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SUMMARY 

 

 This study presents airborne measurements (0 km < z < 12 km) of HO2NO2, HCl 

and SO2 using chemical ionization mass spectrometry (CIMS) during the Intercontinental 

Chemical Transport Experiment (INTEX) field campaign, an intensive study to 

characterize the chemical composition of the troposphere in the eastern United States, 

Mexico City, and the North Pacific which is the outflow region of Asia.  

 The first direct in situ measurements of HO2NO2 were made in the free 

troposphere over the eastern U.S. during summer 2004. The highest mean mixing ratio of 

76 pptv (median = 77 pptv, σ= 39 pptv) was observed in the altitude range of 8-9 km. 

Highly constrained steady state calculations of HO2NO2 using measured HOx levels are 

poorly correlated with observed HO2NO2 in the upper troposphere (8 km < z < 12 km; 

the median ratio of [HO2NO2]SS-MEA/[HO2NO2]MEA = 2.9). However, steady state 

HO2NO2 using model-derived HOx shows reasonable agreement with measurements in 

the free troposphere ([HO2NO2]SS-MEA/[HO2NO2]MEA = 1.3). These results indicate that 

observed HO2 and HO2NO2 are in poor agreement in the upper troposphere but that 

HO2NO2 levels are consistent with current photochemical theory.  

 The vertical distribution of HCl was measured over the north Pacific during May 

2006 from the marine boundary layer (MBL) up to lower stratosphere. Recent 

stratospheric influence in the upper troposphere (8 km < z < 12 km) was efficiently 

identified from enhanced HCl (up to ~100 pptv) relative to very low background levels (< 

2pptv). In the remote MBL, the acidification of seasalt aerosols by HNO3 appeared to be 

the major source of HCl, with level consistently over 20 pptv (up to 400 pptv). Although 
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HCl was generally under detection limit (< 2pptv) in the mid troposphere (4 km < z < 8 

km), a case study suggests that HCl may be produced in this altitude range by the 

dechlorination of Cl-containing dust aerosols. 

 The distribution of SO2 was measured in the outflow region of the eastern U.S. 

and Asia; two major anthropogenic SO2 source regions. This study presents vertical and 

horizontal distributions of SO2 and relevant gas phase and aerosol parameters to 

characterize SO2 transport in the troposphere. SO2 in the boundary layer was efficiently 

transported to the upper troposphere by deep convection and frontal uplift processes. 

High SO2 in convective plume in the upper troposphere were strongly correlated with 

ultrafine aerosols (diameter less that< 0.01  μm).Conversely, SO2 from frontal uplift 

shows a strong correlation with non-volatile aerosols (0.01 μm to 7 μm). Comparisons of 

SO2 products from global 3-D chemical transportation models (GEOS-CHEM and 

MOZART) with observations suggest that sulfur sources are relatively well described but 

that the oxidation mechanism needs refinement. 

 



 

1 

CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

Airborne measurements have provided much of our knowledge about the vertical 

and horizontal distributions and chemistry of trace gases and aerosol in the atmosphere. 

The spatial scale of airborne studies depends on the performance of the airborne platform. 

The NASA DC-8 research aircraft, the platform used in this study, has a very large 

spatial coverage (1000 ft – 42,000 ft of the altitude coverage, up to 12 hours of duration, 

5,400 miles range). Moreover, the large scientific payload (30,000 lbs) allows it to 

accommodate a large suite of instruments that can address a range of issues such as: 

probing the chemical evolution of emissions over large spatial extents, satellite sensor 

validation, and validation of global and regional chemical transport models. 

Since the Pacific Exploratory Missions beginning in 1991, new findings from 

airborne field campaigns using the NASA DC-8 have illustrated that atmospheric 

chemistry in remote regions is much more complex than expected due to anthropogenic 

influences. Representative findings of anthropogenic perturbations in upper tropospheric 

HOx -NOx chemistry [Jaglé et al., 2001] and SO2 enhancements in the free troposphere 

[Thornton et al., 1999] are presented in the next sections. 

Another useful tool to probe atmospheric chemistry on the global scale is the 

satellite borne sensor. For these applications, raw data, mostly radiation measurements in 

a given spectral region are converted into final products such as mixing ratios by inverse 

techniques. Therefore, retrieval algorithms require at least a reasonable a priori, derived 
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from in situ measurements mostly by airborne measurements. Airborne data are also 

essential for the validation of retrieval algorithms. Heald et al. [2003] detail how in situ 

airborne measurements, satellite measurements and global chemical transport models can 

be integrated to study global problems. 

Since trace gases and aerosol measurements from any platform have spatial and 

temporal limitations, scientists have developed three dimensional chemical transport 

models (CTMs) to probe global scale phenomena in atmospheric chemistry. Airborne 

measurements and CTMs have proven to be complementary. Observations have been 

utilized for validations of CTMs, and predictions of CTMs have been used as the basis 

for flight planning during airborne campaigns. Moreover, the most recent global climate 

model to assess global climate change adapts a chemistry module for more precise 

assessments [IPCC, 2007].  Hence, validations of CTMs using airborne measurements are 

also vital for more precise estimates of global climate change. 

 

1.2 Outline 

 This work presents airborne measurements of HO2NO2, HCl and SO2 by chemical 

ionization mass spectrometry (CIMS) during the Intercontinental Chemistry 

Transportation Experiment field campaign (INTEX). The INTEX field campaign 

consisted of two separate phases using the NASA DC-8 aircraft platform equipped with a 

comprehensive suite of measurements of both gases and aerosol. INTEX-NA-the first 

phase of the INTEX study, conducted in July and August of 2004, focused on polluted 

outflow from the eastern U.S [Singh et al., 2007].  
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The second phase of the study, INTEX-B, was conducted in March and May 

2006. During the early portion of the study (March, 2006), the NASA DC-8 was 

deployed in Houston to sample the far and near field polluted outflow from Mexico City 

as part of the Megacity Initiative: Local and Global Research Observations (MILAGRO). 

In the later portion of the study (April – May, 2006), polluted Asian outflow was sampled 

from aircraft deployments in Honolulu, HI and Anchorage, AK. DC-8 deployments 

during the field campaign are summarized in Table 1.1. In addition, flight tracks for the 

entire INTEX mission are shown in the Figure 1.1. Additional description of the field 

campaigns, measured parameters, and major findings is presented in the first section of 

Chapter II.  

 The first part of this thesis focuses on the first direct measurements of pernitric 

acid, HO2NO2, in the upper troposphere. HO2NO2 is an important reservoir for both HOx 

and NOx in low temperature environments such as in the upper troposphere or at high 

latitudes. This study focuses on the INTEX-NA data for the analysis of HO2NO2 because 

the campaign was conducted during the summer season, when photochemical activity is 

at a maximum. In addition, relatively fresh, NOx rich, plumes from intense deep 

convection during the field campaign give a unique environment to test upper 

tropospheric photochemistry in a high NOx environment when HO2NO2 mixing ratios are 

likely to be maximum [Bertram et al., 2007]. The HO2NO2 data is analyzed using both 

simple steady state and time dependent photochemical models. Radiative transfer 

calculations are also performed to estimate the overtone photolysis rate of HO2NO2, 

which is probably the most uncertain loss pathway for this species.  
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 5

 During the Anchorage deployment of INTEX-B, HCl was measured by CIMS 

(Table 1.1). HCl in the atmosphere is thought to have two distinct primary sources. One 

is a product of stratospheric chlorine chemistry initiated by the photolysis of 

chlorofluorocarbons (CFCs), and the other is acidification of seasalt aerosols by HNO3 or 

H2SO4 in the marine boundary layer (MBL). Although, many ground based and a limited 

numbers of airborne measurements of HCl have been performed, the first comprehensive 

airborne measurements from the marine boundary layer up to the lower stratosphere are 

reported in this study. 

The general features of the vertical distribution of HCl are discussed and 

compared with previous measurements. In addition, the transport of stratospheric ozone 

into the troposphere is assessed using HCl as a tracer. Finally, the average Cl radical 

number density is estimated for the remote MBL. The Cl radical is a stronger oxidant for 

some important tropospheric VOCs such as Ethane, Propane, and DMS than OH. 

Because of the technical difficulties in measurement of Cl atom, many studies have tried 

to estimate Cl atom number density in the MBL using observations of hydrocarbons 

[Singh et al., 1996a, 1996b; Wingenter et al., 1996; Rudolph et al., 1996, 1997; Jobson et 

al., 1998; Wingenter et al., 1999]. However, HCl is produced from the reaction of Cl with 

most VOCs and can serve a more direct proxy for chlorine oxidation.  

SO2 is an important precursor of sulfate aerosols. Despite the importance of 

understanding of global distributions of SO2, measurements have not been routinely 

performed due to technical difficulties in detecting trace levels of SO2 in the free 

troposphere [Brasseur et al., 1999]. In this study we use a CIMS instrument with a high 

sampling frequency and a low detection limit, to measure SO2 distributions in the outflow 



 6

of the eastern U.S. and Asia, two major global SO2 source regions, and Mexico City, the 

most populated megacity in the North America. 

 This study presents tropospheric distributions of measured SO2 and sulfate ratio 

([SO4
2-]/([SO2]+[SO4

2-])), which is a good indicator for the degree of sulfur oxidation. In 

addition, the characteristics of the distribution of SO2 in the upper troposphere such as the 

origins of high SO2 plumes and specific uplift processes from the boundary layer are 

investigated. Since 3-D models are important tools to evaluate global climate change, the 

measured SO2 is compared to predictions from two global CTMs (GEOS-CHEM and 

MOZART). Finally, SO2 distributions in the lower stratosphere and the MBL, where 

carbonyl sulfide and dimethyl sulfide (DMS), respectively are thought to be the major 

SO2 sources are presented. 

 In the next sections, a brief review of tropospheric chemistry relevant to the 

species measured in this work is presented. In the next chapter, integrated on the NASA 

DC-8 aircraft and calculation schemes for the data analysis are presented.  

 

1.3 Background 

1.3.1 HOx-NOx Chemistry in the Troposphere 

 Levy [1971] proposed a radical chain reaction of HOx, O3, CO, and methane 

(Figure 1.2) as being central to tropospheric chemistry. Chameides and Walker [1973] 

and Crutzen [1973] proposed that the coupling of HOx and NOx chemistry could be the 

origin of tropospheric ozone. Before this time tropospheric ozone had been assumed to 

only be transported from the troposphere. (Figure 1.3)  
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Figure 1.3 The schematic of 
tropospheric ozone production from 
HOx-NOx reactions proposed by 
Chaemeides and Walker, [1973] and 
Crutzen [1973]. 

Figure 1.2 The schematic diagram of tropospheric HOx reactions proposed by 
Levi [1971].  
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 In the past three decades, numerous intensive studies to understand HOx-NOx 

chemistry have been conducted. These results have been thoroughly summarized in the 

following papers. Thompson [1995] summarized both observations and model 

predictions of the OH radical. Bradshaw et al. [2000] summarized observations of the 

distribution of NOx in the remote free troposphere from NASA airborne missions. Jaeglé 

[2001] summarized HOx radical chemistry in the upper troposphere. In addition, Crutzen 

and Lelieveld [2001] reviewed human impacts on atmospheric chemistry, especially 

perturbations of the oxidation power of the atmosphere by anthropogenic activity. 

 In this section, HOx-NOx chemistry in the upper troposphere is reviewed, as this is 

the region of the atmosphere where HO2NO2 is thought to be most important. Aircraft 

measurements of HOx have been conducted since 1996 [Folkins et al., 1997; Wennberg et 

al., 1998; Brune et al., 1998, 1999]. These studies suggested that in the upper 

troposphere, other sources of HOx in addition to water vapor are necessary to reconcile 

the underestimation of HOx observations by photochemical models [Jaeglé et al., 2001 

and references therein]. The enhanced radical source leads to higher ozone production 

rates than previously expected. Therefore, several studies have reevaluated the radiative 

forcing of upper tropospheric ozone, an important greenhouse gas because of the low 

temperature environment of upper troposphere [Wang and Sze, 1980; Lacis et al., 1990; 

Bernsten et al., 1997; Shindell et al., 2003]. 

 Many studies have focused on investigating the importance of various HOx 

sources and the physical processes by which they are transported to the upper 

troposphere. Deep convection has been established as an important mechanism for 

transporting HOx precursors from the planetary boundary layer to the upper troposphere 
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[Dickerson et al., 1987; Thornton et al., 1997; Wang and Prinn, 2000]. In addition the 

importance of oxygenated volatile organic compounds, such as acetone and aldehydes, 

and peroxides as radical sources in the dry upper troposphere have been established in the 

last decade [Chatfield and Crutzen, 1984; Singh et al., 1995; Arnold et al., 1997; Prather 

and Jacob, 1997; Jaeglé et al., 1997; Cohan et al., 1999; Müller and Brasseur, 1999]. 

 Many airborne studies have observed acetone mixing ratios in the range of 0.2 – 3 

ppbv throughout the troposphere [Singh, et al., 1994, 1995, 2000, 2001; Arnold et al., 

1997; Wohlfrom et al., 1999]. The major sources of acetone are terrestrial vegetation and 

atmospheric oxidation of organic precursors such as isoalkanes [Jacob et al., 2002]. The 

lifetime of acetone in the troposphere is of the order of a month due to oxidation by OH 

and photolysis [Gierczak et al., 1998]. Photolysis becomes the major loss pathway in the 

free troposphere at altitudes above 3 km due to the decrease of the OH rate constant with 

temperature [Gierczak et al., 1998]. The photolysis of acetone produces radicals, which 

can be converted into stable species such as PAN, acetic acid, and peracetic acids as 

described in the following reactions [Singh et al., 1995]; 

 

CH3COCH3 + hν + (2O2) → CH3COO2 + CH3O2 R 1.1 

CH3COO2 + NO2  →  CH3CO(O2)NO2 (PAN) R 1.2 

CH3COO2 + HO2 → CH3COOH + O3 (67%) R 1.3.1 

                              → CH3COO2H + O2 (33%) R 1.3.2 

CH3COO2 + NO + (O2) → CH3O2 + CO2 + NO2 R 1.4 

CH3O2 + NO → CH3O + NO2 R 1.5 

CH2O + O2 → CH2O + HO2 R 1.6 
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CH2O + hv → CO + H2 (~50%) R 1.7.1 

                      → H + CHO + (2O2) R 1.7.2 

                         → 2HO2 + CO (~30%) R 1.7.3 

CH2O + OH → CHO + H2O (~20%) R 1.8 

                         

In the upper troposphere, the other important sources of HOx are peroxides (H2O2 

and CH3OOH). Both H2O2 and CH3OOH are products of radical chemistry as illustrated 

in R 1.9 and R1.10; 

 

HO2 + HO2 → H2O2 + O2 R 1.9 

CH3O2 + HO2 → CH3OOH + O2 R 1.10 

 

The main sink of peroxides in the atmosphere is photolysis with a lifetime of a few days  

 

H2O2 + hv → 2OH R 1.11 

CH3OOH + hv → OH + HO2 + CH2O R 1.12 

 

Although H2O2 is a fairly soluble species with a Henry’s Law constant of 8 × 

104M atm-1 compared with CH3OOH (3 × 104 M atm-1) [O’Sullivan et al., 1996], both 

species are detected at high levels in deep convection plumes [Cohan et al., 1999]. 

 In the upper troposphere, the major aldehyde species that serve as HOx sources, 

are formaldehyde (HCHO) and acetaldehyde (CH3CHO). Unexpected high levels of 

those aldehyde species in the background free troposphere of tropical ocean regions were 
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reported by Singh et al. [2001] with mixing ratio level of 70 – 300 pptv for formaldehyde 

and 60 – 100 pptv for acetaldehyde. However, it should be noted that acetaldehyde 

measurements in the remote free troposphere are considered to be technically very 

difficult and do not have wide acceptance in the atmospheric chemistry community 

[Finalyson-Pitts and Pitts, 2000]. VOC oxidation is considered to be the main source of 

aldehyde species in the atmosphere [Seinfeld and Pandis 1997] but comparisons of 

observations with the GEOS-CHEM model results over the tropical pacific troposphere 

indicate a significant underestimation by the model [Singh et al., 2001]. The major sinks 

of aldehydes in the upper troposphere compounds are photolysis and reaction with OH. 

Further reactions of H atoms (R 1.13) and CH3 radicals (R 1.17) produce HO2 radicals in 

the atmosphere. 

<Formaldehyde>  

Photolysis 
HCHO + hv → H + HCO R 1.13 

                    → H2 + CO R 1.14 

OH oxidation 
  

HCHO + OH → HCO + H2O R 1.15 

 

<Acetaldehyde> 

Photolysis 
CH3CHO + hv → CH4 + CO R 1.16 

                           → CH3 + HCO R 1.17 

OH oxidation 
CH3CHO + OH → CH3CO + H2O R 1.18 
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With the findings described above a more complete understanding of HOx-NOx 

chemistry in the upper troposphere has been obtained as diagrammed in Figure 1.4. 

Photochemical calculations using the updated scheme have demonstrated better 

agreements with measured HOx results for several studies [Mckeen et al., 1997; Folkins 

et al., 1997; Wennberg et al., 1998; Brune et al., 1998]. However, a number of studies 

have still reported higher HOx levels in the upper troposphere than can be explained with 

known HOx sources especially close to sunrise and sunset [Brune et al., 1999; Wennberg 

et al., 1999; Jaeglé et al., 1999; Faloona et al., 2000]. These studies have commonly 

indicated that a lack of understanding of HO2NO2 chemistry or mixing ratios, 

unmeasured in the UT previous to this work, may be the reason for the 

model/measurement disagreements. In particular, several studies have demonstrated that 

observed HOx levels are much larger at high NOx levels than predicted by photochemical 

theory [Faloona et al., 2000]. Olson et al. [2006] illustrated that the discrepancies can be 

moderated by eliminating temporal inhomogeneity and including comprehensive HOx 

sources from measurements. However, Ren et al. [2007] reported an observed-to-

predicted HO2 ratio of 2.5 in the upper troposphere during INTEX-NA, the most recent 

NASA airborne field campaign in high NOx conditions. This indicates a fundamental lack 

of understanding of ozone production rates at high NOx levels that are commonly 

encountered in the UT [Bertram et al., 2007] due to convective activity. The 

measurements of pernitric acid in this work are particularly important for providing 

insight into this issue as it is the most important reservoir of HOx and NOx in the UT for 

these conditions (Figure 1.4). 
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Figure 1.4 The updated HOx-NOx cycle in the upper troposphere since Levy 
[1971] from several studies of several airborne field campaigns in the mid 
1990s. The grey reaction cycle represents one proposed by Crutzen [1974]. 
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1.3.2. HCl in the Troposphere and the Lower Stratosphere 

 A diagram of the global HCl budget is shown in Figure 1.5. Various chemical and 

physical processes determine the fate of HCl including the dechlorination of seasalt 

aerosols which is thought to be the biggest HCl source in the troposphere, deposition to 

ocean and land surfaces, and the dissolution into cloud droplets. Due to the high 

solubility of HCl, removal processes are much faster than oxidation by OH. For example, 

the overall lifetime of HCl in the marine boundary layer (MBL) is estimated to be of the 

order of one day. Therefore, HCl produced in the MBL is not expected to be efficiently 

transported to other regions of the atmosphere.  

One interesting aspect of chlorine chemistry in the MBL is that it may contribute 

to ozone production in the polluted MBL, where the level of NOx and VOCs are 

relatively high. In these environments, dechlorination reactions of seasalt aerosols with 

NO2 and N2O5 may produce significant amounts of compounds such as ClNO, ClNO2, 

and Cl2 [Behnke et al., 1997; Schweitzer et al., 1998; Finlayson-Pitts, 2003; Rossi et al., 

2003]. These compounds can photolyze rapidly to produce Cl radicals. The Cl radicals 

can efficiently oxidize many VOCs to produce HCl and peroxy radicals, precursors of 

ozone. These processes have been reported by Spicer et al. [1998] and Finley and 

Saltzman [2006]. Finley and Saltzman [2006] estimated that 5-6 ppb of O3, monitored in 

the research site (Irvine ,California, USA) was produced by Cl radical oxidation 

processes. However, in both of these studies HCl was not measured which would have 

confirmed the presence of high levels of Cl atoms leading to ozone production.  
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Anthropogenic sources such as incineration and coal combustion processes are 

also important sources of HCl (Figure 1.5). Coal contains a chlorine impurity of the order 

of 5-2000 ppmm. During the combustion process, most of the chlorine is converted in to 

gas phase HCl [Sun et al., 2000]. Indeed, Alpine (Coldu Dome, 4250 m ASL, French 

Alps) ice core analysis suggests that coal burning and incineration processes have 

increased background HCl [Legrand et al., 2002]. Biomass burning is also a significant 

source in the troposphere. Trebs et al. [2004] reported a large diurnal variation of HCl 

ranging from undetectable to a few hundred pptv in the Amazon basin where active 

biomass burning was taking place. This implies that HCl may be a direct emission from 

biomass burning [Andreae et al., 1996] or that dechlorination processes driven by 

photochemically produced HNO3 may be a source of HCl [Trebs et al., 2004]. The 

diurnal variation pattern of Cl containing aerosols in biomass burning plumes was found 

to be consistent with the production of HCl by a dechlorination process [Trebs et al., 

2005]. 

 Although the contribution of stratospheric HCl to the tropospheric budget is 

relatively low (Figure 1.5), stratospheric Cl chemistry has been extensively studied due to 

its role in stratospheric ozone depletion. For a review of stratospheric chlorine chemistry 

see Molina [1996] and Solomon [1999]. The major source of chlorine in the stratosphere 

is the photolyis of chlorofluorocarbons (CFCs). These compounds are very stable in the 

troposphere but degrade in the stratosphere due to the presence of shorter wavelength 

radiation. The resultant Cl radicals take part in a series of reactions that destroy O3. The 

terminal stratospheric chlorine cycle is effectively terminated by the reaction of the Cl 

radical with CH4 to produce HCl, which has a relatively long lifetime (~30 days at 20 km, 
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Webster et al., 1994). There are limited measurements of HCl in the stratosphere and UT 

[Marcy et al., 2004; Lelieveld et al., 1999]. Recent observations by Marcy et al. [2004] 

indicate that HCl is an excellent tracer to evaluate transport from the stratosphere to the 

troposphere. However, the analysis of stratospheric ozone transport performed by Marcy 

et al. [2004] is dependent upon background free tropospheric levels of HCl being very 

low. This assumption is consistent with their observations but is in contrast to previous 

measurements of HCl in the free troposphere. Consequently, the HCl measurements 

performed over a wide range of altitudes provide an opportunity to resolve this issue.   

A comprehensive review of HCl observations in the troposphere has been 

performed by Keene et al., [1999]. In this work a budget analysis of HCl was performed 

based on observed concentrations and identified sources. It was found that a significant 

unidentified source of HCl (twice the known source) was needed to explain observed 

levels. Keene et al [1999] suggested that the source due to dechlorination of sea salt 

aerosol might be severely underestimated and this could account for the missing source 

of chlorine. The observations in this thesis allow a test of this hypothesis.  

 

1.3.3 Tropospheric SO2  

 Sulfur dioxide is the dominant sulfur species emitted to the atmosphere with a 

large fraction of this coming form anthropogenic activity such as coal burning (Table 

1.2). SO2 (S(IV)) is oxidized by both gas phase and aqueous mechanisms in the 

atmosphere [Barresheim et al., 1995; Brasseur et al., 1999]. The dominant product of SO2 

oxidation is sulfate (S(VI)) which exists primarily in aerosols or cloud drops in the 
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atmosphere [Seinfeld and Pandis, 1997]. Therefore, aerosol formation and growth 

processes are highly coupled to sulfur emissions and oxidation.   
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Dimethyl sulfide (DMS), emitted by phytoplankton in the ocean surface [Andrae 

1990] is believed to be the major source of SO2 in the remote MBL from oxidation by 

OH during the day and NO3 during the night. Due to complexities of the reaction 

mechanism, DMS oxidation in the atmosphere is not well defined. Lab and field studies 

of DMS oxidation processes are well summarized in Ubanski and Wine [1999], 

Ravishankara et al. [1997] and Hewitt et al. [1997]. Recently, laboratory studies have 

investigated oxidation reactions of by products of DMS oxidation such as DMSO 

[Urbanski et al., 1998] and CH3SO2 [Kukui et al., 2000]. In addition, chamber studies to 

simulate natural conditions have been conducted to probe DMS oxidation processes 

[Sorensen et al., 1996; Barnes et al., 1996; Patroescu et al., 1999; Falbe-Hansen et al., 

2000]. However, due to inconsistencies of experimental conditions among the studies, the 

results from chamber studies have shown a wide range of the SO2 yield from DMS. For 

these reasons, modeling studies have been compared with comprehensive field 

measurements of DMS, SO2, and OH to deduce the “best-estimated” yield of SO2 from 

DMS oxidation. Chen et al. [2000] reported 0.65 ± 0.15 for a conversion efficiency for 

SO2 from DMS using a ground measurement dataset from Christmas Island. Davis et al. 

[1999] also reported 0.72 ± 0.22 of the conversion efficiency using an airborne 

measurement dataset over the MBL near Christmas Island. In this study, a comprehensive 

measurement dataset and MOZART model results over the remote North Pacific are 

compared to examine DMS contributions for SO2 distributions in the remote MBL.  

 Carbonyl sulfide (OCS) is another reduced form of sulfur that is important in the 

atmosphere. The major sources of OCS to the troposphere are oxidation of CS2, oceanic 

and anthropogenic emissions [Seinfeld and Pandis, 1997; Blake et al., 2004]. OCS is 
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chemically stable in the troposphere (the chemical lifetime is ~35 years mainly due to 

photolysis and the overall lifetime is ~5 years mostly due to vegetation uptake) with an 

average mixing ratio of ~500 pptv [Chin and Davis, 1995]. However, in the stratosphere 

shorter wavelength ultraviolet radiation can photolyze OCS leading to the formation of 

SO2 (~10 year chemical lifetime; Chin and Davis [1995]). This process was suggested as 

the major source of stratospheric SO2 by Crutzen [1976]. The origin of stratospheric SO2 

had been investigated since Junge et al., [1961] reported stratospheric sulfate aerosols. 

However, Chin and Davis [1995] performed calculations using a 1-D model that 

indicated that other significant sources of sulfur are needed in addition to OCS photolysis 

to explain the sulfate aerosols in the stratosphere. This finding was confirmed by a recent 

analysis using 3-D chemical transport model [Pitari et al., 2002; Timmreck, 2001], which 

indicated that only 43% of global stratospheric sulfate aerosols can be explained by the 

OCS photolysis. Instead, injections of SO2 into the stratosphere from deep convection in 

the region of the intertropical convergence zone (ITCZ) are needed to support the 

stratospheric sulfate burden [Kjellstrom, 1998; Pitari et al., 2002; Timmreck, 2001]. 

However, the analysis of the stratospheric dataset by Singh et al. [1997] during Pacific 

Exploratory Mission (PEM)-West reported a correspondence between the decrease of the 

OCS mixing ratio (30 pptv) with an increase in the SO2 mixing ratio. They concluded that 

OCS was the major source of SO2 in the stratosphere air. The observations of SO2 in the 

lower stratosphere in this work allow the investigation of the relationship between 

stratospheric OCS and SO2.  

Due to its climatic importance, sulfur chemistry is included in general circulation 

models (GCM) that are used to predict climate scenarios. However, as summarized in the 
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report of the Intergovernmental Panel on Climate Change (IPCC) there is little correlation 

between predictions by different models of sulfur emissions, lifetime and production 

efficiency of sulfate. Those differences cause significant uncertainties in estimations of 

radiative forcing from sulfate aerosols [IPCC, 2007]. Some global modeling studies of 

sulfate aerosols have been conducted to validate their SO2 model products with airborne 

measurements. The comparisons have shown that global CTMs reasonably capture the 

convection features and boundary layer mixing ratio of SO2 [Chin et al., 1996; Chin et 

al., 2000; Park et al., 2005]. However, some studies also suggested that model treatments 

of cloud-SO2 interactions are needed for further investigations [Tu et al., 2003; Tu et al., 

2004; Park et al, 2004]. 
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Chapter 2 

METHODS 

 

2.1 Aircraft Payload 

The NASA DC-8 research aircraft was used as the airborne platform for all of the 

measurements described in this thesis. The DC-8 was instrumented with a comprehensive 

suite of trace gas, aerosol, radiation, and meteorological measurements for the 

Intercontinental Chemical Transportation Experiment (INTEX) campaign. The mission 

was also supported by global 3D model products, satellite borne measurements, and 

ground based measurements to facilitate a comprehensive study of the transport of 

pollution. The DC-8 payload and model products for both INTEX-NA and INTEX-B are 

listed in Table 2.1. Observations and model products used in the analyses in this work are 

indicated in the table. All of the analyses in this work were performed with a one minute 

average merged dataset, processed by the NASA Tropospheric Chemistry Integrated Data 

Center (http://www-air.larc.nasa.gov/index.htm). 
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Parameters Method Frequency References aNA bB 
#CO, CH4 

Diode laser 
spectrometer 1 sec Sachse et al. [1987] O O 

#O3 Chemiluminescence 1 sec Avery et al. [2001] O O 
#H2O (v) Diode laser 

hygrometer 1 sec Podolske et al. [2003] O O 

CO2 
Non Dispersive IR 

Spectrometry 1 sec Vay et al. [2003] O O 
#H2O2, #CH2O, #CH3OOH HPLC ~ min Lee et al. [1995] O O 

#OH, #HO2 LIF 20 secs Brune et al. [1995] O O 

NO Chemiluminescence 1 sec Ryerson et al. [1999] X O 

PANs, Oxygenated 
Hydrocarbons, HCN GC-ECD, GC-PID ~ min Singh et al. [2007] O O 

HNO3, H2O2, HNO3, PAA CIMS few secs Crounse et al.[2006] O X 

#NO2, ANs, PNs, HNO3 
Thermal 

Dissociaiton - LIF few secs Thornton et al. [2000] O O 

#CH2O Tunable Diode Laser 
Spectrometry few secs Roller et al. [2006] O O 

#NMHCs and #Halocarbons Whole air sampling ~  min Blake et al. [2003] O O 
#HNO3, #Fine aerosol 

sulfate Mist Chamber ~  min Dibb et al. [2003] O O 

Bulk aerosol ionic 
composition (Cl- NO3

- etc) Filter ~  min Dibb et al. [2003] O O 

Aerosol ionic composition PILS-IC ~  min  Hennigan et al. [2006] O X 
#Physical Aerosol 
Parameters (size 

distributions, counts, etc) 

Wing Pod 
instruments variable Shinozuka et al. 

[2007] O O 

#Photolysis frequencies 
Scanning Actinic 

Flux 
Spectroradiometers 

10 secs Shetter and Müller. 
[1999] O O 

Tropospheric O3, aerosols, 
cloud profiles LIDAR - Wulfmeyer et al. 

[2006] O O 

Stratospheric O3, aerosols, 
cloud, temperature profiles Raman LIDAR - Burris et al. [1998] X O 

Basic Met. Parameters 
(Temperature, Pressure etc) 

Sensors in NASA-
DC8 1 sec - O O 

#GEOS-CHEM Global 3D Model  Bey et al. [2001] O O 

#MOZART Global 3D Model  Lamarque et al. 
[2005] O O 

#NASA Langley 
Photochemical Model 

Photochemical Box 
Model  Crawford et al.[1999] O O 

RAQMS Regional Model  Pierce et al. [2003] X O 

Table 2.1 Summary of DC-8 payload and global 3D models during the INTEX field 
campaign 

# Parameters, used in this study. aColumn indicates measured parameter during INTEX-NA, bColumn 
indicates measured parameter during INTEX-B 
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2.2 Chemical Ionization Mass Spectrometer  

The observations of HCl, HO2NO2, and SO2 reported in this work were all 

conducted with a chemical ionization mass spectrometer (CIMS) using SF6
- ion 

chemistry. A schematic diagram of the CIMS system is presented in Figure 2.1, which is 

very similar to that described by Slusher et al. [2004]. The CIMS system contains a 

quadruple mass-filter and a channeltron detector for the quantification of analyte ions 

from a flow-tube ion molecule reactor. This combination has been widely used in 

atmospheric chemistry field due to its high selectivity and sensitivity [Huey, 2007]. In 

addition to the basic components, a collisional dissociation chamber (CDC) and a RF 

octopole are attached to enhance the sensitivity and selectivity of the instrument. The 

CDC is a region of the high ion kinetic energy where water (and other weakly bound) 

cluster ions are dissociated [Tanner et al, 1997] as shown in following reaction. 

X-(H2O) + M → X- + H2O + M R 2.1 

Water clusters of analyte ions have been demonstrated to be a significant problem with 

applying the CIMS technique to measuring HO2NO2 [Slusher et al., 2001]. For this 

reason, the installation of the CDC improves the performance of the technique at higher 

dew points. A RF octopole ion guide is also utilized in the CIMS between the exit of the 

flow-tube and the entrance to the quadruple chamber. A technical description of RF 

octopole and other ion beam focusing methods can be found in Röttgen et al [2006].  
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 Figure 2.1 also contains the schematic of the inlet system for sampling ambient 

air on the DC-8. The inlet tubing was fluorinated ethylene propylene (FEP, Teflon®) 

tubing (0.5˝ O.D) maintained at a constant temperature of 298 K. The inlet tubing 

extended 40cm beyond the aircraft surface, in an elliptically shaped strut, to allow 

sampling outside of the airplane’s boundary layer. A three-way valve at the upstream of 

the inlet switched between ambient and scrubbed air which was obtained by, passing 

ambient air through activated charcoal and nylon wool. This allowed automated 

measurement of the background signal of the CIMS on all channels. The total flow 

through the inlet (5.5-7.5 slpm) comprised the flow sampled by the CIMS (~2.5 slpm in 

the atmospheric pressure, altitude dependent) and an excess flow of 5slpm maintained by 

a mass flow controller (MKS M100B) and a small scroll pump (Air Squared: BN34-

45BG-01LH). The excess inlet flow allowed for short residence times and minimal wall 

interactions at all altitudes. The total inlet flow was calculated by measuring the flow 

through the sampling orifice as a function of upstream pressure, which was continuously 

monitored with a capacitance manometer (MKS Type 722). Air was sampled into the 

flow tube (~50 sccm) through a 0.5 mm dia. orifice where it is selectively ionized by SF6
-

, synthesized in a 210Po ion source (P-2041, NRD) and added to the flow tube in 2-4 slpm 

of UHP nitrogen (Scott-Marrin). The specific reactions between analytes gaseous species 

and SF6
- are described in the next section. 

A series of pumps were used to maintain the system components at appropriate 

pressures. The flow tube was maintained at a constant pressure of 12 - 13 torr with a 

scroll pump (Varian 300) and varying the ion source nitrogen flow as a function of 
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altitude. This was performed by feeding back the signal from the flow tube pressure 

sensor to the ion source mass flow controller. The CDC was maintained at ~0.5 torr by a 

molecular drag pump (Alcatel, MDP 5011). The pressures of the octopole, and 

quadrupole regions were maintained at ~ 2x10-3 torr, and ~ 5x10-5 torr, respectively by 

two turbodrag pumps (Varian Turbo-V300HT) which were backed by the flow tube scroll 

pump. 

 

2.2.1 Ion Chemistry 

Table 2.2 summarizes the reactions between SF6
- ion and the analytes in this study 

(SO2, HO2NO2, HCl, and NO2) [Huey et al., 1995; Slusher et al., 2001]. Although NO2 

was not measured during the INTEX mission it was needed for post-field mission 

calibration of the HO2NO2 sensitivity. The highest yield ion product of SO2 (F2SO2
-) and 

HCl (SF5Cl-) was monitored for their measurement. In the case of HO2NO2, however, 

NO4
-(HF) was monitored to utilize its higher selectivity although it is a minor product 

(~25%). 

The signal at 34SF6
- was also recorded to track the reagent ion level in the reaction 

chamber. In addition, to check for electrical noise the signal at 20 amu was also 

monitored as no ion signal is expected at this mass-to-charge ratio. The dwell times at 

each ion mass during the science flights are summarized in Table 2.3.  
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aHuey et al.,[1995], bSlusher et al.,[2001] 

AMU Dwell time (ms) Analytes Ion 
20 50 N/A 
55 500 HCl Cl-HF 
98 600 HO2NO2 NO4

-(HF) 
102 600 Ambient SO2 F2

32SO2
- 

104 600 Standard SO2 F2
34SO2

- 
162 600 HCl SF5Cl- 
148 50 N/A SF6

- 

Reactant Product Yield (%) k (10-9 cm3 molecule-1 s-1)  
aSO2 F2SO2

-, SF4 
SF5

-, FSO2 
FSO2

-, SF5 

54 
26 
20 

1.0 (±30%) 
1.0 (±30%) 

R2.2 
R2.3 
R2.4 

bHO2NO2 SF5
- 

NO4
-(HF) 

NO2
-(HF) 

NO3
- 

? 0.77 (±40%) 
0.29 (±40%) 
0.07 (±40%) 
0.03 (±40%) 

R2.5 
R2.6 
R2.7 
R2.8 

aHCl SF5Cl-, products 
SF5

-, HF, Cl 
Cl-·HF, SF5 

44 
33 
23 

1.5 (±30%) 
0.42 (±30%) 

R2.9 
R2.10 
R2.11 

aNO2 NO2
- 100 0.14 (±30%) R2.12 

Table 2.2 SF6
- ion chemistry used during the INTEX field campaign. 

Table 2.3 Summary of dwell times for mass recorded during INTEX mission. 
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 Potential interferences to the measurement of HCl in ambient air using SF6
- ion 

chemistry were tested as this measurement was performed for the first time in this study. 

In general, ozone and water vapor can lead to significant interferences with SF6
- ion 

chemistry [Slusher et al., 2001]. For this reason, laboratory tests were performed to 

evaluate the humidity and ozone dependence of the detection scheme. Water vapor was 

found to be a significant interference at even modest dew points (above -30 oC) to 

detection of HCl as Cl-⋅HF (R 2.11). However, the dominant reaction channel of the 

HCl/SF6
- reaction that produces SF5Cl- (R2.9) was found to be virtually immune to 

interference from both water and ozone. This was further tested in the field by taking 

mass spectra during flights in both the stratosphere (high ozone) and the marine boundary 

(high dew points). Two examples of spectra are shown in Figure 2.2. Both spectra, even 

though they are taken very rapidly demonstrate the natural isotope abundance of Cl 

(35Cl:37Cl = ~77.8:~ 24.2). These results indicate that HCl can be detected selectively 

with SF6
- over a wide range of atmospheric conditions. 
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2.2.2 Calibration 

  The sensitivity of SO2 during the science flight was monitored periodically (every 

2 minutes for a duration of 30 seconds) by performing a standard addition of a known 

amount of 34SO2 to the inlet. The 34SO2 calibration gas was mixed in the lab before each 

field campaign and its mixing ratio was determined by comparison with a 32SO2 standard 

(Scott Marrin, INC. Riverside, CA (1.98 ppmv ± 5%)). The calibrated mixing ratio of the 

34SO2 standard was 850 ppbv ± 9.2% for INTEX-NA and 1670 ppbv ± 8.7% for INTEX-

B. The isotopic purity of the 34SO2 standard was high enough that it did not interfere with 

the measurement of ambient SO2 (primarily 32SO2) to any significant level (<2 pptv). 

The sensitivities of the CIMS to HO2NO2 and HCl were not monitored in the 

field. Instead, the relative sensitivity to SO2 was carefully examined by a post-mission lab 

calibration at various pressures and dew points that simulated the conditions encountered 

during the mission. This approach has several advantages as most of the factors that 

govern CIMS sensitivity (e.g. reaction time, reagent ion signal, number density of the 

flow reactor) are common to the SO2, HO2NO2, and HCl detection schemes. 
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2.2.2.1 In Flight Calibration (SO2) 

  Figure 2.3 shows temporal variations of ion signals (F2SO2
-, F2SO2

-, NO4
-(HF), 

and SF5Cl-) during a typical science flight (at altitude of ~10 km) and includes ambient 

measurements, standard additions of 34SO2, and a background signal measurement for  

each channel. The background signal was used to estimate the lower limit of detection 

(LLOD), estimated to be 2 pptv for a signal to noise ratio of one with the noise defined as 

2σ of the background (30 seconds average). The overall uncertainty of 15% is defined by 

a combination of the accuracy of SO2 standard (5%) and the statistical error at the 2σ 

level (1 second) of calibration signals (14%).  

Figure 2.3 Typical temporal variations of analytes, standard additions, and 
background ion signal at an altitude of ~8 km during a science flight of the INTEX 
field campaign. 
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The analysis of calibration signals for the flight mission illustrate that the 

sensitivity of SO2 has a negative correlation with the dew point of the ambient air 

because water vapors react with F2SO2
- to produce SO3

-. Therefore, a sudden change of 

dew point between standard additions especially in the boundary layer, where the dew 

point is relatively high and highly variable can increase the error in the SO2 sensitivity. 

For this reason, dew point weighted interpolations were performed when a rapid change 

in dew point was encountered. For all other cases a linear interpolation with time was 

used to assess the SO2 sensitivity. The typical sensitivity of SO2 for the entire mission 

was more than 5 Hz/pptv in the free troposphere and 1 Hz/pptv in the planetary boundary 

layer. 

  

2.2.2.2 Post Mission Calibration 

2.2.2.2.1 HO2NO2 

  The sensitivity ratio of HO2NO2 to SO2 was derived in two steps. First the 

sensitivity of HO2NO2 to NO2 was obtained by thermally dissociating HO2NO2 in the 

inlet (T ~ 363 K) of the CIMS (R 2.2) to stochiometrically form NO2 [Kenley et al., 

1981; Slusher et al., 2001]. 

 

HO2NO2 + Heat ↔ HO2 + NO2 R2.13, R2.-13 
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Figure 2.4 The temporal variation of ion products of HO2NO2 and NO2 (see Table 2.2 
and the text for the further detail of each ion species) during a heating cycle (368 K) 
of the inlet with 6.2 ppbv of HO2NO2 standard sample. The SF5

- ion counts have been 
divided by 5. 

Figure 2.5 Signal from the the interference from water vapor at mass-to-charge ratio of 
the HO2NO2 product ion (NO4

-(HF)). Ion signals on the y axis are given in mixing 
ratio equivalent of HO2NO2 for the experimental conditions. 
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 Figure 2.4 presents temporal variations of all relevant ions during the heating 

cycle. After that, the sensitivity of NO2 to SO2 was measured by simultaneously adding 

known amounts of both these species to the inlet. Both the SO2 and NO2 were delivered 

from dilute standard mixtures (Scott Marrin, SO2 247 ppbv ± 5 % and CO2 350 ppmv in 

air, NO2 99.2 ppmv ± 2 % in N2) that had recently been re-analyzed. Both of these steps 

were carried out as a function of inlet pressure and dew point to replicate DC-8 flight 

conditions during INTEX-NA and INTEX-B. All of these tests were performed 

immediately after the each INTEX mission with the system in the identical configuration 

as on the aircraft.  

  The series of experiments assessed the sensitivity ratio of HO2NO2 relative to SO2 

as 0.74 (±13%) for the INTEX-NA and 0.67 (±13%) for the INTEX-B configuration. 

These ratios are consistent with the measured rate constants for the reactions of SF6
- 

(Table 2.3). The ratio did not depend on the pressure and the dew point range 

encountered during the mission. The overall uncertainty for the HO2NO2 measurement is 

24 %, defined by the combination of accuracy of SO2 and NO2 standard (5 % and 2 % 

respectively) and the statistical error at the 2 σ level (1 second) of calibration signals as 

23.8 %. The LLOD for a 30 second average at the 2 σ level is estimated to be 2 pptv. 

  Water vapor is the most serious interference for detection of HO2NO2 with SF6
- 

ion chemistry due to the ion-cluster issue [Slusher et al, 2001]. The degree of the 

interference from water vapor was tested by looking at the ion signal of HO2NO2 with 

humidified UHP nitrogen (Figure 2.5). These tests indicated that the CIMS has a 

background of less than 15 pptv of HO2NO2 at dew points less than 268 K. At higher dew 

points the background rapidly increased. For this reason, only HO2NO2 data at dew point 



 46

s less than 268 K were reported. The threshold dew point is much higher than the one 

assessed by Slusher et al. [2001] (250 K) before a CDC was adapted in the CIMS system.  

 

2.2.2.2.2 HCl 

  The relative sensitivity of HCl to SO2 was measured with a standard gas mixture 

of HCl (20 ppmv ± 20% balanced by UHP N2, Matheson Tri Gas, Montgomeryville, PA). 

The mixing ratio of the standard gas mixture was measured with a UV-Visible absorption 

cell identical to that of Neumann et al. [2003] using an absorption cross section for HCl 

at 185 nm of 3.15×10-19 cm2/molecule (personal communication with James B. 

Burkholder NOAA). The assessed mixing ratio of the standard is 5.3 ppmv (±22 %), 

which is significantly lower than the denoted mixing ratio by the manufacturer.
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 The intercomparison between the SO2 (Scott Marrin, SO2 247 ppbv ± 5 %) and 

the HCl standard mixture proved that the HCl sensitivity does not depend on pressure or 

dew point over the range encountered during the INTEX-B mission. However, the ratio 

of sensitivities depends on the dew point because of the strong dependency of the SO2 

sensitivity on humidity as shown in Figure 2.6a. The linear relation between HCl and SO2 

sensitivities below -15oC was used to determine HCl sensitivities. However, above dew 

points of -15oC, the strong correlation between the sensitivity of HCl and reagent ion 

counts (34SF6
-) as shown in Figure 2.6b (R2 = 0.9713) was utilized. An uncertainty in the 

observed HCl levels was estimated to be 33% with calibration uncertainty dominating. 

The uncertainty is determined by accuracies of standard (SO2, 5% and HCl, 10%) and 

dew point measurements in the field (5%) and the post-mission calibration (18%). In 

addition, the statistical error at the 2σ level of calibration signals (1 second average) is 

considered as 25%. The LLOD for HCl was estimated to be 2 pptv for a signal to noise 

ratio of one with the noise defined as 2σ of the background signal (30 seconds average) 

 

2.3 Calculations and Model Validations 

 This study conducted several calculations and compared measured results with 

model products to test our current understanding of tropospheric chemistry. Calculation 

schemes for the steady state and the time dependent calculation of HO2NO2 are explained 

in this section. In addition, a summary of the radiative transfer model for near-IR solar 

radiation to estimate the IR photolysis rate of HO2NO2 in the free troposphere is 

presented. Since the photolysis rate in the IR region was the only parameter 
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unconstrained by measurements, the radiative transfer model calculations were essential 

to evaluate potential differences between calculations and observations. 

  

2.3.1 Steady State Calculation 

  HO2NO2 levels were estimated using a simple model and the steady-state 

approximation. This assumes sources and sinks of short lived species, such as radicals, 

are in balance.  Since the lifetime of HO2NO2 during the INTEX-mission is shorter than 

five hours throughout the troposphere, the application of the steady-state assumption to 

HO2NO2 is reasonable. For this study, we use R 2.14 for the source and R 2.-14, R 2.15 

and R2.16 for the sinks to calculate HO2NO2 with the steady-state assumption 

([HO2NO2]SS).  

HO2 + NO2 ↔ HO2NO2 R 2.14, R 2.-14 

HO2NO2 + OH → products R 2.15 

HO2NO2 + hν → products R 2.16 

[HO2NO2]ss is given by the following equation: 

][
]][[

][
312

221
22 OHkkJ

NOHOk
NOHO SS ++

=
−

 

Where k1, k-1, k3 are rate constants and J2 is the photolysis rate of HO2NO2. The 

rate constants are from Sander et al., [2006], and the concentrations of OH, NO2, and 

HO2 are taken from observations [Singh et al., 2006] or from the output of the NASA 

Langley photochemical model. Since radiation measurements during the INTEX mission 

were conducted only for the UV-Visible wavelength region, the photolysis rate for R 2.5 

is assessed by adding the commonly accepted IR photolysis constant for HO2NO2 in the 
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troposphere of 10-5 /sec to the measured photolysis rate. The assessment of this assumed 

value was conducted by radiative transfer model calculations over the near-IR. 

The calculations, described above are conducted with the code of IGOR-PRO 

(WaveMetrics, Inc.,OR USA ) as shown in APPENDIX A. 

 

2.3.2 Time Dependent Model 

  Time dependent model calculations were also performed to assess the deviation of 

HO2NO2 from steady-state for typical upper tropospheric conditions where its lifetime is 

of the order of five hours. This method assumed an initial injection of NOx into the upper 

troposphere and followed its temporal evolution and oxidation over the course of several 

days in one-minute time steps. Short lived species such as radicals were predicted using 

the steady state assumption and the chemical scheme of Faloona et al. [2000]. In addition, 

longer lived species such as CO were held at median observed values. The chemical 

species and how they were treated in the model are listed in Table 2.4. Rate constants 

were taken from the JPL evaluation version 15 [Sander et al., 2006], and all photolysis 

rates in given local time were calculated with the TUV 4.1 model 

(http://cprm.acd.ucar.edu/Models/TUV/) for typical conditions of INTEX (e.g., latitude, 

time of day, and date). The calculated photolysis rates were found to be within 20% of 

observations during the INTEX mission. Based on the schemes above, the calculations 

were performed with the MATLAB (The MathWorks, Inc) code, presented in 

APPENDIX B 
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2.3.3 Near-IR Flux Calculation 

  Although the estimated overtone photolysis rate (10-5/sec) in the upper 

troposphere and the lower stratosphere has been suggested as a good estimation by a 

series of HOx budget studies and lab experiments [Evans et al., 2003; Roehl et al., 2002; 

Salawitch et al., 2002; Zhang et al., 2000; Wennberg et al., 1999], this value was 

calculated from the actinic flux at the top of the atmosphere without considering surface 

albedo on the given spectral region [Roehl et al., 2002]. For this reason we performed 

actinic flux calculations over the near-IR region to estimate the uncertainty of this 

overtone photolysis rate using Santa Barbara DISTORT Atmospheric Radiative Transfer 

model (SBDART). The SBDART model applies the calculation scheme of the plane-

parallel radiative transfer for the estimation of the spectral range of 0-50000 cm-1 with a 

spectral resolution of 20 cm-1. A more detail description of SBDART can be found in 

Richiazzi et al. [1998]. With the actinic flux, calculated by SBDART, the overtone 

photolysis rate of HO2NO2 is calculated on the bands of 2ν1 (6900 cm-1) and 3ν1 (10090 

cm-1) that account for more than 92% of the overtone photolysis of HO2NO2 [Roehl et al., 

2002]. In addition, the calculation used the quantum yield and the absorption cross-

section of Roehl et al. [2002].  

Category Species 
Constrained O3, CH4, CO, CH2O CH3OOH, H2O2, CH3C(O)CH3, H2O 

Steady state OH, HO2, CHO , O(1D), CH3O2, CH3C(O)O2 

Time dependent NO, NO2, HNO3, HO2NO2, PAN, NO3, N2O5 

Table 2.4 The summary of chemical species, considered in the time dependent model in 
this study according to three different ways of dealing the chemical species. 
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1CHAPTER 3 

MEASUREMENT OF HO2NO2 IN THE FREE TROPOSPHERE 
DURING THE INTERCONTINENTAL CHEMICAL TRANSPORT 

EXPERIMENT–NORTH AMERICA 2004 

 

3.1 Introduction 

Pernitric acid (HO2NO2) is formed in the atmosphere by an association reaction 

that couples the HOx and NOx families [Niki et al., 1977]: 

HO2 + NO2 + M ↔ HO2NO2 + M    R3.1, R3.-1 

The thermal decomposition of HO2NO2 , R3.-1, is a strong function of 

temperature with the lifetime for this process varying from approximately 20 seconds in 

the boundary layer to 8 hours at 8 km. Consequently, at lower and mid latitudes HO2NO2 

is only expected to build up to significant concentrations in the upper troposphere, where 

photolysis and reaction with OH are expected to be the dominant loss processes. 

HO2NO2 + hv → Products R3.2 

OH + HO2NO2 →H2O + NO2 + O2 R3.3 

The potential impact of HO2NO2 on upper tropospheric photochemistry (z = 8-12 

km) has been discussed by several investigators [Brune et al., 1999; Wennberg et al., 

1999; Faloona et al., 2000; Jaeglé et al., 2000]. In particular, Jaeglé et al. [2000] noted the 

importance of HO2NO2 as a sink for HOx at intermediate levels of NOx (100 - 500 pptv) 

                                                 

 
 
1Adopeter part from Kim, S et al.: Measurement of HO2NO2 in the free troposphere during the INTEX-NA 
2004, Journal of Geophysical Research, Vol112, D12S01, doi:10.1029/2006JD007676, 2007. Reproduced 
by permission of American Geophysical Union.  Copyright 2007 American Geophysical Union. 
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via R3.3. However, these studies were unconstrained by observations of HO2NO2. The 

only previous direct measurements of HO2NO2 are in the South Pole boundary layer 

during Austral Summer 2000 and 2003 [Slusher et al., 2001; Sjostedt et al, 2004]. These 

results demonstrated that HO2NO2 was present in significant levels (on average 25 pptv 

in 2000; 42 pptv in 2003) and could be the dominant sink for HOx via deposition to the 

snowpack and R3.3. The only in situ airborne HO2NO2 data were obtained during the 

TOPSE campaign from the NCAR C-130 at altitudes of 0 to 7 km. Murphy et al. [2003] 

derived levels of HO2NO2 + CH3ONO2 from their sum of peroxy nitrates channel (ΔPN) 

by subtracting independent measurements of peroxy acyl nitrates (PANs). They 

compared the derived HO2NO2 to photochemical calculations (with and without an 

overtone photolysis rate of 10-5 sec-1) and demonstrated the importance of the overtone 

photodissociation channel as a loss mechanism for HO2NO2 [Roehl et al, 2002; 

Wennberg et al, 1999]. Observations of pernitric acid by remote sensing have been 

reported but are confined to the stratosphere (20 – 40 km) [Rinsland et al., 1996; Sen et 

al., 1998]. However, Stiller et al. [2007] recently reported satellite borne measurements 

of HO2NO2 profiles in the altitude range of 6 km to 62 km with an altitude resolution of 3 

km and the instantaneous field of view of 30 km × 3 km using the Michelson 

Interferometer for Passive Atmospheric Sounding (MIPAS) mounted on the 

Environmental Satellite (ENVISAT) of the European Space Agency (ESA).  

This work presents the first direct in situ observations of HO2NO2 in the free 

troposphere. These measurements were performed in the summer of 2004 with a 

chemical ionization mass spectrometer from the NASA DC-8 during the Intercontinental 

Chemical Transport Experiment-North America (INTEX-NA) field experiment. The 
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INTEX-NA study sought to characterize and investigate the transport and transformation 

of both aerosol and gas-phase species over large spatial scales and altitude ranges. Flights 

were based out of California, Illinois, and New Hampshire. The sampling domain 

included much of the U.S., parts of Canada, and areas off the eastern and western coasts 

of North America. A detailed description of the DC-8 payload and the INTEX-NA 

campaign is presented by Singh et al. [2006] and in Chapter II. In this work our 

understanding of the chemistry of HO2NO2 over the altitude range of 4-12 km is 

investigated by comparison of observations with highly constrained steady state 

calculations and photochemical models.  
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3.2. Results and Analysis 

All reported data and analyses are based on a one-minute average merged data set 

(ftp://ftp-air.larc.nasa.gov/pub/INTEXA/DC8_AIRCRAFT/). The median observed 

HO2NO2 altitude profile for the INTEX-NA mission is presented in Figure 3.2, and the 

statistics of the vertical distribution are reported in Table 3.1. Median values of steady 

state calculations of HO2NO2 based on both observed and model predicted (the NASA 

Langley box model [Crawford et al., 1999; Olson et al., 2004]) HOx are also graphed in 

Figure 3.2. The observed HO2NO2 mixing ratio profile shows a maximum of ~76 pptv 

between 8 and 9 km. Pernitric acid mixing ratios decrease below this altitude as expected 

due to large thermal dissociation rates. Above 10 km, levels decrease primarily due to a 

weakening of the source strength. The mean concentration of pernitric acid in the upper 

troposphere (8 ~ 12 km) was 67±37 pptv (2467 data points, 1σ), which accounted for 

approximately 5% of the total reactive nitrogen (NOy) budget and approximately 10% of 

the HOx sink in this region [Singh et al., 2007]. 
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Altitude, km Median, pptv Average, pptv 1 σ, pptv 
4.25 8.0 12.3 15.9 
4.75 11.4 15.8 20.7 
5.25 13.4 31.3 62.7 
5.75 15.6 20.5 15.5 
6.25 20.4 25.6 18.4 
6.75 32.2 38.9 24.0 
7.25 53.7 59.2 32.4 
7.75 51.9 61.5 39.3 
8.25 78.2 77.5 39.6 
8.75 66.8 75.1 39.9 
9.25 67.8 75.8 41.4 
9.75 62.6 65.0 32.5 
10.25 63.0 66.1 29.7 
10.75 38.7 44.1 25.2 
11.25 34.1 41.0 23.8 
11.75 46.0 46.8 10.7 

 

In the mid troposphere (4km - 8km) both of the calculated profiles are in 

reasonable agreement with observations (Figure 3.2). This is more clearly illustrated in 

Figure 3.3, which presents scatter plots of the steady state calculations versus 

observations. The calculations based on observed HOx (Figure 3.3a, R2= 0.61, slope = 

1.23, intercept = 4.8 pptv) and on model predicted HOx (Figure 3.3b, R2= 0.66, slope = 

0.97 intercept = 7.0 pptv) are both well correlated to the observations. The median ratios 

for the calculations relative to the observations are 1.3 for observed HOx and 1.1 for 

model predicted HOx. This level of agreement is well within the 30% error bar of the 

HO2NO2 measurement alone. These results indicate that we have a reasonable 

understanding of the chemistry of HO2NO2 in this region, where thermal decomposition 

dominates the lifetime (Figure 3.1). Very similar results were also derived using k-1 from 

the recent work of Gierczak et al., [2005]. Correlations between calculations and 

Table 3.1 Vertical distribution of observed HO2NO2 from 1-min averaged 
data for INTEX-NA 2004 
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observations were essentially identical with calculated values rising by a factor of 1.5. 

However, these results are still within the uncertainty of the analysis. 

In the upper troposphere (8-12 km) the agreement between the steady state 

calculations and observations is not as good as at lower altitudes. The HO2NO2 

calculations based on model predicted HOx are still highly correlated with the 

observations (Figure 3.4b, R2=0.63, slope = 0.80, intercept = 35.8 pptv) but with a 

significant offset that yields a median ratio of calculated to observed of 1.3. Conversely, 

the correlation between HO2NO2 calculations based on observed HOx and observations is 

significantly weaker (Figure 3.4a, R2=0.10, slope = 1.75, intercept = 102.2 pptv) with a 

median ratio of calculated to observed of 2.9. These results indicate that our ability to 

predict HO2NO2 with simple steady state models at higher altitudes, where its lifetime is 

longer and controlled by photochemical processes (Figure 3.1), is not as good as at low 

altitudes. There is also a difference between upper tropospheric HOx observations and 

predictions, especially around 10 km, with the pernitric acid observations more in accord 

with the photochemical model results. 
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Figure 3.3 Scatter plot of mid tropospheric (5.5-7.5 km) HO2NO2 steady state 
calculations versus observed HO2NO2. The calculations are based on (a) observed and 
(b) model HOx 

a) 

b) 
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Figure 3.4 Scatter plot of upper tropospheric (8 – 12 km) HO2NO2 steady state 
calculation versus observed HO2NO2. The calculations based on (a) observed and (b) 
model HOx. The offset presented by the intercept of the regression result probably 
comes from an intrinsic error of the steady state assumption of HO2NO2. 

a) 

b) 
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At altitudes of 8-10 km the ratio of photochemical model predictions to 

observations (M/O) for OH and HO2 are 1.8 and 1.0, respectively. In the altitude range of 

10-12 km the M/O ratio for OH and HO2 are 1.5 and 0.5, respectively. Consequently, 

there is a discrepancy between the measured and predicted HO2 to OH ratio that increases 

with altitude. However, this difference is primarily due to the high levels of NOx that also 

were observed to increase with altitude [Bertram et al., 2007]. The predicted ratio of 

[HO2]/[OH] decreases much more strongly as a function of NOx than the observations as 

shown in Figure 3.5. 
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Figure 3.5 Correlation plots between [HO2]/[OH] and [NOx] (a) from observed HOx 
and (b) from model predicted HOx. Due to lack of NO data, the photo-stationary state 
of NO-NO2-O3 is applied 
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Figure 3.6 Correlation plots between [HO2NO2]/[NO2] and [HO2]/[OH] (a) from 
observed HOx and (b) from model predicted HOx. 

a) 

b) 
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At higher altitudes where thermal decomposition of pernitric acid is negligible the 

ratio of HO2NO2 to NO2 should have a strong dependence on the [HO2]/[OH] ratio. This 

is evident from the steady state equation for those conditions where reaction with OH 

(R3.3) is the dominant loss. For the INTEX-NA mission the HO2NO2 loss due to OH 

dominates in the upper troposphere according to model predictions. However, if the 

model is incorrect the correlation between [HO2]/[OH] and [HO2NO2]/[NO2] should still 

be significant due to the dependence of OH levels on photolysis rates. Thus the observed 

[HO2NO2]/[NO2] ratio provides an independent check of the [HO2]/[OH] ratio. A strong 

correlation (R2 = 0.6) is observed between model predicted [HO2]/[OH] (Figure 3.6b) and 

observed [HO2NO2]/[NO2]; however, the correlation decreases significantly with 

observed HOx (Figure 36a, R2=0.2). The weaker correlation with the observations is 

primarily due to the insensitivity of the observed [HO2]/[OH] ratio to higher NOx levels 

which corresponds to lower ratios of [HO2NO2]/[NO2]. Consequently, the observed 

HO2NO2 levels are more consistent with the predicted [HO2]/[OH] ratio. 
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Finally, the INTEX-NA data set allows the investigation of the impact of high 

levels of ozone on the CIMS system. A potential problem with the SF6
- CIMS system for 

measurement of HO2NO2 is a positive interference due to high ozone levels [Slusher et 

al., 2001]. This interference has been characterized in the laboratory and was found to be 

unimportant at levels of ozone up to several hundred ppbv [Slusher et al., 2001] but this 

has not been confirmed by field observations. The potential effect was investigated by 

examining the relationship of observed HO2NO2 and O3. Figure 3.7 plots observed 

HO2NO2 versus O3 in the altitude range of 8.5 – 9.5 km (i.e., highest HO2NO2) for both 

periods when the air was primarily of tropospheric (O3<150 ppbv, H2O>120ppmv) and 

stratospheric (O3>200 ppbv, H2O<100ppmv) origin. There is a moderate correlation 

(R2=0.33) between pernitric acid and ozone at lower ozone levels for the tropospheric air 

Figure 3.7 Scatterplot of HO2NO2 and O3 in the altitude range of 8.5 to 9.5 km. Solid 
circles represent air, primarily of tropospheric origin, and open triangle present air with 
the significant stratospheric influence. Note the x axis has a change in scale at 150 ppbv 
of ozone 
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masses. At the higher ozone levels in the stratospherically influenced air masses there is 

essentially no correlation. This indicates that O3 at levels of up to 250 ppbv are not a 

significant interference to the HO2NO2 measurement. The correlation between ozone and 

HO2NO2 in the tropospheric air masses is likely due to ozone production via the reaction 

of HO2 with NO which is closely related to pernitric acid formation (R3.1). This suggests 

that HO2NO2 in this altitude range may be a good marker for recent ozone production. 

 

3.3 Discussion 

Measurements of HOx, NOx, and HO2NO2 were consistent at altitudes below 7.5 

km where thermal decomposition dominates the loss of pernitric acid. The thermal 

decomposition rates derived from Sander et al. [2006] and Gierzcak et al. [2005] are both 

in reasonable agreement with the lower altitude observations. These results indicate that 

the uncertainty in the HO2NO2 lifetime due to the thermal decomposition rate, k-1, is less 

than a factor of two at temperatures greater than 250 K.  

Above 8 km the observations of HOx and HO2NO2 are less compatible with our 

understanding of photochemistry. The results indicate that the formation rate of HO2NO2 

is overestimated or the loss rates are underestimated. Alternatively these results may 

suggest that the steady state calculations are problematic in this altitude range and the 

agreement between the model HOx calculations and observed HO2NO2 is fortuitous. 

There is strong evidence that the rate constant (k1) for the formation of HO2NO2 is 

accurately known. The most recent study on the rate constant by Christensen et al. [2004] 

concluded that their results agree within 15% of the previous value, based on several 

prior studies, over a wide range of temperature and pressure. There has been speculation 
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that the reaction of HO2 with NO2 could produce other products such as HONO, but this 

has been shown to be unimportant by Tyndall et al. [1995]. The rate constant, k3, for the 

reaction of HO2NO2 with OH also appears to be known to better than 50% over a wide 

temperature range (218-335 K) [Jimenez et al., 2004; Smith et al., 1984]. This uncertainty 

is too little to bring the observed HOx and HO2NO2 at higher altitudes into agreement. 

For these reasons, we have investigated other potential loss processes, reassessed our 

estimate of overtone photolysis rates, and performed time-dependent photochemical 

calculations to assess the magnitude of the deviation from steady state.  

Pernitric acid could be lost by heterogeneous loss or uptake in the upper 

troposphere on either background sulfate aerosol or cirrus clouds [Evans et al., 2003; 

Saathoff et al., 2001; Leu et al., 1999; Zhang et al., 1997; Li et al., 1996]. However, we 

found no evidence for a relationship between aerosol surface area and HO2NO2 levels 

indicating that reaction on sulfate aerosol is not an important loss process. Evaluating the 

impact of cirrus clouds on pernitric acid levels is more problematic due to their relatively 

short lifetime (~1 hour). There were a few flight legs during the campaign in which the 

DC-8 sampled in cirrus clouds as evidenced by detection of large particles (>20 μm dia.). 

There was no obvious diminishment of pernitric acid in these air masses, but these data 

are limited and do not allow for a robust conclusion. For this reason, we think cirrus 

cloud processing of HO2NO2 is still an open question especially since pernitric acid has 

been shown to efficiently stick to ice at low temperatures [Li et al., 1996].  

The upper limit of the overtone photolysis rate of HO2NO2 in the upper 

troposphere of the typical INTEX condition is estimated to assess the degree of 

uncertainty in the overtone photolysis rate. Overtone photolysis rates of HO2NO2 were 
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estimated by calculating actinic fluxes using the SBDART (Santa Barbara DISORT 

Atmospheric Radiative Transfer) model [Ricchiazzi et al., 1998] and cross sections and 

quantum yields from Roehl et al. [2002]. Calculations of both direct and diffuse fluxes 

were performed for typical INTEX conditions as listed in Table 3.2. 

 

 

 

 

 

 

 

Note that sand was chosen as the surface to maximize the infrared albedo. A total 

photolysis rate of 8.0 x 10-6 s-1 was calculated which compares favorably with the value 

of 8.3 x 10-6 s-1 derived by Roehl et al. [2002] from the direct flux at the top of the 

atmosphere. These calculations indicate the photolysis rate (10-5 s-1) used in the steady 

state analysis is reasonable but is probably an upper limit. As the dominant overtone 

photolysis band, 2ν1, for HO2NO2 overlaps a water transition [Rothman et al., 2005] the 

upward flux in this spectral range over clouds, ocean, and snowpack will be attenuated 

due to a decreased albedo in the near-IR. It is also worth noting that only one 

measurement [Roehl et al., 2002] of the quantum yield and cross section for the 2v1 band 

is available and should probably be confirmed.  

 

 

Local time 28 July, Local noon 

Latitude 38oN 

Surface type Sand 

Atmosphere profile US 62 

Boundary layer type Rural 

Table 3.2 Parameters for actinic flux calculations using SBDART 
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The error in the HO2NO2 calculations was investigated by using a time-dependent 

photochemical model to estimate the deviation from steady state. Figure 3.8 shows a 

temporal plot of HO2NO2 at 9 km, for typical INTEX-NA conditions (28 July, 

latitude~40ºN), calculated using steady state and time-dependent methods. The time-

dependent results are for the second day after a fresh injection of NOx into the upper 

atmosphere reflecting the relatively fresh air-masses sampled during INTEX-NA 

[Bertram et al., 2007; Fuelberg et al., 2007]. However, the comparison of the time-

dependent and steady state results was not found to depend strongly on the number of 

days after the NOx injection. In fact, the steady state values were found to be within 50% 

of the time-dependent calculations within approximately five hours after a fresh injection 

of NOx. The shaded area in Figure 3.7 is the typical flight time from 8 a.m. to 5 p.m. The 

Figure 3.8 Temporal plot of HO2NO2 calculated using time-dependent (solid circle with 
solid line) and steady state HO2NO2 (open circle with dashed line) models. Shaded time 
zone is a typical flight time during INTEX-NA from 0800 to 1800 LT. 
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largest difference is in the morning where the steady state model over-predicts HO2NO2 

by ~50%. The disagreement diminishes through the day until there is a slight 

underestimation by the steady state model in the late afternoon. These effects were 

observed to a small extent in the data as the ratio of model predictions to observations 

before noon was approximately 10% greater than in the afternoon. On average the steady 

state model over-predicts the time-dependent results by 12% during typical DC-8 flight 

times. At higher altitudes the disagreement between steady state and time-dependent 

calculations is lower as HO2NO2 does not undergo significant thermal decomposition 

through the night. Consequently, steady state methods seem to be valid for predicting 

HO2NO2 levels in the upper troposphere with less than a 50% inherent error bar.  

Clearly, the measured HO2NO2 and HOx are not consistent with our current 

understanding of photochemistry in the upper troposphere. One possible explanation is 

that there are unidentified measurement errors in either or both the HOx and HO2NO2 

measurements. These potential errors must be greater at either high altitude or high NOx 

levels, but at this point we are unaware of any mechanisms for these errors. Alternatively, 

a higher loss rate for pernitric acid would bring observations of HO2NO2 and HO2 into 

better agreement. Figure 3.9a presents the vertical profile of the needed HO2NO2 first 

order rate constant for the additional loss needed to bring observed HO2NO2 and HOx 

into accord. This additional loss rate generally increases with altitude with a maximum 

near 11 km. The needed loss rate is of a large magnitude and is unlikely to be explained 

by any single mechanism. One potential mechanism that could account for some of the 

additional loss is photolysis via weak electronic transitions as discussed by Mathews et 

al. [2005]. Finally, we determined if the measured OH and the model predicted 
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[HO2]/[OH] ratio are consistent with the observed HO2NO2. This was done with a steady 

state analysis using observed OH and HO2 derived from the predicted HOx ratio. The 

median altitude profile for this data is shown in Figure 3.9b and shows excellent 

agreement with the observed profile. These data demonstrate that the observed HO2NO2 

are inconsistent with the observed HOx ratio but not the observed OH levels. 
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3.4 Summary 

Our understanding of HO2NO2 in the free troposphere is examined with the first 

direct in situ observations from the NASA DC-8 during INTEX-NA 2004. Photochemical 

models and observed HOx levels can explain the HO2NO2 in the mid troposphere (4.5-8 

km) where thermal decomposition is dominant. In the upper troposphere (8-12 km) there 

is a significant discrepancy between model predicted and observed HOx. There is also 

significant disagreement between steady state calculations of HO2NO2 that use measured 

HO2 levels and observations of HO2NO2 in the upper troposphere. Conversely, pernitric 

acid levels are reasonably well predicted by steady state calculations using photochemical 

model predicted HO2 levels. Time dependent modeling of HO2NO2 levels indicates that 

treating pernitric acid as in steady state is valid in the upper troposphere within the 

uncertainty of steady state calculations. The discrepancy between the observed HO2 and 

HO2NO2 levels would be diminished if there is an unidentified loss process for HO2NO2 

whose magnitude increases with altitude. This suggests that further investigation of 

potential HO2NO2 loss processes may be needed. 
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CHAPTER 4 

HCl OBSERVATIONS OVER THE NORTH PACIFIC OCEAN 

 

4.1. Introduction 

Hydrochloric acid (HCl) is produced in the troposphere and stratosphere by 

different mechanisms. In the remote troposphere the major source of HCl is thought to be 

dechlorination of sea-salt aerosol by acids such as HNO3 and H2SO4 [Erickson, 1959a 

and b; Kerminen et al., 1998]. HCl is very soluble in water and can be lost to cloud drops 

and aerosols of non-acidic composition [Keene et al., 1999] on the time scale of a day in 

the remote marine boundary layer (MBL). Conversely, the lifetime of HCl with respect to 

photolysis and reaction with OH is relatively long (~20 days with [OH]AVG = 106 

molecules/cm3) in the troposphere [Sander et al., 2006]. For this reason, tropospheric HCl 

chemistry is expected to be most active in the marine boundary layer (MBL). This is 

especially true in the polluted MBL where very high levels of HCl have been predicted 

(~400 pptv; Spicer et al., 1998). These high levels have been attributed to the interaction 

of N2O5 with sea salt to produce high levels of Cl2 [Behnke et al., 1997; Schweitzer et al., 

1998; Rossi, 2003]. Cl2 will rapidly photolyze to produce chlorine atoms that produce 

HCl by reaction with methane and other volatile organic compounds (VOC). Elevated Cl2 

in the urban MBL has been speculated to lead to enhanced ozone production [Finley and 

Saltzman, 2006; Tanaka et al, 2003; Chang et al., 2002; Spicer et al., 1998]. 

 Direct observations of HCl in the MBL and lower troposphere are limited in terms 

of frequency and geographical coverage. However, HCl has been measured sporadically 

in a variety of locations [Graedel and Keene 1995]. These measurements indicate HCl 
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mixing ratios in the remote MBL (0 – 200 m) of 100-300 pptv with levels decreasing to 

50-100 pptv in the remote marine free troposphere (1 km – 6 km; Vierkorn-Rudolph et 

al., 1984). In the urban influenced troposphere ppbv levels of HCl have been reported in 

various locations [Keene et al., 2007; Graedel and Keene, 1995]. Keene et al.,[1999] 

calculated the global tropospheric budget of HCl, based on the data from Greedel and 

Keene,[1995], and reported that large unknown sources are needed to explain the 

distribution of HCl in the troposphere. However, this conclusion was based on data from 

analytical methods (filter techniques), which have been identified to potentially have 

positive artifacts such as NOCl, ClNO2, ClNO3 and chlorinated aerosols. Therefore, most 

of these studies report HCl*, which includes NOCl, ClNO2, and ClNO3, rather than HCl. 

 The magnitude of HCl production in the troposphere by Cl reactions with VOC is 

not well constrained due to the uncertainty in Cl levels. A series of studies have applied 

indirect methods using chemical proxies such as observations of C2Cl4 and VOC ratios to 

estimate Cl number densities [Singh et al., 1996a, 1996b; Wingenter et al., 1996; 

Rudolph et al., 1996, 1997; Jobson et al., 1998; Wingenter et al., 1999]. These estimates 

range from 720 atoms/cm3 [Wingenter et al., 1999] to 105 atoms/cm-3[Singh et al., 1996a; 

Wingenter et al., 1996]. Recently, Arsene et al. [2007] and Wingenter et al. [2005] 

reported 6×103- 4.7×104 atoms/cm-3 and 5.7×104 atoms/cm-3, respectively. 

 In the stratosphere HCl is produced primarily by the reaction of Cl radicals with 

CH4 [Lin et al., 1978]. The source of stratospheric chlorine is the photodissociation of 

chlorofluorocarbons (CFCs) [Molina and Rowland, 1974]. HCl is the most abundant 

form of inorganic chlorine in the stratosphere due to its long photochemical lifetime (of 

the order of 30 days at 20 km; Webster et al., 1994). However, HCl can be lost via 
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heterogeneous processes in the stratosphere. [Hanson et al., 1994; Hanson and 

Ravishakara, 1991, 1993, and 1994; Tolbert et al., 1988]. Lelieveld et al., [1999] reported 

a mean mixing ratio of ~ 450 pptv of HCl at 12.3 km in the late Arctic winter (Feburary 

1995; Kiruna, Norway) from observations with a quadrupole mass spectrometer. Webster 

et al.,[1994], also, reported in situ HCl measurements in the stratosphere using a tunable 

diode laser spectrometer integrated on the NASA ER-2 research aircraft during the 

SPADE(Stratospheric Photochemistry, Aerosols, and Dynamics Expedition) mission. 

These research flights covered a latitude range of 15- 60oN and altitudes below 20km in 

spring and fall of 1992 and 1993. HCl levels of 500 pptv to 1ppbv of HCl were observed 

over a pressure range of 50 to 70 mb. In addition, the study also found that model 

predictions of the HCl fraction of inorganic chlorine (Cly = HCl, ClO, and ClONO2) in 

the stratosphere was systematically higher than observations although the model 

predicted Cly within the uncertainty of the measurement. 

 Remote sensing has been used to measure the global distribution of HCl in the 

stratosphere. The Halogen Occultation Experiment (HALOE) indicated ~1ppbv of HCl at 

10 mb with no obvious variation as a function of season or latitude [Russell III et al., 

1996]. 

 Recently, Marcy et al.[2004] demonstrated the utility of HCl measurements for 

examining the transport of stratospheric O3 to the troposphere.  They found a very high 

degree of correlation between HCl and O3 in the upper troposphere and lower 

stratosphere during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-

Florida Area Cirrus Experiment (CRYSTAL FACE) mission. They also found the 

observed relationship was consistent with the IMPACT (Interactive Modeling Project for 
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Atmospheric Chemistry) model of stratospheric chemistry. Consequently, they proposed 

using the observed HCl/O3 ratio to calculate the fraction of stratospheric ozone in an air 

parcel. However, this method relies on the assumption that HCl in the free troposphere is 

only of stratospheric origin which is inconsistent with the observations of Graedel and 

Keene [1995].  

 In this work we present observations of HCl from the NASA DC-8 during the 

Anchorage, AK deployment of the Intercontinental Chemical Transport Experiment- 

Phase B (INTEX-B). This phase of the mission consisted of five flights over the North 

Pacific as shown in Figure 1. Each science mission consisted of level flight legs and 

multiple spiral vertical profiles from the MBL to the UT. The comprehensive vertical 

coverage allows us to examine HCl levels over the entire troposphere. These data are 

analyzed using correlations with other measured species and a 3D chemical transport 

models to probe our understanding of the sources and distribution of HCl in the 

troposphere. 

 

4.2. Results and Discussion 

All reported data and analyses are based on a 1 minute merged dataset unless 

otherwise noted. The median and the mean profiles of HCl for five science flights of the 

INTEX-B mission are presented in Figure 4.1, accompanied with median profile of O3 

and HNO3. In addition, in Table 4.1, we report the statistics of the vertical distribution of 

HCl. In general, we found high HCl episodes (up to 140 pptv) in the upper troposphere 

(8-12km) interspersed with observations of low levels near our detection limit of 2 pptv. 

In the MBL HCl levels above 20 pptv were routinely observed. In the mid troposphere (4 
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- 8 km), HCl was measured below 15 pptv more than 90% of the time (90%). However, 

one case of strong stratospheric influence was identified by HCl enhancement along with 

enhanced O3. There was also evidence for one episode of dechlorination in the mid 

troposphere. The vertical distribution of HCl in this study is significantly different from 

that of Keene et al. [1999] and Graedel and Keene [1995]. The observed values in both 

the MBL and mid troposphere are lower by a factor of 5-10 than the previous studies. 

The observations of very low background levels of HCl in the UT/LS are consistent with 

the results reported by Marcy et al. [2004] 

 

 

Altitude Average Median 1 σ min. Max. 
0.25 32.1 24.4 20.9 5.8 105.1 
0.75 22.8 17.5 18.0 8.1 82.6 
1.25 18.3 14.1 17.0 2.0 72.0 
1.75 16.9 11.2 14.6 2.0 72.2 
2.25 18.0 13.8 14.0 2.0 80.7 
2.75 8.3 6.3 12.6 2.0 64.8 
3.25 7.4 8.6 5.8 2.0 29.3 
3.75 6.9 5.8 6.5 2.0 28.2 
4.25 5.5 2.0 5.8 2.0 25.2 
4.75 6.1 2.0 6.1 2.0 25.5 
5.25 6.0 2.0 7.1 2.0 24.1 
5.75 6.8 6.7 6.0 2.0 23.5 
6.25 4.4 2.0 4.5 2.0 22.0 
6.75 5.0 2.0 5.8 2.0 20.7 
7.25 8.1 2.0 11.4 2.0 56.0 
7.75 5.9 2.0 8.7 2.0 55.0 
8.25 9.8 2.0 13.6 2.0 55.2 
8.75 27.7 14.2 33.5 2.0 115.4 
9.25 6.6 2.0 11.0 2.0 55.9 
9.75 26.2 2.0 31.8 2.0 89.4 
10.25 54.5 62.3 43.5 2.0 140.9 

Table 4.1 Vertical distribution of HCl from five science flights during the 
Anchorage deployment of the INTEX campaign (in pptv) 
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 4.2.1 The Upper Troposphere (8-12 km) 

High levels of HCl in the upper troposphere were strongly associated with 

stratospheric influences. This is illustrated in Figures 4.2c and 4.2d, which show a strong 

negative correlation of HCl with tropospheric tracers (N2O and CFCs), and Figure 4.2a 

and 4.2b which show a strong positive correlation of HCl with stratospheric tracers (O3 

and HNO3).The correlation with O3 (Figure 4.2a) illustrates that the background level of 

HCl (i.e. w/o stratospheric influence) in the upper troposphere is low and that HCl is a 

good tracer for recent stratospheric influence. HCl also shows a strong positive (R2 = 

0.773) correlation with Be-7, another stratospheric tracer [Dibb et al., 2003]. 

The method of Marcy et al. [2004] was employed to assess the extent of 

stratospheric influence on the upper troposphere during the Anchorage deployment of 

INTEX-B. This method utilizes the O3-HCl correlation (Figure 4.3) and sets a 

stratospheric end member (O3: 160 ppbv and HCl: 30 pptv). Above the end member the 

air is categorized as pure stratospheric. Air parcels with HCl below detection limit are 

categorized as pure tropospheric air. In between these limits the air is characterized as a 

mixture of both. The analysis suggests that in the upper troposphere (8-12 km) during 

INTEX-B pure stratospheric air was sampled ~30 % of the time and air with significant 

stratospheric influence was observed 15 % of the time. 
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Figure 4.2 The correlation of HCl with a) O3,b)  HNO3 c), N2O  and d) CFCs in 
the upper troposphere (8-12 km).  
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Figure 4.3a also contains the predicted correlation of HCl with O3 by the Realtime 

Air Quality Modeling System (RAQMS) model [Pierce et al., 2003] in the upper 

troposphere. The model systematically overestimated the slope of the correlation by 

~50% which is only slightly larger than the estimated measurement error. Marcy et al. 

[2004] found even better agreement between their observations and the Interactive 

Modeling Project for Atmospheric Chemistry and Transport (IMPACT) model [Eckman 

et al., 1995; Pierce et al., 2000; Al-Saadi et al., 2001]. These studies indicate that the 

IMPACT chemical scheme can predict the HCl/O3 relationship with at least reasonable 

accuracy. Marcy et al. [2004] did report a significantly higher ratio of (0.45) HCl/O3 than 

in this work (0.21). However, that study was conducted in the summer in the subtropics 

(24oN -39oN) in a higher altitude range (11-18km).  

 Figure 4.3b presents a strong correlation (R2 = 0.72) between measured and 

RAQMS HCl in the upper troposphere. However, the linear regression analysis presents a 

slope of ~ 0.5 with a significant offset (16 pptv). Overall, RAQMS predicted HCl is 

~30% lower than measured HCl in the high concentration range (> 60 pptv). Therefore, 

the overestimated HCl/O3 ratio from RAQMS may reflect discrepancies between 

modeled and measured O3 rather than HCl. This positive offset in the data also suggests 

that the RAQMS model always predicts a finite amount of stratosphere-troposphere 

exchange since no other source of chlorine is available in the model. This is not 

compatible with the observations and indicates that the mixing parameterization in the 

models may need to be modified. However, in general the RAQMS model appears to do 

a reasonable job of capturing stratospheric transport. 
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4.2.2 The MBL and the Lower Troposphere (0 – 4 km) 

The median levels of HCl (Figure 4.1) increase at altitudes below 4 km and reach 

up to 20 pptv in the MBL (z < 1km). These observations are much lower than recent 

measurements in the relatively clean Hawaii MBL of 30 – 250 pptv [Pszenny et al., 

2004]. Figures 4.4a and 4.4b show the correlation of HCl with HNO3 and SO2 in the 

MBL (z < 1 km), respectively. Both species shows a good correlation with HCl except 

for a few outliers associated with either volcanic influence, from the Veniaminof volcano, 

located in the Aleutian Island chain, or anthropogenic pollution near the western U.S. 

coast. These positive correlations with HNO3 and SO2, the major precursor of H2SO4, are 

consistent with HCl production from the acidification of seasalt aerosol (assuming that 

HCl has a relatively short lifetime in the MBL).  

Figure 4.4 The correlation of HCl with a) HNO3 and b) SO2 in the MBL 
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However, at very low levels of HNO3 and SO2, reasonably high levels of HCl were still 

observed (~20pptv). These low levels of HCl in the absence of HNO3 and SO2 could be 

produced by the reactions of Cl atoms with VOCs. A simple calculation to estimate the 

number density of Cl atoms needed to produce this amount of HCl is conducted using the 

assumption that HCl is in steady state. Three HCl loss pathways: aerosol uptake, oceanic 

deposition, and reaction with OH, are considered. Lifetimes for each loss process are 

estimated based on the INTEX-B data summarized in Table 4.2. These assumptions give 

the equation below for calculation of the Cl atom number density. 

[DMS]k[Methane]k[Ethyne]k[Propane]k[Ethane]k
)kk(k[HCl]

[Cl]
543421

UptakeAerosolDepositionDryOH

++++

++×
= −−  

 

 

 

 

 

 

 

 

 

 The input parameters (Table 4.2) are based on observations from the INTEX 

dataset and rate constants from the JPL compilation [Sander et al., 2006]. The result of 

the calculation is 2.8 × 103 atmos/cm3. This estimate is in the lower range [Singh et al., 

1996b; Rudolph et al., 1996, 1997; Jobson et al., 1998; Wingenter et al., 1999; Wingenter 

et al., 2005; Arsene et al., 2007] of those previous studies and is not compatible with 

Species Concentrations kCl 
Ethane 1497 pptv 5.58x10-11 molecules/cm3 s 
Propane 242 pptv 1.40x10-10 molecules/cm3 s 
Ethyne 257  pptv 5.81x10-11 molecules/cm3 s 

Methane 1.86 ppmv 7.01x10-14 molecules/cm3 s 
DMS 7 pptv 1.93x10-10 molecules/cm3 s 

Loss Pathways Rates 
kOH 1/21 day-1 

kAerosol Uptake 1/0.5 day-1 
kDry-Deposition 1/0.5 day-1 

Table 4.2 The summary of input parameters for the calculation of Cl atom 
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higher order estimates of greater than 105 atom cm-3 [Singh et al., 1996a; Wingenter et 

al., 1996]. This may reflect that the sampling environment of this study was a relatively 

remote high latitude region and the spring season with suppressed photo chemistry. 

 During the INTEX-B campaign, most boundary layer legs were conducted in 

unpolluted regions. However, one flight in the MBL south of Seattle did intercept 

moderate levels of pollution (Figure 4.5). Consequently, enhancements of HCl might be 

expected due to both dechlorination and NOx activated processes as suggested by a series 

of studies (e.g. Spicer et al., 1997) and recent measurement results [Keene et al., 2007]. 

However, large enhancements of HCl were not observed in the polluted air mass. 

Although, the sampling duration was very short (~ 10 minutes) and was over a limited 

geographic area. 

 

 

 

 

 

 

 

 

  

 Figure 4.5 Temporal variations of HCl, O3, NO, and altitude for the coastal 
boundary layer sampling near Seattle, WA. Any obvious enhancement of HCl 
was not detected even in the high NOx environment. (see text for more detail). 
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4.2.3 The Mid Troposphere (4 – 8 km) 

Figure 4.6 presents the correlation between O3 and HCl in the mid-troposphere (4 

– 8 km). Although HCl levels in the mid-troposphere were usually low (< 2 pptv 55%, 

and <15 pptv 90%), significant levels of HCl were observed that were associated with 

stratospheric influence and had a similar ratio of O3 to HCl at higher altitudes (~ 7.5 km). 

However, Figure 4.7 also shows that HCl enhancements (more than 20 pptv) can be 

observed with no stratospheric influence (i.e. no enhancement in O3 and incompatible 

back trajectories). To investigate the origin of the non-stratospheric HCl in the mid 

troposphere we examined two aircraft spirals in similar geographical locations with 

contrasting HCl. These profiles are shown in Figure 4.7 with spiral 1 having undetectable 

HCl and spiral 2 with significant HCl in the mid troposphere. 

  

Figure 4.6 The correlation of HCl with O3 in the mid 
troposphere (4-8km). The line represents the HCl-O3 
regression line of the stratosphere in Figure 4.3. 
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Figure 4.7 a) HCl profiles, measured two different spiral samplings. b) Sampling sites of 
spiral samplings and 7day back trajectories
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Figure 4.8 Profiles of a) HNO3, b) SO2, and c) non volatile aerosols d)  
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The transport of HCl to the mid troposphere from the MBL could explain the 

enhancement in spiral 2. However, backtrajectory analyses show that this air mass had 

resided in the mid troposphere for ~5 days without any influence from either the 

stratosphere or the MBL. Moreover, chemical tracers such as O3 for the stratosphere, and 

CH3I and CH3NO3 for the MBL were not enhanced in the mid troposphere during spiral 

2. In addition, the potential temperature profile (Figure 4.8 d) suggests that the mid 

troposphere of spiral 2 is stratified. In fact they are very similar levels to that observed in 

the non-enhanced spiral 1. Consequently, we are skeptical that the HCl in the mid-

troposphere has a recent MBL origin. However, there is evidence for enhanced levels of 

non-volatile aerosol in spiral 2 as shown in Figure 4.8. The optical properties of the 

nonvolatile aerosol (the ratio of refractory aerosols to total aerosols and the aerosol 

depolarization) indicate that is primarily dust of Asian origin. There is evidence from 

recent field studies that dust particles can absorb significant amounts of chlorine when 

passing through the MBL [Sullivan et al., 2007; Ooki and Uematsu, 2005; Zhang and 

Iwasaka, 2001]. This dust could undergo dechlorination later by exposure to strong acids 

such as nitric and sulfuric. High levels of HNO3 and SO2 are observed in spiral two that 

are consistent with the air mass having been in contact with urban areas such as 

Shanghai, China as indicated by a 7-day back trajectory analysis in Figure 4.7 b). For 

these reasons, we speculate that the mid-tropospheric HCl in this case is produced by 

dechlorination of dust particles activated by anthropogenic pollution. It is doubtful if this 

mechanism is a large source of HCl to the atmosphere. However, this mechanism should 

be recognized as a potential interference to using HCl as a stratospheric tracer in free 
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troposphere. In addition, the production of HCl from dust particles provides a mechanism 

to transform the chemical composition of the aerosol.  

 

4.3 Summary 

Airborne measurements of HCl during the Anchorage deployment of the INTEX-

B field mission provide a unique dataset from the MBL to the lower stratosphere over the 

North Pacific Ocean. In the upper troposphere (z >8km), HCl serves as a good tracer for 

recent stratospheric influence due to its very low background concentration (less than 2 

pptv). A simple analysis using the HCl/O3 correlation illustrates that ~ 50% of the air 

above 8 km (up to 12 km) was either stratospheric air (~ 30%) or recent stratospheric 

influenced air (~ 15%). The RAQMS model systematically overestimated the HCl/O3 

correlation by 50%. In addition, the model underestimated measured HCl ~30% in high 

HCl range (HCl > 60 pptv) although both measured and model predicted HCl show a 

strong correlation (R2 = 0.72) in the upper troposphere.  

In the remote MBL HCl levels were consistently above 20 pptv (up to 400 

pptv).and strongly correlated with HNO3. This is consistent with dechlorination of seasalt 

aerosols by gas phase acids as the major source of HCl in the MBL. One sampling leg (~ 

15 minutes) in a polluted coastal boundary layer (south of Seattle, WA) did not show 

significant enhancements of HCl relative to the remote MBL which is in contrast with 

other studies. The background level of HCl in the MBL was used to estimate average Cl 

atom number density of 3 × 103 atoms/cm3, which is consistent with the lower range of 

previous studies. 
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In the mid troposphere (4-8 km), HCl was almost always  below our detection 

limit of 2 pptv, which is consistent with recent in situ measurement of HCl in the upper 

troposphere by Marcy et al. [2004] However, on a few occasions HCl associated with 

enhanced O3, was detected due to recent stratospheric influences. In addition, enhanced 

HCl not of stratospheric origin was detected in the in the mid troposphere. This HCl 

appears to have been produced by dechlorination of Asian dust aerosols. 

The measured HCl profiles in this work indicate that above the MBL that 

background tropospheric levels of HCl are very low (< 2pptv). This is consistent with the 

findings of Marcy et al. [2004] but is inconsistent with the profile of Keene et al. [1999]. 

However, profiles obtained in this study are over a limited geographic region (Northern 

Pacific Ocean) which may be a reason for the disagreement with the work of Keene et al. 

[1999]. Consequently, observations by the method presented in this paper over a wider 

geographic range would be useful to sort out this difference.  
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CHAPTER 5 

MEASUREMENT OF SO2 IN THE TROPOSPHERE DURING THE 

INTEX CAMPAIGN 

 

5.1 Introduction 

Most of the SO2 in the troposphere originates from anthropogenic activities 

(~70%) in North America, Europe, and Asia [Stern, 2005]. Efforts to reduce SO2 

emissions have led to a gradual decrease of SO2 in Western Europe and the U.S. since the 

early 1990s and Asia since the late 1990s [Stern, 2005]. The decrease of global SO2 

emissions is estimated to be in the range of 13 % [Streets et al., 2006] to 23 % [Stern., 

2005] from the mid 1980s to 2000. However, recent studies indicate SO2 emissions from 

Asia have increased since early 2000 and are expected to increase a total of 22% from 

2000 to 2020 mostly due to emissions from China [Ohara et al., 2007] 

 SO2 in the troposphere is oxidized by either reaction with the OH radical or multi-

phase processes to ultimately produce sulfate aerosol [Stockwell and Calvert, 1983; Wine 

et al., 1984; Hoffmann and Jacob, 1983; Hegg, 1985]. Sulfate aerosol has been studied 

intensively due to its importance for the radiation balance of the atmosphere [Haywood 

and Boucher, 2000]. However, due to inaccuracies and differences in model treatments of 

chemical and physical processes of the SO2 oxidation processes the estimated radiative 

forcing from the direct effect of sulfate aerosols has a significant uncertainty (-0.4±0.2 W 

m-2) [Forster et al., 2007]. 

Since the lifetime of SO2 in the troposphere from oxidation processes is relatively 

short (several days for gas phase oxidation by OH to several hours for liquid phase 
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oxidation; Berresheim et al. [1995]), it is probable that a large fraction of the SO2 in the 

polluted boundary layer would be oxidized to sulfate before transport to the free 

troposphere [Charlson et al., 1992]. However, a limited number of airborne 

measurements suggest that significant amounts of anthropogenic SO2 can be transported 

to the upper troposphere by various processes [Raes et al., 2000; Thornton et al., 1999; 

Thornton et al., 1997a; Thornton et al., 1997b; Thornton et al., 1996]. In spite of those 

findings, airborne in situ measurements of SO2, the most effective way to investigate free 

tropospheric distributions of SO2, have been limited compared with other gaseous species 

due to technical difficulties in measuring trace level (pptv) with high temporal 

frequencies [Brasseur et al., 1999]. The limited airborne SO2 measurements during 

NASA airborne campaigns had been mostly conducted by the GC-MS method, described 

by Bandy et al. [1993]. The method has a very low detection limit (~2pptv), but has a 

relatively long sampling frequency (~ 3min) [e.g. Thornton et al., 1999].  

Free tropospheric SO2 distributions from airborne field campaigns were used to 

evaluate deep convection and Asian SO2 transport to the North Pacific [Thornton et al., 

1997a, 1997b]. In addition, Shon et al.[2001] and Davis et al.[1999] also used the marine 

boundary layer (MBL) dataset in the tropical region from the Aerosol Characterization 

Experiment 1 (ACE 1) and Pacific Exploratory Missions (PEM)-Tropics A, respectively, 

to estimate the conversion efficiency of DMS (dimethyl sulfide) to SO2. In the clean 

MBL, DMS, released by marine algae [Lovelock et al., 1972] has been established as a 

major natural source of SO2 through its oxidation processes; mainly by OH during the 

daytime and NO3 during the nighttime [Barnes et al., 1989; Hynes and Wine 1989; 

Butkovskaya and Lebras, 1994; Barone et al., 1996; Sorensen et al., 1996; Turnipseed et 
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al., 1996; Patroescu et al., 1999]. Although laboratory and chamber studies have been 

conducted to quantify the SO2 yield from DMS oxidation processes, Berresheim et al. 

[1995] pointed out that there are large difficulties applying these results in the natural 

environment due to the difference in complexity of the laboratory and atmosphere. For 

this reason, in situ observations have been utilized to estimate the overall efficiency of 

DMS conversion to SO2. Both studies using airborne measurements of SO2, DMS and 

other relevant parameters illustrated that the “best estimated” yield of SO2 from DMS is ~ 

0.7. [Davis et al., 1999; Shon et al., 2001]  

Singh et al [1997] reported concentrations of stratospheric SO2 in the range of 30-

60 pptv during the PEM-West campaign. Stratospheric SO2 is of interest as it is the 

source of stratospheric sulfate aerosols, first described by Junge et al. [1961]. Volcanic 

plumes can directly inject a significant amount of SO2 in the stratosphere. However, 

Crutzen et al [1976] and following studies have indicated that the main source of the 

sulfate aerosols in the stratosphere is SO2 from the photolysis of OCS. OCS is chemically 

inert in the troposphere and has both natural (ocean) and anthropogenic (biomass 

burning) sources. An ice core study suggests that anthropogenic sources contribute 

around 25% of modern OCS in the atmosphere [Aydin et al., 2002]. However, Chin and 

Davis [1995] and 3D modeling studies [Pitari et al., 2002; Timmreck, 2001] indicate that 

OCS can only explain around half of the stratospheric sulfur source and deep convection 

of tropospheric SO2 may be the other major source for stratospheric sulfate an important 

source 

During the Transport and Chemical Evolution Over the Pacific (TRACE-P) field 

program, SO2 was measured by the atmospheric pressure chemical ionization mass 
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spectrometry technique with improved time resolution (sampling frequencies > 1Hz) 

[Thornton et al., 2002; Tu et al., 2003; Tu et al., 2004] to facilitate studies about the long 

range transport and the boundary layer dynamics of SO2. During the campaign, enhanced 

SO2 layers from China were occasionally found in the low turbulent mixing and the 

temperature inversion layer of the Yellow Sea MBL. Since those boundary dynamics 

were not properly simulated in a regional scale chemical transport model 

(CFORS/STEM2K1), the model poorly predicted SO2 enhanced layer over the MBL [Tu 

et al., 2003]. Tu et al., [2004] also found that the long-range transported Asian SO2 in the 

central Pacific was found in the low water vapor and low turbulence layer of the lower 

free troposphere (3- 4 km) after three to four days of the transport by frontal lifting. 

Some studies have conducted comparisons of chemical transport model 

predictions of SO2 with airborne observations. These comparisons have shown that 

models reasonably describe convection features and boundary layer mixing ratios of SO2 

[Chin et al., 1996; Chin et al., 2000; Park et al., 2005]. However, some studies also 

suggest that model treatments of cloud-SO2 interactions may be too simplified in the 

model to simulate measured results [Tu et al., 2003; Tu et al., 2004; Park et al, 2004]. 

This study presents in situ measurements of SO2 by a chemical ionization mass 

spectrometer (CIMS), integrated on the NASA DC-8 during the INTEX field campaign. 

The campaign consisted of two phases INTEX-NA and INTEX-B. INTEX-NA was an 

intensive investigation of the North American troposphere using aircraft and satellite 

borne measurements as well as a suite of models [Singh et al., 2006]. The measurements 

were mostly conducted in the eastern U.S. and its outflow regions, where deep 

convection and frontal uplift was very active [Bertram et al., 2007; Fuelberg et al., 2007].  
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The second phase of the study, INTEX-B, was conducted in March and May 

2006. During the early portion of the study (March, 2006), the NASA DC-8 was 

deployed in Houston to sample the far and the near field polluted outflow from Mexico 

City as a part of the Megacity Initiative: Local and Global Research Observations 

(MILAGRO). In the later portion of the study (April – May, 2006), Asian outflow was 

sampled from aircraft deployment in Honolulu, HI and Anchorage, AK. More detailed 

descriptions on the INTEX project can be found in Chapter II. 

The U.S. and Asia comprise ~10% and ~25% of global emissions of SO2, 

respectively [Park et al., 2004]. Although, SO2 emissions from Mexico City are not 

important in terms of global budget (~1%, Barth and Church [1999]), due to its unique 

geographical (low latitude and high altitude) and mega city characteristics, the chemical 

evolution of the outflow is a good test for our current knowledge of sulfur chemistry 

[Molina et al., 2007]. However, airborne measurements of SO2 in those regions have 

been very limited [Tu, 2004]. Therefore, our SO2 observations in combination with the 

comprehensive dataset of various gas phase and aerosol parameters from the INTEX 

campaign provide a unique opportunity to test our ability to predict sulfur levels. 

In this study, we present SO2 data, correlations of SO2 with other measured 

parameters such as CO, SO4
2-, and aerosol parameters, and comparisons of observations 

with global 3-D modeling predictions of SO2 from the INTEX field campaign. In 

particular, the following topics are explored: 1) Source region characteristics of the 

eastern U.S. and Mexico City, 2) Outflow characteristics of the eastern U.S., Mexico 

City, and Asia focused on the upper troposphere, 3) Comparisons of measured SO2 with 

sulfur products of global three-dimensional models (Goddard and Earth Observing 
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System (GEOS)-CHEM and Model for ozone and related chemical tracers (MOZART)), 

4) Case studies of sulfur chemistry in the clean MBL and the lower stratosphere. 

 

5.2 Results and Discussion 

 

5.2.1 Boundary Layer Distributions 

 Figure 5.1 presents boundary layer distributions (radar altitude < 1km) of a) SO2 , 

and b) [SO4
2-]/[SO2+SO4

2-] (defined as the sulfate ratio) during the INTEX mission, 

averaged on 1×1 degree grid. The Ohio Valley and the south eastern U.S. exhibit 

enhanced levels of SO2 relative to other U.S. regions in correspondence with the emission 

inventory from EPA (U.S. EPA 2002 National Emission Inventory, 

http://www.epa.gov/ttn/chief/net/).  

Figure 5.1 Boundary layer distributions of a) SO2 and b) sulfate ratios ([SO4
2-

]/([SO2]+[SO4
2-])), measured during the INTEX campaign. 
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Figure 5.2 Distributions of SO2 in the source region a) the eastern 
U.S. b) Mexico. 
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Figure 5.3 Three day back trajectories of high SO2 plumes (SO2 > 8 ppbv), detected 
in the MBL of the Gulf of Mexico.  
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The MBL of the Gulf of Mexico showed relatively high SO2 (few ppbv) during the 

campaign (Figure 5.2b). Figure 5.3 presents three-day back trajectories of high SO2 

plumes (SO2 > 8ppbv). The trajectories illustrate that the high SO2 plumes originated 

from the boundary layer of the Yucatan Peninsula and the Veracruz area. SO2 emissions 

from Veracruz due to fossil fuels have been estimated to be the highest among states in 

Mexico in 2002 (266,200 tons; Vijay et al., 2004). In addition, SO2 emissions from ship 

traffic, estimated to be 184,700 tons/year in the EEZ (Exclusive Economic Zone) of the 

Gulf of Mexico [Corbett et al, at http://coast.cms.udel.edu /NorthAmericanSTEEM/ 

ARBCEC_SECA_task1-2ReportMay2006.pdf] are another important source in this area.  

Figure 5.4 Distributions of a) NO and b) SO2, measured during four boundary layer 
sampling runs in the Mexico City metropolitan area. 
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 The SO2 distribution in the boundary layer of the Mexico City basin appears very 

different from that of the NO distribution as shown in Figure 5.4. High NO is located in 

the center of Mexico City (Figure 5.4a). On the other hand, high SO2 levels were found to 

originate from the Tula industrial complex (Figure 5.4b), which has power generation, 

refinery, glass manufacturing and concrete manufacturing facilities. The SO2 emissions 

of Tula industrial area were estimated as 163,170 ton/year (2002; Vijay et al., 2004).  

 Figure 5.1 a) also depicts high SO2 in not only the coastal region of the eastern 

U.S., but also in the remote Atlantic Ocean. The SO2 levels over the Atlantic Ocean are 

associated with low sulfate ratios (Figure 3b), consistent with fresh emissions. This 

suggests that the SO2 in the remote Atlantic originates from recent ship plumes. This is 

compatible with Chin et al.’s [2000] estimate that ship emissions contribute 65% of the 

SO2 burden to the North Atlantic. This was echoed by Eyring et al. [2007] who suggested 

that high emissions from ships is the reason that global models underestimate SO2 levels 

in the MBL of the North Atlantic Ocean.  

High SO2 with low sulfate ratios was also observed in the Pacific Ocean in the 

vicinity of the Hawaiian islands. However, back trajectories suggest that there are non-

ship sources of this sulfur. One is anthropogenic sources around Oahu Island, and the 

other volcanic activity in the Hawaiian chains. In contrast, MBL SO2 over the North 

Pacific is very low (Figure 5.1 a) and is aged with a high sulfate ratio (Figure 5.1 b). For 

these conditions, the dominant SO2 source would be expected to be DMS oxidation. An 

analysis of SO2 and DMS distributions in the area is presented below.  
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5.2.2 SO2 Distribution in the Free Troposphere 

 Median profiles of SO2 from each INTEX campaign are presented in Figure 5.5 

with the 25th percentile and the 75th percentile profile. In addition Table 5.1 presents the 

statistics of the SO2 vertical distribution during the INTEX campaign. 

 

 

 

a) 

Altitude Median Mean Max Min 25th Percentile 75th Percentile N 
0.25 732.3 1341.6 14344.1 5.0 331.7 2060.4 399 
0.75 795.1 933.8 4563.3 30.7 394.8 1401.0 121 
1.25 234.1 539.9 2789.5 5.0 122.2 653.7 115 
1.75 66.9 108.4 1151.7 5.0 32.7 138.6 126 
2.25 44.5 78.3 1127.8 5.0 20.8 81.2 69 
2.75 21.6 45.0 713.5 5.0 11.3 42.0 64 
3.25 11.1 15.8 85.2 5.0 5.0 19.6 108 
3.75 13.9 17.1 106.1 5.0 5.0 21.2 112 
4.25 17.3 20.4 121.4 5.0 8.2 24.8 72 
4.75 17.3 19.2 94.6 5.0 5.0 28.6 91 
5.25 19.9 22.6 133.4 5.0 13.9 29.3 84 
5.75 18.3 22.4 85.5 5.0 5.0 33.3 67 
6.25 20.8 23.6 152.9 5.0 10.7 31.2 152 
6.75 17.8 24.2 140.5 5.0 9.9 27.2 94 
7.25 22.4 30.0 156.7 5.0 12.1 35.6 96 
7.75 16.5 22.1 122.4 5.0 7.8 31.7 128 
8.25 15.7 26.9 457.1 5.0 7.8 23.5 93 
8.75 21.3 32.4 388.1 5.0 12.1 36.4 373 
9.25 28.6 67.5 701.3 5.0 18.0 69.6 133 
9.75 23.8 56.7 519.3 5.0 8.8 39.5 59 

10.25 33.3 50.0 207.8 5.0 21.9 75.4 202 
10.75 32.9 40.5 204.4 5.0 18.2 46.2 42 
11.25 5.0 5.0 5.0 5.0 5.0 5.0 1 

 

Table 5.1 Vertical distribution of observed SO2 from 1-min averaged data for a) INTEX-
NA, b) INTEX-B Phase I and c) INTEX-B Phase II
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b) 

Altitude Median Mean Max Min 25th Percentile 75th Percentile N 
0.25 2697.8 2815.1 8670.8 2.0 1172.3 4058.4 155 
0.75 421.9 665.1 2541.9 2.0 191.8 928.4 34 
1.25 332.4 551.0 2035.8 2.0 203.9 820.5 34 
1.75 748.9 764.5 3652.5 2.0 272.0 1079.8 54 
2.25 439.0 498.0 1965.7 2.0 227.8 743.8 66 
2.75 315.4 583.0 2219.5 2.0 67.0 996.4 93 
3.25 309.5 504.4 1609.4 2.0 123.1 759.6 68 
3.75 589.6 515.7 1310.2 2.0 178.0 718.2 47 
4.25 65.7 257.8 3918.3 2.0 25.9 259.4 39 
4.75 2.0 187.9 3873.0 2.0 2.0 9.3 40 
5.25 2.0 92.3 3538.1 2.0 2.0 2.0 46 
5.75 2.0 126.8 1451.3 2.0 2.0 10.6 13 
6.25 2.0 3.0 14.6 2.0 2.0 2.0 28 
6.75 2.0 3.5 22.3 2.0 2.0 2.0 19 
7.25 2.0 48.0 754.1 2.0 2.0 2.0 17 
7.75 2.0 7.2 101.5 2.0 2.0 9.7 53 
8.25 2.0 2.2 12.5 2.0 2.0 2.0 48 
8.75 2.0 14.3 523.5 2.0 2.0 2.0 48 
9.25 2.0 21.2 227.2 2.0 2.0 11.7 21 
9.75 2.0 2.0 2.0 2.0 2.0 2.0 6 

10.25 2.0 2.0 2.0 2.0 2.0 2.0 7 
10.75 2.0 2.0 2.0 2.0 2.0 2.0 12 
11.25 2.0 2.0 2.0 2.0 2.0 2.0 27 
11.75 508.4 516.8 783.8 193.8 387.3 692.8 14 
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c) 

Altitude Median Mean Max Min 25th Percentile 75th Percentile N 
0.25 105.4 441.0 5468.4 2.0 33.5 502.4 473 
0.75 49.9 152.1 1779.1 2.0 18.5 110.5 71 
1.25 43.3 82.7 728.3 2.0 2.0 86.6 70 
1.75 2.0 47.6 512.8 2.0 2.0 57.3 132 
2.25 22.4 71.0 3485.4 2.0 2.0 45.1 172 
2.75 11.9 69.8 2091.8 2.0 2.0 34.6 93 
3.25 29.5 114.6 731.2 2.0 2.0 150.1 135 
3.75 23.4 52.6 310.7 2.0 2.0 84.4 122 
4.25 11.0 27.4 851.4 2.0 2.0 29.8 141 
4.75 16.6 45.0 658.9 2.0 2.0 61.6 256 
5.25 8.9 27.2 570.8 2.0 2.0 23.7 207 
5.75 2.0 40.4 458.5 2.0 2.0 34.7 127 
6.25 13.7 22.0 310.2 2.0 2.0 29.8 241 
6.75 11.8 32.0 326.9 2.0 2.0 39.9 120 
7.25 20.5 46.2 402.5 2.0 2.0 71.8 117 
7.75 2.0 20.1 235.1 2.0 2.0 23.9 237 
8.25 9.7 25.8 319.7 2.0 2.0 21.8 129 
8.75 14.3 17.2 132.4 2.0 2.0 22.9 192 
9.25 10.0 19.1 602.4 2.0 2.0 19.9 201 
9.75 2.0 17.6 1077.6 2.0 2.0 15.6 179 
10.25 21.2 64.0 1499.4 2.0 11.3 47.7 405 
10.75 2.0 27.1 383.3 2.0 2.0 16.8 332 
11.25 9.2 30.0 306.5 2.0 2.0 47.4 129 
11.75 2.0 5.9 36.7 2.0 2.0 7.8 65 

 



 119

Fi
gu

re
 5

.5
 A

 m
ed

ia
n,

 a
 2

5th
 p

er
ce

nt
ile

, a
nd

 a
 7

5th
 p

er
ce

nt
ile

 p
ro

fil
e 

of
 S

O
2, 

m
ea

su
re

d 
du

rin
g 

 a
) I

N
TE

X
-N

A
, b

) I
N

TE
X

-B
 P

ha
se

 
I, 

an
d 

c)
 IN

TE
X

-B
 P

ha
se

 II
 



 120

5.2.2.1 The Atlantic Ocean Outflow Region – INTEX-NA  

 Figure 5.6 illustrates the vertical distributions of median levels of SO2, SO4
2- and 

the sulfate ratio in the outflow region of the eastern U.S. SO2 in the free troposphere is 

consistently over a few tens of pptv up to 11km. This enhanced SO2 throughout the free 

troposphere reflects active deep convection and frontal uplift events during the INTEX-

NA field campaign [Bertram et al., 2007, Fuelberg et al., 2007]. The sulfate ratio profile 

is lower in the upper troposphere (8-12 km) than in the mid troposphere (4-8 km), which 

suggests that the direct injection from the boundary layer to the upper troposphere was 

prevalent during the INTEX-NA period.  
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 Figure 5.7a presents the correlation of SO2 with CO. Except for biomass burning 

plumes, which where detected frequently during INTEX-NA low SO2 and high CO 

[Singh et al., 2006], a reasonable positive correlation is found, which suggests 

anthropogenic origins of SO2 in the upper troposphere [Raes et al., 2000]. Figure 8b 

presents a correlation between SO2 and ultrafine aerosol (<0.01 μm) number density, 

which is a good indicator for deep convection [Raes et al., 2000]. Indeed, we can clearly 

identify two different deep convection plumes with different slopes. In contrast, poor 

correlation is found between ultrafine aerosols and SO2 transported by frontal uplift.   

 

Figure 5.7 Correlation plots of SO2 with a) CO and b) ultrafine aerosols in the upper 
troposphere during the INTEX-NA field campaign. 
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5.2.2.2 The Gulf of Mexico-INTEX-B Phase I  

 Figure 5.8 shows median vertical profiles of SO2, SO4
2-, and the sulfate ratio from 

the Gulf of Mexico. Flight tracks illustrating where data were collected are also presented 

in the Figure 5.8. The profiles show contrasts below and above 4km. Below 4 km, high 

SO2 and relatively low sulfate ratios were detected. Conversely, above 4km, SO2 was 

mostly below detection limit (2pptv) and sulfate ratios were close to 1, indicating 

complete aging of the sulfur.  

 As illustrated in Figure 5.3, high SO2 in the MBL of the Gulf of Mexico came 

from the boundary layer of the Yucatan peninsula and the Veracruz region due to the 

counter clockwise flows driven by a prevalent high pressure system in the Gulf of 

Mexico. The three-day back trajectory results (Figure 5.9) for high SO2 plumes (> 1ppbv) 

that DC-8 encountered over the Gulf of Mexico buffer region (1 km < z < 4 km) illustrate 

that those plumes are originated from inland of Mexico and transported with little vertical 

motion. The forward trajectories of those plumes depict that the high SO2 air masses in 

the Gulf of Mexico are mostly transported into the mid troposphere of the eastern U.S. 

and North Atlantic. 
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Figure 5.9 Three day back trajectories for high SO2 plumes (> 
1ppbv), sampled in 1-4 km altitude of the Gulf of Mexico.  

Figure 5.10 Correlation plots of SO2 with a) CO and b) ultrafine aerosols in the 
mid troposphere (4-8 km) during the INTEX-B Phase I field campaign. Episode 1 
(solid circle) indicates a plume, appeared to be transported from volcano and 
Episode 2 (dotted circle) represents a polluted origin plume. 



 126

 

 Although SO2 in the mid and the upper troposphere (z > 4 km) over the Gulf of 

Mexico was the under detection limit most of the time, sporadically, high SO2 plumes 

were detected. Figures 5.10a and 5.10b show correlations of SO2 with CO and ultrafine 

aerosols in the mid troposphere (4km < z < 8km) for two high SO2 episodes with 

contrasting correlations. One (episode 1), associated with high CO and high ultra fine 

aerosol counts, and appears to be polluted deep convection plume. However, the other 

high SO2 plume (episode 2) does not correlate with ultrafine aerosol counts and CO is in 

within its background range (60 – 80 ppbv). According to a back trajectory analysis, the 

plume had passed near the Popocatépetl volcano (19.0 N, 98.6 W) about one day before 

and was transported at the same pressure level as the top of the volcano (5452 m ASL) 

and sampling altitude (the pressure altitude of ~ 5km).  
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5.2.2.3 Asian Outflow-INTEX-B Phase II 

Figure 5.11 presents vertical profiles of median SO2, SO4
2-, and the sulfate ratio 

for the flights in the North Pacific whose flight tracks are illustrated in the inset. Layers 

of enhanced SO2 due to transport of Asian pollution were often found on low background 

levels. These layers were characterized by high sulfate ratios compared with those 

observed in convective outflow layers observed in INTEX-NA. This is consistent with 

longer transport times from Asia relative to the relatively fresh plumes observed in the 

North American study. 
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Since the SO2 median profile in Figure 5.11 is gathered over a wide latitude range 

(20o N to 70o N), the median profiles of SO2 in four different latitude bins are presented 

in Figure 5.12. These profiles illustrate that the higher latitude free troposphere was the 

main SO2 transport pathway. At high latitudes (> N 50o), significant SO2 enhancements 

(a few tens of pptv) were observed throughout the mid and upper troposphere. This 

pattern corresponds with a prior study [Tu et al., 2004], which found that the prevailing 

pathway for Asian SO2 transport was from 50oN to 60oN. 

Figure 5.12 Median profiles of SO2 as a function 
of latitude over the north Pacific during the 
INTEX-B campaign. 
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Figures 5.13a and b show the correlation of SO2 with CO and ultrafine aerosols, 

respectively, in the upper troposphere of the North Pacific. Overall, the correlation with 

CO is much weaker than those from two prior campaigns. The fact may reflect the 

complexity of source characteristics of the Asian region. Indeed, the major anthropogenic 

sources in Asia such as industrial, urban, and biomass burning sources have very 

different ratios of SO2 to CO as illustrated in Streets et al. [2003]. Figure 5.13b also 

indicates a poor correlation between SO2 and ultrafine aerosols. Conversely, the non-

volatile aerosol number density in the upper troposphere in Figure 5.14a shows a strong 

correlation with SO2. For comparison purpose, the same correlation for upper 

tropospheric INTEX-NA data is presented in Figure 5.14b. For frontal uplift, SO2 levels 

have a strong correlation with non-volatile aerosols. In contrast, for deep convection 

cases, SO2 weakly correlates with non-volatile aerosols (0.01 – 7μm, T = 300 oC). 

Therefore, the high SO2 plumes, sampled during the INTEX-B field campaign are most 

likely transported by frontal uplift process (the warm conveyor belt; Fuelberg et al. 

[2006] and references therein). In addition, the differences in the correlation with aerosol 

parameters in accordance with lifting processes should affect the dynamics of upper 

tropospheric new particle formation, which strongly depends on preexisting aerosol 

surface area concentrations [Kazil et al., 2007].  
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5.2.3 Comparisons with 3D Model Products 

 This section presents the comparison of predicted SO2 from the global 3-D 

chemical transport models GEOS-CHEM [Bey et al., 2001] and MOZART-4 with 

observations. The sulfur simulation of GEOS-CHEM is based on the Georgia 

Tech/Goddard Global Ozone Chemistry Aerosol Radiation Transport (GOCART) model 

Figure 5.13 Correlation plots of SO2 with a) CO and b) ultrafine aerosols in the 
upper troposphere during the INTEX-B Phase II field campaign. 

Figure 5.14 Correlation plots of SO2 with non volatile aerosols (as denoted “Hot 
Aerosol” in the axis) in the upper troposphere during a) INTEX-B Phase II and b) 
INTEX-NA. The solid circle in Figure b) indicates high SO2 plumes, transported 
by deep convection processes and the dotted circle indicates high SO2 plumes, 
transported by frontal uplift processes. 
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[Chin et al., 2000] with updated features described by Park et al. [2004] and the sulfur 

chemistry of MOZART-4 is based on that of Barth et al. [2000] with updated rate 

constants and emission data. Both models produced the SO2 mixing ratio for every 

science flight track during the INTEX-field campaign with grid spacing in the horizontal 

of 50 km for GEOS-CHEM and 0.7 degree for MOZART-4. 

 First, the measured and the simulated vertical profiles of SO2 and SOx (SO2 + 

SO4
2-) in the pollution outflow region are compared to examine how the models simulate 

general features of the transport and oxidation processes of SO2 in the troposphere. Then, 

the spatial distributions of SO2 in the boundary layer and the free troposphere are 

compared.  

 

5.2.3.1 INTEX – NA 

  

 

  

 

 

 

 

 

 

 

 

Figure 5.15 Profiles of a) SO2 and b) SOx (=SO2 + SO4
2-) from measurements (Red) 

and two model products (GEOS-CHEM: Black and MOZART: Blue) over the North 
Atlantic during INTEX-NA. Note SOx profiles from MOZART are not available. 
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 Figures 5.15 a) and b) present the median profiles of measured and simulated SO2 

and SOx in the eastern U.S. Since MOZART SO4
2-data are not available, SOx profiles of 

observed and GEOS-CHEM predictions are presented. Both models reasonably simulate 

the SO2 enhancements in the upper troposphere. However, in the boundary layer, both 

models under-predict SO2. This underestimation is primarily due to high SO2 

observations over the Atlantic Ocean. This has also been reported in another modeling 

study, which suggests that poorly estimated ship traffic may be the reason for the 

discrepancy [Erying et al., 2007]. Overall, the SOx profile, simulated by GEOS-CHEM 

shows a better agreement with the measured profile than the SO2 profile. This suggests 

that the model reasonably simulates the total sulfur distribution, but the treatment of SO2 

oxidation processes may not be accurate enough to simulate the sulfur partitioning.   

 Figure 5.16 shows horizontal distributions of measured and simulated SO2 in the 

boundary layer (radar altitude < 1km) for the INTEX-NA field campaign. Both models 

reasonably well simulate high SO2 in the Ohio Valley and the southeast of the U.S. 

However, significant under-estimates are found in Northeast Atlantic Coast, Nova Scotia, 

and the open Atlantic Ocean (as discussed above).  

 Figure 5.17 illustrates the horizontal distributions of measured and simulated SO2 

in the upper troposphere (8-12 km) during the INTEX-NA field campaign. Measured data 

indicate strong enhancements of SO2 over the North Atlantic and the North Pacific from 

the eastern U.S. and Asia, respectively. However, both models failed to simulate those 

features. Overall, GEOS-CHEM presents very little upper tropospheric SO2. On the other 



 134

hand, MOZART predicts much broader enhancements of SO2 in the upper troposphere all 

over the eastern U.S.  
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Figure 5.16 Distributions of SO2 in the boundary layer of a) measurements, b) 
GEOS-CHEM, and c) MOZART during INTEX-NA. 
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Figure 5.17 Distributions of SO2 in the upper troposphere of a) measurements, b) 
GEOS-CHEM, and c) MOZART during INTEX-NA. 
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5.2.3.2 INTEX-B Phase 1 

 

 

  

 Figures 5.18 a) and b) illustrate median profiles of both measured and modeled a) 

SO2 and b) SOx in the Gulf of Mexico during INTEX-B Phase I. Both models predict 

significant levels of SO2 (10 – 100 pptv) in the free troposphere (z > 4 km) over the Gulf 

of Mexico even though SO2 observations were mostly measured below detection limit. 

However, GEOS-CHEM underestimates SOx in the free troposphere and MOZART 

underestimates SOx in the mid troposphere.  

In addition, although results from both models and measurements reasonably 

correlate in the altitude of 0 km – 4 km, at the very bottom of the profile models 

significantly underestimate both measured SO2 and SOx. Indeed, as indicated in Figure 

Figure 5.18 Profiles of a) SO2 and b) SOx (=SO2 + SO4
2-) from measurements (Red) 

and two model products (GEOS-CHEM: Black and MOZART: Blue) over the Gulf of 
Mexico during INTEX-B Phase I. 
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5.19, which presents SO2 distributions of model products and measurements in the 

boundary layer during the field campaign, models significantly underestimate boundary 

layer SO2 especially in the Gulf of Mexico. On the other hand, distributions of SO2 in the 

upper troposphere indicate overestimates by models as shown in Figure 5.20.  
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Figure 5.19 Distributions of SO2 in the boundary layer of a) measurements, b) 
GEOS-CHEM, and c) MOZART during INTEX-B Phase I. 
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Figure 5.20 Distribution of SO2 in the upper troposphere of a) observations b) 
GEOS-CHEM and c) MOZART during INTEX-B Phase I. 
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5.2.3.3 INTEX-B Phase II 

  

 

 

 

Figures 5.21 a) and b) present profiles of median SO2 and SOx of measurements 

and both models over the north Pacific. The measured SO2 profile depicts many enhanced 

SO2 layers in the free troposphere. On the other hand, both models simulate very different 

profiles of SO2. GEOS-CHEM depicts consistent enhancements of SO2 all over the free 

troposphere. Conversely, MOZART predicts very low levels of SO2 in the free 

troposphere. However, the SOx profile, simulated by MOZART is close to the measured 

profile, indicating that total sulfur levels are better described than the partitioning. 

Figure 5.21 Profiles of a) SO2 and b) SOx (=SO2 + SO4
2-) from measurements (Red) 

and two model products (GEOS-CHEM: Black and MOZART: Blue) over the north 
Pacific during INTEX-B Phase II. 
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Figure 5.22 Distributions of SO2 in the boundary layer a) observations b) 
GEOS-CHEM, and c) MOZART during INTEX-B Phase II. 
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  Figure 5.23 Distributions of SO2 in the boundary layer a) observations, b) GEOS-
CHEM, and c) MOZART during INTEX-B Phase II. 
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Figure 5.22 shows horizontal distributions of SO2 in the boundary layer from 

observations and both models. Both models could not capture high SO2 in the MBL. 

Upper tropospheric SO2 distributions, predicted by GEOS-CHEM are significantly higher 

than measurements (Figure 5.23). Conversely, MOZART predicts very low 

concentrations of SO2 in the upper troposphere over the entire north Pacific region.  

 

5.2.4. SO2 and DMS Correlation in the Clean MBL 

 For the investigation of SO2 in the remote MBL, this section presents the MBL 

samplings dataset during a local flight of the Anchorage deployment (May 4, 2006). The 

flight track of the MBL sampling during the science flight presents in Figure 5.24. 

Conditions of the MBL during the flight were generally clean (O3-45 ppbv, HCHO-150 

pptv, NOx < 50 pptv) with very little variability of chemical and physical conditions.  

 

 

 

 

 

 

 

 

 

 
Figure 5.24 The flight track of the case study to examine DMS contributions to 
SO2 distributions in the clean MBL. The dotted data points along the flight track 
indicate MBL sampling points.  
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 Figure 5.25 shows temporal variations of measured and model (MOZART) 

predicted DMS and SO2 during four MBL legs of the flight. In general, observed SO2 

levels were between 20 and 40 pptv even though DMS levels were observed to be 

consistently very low (< 50 pptv). In contrast, model predictions of DMS were 

consistently above 150 pptv. Although the model did predict SO2 levels reasonably well. 

 Figure 5.25 Temporal variations of SO2 (the lower panel) and DMS (the upper panel) 
from both measurements (circle) and MOZART model products (cross) over the north 
Pacific MBL. 
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 In MOZART, DMS distributions over the MBL are estimated by a global-coupled 

ocean-atmosphere method, introduced in Kloster et al. [2006]. The estimated DMS is the 

main source of SO2 from oxidation by OH and NO3. Therefore, the predicted SO2 

concentration with over-estimated DMS should be much higher than observed if the 

model accurately captures the oxidation chemistry.  

 For a more detailed investigation, the rate of DMS destruction is calculated to 

determine if it can explain the observed levels of SO2 in the MBL. The major loss 

pathway of DMS in the MBL during the daytime is the OH oxidation, which has two 

different reaction pathways- the addition and the abstraction reaction. Through those 

reaction channels, 72 % (± 22 %) of DMS was expected to be oxidized to SO2 in the 

clean MBL [Davis et al., 1999]. Loss pathways of SO2 in the MBL can be divided into 

two categories. The first one includes dry deposition, aerosol and sea-salt scavenging, 

estimated as a constant loss rate at 1.1 × 10-5 sec-1 [Davis et al. 1999]. The second is the 

gas phase oxidation by OH. For the estimation of the oxidation rate, measured OH 

concentrations and rate constants from Sander et al. [2006] are used. The calculation 

results with the above scheme show that median destruction rates of DMS and SO2 are 

estimated as 4.89 pptv day-1 and 69.0 pptv day-1, respectively. Although a significant 

fraction of DMS oxidation products are converted to SO2, the DMS destruction rate is too 

small to explain the measured level of SO2. In addition, the median sulfate ratio in the 

MBL during the flight was 0.80, indicating relatively aged air rather than fresh SO2 from 

DMS oxidation. Therefore, the trace level of SO2 in the MBL in this case study appears 

to come from transport rather than DMS oxidation. 
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5.2.5 SO2 in the Lower Stratosphere 

During the Anchorage deployment of INTEX-B, the DC-8 sampled air masses in 

the lower stratosphere as well as air masses in the upper troposphere with significant 

stratospheric influence. Even though stratospheric SO2 has been implicated as an 

important source of stratospheric sulfate aerosols, primarily modeling approaches, due to 

a lack of simultaneous measurements of SO2 and OCS, have been used to asses the role 

of SO2 in the stratosphere. The only reported simultaneous measurements of stratospheric 

SO2 and OCS are Singh et al. [1997] in the latitude range of 37 – 57 oN, consistent with 

this study. The reported medians of stratospheric SO2 and OCS are 54 pptv and 427 pptv, 

respectively. The median value of stratospheric OCS, observed in this work is 423 pptv is 

consistent with the previous study. However, the median value of stratospheric SO2 in 

this study, 19.6 pptv, is much lower than the previous study.  

The correlation of SO2 with CO for stratospheric data is presented in Figure 5.26. 

Except for a few points, SO2 concentrations show no variation over the dynamic range of 

the observed CO (~60 ppbv). Figure 5.27 presents the correlation of SO2 with O3 for 

stratospheric data. SO2 concentrations are relatively constant over the O3 concentration 

range of 200 – 600 ppbv. However, above 600 ppbv of O3, SO2 concentrations are below 

the detection limit. 
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Figure 5.26 The correlation plot of SO2 with CO of the 
stratospheric dataset from INTEX-B Phase II. 
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Figure 5.27 Correlation plot of SO2 with O3 of the 
stratospheric dataset from INTEX-B Phase II 

Figure 5.28 Correlation plot of SO2 with OCS for the 
stratospheric dataset from INTEX-B Phase II 
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The analysis of the stratospheric data by Singh et al. [1997] demonstrated a 

correspondence between a decrease in the OCS mixing ratio (30 pptv) and the same 

increase in the SO2 mixing ratio. They claimed that this correspondence indicated that 

OCS is a major source of SO2 in the stratosphere. However, in this mission the negative 

correlation between OCS and SO2 cannot be found (Figure 5.28) even with the higher 

dynamic range of OCS (~100 pptv).  

To further investigate this issue, simple calculations of OCS removal rates by 

photolysis and SO2 removal rates by OH are conducted. The OCS photolysis rate in the 

lower stratosphere is too low to be accurately measured. Therefore, this study adapts the 

average lifetime of OCS in the stratosphere, reported as 71 years by Engel and Schmidt 

[1994], to deduce an OCS photolysis rate as 4.5 × 10-10 sec-1. SO2 removal rates by OH 

are calculated from measured OH concentrations and the rate constant from Sander et al. 

[2006]. The calculations indicate that the median of OCS removal rates in the 

stratosphere is 0.16 pptv day-1, which is significantly lower than the median SO2 removal 

rate of 2.55 pptv day-1. The results suggest that OCS photolysis is not the major source of 

SO2 in the lower stratosphere. This indicates that the stratospheric SO2 observed in this 

study may be due to transport from the troposphere. This assumption is supported by the 

fact that SO2 was not detected at high O3 levels (more than 600 ppbv). 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

  

This study uses chemical ionization mass spectrometry with SF6
-as a reagent ion 

to simultaneously measure HO2NO2, HCl, and SO2 from the boundary layer to the lower 

stratosphere. This allows an examination of our understanding of HOx-NOx and chlorine 

chemistry in the troposphere. In addition, we can test the ability of models to handle 

sulfur emissions and chemistry. These topics are important as they are critical to 

understanding distributions of tropospheric ozone and sulfate aerosols, important 

radivative forcing agents.  

 The first direct measurements of HO2NO2 in the free troposphere were performed 

from the NASA DC-8 during summer 2004. Comparisons with calculations and models 

demonstrate that our understanding of pernitric acid below 8 km, where thermal 

decomposition dominates its lifetime, is very good. However, above 8 km our 

observations of pernitric acid are incompatible with measured HOx but in good accord 

with photochemical theory. In addition, in this high NOx environment, due to active 

convection, the measured HOx levels are much larger than expected from photochemical 

theory. These results indicate that either our ability to measure HOx in the upper 

troposphere is flawed or that the agreement between our HO2NO2 observations and 

photochemical models is fortuitous. If the latter situation is correct then there is much 

lower pernitric acid than we expect in the upper troposphere given the HOx observations. 

This indicates that either pernitric acid production is slower or its loss is faster than 

expected. This also implies that ozone production in the convectively active upper 
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troposphere is much greater than represented in models. Clearly this discrepancy needs 

further investigation.  

 This work provides the first definitive vertical profile of HCl from the marine 

boundary layer to the lower stratosphere. In particular, we demonstrate that background 

levels of HCl in the mid and upper troposphere are very low and that the primary source 

of HCl in these regions is stratospheric transport. This is in accord with recent work by 

Marcy et al.,[2004]  on stratospheric mixing and utility of HCl as a tracer for this process. 

Our observations are not in accord with much of the work on HCl measurements 

reviewed by Keene et al [1999] and indicate a lower burden and less active chlorine 

chemsistry than previously suggested. We also find little evidence for activated chlorine 

chemistry in polluted marine air in contradiction to a series of recent studies [Finley and 

Saltzman, 2006; Tanaka et al, 2003; Chang et al., 2002; Spicer et al., 1998].Although it 

should be noted that our observations are over a limited geographical extent and should 

be extended to investigate this issue. Finally, the use of HCl as both a stratospheric tracer 

and a marker for tropospheric chlorine chemistry is demonstrated in this work. 

 SO2 observations in this work allow us to test our understanding of sulfur 

emissions and chemistry. In general, we find that chemical transport models (MOZART 

and GEOS-CHEM) do a reasonable job of capturing the gross features of the SO2 vertical 

distribution observed during the INTEX campaign. The models do a better job of 

reproducing the SOx (= SO2 + SO4
-2) vertical distribution; suggesting that emissions are 

handled better in models than the conversion chemistry. This is also supported by the 

models doing a good job of representing the horizontal distribution of sulfur in source 

regions. However, there are several areas where model performance is clearly not as 
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good. For example, models do a poor job representing the spatial distribution of SO2 in 

the upper troposphere suggesting that convection schemes may be problematic. In 

addition, the DMS emission and oxidation scheme of the MOZART model is clearly not 

in agreement with our observations over the northern Pacific Ocean.  
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APPENDIX A 

AN IGOR PROCEDURE FOR THE STEADY STATE HO2NO2 

CALCULATION 

(FOR DETAILED DESCRIPTIONS ON CALCULATIONS, SEE 2.3.1 

SEADY STATE CALCULATIONS IN CHAPTER 2) 

 
 
#pragma rtGlobals=1  // Use modern global access method. 
function Get_Steady_State(OH_calc, HO2_calc, NO2_calc, j_HO2NO2, Pressure, Temperature, 
Altp, Name) 
 
Wave OH_calc, HO2_calc, NO2_calc, j_HO2NO2, Pressure, Temperature, Altp 
// declarations of input parameters, needed to calculate steady-state HO2NO2 
String Name 
// the string to be a name of output wave (steady state HO2NO2) 
 
variable n = numpnts(pressure), i 
 
 
//a process, which calculate third body number density (M molecules/cm3) using the ideal gas law 
 
duplicate pressure M 
M = NaN 
M = Pressure/1013.25*10^-3/(0.0821 * Temperature) * 6.02 *10^23 
 
 
//the porcess, which calculate rate constants from JPL ver 15 Sander et al, 2006 
//a unit of cm3 molecules-1 s-1 
//k1 HO2 + NO2 + M -> HO2NO2 
//k2 HO2NO2 + heat -> HO2 + NO2 
//k3 HO2NO2 + OH -> products 
 
duplicate temperature k_1_0 k_1_00 k_1 k_3 k_2 
k_1_0  = NaN  // the low pressure limiting rate constant 
k_1_00 = NaN // the high pressure limiting rate constant 
k_1 = NaN 
k_2 = NaN 
k_3 = NaN 
 
k_1_0  = 2.0 *10^-31 * ( Temperature/300)^-3.4 
k_1_00 = 2.9 * 10^-12 * (Temperature/300)^-1.1 
 
k_1 = (k_1_0 * M/(1+k_1_0*M/k_1_00)) * 0.6^((1+(log(k_1_0*M/k_1_00))^2)^-1) //effectiver 
second rate constant 
k_2 = k_1/(2.1*10^-27*exp(10900/Temperature)) 
k_3 =1.3*10^-12*exp(380/Temperature) 
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//Calculate steady_state_HO2NO2 
duplicate/o pressure dummy 
dummy = NaN 
dummy = k_1 * HO2_calc * NO2_filter * M * 10^-12 / (k_2 + k_3 * OH_calc * 10^-12 * m + 
J_ho2no2) 
 
for(i = 0; i<n; i+=1)  
//loop for eliminating any calculated number under the altitude of 4km 
//I did this b.c. most of measured data were only available over 4km 
//if lower altitude data are avaialble for specific applications, you can block this loop. 
 if(altp[i]<4) 
  dummy[i] = NaN 
 endif 
endfor 
 
rename dummy $Name 
 
 
//Lifte time calculation 
duplicate pressure LT_OH LT_Thermal LT_Photo LT_Overall 
LT_OH = 1/(k_3*OH_calc*M*10^-12) 
LT_Thermal = 1/k_2 
LT_photo = 1/J_ho2no2 
LT_overall = 1/ (k_2 + k_3 * OH_calc * 10^-12 * m + J_ho2no2) 
 
 
end 
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APPENDIX B 

A METLAB CODE FOR TIME DEPENDENT CALCULATIONS OF  

HO2NO2 

 

B-1 The Matlab Code 

An Igor procedure for the time dependent HO2NO2 calculation (For detailed 

descriptions on calculations, see 2.3.2 Time Dependent Model in Chapter 2) 

  
%HO2NO2 including 0-D box model based on a reaction list, followed 
 
 
% Module for reading initial condition from a array [HO2NO2, HNO3, NO, NO2, PAN,  
% NO3, N2O5]. All mixing ratios in the unit of pptv 
 
    no_2i = initial(1,4) * 10^-3; 
    noi   = initial(1,3) * 10^-3; 
    n_2o_5i = initial(1,7) * 10^-3; 
    no_3i = initial(1,6) * 10^-3; 
    ho_2no_2i = initial(1,1) * 10^-3; 
    hno_3i = initial(1,2) * 10^-3; 
    pani = initial(1,5) * 10^-3; 
 
% Change model duration and start_hour (24 hours unit) in here 
 
    Model_Duration  = 24; 
    start_hour = 0; 
 
% Constranined conditions in ppbv, seconds, K, and atm 
     
    co   = 107 
    o_3  = 65 
    ch_4 = 1779 
    hcho = .312 
    h_2o_2 = .328 
    ch_3ooh = .150 
    ch_3coch_3 = 2.0 
    del_t = 2 
    temp  = 238.76 
    press = .3 
     
% Loop size determination 
 
    n = (Model_Duration * 60 * 60)/del_t; 
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% Determination of number density of M  
 
    m = press * .001/(.0821*temp)*6.02*10^23; 
 
 
%Water vapor mixing ratio (put appropriate number in ppmv) 
 
    h2o = 468.041*10^-6*m; 
     
 
    %Bi-molecular rate constant (From JPL Evaluation # 15 Sander et sl 2006) 
 
    k_3 = 3.0*10^-12*exp(-1500*1/temp);%O3 + NO -> NO2 + NO 
    k_5 = .2*3.3*10^-11*exp(55*1/temp) + .8*2.15*10^-11*exp(110*1/temp); 
   %O(1D)+  (0.2 O2 + 0.8 N2)-> O +M 
    k_6 = 1.63*10^-10*exp(60/temp); %O(1D)+H2O -> 2OH 
    k_11  = 2.4*10^-14*exp(460/temp)+6.5*10^-34*exp(1335/temp)*m/(1+6.5*10^- 
       34*exp(1335/temp)*m/(2.7*10^-17*exp(2199/temp)));  
    %HNO3+OH -> H2O + NO3 
    k_15 = 1.3*10^-12*exp(380/temp); % HO2NO2 + OH -> H2O + O2 + NO2 
    k_17 = 4.8*10^-11*exp(250/temp); % OH + HO2 -> H2O + O2 
    k_18 = 1.7*10^-12*exp(-940/temp); %O3+ OH -> HO2 + O2 
    k_19 = 3.5*10^-13*exp(430/temp) + 1.77*10^-33 * m * exp(1000/temp); 
    %HO2 + HO2 -> H2O2 + O2 
    k_20 = 1.0*10^-14*exp(-490/temp);%HO2 + O3 -> OH + 2O2 
    k_21 = 3.5*10^-12*exp(250/temp); %HO2 + NO -> NO2 + NO 
    k_24 = 1.8 *10^-12; %H2O2 + OH -> H2O + HO2 
    k_25 = 2.45*10^-12*exp(-1775/temp); %CH4 + OH -> CH3 + H2O 
    k_27 = 2.8*10^-12*exp(300/temp); %CH3O2 + NO -> CH3O + NO2 
    k_28 = 3.9*10^-14*exp(-900/temp); %CH3O + O2 -> HCHO + HO2 
    k_30 = 5.2*10^-12; %HCO + O2 -> CO + HO2 
    k_31 = 5.5*10^-12 * exp(125/temp); % HCHO + OH -> H2O + HCO 
    k_34 = 8.1*10^-12*exp(270/temp); % CH3CO3 + NO -> CH3O2 + CO2 
    k_38 = 3.0*10^-14; % PAN + OH -> 1/2 NO2 + products (upper limt) 
    k_39 = 1.2*10^-13*exp(-2450/temp); % NO2 + O3 -> NO3 + O2 
    k_42 = 2.0 *10^-21; % N2O5 + H2O -> 2HNO3 (upper liimt) 
    k_10 = 0.3*3.141592*(2.53*10^-
5)^2*25754*0.24/(1+3*0.3*(1+0.47*12.81)/(4*12.81*(1+12.81))); 
    % HNO3 heterogeneous Rxn (Equation from Brasseur et al., 1999) 
    k_44 = 0.1*3.141592*(2.53*10^-
5)^2*25754*0.24/(1+3*0.1*(1+0.47*12.81)/(4*12.81*(1+12.81)));  
    % HO2NO2 heterogeneous Rxn (Equation from Brasseur et al., 1999) 
    k_45 = 4.3*10^-13*exp(1040/temp); % HO2 + CH3COO2 -> Product 
     
    %termolecular rate constant 
     
    k_7_1_0= 5.9*10^-33*(temp/300)^-1.4; k_7_1_00=1.1*10^-12*(temp/300)^1.3;  
    %CO+ OH + M -> COOH + M (will be immediately decomposed into H + CO2 in the  
    %presence of oxygen) 
    k_7_1 = (k_7_1_0*m/(1+k_7_1_0*m/(k_7_1_00)))*.6^((1+(log10(k_7_1_0*m/k_7_1_00))^2)^-
1); 
    k_7_2_0=1.5*10^-13*(temp/300)^0.6 ; k_7_2_00=2.1*10^9*(temp/300)^6.1 ; 
    %CO+ OH + M -> CO+H+M 
    k_7_2 = (k_7_2_0/(1+k_7_2_0/(k_7_2_00/m)))*.6^((1+(log10(k_7_2_0/(k_7_2_00/m)))^2)^-1); 
    k_7 = k_7_1 + k_7_2; % overall CO + OH -> HO2 + CO2 
     



 165

     
    k_12_0=2.0*10^-31*(temp/300)^-3.4; k_12_00=2.9*10^-12*(temp/300)^-1.1 ; 
   %OH+ NO2 + M -> HO2NO2 + M 
    k_12 = (k_12_0*m/(1+k_12_0*m/(k_12_00)))*.6^((1+(log10(k_12_0*m/k_12_00))^2)^-1)    ; 
     
    k_14 = k_12/(2.1*10^-27*exp(10900/temp)); % HO2NO2 -> HO2 + NO2 
     
     
    k_8_0= 1.8*10^-30*(temp/300)^-3; k_8_00=2.8*10^-11;  
   %OH+ NO2 + M -> HNO3 + M 
    k_8 = (k_8_0*m/(1+k_8_0*m/(k_8_00)))*.6^((1+(log10(k_8_0*m/k_8_00))^2)^-1); 
     
    k_26_0=4.0*10^-31*(temp/300)^-3.6; k_26_00=1.2*10^-12*(temp/300)^-1.1 ; 
    %CH3 + O2 + M -> CH3O2 + M 
    k_26 = (k_26_0*m/(1+k_26_0*m/(k_26_00)))*.6^((1+(log10(k_26_0*m/k_26_00))^2)^-1); 
     
    k_35_0 = 9.7*10^-29*(temp/300)^-5.6; k_35_00 = 9.3*10^-12*(temp/300)^-1.5; 
    %CH3CO3 + NO2 + M -> PAN + M 
    k_35 = (k_35_0*m/(1+k_35_0*m/(k_35_00)))*.6^((1+(log10(k_35_0*m/k_35_00))^2)^-1); 
    k_37 = k_35/(9.0*10^-29*exp(14000/temp)); PAN -> NO2 + CH3CO3 
 
    k_41_0=2.0*10^-30*(temp/300)^-4.4; k_41_00=1.4*10^-12*(temp/300)^-0.7 ; 
   %NO3+ NO2 + M -> N2O5 + M 
    k_41 = (k_41_0*m/(1+k_41_0*m/(k_41_00)))*.6^((1+(log10(k_41_0*m/k_41_00))^2)^-1)    ; 
    k_43 = k_41/(2.7*10^-27*exp(11000/temp)); % N2O5 -> NO2 + NO3 
     
% array building for each species 
 
     
    hco = 0 
    o_1d = 0 
    ch_3 = 0 
    ch_3o_2= 0 
    ch_3o = 0 
    ch_3co_3 =0 
     
     
     
    no(1) = noi*10^-9*m; 
    no_2(1) = no_2i*10^-9*m    ; 
    hno_3(1) = hno_3i *10^-9*m; 
    ho_2no_2(1) = ho_2no_2i*10^-9*m; 
    pan(1) = pani*10^-9*m; 
    oh(1) = 0; 
    ho_2(1) =0; 
    no_3(1) = no_3i *m*10^-9; 
    n_2o_5(1) = n_2o_5i *m*10^-9; 
    ho_2no_2_ss(1) = 0;  
   % This array will contain the steady state HO2NO2 from time dependent calculated  
   %NO2, HO2, and OH 
     
    h_2o_2=h_2o_2*10^-9*m    ; 
    o_3 = o_3*10^-9*m; 
    ch_4=ch_4 * 10^-9*m; 
    hcho = hcho *10^-9*m; 
    co = co* 10^-9*m; 
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    ch_3ooh= ch_3ooh * 10^-9*m; 
    ch_3coch_3 = ch_3coch_3*10^-9*m; 
     
    % calculation for each species in each time step - Euler method    
    % to save model calculation time, an embedded inner loop for an hour calculation is   
    % applied 
 
for i = 1:Model_Duration 
 
    no_h(1) = no(1+(i-1)*60*60/2); 
    no_2_h(1) = no_2(1+(i-1)*60*60/2); 
    hno_3_h(1) = hno_3(1+(i-1)*60*60/2); 
    ho_2no_2_h(1) = ho_2no_2(1+(i-1)*60*60/2); 
    pan_h(1) = pan(1+(i-1)*60*60/2); 
    no_3_h(1) = no_3(1+(i-1)*60*60/2); 
    n_2o_5_h(1) = n_2o_5(1+(i-1)*60*60/2); 
    oh_h(1) = oh(1+(i-1)*60*60/2); 
    ho_2_h(1) = ho_2(1+(i-1)*60*60/2); 
    ho_2no_2_ss_h(1)=ho_2no_2_ss(1+(i-1)*60*60/2); 
     
    for j = 2:1800 
    sec = (start_hour+(i-1))*60*60 + (j-1)*del_t; 
    s = fix(sec/900); 
   
    %j calculation loop 
    % You need J value arrays, containing the daily variation in every 15 minutes 
 
    j_1    = jno2(s+1); %NO2 + hv -> NO + O 
    j_9    = jhno3(s+1); % HNO3 + hv -> NO2 + OH 
    j_4_b    = jo3b(s+1); %O3 + hv -> o2 + O(1P) 
    j_4_a  = jo3a(s+1); % O3 + hv -> O2 + O(1D) 
    j_4 = j_4_a + j_4_b; %O3 + hv -> product 
    j_22   = jh2o2(s+1);% H2O2 + hv -> 2OH 
    j_29_a = jch2oa(s+1); % HCHO + hv -> HO2 + HCO 
    j_29_b = jch2ob(s+1); % HCHO + hv -> H2 + CO 
    j_29   = j_29_a + j_29_b ; 
    j_13   = jho2no2(s+1) + 10^(-5); %HO2NO2 + hv -> HO2 + NO2 
    j_32   = jch3ooh(s+1); % CH3OOH + hv -> CH3O + OH 
    j_33   = jch3coch3(s+1); % CH3COCH3 + hv -> CH3O2 + CH3CO3 
    j_36    = jpan(s+1); % PAN + hv -> CH3CO3 + NO2 
    j_46    = jno3(s+1); % NO3 + hv -> NO2 + O(3P) 
    j_47    = jn2o5(s+1); % N2O5 + hv -> NO3 + NO2 
     
    %the species for Euler calculation 
    
     
     
    no_2_h(j) = no_2_h(j-1) + (-j_1*no_2_h(j-1)+k_3*no_h(j-1)*o_3+k_21*ho_2_h(j-1)*no_h(j-1) -

k_8*oh_h(j-1)*no_2_h(j-1)+j_9*hno_3_h(j-1)+k_27*no_h(j-1)*ch_3o_2-
k_12*ho_2_h(j-1)*no_2_h(j-1)+j_13*ho_2no_2_h(j-1)+k_14*ho_2no_2_h(j-
1)+k_15*ho_2no_2_h(j-1)*oh_h(j-1)-k_35*ch_3co_3*no_2_h(j-
1)+j_36*pan_h(1)+k_37*pan_h(j1)+k_38*0.5*pan_h(j-1)*oh_h(j-1)-k_39*no_2_h(j-
1)*o_3-k_41*no_2_h(j-1)*no_3_h(j-1)+k_43*n_2o_5_h(j-1)+j_46*no_3_h(j-  
1)+j_47*n_2o_5_h(j-1))*del_t; 
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    no_h(j) = no_h(j-1) + (j_1*no_2_h(j-1)-k_3*o_3*no_h(j-1)-k_21*ho_2_h(j-1)*no_h(j-1)... 
                        -k_27*ch_3o_2*no_h(j-1)-k_34*no_h(j-1)*ch_3co_3)*del_t; 
  
     
    hno_3_h(j) = hno_3_h(j-1) + (k_8*oh_h(j-1)*no_2_h(j-1) - j_9*hno_3_h(j-1)- k_11*hno_3_h(j-

1)*oh_h(j-1)+2*k_42*n_2o_5_h(j-1)*h2o)*del_t; 
            
    no_3_h(j)  = no_3_h(j-1) + (k_39*no_2_h(j-1)*o_3 - k_41*no_2_h(j-1)*no_3_h(j-1)+ 

k_43*n_2o_5_h(j-1)-  j_46*no_3_h(j-1)+j_47*n_2o_5_h(j-1))*del_t; 
 

    n_2o_5_h(j) = n_2o_5_h(j-1) + (k_41*no_2_h(j-1)*no_3_h(j-1) - k_43*n_2o_5_h(j-1)- 
k_42*n_2o_5_h(j-1)*h2o - j_47*n_2o_5_h(j-1)) * del_t; 

     
  ho_2no_2_h(j) = ho_2no_2_h(j-1) +(k_12*ho_2_h(j-1)*no_2_h(j-1)-j_13*ho_2no_2_h(j-1)-

k_14*ho_2no_2_h(j-1)-k_15*ho_2no_2_h(j-1)*oh_h(j-1))*del_t; 
         
   pan_h(j) = pan_h(j-1) + (k_35*ch_3co_3*no_2_h(j-1) - k_37*pan_h(j-1) - j_36*pan_h(j-1)-

k_38*pan_h(j-1)*oh_h(j-1))*del_t; 
     
     
     
   no2_s=no_2_h(j) ; no_s=no_h(j) ; pan_s=pan_h(j) ; hno3_s=hno_3_h(j);   
   ho2no2_s=ho_2no_2_h(j); 
 
%the species for steady state calculation all based on the simple steady-state calculations  
%except HOx, see text more details 
 
    o_1d = j_4_a*o_3/(k_5*m + k_6*h2o); 
         
        %partitioning of hox species 
        r =(k_7 * co+k_25*ch_4+k_18*o_3)/(k_21*no_s+k_20*o_3);  
       % r=[HO2]/[OH]  
 
        %calculations to get steady state of HOx 
        p_hox=2*k_6*o_1d*h2o+2*j_22*h_2o_2 + j_32*ch_3ooh + 2*j_29_a*hcho; 
        l1 = 1/(1+r)*k_8*no2_s +1/(1+r)* k_11*hno3_s + r/(r+1)*k_12*no2_s + 

1/(1+r)*k_15*ho2no2_s; 
        l2 = r/(r+1)*r/(r+1)*k_19 + r/(r+1)*1/(r+1)*k_17; 
        hox = (-l1 + sqrt(l1*l1 +4*l2*p_hox))/(2*l2); 
     
        
     
   
    oh_h(j) = hox/(1+r); 
    ho_2_h(j) =(hox-oh_h(j)); 
    oh_s = oh_h(j); 
    ho2_s = ho_2_h(j); 
    ho_2no_2_ss_h(j)=(k_12*ho2_s*no_2_h(j))/(k_14+k_15*oh_s+j_13); 
    ch_3 = k_25*ch_4*oh_s/(k_26*.2*m); 
    ch_3co_3 = 

(j_36*pan_s+j_33*ch_3coch_3+k_37*pan_s)/(k_35*no2_s+k_34*no_s+k_45*ho2_s
); 

    ch_3o_2 = (k_26*ch_3*.2*m+j_33*ch_3coch_3+k_34*no_s*ch_3co_3)/(k_27*no_s); 
end 
 
    no_2 =  [no_2, no_2_h]; 
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    no   =  [ no, no_h]; 
    hno_3 = [hno_3, hno_3_h]; 
    no_3 = [no_3, no_3_h]; 
    n_2o_5 = [n_2o_5, n_2o_5_h]; 
    ho_2no_2 = [ho_2no_2, ho_2no_2_h]; 
    oh = [oh,oh_h]; 
    ho_2 = [ho_2, ho_2_h]; 
    pan = [pan, pan_h]; 
    ho_2no_2_ss=[ho_2no_2_ss,ho_2no_2_ss_h]; 
   clear no_2_h no_h hno_3_h no_3_h n_2o_5_h ho_2no_2_h oh_h ho_2_h pan_h 

ho_2no_2_ss_h 
 
end 
 
 
% Building a time array and unit change to pptv 
 
t=[0:1:n] 
 
ho_2no_2_ppt = ho_2no_2/m*10^12; 
hno_3_ppt = hno_3/m*10^12; 
oh_ppt = oh/m*10^12; 
ho_2_ppt = ho_2/m*10^12; 
no_ppt = no/m*10^12; 
no_2_ppt = no_2/m*10^12; 
pan_ppt = pan/m*10^12; 
no_3_ppt = no_3/m*10^12; 
n_2o_5_ppt = n_2o_5/m*10^12; 
ho_2no_2_ss_ppt=ho_2no_2_ss/m*10^12; 
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B-2 A Reaction List for Time Dependent Model 
 
 

 O3-NO2 Chemistry  HOx regenerations  
NO2 + hv → NO + O J1 O3 + OH → HO2 + O2 k18 

O2 + O + M  → O3 + M k2 HO2 + O3 → OH + 2O2 k20 
O3 + NO → NO2 + NO k3 HO2 + NO → NO2 + OH k21 

  H2O2 + OH → H2O + HO2 k24 
O3 Photolysis    

O3 + hv → O(1D) + O2 J4_a HOx self destructions  
     → O+ O2 J4_b HO2 + HO2 + M → H2O2 + O2 k19 

Overall J4 = J4_a + J4_b  OH + HO2 → H2O + O2 k17 
    

O(1D) Chemistry  CH4 chemistry  
O(1D) + M → O + M k5 CH4 + OH → CH3 + H2O k25 
O(1D) + H2O → 2OH k6 CH3 + O2 + M → CH3O2 + M k26 

  CH3O2 + NO → CH3O + NO2 k27 
CO Chemistry  CH3O + O2 → HCHO + HO2 k28 

CO + OH + M → HOCO + M k7_a   
CO + OH + M → H + CO2 k7_b HCHO chemistry  

  HCHO + hv → HO2 + HCO J_29a 
           → H2 + CO J_29_b 

HNO3 Chemistry  HCO + O2 → HO2 + CO k30 
OH + NO2 + M → HNO3 + M k8 HCHO + OH → HCO + H2O k31 

HNO3 + hv → NO2 + OH J9   
HNO3 → heterogeneous uptake k10 H2O2 photolysis  

HNO3 + OH → H2O + NO3 k11 H2O2 + hv → 2OH J22 
    

HO2NO2 Chemistry  CH3OOH photolysis  
HO2 + NO2 + M → HO2NO2 + M k12 CH3OOH + hv → CH3O + OH J32 

HO2NO2 + hv → HO2 + NO2 J13   
HO2NO2 + Heat → HO2 + NO2 k14 Acetone Chemistry  

HO2NO2 + OH → H2O + O2 + NO2 k15 CH3OCH3 + hv → CH3O2 + CH3CO3 J33 
HO2NO2 → heterogeneous uptake k44 CH3CO3 + NO → CH3CO2 + NO2 k34 

    
PAN Chemistry  NO3-N2O5 Chemistry  

CH3CO3 + NO2 + M → PAN k35 NO2 + O3 → NO3 + O2 k39 
PAN + hv → CH3CO3 + NO2 J36 NO3 + hv → NO2 + O J46 

PAN + heat → CH3CO3 + NO2 k37 NO2 + NO3 → N2O5 k41 
PAN + OH → ½ NO2 + Products k38 N2O5 → NO2 + NO3 k43 

CH3CO3 + HO2 → products k45 N2O5 + H2O → 2HNO3 k42 
  N2O5 + hv → NO2 + NO3 J47 

  
 


