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Abstract

The Peters/He Finite State Wake Model is
described in its application to fixed wing aerolasticity.
Expressions for coupling this model with a wing,
aerodynamically represented by a flat plate with a
trailing edge flap, are developed, and fidelity issues are
discussed. An application is presented where the
wing/wake system is coupled to a proprotor model.
The effects of unsteady wing aerodynamics on
damping of this system are investigated. It is found
that wake effects are small as a result of generally low
damping levels in the system due to wing
aerodynamic damping.

Notation

AR aspect ratio
C linear differential operator
Cnm, Dnm coefficients, eq. (6) and (7)
D drag/unit length
Di, Di* coefficients, eq. (34)
L lift/unit length; linear diff. operator
M moment/unit length; max. order of

radial polynomials
[M] wake mass matrix
[N] wake damping matrix
P pressure discontinuity
Pnm, Qnm associated Legendre Polynomials of

first and second kind
R disk radius
S wing semi span
U freestream velocity
V disturbance velocity
anm, bnm wake states
b wing semi chord
i coordinate index; index
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n, j polynomial number
m, r harmonics number
f frequency [Hz]
k reduced frequency
q perturbation velocity
r radial coordinate
t time
u, w chord/beamwise wing deflection
x, y, z cartesian coordinates
∆ relative deviation, (value-ref.)/ref.
Λ wing sweep angle
Φ pert. pressure; acceleration potential
α airfoil pitch angle
α 0 airfoil pitch angle, steady state
δ flap deflection angle
λ wake induced velocity

λ i,j
r

integrals, eq. (21)
ν, µ, ψ ellipsoidal coordinates
ψ azimuthal coordinate
ρ density
θ chordwise coordinate
φ pressure discontinuity at the disk
τnm wake generalized forcing function
ω normalwash on airfoil/flap
ξ coordinate in freestream direction
χ wake skew angle

Subscripts:
,i derivative wrt. coordinate i
d flap hinge location
h horizontal
v vertical
n,j polynomial number
,ξ derivative in freestream direction
τ circulatory

Superscripts:
A acceleration part
V momentum flux part
c cosine partition
le leading edge
m, r harmonics number
te trailing edge
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Symbols:
( )* derivative wrt. nondimensional time
 normalized value; for ... by ...:

length R
speed U
time R/U
frequency U/R
lift/unit length ρU2R
pressure ρU2R2

moment/unit l. ρU2R2

[ ] matrix
{ } column vector

Introduction

The tiltrotor aircraft currently receives a lot of
attention as a possible solution to airport congestion
problems. Recent preliminary design trend and
optimization studies like reference [1] show that this
configuration has the potential of being
economically competitive with turboprop aircraft.
These studies usually include only an approximate
representation of the effect of proprotor whirl flutter,
a coupled rotor-wing instability and major design
driver for this configuration. The current state-of-the-
art computer program for V/STOL aircraft,
VASCOMP [2], for example, accounts for this
phenomenon by placing the first three wing natural
frequencies at particular fractions of rotor rpm. This
approach does not account for any coupling between
these modes, rotor dynamic characteristics, or flutter
alleviation by active controls. Previous research in
the latter areas, on the other hand, did not include
integration with aircraft sizing/mission performance
analysis and optimization ([3], [4]). A current research
effort at Georgia Tech's School of Aerospace
Engineering therefore focuses on integrating aircraft
sizing, wing structural design, wing aerodynamics,
rotor aeroelasticity and control system design into a
Multidisciplinary Optimization (MDO) framework
[5].

Two areas are particularly under investigation.
The first is an improved structural model of the wing
which accounts for dynamic tailoring through the use
of composite materials, without requiring excessive
computational effort. The Equivalent Laminated Plate
Solution ELAPS [6] proved to be sufficiently
accurate for this task, while being computationally
more efficient than Finite-Element analyses. The
second focus is on inclusion of unsteady wing/flap
aerodynamics. Previous studies included only a quasi-
steady representation, although the natural frequency
of the flutter mode found by van Aken [7] for an XV-
15-type wing-rotor configuration translate into
reduced frequencies around 0.16. A closer
investigation of the effect of unsteady aerodynamics

on the proprotor whirl phenomenon seems therefore
necessary.

Most fixed-wing flutter analyses employ k-type
aerodynamics like the Doublet-Lattice or Vortex-
Lattice Method, Kernel Function approaches, or Strip
Theory with Theodorsen Function correction. Since
k-type aerodynamics are formulated for simple
harmonic motion, they are not directly applicable to
modal analysis of an aerodynamically damped system
and subsequent flutter suppression controller design.
In the case of the first task, iteration on the imaginary
part of the eigenvalues is required (p-k-Method). For
the second task, the aerodynamic influence
coefficients for simple harmonic motion (purely
imaginary eigenvalues/k-type) need to be expanded
into the complex plane using Padé-Approximation [8]
or Minimum-State rational function approximation
techniques. Both approaches require calculation of the
unsteady aerodynamic influence coefficient matrix for
several reduced frequencies. In summary: Utilization
of k-type aerodynamics turns conversion of the
aeroelastic system to state-space form into an
inconvenient process. For aeroservoelastic
applications, an unsteady aerodynamics model
formulated in state-space form is clearly preferable.

Peters/He Wake Model

Such a model was developed by Peters and He for
rotary wing applications [9]. It is currently being
implemented in the aeroelastic stability analysis of
rotary wing computer codes like CAMRAD and
2GCHAS for its simplicity and accuracy. Nibbelink
and Peters [10] showed also its applicability to fixed
wing aeroelasticity. For a lifting-line lift model and a
pressure distribution assumed constant along the
chord, rectangular, large aspect ratio wing planform,
and simple harmonic motion the results correlated
acceptably with Theodorsen Theory. The following
paragraphs are meant to provide an overview of the
general philosophy of the approach and a review of
references [9] to [11], rather than a detailed
description.

For incompressible flow with small
perturbations, the continuity and the momentum
equation can be written in index notation:

qi,i = 0         (1)

qi* - V∞ qi,ξ = - Φ,i         (2)

where V∞ is the nondimensional freestream velocity
(divided by rotor tip speed in rotary wing
applications; for fixed wing, this term is unity), qi are

the perturbation velocity components and qi*, qi,ξ ,
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and qi , i  their derivatives with respect to
nondimensional time, along freestream direction, and
along coordinate direction, respectively. The form of
equation (1) suggests separation of the perturbation
pressure Φ into a part resulting from acceleration ΦA

and a part stemming from the momentum flux ΦV,
so that

Φ  =  ΦA + ΦV         (3)

where

ΦV,i  =  V∞ qi,ξ         (4)

and

ΦA,i  =  -qi*         (5)

By differentiating (2) with respect to i and
applying the continuity equation (1) it can be shown
that both parts of the perturbation pressure must
satisfy Laplace's equation and therefore resemble
acceleration potentials. One solution for Laplace's
equation is known as Prandtl's acceleration potential
function for circular wings in the ellipsoidal
coordinates ν, η, and ψ

Φ (ν, η,ψ, t) = ∑
m,n

 Pn
m(ν) Qn

m(iη)         (6)

[ Cn
m(t) cos (mψ) + Dn

m(t) sin (mψ) ]

using the Legendre Polynomials of the first and

second kind, P n
m

  and  Qn
m

, and coefficients Cn
m

  and

Dn
m

 . On the rotor disk (η  = 0, ν = 1 - r2 ) this
function models a pressure discontinuity with a
pressure difference, φ, between upper and lower side
of the circular lifting surface*

φ (r,ψ, t) = - 2 ∑
m,n

 Pn
m(ν) Qn

m(i0)         (7)

 [ Cn
m(t) cos (mψ) + Dn

m(t) sin (mψ) ]

If the perturbation velocity normal to the rotor
disk, qz, is denoted by λ, Equations (4) and (5) can be
rewritten in the form

* in the following called 'rotor disk'; it is, in fact, a circular surface in
which pressure discontinuities may occur. For fixed wing applications, it
is a disk circumscribing and encompassing the wing, for rotory wing
cases it is simply the rotor disk.

λ (r,ψ,t) = 1
V∞

 ∂ΦV

∂z
∞

0

 dξ  ≡ L[φV]         (8)

λ* = - ∂ΦA

∂ξ η = 0

 ≡ C [φA]         (9)

L and C are linear operators on φA and φV.
Provided that these two operators are invertible, a first
order differential equation in λ can be written:

C-1[λ*]  +  L-1[λ]  =  φA +  φV = φ       (10)

The inversion is possible if the induced velocity
is expanded in terms of harmonics azimuthally and
arbitrary functions radially, e.g.

λ  (r,ψ, t) = ∑
m,n

 Pn
m

(ν)/ ν       (11)

 [ an
m(t) cos (mψ) + bn

m(t) sin (mψ) ]

introducing the inflow states anm  and bn
m as

coefficients of the azimuthal harmonic, m, and the
radial expansion function, n. The bar over the
Legendre Polynomial symbolizes normalization to a
unit integral over the interval ν = [0,1]. Substituting
λ as in Equation (11) into the differential equation

(10), premultiplying by P n

m

 and cos(mψ ) and
integrating over the rotor disk yields a set of first
order ordinary differential equations in ai

r  :

 Mc   {aj
r} *+  Nc   {aj

r}  =  1
2

 {τnmc}       (12)

and an equivalent equation for the  bj
r  , multiplied by

sin(mψ) (replace superscript c by s). Since the inflow
dynamics (i.e. the rotor wake, or the perturbation
velocities induced by a wing) are expressed in state-
space form, it is immediately obvious that the model
is equally applicable to harmonic and non-harmonic
excitation.

The wake 'mass' matrix [M] and 'damping' matrix
[N] are known functions of the wake skew angle, χ.
[N] is in fact the inverse of another matrix originating
from the operator L. Wang [11] developed closed form
solutions for this inverse in edgewise flow (χ = 90˚)
for an infinite number of wake states. For a yet not
fully understood reason these solutions are also
accurate for two special kinds of truncated systems:
(a) cos-partition, maximum order of azimuthal
harmonics odd; and (b) sin-partition; maximum order
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of azimuthal harmonics even [11]. Since in fixed
wing aeroelastic analyses symmetric and
antisymmetric modes are usually treated separately
(i.e. either the cos- or the sin-partition is used), these
conditions do not create an empty set of options for
the analyst striving to reduce computational effort by
bypassing a numerical  inversion. The following
discussion concentrates on the cos-partition, i.e.
modeling of symmetric problems.

The right hand side of equation (12) represents
the wake system excitation through an imposed
pressure discontinuity, P (here nondimensional),
across the rotor disk.

τ n
mc = 1π  

0

2π

P(r,ψ,t) Pn
m

(ν)/ν
0

1

dr cos(mψ) dψ     (13)

or, expressed in cartesian coordinates (refer to Fig. 1):

τ n
mc = 1π  

-S

S

P(x,y,t) Pn
m

(ν)/ν
xle

xte

 cos(mψ) dx dy   (14)

In the special case m = 0 (uniform inflow), the
expression is divided by 2.

Wake System Forcing Functions

Obviously, the actual form of these forcing
functions depends on the way the pressure
discontinuity (or lift) is distributed over the disk, or
on the distribution of pressure over the lifting
surfaces. One of the key features of the Peters/He
wake model is the separation of wake dynamics and
lifting surface aerodynamics, as displayed in equation
(13). The inflow model is therefore concerned with
the effects of shed vorticity only. As a result, (a) only
circulatory lift enters the system through P, and (b)
the effects of bound circulation are filtered out
through choice of a chordwise vorticity distribution
which does not induce any velocity on the airfoil
(where the wake induced velocity is sought - [9], [10],
[12]). Reference [9] lists a number of these candidate
distributions. One of them is the solution for the flat
plate airfoil,

P(x,y,t) = Lτ(y,t)

π b(y)
 tan θ

2
      (15)

where Lτ(y,t) is the nondimensional circulatory lift as
a function of the spanwise coordinate, and the
nondimensional chordwise coordinate, θ, for a wing
planform as depicted in Fig. 1 is

b(y)

xle xte

xθ

z

x

y

ψ

xte

xle R = 1

r

S

b

Λ

Fig. 1: Coordinate Systems

cos Θ = (x - y tan Λ) / b(y)       (16)

Another possible solution, however, has been
previously chosen [12]. This particular distribution
was selected here since it allows a simplification
when expanding the integral (14):

P(x,y,t) = Lτ(y,t)

π b(y) sin θ
      (17)

First, Lτ(y,t) is expanded. The normalwash at a
lifting surface chord due to airfoil shape and motion,
denoted by ω(x), and the induced velocity λ(x) can be
expanded in a Fourier Series:

ω(x) = ωn cos (nΘ)∑
n = 0

∞

; λ(x) = λn cos (nΘ)∑
n = 0

∞

(18)

The nondimensional circulatory lift can now be
expressed in the following form:
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Lτ(y,t) = 2πb(y) (ω0(y,t) + 1
2

ω1(y,t)

-λ0(y,t) - 1
2

λ1(y,t))       (19)

which allows separation into a wing forcing part
(bound circulation) and a wake feedback part.
Recalling the definitions for the Fourier Coefficients,

λ0(y,t) := 1π λ(x,y,t)
0

π

 dθ

λ1(y,t) := 2π λ(x,y,t) cos θ
0

π

 dθ       (20)

and defining of the integrals

λ j,0
r,c

(y) := 1π
Pj

r
(ν)
ν

0

π

 cos(r ψ) dθ

λ j,1
r,c

(y) := 2π
Pj

r
(ν)
ν

0

π

 cos(r ψ) cos θ dθ       (21)

the circulatory lift, equation (19) can be rewritten

Lτ(y,t) = 2πb(y) (ω0(y,t) + 1
2

ω1(y,t)

- λ j,0
r,c

(y)+λ j,1
r,c

(y)  aj
r(t)∑

r,j

)       (22)

Including the pressure distribution (17) in the
wake forcing functions (14) and transforming the
chordwise coordinate form x to θ (using equation
(16)) yields

τ n
mc = 1π Lτ(y,t)

-S

S

1
π

Pn
m

(ν)
ν

0

π

 cos(mψ) dθ dy        (23)

Notice that the inner (chordwise) integral has

exactly the same form as λ j,0
r,c

(y)  in equation (21), due
to the choice of (17) for the chordwise pressure
distribution. We finally obtain

τ n
m(t) = 2π b(y) λ n,0

m,c
(y) ω0(y,t) + 1

2
ω1(y,t)  dy

-S

S

      - 2π b(y) λ n,0
m,c

(y) λ j,0
r,c

(y) + λ j,1
r,c

(y)  aj
r(t)∑

r,j
 dy

-S

S

 

(24)

The question is  how the integrals (21) are to be
computed. Previous applications in rotary wing
aeroelasticity reduced to high aspect ratio rotor blades
where a lifting line approximation was justified.
Nibbelink [11] also shows for moderate aspect ratio
fixed wing cases (AR = 5) acceptable performance.
The fact that, in case of a lifting line model, the
integration simplifies to evaluation of the expression

λ j,0
r,c

(y) := 
Pj

r
(ν)
ν  cos (r (Λ - π/2))       (25)

while λ j,1
r,c

(y) = 0, certainly makes this option very
attractive.

For the next level of fidelity, a large but finite
aspect ratio is assumed, and the approximation of
small azimuthal deviations from the wing halfchord is
made for points on the airfoil:

ψ = (Λ - π/2) + b(r)
r

 cos Λ := (Λ - π/2) + ψ(r)     (26)

If the chordwise integration is finally approximated
by an azimuthal one, the integrals yield Bessel
Functions of the first kind as aspect ratio correction
factors:

λ j,0
r,c

(y) := 
Pj

r
(ν)
ν   J0(r ψ)  cos (r (Λ - π/2))

λ j,1
r,c

(y) := 
Pj

r
(ν)
ν   J1(r ψ)  cos (r (Λ - π/2))

      (27)

It must be noted that (21) and (25) only converge
if the sweep angle Λ approaches zero and the aspect
ratio is very large; the same can be shown for the
higher order approximation (27). Fig. 2 shows the

deviation of λ 2,0
1,c

(y) as calculated with equation (27),
from the benchmark result from a numerical
integration using (21), normalized by this reference
value (∆). Besides the obvious increase in deviation
towards the wing root, due to the growing error in the
small angle assumption (26), there is also a constant
offset - for the first harmonic, m = 1, the ratio
between the results from (21) and (27) is about the
cosine of the sweep angle. This appears to relate the
deviations directly to the fact that the actual chordwise
integration was approximated by an integration along
a line perpendicular to the wing's halfchord line.
Unfortunately, cos Λ can only serve as a correction
factor for the first harmonic; for higher m, the
influence of the polynomial index n becomes more
pronounced, and the search for a generally valid
correction factor for sweep was not successful. In con-
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∆

y

Fig. 2: Deviation of High Aspect Ratio
Approximation from Numerical Integral

(aspect ratio of 6, sweep angle 20˚)

α

δ

w•
u•

θd

U + Vh

Vv

b

x

z

Fig. 3: Flat Plate with Trailing Edge Flap

clusion, both the lifting line and high aspect ratio
approximation are, strictly speaking, only valid for
unswept wings. Since the values of the integrals
generally decrease with increasing harmonic and
polynomial number, a correction by cos Λ for m = 1
and restriction to Λ < 10˚ appear to be reasonable.

Coupling with Structural System

In order to couple the wake system, equation
(11), with a structural system, the generalized forces
on structural and wake system must be formulated in
terms of the generalized coordinates (or states) of
wake and structure. The aerodynamic forcing
functions on the structure in z - and x -  direction, and
the pitch up moment, respectively, can for example
be found in reference [12]. The drag expression,
equation (29), has been linearized.

L(y,t) = 2πb(y) ( ω0(y,t)+1
2

ω1(y,t) - λ0(y,t) )      (28)

+ πb
2
(y) ( ω0

*(y,t)-1
2

ω2
*(y,t) )

D(y,t) = -2πb(y) α0 ( 2ω0(y,t)+1
2

ω1(y,t)       (29)

- 2λ0(y,t) - 1
2

λ1(y,t) )

M(y,t) = πb
2
(y) ( ω0(y,t)-1

2
ω2(y,t) - λ0(y,t) )      (30)

+ π
8

b
3
(y) ( ω1

*(y,t) - ω3
*(y,t) )

Note the difference in the lift (28) and the

circulatory lift Lτ(y,t)(19) used in the wake forcing
functions: Equation (28) includes non-circulatory
terms, which cancel part of the circulatory terms.
Johnson [13] developed expressions for sums of
induced flow Fourier coefficients for a flat wake;
based on these expressions, one can show that in
general

 λ 1 + b (λ 0
*
 - 1

2
λ 2

*
) = 0

 2(n+1)λ n+1 + b (λ n
*
 - 1

2
λn+2

*
) = 0; n > 0       (31)

which eliminates λ 1 from the lift expression,
equation (28).

Finally, the normalwash Fourier Coefficients,
ωi, are expressed in terms of the structural geometry.
For the flat plate airfoil with a trailing edge flap as
depicted in Fig. 3, the normalwash, ω, is

θd < θ < π:
ω(θ,t) = ( 1 + Vh(t) - u*(t) )  α(t) - w*

+ b cos θ α*(t)  + Vv(t)

0 < θ < θd :       (32)

ω(θ,t) = ( 1 + Vh(t) - u*(t) )  (α(t) + δ(t)) - w*

+ b cos θ (α*(t) + δ*(t))  - b cos θd δ*(t)+ Vv(t)

Application of the Fourier transform to (32) and
linearization yields the following coefficients:

ω0 = -w* - α0u* + α  + D0δ + D0
* b δ*+ Vv + α 0Vh

ω1 =  b α* + D1δ + D1
* b δ*       (33)

ωi = Diδ + Di
* b δ*; i > 1

D0 = 1π θd;  D0
* = - 1

π θd cosθd - sinθd

D1 = 2π sinθd;  D1
* = 1

π θd - 1
2

sin(2θd)

D2 = 1π sin(2θd);  D2
* = 1

2 π
 sin θd  - 1

3
sin 3θd   (34)

Di = 1π i-1
i

 sin(iθd);  i > 2

Di
* = 1

i π
 

sin (i-1)θd

i - 1
 - 

sin (i+1)θd

i + 1
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Application to a Tiltrotor Wing:
Effect of Unsteady Aerodynamics on

Proprotor/Wing Eigenvalues

The wake model as described above has been
implemented in a FORTRAN program, PWAKE, and
incorporated into the Tiltrotor Integrated Design and
Analysis Tool, tridat!. The package includes
furthermore the wing structural analysis ELAPS [6]
and the Proprotor Aeroelastic Stability Analysis
PASTA [13]. Fig. 4 provides in overview of the data
flow. The package uses UNIX shell scripts for
process control and data filtering.

It is instructive to first investigate the behavior
of the uncoupled (open-loop) wake system. Table 1
shows the ten eigenvalues of a system with a
maximum order of radial polynomials M = 7 (refer to
reference [11] regarding the harmonics-polynomial
ordering scheme). The eigenvalues are ordered by
undamped natural frequency. The first column might
require some explanation: The eigenvalues, f, are
normalized by the ratio of forward velocity, U, to disk
radius, R. In order to obtain the frequency in Hz, the
values in Table 1 must therefore be multiplied by
U/R. This means that the eigenvalues are
proportional to U; as a result, all wake eigenvalues
pass through the range of structural natural
frequencies with increasing speed. The fundamental
mode with a damped nondimensional frequency of
0.42092 is the last one to leave the vicinity of
structural modes, and therefore has the most
significant regarding coupling of wake and structure.
Observe that for an unswept, untapered wing this
nondimensional natural frequency, f, is directly related
to the traditional reduced frequency, k, like

k = 2 π f
AR

      (35)

This means that for a wing with aspect ratio AR
= 2π at a reduced frequency of k = 0.49235 (equivalent
to the undamped natural frequency of the first wake
mode) the basic wake mode passes through a circle in
the complex plane with the radius of the oscillation
frequency. In other words, above this reduced
frequency, coupling with wake modes is unavoidable.
With increasing reduced frequency, the number of
wake modes entering this circle increases, and thus
more and more wake-structures coupling
opportunities occur.

It is reassuring to note from Fig. 5 that the basic
(lowest frequency) wake mode in fact resembles the
induced flow field around a lifting surface in steady
flow. The higher order modes are not that easy to

elaps.in pwake.dat pasta.dat

wing.dat elaps.out

pwake.in

pwake.out

pasta.in

pasta.out

pasta_prep

pwake_prep

pasta_post

pwake_post

elaps

pwake

pasta

Fig. 4: Data Flow, coupled Proprotor/
Wing Aeroelastic Analysis

Table 1: Wake Eigenvalues, M = 7

Damped Frequency *R/U Damping [% critical]

0.42092
0.29535
0.32431
0.70271
0.91961
0.65878
1.03622
0.53306
1.40369
2.34010

51.87
82.40
91.99
58.08
29.21
74.34
40.56
90.64
28.44
63.87
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Fig. 5: Amplitude, Wake Mode f = 0.42092

Fig. 6: Amplitude, Wake Mode f = 0.53306

interpret, but it seems that the highly damped
eigenforms show a large increase of inflow amplitude
in the vicinity of the wing tip, like in Fig. 6. One is
tempted to see here the effect of a tip vortex, and the
associated dissipation of energy; however, the wake
model is purely inviscid and incompressible. A
rigorous interpretation of this effect can not be given
at this time.

As an application study, the effect of wing
unsteady aerodynamics on proprotor/wing eigenvalues
has been investigated. The key data of the
configuration are summarized in the Appendix. Test
runs have been conducted with quasi-steady

aerodynamics (in all plots the solid lines), lifting line
model/numerical integration, and maximum order of
radial polynomials of 7 and 15. Wing mode 1 is
dominated by beamwise bending, with a positive
pitch contribution (forward sweep effect); mode 2 is
primarily chordwise motion, with a small negative
beamwise and negative pitch contribution (nacelle
pitch mode); mode 3 is the second chordwise, or
nacelle yaw mode; and mode 4 is the second
beamwise bending, or nacelle roll mode. Analysis of
the mode shapes emphasizes the dominance of the
nacelle inertias in the dynamic characteristics. The
wing is only slightly modified from a design that
showed stability up to a forward flight speed of about
780 ft/sec without aerodynamic damping of the wing
[15]; thus, no instability was expected in the
investigated velocity range.

Fig. 7 shows the frequencies as a function of
velocity. Wing modes 3 and 4 are located around 23
and 48 Hz, respectively, and are therefore off the
scale. Wing aerodynamics do not appear to affect the
system behavior at all, since results for both wing
unsteady aerodynamics and no wing aerodynamics
differ only insignificantly from the quasi-steady
results.

The effect of unsteady aerodynamics becomes
more apparent in the damping plots, Fig. 8 - 10.
Note that numerical integration and lifting line results
match closely for this configuration with moderate
aspect ratio and small wing sweep angle. Damping
levels of the wing modes are generally low, with a
maximum value around 8% for the first bending
mode. This explains the very small effect on the
frequencies. Fig. 8 and 9 indicate that wake feedback
reduces the aerodynamic damping, particularly of the
modes that are dominated by beamwise bending. The
reduction in damping is more pronounced in the case
of the higher resolution wake model (Fig. 9 and 10).
Experience with the wake model has shown, that this
must not necessarily be a sign for convergence;
correlation of the results obtained using PWAKE is
therefore mandatory.

Fig. 8 to 10 show negligible affect of fixed wing
aerodynamics on the rotor-dominated modes. The
reason for this somewhat disappointing result is seen
in the fact that the chosen velocity range ends at least
100 ft/sec below the anticipated flutter speed. Serious
coupling between wing and rotor modes - in other
words: initiation of proprotor whirl flutter - will only
be detectable in the vicinity of the flutter boundary.
Hence, wing damping hardly affects the rotor modes.
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Fig. 7: Frequencies - No /Quasi-Steady / Unsteady Wing Aerodynamics
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Conclusions

The Peters/He wake model appears to perform
well in modeling fixed-wing unsteady aerodynamics.
The results show anticipated tendencies, however,
correlation with established methodologies is
mandatory. This is especially the case for low aspect
ratio wings, where concerns regarding convergence
remain.

For the investigated wing-rotor system, unsteady
aerodynamic effects are detectable. Yet, due to an
overall low damping level and choice of a small range
of velocities below the anticipated flutter speed, the
effects are not significant. A closer look at the modal
behavior around the stability boundary must be taken.

Appendix:
Key Data of Proprotor/Wing Model

Wing
Span 50.1 ft
Aspect Ratio 6
Taper Ratio 1.0
Sweep -5˚
Thickness/Chord Ratio 0.23
Ply Thicknesses:
0˚, root 0.54 in
0˚, tip (linearly tapered) 0.14 in
+45˚ (constant) 0.036 in
- 45˚ (constant) 0.015 in
Spar Cap Areas (two spars, upper spar only):
root 0.9 in2

tip (linearly tapered) 0.57 in2

Rotor/Nacelle
Nacelle Weight 3720 lb
Rotor Radius 18.4 ft
Number of Blades 4
Rotor rpm 300
Natural Frequencies
Gimbal Tilt 1.02/rev
Blade, 1st inplane (uncoupled) 1.6/rev
Blade, 1st out of plane (uncoupled) 1.3/rev
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