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SUMMARY

Real-time inspection based on machine vision technologies is being widely used in

quality control and cost reduction in a variety of application domains. The high demands

on the inspection performance and low cost requirements make the algorithm design a

challenging task that requires new and innovative methodologies in image processing and

fusion. In this research, an integrated approach that combines novel image processing and

fusion techniques is proposed for the efficient design of accurate and real-time machine

vision-based inspection algorithms with an application to the food processing problem. 

Firstly, a general methodology is introduced for effective detection of defects and

foreign objects that possess certain spectral and shape features. The factors that affect

performance metrics are analyzed, and a recursive segmentation and classification

scheme is proposed in order to improve the segmentation accuracy. The developed

methodology is applied to real-time fan bone detection in deboned poultry meat with a

detection rate of 93% and a false alarm rate of 7% from a lab-scale testing on 280

samples.

Secondly, a novel snake-based algorithm is developed for the segmentation of

vector-valued images. The snakes are driven by the weighted sum of the optimal forces

derived from corresponding energy functionals in each image, where the weights are

determined based on a novel metric that measures both local contrasts and noise powers

in individual sensor images. This algorithm is effective in improving the segmentation

accuracy when imagery from multiple sensors is available to the inspection system. The
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effectiveness of the developed algorithm is verified using (i) synthesized images (ii) real

medical and aerial images and (iii) color and x-ray chicken breast images. The results

further confirmed that the algorithm yields higher segmentation accuracy than

monosensory methods and is able to accommodate a certain amount of registration error.

This feature-level image fusion technique can be combined with pixel- and decision-

level techniques to improve the overall inspection system performance.

This research has lead to the following major contributions: 

(a) Proposed a general methodology for real-time vision-based inspection of abnormality

that contains certain shape and spectral patterns.

(b) Developed and tested a recursive segmentation and classification scheme for real-

time segmentation with high accuracy.

(c) Applied the developed inspection methodology successfully to fan bone detection of

deboned poultry meat and achieved satisfactory results.

(d) Derived and verified a fast snake-based multisensory image segmentation algorithm

and applied it to the segmentation of visible band and x-ray images of deboned meat.
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CHAPTER 1 

INTRODUCTION

With advances in sensor techniques and computing power, machine vision techniques are

becoming more efficient in detecting the presence of undesirable objects in a wide variety

of products. For example, metal detection, optical, and x-ray inspection techniques are

already available commercially ([18]). The problem of machine vision-based inspection

involves target object detection and recognition using image processing and pattern

recognition techniques. When the target objects possess certain patterns of spectrum, size,

and shape, advanced image processing and analysis techniques will be necessary in

detecting and identifying these objects with high accuracy. However, due to the large

volume of the products being inspected, the processing time allowed for each image is

extremely short. Many algorithms are disqualified by this constraint and the inspection

system design becomes a demanding task. The first motivation of this research is to

develop a general methodology for real-time inspection using fast and effective image

processing and analysis techniques. 

Inspection algorithms based on monosensory images may not produce satisfactory

performance because of the ambiguity and incompleteness involved in the information.

Computer vision systems that utilizes multispectral and hyperspectral imaging techniques

have emerged as a more powerful solution to earth remote sensing, medical diagnosis,

and agricultural applications [10]. Images acquired by different types of sensors are

generally partially redundant and partially complementary. Fusion with redundant data
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can help reduce imprecision, and fusion with complementary data can provide a more

complete description of the scene. In both cases, the inspection performance should be

better than the monosensory performance. The fusion of multisensory information is not

an easy task, though. Among all levels at which the fusion can be performed  pixel,

feature, and decision  feature-level is well suited for performance improvement of real-

time inspection, considering the amount of data involved and the details retained.

Multisensory image segmentation is a type of feature-level fusion technique dealing with

the segmentation of images generated from different sensors. As a replacement of their

monosensory counterpart, the multisensory algorithms utilize the complementary

information in multiple modalities to provide more accurate segmentation results. It

makes smart decisions to eliminate redundancy and to resolve information conflict so that

precise and meaningful interpretation of the segmentation results is possible. In this

dissertation, a multisensory image segmentation algorithm will be developed based on the

snakes. It will be tested on both synthesized and real images and the results will be

compared to those of monosensory segmentation algorithms.

The application of bone detection in deboned meat is motivated by the dramatic

increase in the demand for deboned meat over the last few years. The end users of the

deboned product, especially the fast food corporations, are requesting zero bones in meat

[35]. To address the problem of automated bone inspection in deboned meat, x-ray-based

equipment has been used as a viable but expensive means. An x-ray inspection system

works well in detecting large, embedded bones such as pulley bones. Feedback from

customers indicates false alarm rates anywhere from 3-4% to 12-13% and detection rates

of 95%-98% for these types of bones.  However, such equipment has difficulty detecting
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thin surface bones, such as fan bones, a type of surface bone with a fan-like shape. Fan

bones are typically less dense in calcium and of lower thickness perpendicular to the x-

ray beam than the other bones normally found in the meat. Since the x-ray machine is

optimized to detect embedded bones, it is difficult to detect fan bones using the same

settings. Currently available systems detect fan bones with an accuracy of 30%-50%. The

proposed inspection and multisensory segmentation techniques will be applied to the

visible band and x-ray images of the deboned meat so that high inspection performance is

achieved.

This dissertation is organized as follows. In the next chapter, the state-of-the-art

techniques for vision-based real-time inspection are briefly reviewed, and a general

methodology is developed for inspection of defects and foreign objects with certain shape

and spectral patterns. The application of this methodology to the bone inspection problem

is discussed in Chapter 3. In Chapter 4, an algorithm is developed for multisensory image

segmentation based on snakes and results are presented on both synthesized and real

images as well as color and x-ray images of deboned meat. Finally, the research is

summarized and the contributions are listed in the last chapter.
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CHAPTER 2 

A GENERAL METHODOLOGY FOR VISION-BASED REAL-TIME

INSPECTION

2.1 Real-Time Vision-Based Inspection 

The problem of real-time machine vision (MV)-based inspection involves the detection

and identification of foreign objects and defects using a variety of techniques including

image processing and pattern recognition. It covers a wide range of research topics, with

some shown in Figure 1. Each topic is critical to the performance of the inspection

system. The focus of this research is mainly image processing, pattern recognition, and

image fusion. 

There exist potentially a large number of possible foreign objects and defects in the

inspection process, such as metal, wood, glass, stone, scars, blemishes, etc., which are

natural objects that do not follow specifications in size and shape. In some cases, they

possess some pattern in shape, size, and color ([13]), while in others, they do not ([27]).

On a specific production line, the types of foreign objects and defects are normally

predictable. However, due to the speed requirement for real-time inspections, many

image processing techniques become unsuitable. In this research, we are particularly

interested in detecting, at a fast speed, foreign objects and defects that have consistent

shape and spectral patterns with reasonable variability. An example of such objects is the

fan bones in deboned poultry meat, which normally have a triangular shape and a dark
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red color. However, depending on the relative position to the camera, the fan bone

features in the image exhibit a considerable variability in color and shape. Textural

information is important in foreign object and defect detection in many applications, such

as metal detection in free-flow products and some packaged foods (e.g., peas, peanuts,

sweat corn, etc. [12]). Although for simplicity, we will not consider textural patterns in

this research, the general methodology can be extended to include these features.

In this section, the requirements and common algorithms for vision-based inspection

will be reviewed.

MV-Based
Inspection

Pattern
Recognition

Image
Processing

Simulation &
Evaluation

MV System
Design

Processor
Technology

Software
Tools

AI
Techniques

Reliability
Analysis

Risk
Management

Image
Fusion

Figure 1. Some research topics in machine vision-based inspection.

2.1.1 Requirements of Real-Time Vision-Based Inspection 

The vision-based inspection problem presents major challenges due to pattern

complexity, the variability in defects/foreign objects and product samples, modifications

on the inspection system, and the uncertainties on the product line. Defects and foreign
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objects may possess complicated patterns including color, contrast, texture, and location.

Apart from the variability in the product properties, both the type and the pattern of the

defects can vary as results of the alterations in the production process. Modifications on

the inspection system components and drifting of the imaging conditions cause

inconsistency among captured images. Finally, the uncertain aspects on the inspection

line can be unpredictable. For example, the product may be positioned in an appropriate

way that the target object is occluded and thus invisible to the imaging sensor. 

All these factors impose strict requirements on inspection algorithms. Both the

hardware and the software algorithms need to be carefully designed and verified in order

to yield satisfactory, stable, and reliable performance. 

For evaluation of the inspection performance, some most commonly used

measurements and their definitions are discussed as follows.

· Detectable defects: The types of defects the system can recognize. For different

defects, the listed metrics may vary.

· Minimum size of detectable defect: The minimum size of the defect the system can

detect. 

· Accuracy: The fraction of the objects that are correctly identified by the inspection

system.

· Detection rate (DR): The fraction of the abnormal objects that are detected and

correctly identified as abnormal by the inspection system.

· False negative rate (FNR): The fraction of the abnormal objects that are detected

and incorrectly identified as normal by the inspection system. Note that

FNR+DR=1.
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· False alarm rate (FAR): The fraction of the normal objects that are incorrectly

identified as abnormal by the inspection system. 

· Inspection speed: The number of images that can be processed within a time unit

(frames/minute). 

· Cost: The total cost of the inspection system, energy consumption (electricity,

water, etc.) and maintenance expenditures.

The false alarms in the inspection system result in extra load on processing and

inspection and thus higher production cost. A bearable false alarm rate indicates the

upper bound of FAR that the manufacturer can withstand. Sometimes the DR must be

compromised somehow so that the FAR does not exceed the bearable FAR. Since FAR

and DR are the combined results of all functional modules in an inspection algorithm, it is

important to distribute the FAR and DR reasonably among modules so that the DR is

maximized and the FAR is within the bearable FAR range.

The inspection speed must match or exceed the processing speed of the production

line. When 100% inspection is required, the time window for each part to be inspected is

very small, which makes most image processing algorithms unusable. 

In addition to the above measurements, an inspection system must have certain

attributes in order to meet the requirements of the manufacturing requirements, for

example, low sensitivity, reliability, robustness, flexibility, and human interface for

service people and operators. Unfortunately, these attributes are not only hard to quantify,

but also ambiguous and imprecise. For example, reliability can mean that the

performance is not greatly affected by either of the following situations: the camera is
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shaken loose or the computer momentarily cannot keep up with the product flow because

of excessive analysis time on one image.

As has been pointed out in [11], all performance measurements will be interlinked,

corresponding to a constraining surface in the multidimensional space, so that adjusting

one measurement forces the adjustment of others. In addition, each inspection algorithm

will have its own constraining surfaces due to specifications and manufacturing

conditions. 

Considering the diversity of applications and intrinsic complexity of the inspection

problem, it is impossible to claim an algorithm to have the optimal performance. Instead,

we focus on developing an effective methodology with satisfactory performance on the

detection of defects and foreign objects with certain spectral and shape patterns. 

2.1.2 Review of Vision-Based Inspection Algorithms

A review of the literature on the inspection systems revealed that MV-based inspection

algorithms usually consist of three modules: image acquisition, image processing, and

decision making, as illustrated in Figure 2. Three example vision-based inspection

systems are summarized in Table 1 and compared in terms of the algorithms adopted and

the system performance. Some common techniques and algorithms used in each of the

three module are briefly described below.

Decision
Making
Decision
Making

DecisionImage
processing

Image
processing

ImageImage
Acquisition

Image
Acquisition

Product

Figure 2. General methodology for vision-based inspection.
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Table 1. Comparison of three vision-based inspection systems.

System Patel, 1994 [27] Wang, 2000 [45] Boyer, 2001 [2]

Application

Foreign objects in

sealed food (corn,

peas, etc.)

Wineglass defect Pipeline corrosion

Sensor X-ray Visual (grayscale) Range

Processing (a) Log-transform

(b) Thresholding

(c) Adaptive

thresholding

(d) Texture analysis

(a) Gabor filter (a) Finite window

robust sequential

estimator

(b) Thresholding

(c) Cluster

Features / Contrast, local

homogeneity, entropy,

etc.

Depth, area, centroid,

aspect ratioA
LG

O
R

IT
H

M

Classifi-

cation

Pixel counter BPNN /

Detection Rate

Stone-100%

Metal-95%

Glass-80%

Others (soft) - <60%

97.5% /

Number of test

samples

125 images / /

Speed
/ / 1sec on 300x300 clip

in preprocessing

Comments

No a priori knowledge

about products or

defects

Parameters in Gabor

filter 

Not an automated

inspection system

2.1.2.1 Image Acquisition

Imagery for inspection purposes can be generated from a variety of sensing techniques,

such as visible, infrared (IR), ultraviolet (UV), laser, and x-ray sensors.  Visible, IR, and

UV sensors measure the intensity of the light emitted or reflected by the object within the
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sensitive spectral range of the sensor. X-ray sensors measure the permeability and

thickness of the object. Laser sensor utilizes structured light and generates range data that

corresponds to the distance from the object to the sensor. Currently, although 3-D images

are available, 2-D images are mostly used, especially in industrial applications, because

of the complexity and data volume involved in 3-D image acquisition, visualization, and

processing. 

An imaging system usually consists of the following hardware components:

· Camera generates the imagery of the scene. A single sensor or multiple sensors are

housed in the camera to generate image data. Camera settings include shutter

speed, iris control, trigger mode, brightness, zoom, white balance, frame rate, and

so on. Some cameras have built-in processors for low-level image processing.

Recently, cameras with the frame rates of 75 - 8000 frames/sec have been available

using CMOS-sensors, which urgently calls for extremely fast real-time image

processing techniques. 

· Data acquisition board (frame grabber) collects the data generated by the camera,

forms the image, then transfers the image to the data storage unit of the processor.

Some products also have on-board programmable image processing capabilities to

reduce the preprocessing load and the traffic of the host computer and also to

increase the processing speed on basic image operations such as convolution.

· Illuminator is designed according to the sensor requirement and scene

characteristics. The illuminator is calibrated to maximize the contrast both between

the product and background (such as a conveyor belt) and between the abnormal

and the normal objects, while keeping the artifacts at the minimum level. 
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Current inspection systems mostly rely on a single type of sensor to generate the

imagery data. However, because of the limitation of the sensor characteristics, the

location of the sensor, the setup of the imaging system, or the variability of the products,

monosensory data can be too ambiguous to interpret. Each type of sensor has its

distinctive characteristics. When different types of sensors are used at the same time, the

acquired images provide complementary information, which can be utilized to resolve the

ambiguity involved in monosensory data. In recent years, multispectral and hyperspectral

imaging has emerged as a powerful technique in remote sensing, medical imaging, and

industrial and agricultural applications [10]. Because of the complexity involved in

multisensory imagery, image registration and fusion techniques are required in addition

to advanced image processing algorithms in order to process and interpret the data. 

2.1.2.2 Image Processing

The image processing module usually consists of a series of operations. The

objective of these operations is to identify the possible positions of the potential

abnormality. Various filtering and thresholding algorithms are adopted to enhance the

image contrast and also to remove irrelevant information. A segmentation step may be

needed to further isolate the regions of abnormality for identification in the decision

module. To solve the segmentation problem, sometimes a thresholding technique

suffices, as in metal detection in food [27], where the difference in intensity and texture

patterns between the metal objects and the food stuff is prominent. However, when the

difference is inconspicuous or variable, a thresholding technique alone is not able to

produce reliable performance. In this case, more sophisticated algorithms are necessary,

such as adaptive thresholding, morphological filtering, snake-based segmentation, or
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neural-net-based segmentation. Unfortunately, many of these segmentation algorithms

are time consuming and thus inappropriate for real-time applications. Even for the faster

ones, extreme caution must be taken in their implementation. Usually the processing time

can be reduced considerably by incorporating the a priori knowledge of the product and

the potential abnormality. 

Since this research is particularly interested in detecting abnormality with shape

patterns, we will briefly review the segmentation algorithms below with a special interest

in techniques that can improve the accuracy. 

2.1.2.2.1 Segmentation Features and Image Segmentation Algorithms

Image segmentation is the process to map an image I(x, y) over a spatial domain Ω to a

labeled image J(x, y). In J(x, y), each group of connected pixels with the same label is

called a region (R), which is separated from each other by edges. The segmentation

process can be viewed as approximating image I using the piece-wise constant cartoon

image J which has only a limited number of intensity levels. In this research, we consider

the simplest case, where J has only two possible labels. This corresponds to separating

the target objects from the background. In the inspection problem, the target object is the

foreign object or the defect, while the background can be the conveyor belt or the normal

product.

The segmentation features of an image include line segments, points of interest,

edges, and regions. They may be viewed as an elementary or primitive attribute

associated with an image or a region in the image. Note that segmentation feature is a

different concept from the numerical features that describe the characteristics of a

segmented region.



13

Although edge and region are said to be “dual,” they refer to two different image

properties: local differences and global homogeneity [1], and their behaviors are

different. In order to be segmented successfully, the image intensity needs to change

smoothly within each region while abruptly from one region to another. However, it is

not always the case in real images due to the following reasons, which makes the

segmentation a demanding task.

· The image exhibits various features resulted from the reflectance of objects in the

scene, illumination, angle of view, and facets of objects. It is possible that two distinct

objects cannot be distinguished from each other in the image. 

· The artifacts, such as shadows and glares, often cause over-segmentation errors,

where an object is divided into several regions, and edge features are observed

between neighboring regions.

· Images can be noisy.

Segmentation algorithms can be classified into two categories: edge-based and

region-based. Edge-based algorithms locate edges where the local difference is

prominent, while region-based algorithms search for homogeneous regions according to

some predefined criteria. The former generates an edge map (a binary image) with edge

points highlighted, while the latter produces a gray-scale image of labels (region map).

Since regions are usually used in scene interpretation, edge-based algorithms often

employ a postprocessing step to retrieve regions from the edge map. Unfortunately, this

step is both complicated and time consuming because edge chaining is necessary to

connect the edge segments into closed curves. It is much easier to convert a region map

to an edge map by obtaining the contours / boundaries of regions.
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“Snakes”, or active contours, initially proposed by Kass et al. [24], is based on

deforming an initial contour or surface to optimize an energy functional whose (local)

minimum is obtained at the boundary of the desired features. An energy functional needs

to be designed so that its (local) minimum is obtained at the boundary of the desired

features. The energy usually consists of a term that controls the smoothness of the

deforming curve and another one that attracts it to the boundary. The snakes is a widely

adopted method and has been proven effective in tackling the segmentation of a variety

of real images. 

There are two types of segmentation models: region-based and edge-based. In the

region-based models, statistics of entire regions (such as sample mean and variance) are

used to direct the movement of the curve toward the boundaries of the features. This is in

sharp contrast to the edge-based models, where the evolution of the curve depends strictly

on nearby pixel intensities (i.e., gradient information). Consequently, region-based

models are global and normally do not need the inflationary terms, which are commonly

seen in edge-based models, to drive the curve toward the feature boundaries. Region-

based models are also more robust to noise since they do not employ differential

operators, which are inherently sensitive to noise [42].

2.1.2.2.2 Accurate Segmentation Algorithms for Real-Time Applications

The performance of the segmentation algorithm is critical in image understanding, as will

be seen from the example in Section 3.2. Various performance measures ([5][9][39][41])

have been proposed in the literature and a number of techniques have been developed to

improve the segmentation performance utilizing these performance measures. For

example, in [41], possible segmentation results are searched using simulated annealing
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for the optimal solution in terms of the specified performance. Unfortunately, this type of

method can be very slow. Another common method is that after obtaining multiple

segmentation results, the “best” is selected ([9][39]), or they are combined ([15][22]) to

get a superior solution, according to the adopted performance measure. For example, in

[9], the possible segmentations of an image are stocked in a tree called the segmentation

tree. A recursive segmentation scheme is applied to the image using different

segmentation operators until no unrecognized regions remain. The segmentations are

compared using a cost function and thus each node of the tree is the optimal solution of

the corresponding interest area. In [22], it is proposed to take the best of each

segmentation method by performing competition. The obtained regions are interpreted

using a multiscale fuzzy classifier, and then, the interpreted images are merged using

different fusion operators. Methods of this type usually involve multiple times of

segmentation, and therefore are not good candidates for real-time applications. 

2.1.2.3 Decision Making

The decision making stage for real-time inspections can be as simple as a pixel counter,

which indicates whether an image has been marked as having target objects by the

segmentation algorithm ([27]). The neighborhood information can be combined to further

eliminate spurious noises. More often, the decision stage contains a feature extraction

module and a classification module. Various numerical features are first computed by the

feature extraction module based on the region map obtained from the image processing

module; then, a classifier is deployed to claim if an abnormal object is present. Candidate

features include the following:
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· Spectral features. Spectral features are computed from the intensity distributions in

all channels within a region. Both mono and multichannel features can be computed,

such as mean, variance, and higher moments of the intensity, hue, or saturation. 

· Shape features. Shape features are usually expressed in terms of the pixel dimension.

Normally used shape features include perimeter, area, centroid, major and minor

axes, thickness, hole-based shape features, statistical moments, symmetry, shape

signatures, topological descriptors, and so forth ([6]).

· Other features. Features other than spectrum and shape can be derived from the a

priori information about the abnormality and the product, such as the position of the

abnormality.

Most numeric features proposed in the literature have good performance only in

specific situations because of the degenerated mapping from 2-D data set to 1-D features.

Nevertheless, even some simple choices of features can be applied successfully to

specific situations. Feature selection is the process to choose a set of features that can

separate classes effectively. For many problems, it is a demanding task. A common

approach is to test a large set of candidate features and then apply an automatic feature

selection algorithm to define a proper set of features with respect to a given training set.

Classification algorithms are usually employed to assign a class label to each

considered region. There are two particularly important aspects related to object

classification. The first is the problem of deciding whether an input feature vector

belongs to some specific predefined class, which is usually known as supervised

classification. The second aspect is how to define or identify the involved classes in a

population of previously unclassified objects. This represents a difficult task, and expert
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knowledge acquisition problems are usually involved. The latter situation is known as

unsupervised classification or clustering. Since the products and type of abnormality

being detected are usually known when designing an inspection algorithm, supervised

classification is usually adopted because of its higher accuracy. However, sufficient

sample data need to be collected to train the classifier, which is not only time consuming,

but also sometimes unachievable due to the limitation from the production process.

2.2 A General Methodology for Vision-Based Inspection

The proposed vision-based inspection methodology consists of an on-line image

acquisition setting and a software detector tool that is optimized for the real-time

inspection task.  A diagram illustrating this scheme is shown in Figure 3.

The proposed scheme has five stages: image acquisition, preprocessing, snake-based

segmentation, feature extraction, and classification using a probabilistic neural network

classifier.  First, multispectral high-resolution images are acquired on-line using the high-

performance imaging system shown in Figure 4, in which a dome-shaped illuminator is

designed to produce uniform diffusive lighting so that the object-background contrast is

maximized with minimal artifacts. The acquired images are then preprocessed using a

series of image processing techniques to further enhance the contrast and to remove

irrelevant information. The adapted segmentation algorithm is the snakes algorithm that

is optimized for maximum speed. The energy functional of the snakes is constructed

based on the image characteristics. From the segmentation results, spectral and shape

features are extracted for each region. Finally, classification is performed using a

probabilistic neural network (PNN) classifier to obtain the probability and, when desired,

the confidence level that the input feature belongs to each class. The class with the
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highest probability is claimed to be the feature's identity. However, if the confidence

level is not high enough, the segmentation can be repeated to improve the segmentation

accuracy, which usually increases both the classification confidence and the overall

inspection accuracy.
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Figure 3. A general methodology for real-time vision-based inspection.

conveyor

Sony 9000 3-CCD camera

dome illuminator

Figure 4. The image acquisition system hardware setup.

This scheme is different from existing real-time vision inspection algorithms in terms

of the following aspects:

· The cloudy-day illuminator is designed to produce high-quality image data. It houses

various light sources with linear profiles. 
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· The segmentation algorithm adapted is the active contour method implemented using

the level set methods. It is highly optimized for real-time applications. 

· A recursive segmentation and classification strategy is developed to improve the

segmentation accuracy and in turn the overall system performance.

· Mulsisensory imaging techniques can be easily incorporated into this scheme using

the multisensory segmentation method proposed in Chapter 4.

This methodology is in general applicable to any vision-based object detection

problem, especially to the real-time inspection of foreign objects or defects whose type

and characteristics are already known beforehand. 

In this section, we will first present a method for performance estimation when

designing inspection algorithms, then each module is separately discussed as a guideline

for applying the proposed methodology to a specific application. 

2.3 Performance Estimation and Individual Module Design

The design of inspection algorithms can be formulated as an optimization problem:

choose a set of algorithms {Ai} i=1, …, M, and their parameters to optimize the objective

function E that is expressed in the performance measures specified in Section 2.1.1, while

at the same time satisfying the constraints in system specifications:

MiconditionconditionDRFAE NAA ii

,...,1, ..., , s.t.   ,...)}},,({max{max 1in  parameters algorithms available 
=

∈
.

For each inspection problem, the procedure shown in Figure 5 needs to be followed

to optimize the system performance ([11]).
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Describe the problem and analysis specifications

Design the basic scheme

Evaluate the performance of current scheme

Implement the scheme using software tools

Perform β-test

Improve the scheme

Analyze the sources of limitations

Find the limitations of current scheme

Perform α-test

Figure 5. Inspection algorithm design procedure.

The design process involves multiple cycles of algorithm design, implement,

evaluation, and improvement. Generally, this is a very time consuming and tedious task.

For our scheme that involves multiple stages, this process becomes even more

complicated since even a minor change in an earlier stage affects the performance of the

following modules. Apparently, some general guidelines are necessary in designing and

implementing such inspection algorithms in order to shorten the development cycle

efficiently with satisfactory and stable performance. Moreover, it would be very helpful if

the functional modules can be decoupled in some way so that each one can be designed

and evaluated independently. 
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2.3.1 Estimation of Performance Metrics

Each stage in the general flow chart may contain more than one functional module. They

can be arranged either in series or in parallel. Thus, the overall performance depends on

not only the performance of all modules, but also their arrangement. 

For each functional module, the performance metrics listed in Section 2.1.1 can be

calculated, as illustrated in Figure 6. Each module claims a certain number of inputs as

“normal” or “abnormal” and passes the remaining to its successive module. Thus, each

module generates a certain number of FN's and FA's. For example, for a module that

performs filtering, if the contrast between the abnormal feature and its surrounding pixels

is eliminated during the process, an FN is generated. The effect of these errors on the

overall system performance, though, also depends on the arrangement of modules.

Normal
Inputs

Abnormal
Inputs

Claimed as
abnormal

Claimed as
normal

FA

FN

Figure 6. The performance measures of a functional module.

When two modules are in series, the former module acts as a filtering module for its

successor. Since the FN's and FA's claimed in the previous module will not be passed to

the next one, both errors accumulate with this arrangement. An example is the processing

inside a region of interest (ROI). In case the defect falls out of the ROI, it will not be

detected and a FN generates.
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When two modules are in parallel, the performance estimation is more complicated

because the decision will be made in a following fusion center as for how to combine the

outputs from these two modules. In this case, the fusion rules together with the

performance of each module determine the final performance. An example is shown in

Figure 7, where the input image is fed into two filters, each generating a binarized image:

B1 and B2, respectively. The following fusion center determines how B1 and B2 are

combined into one binary image B. An example scenario is depicted in Figure 8 showing

B1 and B2 as well as the combined binary images resulted from pixel-wise logical AND

and OR, respectively. It can be seen from this example that in order to estimate the final

errors from individual module performance, the failure pattern of each module must be

analyzed so that a rule that generates minimal errors can be selected. 

It is necessary to point out that the performance of each module may vary

dramatically because of the limitation of the adopted algorithm and the input data's

characteristics. A minor change in the previous module may cause significant

performance change in its successive module, which dramatically increases the

complexity of the inspection algorithm design.

Filter 1Filter 1

Filter 2Filter 2

FusionFusionInput Output

Figure 7. Two filters in parallel followed by a fusion center.
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B1 B2
(B1) AND (B2)

FN FA FA

(B1) OR (B2)

FN

Figure 8. An example of the output binary images using different fusion rules.  

Red crosses indicate the positions of the abnormality. Dark pixels are the detected

abnormality.

2.3.2 Individual Module Design 

In the proposed method, all stages are concatenated, which significantly eases the

performance estimation since each stage can be designed and assessed independently

before they are put together for final assessment. Nevertheless, extreme caution must be

taken when claiming an image as “normal” or “abnormal” at an intermediate stage, since

all errors add directly to the final performance. 

Specifically, the following factors plays the most important roles and special

attention needs to be paid in designing the corresponding stages:

· FNR and FAR in preprocessing

· Segmentation accuracy 

· Feature selection

· Classifier performance

Although the choice of specific algorithms at each stage is application specific, there

are some common issues involved in applying the proposed methodology. In the
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remaining of this section, each stage will be discussed in detail as for how to choose

appropriate algorithms in order to achieve satisfactory performance.

2.3.2.1 Preprocessing

The first goal of preprocessing is to remove irrelevant information using a priori

knowledge of the image. This reduces the amount of data in later processing stages and

increases the processing speed. However, caution must be taken in data removal since the

data is not recoverable once removed. For example, in the fan bone detection application,

assuming that fan bones are removed by mistake in preprocessing from 1% bone-

contaminated sample images, they will not have the chance to be detected by later

modules, and thus the final DR will not exceed 99%. In addition, the algorithm needs to

be so simple that its total processing time is less than that in processing the excessive data

by later steps.

The second goal of this step is to obtain a reasonable estimate of the target for

segmentation. Since most segmentation algorithms are local in nature, the initial estimate

affects greatly the final accuracy. By exploring the possible locations of suspected

abnormality, we are able to focus the segmentation in the neighborhood of these

positions. The advantages include increased segmentation speed with generally more

accurate segmentation results. Again one must be cautious since a target that is missed at

this point will be most probably unrecoverable by the segmentation algorithm. 

Depending on the image quality and the object-background contrast, operations such

as denoising and histogram equalization may be necessary in order to improve the

detectibility of the defects and foreign objects. 
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Simple and fast algorithms such as thresholding and filtering are usually effective

and sufficient in this stage. 

2.3.2.2 Segmentation Using Active Contour Methods

Normally speaking, active contour methods are slow and not suitable for real-time

applications. The snake adapted in this research, however, is a highly optimized version

developed for real-time applications. It is implemented using the level set methods

proposed by Sethian ([33]) in order to handle topological changes of contours such as

merging and splitting. An ultra-narrow band scheme is adopted to further reduce the

computation load by updating the level set values at only the nearest neighbors of the

contour points1. Moreover, the techniques that explore the a priori knowledge about the

samples and the abnormalities, including specification of the region of interest,

estimation of the initial contour, and elimination of the termination criteria, can be

utilized to further increase the speed and accuracy. 

Segmentation accuracy has a significant effect on feature distributions and

classification performance. The example of fan bone detection given in Section 3.2 shows

the relationship between the segmentation accuracy and the classification performance.

To improve the overall classification accuracy, more accurate segmentation schemes are

needed. However, because of the complexity of the problem, it is hard to find a single

segmentation routine that meets the accuracy requirement. To solve this problem,

different segmentation algorithms can be applied and the results are then combined to

produce higher accuracy, as have been reviewed in Section 2.1.2.2.2. However, such

                                                

1 The ultra-narrow band method was developed by Dr. A. Yezzi, who is a faculty member in School of
Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA. 



26

techniques have slow processing speed and thus are unsuitable for real-time applications.

Here we propose a faster recursive segmentation and classification method to achieve

accurate segmentation at a much lower computation cost. The basic idea of this method is

to repeat the segmentation only when the results are found to be inaccurate by the

classifier. The concept of classification confidence is utilized to assess the segmentation

accuracy. The proposed scheme of recursive segmentation and classification is shown in

Figure 9.
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Figure 9. Recursive segmentation and classification.

Using the concept of confidence level, a label k is assigned to a region only when the

confidence level Lk of the classifier about this label is higher than a positive threshold.

Otherwise, the region is claimed as not sure or unclassified, and segmentation needs to be

repeated, using the same algorithm with a different set of parameters or a different

algorithm, until a result with desired confidence level is achieved. 

The measurements of absolute accuracy (a), relative accuracy (A), and repetition

ratio (r) are defined for the classifier as follows. Assume that of a total of M regions, mc

regions are classified correctly, me are classified incorrectly, and the remaining mu are left

unclassified, i.e., M = mc + me + mu. Then we have
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and the following relationship is easily established:
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Appropriate segmentation and classification algorithms in each iteration are selected

according to the characteristics of the images (especially of those with a poor

segmentation accuracy from previous iteration).

The final accuracy and the total computation cost for segmentation and classification

can be calculated as follows. Assume that the absolute accuracy a and repetition rate r are

the same in each iteration. Then, after n rounds of segmentation and classification, the

final accuracy becomes
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As n approaches infinite, the final accuracy approaches its upper boundary of a/(1-r),

which equals the relative accuracy A, and the segmentation cost approaches 1/(1-r) times

of that on a single iteration scheme. The final accuracy can be improved through

increasing n and A, both at the cost of higher computation expense. This is obvious with

the number of iterations n.  Now let us take a closer look at the relative accuracy A.

Theoretically, A can be made closer to 1 by leaving more regions unclassified, i.e., by
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decreasing mc and increasing mu. However, this results in lower a and higher r, and in

turn more computation load. As a result, a trade-off must be made between the final

accuracy and the total cost. Appropriate algorithms must be chosen in order to achieve

high accuracy while keeping the computation overload tolerable.

2.3.2.3 Feature Extraction and Selection

Candidate features include spectral features, shape features, and other features such as

location and adjacency. Shape features can be computed from either a region or the

boundary of the region. Boundary-based features include curvature, perimeter, and

Fourier descriptors, and region-based ones include aspect ratio, area, and moments. Not

all features are suitable for real-time inspection because of the time constraint and

product variability. For example, the boundary-based shape features computationally

expensive in nature and therefore, should be avoided. Yet some other features, on the

other hand, are highly sensitive to the variability in product conditions. An example is the

mean intensity, which is largely determined by the lighting conditions. This type of

features deteriorates the system reliability and increases design difficulty as well.

Particularly, the following factors must be taken into account when selecting appropriate

features:

· Small overlapping of histograms between different classes. Classes must be

distinguishable using the selected features. A common method to assess the

distinguishability is to use the Fischer's Discriminant Ratio.

· Robustness to segmentation inaccuracy. The segmentation algorithm does not

always catch the target boundary accurately. Occasionally, adjusting parameters in

the segmentation algorithm is useful in eliminating the inaccuracy. However, more
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often, the result is unsatisfactory whatever parameters are chosen because of the

lack of salient features in the image itself. The shape features, especially boundary-

based features, are extremely sensitive to segmentation inaccuracy. Consequently,

region-based shape features are preferred than boundary-based ones. 

· Robustness to lighting variations. Because of the attenuation and the disturbances

in illumination intensity, the spectral intensity of the images may vary. Therefore,

the absolute intensities are not reliable features. Instead, cross-channel spectral

features, such as the differences and the histogram overlapping, tend to be more

reliable. 

· Computation load. The features that are computationally expensive are not suitable

for real-time applications.

In addition to the above factors, other issues such as the invariability to scale,

transform, and rotation, also need to be considered in feature selection.

2.3.2.4 PNN Classifier

Various classification tools can be employed. Among these, probabilistic neural networks

(PNN) are effective for supervised pattern recognition ([38]). The PNN with Gaussian

kernels is adopted. It has the 4-layer feed-forward structure as illustrated in Figure 10.

The input layer accepts length-p input feature vectors, where p is the dimensionality of

the feature space. The nodes in the second layer are divided into K groups, where K is the

total number of classes. The kernel in the ith node in the jth group is defined as a Gaussian

basis function centered at Xji with the covariance matrix Σ, where Xji is the training

pattern and Σ is the matrix of smoothing factors. When Σ is a diagonal matrix with equal

diagonal elements, the Gaussian kernel can be replaced with a radial basis function of the
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Euclidean distance between the input vector and Xji. The third layer has K nodes and each

node estimates a class conditional PDF using a mixture (weighted sum) of Gaussian

kernels. The fourth layer makes the decision based on the Bayes decision rule.

PNN is adopted in the proposed general methodology because it has the following

advantages over other types of neural networks. 

• The structure is simple and easy to understand. 

• The training process is fast. 

• The decision boundaries can be conveniently adjusted in order to make the trade-off

between the DR and FAR so that the system requirements are met. 

• The confidence level can be computed from the probability output for each input

feature vector. In case the confidence level is low, segmentation can be repeated

when the recursive segmentation and classification scheme is adopted.

• Look up tables (LUT's) can be used to further increase the speed.
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Figure 10. The structure of the probabilistic neural network with K classes.
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CHAPTER 3 

AN APPLICATION  REAL-TIME FAN BONE INSPECTION OF

DEBONED POULTRY PRODUCTS

3.1 Problem Description

The project of automated inspection of fan bones in deboned poultry meat serves as a test

bed for the developed methodology. The objective of the project is to detect the deboned

chicken meat that contains fan bones (fan-shaped surface bones) using a MV-based

inspection system. The chicken parts move on the conveyor belt at 60 feet per minute and

the inspection is real-time and fully automated. 

High-quality images are acquired using the on-line imaging system with the diffusive

uniform lighting. The image of the deboned chicken breast contains multiple features,

such as meat, fat, blood, bruise, bone, white membrane, and so on. In visible band

images, the contrast between fan bone and its surrounding tissue is normally prominent.

However, there are other spots on the image that may appear similar in color and shading

to bones. These include shadows and edge characteristics that must be distinguished from

fan bones. The products exhibit considerable variability in a variety of characteristics,

including size, color, thickness, and hardness of bones. Moreover, depending on its

location and orientation, the fan bone may not be visible to the camera.

The image database consists of more than 3000 color images taken on a lab-scale

facility and another 3000 images from β-test in several poultry plants. To test the
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inspection system, 280 sample images (137 fan bone-contaminated and 143 bone-free)

acquired in the lab under the same imaging conditions were used. Since the samples were

gathered over a period of time from different plants, both the samples and the defects

illustrated considerable variances.

3.2 Vision-Based Inspection Algorithm

Deploying the inspection methodology and following the design guidelines in last

chapter, a vision-based inspection software algorithm is developed based on color

imaging. The algorithm is shown in Figure 11 with more details presented in [13].
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Figure 11. Visual-based inspection of fan bones.

Two modules are developed for preprocessing: position and orientation location and

color analysis. The former removes the background (conveyor belt) and isolates the

regions where fan bones might be according to the position and orientation of the sample

in the image. The later selects the suspect pixels from the isolated regions based on the

spectral characteristics of each pixel ([44]). Then the region-based snake algorithm (0) is

adapted to segment the neighborhood regions of the suspect pixels. The snake algorithm
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uses region-based curve evolution equations to “pull apart” the mean intensity values

between the interior of the contour and the background. A penalty term on the total arc

length of the contour prevents the contour from wrapping around noise. The level set

method in [33] is adopted in implementing the snakes in order to handle the topological

changes of contours such as merging and splitting. 

After 50 iterations of evolution, the contour evolves to capture three types of darker

regions (Figure 12 (a)): fan bone, edge, and shadow. Fan bone regions are the regions

that partially or completely catch fan bones (Figure 12 (b)); edge regions refer to the

transition regions from the meat to the background (Figure 12 (c)); and shadow regions

include dark meat, topological variations on the meat surface, bruises, etc. (Figure 12

(d)). Both edge and shadow regions are non-fan regions and need to be distinguished

from fan bone regions by the classifier.

(a) (b) (c) (d)

Figure 12. The result of the snake routine on a clip of chicken part image. 

(a) Final contour (b) A fan bone region (c) An edge region (d) A shadow region.

Various color and shape features have been tested to select the features with good

distinguishibility and high robustness to color variations and segmentation errors. The

selected features include the distance from the region to the background (conveyor belt),

mean intensity differences of any two of the red, green, and blue channels, histogram

overlapping between red and blue channels, circularity factor (the ratio of squared
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perimeter to area), and aspect ratio. Finally, the PNN classifier is adopted for the

classification purpose.

The snake algorithm turns out to be efficient and accurate when the fan bone has

good contrast with respect to its neighboring tissues. However, it fails when the contrast

is not pronounced. Figure 13 is a typical example of segmentation failure, where under-

segmentation occurs around the fan bone region. The failure is caused by the penalty

term on the total arc length and the closeness of fan bone to the transition region. The

under-segmentation totally changes the shape and spectral signatures of the region and

thus causes misclassifications. 

    

Figure 13.  An unsuccessful example of the snake routine.

To show how this inaccuracy affects the overall performance, we visually assessed

each fan bone region and classified it as well-segmented or poorly-segmented based on

the closeness of the final contour to the true boundary of the fan bone. Of the 204 fan

bone regions, 154 are segmented accurately, thus the segmentation accuracy is 75.5%.

Figure 14 plots the normalized histograms of one feature value: the distance from the

mass center of a region to the background, for edge regions, well-segmented fan bone

regions, and poorly-segmented fan bone regions, respectively. The poorly-segmented fan

bone regions have more overlapping with the edge regions than the well-segmented do,

which results in a low detection rate of 40.9% on the poorly-segmented fan bone regions

as opposed to 96.3% on the well-segmented ones (Table 2).
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More overlapping!!

Figure 14. The normalized histogram of the distance feature.

Table 2. The classification results of fan bone regions.

Region type Well-Segmented Poorly-Segmented
Total 82 22
Detected 79 9
Detection rate 96.34% 40.91%

To improve the performance on the sample images where fan bones cannot be

segmented successfully, the recursive segmentation and classification scheme is applied.

The confidence level (Lk) that a region belongs to class k is computed from the

probability output of the PNN as 

NjkPPL jkkjk ,,2,1,),(min L=−=
≠ (5)

where N, the total number of classes, equals 3 in this problem, and Pk is the probability

that a region belongs to class k.

A maximum of two iterations of segmentation and classification is performed. The

classifier for the first iteration is the PNN while the second is a set of heuristic rules.

After the 1st iteration, the confidence level output of the PNN is checked. If it is lower

than the threshold of 5%, segmentation is repeated by the same active contour algorithm

using different parameters, initial contours, and ROI. Figure 15 is the result of reapplying
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the snake algorithm to the under-segmented region in Figure 13. By taking the under-

segmented clip as a bimodal image, the snake algorithm successfully separated the fan

bone from the transition region. 

(a) raw image clip (b) final contour

Figure 15. The result of reapplying the snake algorithm to the under-segmented region in

Figure 13.

3.3 Lab-Scale Test Results

Totally 834 regions (204 fan bone, 402 edge, 228 shadow) are generated by the snake

algorithm from the 280 chicken images. Numerical features are extracted from each

region. 100 samples from each class are selected arbitrarily to train the PNN classifier

while the others are left for validation. The classification result without using recursive

segmentation and classification is shown in Table 3. The overall accuracy achieved is

90.4%.

Table 3. The classification results without using the recursive segmentation and

classification scheme.

Fan bone regions Non-fan regions

Total Correct Total Correct

104 88 430 395

Detection rate = 84.62% False alarm rate = 8.14%
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Applying the two-iteration recursive segmentation and classification scheme, the

classification results after the first and the second stages for all regions and fan bone

regions only are shown in Tables 4 and 5, respectively. Compared with the results in

Table 3, the detection rate is increased by 7.7 points while the false alarm rate is

decreased slightly. A significant increase from 40.9% to 77.3% is observed in the

detection rate on the poorly-segmented fan bone regions after using the recursive scheme.

The overall accuracy is increased from 90.4% to 92.88%. 

The algorithm is implemented on a personal computer (Pentium III, 933MHz). The

computation time for the whole process is about 800 milliseconds.

 The experiment results demonstrated that the proposed methodology is effective in

detecting abnormalities with certain spectral and shape features at a fast inspection speed.

Table 4. The classification results using the recursive scheme.

Fan bone regions Non-fan regions

Total Correct Incorrect Unclassified Total Correct Incorrect Unclassified

1st iteration 104 84 5 15 430 367 15 48

2nd iteration 15 12 3 / 48 33 15 /

Detection rate = (84+12)/104 = 92.3% False alarm rate = (15+15)/430 = 6.98%

Table 5.  The classification results for fan bone regions using the recursive scheme.

Well-segmented Poorly-segmented

Total Correct Incorrect Unclassified Total Correct Incorrect Unclassified

1st iteration 82 78 0 4 22 6 5 11

2nd iteration 4 1 3 / 11 11 0 /

Detection rate = (78+1)/82 = 96.34% Detection rate = (6+11)/22 = 77.27%



38

CHAPTER 4 

MULTISENSORY IMAGE SEGMENTATION USING ACTIVE

CONTOURS (SNAKES)

4.1 Motivation of Multisensory Image Segmentation

It has been shown in Section 3.2 that the segmentation accuracy has a significant effect

on feature distributions and classification performance in object recognition applications.

However, segmentation on monosensory images may not produce satisfactory

performance due to the intrinsic ambiguity and incompleteness associated with the data.

In monosensory image segmentation, both over- and under-segmentation can happen in

addition to false regions and edges. Various techniques have been developed to increase

the segmentation accuracy on monosensory images by combining segmentation results

generated from different algorithms, as have been reviewed in Section 2.1.2.2. These

techniques are effective in overcoming the limitations of individual algorithms. However,

when the local contrast of the object with respect to the background is not good, it is

highly possible that all algorithms will fail. Besides, by deploying these techniques, the

computational cost increases significantly and thus, they cannot be used in real-time

applications. Images acquired by different sensors are generally partially redundant and

partially complementary, which can be used to reduce the imprecision and to interpret the

scene more accurately. Unfortunately, the multisensory image segmentation problem is

not a straightforward extension of its monosensory counterpart to multiple images. The
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algorithm must make smart decisions on how to eliminate the redundancy, to include the

complementary information, and to resolve the possible conflict.

Multisensory image segmentation refers to the process of partitioning images from

different sensors. By combining different modalities in segmentation, we expect to

achieve the following goals:

· Locate more accurate boundaries for the objects in the scene.

· Eliminate false edges/regions as many as possible.

Note that for the false edges/regions that cannot be totally eliminated, the significant

difference between the segmentations on individual modalities can be utilized by the

pattern recognition algorithms to separate false edges/regions from true edges/regions.

One way of doing multisensory image segmentation is to employ a certain image

fusion technique to merge all images into one, on which the segmentation is then

performed. This way, the image merger handles the information of various natures.

However, the merging operation may increase the noise power and generate artifacts,

which makes the segmentation more difficult. Besides, the merged image may be even

harder to interpret. Finally, many merging algorithms involve feature detection such as

segmentation and edge detection. In contrast to this approach, the multisensory

segmentation has several advantages. First, the amount of data to be processed is greatly

reduced by focusing on the higher level representation of images. Second, it is not

necessary to pay special attention to integrating information for visualization, which

simplifies the task significantly. 

In the snake-based curve evolution methods, the contour evolves according to the

optimal flow derived from the energy functional. Segmentation errors occur when the
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images do not satisfy the assumptions based on which the energy functional is

constructed. Because this type of method is local in nature, the curves tend to get trapped

by unexpected features before they reach the true edges, causing either under- or over-

segmentation errors. Since the unexpected feature that entrapped the contours may show

itself differently in images acquired by other sensors, it may function as a driving force to

push the contour toward the true edge and thus reduce the segmentation errors. In the

proposed model, the snake is driven by the combined force that is the weighted sum of

several forces, each derived from the energy functionals that are specially designed for

individual images. This method is applicable to cases where the objects in the scene

exhibit totally different views in images. A priori information of the scene and sensors

can be employed to further speed up this process so that the algorithm is more suitable for

real-time applications. 

In this chapter, the general concepts of multisensory images and image fusion are

firstly introduced, followed by a brief review of multisensory image segmentation. Then,

a real-time multisensory image segmentation approach is presented with results on both

synthesized and real images. Finally, the approach is applied to segmentation of the color

and x-ray images of bone-contaminated poultry meat, and the results are presented.

4.2 Background

4.2.1 Multisensory Images

Multisensory images are a type of vector-valued images. An M-vector-valued image is

defined as I(x, y): R2→RM, with components Ii(x, y): R2→R, i = 1, 2, …, M. The value of

the image at a given point (x, y) is a vector in RN. The most commonly seen vector-valued
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images are color images. Others include those obtained in different image sensors

(modalities), as in medical and LANDSAT applications. Vector-valued images can also

be generated from popular image processing operations, such as scaling, down/up

sampling, and multiscale decomposition. Multisensory images specifically refer to

images obtained from different image sensors. A significant difference from other types

of vector images, such as the images resulting from multiscale decomposition, is that

multisensory images often contain information conflict, either because of different sensor

characteristics or registration error. Therefore, the segmentation algorithm must have the

capability of resolving contradictory information. 

Three multisensory image examples are given in the following figures. The first

example is shown in Figure 16, where a pair of registered CT and MRI images of brain is

shown. The second is the infrared and visible road images shown in Figure 17. The third

is the x-ray and color images of deboned poultry meat in Figure 18.

The images in each example show different image features about the scene that is

being imaged. The differences manifest themselves as variances in intensity, noise, and

texture. To simplify the problem, we do not consider the texture features in this research.

However, images with texture information can be transformed using Fourier Transform

or Wavelet Transform to obtain multiple channels, which can then be processed using the

same segmentation method. 



42

  

Figure 16. CT (left) and MRI (right) images of brain.

  

Figure 17. Infrared (left) and visible (right) road images.

Figure 18. X-ray (left) and color (right) images of a deboned poultry meat sample.
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4.2.2 Fusion of Multisensory Images

Although a large amount of literature use the term image fusion to refer to pixel-level

(low-level) image merging, in this research we stick to a more general definition of image

fusion as the assimilation of information acquired by two or more sensors viewing the

same scene ([32]). Fused results can be images, which are not necessarily the visual

pictures, or symbols that describe the scene. The fused results may only be understood on

the basis of some specific knowledge of the sensor data ([26]).

The multisensory images have the following properties: imperfection,

complementarity, redundancy, and heterogeneity. Image fusion needs to (a) increase

completeness by including complementary information, (b) reduce uncertainty and

imprecision, (c) eliminate redundancy, (d) resolve conflicting information, and (e) obtain

a precise and meaningful interpretation of the scene.

Normally, the image fusion problem is the four-step procedure shown in Figure 19:

preprocessing, generation of image description, fusion, and generation of world

description.

Depending on the level of description at which the information is fused, image

fusion can be carried out at one or more of the following levels: pixel, feature, and

decision. 

• Pixel level: combine two or more spatially registered images into one enhanced

image in which both the contrast and the signal-to-noise ratio are increased. In the

combined image, features in individual source images are preserved or enhanced

with minimal artifacts. Source images can be described in either spatial or

frequency domain, and multiresolution techniques are widely used at this level. 



44

• Feature level: source images are independently processed using intermediate level

image processing algorithms. The obtained segmentation features, such as edges

and regions, and numerical features and measurements, such as values of shapes,

fuzzy measures and probabilities etc., are then merged using the mathematical tools

provided by the framework in which the features are represented.

• Decision level: each source image is processed, classified, and then combined in a

supervised or unsupervised manner.

Figure 20 depicts the data flow of fusion at different levels. Multisensory image

segmentation is a feature-level (or intermediate-level) fusion technique. The fused result

is a feature map indicating the positions of multisensory image features such as regions

and edges.
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Figure 19. General procedure of image fusion.
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4.2.3 Multisensory Image Features

Features of an image include regions, edges, and textures. Depending on the

characteristics of physical sensors and target objects, the definition for edge and region

on multisensory images may vary. Bonnin [1] defines a multi-spectral edge point as a

pixel where there are important variations in at least one direction in the neighborhood of

a property, in at least one spectral image. This definition implies a logical OR between

different spectral images of edge points. The displacement of an edge between two

spectral images has to be taken into account and solved in the edge thinning and chaining

steps. In the mean time, the false edges caused by artifacts and noises accumulate by

applying logical OR directly. The majority voting rule in [32] eliminates false edges if

they are observed only in a limited number of channels, while at the cost of missing

possible important edge features. Therefore, fusion of edge maps is not a trivial problem. 
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Similarly, the region of homogeneity implies a logical AND between the homogeneity

predicates in all spectral images. The homogeneity criteria are usually some thresholding

of the homogeneity measures. The measures can vary largely with different sensors. Even

for the same sensor image, the thresholds may change with illumination and the scene

being imaged. The choice of the homogeneity measure and the adjustment of its

thresholds are demanding tasks and are usually guided by the knowledge of the sensors’

physical characteristics.

In order to get a more thorough understanding of the multisensory features, we need

to compare carefully the behaviors of different sensors. Observing the multisensory

image examples provided in 4.2.1, we find that the features in one image fall in one of the

following categories with regard to the corresponding features in other images. 

(a) Redundant or compatible features. The feature (edge/region) can be observed in all

images, but the contrasts are different because of different intensity levels and noise

powers. This can be observed from all three examples. For this type of features, in

spite of different intensity distributions, edge positions and region boundaries across

images are consistent. Therefore, the corresponding multisensory features are the

same as the monosensory ones.

(b) Complementary features. The feature can be observed in only some modalities, such

as the eyes in the MRI image in the brain example, the pulley bone in the x-ray

image, and the fat in the visible band image of the poultry example. In this case, the

multisensory features are obtained by OR-ing all monosensory edge features, or AND-

ing all region features.
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(c) Contradictory features. Obvious displacement can be observed among corresponding

image features across images. This displacement is caused either by distinctive sensor

characteristics or by registration error (misalignment) between images. To illustrate

the registration error of fan bones in the poultry meat example and the displacement

in the brain example, the original images are clipped and shown as the pseudo-color

images displayed in Figure 21 (a) and (b), respectively. Note that this feature

displacement is normally within the range of a few pixels. It is difficult to define

multisensory features for contradictory monosensory features. Considering the

ground truth for all monosensory features is the same (the scene being shot,) the

corresponding multisensory features should be unique. From the image processing

point of view, the multisensory feature in this case can be deemed as the most

pronounced monosensory feature in all modalities. In practice, though, other

definitions may be found more reasonable with prior knowledge on sensors and

scenes.

     

Figure 21. Example of the contradictory monochannel features.

 Left: registration error in the poultry meat example; Right: displacement caused by sensor

characteristics in the brain example.
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With the above categorization, the task of multisensory image segmentation then

becomes identifying the nature of monosensory features and locating their multisensory

counterparts.

4.2.4 Overview of Multisensory Image Segmentation Methods

One common scheme for multisensory image segmentation, as shown in Figure 22, is to

obtain features from individual sensor images, then combine these monosensory features

using simple fusion rules or rules based on the mathematical frameworks of Bayesian

Theorem, Fuzzy Theory, and Dempster-Shafer (DS) Theory. In order to utilize the rules

in such frameworks, the fusion problem first has to be modeled in that framework. One

application is to fuse SAR and optical images to achieve better performance in detecting

urban areas ([16])[15]. The fusion of individually segmented images is modeled as a

nonlinear optimization problem, where the objective function is the sum of two terms: the

mismatch between the two fused segmentation maps and the discrepancies between

corresponding fused and original segmentations. The handling of unmatched monosource

features are controlled by the penalization parameters on the second term. One concern

about this method is that ad hoc calibrations of several parameters are necessary. Another

issue is that the nonlinear optimization problem is hard to solve and can be too slow to be

used real-time.

Image 1

Image N

Segm. Scheme 1

Segm. Scheme N

Region 
Map 1

Region 
Map N

Fusion
Rule Region 

Map

Figure 22. Fusion of individual segmentation results.
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One can also build a segmentation map directly on all images, as shown in Figure 23.

For example, in [21], multisensory data are classified pixel by pixel using DS theory to

produce a labeled image (segmentation map). However, the segmentation map needs to

be further refined to remove speckle errors. A work unifying snakes, region growing and

Bayes/MDL for multiband image segmentation is derived from minimizing a generalized

Bayes/MDL criterion using the variational methods ([49][48]). 

Several active contour algorithms are proposed for segmentation of vector-valued

images based on the partial differential equation (PDE) models. They are the natural

extensions of their monosensory counterparts to vector-valued images. The extension of

the Mumford-Shah functional to segmentation of color images is to be found in [34]. A

region grow algorithm based on the simplified Mumford-Shah functional is developed in

[25] for segmentation of the multichannel images generated by textured images. Even if a

region grow scheme is adopted to increase the processing speed, this model is still too

slow and cannot be used in real-time applications. 

Extending the geodesic active contour model for single-valued images introduced in

[4], the color geodesic snakes model is developed in [31] for vector-valued images,

where the notion of vector edges are defined based on the classical results on Riemannian

geometry. These vector edges are used to define the stopping edge function. The geodesic

curve is then a minimal “color weighted” path. The behavior of the color snake in the

presence of contradictory features needs to be investigated. Besides, the geodesic active

contour model itself is sensitive to noise.

The scalar Chan-Vese model is extended to vector-valued images in [7] by exerting a

weighted-sum of the fitting error over each component of the vector-valued image.
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Before applying this model, the weights need to be chosen, which requires the a priori

knowledge about the image such as occlusion and noise.

Image 1

Image N

Segm.
Scheme

Region Map

Figure 23. Multichannel  image segmentation.

In the following section, we propose a general and flexible framework for snake-

based segmentation of vector images. It combines multiple forces into one at each

contour point. The combined force then drives the evolution of the snakes to produce a

segmentation of the vector image. The developed scheme is fast and efficient in resolving

conflict. Thus, it is suitable for real-time applications which involve multisensory image

segmentation task. Although this algorithm is designed for the purpose of multisensory

image segmentation, it can readily be applied to the segmentation of other types of vector

images.

4.3 An Active Contour-Based Approach for Multisensory Image

Segmentation

4.3.1 Model Description

In this section, we propose a novel algorithm for multisensory image segmentation based

on the popular and powerful segmentation method of snakes. The basic idea is illustrated

in Figure 24, where there is only one set of active contours C
r

 defined for all image
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attributes. For each attribute, distinctive energy functional can be constructed. Each point

on the contour evolves according to the force combined from all components, each being

the force that optimizes its corresponding energy functional. When combining forces, the

weight on each image is determined based on local contrast and noise in that image. The

following is a detailed description of the algorithm.
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Figure 24. The snakes for multisensory image segmentation.

An appropriate energy functional, Ei, can be designed for each image attribute Ii(x,

y), according to the characteristics of sensor i, i = 1, 2, …, M, where M is the total

number of images. The energy functionals can be different, but each determines an

optimal force Fi(x, y, t) at time t and position (x, y) on the contours C
v

 along its normal

direction N
v
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where dt is the step size. Then the individual forces are combined through weighted

averaging as follows in order to obtain a unique force at time t and position (x, y): 
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where wi is the weight on the ith image. 

The weight selection is critical since it determines how different types of features are

handled. Note that although F(x, y, t) is expressed as the weighted sum of all forces,

depending on the weight selection, the equation can have different interpretations. For

example, if the weight on the strongest force is set to 1 but all others set to 0, then the

weighted averaging of all forces becomes selecting the strongest component:

|)),,((|max|),,(|  where,),,(),,(
,,1

tyxFtyxFtyxFtyxF jMjii
L=

== . (8)

However, since the forces generated by different energy functionals may not be

comparable in amplitude, it may not make sense to compare forces directly. 

Weights can vary as the contours evolve. When they are set constant, the combined

force equals the one derived from the energy functional that weighted averages all

functionals using the same weights.

A reasonable way in assigning the weights is to compare the local feature

information in individual channels. Generally, the following guidelines need to be

followed.

· For redundant monosensory features, equal weights are used.

· For complementary monosensory features, the sources where the features are

observed are assigned higher weights.

· For contradictory monosensory features, the sources with more reliable information

are given higher weights.

The key issue then becomes identifying the nature of the monosensory features and

resolving information conflicts according to the local information in each source. When

we have little prior knowledge of the sensor characteristics and the scene, the weight
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computation becomes a demanding task. In the following sections, a systematic method is

proposed in obtaining weights according to a metric which measures both contrast and

noise. This metric is based on the statistical model of noise-corrupted bimodal grayscale

images 

4.3.2 Gaussian Mixture Model of Noise-Corrupted Bimodal Images

The simplest non-trivial scene contains an object against a background. Without

considering texture features, the noise-free image I0(x, y) will only have two intensity

levels: u and v, with areas Au and Av, respectively. Define pu and pv as the probabilities of

the foreground and the background:

uv
vu

u
u pp

AA
A

p −=
+

= 1 and , , (9)

then I0(x, y) has the following binary distribution

)()()( 000 vIpuIpIp vu −+−= δδ . (10)

Assuming the noise n(x, y) generated by the sensor and the circuits is additive Gaussian

with mean zero and variance σ2(x, y), the noise-corrupted bimodal image In(x, y) then

becomes

In(x, y) = I0(x, y)+n(x, y), (11)

where the noise n(x, y) has the following probability density function (PDF)
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Note that the noise power σ2 at each point (x, y) can be either dependent or independent

of the intensity I0(x, y), depending on where the noises are generated. Assuming that the



54

noise power is constant across the image, the PDF of the intensities in a noise-corrupted

bimodal image is then

),(),()( σσ vNpuNpIp vun += , (13)

and the mean and variance of this distribution are puu+pvv and pupv(u-v)2+σ2,

respectively. 

4.3.3 A New Metric of Local Contrast and Noise

When combining multiple forces, the weight on each force component needs to be

determined. Since segmentation performance is greatly affected by the contrast 
v

vu || −

([36]), and the noise power σ2, heavier weight needs to be assigned to the image attribute

with higher contrast and lower noise. Therefore, a measure that quantifies both contrast

and noise is desired. 

In the literature of image merging, or pixel-level image fusion, the term “activity

level” has been widely adopted in determining which attribute is to be given higher

weight when merging multiple images. A common method is to calculate the activity

level of image Ii at each point (x, y) based on (i) the transform coefficient at that point,

(ii) a group of coefficients within a window (3x3, or 5x5), or (iii) the coefficients within a

region (a window with an odd shape) centered around that point. The coefficients are

obtained from a certain type of multiscale decomposition (MSD) [48]. The point-by-point

measures are very sensitive to noise, while the region-based measures involve feature

detection during the computation. The window-based measures are claimed to be less

sensitive to noise than the point-by-point ones, but still higher noise power generates

larger activity values. Take the window-based measures called match and saliency
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measurements proposed by Burt ([3]) as an example. The match metric determines the

mode of combination (selection or averaging) at each sample position: the most salient

component patterns are selected where the source images are distinctly different, while

sources are averaged where they are similar. The salience metric determines which

source pattern is chosen in the selection mode. The amplitude of the coefficients of the

Laplacian pyramids in a point's neighboring window is used in computing both measures

at that position: the weighted square sum being the salience, while a normalized

correlation being the match metric. The weights are then computed from these two

metrics, with the larger weight always assigned to the source with larger salience metric.

Figure 25 illustrates the weights computed using Burt’s method. Obviously, the weights

generated by the noisier image (bottom) are much larger than those by the less noisier

one. Therefore, the activity level is not a suitable measurement for our purpose and a

novel one must be defined such that it increases with contrast and decreases with noise

power.

An ideal choice of such measures is the Fischer's Discriminant Ratio (FDR) between

the intensity distributions inside the foreground and the background regions, since the

image segmentation problem is essentially a classification problem and the FDR indicates

how well the two modes can be separated. The FDR between the two modes, denoted by

RF, is defined as 

( )
2

2

2σ
vuRF

−
= . (14)

To compute RF, the means and variances of the two modes have to be estimated from

the distribution of the image intensities. Optimal estimation methods for Gaussian

Mixture parameter estimation can be found in [40]. In this research, instead of estimating
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mean and variance of each Gaussian mode, we propose a novel measure that can be

computed directly from the intensity distribution. It will be shown that this measure,

denoted by MFDR, increases with RF and thus indicates how well the image can be

segmented. 

Combining Shannon's entropy H(In) and the overall variance Var of an image In(x, y)

in the following way, 

)(2)log()( nnFDR IHVarIM −= , (15)

we can show, with some derivation, that

)()(2)2log()1log( 0IHReRppM FFvuFDR λπ −−+= , (16)

where 

vvuu ppppIH loglog)( 0 −−= (17)

is the entropy of the noise-free bimodal image I0, and λ(⋅) is a monotonically increasing

function of RF, approaching 0 as RF →0 and 1 as RF →∞, as shown in Figure 26.

Obviously the first term in MFDR has the desired property of increasing with RF. The

last term, however, tends to decrease by an amount of no larger than the noise-free

image's entropy. In Figure 27, MFDR is plotted against RF and pu for the special case of u =

0 and v = 1. It can be seen that for a given pu, MFDR increases with RF and is roughly

constant when pu is greater than 0.1. This can be seen more clearly in Figure 28. The

curve does drop when pu approaches 0.5 for small RF’s  (<=5). However, the variance is

tiny (<10-2) noticed that MFDR is plotted in the logarithm scale. 
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Figure 25. The weights computed from salience and match metrics. 

Top: σ = 10; Bottom: σ = 30. From left to right: original image and weights computed at

each level of the level-3 Laplacian pyramids.
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Figure 26. λ(|u-v|/σ) vs. |u-v|/σ.
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Figure 27. A 3D plot of MFDR versus RF and pu (u=0, v=1).

Figure 28. MFDR versus pu when u=0, v=1. The number on each curve is RF.
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It must be pointed out that MFDR increases with pu when pu is small. As a result, a

very small object with higher RF would yield a greater MFDR than a larger object with

considerably lower RF. In case this is found to be undesirable in applications, noise

filtering techniques can be applied to increase RF. 

Note that the above derivations are all based on images with continuous values in the

real domain. Since images are normally digitized into a fixed number of levels (e.g. 256

levels with 8-bit depth), the PDF must be replaced with probabilistic mass function

(PMF). However, the number of bins Nbins being used will affect the value of MFDR. Also

a digitized image have saturation effects toward both ends, which causes deviation of the

calculated MFDR from the ideal MFDR.

Common image operations such as filtering and histogram equalization will affect

MFDR too. Low-pass filtering of an image reduces an image's information and thus,

increases MFDR. Histogram equalization alone does not affect the entropy term, but the

overall variance changes and MFDR will change accordingly. Before weights are

calculated, images from different sensors need to be preprocessed appropriately so that

their MFDR's are matched (comparable to each other).

4.3.4 Weight Calculation 

The weight wi on the ith image can be calculated based on the new feature information

measure MFDR defined above. The normalized linear ratio is the simplest method in

calculating weights:
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Another choice is, for two image attributes, to use the sigmoid functions:
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where β controls the ramp of the sigmoid function.

In practice, images may contain multiple features and cannot be approximated using

the bimodal image model developed in the last section. In this case, all images tend to

contain prominent features and the MFDR's calculated on all images are most likely equal.

Then the proposed scheme degrades to averaging forces all through the curve evolution

process, which results in the missing of important local features, as can be seen in the

upcoming sections of experiments. Therefore, in practice, we have to calculate weights at

each pixel using only the information inside the neighboring window of that pixel. This is

a more practical and effective approach considering that the window of a reasonable size

contains only limited features and is very close to the bimodal model. The combined

force at each contour point is then obtained using the weights computed at that point. 

Note that there are some variations to this localized scheme. The first variation is that

instead of varying weights at different locations along the contour, we can use the

neighboring information of the entire contour to determine a fixed weight that is

applicable to the whole set of contour points at a specific time. This has the benefit that

the contour will move in a more consistent manner. Another variation is that, instead of

weighted averaging all forces, select the force with the greatest MFDR. To avoid switching

frequently among different attributes, one can update the weights only after a certain

number of iterations. This generates the scheme depicted in Figure 29. Since each

segmentation starts from the previous segmentation, the convergence is faster than
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segmenting each modality independently. Besides, for conflicting features, i.e., features

with obvious displacement across channels, this scheme captures accurate boundaries in

at least one channel and thus, avoids resolving the conflicts. This might produce more

desired results in practical applications.

Image 1

Image 2

Segm.
Scheme 1

Segm.
Scheme 2

Region Map 1

Region Map N-1

Region MapImage N Segm.
Scheme N

Region Map 2

Figure 29. Segmentation using selection mode.

4.4 Experiments and Performance Assessment

The developed algorithm is tested on a set of test images before being applied to real

medical and aerial images. In this section, the process of each experiment is described

and the results are presented.

4.4.1 Experiment on Test Images

In order to compare the segmentation performance when using different weights, a seed

binary image is created and various operations are applied on this image to emulate

different sensor activities. The seed image I0, as shown in Figure 30, is a bimodal

grayscale image with a darker foreground (a capital letter D) against a background. 
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Figure 30. The seed gray-scale test image.

The seed image is duplicated to create a bichannel image, then the following

operations are applied to each channel to emulate different sensor behaviors.

• Noise: add Gaussian white noise sequences with various noise powers to channels.

• Blurring: convolute the seed image with 2-D Gaussian kernels with various radii and

variances. The blurring effect is the result of the point spread function (PSF) of the

imaging system.

• Complementary features: move some of the features from one channel into the other. 

• Registration error: shift the image by a certain number of pixels in one channel.

• Contradiction: change the feature in one channel by resizing and rotating it.

Using the above operations, a set of test images is generated, on which the following

three weight computation methods are applied: constant equal weights (CEW), constant

weights computed from MFDR of the entire image, or the global constant weights (GCW),

and window-based local weights (WLW). 

The energy functionals adopted for both channels in all examples are the binary flow

in [47]

2 ,1    ,)(
2
1 2 =−−= ivuE iii

(20)
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where ui and vi are the mean intensities inside and outside the contour in channel i,

respectively. This energy functional yields the following optimal force at each point (x, y)

of the curve in channel i
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where Au and Av are the areas inside and outside the contour, respectively. Combining

these forces using the weights {wi(x, y)}, i=1,2, and adding the penalty term on the total

arc length of the curve C
v

, the following optimal flow is obtained:
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where outN
v

 is the outward unit normal of C
v

 at (x, y), α∈[0, 1] is a constant weight on the

total arc length, and κ is the curvature. 

The initial contour is shown in Figure 31. The results of the three schemes are

displayed in the pseudo-color images (the last three columns) in Figure 32. They are

compared to the monochannel segmentation results on the first and second channels,

respectively, which are shown in Figure 32 as the gray-scale images in the first two

columns. The results shown were obtained after 1500 iterations of evolution with a fixed

step size of 0.05 and α of 0. 

Figure 31. The initial contour on test images.
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(1) Reversed intensities (u1=v2, v1=u2, σ1 = σ2 = 5)

(2) Different noise powers (σ1 = 5, σ2 = 30)

(3) Different blurring (Gaussian blur, chl 1: 5x5 mask with σ = 1; chl 2: 10x10 mask with σ = 3)

(4)  Different contrast (u2-v2 = (u1-v1)/3, σ1 = σ2 = 5)
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(5) Only one channel shows the feature (σ1 = σ2 = 10)

(6) Channels show complementary features (σ1 = σ2 = 5)

(7) Registration error with equal noise powers (σ1 = σ2 = 5)

(8) Registration error with unequal noise powers (σ1 = 5, σ2 = 30)
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(9) Contradictory features with equal noise powers (σ1 = σ2 = 5)

(10) Contradictory features with unequal noise powers (σ1 = 5, σ2 = 10)

(11) Two channels show different features (σ1 = σ2 = 10)

Figure 32. Results of monochannel and multichannel segmentations on test images. 

Columns 1 and 2: monochannel segmentation on channels 1 and 2; Columns 3 to 5:

multichannel segmentation using constant equal weights (CEW), global constant weights

(GCW), and window-based local weights (WLW).

From the above results, the following observations can be made:

(a) For redundant and compatible feature, i.e., the edges occur in both channels at the

same positions, as in Figure 32 (1) to (4), all three schemes are able to find the

accurate edges, despite the different weights applied.
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(b) For complementary features, i.e., the edge segments that show in one channel do not

exist in the other, as in (5) and (6) in Figure 32, different weighting schemes result in

different segments. In (5), the force in channel 1 is greater because of the existence of

the letter “D”. Therefore, all schemes captured the boundaries. In (6), the letter “D” is

cut into two non-overlapping pieces and each channel shows only one piece. The first

two schemes captured the piece in channel 1 only, while the WLW scheme was able

to capture features in both channels. The reason is that channel 1 has a larger portion

of “D”, which results in a force stronger than the other, i.e., 21 FF
rr

> . This in turn

yields a combined force in the direction of 1F
v

 when CEW or GCW are used, and the

contours in the lower portion of “D” eventually disappeared. In contrast, the WLW

scheme combines the two force components according to the local weights shown in

Figure 33, where much higher weights are put on the channel at the locations the

feature can be observed. As a result, the boundaries in both channels were finally

successfully located.

(c) For contradictory features, i.e. the edge features appear in both channels but there is

an apparent displacement because of either registration error in (7) and (8) or

different sensor characteristics in (9) to (11), the way how contradictions is resolved

is different with schemes. When feature areas are comparable and the noise powers

are equal, the weights are approximately equal for all schemes and the snakes stopped

at the intersection's boundaries ((7), (9), and (11)). When the noise powers are not

equal ((8) and (10)), the snakes evolve differently with schemes. The CEW method is

slower than the other two methods simply because the forces are in opposite

directions and the averaged force is weaker. The other two methods, on the other
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hand, put greater weights on the channel with less noise and finally capture the

feature in that channel, with a much faster convergence speed than that of the CEW

method.

The results on test images illustrated that the weight selection is not a trivial issue,

especially when channels demonstrate features that are complementary or contradictory.

When channels show complementary features, the WLW method is effective in capturing

all features. When contradiction arises, both the GCW and WLW methods correctly

identify the more “trustful” sources and then quickly locate the reasonable boundaries. 

      

Figure 33. The weights on channels 1 and 2 in Figure 32 (6), respectively, when using the

WLW method.

4.4.2 Experiment on Real Images

Experiments were carried out on three pairs of real images and the results are shown in

Figures 34 to 37. The images are

· the microarray images generated in gene expression studies of skeletal muscle

repair after traumatic or strain injury (Figure 34),

· the MR and ultrasonic scan images of a baby's brain2 (Figure 35), and

                                                

2 Images obtained from http://www-sop.inria.fr/epidaure/Demonstrations/roboscope/index.htm
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· the visible band blue and infrared images of New York City3 (Figure 36 and Figure

37).

In the microarray image example, the goal is to separate the circular features from

the background. Two images are obtained by scanning two slides of the same gene

matrices. The original images show very poor contrast and high noise. Therefore, before

the images are processed, histogram equalization and Wiener filtering were applied to

expand the dynamic range and to decrease the noise. Then segmentation is performed on

the neighborhood of each feature so that each feature is segmented independently. As

shown in the first two images in Figure 34, some circular features have very poor contrast

with the background, and monochannel segmentation on those features was not

satisfactory. By using the proposed multisensory snake method with the local weights, we

expect the snake to select the more accurate feature boundaries. The last image in Figure

34 illustrates that the algorithm achieved this goal. For example, the four features in the

upper right corner were poorly segmented in channel 1 monosensory segmentation but

successfully segmented by the proposed method. Even some of the features that are failed

by both channels have been located successfully (e.g. the 4th and 8th features on the 7th

row.)

                                                

3 Images courtesy of Dr. John C. Russ, who is a visiting professor in Material Science and Engineering
Department, North Carolina State University.



70



71

Figure 34. Segmentation of microarray images generated in gene expression studies.

After 50 iterations with a step size of 0.2. Top and middle: monochannel segmentation on

channels 1 and 2, respectively; Bottom: segmentation using the developed algorithm.

In the example of baby brain images of MRI and ultrasonic scan (US) (Figure 35),

monosensory segmentation was either unsatisfactory or slightly different across channels.

Before applying the proposed fusion scheme, smoothing filter is applied to both images

to avoid giving too much weight on the MRI image where it has tiny features. The

calculated weights on individual images are displayed as gray-scale images in the third

and fourth columns. It can be seen that at features boundaries, the MRI image was given

much higher weights, which resulted in more accurate segmentation. 
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Figure 35. Segmentation of a baby's brain MR and ultrasonic scan (US) images.

After 1000 iterations with a step size of 0.1. First two columns: monosensory segmentation

of the filtered MR images and US images, respectively; 3rd and 4th columns: local weights

obtained on the MR and US images, respectively; the last column: multisensory

segmentation result.

The last example is a pair of registered LANDSAT images of New York City. Better

contrast is observed in the IR image than in the visible blue-band image. The cyan circles

highlighted some features that can be observed in the IR channel but not in the blue one.

The segmentation results using the proposed approach, as shown in the last clip in Figure

37, clearly illustrate that boundaries of the rivers were accurately located using the local

weights computed from MFDR, even for all the contradictory features in the circles.
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Figure 36. Monosensory segmentation of the aerial images of visible blue band (left) and IR

(right) of New York City after 2000 iterations with a step size of 0.1.

Top: original images. Bottom: the images showing the final snakes.
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Figure 37. Multisensory segmentation after 2000 iterations with a step size of 0.1. 

Top: weights on the blue and IR images, respectively. Bottom: Segmentation using the

developed algorithm with WLW.



75

4.5 Segmentation of X-Ray and Color Images 

The proposed method is employed to segment x-ray and color images of bone-

contaminated poultry breast. Fan bones are barely visible to x-ray since it contains only a

small amount of calcium and is very thin. They are generally a little darker in the image

than the surrounding meat, whose intensity changes slowly because of varying meat

thickness. Therefore, the segmentation of fan bones on x-ray images is a challenging task.

In the mean time, although the segmentation on the visible RGB image is relatively easier

and more accurate, it does produce significant under-segmentation errors, especially

when illumination is not uniform enough. In addition, it also generates a large amount of

false regions of dark meat that look similar in color and shading to bones. By combining

two modalities in segmentation, we expect to achieve more accurate segmentation and

also to reduce the number of false regions, so that the classification is easier and

eventually the overall system performance is improved.

An example of the registered images is shown in Figure 38, where (a) and (b) are the

clips of the visible band and x-ray images, respectively, for the same fan bone-

contaminated chicken part. The fan bone is marked out with a red circles in both images.

The x-ray image and the red channel of the visual image are overlapped to form a

pseudo-color image in (c). Significant registration errors (misalignment between the

transformed x-ray image and the visual image) are observed in the registered images. To

show this, the boundaries of the same fan bone in individual images are traced manually,

where the green curve corresponds to the x-ray image and the red curve to the visual

image. The main reason of the registration error is that the assumption of linear

conformal transform between the two images is not totally valid. Besides, error is
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introduced during manual selection of control points because of distinct sensor

sensitivities: one common subject (such as a fan bone) may have distinct views in images

of different modalities. Therefore, segmentation algorithms that can accommodate the

registration error need to be employed.

(a) visual image (b) x-ray image (c) pseudo-color image with
 fan bone boundaries marked out

Figure 38. A pair of registered visible color and x-ray images with registration error.

Prior to segmentation, both the color and the x-ray images are preprocessed to

enhance the contrast using gray-scale morphological operations. The initial contour is

obtained by thresholding both the red and the x-ray channels. The preprocessed images

and the snakes resulted from monochannel segmentation for individual channels are

shown in Figure 39. The segmentation of the x-ray image completely failed to catch the

fan bone. 

The combined-force algorithm with local weights resulted in the snakes displayed in

Figure 40. Because of the significant registration error between the two images and the

heavier weights on the visible red channel, the resulting snake was misplaced by an offset

from the fan bone boundary in the x-ray image. This error needs to be carefully

interpreted at higher levels of processing. In our performance assessment, we do not
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make distinguish on which channel's feature the snake is capturing in presence of

registration errors.

 

  

Figure 39. Filtered red band (upper left) and x-ray (upper right) images and their

monosensory segmentation results at the bottom.

Bottom left: initial contour; middle and right: snakes after 500 iterations on the filtered

visible-band red image and x-ray image, respectively.

  

Figure 40. The multisensory segmentation after 500 iterations (step size = 0.1, and α = 0.2.) 

Left and middle: local weight on the visible red and the x-ray channels, respectively; right:

multisensory segmentation results.
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Another example is shown in Figure 41. It can be seen that apart from more accurate

segmentation of the fan bone regions, the snakes also reduced the false regions generated

in the visible red channel segmentation significantly. Besides, the remaining one false

region was deformed significantly and thus easier to classify. 

    

     

Figure 41. Another example of multisensory fan bone segmentation. 

From left to right and top to bottom: original color image, original x-ray image, initialized

snakes, monosensory red channel segmentation, monosensory x-ray segmentation, and

multisensory  segmentation with local weights.

A small number of images from the chicken image database are color and x-ray pairs

taken on-line in a poultry plant. They were used to test the proposed multisensory

segmentation algorithm. Totally 51 fan bone-contaminated image clip pairs of the size

160×160 were cut from the registered visual and x-ray images. Visual assessment was

carried out on both the monochannel and multisensory segmentation results, as listed in

Table 6. 
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Table 7 provides the more detailed performance numbers of the red channel

segmentation versus the multisensory WLW method. It can be seen that the developed

scheme achieved 37 good segmentations, which is a significant improvement over the

visible red results of 28. In particular, out of the 18 clips that the monosensory

segmentation in the red channel totally failed, the WLW method was able to correct 7

successfully. In the mean time, out of the 28 clips that the monosensory results were

good, only 1 was badly failed by the WLW method. This improvement verified that the

snakes with the local weights calculated from MFDR have the capability of balancing

different forces and seeking the right way toward the true boundary, in spite of the

significant registration errors. The snakes using CEW achieved even less good

segmentations than the monosensory red channel does. This confirmed that the weight

computation method is critical and is not a trivial problem.

Table 6. Result comparison of monosensory and multisensory segmentation algorithms.

Segmentation Algorithms Good Fair Poor

Visible Red 28 5 18
Monosensory 

X-Ray 13 9 29

Constant Equal Weights (CEW) 25 8 18
Multisensory 

Local Weights (WLW) 37 4 10

Table 7. Result comparison  of visible red monosensory and multisensory WLW methods.

 WLW
Red Good Fair Poor Total

Good 25 2 1 28

Fair 5 0 0 5

Poor 7 2 9 18

Total 37 4 10 51
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The above results illustrated that the developed algorithm is effective in improving the

segmentation accuracy and capable of reducing the number of false regions and making

them easier to interpret. 

4.6 Bone Inspection Based on Color and X-Ray Images

Based on the developed multisensory segmentation algorithm, we propose a fan bone

detection algorithm to effectively combine the information from visible band and x-ray

image modalities. With the flow chart depicted in Figure 42, it consists of the following

steps:

(a) The position and orientation of the chicken part are computed from the x-ray image.

(b) Color analysis is performed using the visible band image to obtain possible positions

of fan bones. Then the visual and the x-ray images are clipped accordingly.

(c) Gray-scale morphological filtering is applied to both the x-ray and visible red image

clips.

(d) The snake algorithm is applied to the filtered image clips. The contour is initialized

by thresholding both channels.

(e) For each blob generated by the segmentation, numerical features are extracted. Note

that the spectral features are computed for both images.

(f) PNN classifier is deployed to assign an identity to each region.
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CHAPTER 5 

CONCLUSIONS AND CONTRIBUTIONS

Although vision-based inspection is not new, it was made possible only within the past

two decades for real-time, on-line, and 100 percent inspection of high-volume product,

thanks to the emerging advanced technologies in sensing, computing, signal and image

processing, and pattern recognition. The objective of this research is to develop a general

methodology for real-time vision-based inspection with a focus on advanced image

processing, fusion, and analysis techniques.

The first part of this dissertation describes a general methodology for real-time

vision-based inspection. It includes an image acquisition module with diffusive lighting

to maximize the contrast and eliminate the artifacts, a preprocessing module to further

enhance the contrast and remove irrelevant information, a snake algorithm for fast and

accurate segmentation, a feature extraction module, and a classification module using a

PNN classifier. A recursive segmentation and classification scheme is adopted so that the

segmentation results that are not accurate can be sent back to the segmentation module to

be corrected. The segmentation accuracy is determined using the output confidence level

of the PNN classifier. This methodology is applied in the real-time bone inspection

system for deboned meat and achieved a detection rate of 92.3% and a false alarm rate of

7.0% from the lab-scale testing of 280 samples.

In the second part of the dissertation, a fast snake-based multisensory image

segmentation algorithm is presented for the purpose of inspection using multiple sensors.
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In this algorithm, the snakes are driven by the weighted sum of the optimal forces derived

from corresponding energy functionals in each channel. The weights are calculated based

on a novel metric that measures the local contrast and noise power in individual sensor

images. The developed algorithm is tested on both artificially created images and real

images, and reasonable results are obtained. The results on visible band color and x-ray

images of the deboned meat illustrate that, in addition to higher segmentation accuracy

than the monosensory results, the developed algorithm tolerates a considerable amount of

registration error.

In this research, some general guidelines for vision-based inspection algorithm

design were pointed out. One of the future research topics will be to investigate more

such guidelines in selecting appropriate algorithms to expedite the design process. When

testing the bone detection system, we found that even the smallest difference in factory

set up may require considerable parameter tuning of the algorithms. Therefore, advanced

techniques such as color normalization methods are necessary to increase the robustness

to variations in lighting, samples, and defects. 

Related to multisensory image segmentation using snakes, one future research topic

is to investigate new weight computation methods that do not require histogram matching

of different images. Also the stability and convergence of the proposed multisensory

snakes need to be verified. The interpretation of segmentation results, especially in

presence of registration error, is a challenging topic because the segmentation results may

be interpretable in only some of the channels. 

This research has lead to the following major contributions: 
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· Proposed a general methodology for real-time vision-based inspection of abnormality

that contains certain shape and spectral patterns.

· Developed and tested a recursive segmentation and classification scheme for real-

time segmentation with high accuracy.

· Applied the developed inspection methodology successfully to fan bone detection of

deboned poultry meat and achieved satisfactory results.

· Derived and verified a fast snake-based multisensory image segmentation algorithm

and applied it to the segmentation of visible band and x-ray images of deboned meat.
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