermosyphon. The recommended

research works are as follows:
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7.3.1 Study on boiling

1. A study on the effects of geometrical parameters of the enhancement structure

including pore size, pore pitch and thickness of individual layers on the thermal

performance of the thermosyphon at sub-atmospheric pressures can provide

a more comprehensive understanding and help in the design of an optimized

structure.

2. A visualization study on boiling of water at sub-atmospheric pressures will

help in understanding the bubble dynamics at low pressures in compact boiling

chambers. This will also help in observing the initiation of boiling and also the

frequency of bubble generation.

3. The pressure inside the thermosyphon is dependent on the height difference

between the boiling surface and the condenser. A study on the effect of

height on thermosyphon performance would help in optimizing the size of the

thermosyphon for designing a more compact device.

4. Due to the cooling of the vapor in the condenser, the condensed liquid entering

the evaporator can be subcooled. In the present study the subcooling was

dependent on the heat transfer coefficient achieved in the condenser. However,

a lower subcooling might increase the boiling heat transfer coefficient, as most

of the heat transfer then will be latent. A subcooling study with water at

subatmospheric pressures will complement the present work towards achieving

more control on the heat transfer coefficient achieved in the evaporator.

7.3.2 Study on condensation

1. The condensation model can be improved with a better treatment of the corner

zones. The current treatment of the corner zone is based on the assumption

of one-dimensional flow in the corner zone. A finite volume based numerical
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model for the corner zone would be able to accurately simulate the flow field

and temperature profile.

2. The current model needs to be extended to solve for condensation in a series of

parallel microchannels. In this regard, external air-side simulation needs to be

integrated, which will also incorporate varying outside wall temperature of the

condenser.
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APPENDIX A

UNCERTAINTY CALCULATIONS

The uncertainty of the surface heat flux is calculated in the following way:

q′′ =
V 2

RA
(32)

where, q′′ is the surface heat flux, V is the input voltage to the heater, R is the

resistance of the precision resistor placed in parallel connection with the heater in the

circuit and A is the surface area of the plain boiling surface. Then following Kline

and McClintok [74], the uncertainty of q′′ can be written as,

∆q′′ =

{(
∂q′′

∂V
∆V

)2

+

(
∂q′′

∂R
∆R

)2

+

(
∂q′′

∂A
∆A

)2
} 1

2

(33)

where,

∂q′′

∂V
=

2V

RA
=

2q′′

V
(34)

∂q′′

∂R
= − V 2

R2A
= −q′′

R
(35)

∂q′′

∂A
= − V 2

RA2
= −q′′

A
(36)

Therefore

∆q′′ = q′′
{

4

(
∆V

V

)2

+

(
∆R

R

)2

+

(
∆A

A

)2
} 1

2

(37)

The voltage measurement uncertainty is specified by the manufacturer as 0.045%of

the reading. The uncertainty in the precision resistor was ±0.01. The uncertainty in

the calculation of the area of the boiling surface was ±0.1. The uncertainties can be
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expressed as:

∆V

V
= 0.00045 (38)

∆R

R
= 0.01 (39)

∆A

A
= 0.1 (40)

Substituting these values in Eq. 37, we get,

∆q′′

q′′
=

{
4 · (0.00045)2 + (0.01)2 + (0.06)2} 1

2 (41)

which is equal to 0.10. So the uncertainty in heat flux measurement is 10.0%.
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