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ABSTRACT 

Bicuspid aortic valve (BAV) is the most common congenital heart defect and 

may lead to secondary aortopathy such as aortic valve stenosis and regurgitation, 

potentially causing noticeable symptoms such as shortness of breath, chest pain, and 

dizziness. Although previously overshadowed by the genetic theory, there has recently 

been a belief that hemodynamics may play a larger role in the cause of secondary 

aortopathy in BAV than previously thought. However, hemodynamic studies have been 

impeded by lengthy data analysis protocols limiting their effectiveness and 

reproducibility. This work applied and further refined a novel semi-automated technique 

developed during a pilot study to process and analyze MRI data of the aorta and aortic 

valve based on 2D bSSFP cine and 4D flow MRI. The results were then used to 

characterize the morphology and hemodynamics between BAV fusion patterns. The 

protocol was applied to 24 size-matched TAV controls (n =24, mid ascending aorta 

(MAA) diameter =38.0±4.9 mm) and 28 BAV patients with aortic dilatation (n =14 RL-

BAV, MAA diameter =38.1±5.3 mm; n =14 RN-BAV, 36.5±6.6 mm). RN-BAV 

subjects displayed a stronger correlation between hemodynamic metrics in the proximal 

AAo with diameter in the distal AAo when compared to size-matched TAV controls and 

RL-BAV subjects. The distal AAo diameter was found to be strongly correlated to the 

flow displacement (R2
adjusted =0.75) and flow angle (R2

adjusted =0.66) at the proximal AAo. 

Orifice circularity was also strongly correlated (R2
adjusted =0.53) to the distal AAo 

diameter in RN-BAV subjects. This study not only demonstrated the feasibility of a less 

user dependent protocol, but also highlighted several key metrics that are significantly 

different between fusion patterns of RN-BAV and RL-BAV patients.  
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CHAPTER 1 

INTRODUCTION 

Background 

 Bicuspid aortic valve (BAV) is the most common congenital heart defect and affects 

approximately 1-2% of the population (1). BAV patients exhibit bileaflet morphology as 

compared to a healthy trileaflet valve. This bileaflet morphology occurs during early fetal 

development due to the fusion of any two of the three leaflets (2). Although the most common 

type of fusion is between the right and left (RL) coronary leaflets, it may also occur between the 

right coronary and non-coronary (RN) or left coronary and non-coronary (LN) leaflets (1). BAV 

may progressively increase the likelihood of secondary pathologies such as aortic stenosis, 

valvular calcification, regurgitation, and aortic root dilatation (3,4). Symptoms include shortness 

of breath, chest pain, and dizziness. These secondary pathologies may lead to serious 

complications such as aortic aneurysm and heart failure. For reasons not well understood, not all 

BAV patients develop these conditions or exhibit the aforementioned symptoms (2).  

There are two main theories concerning the development of secondary aortopathy in 

BAV patients. One school of thought claims it stems from genetics, whereas the other proposes 

the aortopathy is caused by a change in hemodynamics due to the valve morphology (5-7). 

Traditionally, the genetic theory has been more popular due to a larger number of studies 

investigating its influence. Nonetheless, a reevaluation of the current knowledge and practices 

regarding BAV proposes a greater acknowledgement of the hemodynamic effects (6). In light of 

this, recent studies have further analyzed geometric and hemodynamic biomarkers to better 

understand the progression of BAV (8-10). For example, one study used 4D MRI to demonstrate 

how the wall shear stress in the ascending aorta is significantly higher in BAV patients as 
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compared to that in TAV patients (11). Other researchers have investigated the aortoseptal angle 

(AoSA), which may be a significant factor in the hemodynamics of the aortic valve. The AoSA 

was reported as being significantly steeper in patients with isolated subaortic stenosis (12).  

The aforementioned studies suggest hemodynamics may indeed play an important role in 

secondary aortic pathology and therefore must not be overlooked. Although the number of 

studies pertaining to hemodynamics has continued to increase, these investigations have been 

impeded by lengthy protocols needed to analyze different geometric and hemodynamic metrics, 

which greatly hinder integration into medical practice. A concise yet reliable method is needed in 

order for 4D MRI to become a standard in evaluating BAV related aortopathy.  

In addition, recent studies have demonstrated a correlation between hemodynamic 

metrics dependent on leaflet fusion patterns such as wall shear stress, flow displacement, flow 

angle, and the phenotype of aortopathy in BAV subjects (7,8,11,13,14). However, most of these 

studies evaluated hemodynamic metrics in the vicinity of abnormal aortopathy in order to 

develop an understanding of the link between hemodynamics and the phenotype of BAV 

aortopathy. Associations between valvular structure and downstream hemodynamic metrics at 

independent sections have not been investigated; for example the influence of structure of the 

valve (e.g. fusion phenotype, valve opening area, eccentricity) on hemodynamic metrics in the 

proximal AAo and their relationship to markers of aortopathy. The development of such 

relationships could help further improve prognostic hemodynamic metrics for BAV subjects 

using standard of care imaging protocols (15) - for example a dynamic cine or phase-contrast 

MRI at the level of the aortic valve and/or sino-tubular junction which could provide prognostic 

morphologic or hemodynamic information. The motivation of this work aims to minimize 

imaging diagnostics and aid in prescription of preemptive patient specific surveillance and 



 3 

therapeutic strategies. Thus, the aim of this study is to comprehensively characterize the impact 

of the upstream valve geometry, valve morphology (fusion pattern), or hemodynamics on the 

AAo geometry and hemodynamics at downstream aortic locations using 4D flow MRI data. 

Literature Review 

The mechanism of secondary aortopathy development from BAV disease is not well 

understood. There are two main theories; one claims it stems from genetics, whereas the other 

proposes the aortopathy rises from a change in hemodynamics due to valve morphology. The 

genetic theory has been more popular due to a higher number of studies investigating genetic 

influence. It is vital to know which theory is a better representation of the disease as the cause 

determines the surgical approach during treatment. For example, the popularity of the genetic 

theory and how BAV is a result of an irregularity of the vascular connective tissue has prompted 

more vigorous treatment plans for the proximal aorta (6).  

Genetic theory would suggest that dilation of the aorta would often occur after aortic valve 

replacement (AVR) surgery, as is common with other connective tissue disorders. However, 

results of several studies show a large variability of about 5-30% between 10-20 years post AVR 

surgery. A possible link between aortic aneurysms and first-degree relatives has also been 

suggested (6). Furthermore, one study noted that patients with BAV had two or more family 

members that also presented BAV. Through the use of echocardiography, Huntington 

determined that 9.1% of first-degree relatives had BAV (16). Another important reasoning for 

the genetic theory is the prevalence of cystic medial degeneration in the wall of the ascending 

aorta, a type of degeneration also very common in Marfan syndrome patients (6). 

One of the most common secondary pathologies from BAV is aortic dilatation. This dilation 

of the aorta can cause significant problems such as dissection, which may be fatal. The cause of 
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most aneurysms in the ascending aorta is unknown, unlike in the descending aorta where 

atherosclerosis is a common cause. A decrease in fibrillin-1 has been shown in BAV patients as 

compared to TAV patients. In addition, a mutation in the NOTCH1 gene leads to an alteration in 

signaling, which may be the cause of the formation of BAV and calcium accumulation on the 

valve. The varying expression of matrix metalloproteinase (MMPs) and Tissue inhibitors of 

metalloproteinase (TIMP) in BAV, TAV, and Marfan syndrome patients suggests that different 

mechanisms cause the aneurysms. Hemodynamics also is a factor because shear stress on the 

ascending aorta increases in BAV patients and the aortic diameter of BAV patients may be 

significantly larger even without stenosis or regurgitation, further demonstrating the complexity 

of BAV and the uncertainty about the progression of secondary pathologies (17). 

Since several aortic pathologies generally associated with genetic factors are present even 

when genetics would not make a significant impact, support for the hemodynamic theory has 

grown. For example, cystic medial degeneration of the aorta wall has been frequently found in 

BAV patients and used as support for the genetic theory. However, studies have shown that the 

degeneration may occur even when genetics is not a factor, and therefore is a nonspecific 

characteristic. Furthermore, the tissue remodeling in BAV patients has been shown to be 

asymmetrical unlike in patients with Marfan syndrome. This asymmetry is believed to be a result 

of wall stress, an important aspect of the hemodynamic theory (6). 

Considering the increased importance of the hemodynamic theory, Martijn den Reijer et al. 

(18) tested and demonstrated the relationship between irregular blood flow patterns in the 

ascending aorta and aortic dilatation. Quantifying this relationship is important because patients 

with “dilated aortas have a 9-fold increased risk of aortic dissection,” but sometimes BAV 
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patients exhibit no dilatation (18). It was demonstrated that an increased angle leads to an 

increase in dilation (18).  

4D MRI is the combination of 3-dimensional imaging that is time-resolved and uses phase 

contrast. The use of 4D imaging has only recently been recognized as a practical way of studying 

cardiovascular diseases. Unusual blood flow is believed as a potential explanation for the varying 

progression of the disease based on the type of leaflet fusion. Additionally, the aforementioned 

study by Martijn den Reijer et al. (18) used several metrics pertaining to BAV patients that can 

be obtained from MRI data. Its lengthy protocol makes it clear that a concise yet reliable method 

is needed for 4D MRI to become a standard in evaluating BAV related aortopathy (18). In 

addition, another study used 4D cardiac MRI to characterize the relationship between blood flow 

and the development of ascending aortic dilation (11). The study sought to demonstrate how 4D 

flow could be used to study how blood flow affects the pathology of BAV patients. There was a 

long protocol for the analysis of the data, which included correcting the data before visualization, 

importing into 3D visualization software, and segmenting the wall. It was shown that wall shear 

stress significantly increased in BAV patients as compared to TAV patients. This study served as 

a building block for current research. Michael Hope et al. demonstrate a professional and 

effective way to conduct a pilot study and provide significant insight into a methodology of 

analyzing 4D flow data (11). The motivation of this work is to minimize complex imaging 

protocols to aid the ability to perform preemptive patient specific surveillance and therapeutic 

strategies. In order to achieve this goal, the aim here is to use a location commonly imaged as a 

part of standard of care to understand the impact of the upstream valve geometry, valve 

morphology (fusion pattern), or hemodynamics on the downstream AAo geometry and 

hemodynamics using 4D flow MRI data. 
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CHAPTER 2 

MATERIALS AND METHODS 

Subject Enrollment 

 A database of 151 subjects who received a cardiac MRI at Northwestern University 

between December 2011 and November 2012 was used to create two groups (BAV and TAV) of 

subjects for the study. Aortic stenosis or insufficiency determined to be greater than moderate 

was used as an exclusionary criterion. BAV and TAV cases were age-matched and composed of 

28 BAV and 24 TAV cases. The BAV group was then subdivided into two groups based on 

leaflet fusion (14 RN and 14 RL). Due to the high prevalence of RL and RN fusion patterns (RL 

≈ 80%, RN ≈ 17%) (7), the LN fusion pattern was not studied. The TAV cohort exhibited normal 

tricuspid valve function and did not have any history of cardiovascular disease. The Institutional 

Review Board of Northwestern University approved of this study, and authorized the release of 

their anonymized patient data, per the data sharing agreement with the Georgia Institute of 

Technology. 

Magnetic Resonance Imaging 

  All subjects underwent cardiac MRI at 1.5T or 3T (Magnetom Espree, Avanto, Skyra or 

Trio Siemens Medical Systems, Germany). Cardiac MRI included ECG-gated, two-dimensional 

breathheld balanced steady-state free precessing (bSSFP) cine imaging to assess BAV 

morphology. In addition, 3D phase-contrast MRI, with three-directional velocity encoding (4D 

flow MRI) was acquired in a sagittal oblique volume covering the thoracic aorta. Prospective 

ECG gating was used with a respiratory navigator placed on the lung-liver interface (19). Pulse 

sequence parameters were as follows: flip angle of 15o, spatial resolution of 1.7 - 3.7 mm by 1.8 - 
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2.6 mm by 2.2 - 3.7 mm, temporal resolution of 36.8 – 43.2 ms, total acquisition time, 8 to 15 

minutes depending on heart rate and navigator efficiency, and velocity encoding range of 1 - 3 

m/s (7).  

Data Processing Protocol 

 Below are post-processing steps required to analyze the 2D bSSFP cine and 4D flow MRI 

data using a recently validated in-house semi-automated technique designed to extract aortic 

valve and aorta morphometry and hemodynamics (20).  

Aortic Valve Region of Interest Determination 

 Due to multiple 2D cine data sets per case, the highest quality set was visually 

determined and imported into OsiriX® (v5.6; Pixmeo SARL, Bernex, Switzerland). The orifice 

and aortic root were then manually contoured at all cardiac time frames exhibiting an open aortic 

valve. This was performed using the closed polygon tool, which utilizes a spline interpolation 

based on user selected control points. In order to allow a precise measurement, the tool allows 

for continued readjustment of the control points. In addition, the closed polygon tool records 

both the area of the polygon and the coordinates of each control point. Peak systole was then 

determined as the frame with the largest orifice area. (Figure 1) 
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Figure 1. Example of orifice and aorta outline using the 2D cine MRI. a: TAV case; b: BAV 

case. In yellow: orifice outline; in red: aorta outline. 

Anatomy and Velocity Segmentation of 4D Flow MRI Dataset 

 The 4D flow and magnitude data was then pre-processed with a custom MATLAB 

(Release 2012b, The MathWorks, Inc., Natick, Massachusetts, USA) program. This pre-

processing step improved several common problems during data acquisition such as noise, 

velocity aliasing, and eddy currents (Figure 2). A video file of the processed data was then 

exported to allow for additional visualization of the corrections. To improve segmentation, the 

weighted sum over the resulting magnitude and phase contrast 3D stack of images were 

normalized by their maximum value. This 3D intensity field, which is at peak systole, was then 

processed and segmented using Vascular Modeling Toolkit (VMTK) software 

(http://www.vmtk.org), which aids in 3D reconstruction, geometric analysis, mesh generation 

and surface data analysis. The segmentation was performed between the aortic valve and the 

descending aorta on the same plane as to the aortic valve. Segmentation was achieved through 

user selected threshold values and seed points. The segmented vessel was then improved through 

scaling parameters in order to reduce sharp edges (Figure 3). The 3D image was converted into a 

3D surface, smoothing was performed, and a volume mesh generated from the surface.  
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Figure 2. 4D flow and magnitude data pre-processing step. a: before pre-processing; b: after 

pre-processing. 

 

Figure 3. Segmentation after the use of scaling parameters in VMTK. 

Spatial Registration of 2D and 4D Data 

The coordinates contained in the DICOM images and a rotation matrix were used to co-

register the 2D data with the 3D data. In some cases, minor manual registration adjustments were 

needed where the breathheld 2D images were misaligned with the free-breathing 4D flow 

sequence. Paraview software (21) (v3.14, Clifton Park, NY, USA) was used to align the 2D and 
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the 3D MRI data, using a rigid translation to correct for any mismatch in the two datasets. To 

calculate the hemodynamic metrics, a reference system was created, as described in a previous 

paper by Mirabella et al. (20).  

Processing and Analysis 

The cine and 4D flow MRI data were then processed using an in-house robust and 

validated semi-automated technique (20). The need for lengthy manual data analysis, which 

limits reproducibility and/or integration into a clinically feasible workflow, is overcome using 

this semi-automated technique. The metrics derived from the MRI data included a) geometric – 

area of the valve orifice and aorta, circularity of the valve orifice and aorta, diameter of the aorta, 

and eccentricity of the valve orifice and b) hemodynamic – mean velocity, max velocity, flow 

angle, flow displacement, and jet quadrant. It was observed that one geometric and two 

hemodynamic metrics correlated well to distal ascending aortic diameter and are the primary 

discussion points in this work (Table 1; Figure 4). The other derived metrics are shown in Table 

2. These metrics were evaluated at 11 equally spaced cross-sections (S0-10) downstream of the 

valve annulus covering the ascending aorta and a part of the descending aorta as illustrated in 

Figure 4a. However, in this work we focus only on the ascending aorta up until the aortic arch 

(S0-6).  

Geometric metrics 

Orifice Circularity 
, where Ω is the region encompassing the orifice, and Φ is 

the smallest circle around  Ω. 

Hemodynamic metrics 
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Table 1. Summary of data analysis metrics evaluated in this study. Please refer to Mirabella 

et al. (20) for detailed discussion on each of the metrics. 

 

Figure 4. Illustration of different cross sections at which the analysis was performed. A: 

Reference system generated at the valve orifice and on the 10 cross-sections. B: Depiction of 

flow angle, ϕ jet. N, normal vector to the cross section; Q, mean velocity vector. C: Flow 

displacement. In blue: distance from the vessel barycenter to the velocity-weighted barycenter. 

D: Orifice circularity. Outline constructed during the aortic valve region of interest determination 

step. 

Flow angle 

Angle between the mean velocity vector and a normal unit vector 

orthogonal to the analysis plane. 

Flow displacement Distance from the vessel centroid to the velocity-weighted centroid.  
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Table 2. Summary of additional data analysis metrics evaluated in this study. Please refer to 

Mirabella et al. (20) for detailed discussion on each of the metrics. 

Statistical Analysis 

For each group, aorta size-matched TAV controls, RL-BAV, and RN-BAV a Shapiro-

Wilk test was used to determine if the parameters were normally distributed. One-way ANOVA 

was used to compare hemodynamic and geometric parameters between the groups. Univariate 

and multivariate regression models were tested for each group to correlate geometric and 

hemodynamic metrics with distal AAo diameter. The quality of the data has been adjusted for the 

number of subjects in the analysis and hence the goodness of fit in the regression analysis is 

reported as R2
adjusted, a conservative estimate when compared to R2. Statistical analysis was 

performed using MATLAB (Release 2012b, The MathWorks Inc., Natick, Massachusetts, USA). 

Geometric metrics 

Area of the Valve 

Orifice and Aorta 

Areas of the orifice and of the aorta’s cross- section at the same 

location. 

Diameter of the Aorta !! = 2 !"#$/!   

Eccentricity  
The distance between the barycenter of the orifice outline and the 

barycenter of the aorta outline on the same plane. 

Hemodynamic metrics 

Mean Velocity Magnitude of mean velocity vector on the cross-sectional plane 

Maximum Velocity Magnitude of maximum velocity vector on the cross-sectional plane 

Jet Quadrant 
The quadrant onto which the projection of the mean velocity vector on 

the cross-sectional plane lays. 
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CHAPTER 3 

RESULTS 

Study Cohort 

 The protocol was applied to a cohort of 14 RN-BAV, 14 RL-BAV, and 24 TAV control 

subjects with the demographics summarized in Table 3. Size-matched TAV subjects were 

significantly (p < 0.02) older than patients with BAV. The mid ascending aorta diameter among 

all the groups were not significantly different. Aortic stenosis severity was mild (n = 0) and 

moderate (2) for TAV, mild (n = 2) and moderate (n = 1) for RL-BAV, and mild (n = 2) and 

moderate (n = 2) for RN-BAV subjects. Aortic insufficiency was present in (n = 7) of TAV, (n = 

7) of RL-BAV, and (n = 9) of RN-BAV subjects. Eccentricity of the orifice was significantly 

larger in RN-BAV than TAV (2.0 ± 1.1 vs. 3.9 ± 1.6, p < 0.02). Normalized flow displacement at 

cross-section S2 was significantly larger in both RL and RN-BAV subjects than size-matched 

TAV (0.17 ± 0.08 and 0.18 ± 0.10 vs. 0.11 ± 0.08, p < 0.02). Flow angle measured at cross-

section S2 was not significantly different among the three groups. A summary of the parameters 

computed along the aorta is shown in Figure 5. 
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Table 3. Summary of patient demographics, aortic dimensions, valve geometry and 

hemodynamic characteristics. All continuous data are presented as mean ± standard deviation. 

*Independent-sample t test indicates significant differences compared with size-matched controls 

(p < 0.02). 

 TAV RL-BAV RN-BAV 

n (female) 24 (4) 14 (3) 14 (4) 

Age 58.2 ± 13.3 47.2 ± 11.9 * 44.7 ± 8.3 * 

Mid AAo diameter, mm 38.0 ± 4.9 38.1 ± 5.3 36.5 ± 6.6 

Stenosis severity 

Mild 0 2 2 

Moderate 2 1 2 

Severe 0 0 0 

Aortic 
insufficiency 

Mild 4 5 6 

Moderate 3 2 3 

Severe 0 0 0 

Orifice eccentricity, 2.0 ± 1.1 2.0 ± 1.0 3.9 ± 1.6 * 

Orifice circularity, 0.59 ± 0.10 0.62 ± 0.13 0.57 ± 0.14 

Normalized flow displacement at S2 0.11 ± 0.08 0.17 ± 0.08 * 0.18 ± 0.10 * 

Flow angle at S2 o 18.2 ± 10.5 23.5 ± 10.3 22.1 ± 17.9 
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Figure 5. Mean values of the aorta and hemodynamic metrics along the aorta. Jet quadrant 

is express in terms of its median. The ‘*’ indicates the section with a statistically significant 

difference between RL-BAV and TAV groups (p < 0.05). a: maximum velocity; b: mean 

velocity; c: jet angle; d: jet quadrant; e: area of aorta cross-sections. 

Correlation between Hemodynamics and Ascending Aorta Diameter 

 It was observed that two hemodynamic metrics (flow displacement and flow angle) and 

one geometric metric (circularity of the valve orifice), summarized in Figure 6, correlated well to 
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distal AAo (S4-S6) diameter and are the primary discussion points in this work. As mentioned 

earlier, the hemodynamic metrics were evaluated at the approximate location of the sino-tubular 

junction (S2). Our primary objective here was to develop an understanding of the relationship 

between hemodynamic metrics in the proximal ascending aorta and the diameter of the aorta in 

the distal portions. First, we investigated the impact of normalized flow displacement at section 

S2 on aorta diameter at downstream sections S3-6 for the three groups. Figure 6 illustrates the best 

regression results between normalized flow displacement at S2 and aorta diameter at S5 for the 

three groups. It was observed that all the groups had a positive association between normalized 

flow displacement at S2 and aorta diameter at S5. RN-BAV subjects had the highest correlation 

with a significant positive association (R2
adjusted = 0.75, slope = 54.8, p < 0.01), RL-BAV subjects 

had the weakest correlation (R2
adjusted = 0.01), and aorta size-matched TAV subjects had a 

moderately better correlation (R2
adjusted = 0.12, slope = 23.8, p < 0.055). 

 

Figure 6. Scatter plot illustrating the correlation between normalized flow displacement at 

S2 and aorta diameter at S5. Left - TAV, center – RL-BAV, right – RN-BAV. 

 Table 4 summarizes the rest of the linear regression results for the correlation between 

normalized flow displacement at S2 and downstream aortic diameter at S3-6. RN-BAV subjects 

exhibited a positive association between normalized flow displacement and aortic diameter; an 

increase in normalized flow displacement at S2 was observed to cause a significant increase (p < 

0.01) in downstream aortic diameter at cross-sections S3-6. Although the goodness of fit was 
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relatively lower for TAV subjects when compared to RN-BAV subjects, the data exhibited a 

significant positive association (p < 0.055). Normalized flow displacement was observed to have 

a negligible impact on the downstream aorta diameter for RL-BAV subjects. The most 

significant observation here is that the flow displacement at S2 is strongly associated with the 

ascending aortic diameter at S5 for RN-BAV subjects. 

Table 4. Summary of linear regression coefficients for the correlation between normalized 

flow displacement at S2 and aortic diameter at downstream cross-sections. † p < 0.01, * p < 

0.055 

Furthermore, our investigation revealed that the flow angle for RN-BAV subjects at 

section S2 had the highest correlation and a significant positive association (R2
adjusted = 0.66, slope 

= 0.32, p<0.01) with the diameter of the ascending aorta at section S4 (Figure 7). RL-BAV 

subjects exhibited a weak correlation (R2
adjusted = 0.16, slope = 0.23, p<0.1), while TAV subjects 

had the weakest correlation (R2
adjusted = 0.04).  

Cross-section 
TAV RL-BAV RN-BAV 

R2
adjusted Slope R2

adjusted Slope R2
adjusted Slope 

S2 0.00 10.2 0.00 18.7 0.18 33.5 

S3 0.18 28.0 * 0.15 34.1 0.42 42.8 † 

S4 0.18 24.4 * 0.07 24.8 0.62 50.3 † 

S5 0.12 23.8 * 0.01 21.9 0.75 54.8 † 

S6 0.03 14.1 0.00 7.6 0.70 37.7 † 
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Figure 7. Scatter plot illustrating the correlation between flow angle at S2 and aorta 

diameter at S4. Left -TAV, center – RL-BAV, right – RN-BAV. 

Table 5 summarizes the rest of the regression data between flow angle at S2 and aortic 

diameter at downstream cross-sections. Flow angle at S2 strongly correlated to most of the distal 

portions of the ascending aorta (S3-5) for RN-BAV subjects, while the strongest correlation for 

RL-BAV subjects was observed at the immediately following cross-section (S3). However, it 

should be noted that the significance of the positive association between flow angle and 

ascending aortic diameter was markedly different between the two groups, p < 0.01 vs. p < 0.1 

for RN-BAV and RL-BAV subjects respectively. 

Table 5. Summary of linear regression coefficients for the correlation between flow angle at 

S2 and aortic diameter at downstream cross-sections. † p < 0.01, * p < 0.1. 

  

Cross-section 
TAV RL-BAV RN-BAV 

R2
adjusted Slope R2

adjusted Slope R2
adjusted Slope 

S2 0.18 0.21 0.00 0.00 0.39 0.27 

S3 0.09 0.16 * 0.21 0.26 * 0.53 0.30 † 

S4 0.04 0.11 0.16 0.23 * 0.66 0.32 † 

S5 0.00 0.06 0.00 0.15 0.49 0.29 † 
S6 0.00 0.03 0.00 0.05 0.34 0.18 
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Correlation between Valve Geometry and Ascending Aorta Diameter 

 Valve annular geometric parameters such as annulus circularity and eccentricity were 

evaluated for analysis and it was observed that annulus circularity best correlated with ascending 

aortic geometry. Figure 8 illustrates the best regression results between annulus circularity and 

ascending aorta diameter at S2 for the three groups. It was observed that RN-BAV subjects had 

the highest correlation with a significant negative association (R2
adjusted = 0.53, slope = -36.9, p < 

0.01), RL-BAV subjects had the weakest correlation (R2
adjusted = 0.00), and aorta size-matched 

TAV subjects had a moderate correlation with negative association (R2
adjusted = 0.26, slope = -

26.5, p < 0.06). 

 
Figure 8. Scatter plot illustrating the correlation between orifice circularity and aorta 

diameter at S2. Left - TAV, center – RL-BAV, right – RN-BAV. 

 Table 6 summarizes the linear regression results for the correlation between annulus 

circularity and downstream aortic diameter at S2-6. RN-BAV subjects exhibited a negative 

association between annulus circularity and aortic diameter; a more circular annulus was 

observed to cause a significant decrease (p < 0.01) in downstream aortic diameter only at cross-

sections S2-4. Although the goodness of fit was relatively lower for TAV subjects when 

compared to RN-BAV subjects (R2
adjusted = 0.53 vs. 0.26), the data exhibited a significant 

negative association (p < 0.06). Furthermore, annulus circularity was observed to have no impact 

on the downstream aorta diameter for RL-BAV subjects. Across all the groups, annulus 
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circularity was strongly correlated only to the proximal portions of the ascending aorta and not to 

the distal portions of the ascending aorta. 

Table 6. Summary of linear regression coefficients for the correlation between orifice 

circularity and aortic diameter at downstream cross-sections. † p < 0.01, * p < 0.06. 

Multivariate Regression Analysis 

 Given the complex interdependency of geometry and flow, a multiple-regression analysis 

was performed in order to investigate the correlation between valve geometry and 

hemodynamics on the ascending aorta diameter. The two strongly correlated hemodynamic 

variables – flow angle and flow displacement and valve geometric variable – orifice circularity 

were used as the independent variables. The distal ascending aorta diameter (S4) was used as the 

dependent variable in this multivariate regression analysis (Table 7 summarizes the results of this 

analysis). The strongest correlations in the multivariate analysis were observed in the RN-BAV 

subjects when compared with RL-BAV subjects and size-matched TAV controls (R2
adjusted = 0.79 

vs 0.11 vs 0.18). Normalized flow displacement and flow angle were observed to have the most 

significant impact for RN-BAV subjects. 

 

Cross-section 
TAV RL-BAV RN-BAV 

R2
adjusted Slope R2

adjusted Slope R2
adjusted Slope 

S2 0.26 -26.5 * 0.00 -1.43 0.53 -36.9 * 

S3 0.16 -22.1 † 0.00 -10.4 0.28 -26.4 † 

S4 0.07 -14.4 0.07 -13.1 0.20 -23.3 † 

S5 0.00 -2.0 0.01 -11.6 0.05 -15.8 

S6 0.00 3.1 0.06 -4.88 0.00 -0.6 



 21 

Table 7. Summary of linear multiple regression analysis of the strongly correlated 

ascending aorta hemodynamic and valve geometric variables with distal ascending aorta 

diameter (S4). *p<0.05 

  

Subject 
cohort 

Multiple 
Regression 

R2
adjusted 

Correlation coefficients (β) 

Orifice Circularity 
 

Normalized Flow 
Displacement at S2 

Flow angle at S2 

TAV 0.18 -11.45 22.61* 0.03 

RL-BAV 0.11 -13.72 7.91 0.11 

RN-BAV 0.79 -7.07 28.43* 0.18* 
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CHAPTER 4 

DISCUSSION  

Protocol Development 

 An important part of the study was the continued refinement and application of a novel 

and semi-automatic protocol developed in a previous pilot study by Mirabella et al. (20) to 

characterize the relationship between bicuspid aortic valve morphology and hemodynamics. This 

protocol limits the amount of user dependent steps, reducing the time it takes for data analysis. 

Manual tasks that are possibly affected by user variability have been reduced to a minimum with 

only one fully manual step, which requires segmentation of the 2D contours of the valve. The 3D 

segmentation of the aortic lumen is semi-automatic, with the user selecting proper initialization 

and method parameters for the level-set algorithm. The user variability for the fully manual 

segmentation was assessed in a blind test by two readers using a Bland-Altman plot as described 

in a previous paper by Mirabella et al. (20). User variability was within the limits of agreement 

(± 1.96 SD), thus demonstrating an insignificant amount of variability. This study demonstrates 

the feasibility of the novel protocol by its application to a larger study. In addition, the robust 

capabilities of the protocol is shown in its ability to characterize differences in BAV fusion 

pattern and investigate the predictive potential of flow and geometry in the proximal AAo on the 

distal AAo diameter, which distinguishes its use as compared with the pilot study by Mirabella et 

al. (20). 

Metrics Along the Aorta 

 One part of the study analyzed the change of different hemodynamic metrics along the 

aorta. As expected, the mean velocity profile tends to decrease in the proximal ascending aorta 
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and then increase in the distal ascending aorta. One reason is due to the size of the aorta, which is 

inversely proportional to the mean velocity. If cardiac output were constant in two differently 

sized aortas, the larger aorta would have a lower mean velocity. It was observed that RL-BAV 

subjects have a significantly higher maximum velocity than TAV patients for both the proximal 

and distal portions of the ascending aorta. This result is quite interesting because although the 

variation of area for the three cases is more or less the same, the maximum velocity changes 

quite significantly for RL-BAV. This is perhaps related to the flow angle and its effect on the 

max velocity. For the jet angle variation, although RL-BAV and RN-BAV fusion patterns both 

display a higher jet angle as compared to TAV in the proximal ascending aorta, they show 

opposite trends at the distal portions. This finding could suggest that the anatomy of the aorta, 

with 3D curvature and torsion, tends to smooth differences in flow eccentricity between the two 

groups as the flow progresses downstream towards the descending aorta. Although the mean 

values for RN-BAV and RL-BAV appear to be significant with regards to TAV, due to their high 

variability the results prove to be insignificant. 

Effect of Valve Phenotype in the Proximal AAo to Distal AAo Diameter 

This study utilized a validated semi-automated 4D flow MRI processing technique (20) to 

analyze a cohort of human subjects to correlate BAV valve phenotype related hemodynamics 

and geometry in the proximal AAo to the distal AAo diameter. Similar to previous findings 

(7,11,14), the presence of BAV and the type of cusp fusion pattern were accompanied by 

changes in systolic hemodynamic metrics as quantified by flow displacement and flow angle in 

the proximal AAo (S2). The systolic hemodynamic metrics in the proximal AAo were strongly 

associated with the distal AAo diameter only in RN-BAV subjects, RL-BAV subjects exhibited a 

weak association, while size-matched TAV controls exhibited a moderate association. Flow 
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displacement and flow angle were not significantly different (p = 0.77, 0.80) between RL-BAV 

and RN-BAV subjects, which implies that the BAV phenotype related hemodynamics has a 

strong influence on the distal AAo aortopathy. These observations agree with prior work (7,14), 

where the systolic jet in RN-BAV subjects has been observed to “bounce” off the proximal AAo 

before impinging on the distal ascending aorta, which could be the primary cause for the 

observed correlation. These findings could imply that the distal AAo diameter in RN-BAV group 

is more susceptible to hemodynamic alterations in the proximal AAo, while the RL-BAV group 

is not affected by hemodynamics and likely more dependent on the genetics. 

The valve geometric metric as quantified by orifice circularity was observed to be 

associated strongly with the distal AAo diameter only for the RN-BAV subjects. Similar to the 

hemodynamic metrics, the circularity of the orifice does not vary significantly between the 

subject cohorts, however, only RN subjects exhibit a strong correlation between valve orifice 

circularity and distal AAo diameter. Unlike hemodynamic metrics, valve orifice circularity was 

strongly correlated only to the diameter of the proximal portions of the AAo and not to the distal 

portions of the AAo.  

The multivariate regression analysis did not reveal any significant correlations in RL-

BAV or size-matched TAV control subjects, when compared to the RN-BAV subjects. Among 

the RN-BAV subjects, systolic hemodynamics (flow displacement and flow angle) in the 

proximal AAo plays a more critical role (p < 0.05) than the valve geometric metrics (orifice 

circularity). This finding suggests the systolic hemodynamic metrics in the proximal AAo are 

sufficient to be used as prognostic metrics for distal AAo remodeling. 
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Implications on BAV Diagnosis and Management 

The findings of this work encourage the usage of standard of care imaging (for example 

PC-MRI, as demonstrated by recent reports (22) to measure changes in AAo hemodynamics) at 

the level of the sino-tubular junction, which could provide hemodynamic information informing 

the resulting downstream effects. Furthermore, based on recent results on prognostic significance 

of altered hemodynamics in BAV patients (15), the findings in this work suggest that the 

presence of flow abnormality in the proximal AAo could be used to risk-stratify BAV patients 

for the possibility of developing distal AAo aortopathy. This could help in fine-tuning risk 

assessment and aid in prescription of preemptive patient specific surveillance and therapeutic 

strategies. 

Study Limitations 

One limitation of this study is the need for manual 2D and 4D segmentation, which 

lengthens data processing and introduces user variability. However, most computed 

hemodynamic variables were based on the mean velocity vector, which is not highly sensitive to 

point-wise measurement errors. Longitudinal studies are critical to improve the current 

understanding of the relationship between BAV phenotype/morphology to aortopathy risk 

stratification. In order to connect the diagnostic suggestions in this work, the evaluation of better 

indicators of remodeling, for example wall shear stress (WSS), needs to be considered in the 

distal AAo and correlated to flow displacement and/or flow angle in the proximal AAo. 

Nonetheless, the measurement of WSS was not within the scope of this work. 
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CHAPTER 5 

CONCLUSIONS 

This study developed a novel semi-automatic protocol to analyze 2D cine and 4D flow 

MRI data acquisitions in order to study hemodynamics relating to BAV. This protocol was 

applied to a large cohort of BAV subjects to characterize the relationship between BAV 

morphology and hemodynamics. It was shown that the hemodynamics in the proximal AAo is 

significantly correlated to the distal AAo diameter in RN-BAV subjects when compared to RL-

BAV and size-matched TAV controls. The measurements of upstream hemodynamic metrics 

play a more significant role than geometric metrics of the valve orifice when considering 

downstream aortic size.  
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CHAPTER 6 

RECOMMENDATIONS 

The combination of using geometrical and hemodynamic predictors for BAV disease can 

have an even greater clinical impact if, for example, this study could be further extended to 

include more complex flow metrics, which might be indicators of flow disturbances (e.g., 

vorticity, helicity, wall shear stress, oscillatory shear index), or it could take into account other 

metrics easily clinically categorized. In addition, longitudinal studies could be performed to 

improve the current understanding of the relationship between BAV phenotype/morphology to 

aortopathy risk stratification. The work presented here can be regarded as yet another step to find 

geometrical and hemodynamic predictors to assess the severity of the disease or its progression. 
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