
ALGORITHMIC MANIPULATION OF PROBABILITY DISTRIBUTIONS FOR
NETWORKS AND MECHANISMS

A Dissertation
Presented to

The Academic Faculty

By

David Durfee

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology

May 2019

Copyright c© David Durfee 2019

ALGORITHMIC MANIPULATION OF PROBABILITY DISTRIBUTIONS FOR
NETWORKS AND MECHANISMS

Approved by:

Dr. Richard Peng, Advisor
School of Computer Science
Georgia Institute of Technology

Dr. Santosh Vempala
School of Computer Science
Georgia Institute of Technology

Dr. Xi Chen
School of Computer Science
Columbia University

Dr. Eric Vigoda
School of Computer Science
Georgia Institute of Technology

Dr. Alejandro Toriello
School of Industrial Systems and
Engineering
Georgia Institute of Technology

Date Approved: December , 2018

ACKNOWLEDGEMENTS

The most thanks must go to my advisor, Richard Peng, a one-of-a-kind researcher

and one of the hardest working people I’ve ever met. He was always involved in many

different projects, and yet still managed to be incredibly generous with his time. His abun-

dance of interesting open problems and new approaches, combined with his unprecedented

receptiveness to collaboration, is truly exceptional.

I would also like to especially thank Xi Chen for being instrumental to the beginning of

my graduate research.

Thanks to all coauthors I’ve had the pleasure of working with, and to the members of my

thesis committee, particularly Santosh Vempala for being the reader of my thesis. Thanks to

friends and fellow grad students at Georgia Tech.

Lastly, I would like to of course thank my family, and especially my parents for always

helping, encouraging, and putting up with any endeavor I have pursued throughout my life.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Figures . x

Chapter 1: On Fully Dynamic Graph Sparsifiers 1

1.1 Abstract . 1

1.2 Introduction . 1

1.3 Background . 4

1.3.1 Dynamic Graph Algorithms . 4

1.3.2 Running Times and Success Probabilities 5

1.3.3 Cuts and Laplacians . 6

1.3.4 Graph Approximations . 6

1.3.5 Sampling Schemes for Constructing Sparsifiers 7

1.3.6 Spanning Trees and Spanners . 8

1.4 Overview and Related Work . 9

1.4.1 Dynamic Spectral Sparsifier . 9

1.4.2 Dynamic Cut Sparsifier . 12

1.4.3 (1− ε)-Approximate Undirected Bipartite Flow 15

1.4.4 Discussion . 19

iv

1.5 Dynamic Spectral Sparsifier . 20

1.5.1 Algorithm Overview . 21

1.5.2 Spectral Sparsification . 24

1.5.3 Decremental Spanner with Monotonicity Property 27

1.5.4 Decremental Spectral Sparsifier 34

1.5.5 Turning Decremental Spectral Sparsifier into Fully Dynamic Spec-
tral Sparsifier . 38

1.6 Dynamic Cut Sparsifier . 40

1.6.1 Algorithm Overview . 41

1.6.2 Definitions . 43

1.6.3 A Simple Cut Sparsification Algorithm 43

1.6.4 Dynamic Cut Sparsifier . 46

1.6.5 Handling Arbitrarily Long Sequences of Updates 51

1.7 Application of Dynamic Cut Sparsifier: Undirected Bipartite Min-Cut . . . 54

1.7.1 Key Observations and Definitions 55

1.7.2 Dynamic Algorithm for Maintaining a Minimum s− t Cut on Bi-
partite Graphs . 58

1.7.3 Dynamically Updating Data Structures 61

1.8 Vertex Sampling in Bipartite Graphs . 66

1.9 Maintaining (1 + ε)-Approximate Undirected Bipartite Min-Cut 74

1.9.1 Vertex Sparsification in Quasi-Bipartite Graphs 75

1.9.2 Dynamic Minimum Cut of Bipartite Graphs 83

1.10 Omitted Proofs of Section 1.5.2 . 92

1.11 Guarantees of Combinatorial Reductions 95

v

Chapter 2: Determinant-Preserving Sparsification of SDDM Matrices 98

2.1 Abstract . 98

2.2 Introduction . 99

2.2.1 Our Results . 101

2.2.2 Prior Work . 102

2.2.3 Organization . 105

2.3 Background . 106

2.3.1 Graphs, Matrices, and Random Spanning Trees 106

2.3.2 Effective Resistances and Leverage Scores 108

2.3.3 Schur Complements . 109

2.4 Sketch of the Results . 111

2.4.1 Concentration Bound . 111

2.4.2 Integration Into Recursive Algorithms 116

2.5 Determinant Preserving Sparsification . 119

2.5.1 Concentration Bound with Approximately Uniform Leverage Scores 120

2.5.2 Generalization to Graphs with Arbitrary Leverage Score Distributions125

2.5.3 Incorporating Crude Edge Sampler Using Rejection Sampling . . . 128

2.6 Implicit Sparsification of the Schur Complement 135

2.7 Approximate Determinant of SDDM Matrices 142

2.8 Random Spanning Tree Sampling . 147

2.8.1 Exact O(nω) Time Recursive Algorithm 149

2.8.2 Fast Random Spanning Tree Sampling using Determinant Sparsifi-
cation of Schur complement . 156

vi

2.9 Conditional Concentration Bounds . 166

2.9.1 Upper and Lower Bounds on Conditional Expectation 168

2.9.2 Upper Bound on Conditional Variance 173

2.9.3 Concentration of Inverse Probabilities 178

2.10 Bounding Total Variation Distance . 179

2.10.1 Simple Total Variation Distance Bound from Concentration Bounds 180

2.10.2 Total Variation Distance Bound from Inverse Probability Concentra-
tion . 181

2.11 Deferred Proofs . 185

Chapter 3: On the Complexity of Nash Equilibria in Anonymous Games 189

3.1 Abstract . 189

3.2 Introduction . 189

3.2.1 Related Work . 191

3.2.2 Anonymous Games and Polymatrix Games 193

3.2.3 Our Approach and Techniques . 195

3.2.4 Organization . 199

3.3 Warm-up: Radix Game . 199

3.3.1 Radix Game . 199

3.3.2 Generalized Radix Game . 203

3.4 Generalized Radix Game after Perturbation 204

3.5 Reduction from Polymatrix Games to Anonymous Games 209

3.5.1 Overview of the Reduction . 209

3.5.2 Construction of Anonymous Game GA 212

vii

3.5.3 Correctness of the Reduction . 214

3.5.4 Proof of the Hardness Part of Theorem 3.2.1 215

3.6 Proof of the Estimation Lemma . 220

3.7 Membership in PPAD . 227

3.7.1 Proof of Lemma 3.7.2 . 229

3.7.2 Proof of Lemma 3.7.3 . 230

3.8 Open Problems . 232

Chapter 4: Individual Sensitivity Preprocessing for Data Privacy 234

4.1 Introduction . 235

4.1.1 Differential Privacy and Sensitivity 239

4.1.2 Our Results . 240

4.1.3 Related Work . 252

4.1.4 Organization . 256

4.2 Preliminaries . 257

4.3 Sensitivity-Preprocessing Function . 258

4.3.1 Algorithmic Construction of Sensitivity-Preprocessing Function . . 260

4.3.2 Sensitivity-Preprocessing Function Correctness 262

4.3.3 Error Bounds for Sensitivity-Preprocessing Function 263

4.3.4 Proof of Theorem 4.3.3 . 265

4.4 Optimality and Hardness of Sensitivity-Preprocessing Function 265

4.4.1 Optimality guarantees . 266

4.4.2 Hardness of approximation . 270

viii

4.5 Efficient Implementation of Several Statistical Measures 274

4.5.1 Efficient implementation for a simple class of functions 274

4.5.2 Improved runtime and accuracy for median 277

4.5.3 Accuracy bounds for mean . 280

4.6 Efficient Implementation for Variance . 286

4.6.1 Efficient algorithm for variance . 287

4.6.2 Accuracy guarantees for variance implementation 291

4.6.3 Proof of Theorem 4.1.11 . 294

4.7 Sensitivity preprocessing for personalized privacy guarantees 295

4.7.1 Personalized differential privacy 295

4.7.2 Application: Markets for privacy 301

4.8 Extension to 2-dimensions for `1 sensitivity 302

4.8.1 Correctness of Sensitivity-Preprocessing Function 304

4.8.2 Error bounds for the 2-dimensional extension 309

4.9 Future Directions . 310

4.10 Omitted Proofs . 311

4.10.1 Proof of Lemma 4.5.12 . 311

4.10.2 Omitted proofs from Section 4.6 313

References . 333

ix

LIST OF FIGURES

1.1 LIGHT-SPECTRAL-SPARSIFY (G, c, ε). We give a dynamic implementation
of this algorithm in Section 1.5.4. In particular we dynamically maintain the
t-bundle α-spanner B which results in a dynamically changing graph G \B. 25

1.2 SPECTRAL-SPARSIFY (G, c, ε). We give a dynamic implementation of this
algorithm in Section 1.5.4. In particular we dynamically maintain each Hi

and Bi as the result of a dynamic implementation of LIGHT-SPECTRAL-
SPARSIFY which results in dynamically changing graphs Gi. 25

1.3 LIGHT-CUT-SPARSIFY (G, c, ε). We give a dynamic implementation of
this algorithm in Section 1.6.4. In particular we dynamically maintain the
t-bundle α-MST B which results in a dynamically changing graph G \B. . 44

1.4 CUT-SPARSIFY (G, c, ε) We give a dynamic implementation of this algo-
rithm in Section 1.6.4. In particular we dynamically maintain each Hi and
Bi as the result of a dynamic implementation of LIGHT-CUT-SPARSIFY

which results in dynamically changing graphs Gi. 44

1.5 Dynamic (2 + ε)-approximate Minimum s− t Cut 59

1.6 Moving a Vertex into VC . 62

1.7 Removing a Vertex from VC . 63

1.8 Update ADJ-LISTG̃ . 64

1.9 Sampling Heavy Vertices . 69

1.10 Vertex Sampling in G . 76

1.11 Vertex Bucketing in G . 77

1.12 Bounded Weight Vertex Sparsification in G 79

1.13 Light Vertex Set of XG . 81

x

1.14 Dynamic (1 + ε)-approximate Minimum s− t Cut 84

1.15 Removing a Vertex from XG̃ . 87

1.16 Inserting a Vertex into XG̃ . 88

1.17 Add Nx to Gi . 90

1.18 Remove Nx from Gi . 91

2.1 Two layers of the call Structure of the determinant approximation algorithm
DETAPPROX (algorithm 6), with the transition from the first to the second
layer labeled as in Lemma 2.7.1. 145

xi

SUMMARY

In this thesis we present four different works that solve problems in dynamic graph

algorithms, spectral graph algorithms, computational economics, and differential privacy.

While these areas are not all strongly correlated, there were similar techniques integral to

each of the results. In particular, a key to each result was carefully constructing probability

distributions that interact with fast algorithms on networks or mechanisms for economic

games and private data output. For the fast algorithms on networks this required utilizing

essential graph properties for each network to determine sampling probabilities for spar-

sification procedures that we often recursively applied to achieve runtime speedups. For

mechanisms in economic games we construct a gadget game mechanism by carefully manip-

ulating the expected payoff resulting from the probability distribution on the strategy space

to give a correspondence between two economic games and imply a hardness equivalence.

For mechanisms on private data output we construct a smoothing framework for input data

that allows private output from known mechanisms while still maintaining certain levels of

accuracy.

Dynamic Spectral Sparsification In [1], we consider a dynamically changing graph

under edge insertions and deletions, and give a data structure for maintaining a (1± ε)-cut

sparsifier in worst-case update time poly(log n, ε−1), and a (1 ± ε)-spectral sparsifier in

amortized update time poly(log n, ε−1). We also developed a vertex sparsification routine,

that improves upon [2], which samples vertices according to a distribution carefully obtained

by considering the connectivity properties of the Schur complement that results from

eliminating a set of independent vertices. We then combined our data structures and vertex

sparsification routine to maintain a (1− ε) approximate max-flow in undirected, unweighted

bipartite graphs with amortized update time poly(log n, ε−1).

xii

Determinant-preserving Sparsification In [3] we construct a specific edge sampling

distribution using leverage scores to approximately maintain determinant of the minor of a

Laplacian matrix, a more delicate quantity to maintain compared to spectral approximation.

The proof utilizes the connection between determinant and spanning trees established by

Kirchhoff’s matrix tree theorem, along with extending a concentration bound in [4]. We then

incorporate this sparsification procedure into a fast and sparse Schur complement routine

by further refining our sampling distribution with random walks, which allows for the use

of recursive algorithms. Using connections between Schur complement and determinant,

we give an Õ(n2δ−2)-time algorithm for computing a (1± δ)-approximate determinant of

the Laplacian minor. This is the first routine for graphs that outperforms general-purpose

routines for computing determinants of arbitrary matrices. This general structure can also be

used to output a random spanning tree in Õ(n2δ−2)-time from a distribution that has total

variation distance ≤ δ from the true distribution.

Computational Equilibria Hardness In [5], we proved that computing an equilibrium

for an important class of games, anonymous games, is PPAD-complete, confirming a

conjecture by Daskalakis and Papadimitriou put forth after a series of papers on anonymous

games [6, 7, 8, 9]. In order to achieve the hardness reduction we considered a known

PPAD-hard class of games, polymatrix games, and constructed an anonymous gadget game

that gave a correspondence between the equilibria of each game. This correspondence was

obtained by carefully tuning the expected payoffs resulting from the probability distribution

determined by our constructed gadget game, resulting in the key lemma to our reduction.

Sensitivity Preprocessing for Privacy In [10], we give a recursive function preprocessing

routine to smooth the output probability distribution from applying standard differential

privacy mechanisms. A variety of techniques have been used for a similar purpose such

as smooth sensitivity and Sample-and-Aggregate [11], Propose-Test-Release [12], and

Lipschitz extensions [13, 14, 15]. Our framework is most similar to Lipschitz extensions,

xiii

but overcomes some of the limitations of the previous techniques and works in a more

generalized setting. In particular, using certain probability tricks we are further able to

efficiently implement our recursion in O(n2) time for important statistical metrics such

as mean and variance, neither of which were achievable with the previous techniques.

Additionally, we extend our framework to a more refined smoothness measure and show

how this can serve as a useful tool for a variant privacy definition and its applications in

markets for privacy.

xiv

CHAPTER 1

ON FULLY DYNAMIC GRAPH SPARSIFIERS

This was joint work with Ittai Abraham, Ioannis Koutis, Sebastian Krinninger, and Richard

Peng.

1.1 Abstract

We initiate the study of fast dynamic algorithms for graph sparsification problems and

obtain fully dynamic algorithms, allowing both edge insertions and edge deletions, that take

polylogarithmic time after each update in the graph. Our three main results are as follows.

First, we give a fully dynamic algorithm for maintaining a (1± ε)-spectral sparsifier with

amortized update time poly(log n, ε−1). Second, we give a fully dynamic algorithm for

maintaining a (1 ± ε)-cut sparsifier with worst-case update time poly(log n, ε−1). Both

sparsifiers have size n · poly(log n, ε−1). Third, we apply our dynamic sparsifier algorithm

to obtain a fully dynamic algorithm for maintaining a (1 + ε)-approximation to the value

of the maximum flow in an unweighted, undirected, bipartite graph with amortized update

time poly(log n, ε−1).

1.2 Introduction

Problems motivated by graph cuts are well studied in theory and practice. The prevalence

of large graphs motivated sublinear time algorithms for cut based problems such as clus-

tering [16, 17, 18, 19, 20, 21]. In many cases such as social networks or road networks,

these algorithms need to run on dynamically evolving graphs. In this paper, we study an

approach for obtaining sublinear time algorithms for these problems based on dynamically

maintaining graph sparsifiers.

1

Recent years have seen a surge of interest in dynamic graph algorithms. On the one hand,

very efficient algorithms, with polylogarithmic running time per update in the graph, could

be found for some key problems in the field [22, 23, 24, 25, 26, 27, 28, 29]. On the other

hand, there are polynomial conditional lower bounds for many basic graph problems [30, 31,

32]. This leads to the question which problems can be solved with polylogarithmic update

time. Another relatively recent trend in graph algorithmics is graph sparsification where we

reduce the size of graphs while approximately preserving key properties such as the sizes of

cuts [33]. These routines and their extensions to the spectral setting [34, 35] play central

roles in a number of recent algorithmic advances [36, 37, 38, 39, 40, 41, 42], often leading

to graph algorithms that run in almost-linear time. In this paper, we study problems at the

intersection of dynamic algorithms and graph sparsification, leveraging ideas from both

fields.

At the core of our approach are data structures that dynamically maintain graph sparsifiers

in polylog n time per edge insertion or deletion. They are motivated by the spanner based

constructions of spectral sparsifiers of Koutis [43]. By modifying dynamic algorithms for

spanners [29], we obtain data structures that spend amortized polylog n per update. Our

main result for spectral sparsifiers is:

Theorem 1.2.1. Given a graph with polynomially bounded edge weights, we can dynami-

cally maintain a (1± ε)-spectral sparsifier of size n ·poly(log n, ε−1) with amortized update

time poly(log n, ε−1) per edge insertion / deletion.

When used as a black box, this routine allows us to run cut algorithms on sparse graphs

instead of the original, denser network. Its guarantees interact well with most routines

that compute minimum cuts or solve linear systems in the graph Laplacian. Some of them

include:

1. min-cuts, sparsest cuts, and separators [44],

2. eigenvector and heat kernel computations [45],

2

3. approximate Lipschitz learning on graphs [46] and a variety of matrix polynomials in

the graph Laplacian [47].

In many applications the full power of spectral sparsifiers is not needed, and it suffices to

work with a cut sparsifier. As spectral approximations imply cut approximations, research

in recent years has focused spectral sparsification algorithms [48, 49, 50, 51, 52, 53]. In

the dynamic setting however we get a strictly stronger result for cut sparsifiers than for

spectral sparsifiers: we can dynamically maintain cut sparsifiers with polylogarithmic worst-

case update time after each insertion / deletion. We achieve this by generalizing Koutis’

sparsification paradigm [43] and replacing spanners with approximate maximum spanning

trees in the construction. While there are no non-trivial results for maintaining spanners with

worst-case update time, spanning trees can be maintained with polylogarithmic worst-case

update time by a recent breakthrough result [24]. This allows us to obtain the following

result for cut sparsifiers:

Theorem 1.2.2. Given a graph with polynomially bounded edge weights, we can dynami-

cally maintain a (1 ± ε)-cut sparsifier of size n · poly(log n, ε−1) with worst-case update

time poly(log n, ε−1) per edge insertion / deletion.

We then explore more sophisticated applications of dynamic graph sparsifiers. A key

property of these sparsifiers is that they have arboricity polylog n. This means the sparsifier

is locally sparse, and can be represented as a union of spanning trees. This property is

becoming increasingly important in recent works [26, 54]: Peleg and Solomon [54] gave

data structures for maintaining approximate maximum matchings on fully dynamic graphs

with amortized cost parameterized by the arboricity of the graphs. We demonstrate the

applicability of our data structures for designing better data structures on the undirected

variant of the problem. Through a two-stage application of graph sparsifiers, we obtain

the first non-separator based approach for dynamically maintaining (1 − ε)-approximate

maximum flow on fully dynamic graphs:

3

Theorem 1.2.3. Given a dynamically changing unweighted, undirected, bipartite graph

G = (A,B,E) with demand −1 on every vertex in A and demand 1 on every vertex in

B, we can maintain a (1 − ε)-approximation to the value of the maximum flow, as well

as query access to the associated approximate minimum cut, with amortized update time

poly(log n, ε−1) per edge insertion / deletion.

To obtain this result we give stronger guarantees for vertex sparsification in bipartite

graphs, identical to the terminal cut sparsifier question addressed by Andoni, Gupta, and

Krauthgamer [2]. Our new analysis profits from the ideas we develop by going back and

forth between combinatorial reductions and spectral sparsification. This allows us to analyze

a vertex sampling process via a mirror edge sampling process, which is in turn much better

understood.

Overall, our algorithms bring together a wide range of tools from data structures,

spanners, and randomized algorithms. We will provide more details on our routines, as well

as how they relate to existing combinatorial and probabilistic tools in Section 2.4.

1.3 Background

1.3.1 Dynamic Graph Algorithms

In this paper we consider undirected graphs G = (V,E) with n vertices and m edges that

are either unweighted or have non-negative edge weights. We denote the weight of an edge

e = (u, v) in a graph G by wG(e) or wG(u, v) and the ratio between the largest and the

smallest edge weight by W . The weight wG(F) of a set of edges F ⊆ E is the sum of

the individual edge weights. We will assume that all weights are polynomially bounded

because there are standard reductions from the general case using minimum spanning trees

(e.g. [55] Section 10.2., [56] Theorem 5.2). Also, these contraction schemes in the data

structure setting introduces another layer of complexity akin to dynamic connectivity, which

we believe is best studied separately.

4

A dynamic algorithm is a data structure for dynamically maintaining the result of a

computation while the underlying input graph is updated periodically. We consider two

types of updates: edge insertions and edge deletions. An incremental algorithm can handle

only edge insertions, a decremental algorithm can handle only edge deletions, and a fully

dynamic algorithm can handle both edge insertions and deletions. After every update in the

graph, the dynamic algorithm is allowed to process the update to compute the new result.

For the problem of maintaining a sparsifier, we want the algorithm to output the changes to

the sparsifier (i.e., the edges to add to or remove from the sparsifier) after every update in

the graph.

1.3.2 Running Times and Success Probabilities

The running time spent by the algorithm after every update is called update time. We

distinguish between amortized and worst-case update time. A dynamic algorithm has

amortized update time T (m,n,W), if the total time spent after q updates in the graph is at

most qT (m,n,W). A dynamic algorithm has worst-case update time T (m,n,W), if the

total time spent after each update in the graph is at most T (m,n,W). Here m refers to the

maximum number of edges ever contained in the graph. All our algorithms are randomized.

The guarantees we report in this paper (quality and size of sparsifier, and update time)

will hold with high probability (w.h.p.), i.e. with probability at least 1 − 1/nc for some

arbitrarily chosen constant c ≥ 1. These bounds are against an oblivious adversary who

chooses its sequence of updates independently from the random choices made by the

algorithm. Formally, the oblivious adversary chooses its sequence of updates before the

algorithm starts. In particular, this means that the adversary is not allowed to see the current

edges of the sparsifier. As our composition of routines involve poly(n) calls, we will assume

the composability of these w.h.p. bounds.

Most of our update costs have the form O(logO(1) nε−O(1)), where ε is the approximation

error. We will often state these as poly(log n, ε−1) when the exponents exceed 3, and

5

explicitly otherwise.

1.3.3 Cuts and Laplacians

A cut U ⊆ V of G is a subset of vertices whose removal makes G disconnected. We denote

by ∂G(U) the edges crossing the cut U , i.e., the set of edges with one endpoint in U and one

endpoint in V \ U . The weight of the cut U is wG(∂G(U)). An edge cut F ⊆ E of G is a a

subset of edges whose removal makes G disconnected and the weight of the edge cut F is

wG(F). For every pair of vertices u and v, the local edge connectivity λG(u, v) is the weight

of the minimum edge cut separating u and v. If G is unweighted, then λG(u, v) amounts to

the number of edges that have to be removed from G to make u and v disconnected.

Assuming some arbitrary order v1, . . . vn on the vertices, the Laplacian matrix LG of

an undirected graph G is the n× n matrix that in row i and column j contains the negated

weight −wG(vi, vj) of the edge (vi, vj) and in the i-th diagonal entry contains the weighted

degree
∑n

j=1wG(vi, vj) of vertex vi. Note that Laplacian matrices are symmetric. The

matrix Le of an edge e of G is the n× n Laplacian matrix of the subgraph of G containing

only the edge e. It is 0 everywhere except for a 2× 2 submatrix.

For studying the spectral properties of G we treat the graph as a resistor network. For

every edge e ∈ E we define the resistance of e as rG(e) = 1/wG(e). The effective resistance

RG(e) of an edge e = (v, u) is defined as the potential difference that has to be applied to

u and v to drive one unit of current through the network. A closed form expression of the

effective resistance is RG(e) = b>u,vL
†
Gbu,v, where L†G is the Moore-Penrose pseudo-inverse

of the Laplacian matrix of G and bu,v is the n-dimensional vector that is 1 at position u, −1

at position v, and 0 otherwise.

1.3.4 Graph Approximations

The goal of graph sparsification is to find sparse subgraphs, or similar small objects, that

approximately preserve certain metrics of the graph. We first define spectral sparsifiers

6

where we require that Laplacian quadratic form of the graph is preserved approximately.

Spectral sparsifiers play a pivotal role in fast algorithms for solving Laplacian systems, a

special case of linear systems.

Definition 1.3.1. A (1 ± ε)-spectral sparsifier H of a graph G is a subgraph of G with

weights wH such that for every vector x ∈ Rn

(1− ε)x>LHx ≤ x>LGx ≤ (1 + ε)x>LHx .

Using the Loewner ordering on matrices this condition can also be written as (1−ε)LH �

LG � (1+ε)LH . An n×nmatrixA is positive semi-definite, written asA � 0, if x>Ax ≥ 0

for all x ∈ Rn. For two n × n matrices A and B we write A � B as an abbreviation for

A− B � 0.

Note that x>LGx =
∑

(u,v)∈E w(u, v)(x(u) − x(v))2 where the vector x is treated as

a function on the vertices and x(v) is the value of x for vertex v. A special case of such

a function on the vertices is given by the binary indicator vector xU associated with a cut

U , where xU(v) = 1 is v ∈ U and 0 otherwise. If limited to such indicator vectors, the

sparsifier approximately preserves the value of every cut.

Definition 1.3.2. A (1± ε)-cut sparsifier H of a graph G is a subgraph of G with weights

wH such that for every subset U ⊆ V

(1− ε)wH(∂H(U)) ≤ wG(∂G(U)) ≤ (1 + ε)wH(∂H(U)) .

1.3.5 Sampling Schemes for Constructing Sparsifiers

Most efficient constructions of sparsifiers are randomized, partly because when G is the

complete graph, the resulting sparsifier needs to be an expander. These randomized schemes

rely on importance sampling, which for each edge:

1. Keeps it with probability pe,

7

2. If the edge is kept, its weight is rescaled to we
pe

.

A crucial property of this process is that the edge’s expectation is preserved. As both cut

and spectral sparsifiers can be viewed as preserving sums over linear combinations of edge

weights, each of these terms have correct expectation. The concentration of such processes

can then be bounded using either matrix concentration bounds in the spectral case [57, 55],

or a variety of combinatorial arguments [33].

Our algorithms in this paper will use an even simpler version of this importance sampling

scheme: all of our pe’s will be set to either 1 or 1/2. This scheme has a direct combinatorial

interpretation:

1. Keep some of the edges.

2. Take a random half of the other edges, and double the weights of the edges kept.

Note that composing such a routine O(log n) times gives a sparsifier, as long as the part we

keep is small. So the main issue is to figure out how to get a small part to keep.

1.3.6 Spanning Trees and Spanners

A spanning forest F of G is a forest (i.e., acyclic graph) on a subset of the edges of G

such that every pair of vertices that is connected in G is also connected in F . A mini-

mum/maximum spanning forest is a spanning forest of minimum/maximum total weight.

For every pair of vertices u and v we denote by dG(u, v) the distance between u and v

(i.e., the length of the shortest path connecting u and v) in G with respect to the resistances.

The graph sparsification concept also exists with respect to distances in the graph. Such

sparse subgraphs that preserves distances approximately are called spanners.

Definition 1.3.3. A spanner of stretch α, or short α-spanner, (where α ≥ 1) of an undirected

(possibly weighted) graph G is a subgraph H of G such that, for every pair of vertices u and

v, dH(u, v) ≤ αdG(u, v).

8

1.4 Overview and Related Work

1.4.1 Dynamic Spectral Sparsifier

We first develop a fully dynamic algorithm for maintaining a spectral sparsifier of a graph

with polylogarithmic amortized update time.

Related Work. Spectral sparsifiers play important roles in fast numerical algorithms.

Spielman and Teng were the first to study these objects [34]. Their algorithm constructs a

(1± ε)-spectral sparsifier of size O(n · poly(log n, ε−1)) in nearly linear time. This result

has seen several improvements in recent years [55, 58, 59, 51]. The state of the art in the

sequential model is an algorithm by Lee and Sun [52] that computes a (1 ± ε)-spectral

sparsifier of size O(nε−2) in nearly linear time. Most closely related to the data structural

question are streaming routines, both in one pass incremental [48], and turnstile [60, 61, 50].

A survey of spectral sparsifier constructions is given in [35]. Many of these methods rely

on solving linear systems built on the graph, for which there approaches with a combinatorial

flavor using low-stretch spanning trees [62, 63] and purely numerical solvers relying on

sparsifiers [39] or recursive constructions [41]. The crux of these algorithms is then a simple

sampling procedure of each edge independently kept with probability proportional to its

respective effective resistance. The notion of effective resistance and sparsification sampling

based upon this metric will be discussed more in depth in Section 2 (see Section 2.3.2 for

a definition of effective resistance) where we slightly modify this sampling procedure to

maintain further properties of the graph. It is important to note that the metric of effective

resistance is a global quantity of the graph and is difficult to dynamically maintain efficiently.

As such, while sampling by effective resistance score may give the smallest sparsifier in the

static case, it is difficult to extend to the dynamic setting. We instead build on the spectral

sparsifier obtained by a simple, combinatorial construction of Koutis [43], which initially

was geared towards parallel and distributed implementations and will be further explained in

9

later sections. The key distinction will be that the sampling procedure for most edges is not

affected by the insertion or deletion of an edge allowing for more efficient dynamic updates.

Sparsification Framework. In our framework we determine ‘sampleable’ edges by using

spanners to compute a set of edges of bounded effective resistance. From these edges we

then sample by coin flipping to obtain a (moderately sparser) spectral sparsifier in which the

number of edges has been reduced by a constant fraction. This step can then be iterated a

small number of times in order to compute the final sparsifier.

Concretely, we define a t-bundle spanner B = T1 ∪ · · · ∪ Tt (for a suitable, polyloga-

rithmic, value of t) as a sequence of spanners T1, . . . , Tt where the edges of each spanner

are removed from the graph before computing the next spanner, i.e., T1 is a spanner of

G, T2 is a spanner of G \ T1, etc; here each spanner has stretch O(log n). We then sam-

ple each non-bundle edge in G \ B with some constant probability p and scale the edge

weights of the sampled edges proportionally. The t-bundle spanner serves as a certificate

for small resistance of the non-bundle edges in G \ B as it guarantees the presence of t

disjoint paths of length at most the stretch of the spanner. Using this property one can apply

matrix concentration bounds [57] to show the t-bundle together with the sampled edges is

a moderately sparse spectral sparsifier. We repeat this process of ‘peeling off’ a t-bundle

from the graph and sampling from the remaining edges until the graph is sparse enough

(which happens after a logarithmic number of iterations). Our final sparsifier consists of all

t-bundles together with the sampled edges of the last stage.

Towards a Dynamic Algorithm. To implement the spectral sparsification algorithm in

the dynamic setting we need to dynamically maintain a t-bundle spanner. Our approach

to this problem is to run t different instances of a dynamic spanner algorithm, in order to

separately maintain a spanner Ti for each graph Gi = G \
⋃i−1
j=1 Tj , for 1 ≤ i ≤ t.

Baswana, Khurana, and Sarkar [29] gave a fully dynamic algorithm for maintaining

10

a spanner of stretch O(log n) and size O(n log2 n) with polylogarithmic update time.1 A

natural first idea would be to use this algorithm in a black-box fashion in order to separately

maintain each spanner of a t-bundle. However, we do not know how to do this because of

the following obstacle. A single update in G might lead to several changes of edges in the

spanner T1, an average of Ω(log n) according to the amortized upper bound. This means

that the next instance of the fully dynamic spanner algorithm which is used for maintaining

T2, not only has to deal with the deletion in G but also the artificially created updates in

G2 = G \ T1. This of course propagates to more updates in all graphs Gi. Observe also that

any given update in Gt caused by an update in G, can be requested repeatedly, as a result of

subsequent updates in G. Without further guarantees, it seems that with this approach we

can only hope for an upper bound of O(logt−1 n) (on average) on the number of changes

to be processed for updating Gt after a single update in G. That is too high because the

sparsification algorithm requires us to take t = Ω(log n). Our solution to this problem lies

in a substantial modification of the dynamic spanner algorithm in [29] outlined below.

Dynamic Spanners with Monotonicity. The spanner algorithm of [29] is at its core a

decremental algorithm (i.e., allowing only edge deletions in G), which is subsequently

leveraged into a fully dynamic algorithm by a black-box reduction. We follow the same

approach by first designing a decremental algorithm for maintaining a t-bundle spanner.

This is achieved by modifying the decremental spanner algorithm so that, in addition to its

original guarantees, it has the following monotonicity property:

Every time an edge is added to the spanner T , it stays in T until it is deleted from G.

Recall that we initially want to maintain a t-bundle spanner T1, . . . , Tt under edge

deletions only. In general, whenever an edge is added to T1, it will cause its deletion from

the graphG\T1 for which the spanner T2 is maintained. Similarly, removing an edge from T1

1More precisely, they gave two fully dynamic algorithms for maintaing a (2k − 1)-spanner for any integer
k ≥ 2: The first algorithm guarantees a spanner of expected sizeO(kn1+1/k log n) and has expected amortized
update time O(k2 log2 n) and the second algorithm guarantees a spanner of expected size O(k8n1+1/k log2 n)
and has expected amortized update time O(7k/2).

11

causes its insertion into G \ T1, unless the edge is deleted from G. This is precisely what the

monotonicity property guarantees: that an edge will not be removed from T1 unless deleted

from G. The consequence is that no edge insertion can occur for G2 = G \ T1. Inductively,

no edge is ever inserted into Gi, for each i. Therefore the algorithm for maintaining the

spanner Ti only has to deal with edge deletions from the graph Gi, thus it becomes possible

to run a different instance of the same decremental spanner algorithm for each Gi. A single

deletion from G can still generate many updates in the bundle. But for each i, the instance of

the dynamic spanner algorithm working on Gi can only delete each edge once. Furthermore,

we only run a small number t of instances. So the total number of updates remains bounded,

allowing us to claim the upper bound on the amortized update time.

In addition to the modification of the dynamic spanner algorithm, we have also deviated

from Koutis’ original scheme [43] in that we explicitly ‘peel off’ each iteration’s bundle

from the graph. In this way we avoid that the t-bundles from different iterations share any

edges, which seems hard to handle in the decremental setting we ultimately want to restrict

ourselves to.

The modified spanner algorithm now allows us to maintain t-bundles in polylogarithmic

update time, which is the main building block of the sparsifier algorithm. The remaining

parts of the algorithm, like sampling of the non-bundle edges by coin-flipping, can now

be carried out in the straightforward way in polylogarithmic amortized update time. At

any time, our modified spanner algorithm can work in a purely decremental setting. As

mentioned above, the fully dynamic sparsifier algorithm is then obtained by a reduction

from the decremental sparsifier algorithm.

1.4.2 Dynamic Cut Sparsifier

We then give dynamic algorithms for maintaining a (1 ± ε)-cut sparsifier. We obtain a

fully dynamic algorithm with polylogarithmic worst-case update time by leveraging a

recent worst-case update time algorithm for dynamically maintaining a spanning tree of a

12

graph [24]. As mentioned above, spectral sparsifiers are more general than cut sparsifiers.

The big advantage of studying cut sparsification as a separate problem is that we can achieve

polylogarithmic worst-case update time, where the update time guarantee holds for each

individual update and is not amortized over a sequence of updates.

Related Work. In the static setting, Benczúr and Karger [33] developed an algorithm

for computing a (1± ε)-cut sparsifier of size O(n · poly(log n, ε−1)) in nearly linear time.

Their approach is to first compute a value called strength for each edge and then sampling

each edge with probability proportional to its strength. Their proof uses a cut-counting

argument that shows that the majority of cuts are large, and therefore less likely to deviate

from their expectation. A union bound over these (highly skewed) probabilities then gives

the overall w.h.p. success bound. This approach was refined by Fung et al. [64] who show

that a cut sparsifier can also be obtained by sampling each edge with probability inversely

proportional to its (approximate) local edge connectivity, giving slightly better guarantees

on the sparsifier. The work of Kapron, King, and Mountjoy [24] contains a fully dynamic

approximate “cut oracle” with worst-case update time O(log2 n). Given a set U ⊆ V as the

input of a query, it returns a 2-approximation to the number of edges in U × V \ U in time

O(|U | log2 n). The cut sparsifier question has also been studied in the (dynamic) streaming

model [65, 66, 67].

Our Framework. The algorithm is based on the observation that the spectral sparsification

scheme outlined above in Section 1.4.1. becomes a cut sparsification algorithm if we simply

replace spanners by maximum weight spanning trees (MSTs). This is inspired by sampling

according to edge connectivities; the role of the MSTs is to certify lower bounds on the edge

connectivities. We observe that the framework does not require us to use exact MSTs. For

our t-bundles we can use a relaxed, approximate concept that we call α-MST that. Roughly

speaking, an α-MST guarantees a ‘stretch’ of α in the infinity norm and, as long as it is

sparse, does not necessarily have to be a tree.

13

Similarly to before, we define a t-bundle α-MST B as the union of a sequence of α-

MSTs T1, . . . Tt where the edges of each tree are removed from the graph before computing

the next α-MST. The role of α-MST is to certify uniform lower bounds on the connectivity of

edges; these bounds are sufficiently large to allow uniform sampling with a fixed probability.

This process of peeling and sampling is repeated sufficiently often and our cut sparsifier

then is the union of all the t-bundle α-MSTs and the non-bundle edges remaining after

taking out the last bundle. Thus, the cut sparsifier consists of a polylogarithmic number of

α-MSTs and a few (polylogarithmic) additional edges. This means that for α-MSTs based

on spanning trees, our cut sparsifiers are not only sparse, but also have polylogarithmic

arboricity, which is the minimum number of forests into which a graph can be partitioned.

Simple Fully Dynamic Algorithm. Our approach immediately yields a fully dynamic

algorithm by using a fully dynamic algorithm for maintaining a spanning forest. Here we

basically have two choices. Either we use the randomized algorithm of Kapron, King, and

Mountjoy [24] with polylogarithmic worst-case update time. Or we use the deterministic

algorithm of Holm, de Lichtenberg, and Thorup [23] with polylogarithmic amortized update

time. The latter algorithm is slightly faster, at the cost of providing only amortized update-

time guarantees. A t-bundle 2-MST can be maintained fully dynamically by running, for

each of the logW weight classes of the graph, t instances of the dynamic spanning tree

algorithm in a ‘chain’.

An important observation about the spanning forest algorithm is that with every update

in the graph, at most one edge is changed in the spanning forest: If for example an edge is

deleted from the spanning forest, it is replaced by another edge, but no other changes are

added to the tree. Therefore a single update in G can only cause one update for each graph

Gi = G \
⋃i−1
j=1 Tj and Ti. This means that each instance of the spanning forest algorithm

creates at most one ‘artificial’ update that the next instance has to deal with. In this way,

each dynamic spanning forest instance used for the t-bundle has polylogarithmic update

14

time. As t = polylog n, the update time for maintaining a t-bundle is also polylogarithmic.

The remaining steps of the algorithm can be carried out dynamically in the straightforward

way and overall give us polylogarithmic worst-case or amortized update time.

A technical detail of our algorithm is that the high-probability correctness achieved

by the Chernoff bounds only holds for a polynomial number of updates in the graph. We

thus have to restart the algorithm periodically. This is trivial when we are shooting for

an amortized update time. For a worst-case guarantee we can neither completely restart

the algorithm nor change all edges of the sparsifier in one time step. We therefore keep

two instances of our algorithm that maintain two sparsifiers of two alternately growing and

shrinking subgraphs that at any time partition the graph. This allows us to take a blend of

these two subgraph sparsifiers as our end result and take turns in periodically restarting the

two instances of the algorithm.

1.4.3 (1− ε)-Approximate Undirected Bipartite Flow

We then study ways of utilizing our sparsifier constructions to give routines with truly

sublinear update times. The problem that we work with will be maintaining an approximate

maximum flow problem on a bipartite graph GA,B = (A,B,E) with demand −1 and 1 on

each vertex in A and B, respectively. All edges are unit weight and we dynamically insert

and delete edges. The maximum flow minimum cut theorem states that the objective here

equals to the minimum s− t cut or maximum s− t flow in G, which will be GA,B where

we add vertices s and t, and connect each vertex in A to s and each vertex in B to t. The

only dynamic changes in this graph will be in edges between A and B. As our algorithms

builds upon cut sparsifiers, and flow sparsifiers [38] are more involved, we will focus on

only finding cuts.

This problem is motivated by the dynamic approximate maximum matching problem,

which differs in that the edges are directed, and oriented from A to B. This problem has

received much attention recently [25, 27, 26, 68, 54, 69], and led to the key definition of low

15

arboricity graphs [26, 54]. On the other hand, bipartite graphs are known to be difficult to

sparsify: the directed reachability matrix from A to B can encode Θ(n2) bits of information.

As a result, we study the undirected variant of this problem instead, with the hope that

this framework can motivate other definitions of sparsification suitable for wider classes of

graphs.

Another related line of work are fully dynamic algorithm for maintaining the global min-

imum cut [70, 71] with update time O(
√
n polylog n). As there are significant differences

between approximating global minimum cuts and st-minimum cuts in the static setting [72],

we believe that there are some challenges to adapting these techniques for this problem. The

data structure by Thorup [70] can either maintain global edge connectivity up to polylog n

exactly or, with high probability, arbitrary global edge connectivity with an approximation

of 1 + o(1). The algorithms also maintain concrete (approximate) minimum cuts, where in

the latter algorithm the update time increases to O(
√
m polylog n) (and cut edges can be

listed in time O(log n) per edge). Thorup’s result was preceded by a randomized algorithm

with worse approximation ratio for the global edge connectivity by Thorup and Karger [71]

with update time O(
√
n polylog n).

At the start of Section 1.7 we will show that the problem we have formulated above

is in fact different from matching. On the other hand, our incorporation of sparsifiers for

maintaining solutions to this problem relies on several properties that hold in a variety of

other settings:

1. The static version can be efficiently approximated.

2. The objective can be approximated via graph sparsifiers.

3. A small answer (for which the algorithm’s current approximation may quickly become

sub-optimal) means the graph also has a small vertex cover.

4. The objective does not change much per each edge update.

16

As with algorithms for maintaining high quality matchings [68, 54], our approach aims

to get a small amortized cost by keeping the same minimum s− t cut for many consecutive

dynamic steps. Specifically, if we have a minimum s− t cut of size (2 + ε
2
)OPT , then we

know this cut will remain (2 + ε) approximately optimal for ε
2
OPT dynamic steps. This

allows us to only compute a new minimum s− t cut every ε
2
OPT dynamic steps.

As checking for no edges would be an easy boundary case, we will assume throughout

all the analysis that OPT > 0. To obtain an amortized O(poly(log n, ε−1)) update cost, it

suffices for this computation to take O(OPT · poly(log n, ε−1)) time. In other words, we

need to solve approximate maximum flow on a graph of size O(OPT · poly(log n, ε−1)).

Here we incorporate sparsifiers using the other crucial property used in matching data

structures [25, 68, 54]: if OPT is small, G also has a small vertex cover.

Lemma 1.4.1. The minimum vertex cover in G has size at most OPT + 2 where OPT is

the size of the minimum s− t cut in G.

We utilize the low arboricity of our sparsifiers to find a small vertex cover with the

additional property that all non-cover vertices have small degree. We will denote this (much)

smaller set of vertices as V C. In a manner similar to eliminating vertices in numerical

algorithms [41], the graph can be reduced to only edges on V C at the cost of a (2 + ε)-

approximation. Maintaining a sparsifier of this routine again leads to an overall routine

that maintains a (2 + ε)-approximation in polylog n time per update, which we show in

Section 1.7.

Sparsifying vertices instead of edges inherently implies that an approximation of all

cut values cannot be maintained. Instead, the sparsifier, which will be referred to as a

terminal-cut-sparsifier, maintains an approximation of all minimum cuts between any

two terminal vertices, where the vertex cover is the terminal vertex set for our purposes.

More specifically, given a minimum cut between two terminal vertices on the sparsified

graph, by adding each independent vertex from the original graph to the cut set it is more

connected to, an approximate minimum cut on the original graph is achieved. This concept

17

of terminal-cut-sparsifier will be equivalent to that in [2], and will be given formal treatment

in Section 1.9.

The large approximation ratio motivated us to reexamine the sparsification routines,

namely the one of reducing the graph to one whose size is proportional to |V C|. This is di-

rectly related to the terminal cut sparsifiers studied in [2, 73]. However, for an update time of

poly(log n, ε−1), it is crucial for the vertex sparsifier to have size O(|VC| poly(log n, ε−1)).

As a result, instead of doing a direct union bound over all 2|VC| cuts to get a size of

poly(|VC|) as in [2], we need to invoke cut counting as with cut sparsifier constructions.

This necessitates the use of objects similar to t-bundles to identify edges with small connec-

tivity. This leads to a sampling process motivated by the (2 + ε)-approximate routine, but

works on vertices instead of edges.

By relating the processes, we are able to absorb the factor 2 error into the sparsifier size.

In Section 1.8, we formalize this process, as well as its guarantees on graphs with bounded

weights. Here a major technical challenge compared to analyses of cut sparsifiers [64]

is that the natural scheme of bucketing by edge weights is difficult to analyze because

a sampled vertex could have non-zero degree in multiple buckets. We work around this

issue via a pre-processing scheme on G that creates an approximation so that all vertices

outside of VC have degree polylog n. This scheme is motivated in part by the weighted

expanders constructions from [41]. Bucketing after this processing step ensures that each

vertex belongs to a unique bucket. In terms of a static sparsifier on terminals, the result that

is most comparable to results from previous works is:

Corollary 1.4.2. Given any graph G = (V,E), and a vertex cover VC of G, where

X = V \ VC, with error ε, we can build an ε-approximate terminal-cut-sparsifier H

with O(|VC| poly(log n, ε−1)) vertices in O(m · poly(log n, ε−1)) work.

Turning this into a dynamic routine leads to the result described in Theorem 1.2.3: a

(1 + ε)-approximate solution that can be maintained in time polylog(n) per update. It is

important to note that Theorem 1.2.2 plays an integral role in extending Corollary 1.4.2 to a

18

dynamic routine, particularly the low arboricity property that allows us to maintain a small

vertex cover such that all non-cover vertices have low degree. These algorithmic extensions,

as well as their incorporation into data structures are discussed in Section 1.9.

1.4.4 Discussion

Graph Sparsification. We use a sparsification framework in which we ‘peel off’ bundles

of sparse subgraphs to determine ‘sampleable’ edges, from which we then sample by

coin flipping. This leads to combinatorial and surprisingly straightforward algorithms

for maintaining graph sparsifiers. Additionally, this gives us low-arboricity sparsifiers; a

property that we exploit for our main application.

Although spectral sparsification is more general than cut sparsification. Our treatment of

cut sparsification has two motivations. First, we can obtain stronger running time guarantees.

Second, our sparsifier for the (1 − ε)-approximate maximum flow algorithm on bipartite

graphs hinges upon improved routines for vertex sparsification, a concept which leads to

different objects in the spectral setting.

Dynamic Graph Algorithms. In our sparsification framework we sequentially remove

bundles of sparse subgraphs to determine ‘sampleable’ edges. This leads to ‘chains’ of

dynamic algorithms where the output performed by one algorithm might result in updates

to the input of the next algorithm. This motivates a more fine-grained view on of dynamic

algorithms with the goal of obtaining strong bounds on the number of changes to the output.

Future Work. The problem whether spectral sparsifiers can be maintained with polylog-

arithmic worst-case update time remains open. Our construction goes via spanners and

therefore a natural question is whether spanners can be maintained with worst-case update

time. Maybe there are also other more direct ways of maintaining the sparsifier. A more

general question is whether we can find more dynamic algorithms for numerical problems.

Our dynamic algorithms cannot avoid storing the original graph, which is undesirable

19

in terms of space consumption. Can we get space-efficient dynamic algorithms without

sacrificing fast update time?

The sparsification framework for peeling off subgraphs and uniformly sampling from

the remaining edges is very general. Are there other sparse subgraphs we could start with

in the peeling process? Which properties do the sparsifiers obtained in this way have? In

particular, it would be interesting to see whether our techniques can be generalized to flow

sparsifiers [38, 2].

The combination of sparsifiers with density-sensitive approaches for dynamic graph

data structures [26, 54] provides an approach for obtaining poly(log, ε−1) update times. We

believe this approach can be generalized to other graph cut problems. In particular, the flow

networks solved for balanced cuts and graph partitioning are also bipartite and undirected,

and therefore natural directions for future work.

1.5 Dynamic Spectral Sparsifier

In this section we give an algorithm for maintaining a spectral sparsifier under edge deletions

and insertions with polylogarithmic amortized update time. The main result of this section

is as follows.

Theorem 1.5.1. There exists a fully dynamic randomized algorithm with polylogarithmic

update time for maintaining a (1± ε)-spectral sparsifier H of a graph G, with probability

at least 1− 1/nc for any 0 < ε ≤ 1 and c ≥ 1. Specifically, the amortized update time of

the algorithm is

O(cε−2 log3 ρ log6 n)

and the size of H is

O(cnε−2 log3 ρ log5 n logW +mρ−1) ,

where 1 ≤ ρ ≤ m is a parameter of choice. Here, W is the ratio between the largest and

the smallest edge weight in G. The ratio between the largest and the smallest edge weight in

20

H is at most O(nW).

After giving an overview of our algorithm, we first explain our spectral sparsification

scheme in a static setting and prove its properties. Subsequently, we show how we can

dynamically maintain the edges of such a sparsifier by making this scheme dynamic.

1.5.1 Algorithm Overview

Sparsification Framework. In our framework we determine ‘sampleable’ edges by using

spanners to compute a set of edges of bounded effective resistance. From these edges we

then sample by coin flipping to obtain a (moderately sparser) spectral sparsifier in which the

number of edges has been reduced by a constant fraction. This step can then be iterated a

small number of times in order to compute the final sparsifier.

Concretely, we define a t-bundle spanner B = T1 ∪ · · · ∪ Tt (for a suitable, polylogarith-

mic, value of t) as a sequence of spanners T1, . . . , Tt where the edges of each spanner are

removed from the graph before computing the next spanner, i.e., T1 is a spanner of G, T2

is a spanner of G \ T1, etc; here each spanner has stretch O(log n). We then sample each

non-bundle edge in G \B with some constant probability p and scale the edge weights of

the sampled edges proportionally. The t-bundle spanner serves as a certificate for small

resistance of the non-bundle edges in G \B as it guarantees the presence of t disjoint paths

of length at most the stretch of the spanner. Using this property one can apply matrix concen-

tration bounds to show the t-bundle together with the sampled edges is a moderately sparse

spectral sparsifier. We repeat this process of ‘peeling off’ a t-bundle from the graph and

sampling from the remaining edges until the graph is sparse enough (which happens after a

logarithmic number of iterations). Our final sparsifier consists of all t-bundles together with

the sampled edges of the last stage.

Towards a Dynamic Algorithm. To implement the spectral sparsification algorithm in

the dynamic setting we need to dynamically maintain a t-bundle spanner. Our approach

21

to this problem is to run t different instances of a dynamic spanner algorithm, in order to

separately maintain a spanner Ti for each graph Gi = G \
⋃i−1
j=1 Tj , for 1 ≤ i ≤ t.

Baswana, Khurana, and Sarkar [29] gave a fully dynamic algorithm for maintaining

a spanner of stretch O(log n) and size O(n log2 n) with polylogarithmic update time.2 A

natural first idea would be to use this algorithm in a black-box fashion in order to separately

maintain each spanner of a t-bundle. However, we do not know how to do this because of

the following obstacle. A single update in G might lead to several changes of edges in the

spanner T1, an average of Ω(log n) according to the amortized upper bound. This means

that the next instance of the fully dynamic spanner algorithm which is used for maintaining

T2, not only has to deal with the deletion in G but also the artificially created updates in

G2 = G \ T1. This of course propagates to more updates in all graphs Gi. Observe also that

any given update in Gt caused by an update in G, can be requested repeatedly, as a result of

subsequent updates in G. Without further guarantees, it seems that with this approach we

can only hope for an upper bound of O(logt−1 n) (on average) on the number of changes

to be processed for updating Gt after a single update in G. That is too high because the

sparsification algorithm requires us to take t = Ω(log n). Our solution to this problem lies

in a substantial modification of the dynamic spanner algorithm in [29] outlined below.

Dynamic Spanners with Monotonicity. The spanner algorithm of [29] is at its core a

decremental algorithm (i.e., allowing only edge deletions in G), which is subsequently

leveraged into a fully dynamic algorithm by a black-box reduction. We follow the same

approach by first designing a decremental algorithm for maintaining a t-bundle spanner.

This is achieved by modifying the decremental spanner algorithm so so that, additional to

its original guarantees, it has the following monotonicity property:

Every time an edge is added to the spanner T , it stays in T until it is deleted from G.

2More precisely, they gave two fully dynamic algorithms for maintaing a (2k − 1)-spanner for any integer
k ≥ 2: The first algorithm guarantees a spanner of expected sizeO(kn1+1/k log n) and has expected amortized
update time O(k2 log2 n) and the second algorithm guarantees a spanner of expected size O(k8n1+1/k log2 n)
and has expected amortized update time O(7k/2).

22

Recall that we initially want to maintain a t-bundle spanner T1, . . . , Tt under edge

deletions only. In general, whenever an edge is added to T1, it will cause its deletion from

the graphG\T1 for which the spanner T2 is maintained. Similarly, removing an edge from T1

causes its insertion into G \ T1, unless the edge is deleted from G. This is precisely what the

monotonicity property guarantees: that an edge will not be removed from T1 unless deleted

from G. The consequence is that no edge insertion can occur for G2 = G \ T1. Inductively,

no edge is ever inserted into Gi, for each i. Therefore the algorithm for maintaining the

spanner Ti only has to deal with edge deletions from the graph Gi, thus it becomes possible

to run a different instance of the same decremental spanner algorithm for each Gi. A single

deletion from G can still generate many updates in the bundle. But for each i the instance of

the dynamic spanner algorithm working on Gi can only delete each edge once. Furthermore,

we only run a small number t of instances. So the total number of updates remains bounded,

allowing us to claim the upper bound on the amortized update time.

In addition to the modification of the dynamic spanner algorithm, we have also deviated

from Koutis’ original scheme [43] in that we explicitly ‘peel off’ each iteration’s bundle

from the graph. In this way we avoid that the t-bundles from different iterations share any

edges, which seems hard to handle in the decremental setting we ultimately want to restrict

ourselves to.

The modified spanner algorithm now allows us to maintain t-bundles in polylogarithmic

update time, which is the main building block of the sparsifier algorithm. The remaining

parts of the algorithm, like sampling of the non-bundle edges by coin-flipping, can now

be carried out in the straightforward way in polylogarithmic amortized update time. At

any time, our modified spanner algorithm can work in a purely decremental setting. As

mentioned above, the fully dynamic sparsifier algorithm is then obtained by a reduction

from the decremental sparsifier algorithm.

23

1.5.2 Spectral Sparsification

As outlined above, iteratively ‘peels off’ bundles of spanners from the graph.

Definition 1.5.2. A t-bundle α-spanner (where t ≥ 1, α ≥ 1) of an undirected graph G is

the union T =
⋃k
i=1 Ti of a sequence of graphs T1, . . . , Tk such that, for every 1 ≤ i ≤ k,

Ti is an α-spanner of G \
⋃i−1
j=1 Tj .

The algorithm for spectral sparsification is presented in Figures 1.1 and 1.2. Algorithm

LIGHT-SPECTRAL-SPARSIFY computes a moderately sparser (1 ± ε)-spectral sparsifier.

Algorithm SPECTRAL-SPARSIFY takes a parameter ρ and computes the sparsifier in k =

dlog ρe iterations of LIGHT-SPECTRAL-SPARSIFY.

We will now prove the properties of these algorithms. We first need the following lemma

that shows how t-bundle spanners can be used to bound effective resistances. We highlight

the main intuition of this crucial observation in our proof sketch.

Lemma 1.5.3 ([43]). Let G be a graph and B be a t-bundle α-spanner of G. For every

edge e of G \B, we have

wG(e) ·RG(e) ≤ α

t

which implies that

wG(e) · Le �
α

t
· LG

where Le is the n× n Laplacian of the unweighted edge e.

Sketch. Fix some edge e = (u, v) of G \B and let T1, . . . Tt denote the (pairwise disjoint)

α-spanners contained in B. For every 1 ≤ i ≤ t, let πi denote the shortest path from u to

v in Ti. The length of the path π in Ti exceeds the distance from u to v in G \
⋃i−1
j=1 Tj by

at most a factor of α (property of the spanner Ti). Since e is contained in G \B, the latter

distance is at most the resistance of the edge e as we have defined distances as the length of

shortest paths with respect to the resistances of the edges.

24

LIGHT-SPECTRAL-SPARSIFY (G, ε)

1. t← d12(c+ 1)αε−2 lnne for some absolute constant c.

2. let B =
⋃t
j=1 Tj be a t-bundle α-spanner of G

3. H := B

4. for each edge e ∈ G \B

(a) with probability 1/4: add e to H with wH(e)← 4wG(e)

5. return (H,B)

Figure 1.1: LIGHT-SPECTRAL-SPARSIFY (G, c, ε). We give a dynamic implementation
of this algorithm in Section 1.5.4. In particular we dynamically maintain the t-bundle
α-spanner B which results in a dynamically changing graph G \B.

SPECTRAL-SPARSIFY (G, c, ε)

1. k ← dlog ρe

2. G0 ← G

3. B0 ← (V, ∅)

4. for i = 1 to k

(a) (Hi, Bi)← LIGHT-SPECTRAL-SPARSIFY(Gi−1, c, ε/(2k))

(b) Gi ← Hi \Bi

(c) if Gi has less than (c+ 1) lnn edges then break (* break loop *)

5. H ←
⋃

1≤j≤iBj ∪Gi

6. return (H, {Bj}ij=1, Gi)

Figure 1.2: SPECTRAL-SPARSIFY (G, c, ε). We give a dynamic implementation of this
algorithm in Section 1.5.4. In particular we dynamically maintain each Hi and Bi as
the result of a dynamic implementation of LIGHT-SPECTRAL-SPARSIFY which results in
dynamically changing graphs Gi.

25

Consider each path πi as a subgraph of G and let Π be the subgraph consisting of all

paths πi. Observe that Π consists of a parallel composition of paths, which in turn consists

of a serial composition of edges, the we can view as resistors. We can now apply the

well-known rules for serial and parallel composition for computing effective resistances and

get the desired bounds.

Our second tool in the analysis the following variant [74] of a matrix concentration

inequality by Tropp [57].

Theorem 1.5.4. Let Y1, . . . , Yk be independent positive semi-definite matrices of size n× n.

Let Y =
∑k

i=1 Yi and Z = E [Y]. Suppose Yi � RZ, where R is a scalar, for every

1 ≤ i ≤ k. Then for all ε ∈ [0, 1]

P

[
k∑
i=1

Yi � (1− ε)Z

]
≤ n · exp(−ε2/2R)

P

[
k∑
i=1

Yi � (1 + ε)Z

]
≤ n · exp(−ε2/3R)

Given these facts we can now prove the following Lemma which is a slight generalization

of a Lemma in [43]. As the proof is quite standard we have moved it to Appendix 1.10

(together with the proofs of the subsequent two lemmas). For applying the lemma in

our dynamic algorithm it is crucial that the input graph (which might be generated by

another randomized algorithm) is independent of the random choices of algorithm LIGHT-

SPECTRAL-SPARSIFY.

Lemma 1.5.5. The outputH of LIGHT-SPECTRAL-SPARSIFY is a (1±ε)-spectral sparsifier

with probability at least 1−n−(c+1) for any input graph G that is independent of the random

choices of the algorithm.

By iteratively applying the sparsification of LIGHT-SPECTRAL-SPARSIFY as done in

SPECTRAL-SPARSIFY we obtain sparser and sparser cut sparsifiers.

26

Lemma 1.5.6. The output H of algorithm SPECTRAL-SPARSIFY is a (1 ± ε)-spectral

sparsifier with probability at least 1− 1/nc+1 for any input graph G that is independent of

the random choices of the algorithm.

Lemma 1.5.7. With probability at least 1− 2n−c, the number of iterations before algorithm

SPECTRAL-SPARSIFY terminates is

min{dlog ρe, dlogm/((c+ 1) log n)e}.

Moreover the size of H is

O

(∑
1≤j≤i

|Bi|+m/ρ+ c log n

)
,

and the size of the third output of the graph is at most max{O(c log n), O(m/ρ)}.

We conclude that with probability at least 1 − n−c our construction yields a (1 ± ε)-

spectral sparsifier that also has the properties of Lemma 1.5.7.

Typically, the t-bundle spanners will consist of a polylogarithmic number of spanners of

sizeO(n poly log n) and thus the resulting spectral sparsifier will have sizeO(n poly log n, ε−1+

m/ρ). In each of the at most log n iterations the weight of the sampled edges is increased

by a factor of 4. Thus, the ratio between the largest and the smallest edge weight in H is at

most by a factor of O(n) more than in G, i.e., O(nW).

1.5.3 Decremental Spanner with Monotonicity Property

We first develop the decremental spanner algorithm, which will give us a (log n)-spanner

of size O(n poly (log n)) with a total update time of O(m poly (log n)). Our algorithm is a

careful modification of the dynamic spanner algorithm of Baswana et al. [29] having the

following additional monotonicity property: Every time an edge is added to H , it stays in H

until it is deleted from G by the adversary. Formally, we will prove the following theorem.

27

Lemma 1.5.8. For every k ≥ 2 and every 0 < ε ≤ 1, there is a decremental algorithm for

maintaining a (1 + ε)(2k − 1)-spanner H of expected size O(k2n1+1/k log n log1+εW) for

an undirected graph G with non-negative edge weights that has an expected total update

time of O(k2m log n), where W is the ratio between the largest and the smallest edge weight

in G. Additional H has the following property: Every time an edge is added to H , it stays

in H until it is deleted from G. The bound on the expected size and the expected running

time hold against an oblivious adversary.

It would be possible to enforce the monotonicity property for any dynamic spanner

algorithm by simply overriding the algorithms’ decision for removing edges from the spanner

before they are deleted from G. Without additional arguments however, the algorithm’s

bound on the size of the spanner might then not hold anymore. In particular, we do not know

how obtain a version of the spanner of Baswana et al. that has the monotonicity property

without modifying the internals of the algorithm.

Similar to Baswana et al. [29] we actually develop an algorithm for unweighted graphs

and then extend it to weighted graphs as follows. Let W be the ratio of the largest to the

smallest edge weight in G. Partition the edges into log1+εW subgraphs based on their

weights and maintain a (2k − 1)-spanner ignoring the weights. The union of these spanners

will be a (1 + ε)(2k − 1)-spanner of G and the size increases by a factor of log1+εW

compared to the unweighted version. The update time stays the same as each update in the

graph is performed only in one of the log1+εW subgraphs. Therefore we assume in the

following that G is an unweighted graph.

Algorithm and Running Time

We follow the approach of Baswana et al. and first explain how to maintain a clustering of

the vertices and then define our spanner using this clustering.

28

Clustering. Consider an unweighted undirected graph G = (V,E) undergoing edge

deletions. Let S ⊆ V be a subset of the vertices used as cluster centers. Furthermore,

consider a permutation σ on the set of vertices V and an integer i ≥ 0.

The goal is to maintain a clustering CS,σ,i consisting of disjoint clusters with one cluster

CS,σ,i[s] ⊆ V for every s ∈ S. Every vertex within distance i to the vertices in S is assigned

to the cluster of its closest vertex in S, where ties are broken according to the permutation σ.

More formally, v ∈ CS,σ,i[s] if and only if

• dG(v, s) ≤ i and

• for every s′ ∈ S \ {s} either

– dG(v, s) < dG(v, s′) or

– dG(v, s) = dG(v, s′) and σ(s) < σ′(s).

Observe that each cluster CS,σ,i[s] of a vertex s ∈ S can be organized as a tree consisting

of shortest paths to s. We demand that in this tree every vertex v chooses the parent that

comes first in the permutation σ among all candidates (i.e., among the vertices that are in

the same cluster Ci[s] as v and that are at distance d(v, s)− 1 from s).3 These trees of the

clusters define a forest FS,σ,i that we wish to maintain together with the clustering CS,σ,i.

Using a modification of the Even-Shiloach algorithm [75] all the cluster trees of the

clustering Ci together can be maintained in total time O(im log n).

Theorem 1.5.9 ([29]). Given a graph G = (V,E), a set S ⊆ V , a random permutation σ

of V , and an integer i ≥ 0, there is a decremental algorithm for maintaining the clustering

CS,σ,i and the corresponding forest FS,σ,i of partial shortest path trees from the cluster

centers in expected total time O(mi log n).

Note that we deviate from the original algorithm of Baswana et al. by choosing the

parent in the tree of each cluster according to the random permutation. In the algorithm of

3Using the permutation to choose a random parent is not part of the original construction of Baswana et al.

29

Baswana et al. the parents in these trees were chosen arbitrarily. However, it can easily be

checked that running time guarantee of Theorem 1.5.9 also holds for our modification.

The running time analysis of Baswana et al. hinges on the fact that the expected number

of times a vertex changes its cluster is O(i log n).

Lemma 1.5.10 ([29]). For every vertex v the expected number of times v changes its cluster

in CS,σ,i is at most O(i log n).

By charging time O(d(v)) to every change of the cluster of v and every increase of the

distance from v to S (which happens at most i times), Baswana et al. get a total update

time of O(im log n) over all deletions in G. For our version of the spanner that has the

monotonicity property we additionally need the following observation whose proof is similar

to the one of the lemma above.

Lemma 1.5.11. For every vertex v the expected number of times v changes its parent in

FS,σ,i is at most O(i log n).

Proof. Remember that we assume the adversary to be oblivious, which means that the

sequence of deletions is independent of the random choices of our algorithm. We divide

the sequence of deletions into phases. For every 1 ≤ l ≤ i the l-th phase consists of the

(possibly empty) subsequence of deletions during which the distance from v to S is exactly

l, i.e., dG(v, S) = l.

Consider first the case l ≥ 2. We will argue about possible ‘configurations’ (s, u)

such that v is in the cluster of s and u is the parent of v that might occur in phase l. Let

(s1, u1), (s2, u2), . . . , (st(l) , ut(l)) (where t(l) ≤ n2) be the sequence of all pairs of vertices

such that, at the beginning of phase l, for every 1 ≤ j ≤ t(l), sj is at distance l from v and

uj is a neighbor of v. The pairs (si, ui) in this sequence are ordered according to the point

in phase l at which they cease to be possible configurations, i.e., at which either the distance

of si to v increases to more than l or u is not a neighbor of v anymore.

30

Let A(l)
j denote the event that, at some point during phase l, v is in the cluster of sj and

uj is the parent of v. The expected number of times v changes its parent in FS,σ,i during

phase l is equal to the expected number of j’s such that event A(l)
j takes place. Let B(l)

j

denote the event that (sj, uj) is lexicographically first among all pairs (sj, uj), . . . , (st, ut(l))

under the permutation σ, i.e., for all j ≤ j′ ≤ t(l) either σ(sj) ≤ σ(sj′) or σ(sj) = σ(sj′)

and σ(uj), σ(uj′). Observe that P
[
A

(l)
j

]
≤ P

[
B

(l)
j

]
because the event A(l)

j can only take

place if the event B(l)
j takes place. Furthermore, P

[
B

(l)
j

]
= 1/(t(l) − j + 1) as every pair of

(distinct) vertices has the same probability of being first in the lexicographic order induced

by σ. Thus, by linearity of expectation, the number of times v changes its parent in FS,σ,i

during phase l is at most

t(l)∑
j=1

P
[
A

(l)
j

]
≤

t(l)∑
j=1

P
[
B

(l)
j

]
=

t(l)∑
j=1

1

t(l) − j + 1
=

t(l)∑
j=1

1

j
= O(log t(l)) = O(log n) .

In the second case l = 1, a slightly simpler argument bounds the number of times v

changes its parent (which is equal to the number of times v changes its cluster) by ordering

the neighbors of v in the order of deleting their edge to v. This is the original argument

of Baswana et al. [29] of Lemma 1.5.10. We therefore also get that the number of times v

changes its parent in FS,σ,i in phase 1 is at most O(log n).

We now sum up the expected number of changes during all phases, and, by linearity of

expectation, get that the number of times v changes its parent in FS,σ,i is at most O(i log n).

Spanner. Let 2 ≤ k ≤ log n be a parameter of the algorithm. At the initialization, we first

create a sequence of sets V = S0 ⊇ S1 ⊇ . . . ⊇ Sk = ∅ by obtaining Si+1 from sampling

each vertex of Si with probability n−1/k. Furthermore, we pick a random permutation σ of

the vertices in V .

We use the algorithm of Theorem 1.5.9 to maintain, for every 1 ≤ i ≤ k, the clustering

Ci
def
= CSi,σ together with the forest Fi

def
= FSi,σ. Define the set Vi as Vi = {v ∈ V |

31

dG(v, Si) ≤ i}, i.e., the set of vertices that are at distance at most i to some vertex of Si.

Observe that the vertices in Vi are exactly those vertices that are contained in some cluster

Ci[s] of the clustering Ci. For every vertex v ∈ Vi (where Ci[s] is the cluster of v) we say

that a cluster Ci[s′] (for some s′ ∈ Si \ {s}) is neighboring to v if G contains an edge (v, v′)

such that v′ ∈ Ci[s′].

Our spanner H consists of the following two types of edges:

1. For every 1 ≤ i ≤ k, H contains all edges of the forest Fi consisting of partial shortest

path trees from the cluster centers.

2. For every 1 ≤ i ≤ k, every vertex v ∈ Vi \ Vi+1 (contained in some cluster Ci[s]),

and every neighboring cluster Ci[s′] of v, H contains one edge to Ci[s′], i.e., one edge

(v, v′) such that v′ ∈ Ci[s′].

The first type of edges can be maintained together with the spanning forests of the clustering

algorithm of Theorem 1.5.9. The second type of edges can be maintained with the following

update rule: Every time the clustering of a vertex v ∈ Vi \ Vi+1 changes, we add to H one

edge to each neighboring cluster. Every time such a ‘selected’ edge is deleted from G, we

replace it with another edge to this neighboring cluster until all of them are used up.

We now enforce the monotonicity property mentioned above in the straightforward way.

Whenever we have added an edge to H , we only remove it again from H when it is also

deleted from G. We argue below that this makes the size of the spanner only slightly worse

than in the original construction of Baswana et al.

Stretch and Size

We now prove the guarantees on the stretch and size of H . The stretch argument is very

similar to the ones of Baswana et al. We include it here for completeness. In the stretch

argument we need stronger guarantees than Baswana et al. as we never remove edges

from H , unless they are deleted from G as well.

32

Lemma 1.5.12 ([29]). H is a (2k − 1)-spanner of G.

Proof. Consider any edge (u, v) of the current graph G and the first j such that u and v are

both contained in Vj and at least one of u or v is not contained in Vj+1. Without loss of

generality assume that u /∈ Vj+1. Since v ∈ Vj , we know that v is contained in some cluster

Cj[s] and because of the edge (u, v) this cluster is neighboring to u. Similarly, the cluster of

u is neighboring to v. Consider the vertex out of u and v that has changed its cluster within

Ci most recently (or take any of the two if both of them haven’t changed their cluster since

the initialization). Assume without loss of generality that this vertex was u. Then Ci[s] has

been a neighboring cluster of u at the time the cluster of u changed, and thus, the spanner H

contains some edge (u, v′) such that v′ ∈ Cj[s]. Using the cluster tree of Cj[s] we find a

path from v′ to v via s of length at most 2i in H . Thus, H contains a path from u to v of

length at most 2i+ 1 ≤ 2k − 1 as desired.

Lemma 1.5.13. The number of edges of H is O(k2n1+1/k log n) in expectation.

Proof. Consider the first type of edges which are the ones stemming from the partial shortest

path trees from the cluster centers. We charge to each vertex v a total of O(k2 log n) edges

given by all of v’s parents in the partial shortest path trees from the cluster centers over the

course of the algorithm. For every 1 ≤ i ≤ k, we know by Lemma 1.5.11 that the parent of

v in Fi changes at most O(i log n) times in expectation, which gives an overall bound of

O(k2 log n).

We get the bound on the second type of edges by charging to each vertex v a total of

O(k2n1/k log n) edges. Consider a vertex v ∈ Vi\Vi+1 for some 0 ≤ i ≤ k−1. The number

of neighboring clusters of v is equal to the number of vertices of Si that are at distance

exactly i+1 from v. Since v /∈ Vi+1 the number of such vertices is n1/k in expectation. Thus,

whenever a vertex v ∈ Vi \ Vi+1 changes its cluster in Ci we can charge n1/k to vi to pay

for the n1/k edges to neighboring clusters. As v changes its cluster in Ci O(i log n) times

by Lemma 1.5.10 and there are k clusterings, the total number of edges of the second type

33

contained in H is O(k2n1+1/k log n). Note that are allowed to multiply the two expectations

because the random variables in question are independent.

The overall bound of O(k2n1+1/k log n) on the expected number of edges follows from

the linearity of expectation.

1.5.4 Decremental Spectral Sparsifier

In the following we explain how to obtain a decremental algorithm for maintaining a spectral

sparsifier using the template of Section1.5.2. Internally we use our decremental spanner

algorithm of Section 1.5.3. It is conceptually important for our approach to first develop a

decremental algorithm, that is turned into a fully dynamic algorithm in Section 1.5.5. We

follow the template of Section 1.5.2 by first showing how to maintain t-bundle spanners under

edge deletions, and then giving decremental implementations of LIGHT-CUT-SPARSIFY and

CUT-SPARSIFY.

The overall algorithm will use multiple instances of the dynamic spanner algorithm,

where outputs of one instance will be used as the input of the next instance. We will do

so in a strictly hierarchical manner which means that we can order the instances in a way

such that the output of instance i only affects instances i + 1 and above. In this way it

is guaranteed that the updates made to instance i are independent of the internal random

choices of instance i, which means that each instance i is running in the oblivious-adversary

setting required for Section 1.5.3.

Decremental t-Bundle Spanners

We first show how to maintain a t-bundle log n-spanner under edge deletions for some

parameter t. Using the decremental spanner algorithm of Section 1.5.8 with k = b(log n)/4c

and ε = 1 we maintain a sequence H1, . . . Ht of log n-spanners by maintaining Hi as the

spanner of G \
⋃

1≤j≤i−1Hj . Here we have to argue that this is legal in the sense that

every instance of the algorithm of Lemma 1.5.8 is run on a graph that only undergoes edge

34

deletions.

Lemma 1.5.14. If no edges are ever inserted into G after the initialization, then this also

holds for G \
⋃

1≤j≤i−1Hj for every 1 ≤ i ≤ t+ 1.

Proof. The proof is by induction on i. The claim is trivially true for i = 1 by the assumption

that there are only deletions in G. For i ≥ 2 we the argument uses the monotonicity property

of the dynamic algorithm for maintaining the spanner Hi−1. By the induction hypothesis

we already know that no edges are ever added to the graph G \
⋃

1≤j≤i−2Hj . Therefore the

only possibility of an edge being added to G \
⋃

1≤j≤i−1Hj would be to remove an edge e

from Hi−1. However, by the monotonicity property, when e is removed from Hi−1, it is also

deleted from G. Thus, e will not be inserted into G \
⋃

1≤j≤i−2Hj .

Our resulting t-bundle log n-spanner then is B =
⋃

1≤i≤tHi, the union of all these

spanners. Since the H ′is are disjoint the edges of B can be maintained in the obvious way

by observing all changes to the H ′is. By our choice of parameters, n1/k = O(1) and thus the

expected size of B is O(tn log2 n logW). Observe that Lemma 1.5.14 implies that no edges

will ever be inserted into the complement G \B, which will be relevant for our application

in the spectral sparsifier algorithm. We can summarize the guarantees of our decremental

t-bundle spanner algorithm as follows.

Lemma 1.5.15. For every t ≥ 1, there is a decremental algorithm for maintaining a t-

bundle log n-spanner B of expected size O(tn log2 n logW) for an undirected graph G with

non-negative edge weights that has an expected total update time of O(tm log3 n), where

W is the ratio between the largest and the smallest edge weight in G. Additional B has the

following property: After the initialization, no edges are ever inserted into the graph G \B.

The bound on the expected size and the expected running time hold against an oblivious

adversary.

35

Dynamic Implementation of LIGHT-SPECTRAL-SPARSIFY

We now show how to implement the algorithm LIGHT-SPECTRAL-SPARSIFY decrementally

for a graph G undergoing edge deletions.

For this algorithm we set t = d12(c+ 3)αε−2 lnne. Note that this value is slightly larger

than the one proposed in the static pseudocode of Figure 1.1. For the sparsification proof

in Section 1.5.2 we have to argue that by our choice of t certain events happen with high

probability. In the dynamic algorithm we need ensure the correctness for up to n2 versions

of the graph, one version for each deletion in the graph. By increasing the multiplicative

constant in t by 2 (as compared to the static proof of Section 1.5.2) all desired events happen

with high probability for all, up to n2, versions of the graph by a union bound.

The first ingredient of the algorithm is to maintain a t-bundle log n-spanner B of G

under edge deletions using the algorithm of Lemma 1.5.15. We now explain how to maintain

a graph H ′ – with the intention that H ′ contains the sampled non-bundle edges of G \B –

as follows: At the initialization, we determine the graph H ′ by sampling each edge of G \B

with probability 1/4 and adding it to H ′ with weight 4wG(e). We then maintain H ′ under

the edge deletions in G using the following update rules:

After every deletion in G we first propagate the update to the algorithm for maintaining

the t-bundle spanner B, possibly changing B to react to the deletion. We then check

whether the deletion in G and the change in B cause an deletion in the complement graph

G \ B. Whenever an edge e is deleted from G \ B, it is removed from H ′. Note that by

Lemma 1.5.15 no edge is ever inserted into G \B. We now simply maintain the graph H as

the union of B and H ′ and make it the first output of our algorithm; the second output is B.

By the update rules above (and the increased value of t to accommodate for the increased

number of events), this decremental algorithm imitates the static algorithm of Figure 1.1 and

for the resulting graph H we get the same guarantees as in Lemma 1.5.5. The total update

time of our decremental version of LIGHT-SPECTRAL-SPARSIFY is O(tm log3 n), as it is

dominated by the time for maintaining the t-bundle log n-spanner B.

36

As an additional property we get that no edge is ever added to the graph H ′ = H \ B.

Furthermore, for all edges added to H ′ weights are always increased by the same factor.

Therefore the ratio between the largest and the smallest edge weight in H ′ will always be

bounded by W , which is the value of this quantity in G (before the first deletion).

Dynamic Implementation of SPECTRAL-SPARSIFY

Finally, we show how to implement the algorithm SPECTRAL-SPARSIFY decrementally for

a graph G undergoing edge deletions.

We set k = dlog ρe as in the pseudocode of Figure 1.2 and maintain k instances of

the dynamic version of LIGHT-SPECTRAL-SPARSIFY above. We maintain the k graphs

G0, . . . , Gk, B1, . . . , Bk, and H1, . . . , Hk as in the pseudocode. For every 1 ≤ i ≤ k

we maintain Hi and Bi as the two results of running the decremental version of LIGHT-

SPECTRAL-SPARSIFY on Gi−1 and maintain Gi as the graph Hi \Bi. As argued above (for

H ′ in Section 1.5.4), no edge is ever added to Gi = Hi \Bi for every 1 ≤ i ≤ k and we can

thus use our purely decremental implementation of LIGHT-SPECTRAL-SPARSIFY.

At the initialization, we additionally count the number of edges of every graph Gi and

ignore every graph Gi with less than (c+ 1) lnn edges. Formally we set k maximal such

that Gk has at least (c+ 1) lnn edges.

The output of our algorithm is the graphH =
⋃k
i=1Bi∪Gk. Now by the same arguments

as for the static case, H gives the same guarantees as in Lemma 1.5.6 and 1.5.7. Thus, by

our choices of k and t, H is a (1± ε)-spectral sparsifier of size O(cε−2 log3 ρ log4 n logW +

mρ−1). As the total running time is dominated by the running time of the k instances

of the decremental algorithm for LIGHT-SPECTRAL-SPARSIFY, the total update time is

O(cmε−2 log3 ρ log5 n). The guarantees of our decremental sparsifier algorithm can be

summarized as follows.

Lemma 1.5.16. For every 0 < ε ≤ 1, every 1 ≤ ρ ≤ m, and every c ≥ 1, there is

a decremental algorithm for maintaining, with probability at least 1 − 1/nc against an

37

oblivious adversary, a (1 ± ε)-spectral sparsifier H of size O(cε−2 log3 ρ log4 n logW +

mρ−1) for an undirected graph G with non-negative edge weights that has a total update

time of O(cmε−2 log3 ρ log5 n), where W is the ratio between the largest and the smallest

edge weight in G.

1.5.5 Turning Decremental Spectral Sparsifier into Fully Dynamic Spectral Sparsifier

We use a well-known reduction to turn our decremental algorithm into a fully dynamic

algorithm.

Lemma 1.5.17. Given a decremental algorithm for maintaining a (1 ± ε)-spectral (cut)

sparsifier of size S(m,n,W) for an undirected graph with total update time m ·T (m,n,W),

there is a fully dynamic algorithm for maintaining a (1± ε)-spectral (cut) sparsifier of size

O(S(m,n,W) log n) with amortized update time O(T (m,n,W) log n).

Together with Lemma 1.5.16 this immediately implies Theorem 1.5.1. A similar re-

duction has been used by Baswana et al. [29] to turn their decremental spanner algorithm

into a fully dynamic one. The only additional aspect we need is the lemma below on

the decomposability of spectral sparsifiers. We prove this property first and then give the

reduction, which carries over almost literally from [29].

Lemma 1.5.18 (Decomposability). Let G = (V,E) be an undirected weighted graph, let

E1, . . . , Ek be a partition of the set of edges E, and let, for every 1 ≤ i ≤ k, Hi be a (1± ε)-

spectral sparsifier of Gi = (V,Ei). Then H =
⋃k
i=1Hi is a (1 ± ε)-spectral sparsifier of

G.

Proof. Because Hi is a spectral sparsifier of Gi, for any vector x and i = 1, . . . , k we have

(1− ε)xTLHix ≤ xTLGix ≤ (1 + ε)xTLHix

38

Summing these k inequalities, we get that

(1− ε)xTLHx ≤ xTLGx ≤ (1 + ε)xTLHx,

which by definition means that H is a (1± ε)-spectral sparsifier of H .

Proof of Lemma 1.5.17. Set k = dlog (n2)e. For each 1 ≤ i ≤ k, we maintain a set Ei ⊆ E

of edges and an instance Ai of the decremental algorithm running on the graph Gi = (V,Ei).

We also keep a binary counter C that counts the number of insertions modulo n2 with the

least significant bit in C being the right-most one.

A deletion of some edge e is carried out by simply deleting e from the set Ei it is

contained in and propagating the deletion to instance Ai of the decremental algorithm.

An insertion of some edge e is carried out as follows. Let j be the highest (i.e., left-most)

bit that gets flipped in the counter when increasing the number of insertions. Thus, in the

updated counter the j-th bit is 1 and all lower bits (i.e., bits to the right of j) are 0. We

first add the edge e as well as all edges in
⋃j−1
i=1 Ei to Ej . Then we set Ei = ∅ for all

1 ≤ i ≤ j − 1. Finally, we re-initialize the instance Aj on the new graph Gj = (V,Ej).

We know bound the total update time for each instance Ai of the decremental algorithm.

First, observe that the i-th bit of the binary counter is reset after every 2i edge insertions.

A simple induction then shows that at any time Ei ≤ 2i for all 1 ≤ i ≤ k. Now consider

an arbitrary sequence of updates of length `. The instance Ai is re-initialized after every 2i

insertions. It will therefore be re-initialized at most `/2i times. For every re-initialization

we pay a total update time of |Ei| · T (|Ei|, n,W) ≤ 2iT (m,n,W). For the entire sequence

of ` updates, the total time spent for instance Ai is therefore (`/2i) · 2iT (m,n,W) =

` · T (m,n,W). Thus we spend total time O(` · T (m,n,W) log n) for the whole algorithm,

which amounts to an amortized update time of O(T (m,n,W) log n).

39

1.6 Dynamic Cut Sparsifier

In this section we give an algorithm for maintaining a cut sparsifier under edge deletions

and insertions with polylogarithmic worst-case update time. The main result of this section

is as follows.

Theorem 1.6.1. There exists a fully dynamic randomized algorithm with polylogarithmic

update time for maintaining a (1 ± ε)-cut sparsifier H of a graph G, with probability at

least 1− n−c for any 0 < ε ≤ 1 and c ≥ 1. Specifically, the algorithm either has worst-case

update time

O(cε−2 log2 ρ log5 n logW)

or amortized update time

O(cε−2 log2 ρ log3 n logW)

and the size of H is

O(cnε−2 log2 ρ log n logW +mρ−1) ,

where 1 ≤ ρ ≤ m is a parameter of choice. Here, W is the ratio between the largest and

the smallest edge weight in G. The ratio between the largest and the smallest edge weight in

H is at most O(nW).

By running the algorithm with basically ρ = m we additionally get that H has low

arboricity, i.e., it can be partitioned into a polylogarithmic number of trees. We will

algorithmically exploit the low arboricity property in Section 1.7 and 1.9.

Corollary 1.6.2. There exists a fully dynamic randomized algorithm with polylogarithmic

update time for maintaining a (1 ± ε)-cut sparsifier H of a graph G, with probability at

least 1 − n−c for any 0 < ε ≤ 1 and c ≥ 1. Specifically, the algorithm either has worst-

case update time O(cε−2 log7 n logW) or amortized update time O(cε−2 log5 n logW). The

arboricity of H is k = O(cε−2 log3 n logW). Here, W is the ratio between the largest and

40

the smallest edge weight in G. The ratio between the largest and the smallest edge weight in

H is at most O(nW). We can maintain a partition of H into disjoint forests T1, . . . , Tk such

that every vertex keeps a list of its neighbors together with its degree in each forest Ti. After

every update in G at most one edge is added to and at most one edge is removed from each

forest Ti.

After giving an overview of our algorithm, we first explain our cut sparsification scheme

in a static setting and prove its properties. Subsequently, we show how we can dynamically

maintain the edges of such a sparsifier with both amortized and worst-case update times by

making this scheme dynamic.

1.6.1 Algorithm Overview

Our Framework. The algorithm is based on the observation that the spectral sparsification

scheme outlined above in Section 1.4.1. becomes a cut sparsification algorithm if we simply

replace spanners by maximum weight spanning trees (MSTs). This is inspired by sampling

according to edge connectivities; the role of the MSTs is to certify lower bounds on the edge

connectivities. We observe that the framework does not require us to use exact MSTs. For

our t-bundles we can use a relaxed, approximate concept that we call α-MST that. Roughly

speaking, an α-MST guarantees a ‘stretch’ of α in the infinity norm and, as long as it is

sparse, does not necessarily have to be a tree.

Similarly to before, we define a t-bundle α-MST B as the union of a sequence of α-

MSTs T1, . . . Tt where the edges of each tree are removed from the graph before computing

the next α-MST. The role of α-MST is to certify uniform lower bounds on the connectivity of

edges; these bounds are sufficiently large to allow uniform sampling with a fixed probability.

This process of peeling and sampling is repeated sufficiently often and our cut sparsifier

then is the union of all the t-bundle α-MSTs and the non-bundle edges remaining after

taking out the last bundle. Thus, the cut sparsifier consists of a polylogarithmic number of

α-MSTs and a few (polylogarithmic) additional edges. This means that for α-MSTs based

41

on spanning trees, our cut sparsifiers are not only sparse, but also have polylogarithmic

arboricity, which is the minimum number of forests into which a graph can be partitioned.

Simple Fully Dynamic Algorithm. Our approach immediately yields a fully dynamic

algorithm by using a fully dynamic algorithm for maintaining a spanning forest. Here we

basically have two choices. Either we use the randomized algorithm of Kapron, King, and

Mountjoy [24] with polylogarithmic worst-case update time. Or we use the deterministic

algorithm of Holm, de Lichtenberg, and Thorup [23] with polylogarithmic amortized update

time. The latter algorithm is slightly faster, at the cost of providing only amortized update-

time guarantees. A t-bundle 2-MST can be maintained fully dynamically by running, for

each of the logW weight classes of the graph, t instances of the dynamic spanning tree

algorithm in a ‘chain’.

An important observation about the spanning forest algorithm is that with every update

in the graph, at most one edge is changed in the spanning forest: If for example an edge is

deleted from the spanning forest, it is replaced by another edge, but no other changes are

added to the tree. Therefore a single update in G can only cause one update for each graph

Gi = G \
⋃i−1
j=1 Tj and Ti. This means that each instance of the spanning forest algorithm

creates at most one ‘artificial’ update that the next instance has to deal with. In this way,

each dynamic spanning forest instance used for the t-bundle has polylogarithmic update

time. As t = poly(log n), the update time for maintaining a t-bundle is also polylogarithmic.

The remaining steps of the algorithm can be carried out dynamically in the straightforward

way and overall give us polylogarithmic worst-case or amortized update time.

A technical detail of our algorithm is that the high-probability correctness achieved

by the Chernoff bounds only holds for a polynomial number of updates in the graph. We

thus have to restart the algorithm periodically. This is trivial when we are shooting for

an amortized update time. For a worst-case guarantee we can neither completely restart

the algorithm nor change all edges of the sparsifier in one time step. We therefore keep

42

two instances of our algorithm that maintain two sparsifiers of two alternately growing and

shrinking subgraphs that at any time partition the graph. This allows us to take a blend of

these two subgraph sparsifiers as our end result and take turns in periodically restarting the

two instances of the algorithm.

1.6.2 Definitions

We will work with a relaxed notion of an MST, which will be useful when maintaining an

exact maximum spanning tree is hard (as is the case for worst-case update time guarantees).

Definition 1.6.3. A subgraph T of an undirected graph G is an α-MST (α ≥ 1) if for every

edge e = (u, v) of G there is a path π from u to v such that wG(e) ≤ αwG(f) for every

edge f on π.

Note that in this definition we do not demand that T is a tree; any subgraph with these

properties will be fine. A maximum spanning tree in this terminology is a 1-MST.

Definition 1.6.4. A t-bundle α-MST (t, α ≥ 1) of an undirected graph G is the union

B =
⋃k
i=1 Ti of a sequence of graphs T1, . . . , Tt such that, for every 1 ≤ i ≤ t, Ti is an

α-MST of G \
⋃i−1
j=1 Tj .

We can imagine such a t-bundle being obtained by iteratively peeling-off α-MSTs

from G.

1.6.3 A Simple Cut Sparsification Algorithm

We begin with algorithm LIGHT-CUT-SPARSIFY in Figure 1.3; this is the core iteration

used to compute a sparser cut approximation with approximately half the edges. Algorithm

CUT-SPARSIFY in Figure 1.3 is the full sparsification routine.

The properties of these algorithm are given in the following lemmas.

Lemma 1.6.5. The output H of algorithm LIGHT-CUT-SPARSIFY is a (1± ε)-cut approxi-

mation of the input G, with probability 1− n−c.

43

LIGHT-CUT-SPARSIFY (G, c, ε)

1. t← Cξcα logW log2 n/ε2

2. Let B be a t-bundle α-MST of G

3. H := B

4. For each edge e ∈ G \B

(a) With probability 1/4 add e to H with 4wH(e)← wG(e)

5. Return (H,B)

Figure 1.3: LIGHT-CUT-SPARSIFY (G, c, ε). We give a dynamic implementation of this
algorithm in Section 1.6.4. In particular we dynamically maintain the t-bundle α-MST B
which results in a dynamically changing graph G \B.

CUT-SPARSIFY (G, c, ε)

1. k ← dlog ρe

2. G0 ← G

3. B0 ← (V, ∅)

4. for i = 1 to k

(a) (Hi, Bi)← LIGHT-CUT-SPARSIFY(G, c+ 1, ε/(2k))

(b) Gi+1 ← Hi \Bi

(c) if Gi+1 has less than (c+ 2) lnn edges then break (* break loop *)

5. H ←
⋃

1≤j≤iBj ∪Gi+1

6. return (H, {Bj}ij=1, Gi+1)

Figure 1.4: CUT-SPARSIFY (G, c, ε) We give a dynamic implementation of this algorithm
in Section 1.6.4. In particular we dynamically maintain each Hi and Bi as the result of a
dynamic implementation of LIGHT-CUT-SPARSIFY which results in dynamically changing
graphs Gi.

44

We will need a slight generalization of a Theorem in [64].

Lemma 1.6.6. (generalization of Theorem 1.1 [64]) Let H be obtained from a graph G with

weights in (1/2, 1] by independently sampling edge edge e with probability pe ≥ ρ/λG(e),

where ρ = Cξc log2 n/4ε2, and λG(e) is the local edge connectivity of edge e, Cξ is an

explicitly known constant. Then H is a (1 ± ε)-cut sparsifier, with probability at least

1− n−c.

Proof. (Sketch) The generalization lies in introducing the parameter c to control the prob-

ability of failure. This reflects the standard behavior of Chernoff bounds: increasing the

number of samples by a factor of c drives down the failure probability by a factor of n−c.

Also, the original theorem assumes that all edges are unweighted, but a standard variant

of the Chernoff bound can absorb constant ranges, with a corresponding constant factor

increase in the number of samples. Finally, the original theorem is stated with pe = ρ/λG(e),

but all arguments remain identical if this is relaxed to an inequality.

Proof. Suppose without loss of generality that the maximum weight in G is 1. We decom-

pose G into logW edge-disjoint graphs, where Gi consists of the edges with weights in

(2−(i+1), 2−i] plus Bi = B/2−(i+1), where B is the bundle returned by the algorithm.

By definition of the α-MST t-bundle, the connectivity of each edge of Gi \Bi in Gi is

at least 4ρc, for c = d logW where ρ is as defined in Lemma 1.6.6. Assume for a moment

that all edges in Bi are also in (2−(i+1), 2−i]. Then we can set pe = 1 for each e ∈ Bi

and pe = 1/4 for all other edges, and apply Lemma 1.6.6. In this way we get that Hi is

(1± ε)-cut sparsifier with probability at least 1− nd logW .

The assumption about Bi can be removed as follows. We observe that one can find a

subgraph B′i of Bi (by splitting weights when needed, and dropping smaller weights), such

that B′i is a t-bundle α-MST of Gi. This follows by the definition of the t-bundle α-MST .

We can thus apply the lemma on G′i = (Gi \Bi) ∪B′i, and get that the sampled graph H ′i is

a (1± ε)-cut sparsifier. We then observe that Gi = G′i ∪ (Bi \B′i) and Hi = G′i ∪ (Bi \B′i),

45

from which it follows that Hi is a (1± ε)-cut sparsifier of Gi.

Note: The number of logarithms in LIGHT-CUT-SPARSIFY is not optimal. One can

argue that the lower bounds we compute can be used in place of the strong connectivities

used in [33] and reduce by one the number of logarithms. It is also possible to replace logW

with log n by carefully re-working some of the details in [33].

We finally have the following Lemmas. The proofs are identical to those for the

corresponding Lemmas in Section 1.5, so we omit them.

Lemma 1.6.7. The output H of algorithm CUT-SPARSIFY is a (1± ε)-spectral sparsifier

of the input G, with probability at least 1− 1/nc+1.

Lemma 1.6.8. With probability at least 1− 2n−c, the number of iterations before algorithm

CUT-SPARSIFY terminates is

min{dlog ρe, dlogm/((c+ 1) log n)e}.

Moreover the size of H is

O

(∑
1≤j≤i

|Bi|+m/ρ+ c log n

)
,

and the size of the third output of the graph is at most max{O(c log n), O(m/ρ)}.

1.6.4 Dynamic Cut Sparsifier

We now explain how to implement the cut sparsifier algorithm of Section 1.6.3 dynamically.

The main building block of our algorithm is a fully dynamic algorithm for maintaining

a spanning forest with polylogarithmic update time. We either use an algorithm with

worst-case update time, or a slightly faster algorithm with amortized update time. In both

algorithms, an insertion might join two subtrees of the forest and after a deletion the forest

46

is repaired by trying to find a single replacement edge. This strongly bounds the number of

changes in the forest after each update.

Theorem 1.6.9 ([24, 76]). There is a fully dynamic deterministic algorithm for maintaining

a spanning forest T of an undirected graph G with worst-case update time O(log4 n). Every

time an edge e is inserted into G, the only potential change to T is the insertion of e. Every

time an edge e is deleted from G, the only potential change to T is the removal of e and

possibly the addition of at most one other edge to T . The algorithm is correct with high

probability against an oblivious adversary.

Theorem 1.6.10 ([23]). There is a fully dynamic deterministic algorithm for maintaining a

minimum spanning forest T of a weighted undirected graph G with amortized update time

O(log2 n). Every time an edge e is inserted into G, the only potential change to T is the

insertion of e. Every time an edge e is deleted from G, the only potential change to T is the

removal of e and possibly the addition of at most one other edge to T .

We first explain how to use these algorithms in a straightforward way to maintain a

2-MST. Subsequently we show how to dynamically implement the procedures LIGHT-CUT-

SPARSIFY and CUT-SPARSIFY. The overall algorithm will use multiple instances of a

dynamic spanning forest algorithm, where outputs of one instance will be used as the input

of the next instance. We will do so in a strictly hierarchical manner which means that we

can order the instances in a way such that the output of instance i only affects instances i+ 1

and above. In this way it is guaranteed that the updates made to instance i are independent

of the internal random choices of instance i, which means that each instance i is running in

the oblivious-adversary setting required for Theorem1.6.9.

Dynamic Maintenance of 2-MST

For every 0 ≤ i ≤ blogW c, let Ei be the set of edges of weight between 2i and 2i+1, i.e.,

Ei = {e ∈ E | 2i ≤ wG(e) < 2i+1}, and run a separate instance of the dynamic spanning

47

forest algorithm for the edges in Ei. For every 0 ≤ i ≤ blogW c, let Fi be the spanning

forest of the edges in Ei maintained by the i-th instance. We claim that the union of all these

trees is a 2-MST of G.

Lemma 1.6.11. T =
⋃blogW c
i=0 Fi is a 2-MST of G.

Proof. Consider some edge e = (u, v) of G and let i be the (unique) index such that

2i ≤ wG(e) < 2i+1. Since Fi is spanning tree of G, there is a path π from u to v in Fi (and

thus also in T). Every edge f of π is in the same weight class as e, i.e., 2i ≤ wG(f) < 2i+1.

Thus, wG(e) < 2i+1 ≤ 2wG(f) as desired.

Every time an edge e is inserted or deleted, we determine the weight class i of e and

perform the update in the i-th instance of the spanning forest algorithm. This 2-MST of size

O(n logW) can thus be maintained with the same asymptotic update time as the dynamic

spanning forest algorithm.

We now show how to maintain a t-bundle 2-MST and consequently a (1 ± ε)-cut

sparsifier H according to the construction presented in Section 1.6.3. For the t-bundle

2-MST B =
⋃

1≤i≤k Ti we maintain, for every 1 ≤ i ≤ t, a 2-MST of G \
⋃i−1
j=1 Tj . We now

analyze how changes to G \
⋃i−1
j=1 Tj affect G \

⋃i
j=1 Tj (for every 1 ≤ i ≤ k):

• Whenever an edge e is inserted into G \
⋃i−1
j=1 Tj , the 2-MST algorithm either adds e

to Ti or not.

– If e is added to Ti, then G \
⋃i
j=1 Tj does not change.

– If e is not added to Ti, then e is added to G \
⋃i
j=1 Tj .

• Whenever an edge e is deleted from G \
⋃i−1
j=1 Tj , either e is contained in Ti or not.

– If e is contained in Ti, then e is removed from Ti and some other edge f is added

to Ti. This edge f is removed from G \
⋃i
j=1 Tj .

4

4The edge e will not be added to G \
⋃i
j=1 Tj because it is removed from both G \

⋃i−1
j=1 Tj and Ti.

48

– If e is not contained in Ti, then e is removed from G \
⋃i
j=1 Tj .

Thus, every change toG\
⋃i−1
j=1 Tj results in at most one change toG\

⋃i
j=1 Tj . Consequently,

a single update to G results to at most one update in each instance of the dynamic MST

algorithm. For every update in G we therefore incur an amortized update time of O(t log4 n).

Thus, we can summarize the guarantees for maintaining a t-bundle 2-MST as follows.

Corollary 1.6.12. There are fully dynamic algorithms for maintaining a t-bundle 2-MST B

(where t ≥ 1 is an integer) of size O(tn logW) with worst-case update time O(t log4 n) or

amortized update time O(t log2 n), respectively. After every update in G, the graph G \B

changes by at most one edge.

Dynamic Implementation of LIGHT-CUT-SPARSIFY

For this algorithm we set t = (Cξ + 2)dαε−2 logW log2 n. Note that this value is slightly

larger than the one proposed in Figure 1.3. For the sparsification proof in Section 1.6.3 we

have to argue that by our choice of t certain events happen with high probability. In the

dynamic algorithm we need ensure the correctness for a polynomial number of versions of

the graph, one version for each update made to the graph. We show in Lemma 1.6.5 that

it is sufficient to be correct for up to 4n2 updates to the graph, as then we can extend the

algorithm to an arbitrarily long sequence of updates. By making t slightly large than in the

static proof of Section 1.6.3 all the desired events happen with high probability for all 4n2

versions of the graph by a union bound.

The first ingredient of the algorithm is to dynamically maintain a t-bundle 2-MST B

using the algorithm of Lemma 1.6.12 above. We now explain how to maintain a graph H ′

– with the intention that H ′ contains the sampled non-bundle edges of G \B – as follows:

After every update in G we first propagate the update to the algorithm for maintaining the

t-bundle 2-MST B, possibly changing B to react to the update. We then check whether the

update in G and the change in B cause an update in the complement graph G \B.

49

• Whenever an edge is inserted into G \B, it is added to H ′ with probability 1/4 and

weight 4wG(e).

• Whenever an edge e is deleted from G \B, it is removed from H ′.

We now simply maintain the graph H as the union of B and H ′ and make it the first output

of our algorithm; the second output is B.

By the update rules above (and the increased value of t to accommodate for the increased

number of events), this dynamic algorithm imitates the static algorithm of Figure 1.3 and for

the resulting graph H we get the same guarantees as in Lemma 1.6.5. The update time of our

dynamic version of LIGHT-SPECTRAL-SPARSIFY is O(t log4 n) worst-case and O(t log2 n)

worst-case, as it is dominated by the time for maintaining the t-bundle 2-MST B.

As an additional property we get that with every update in G at most one change is

performed to H ′ = H \ B. Furthermore, for all edges added to H ′ weights are always

increased by the same factor. Therefore the ratio between the largest and the smallest edge

weight in H ′ will always be bounded by W , which is the value of this quantity in G (before

the first deletion).

Dynamic Implementation of CUT-SPARSIFY

We set k = dlog min(ρ,m/((c+ 2) log n))e and maintain k instances of the dynamic

version of LIGHT-CUT-SPARSIFY above, using the other parameters just like in the pseudo-

code of Figure 1.4. By this choice of k we ensure that we do not have to check the breaking

condition in the pseudo-code explicitly, which is more suited for a dynamic setting where

the number of edges in the maintained subgraphs might grow and shrink.

We maintain the k graphsG0, . . . , Gk,B1, . . . , Bk, andH1, . . . , Hk as in the pseudocode.

For every 1 ≤ i ≤ k we maintain Hi and Bi as the two results of running the dynamic

version of LIGHT-CUT-SPARSIFY on Gi−1 and maintain Gi as the graph Hi \Bi.

The output of our algorithm is the graph H =
⋃k
i=1 Bi ∪Gk. Note that, by our choice of

k, Gk has at most max(m/ρ, (c + 2) log n) edges. Now by the same arguments as for the

50

static case, H gives the same guarantees as in Lemma 1.6.7 and 1.6.8 for up to a polynomial

number of updates (here at most 4n2) in the graph.

As argued above (for H ′ in Section 1.6.4), every update in Gi−1 results in at most one

change to Gi = Hi \ Bi for every 1 ≤ i ≤ k. By an inductive argument this means that

every update in G results in at most one change to Gi for every 1 ≤ i ≤ k. As each instance

of the dynamic LIGHT-CUT-SPARSIFY algorithm has update time O(t log4 n) worst-case or

O(t log2 n) amortized, this implies that our overall algorithm has update time O(kt log4 n)

or O(kt log2 n), respectively. Together with Lemma 1.6.14 in Section 1.6.3, we have proved

Theorem 1.6.1 stated at the beginning of this section.

In Lemma 1.6.2 we additionally claim that for ρ = m we obtain a sparsifier with

polylogarithmic arboricity. This is true because the cut sparsifier H mainly consists of a

collection of bundles, which in turn consists of a collection of trees. In total, H consists of

O(tk logW) trees and O(c log n) remaining edges in Gk, each of which can be seen as a

separate tree. Furthermore we can maintain the collection of trees explicitly with appropriate

data structures for storing them.

1.6.5 Handling Arbitrarily Long Sequences of Updates

The high-probability guarantees of the algorithm above only holds for a polynomially

bounded number of updates. We now show how to extend it to an arbitrarily long sequence

of updates providing the same asymptotic update time and size of the sparsifier. We do this

by concurrently running two instances of the dynamic algorithm that periodically take turns

in being restarted, which is a fairly standard approach for such situations. The only new

aspect necessary for our purposes is that both instances explicitly maintain a sparsifier and

when taking turns we cannot simply replace all the edges of one sparsifier with the edges of

the other sparsifier as processing all these edges would violate the worst-case update time

guarantee. For this reason we exploit the decomposability of graph sparsifiers and maintain a

‘blend’ of the two sparsifiers computed by the concurrent instances of the dynamic algorithm.

51

This step is not necessary for other dynamic problems such as connectivity where we only

have to make sure that the query is delegated to the currently active instance.

Lemma 1.6.13 (Decomposability). Let G = (V,E) be an undirected weighted graph, let

E1, . . . , Ek be a partition of the set of edges E, and let, for every 1 ≤ i ≤ k, Hi be a

(1± ε)-cut sparsifier of Gi = (V,Ei). Then H =
⋃k
i=1 Hi is a (1± ε)-cut sparsifier of G.

Proof. Let U be a cut in G. First observe that

wG(∂G(U)) = wG(
k⋃
i=1

∂Gi(U)) =
k∑
i=1

wG(∂Gi(U)) =
k∑
i=1

wGi(∂Gi(U))

and similarly wH(∂H(U)) =
∑k

i=1wHi(∂Hi(U)). Now since

(1− ε)wHi(∂Hi(U)) ≤ wGi(∂Gi(U)) ≤ (1 + ε)wHi(∂Hi(U))

for every 1 ≤ i ≤ k, we have

(1− ε)wH(∂H(U)) = (1− ε)
k∑
i=1

wHi(∂Hi(U)) ≤
k∑
i=1

wGi(∂Gi(U)) = wG(∂G(U))

= · · · ≤ (1 + ε)wH(∂H(U)) .

Lemma 1.6.14. Assume there is a fully dynamic algorithm for maintaining a (1 ± ε)-cut

(spectral) sparsifier of size at most S(m,n,W) with worst-case update time T (m,n,W)

for up to 4n2 updates in G. Then there also is a fully dynamic algorithm for maintaining a

(1± ε)-cut (spectral) sparsifier of size at most O(S(m,n,W)) with worst-case update time

O(T (m,n,W)) for an arbitrary number of updates.

Proof. We exploit the decomposability of cut sparsifiers. We maintain a partition of G

into two disjoint subgraphs G1 and G2 and run two instances A1 and A2 of the dynamic

52

algorithm on G1 and G2, respectively. These two algorithms maintain a (1± ε)-sparsifier of

H1 of G1 and a (1± ε)-sparsifier H2 of G2. By the decomposability stated in Lemma 1.6.13

and 1.5.18, the union H def
= H1 ∪H2 is a (1± ε)-sparsifier of G = G1 ∪G2.

We divide the sequence of updates into phases of length n2 each. In each phase of

updates one of the two instances A1, A2 is in the state growing and the other one is in the

state shrinking. A1 and A2 switch their states at the end of each phase. In the following we

describe the algorithm’s actions during one phase. Assume without loss of generality that,

in the phase we are fixing, A1 is growing and A2 is shrinking.

At the beginning of the phase we restart the growing instance A1. We will orchestrate

the algorithm in such a way that at the beginning of the phase G1 is the empty graph and

G2 = G. After every update in G we execute the following steps:

1. If the update was the insertion of some edge e, then e is added to the graph G1 and

this insertion is propagated to the growing instance A1.

2. If the update was the deletion of some edge e, then e is removed from the graph Gi it

is contained in and this deletion is propagated to the corresponding instance Ai.

3. In addition to processing the update in G, if G2 is non-empty, then one arbitrary

edge e is first removed from G2 and deleted from instance A2 and then added to G1

and inserted into instance A1.

Observe that these rules indeed guarantee that G1 and G2 are disjoint and together contain

all edges of G. Furthermore, since the graph G2 of the shrinking instance has at most n2

edges at the beginning of the phase, the length of n2 updates per phase guarantees that G2

is empty at the end of the phase. Thus, the growing instance always starts with an empty

graph G1.

As both H1 and H2 have size at most S(n,m,W), the size of H = H1 ∪ H2 is

O(S(n,m,W)). With every update in G we perform at most 2 updates in each of A1 and

A2. It follows that the worst-case update time of our overall algorithm is O(T (m,n,W)).

53

Furthermore since each of the instances A1 and A2 is restarted every other phase, each

instance of the dynamic algorithm sees at most 4n2 updates before it is restarted.

1.7 Application of Dynamic Cut Sparsifier: Undirected Bipartite Min-Cut

We now utilize our sparsifier data structure to maintain a (2 + ε)-approximate st-min-cut in

amortized O(poly(log n, ε−1)) time per update. In this section, we will define several tools

that are crucial for the better analyses in Sections 1.8 and 1.9.

This result is a weaker form of Theorem 1.2.3 with an approximation factor of 2 + ε

instead of 1 + ε. The main result that we will show in this section is:

Theorem 1.7.1. For every 0 < ε ≤ 1, there is a fully dynamic algorithm for maintaining

a (2 + ε)-approximate minimum cut in an unweighted undirected graph that’s a bipartite

graph with source/sink s and t attached to each of the partitions with amortized update time

O(poly(log n, ε−1)).

To add motivation for solving this problem, we would like to point out that there are

examples in which the maximum s− t flow is much larger than the minimum vertex cover,

and we cannot simply consider the problem as finding a maximum matching inGA,B . Specif-

ically, let A = Ak2 ∪ Ak and B = Bk2 ∪ Bk, where |Ak|, |Bk| = k and |Ak2|, |Bk2| = k2,

then construct a complete bipartite graph on (Ak2 , Bk), (Ak, Bk), (Ak, Bk2), while having

no edges between Ak2 and Bk2 . A vertex cover would be Ak ∪ Bk ∪ {s, t}, but we can

achieve a max-flow in G of Ω(k2).

Accordingly, the objective cannot be approximated using matching routines even in the

static case. However, the solution can still be approximated using recent developments in

flow algorithms [37, 38, 42]. Below we will show that these routines can be sped up on

dynamic graphs using multiple layers of sparsification. Specifically, the cut sparsifiers from

Section 1.6.4 allow us to dynamically maintain a (1 + ε)-approximation of the solution

value, as well as some form of query access to the minimum cut, in O(poly(log n, ε−1)) per

update.

54

The section is organized as follows. Section 1.7.1 will give some of the high level

ideas and critical observations on which our dynamic algorithm will hinge. Section 1.7.2

will present the dynamic algorithm for maintaining a (2 + ε)-approximate minimum s− t

cut, prove that the approximation factor is correct, and show that the dynamic update time

is O(poly(log n, ε−1)) if we can dynamically update all data structures necessary for the

algorithm inO(poly(log n, ε−1)) time. Finally, Section 1.7.3 will present all of the necessary

data structures and show how we can dynamically maintain them in O(poly(log n, ε−1))

time.

1.7.1 Key Observations and Definitions

Our starting point is the observation that a small solution value implies a small vertex cover.

Lemma 1.4.1. The minimum vertex cover in G has size at most OPT + 2 where OPT is

the size of the minimum s− t cut in G.

Proof. Denote the minimum vertex cover as MVC, and the minimum s − t cut in G

as (S, S̄) where S = {s} ∪ As ∪ Bs and S̄ = {t} ∪ At ∪ Bt. Hence, we must have

OPT ≥ |At|+ |Bs|+ |E(As, Bt)| where E(As, Bt) are all of the edges between As and Bt.

Let VA(As, Bt) denote all of the vertices in A that are incident to an edge in E(As, Bt),

so |VA(As, Bt)| ≤ |E(As, Bt)|. We know GA,B is bipartite, so At ∪Bs ∪ VA(As, Bt) must

be a vertex cover in GA,B , which implies |MVC| ≤ OPT + 2 by adding s and t to the cover.

Our goal, for the rest of this section, is to show ways of reducing the graph onto a small

vertex cover, while preserving the flow value. The first issue that we encounter is that the

minimum vertex cover can also change during the updates. However, in our case, the low

arboricity property of the sparsifier given in Corollary 1.6.2 gives a more direct way of

obtaining a small cover:

55

Lemma 1.7.2. For any tree T , the vertex cover of all vertices other than the leaves is within

a 2-approximation of the minimum vertex cover.

This is proven in Appendix 1.11. We suspect that this is a folklore result, but it was

difficult to find a citation of it, as there exist far better algorithms for maintaining vertex

covers on dynamic trees [77]. Since there are at most O(poly(log n, ε−1)) trees, and the

overall vertex cover needs to be at least the size of any cover in one of the trees, we can set

the cover as the set of all non-leaf vertices in the trees.

Definition 1.7.3. Given a set of disjoint spanning forests F = F1 ∪ . . . ∪ FK , we say that

VC =
⋃
i∈[K] VCi is a branch vertex cover of F , if each VCi is the set of all vertices other

than the leaves in Fi

Corollary 1.7.4. For any graph G = (V,E) and corresponding sparsified graph G̃ =

F1 ∪ . . . ∪ FK . If VC is a branch vertex cover of G̃, then, VC is a 2K-approximate vertex

cover of G̃. Furthermore, any x ∈ V \ VC has degree at most K in G̃

Proof. Since the size of a minimum vertex cover in subgraph can only be smaller, we have

|MVCFi | ≤ |MVCG|.

Coupling this the choice of |VC| gives |VCi| ≤ 2|MVCFi|, and summing over all K trees

gives the bound. The bound on the degree of x follows from all leaves having degree 1.

We will ensure that s and t are placed in the cover, and use X to denote the non-cover

vertices. If we let the neighborhood of x be N(x), its interaction with various partitions of

S can be described as:

Definition 1.7.5. For a cut on VC, S ⊆ VC, and a non-cover vertex x ∈ X with neighbor-

hood N(x), let

1. w(x, S)
def
=
∑

u∈S∩N(x)w(x, u),

56

2. w(x)(S)
def
= min{w(x, S), w(x, VC \ S)}.

Definition 1.7.6. Given a graph G = (V,E) and some V̂ ⊆ V such that V̂ is a vertex cover

of G, and X = V \ V̂

1. For any S ⊂ V , let ∆G(S) be the weight of cut S on G

2. For any SV̂ ⊂ V̂ , let the weight of a cut that is minimally extended from SV̂ then be

given by

∆G(SV̂)
def
= ∆G\X(SV̂) +

∑
x∈X

w(x)(SV̂),

Definition 1.7.7. Given G = (VG, EG) and H = (VH , EH) such that VH ⊆ VG and V̂ is a

vertex cover of both graphs

1. If VH = VG, then we say H ≈ε G if for any S ⊂ VG

(1− ε)∆H(S) ≤ ∆G(S) ≤ (1 + ε)∆H(S)

2. If VH ⊂ VG, then we say H ≈V̂ε G, if for any SV̂ ⊂ V̂

(1− ε)∆H(SV̂) ≤ ∆G(SV̂) ≤ (1 + ε)∆H(SV̂)

Note that if some x ∈ X has degree 1, it will always belong to the same side as its

neighbor in a minimum s − t cut; while if x is incident to two neighbors u and v, it will

always go with the neighbor with smaller weight. That means that if w(x, u) ≤ w(x, v),

then this is equivalent to an edge of weight w(x, u) between u and v. This suggests that we

can reduce the star out of x, Nx, to a set of edges on its neighborhood. We formalize the

construction of this graph, Kx, as well as the resulting graph by removing all of X below:

57

Definition 1.7.8. Given a weighted graph G = (V,E) and w(u, v)→ R+, and any S, let:

Kx be the clique generated by running VERTEXELIMINATION: for any two neighbors u

and v of x, the edge weight of (u, v)x is

w(x, v)w(x, u)∑
i∈N(x)w(x, i)

.

For some vertex cover VC and independent set X = V \ VC, we let GVC = (G \X) ∪⋃
x∈X Kx

Note that we’re using a subscript x to denote the origin of the edge. Specifically, an edge

ex ∈ GVC implies that ex ∈ Kx, and an edge e∅ ∈ GVC means it’s from VC, i.e. e∅ ∈ G \X .

Note that GVC also defines a weight for each cut SVC ⊂ VC, where ∆GVC (SVC). The crucial

property of Definition 1.7.8 is that it preserves the values all cuts within a factor of 2. We

prove the following in Appendix 1.11.

Theorem 1.7.9. Given a weighted graph G = (V,E) and w(u, v)→ R+, with some vertex

cover VC and independent set X = V \ VC. For any SV C ⊂ VC

1

2
∆G(SV C) ≤ ∆GVC (SV C) ≤ ∆G(SV C)

Lemma 1.7.10. Given G = (V,E) with all weights in [γ, γU], along with vertex cover VC

and independent set X , such that any x ∈ X has degree at most d. Then the weight of any

edge in GVC is in [γ(dU)−1, γU]

1.7.2 Dynamic Algorithm for Maintaining a Minimum s− t Cut on Bipartite Graphs

Our algorithm can then be viewed as dynamically maintaining this cover using two layers of

dynamic graph sparsifiers intermixed with elimination routines. Its main steps are shown in

Figure 1.5.

One issue with maintaining a cut is that its two sides could have size O(n), which

cannot be returned in amortized O(poly(log n, ε−1)) time. Instead, we will maintain the cut

58

1. Dynamically maintain a sparsified G, which we will denote G̃

2. Dynamically maintain a branch vertex cover, VC, of G̃, where we ensure s, t ∈ VC

3. Dynamically maintain multi-graph G̃VC

4. Dynamically maintain a sparsified G̃VC , which we will denote as H with vertex set V

5. Every ε
2
∆H(ŜVC) dynamic steps, recompute ŜVC ⊂ VC, an approximate minimum s− t

cut on H , ignoring all degree zero vertices

Figure 1.5: Dynamic (2 + ε)-approximate Minimum s− t Cut

ŜVC ⊂ VC with s ∈ ŜVC , and allow querying of any vertex. For a vertex v ∈ VC, return

v is with s iff v ∈ ŜVC , which takes O(1) time. For a vertex x /∈ VC, return that x is with

s iff w(x, ŜVC) = w(x)(ŜVC) in G̃, taking O(poly(log n, ε−1)) time to compute w(x, ŜVC)

and w(x, VC \ ŜVC). Specifically, the cut will be

Ŝ = ŜV C ∪ {x ∈ V \ VC : w(x, ŜV C) = w(x)(ŜV C)},

the extension of ŜVC on G̃ which allows for the O(poly(log n, ε−1)) query computation by

Corollary 1.6.2 and Corollary 1.7.4.

We first establish the quality of this cut on H that we maintain:

Theorem 1.7.11. Computing a (1 + ε̂)-approximate minimum s− t cut in H as in Step 5 of

Figure 1.5 takes O(OPT · poly(log n, ε−1)) time for ε̂ = ε
O(1)

, and cut ŜVC ⊂ VC can be

extended to Ŝ a 2(1 + ε̂)5-approximate minimum s− t cut in G with high probability

Proof. G̃ = F1 ∪ . . . ∪ FK for some K = O(poly(log n, ε−1)) by Corollary 1.6.2, so

from Lemma 1.4.1 and Corollary 1.7.4, we know |VC| = O(OPT · poly(log n, ε−1)). From

Corollary 1.6.2, the weights of G̃ are in [1, O(n)], and Lemma 1.7.10 implies that the weights

of G̃VC are in [O(n−1 poly(log n, ε−1))−1, O(n)]. Further, each Kx of G̃VC has at most

K2 = O(poly(log n, ε−1)) edges, so G̃VC hasO(n ·poly(log n, ε−1)) edges. Corollary 1.6.2

59

then tells us that H has O(|VC| · poly(log n, ε−1)) = O(OPT · poly(log n, ε−1)) edges,

and that we can find a (1 + ε̂) approximate minimum s − t cut in H , ŜV C in O(OPT ·

poly(log n, ε−1)) time.

From Corollary 1.6.2, we assume that H ≈ε̂ G̃VC and G ≈ε̂ G̃ with high probability.

Suppose ŜV C ⊂ VC is returned as a (1 + ε̂)-approximate minimum s− t cut in H , and

let

Ŝ = ŜV C ∪ {x ∈ V \ VC : w(x, ŜV C) = w(x)(ŜV C)}

be its extension onto G̃. The left-hand side of Theorem 1.7.9 implies

∆G̃(ŜV C) ≤ 2∆G̃V C
(ŜV C),

which along with the approximations G ≈ε̂ G̃ and G̃V C ≈ε̂ H gives

∆G(Ŝ) ≤ (1 + ε̂)∆G̃(Ŝ) ≤ 2(1 + ε̂)∆G̃VC
(ŜV C) ≤ 2(1 + ε̂)2∆H(ŜV C).

On the other hand, let S ⊂ V be the minimum s − t cut in G, and SV C ⊂ VC be

its restriction to VC. Since right-hand side of Theorem 1.7.9 is over optimum choices of

V \ SV C , we have

∆G̃(S) ≥ ∆G̃(SV C) ≥ ∆G̃V C
(SV C),

which when combined with the approximations G ≈ε̂ G̃ and G̃V C ≈ε̂ H gives

∆G(S) ≥ (1− ε̂)∆G̃(S) ≥ (1− ε̂)∆G̃VC
(SV C) ≥ (1− ε̂)2∆H(SV C).

The result then follows from the near-optimality of ŜV C onH , ∆H(SV C) ≥ (1−ε̂)∆H(ŜV C).

Corollary 1.7.12. The dynamic algorithm maintains a (2 + ε)-approximate minimum s− t

cut in G, and will only compute an approximate minimum s− t cut on H every O(εOPT)

60

dynamic steps.

Proof. Choosing ε̂ = ε
O(1)

in Theorem 1.7.11 can give a (2+ ε
2
)-approximate minimum s− t

cut in G. Borrowing notation from the proof of Theorem 1.7.11, an approximate minimum

s − t cut on H will be re-computed in ε
2
∆H(ŜVC) dynamic steps. OPT = ∆G(S̄) ≤

∆G(Ŝ) ≤ 2(1 + ε̂)2∆H(ŜVC), so ∆H(ŜVC) = O(OPT)

1.7.3 Dynamically Updating Data Structures

As was shown in Corollary 1.7.12, the dynamic algorithm maintains a (2 + ε)-approximate

minimum s − t cut of G, an approximate minimum s − t cut of H is computed ev-

ery O(εOPT), and that computation takes O(OPT · poly(log n, ε−1)) time from Theo-

rem 1.7.11. Therefore, in order to establish that the amortized dynamic update time

is O(poly(log n, ε−1)), it suffices to show that all data structures can be maintained in

O(poly(log n, ε−1)) time per dynamic update, thereby finishing the proof of Theorem 1.7.1.

As a result of Corollary 1.6.2, it suffices to show the following

Theorem 1.7.13. For each addition/deletion of an edge in G̃, data structures for G̃, VC,

G̃VC , and H can be maintained in O(poly(log n, ε−1)) time.

Bounds on the dynamic update time of each data structure will all ultimately follow from

theO(poly(log n, ε−1)) degree bound for G̃ of all vertices not in the branch vertex cover, VC.

This is a direct result of the O(poly(log n, ε−1)) arboricity of G̃ from Corollary 1.6.2, and

the properties of a branch vertex cover of G̃ in Corollary 1.7.4.

Data structure for G̃: A list of O(poly(log n, ε−1)) spanning forests, which we will denote

SPANNERSG.

Data structure for adjacency lists of G̃:, We will denote it as ADJ-LISTG̃, and it will

have, for each vertex v, two lists LEAFv and BRANCHv:

61

INSERTVC(G, VC, v)

1. Delete all edges ev ∈ Kv in GRAPHVC .

2. For all edges e adjacent to v in ADJ-LISTG̃, insert e∅ into GRAPHVC .

Figure 1.6: Moving a Vertex into VC

• The list LEAFv will have the adjacency list of v for each spanning forest in SPANNERSG

in which v is a leaf.

• Similarly, the list BRANCHv will have the adjacency list of v edge for each spanning

forest in SPANNERSG in which v is not a leaf.

Data structure for VC: We will denote it as VCG̃, which will be a list of all vertices v

whose list BRANCHv is non-empty.

Data structure for G̃VC : We will denote it as GRAPHVC , and it will contain an adjacency

list, ADJv, for each vertex v ∈ VC. Assume that each ADJv has a data structure such that

deletion and insertion of any edge takes O(log n) time.

Data structure for H: We will denote it as SPARSEVC , and it will be the sparsified

multi-graph.

We first show that moving a vertex in / out of the vertex cover can be done in time

O(poly(log n, ε−1)), assuming that the degree of the vertex added/removed is small. Note

that the small number of forests in G̃ and the choice of VC allow us to meet this requirement.

Lemma 1.7.14. If v is not in VCG̃, then running INSERTVC(v) on GRAPHVC , us-

ing ADJ-LISTG̃, will output GRAPHVC equivalent to G̃VC∪v of ADJ-LISTG̃ in time

O(poly(log n, ε−1)).

62

REMOVEVC(G, VC, v)

1. For all edges e adjacent to v in ADJ-LISTG̃, delete e∅ from GRAPHVC .

2. Use all incident edges to compute Kv and insert all ev ∈ Kv into GRAPHVC

Figure 1.7: Removing a Vertex from VC

Proof. Costs of the two steps are:

1. Delete all edges ev ∈ Kv in GRAPHVC . This requires finding all incident ver-

tices to v in LEAFv and BRANCHv, which is at most O(poly(log n, ε−1)) because

BRANCHv is empty due to v not in VCG̃. Every pair of vertices has a corresponding

edge ev in GRAPHVC , so this takes O(poly(log n, ε−1)) time.

2. There are at most O(poly(log n, ε−1)) edges adjacent to v in ADJ-LISTG̃, so adding

all these edges into GRAPHVC takes O(poly(log n, ε−1)) time.

If v is not in VCG, then v must only be incident to VC in ADJ-LISTG̃. Therefore in

G̃VC∪v, v will only be incident to edges e∅ for each e incident to v in ADJ-LISTG̃, and

no edges ev will be in G̃VC∪v. INSERTVC(v) will perform exactly these operations on

GRAPHVC .

Lemma 1.7.15. If BRANCHv is empty, then running REMOVEVC(v) on GRAPHVC ,

using ADJ-LISTG̃, will output GRAPHVC equivalent to G̃VC\v of ADJ-LISTG̃ in time

O(poly(log n, ε−1)).

Proof. Costs of the two steps are:

1. At most O(poly(log n, ε−1)) edges are adjacent to v in ADJ-LISTG̃, so deleting all

these edges from GRAPHVC takes O(poly(log n, ε−1)) time.

63

UPDATEADJ(G, VC, e)

1. If e has been added/deleted, then add/delete e from the adjacency list of u and v for Fi in
ADJ-LISTG̃, which will be denoted Lu,i and Lv,i, respectively.

2. For u and v, if Lv,i has at most one adjacent vertex, place it in LEAFv, otherwise place it
in BRANCHv.

3. If the degree of u and v in Fi is zero before adding e, then place Lv,i in BRANCHv and
Lu,i in BRANCHu

4. For u and v, if degree of v is two before deleting e, check the other vertex incident to
v, say it is w, and if w has degree one in Fi then move Lv,i to BRANCHv and Lw,i to
BRANCHw.

5. For u and v, if degree of v is one before adding e, check the other vertex incident to v, say
it is w, and if w has degree one in Fi then move Lw,i to LEAFw.

Figure 1.8: Update ADJ-LISTG̃

2. v /∈ VC, so v has O(poly(log n, ε−1)) neighbors, and using all incident edges to

compute each ev ∈ Kv and insert ev into GRAPHVC takes O(poly(log n, ε−1)) time.

If BRANCHv is empty, then v must only be incident to VC in ADJ-LISTG̃. Therefore

in G̃VC\v, v will never be incident to any edges e∅, and for any of its neighbors w and z,

(w, z)v will be in ADJ-LISTG̃. INSERTVC(v) will perform exactly these operations on

GRAPHVC

We now consider updating ADJ-LISTG̃ given the addition/deletion of some edge. This

process is simple in terms of time complexity, but has a small wrinkle in maintaining the

correct LEAF and BRANCH structure. Specifically, for each forest, we can consider all of

the degree one vertices to be leaves, except for when there is a disjoint edge in the forest.

Accordingly, steps 3, 4, and 5 of the algorithm in Figure 1.8 will take care of this edge case.

Lemma 1.7.16. UPDATEADJ(G, VC, e) takes O(log n) time and all vertices v such that

Lv,i are in BRANCHv, maintain a 2-approximate vertex cover of Fi.

64

Proof. Finding the adjacency list of u and v for Fi in ADJ-LISTG̃ takes O(log n) time.

The rest of the steps all take O(1) time, as they are just there to ensure we maintain the

2-approximate vertex cover of Fi.

For all trees, other than a single edge, it suffices to put all vertices with degree ≥ 2 in

the vertex cover, and 2-approx tree theorem tells us that this is a 2-approximate vertex cover.

Step 3 and 4 of Update ADJ-LISTG̃ ensure that in the single edge case, e = (u, v) that Lv,i

is in BRANCHv and Lu,i is in BRANCHu, which is still a 2-approximate vertex cover.

Further, step 5 ensures that anytime an edge is added to a tree that just contains a single

edge, all vertices of degree one have their adjacency list moved to the LEAF list.

Full Dynamic Update Process

Finally, we consider the addition/deletion of an edge in SPANNERSG. Specifically, let

the edge e = (u, v) be added/deleted from forest Fi. The above two operations allow us to

reduce it to the simpler case of both u and v being in VC. The update process will occur as

follows:

1. For u and v, if v /∈ VCG̃, then run INSERTVC on GRAPHVC , VCG̃, and v

2. Update ADJ-LISTG̃

3. If e was added/deleted from G̃, insert/delete edge e∅ from GRAPHVC and insert u

and v into VCG̃

4. For u and v, if BRANCHv is empty, then run REMOVEVC on GRAPHVC , VCG̃,

and v, and delete v from VCG̃

By Lemma 1.7.14, GRAPHVC is equivalent to G̃VC∪{u,v} on updated ADJ-LISTG̃ after

step 3 because u and v are in VC. Similarly, the moving of u and v outside of VC ensures

our final state is good.

65

Proof of Theorem 1.7.13 : The full update process for ADJ-LISTG̃, VCG̃, and GRAPHVC

only calls INSERTVC, REMOVEVC, and UPDATEADJ a constant number of times. There-

fore, by Lemma 1.7.14, Lemma 1.7.15, and Lemma 1.7.16 this process only takes time

O(poly(log n, ε−1)). This also implies that at most O(poly(log n, ε−1)) edges can be

added/deleted from G̃V C , and by Corollary 1.6.2 maintaining H will take at most time

O(poly(log n, ε−1)).

1.8 Vertex Sampling in Bipartite Graphs

We now design an improved method for reducing a graph onto one whose vertex size is

O(|VC| poly(log n, ε−1)) + |X|/2. Instead of sampling edges of GVC , it samples vertices

in X = V \ VC using GVC as a guide. This question that we’re addressing, and the vertex

sampling scheme, is identical to the terminal cut sparsifier question addressed in [2]. In the

next section we will apply this sampling scheme to obtain a vertex sparsification routine that

will reduce onto a graph of size proportional to O(|VC| poly(log n, ε−1)) without losing a

factor of 2 approximation.

We will reuse the notation from Section 1.7.1, and we encourage the reader to revisit the

definitions in that subsection. For this section, we will exclusively be dealing with subsets

of VC, and we will drop the VC subscript from each SVC . So, formally our goal is to find

H so that for all S ⊂ VC,

(1− ε)∆G(S) ≤ ∆H(S) ≤ (1− ε)∆G(S).

This sampling scheme allows us to keep expectation of the cuts on VC to be exactly the

same, instead of having a factor 2 error from the conversion from G to GVC . The connection

to GVC on the other hand allows us to bound the variance of this sampling process as before.

In our application of this sampling routine to vertex sparsification, we will consider

sparsifying G \X separately, so for simplicity, we assume here that (V C,X) is a bipartition

66

and

G =
⋃
x∈X

Nx

Further, we first focus on the case where all vertices in X have degree d, and all edge

weights in X are within a factor of U from each other. We will show reductions from general

cases to ones meeting these assumptions in Subsection 1.9.1.

As before, let GVC be the multigraph generated by the clique edges from Theorem 1.7.9:

GVC =
⋃
x∈X

Kx.

Lemma 1.7.10 implies that the weights of every (multi) edge ex ∈ GVC are within a factor

of O(U2d) from each other.

As mentioned, we ultimately want to obtain a vertex sparsification scheme that reduces

to sizeO(|VC| poly(log n, ε−1)) for further application. As a result, instead of doing a direct

union bound over all 2|VC| cuts to get a size of poly(|VC|) as in [2], we need to invoke cut

counting as with cut sparsifier constructions. This necessitates the use of objects similar to

t-bundles to identify edges with small connectivity.

Our proof will use a similar structure to that of Fung et al. [64], particularly the cut-

counting based analysis of cut sparsifiers. We will follow their definitions, which are in turn

based on the definition of edge strength by Benczur and Karger [33].

Definition 1.8.1. In a graph G, an edge is e k − heavy if the connectivity of its endpoints

is at least k in G. Furthermore, for a cut S, its k− projection is the set of k− heavy edges

in the edges cut, ∂(S).

We will refer to edges that we cannot certify to be heavy as light. These edges are

analogous to the bundle edges from the cut sparsifier routine from Section 1.6.4.

Before we continue, we remark that the definition of heavy/strong edges in [64, 33] is

almost the opposite of definitions in spectral sparsification. In spectral sparsification, the

67

edges with high leverage scores are kept, and the low leverage score ones are sampled. This

issue can also be reflected in the robustness of this definition in the presence of weights:

a natural way of generalizing heaviness is to divide the connectivity of uv by the weight

w(u, v). This leads to a situation where halving the weight of an edge actually makes it

heavier. In fact, these definitions of heaviness / strength are measuring the connectivity in

the graph between the endpoints of e, instead of the strength of e itself. As our routines are

in the cut-sparsification setting, we will use these definitions in this version in order to be

consistent with previous works [64, 33], but may switch to a different set of notations in a

future edit.

The main result of [64], when restricted to graphs with bounded edge weights, states

that we can sample the O(log nε−2)-heavy edges by a factor of 2. Our goal is to prove the

analogous statement for sampling heavy vertices, which we define as follows:

Definition 1.8.2. A subset of X , Xheavy is a k-heavy subset if every pair of vertices u, v in

some Nx for some x ∈ Xheavy is k-connected in the graph

Glight
VC = ∪x/∈XheavyKx.

We will show in Section 1.9, these heavy/light subsets can be found by taking pre-images

of more restricted versions of t-bundles on GVC . Our main structural result is that a heavy

subset can be sampled uniformly while incurring ε-distortion.

Lemma 1.8.3. Given a bipartite graph G between VC and X such that X has maximum

degree d and all edge weights are in some range [γ, Uγ], with U = O(poly(n)) and any

non-negative γ. For any ε, there is a parameter tmin = O(dU log nε−2) such that if we’re

given a subset X light of X so that Xheavy = X \X light is γ(dU)t-heavy with t ≥ tmin then

the graph consisting of the light vertices and sampled heavy vertices,

H = N(X light) ∪ SAMPLE(G, VC,Xheavy)

68

SAMPLE(G, VC,Xheavy)
Input: Bipartite graph G with one bipartition VC, heavy subset Xheavy of the other bipartition.
Output: Bipartite graph H with bipartition (VC,XH).

1. Initialize H ← ∅, XH = ∅.

2. For every x ∈ Xheavy, flip fair coin with probability 1/2, if returns heads:

(a) H ← H + 2Nx.

(b) XH ← XH ∪ {x}

3. Return (H,XH).

Figure 1.9: Sampling Heavy Vertices

meets the condition:

|∆G(S)−∆H(S)| ≤ ε∆G(S)

for all subsets S ⊆ VC w.h.p. Here the constants in tmin depends on the failure probability

in the w.h.p.

The cut-counting proof of cut-sparsifiers from [64] essentially performs a union bound

over distinct sets of k-heavy projections over all cuts. We will perform the same here, but

over distinct partitions of Nx over all x in Xheavy. We can first define the partition of a

single vertex by a cut S ⊆ VC as:

Nx(S) = {S ∩N(x), N(x) \ S} .

Then we can define an equivalence relation on cuts as:

Definition 1.8.4. S1 ≡G S2 if for any x ∈ Xheavy, Nx(S1) = Nx(S2)

Note that this equivalence ignores the presence of edges in X light. So we need to further

take representatives of each equivalence class:

Definition 1.8.5. Define Srep to be the set of subsets S ⊂ VC such that

69

1. For every S ∈ Srep, there is some x ∈ Xheavy s.t. Nx(S) 6= {Nx, ∅}, i.e. Nx is not

entirely on one side of the cut.

2. For any S1, S2 ∈ Srep, S1 6≡G S2

3. For any S ⊂ VC such that S /∈ Srep, there exists S ∈ Srep such that

• S ≡G S, and

• ∆G(S) ≤ ∆G(S).

An immediate consequence of condition 1 is that for any S ∈ Srep we have ∆G(S) >

γt(dU)−1. This set plays the same role as the unique k-projections in cut sparsifiers.

Lemma 1.8.6. Let H be obtained from G by sampling on Xheavy, then for any element of

Srep, S we have:

PH

 ⋃
S,S≡GS

|∆G(S)−∆H(S)| > ε∆G(S)

 = PH
[∣∣∆G(S)−∆H(S)

∣∣ > ε∆G(S)
]
.

Proof. Let Gsample = G \
⋃
x∈Xlight Nx and Hsample = H \

⋃
x∈Xlight Nx be the graphs

being sampled.

By construction of H , for any S ⊂ VC,

|∆G(S)−∆H(S)| =
∣∣∆Gsample(S)−∆Hsample(S)

∣∣ .
By construction of our equivalence relation, if S ≡G S,

∣∣∆Gsample(S)−∆Hsample(S)
∣∣ =

∣∣∆Gsample(S)−∆Hsample(S)
∣∣ .

due to them having the same part that’s not in H . Therefore, the failure probability is limited

by the element in the equivalence class with the smallest ∆G(S), i.e. S.

70

Corollary 1.8.7.

PH

[⋃
S⊂VC

|∆G(S)−∆H(S)| > ε∆G(S)

]
= PH

[⋃
S∈Srep

|∆G(S)−∆H(S)| > ε∆G(S)

]

The key observation is that the sizes of subsets of Srep of certain sizes can be bounded

using cut-counting on GVC . For any S ⊂ VC, define

Kx(S) = EKx(S ∩N(x), N(x) \ S),

which are the edges in Kx crossing S. Similar to S1 ≡G S2, we can define S1 ≡GVC S2 if

for any x ∈ Xheavy, Kx(S1) = Kx(S2)

Lemma 1.8.8. For any S1, S2 ⊆ VC, Nx(S1) = Nx(S2) iff Kx(S1) = Kx(S2). Therefore

S1, S2 ⊆ VC, S1 ≡G S2 iff S1 ≡GVC S2.

Proof. We construct Kx as a clique, so Kx(S1) = Kx(S2) iff S1 ∩N(x) = S2 ∩N(x) or

S1 ∩N(x) = N(x) \ S2

Lemma 1.8.9. |{S ∈ Srep|∆GVC (S) ≤ K}| is less than or equal to the number of distinct

γ(dU)−1t-projections in cuts of weight at most K

Proof. Lemma 1.8.8 gives that Srep has the following properties for GVC

1. For every S ∈ Srep, there is some x ∈ Xheavy s.t. Kx(S) 6= ∅.

2. For any S1, S2 ∈ Srep, S1 6≡GVC S2

For any S ∈ Srep, let Eheavy(S) denote all the γ(dU)−1t-heavy edges crossing S in

GVC . The property above gives: ⋃
x∈Xheavy

Kx(S)

is a non-empty subset of Eheavy(S), and

⋃
x∈Xheavy

Kx(S1) 6=
⋃

x∈Xheavy

Kx(S2) ∀S1, S2 ∈ Srep.

71

Therefore, each S ∈ Srep such that ∆GVC (S) ≤ K, must be a distinct γ(dU)−1t −

projection of weight at most K

It remains to combine this correspondence with cut counting to show the overall success

probability of the vertex sampling routine.

Proving this requires using Chernoff bounds. The bound that we will use is below, it can

be viewed as a scalar version of Theorem 1 of [57].

Lemma 1.8.10. Let Y1 . . . Yn be random variables s.t.

1. 0 ≤ Yi ≤ 1.

2. µi = EYi [Yi]

3. µ =
∑

i µi

Then for any ε ≥ 0

PY1...Yn

[∑
i

Yi > (1 + ε)µ

]
≤ exp

(
−ε

2µ

2

)
.

PY1...Yn

[∑
i

Yi < (1− ε)µ

]
≤ exp

(
−ε

2µ

2

)
.

This bound can be invoked in our setting on a single cut S as follows:

Lemma 1.8.11. For each cut S, we have

PH [|∆H(S)−∆G(S)| > ε∆G(S)] ≤ 2 exp

(
−ε

2∆G(S)

4γ

)
.

Proof. Let

wmax(S) = max
x∈X
{w(x)(S)}.

72

We will only consider S ∈ Srep, so we know wmax(S) > 0, which implies wmax(S) ≥ γ.

For each S ⊆ Srep and for all x ∈ X , let Yx(S) be the random variable such that either

1. Yx(S) = w(x)(S)
2wmax(S)

if x ∈ X light

2. Yx(S) equals w(x)(S)
wmax(S)

w.p. 1/2, and 0 w.p. 1/2.

Accordingly, we have
∑

x∈X EYx(S) [Yx(S)] = 1
2wmax(S)

∑
x∈X w

(x)(S) = 1
2wmax(S)

∆G(S).

The bound then follows from invoking Lemma 1.8.10.

Proof. (Of Lemma 1.8.3)

Let ∆GVC (S) be the weight of cutting S ⊂ VC in GVC . From Theorem 1.7.9 for any

S ∈ Srep that ∆G(S) ≥ ∆GVC (S). Therefore,

∑
S⊆Srep

2 exp

(
−ε

2∆G(S)

4γ

)
≤
∑

S⊆Srep
2 exp

(
−ε

2∆GVC (S)

4γ

)

The main cut-counting bound follows from Theorem 1.6 [64] on multi-graphs, and by

our construction of Srep gives:

|{S ∈ Srep|∆GVC (S) ≤ K}| ≤


n2KdU(γt)−1 if K ≥ γ(dU)−1t,

0 otherwise.

Each vertex adds weight at most γdU for any cut, so we can upper bound K by n2γU

because d ≤ n. Invoking cut counting for intervals of length γ from K ≥ γ(dU)−1t to

K ≤ n2γU allows us to bound the overall failure probability by:

73

≤
n2U∑

i=(dU)−1t

 ∑
S∈Srep

γi≤∆GVC
(S)≤γ(i+1)

2 exp

(
−ε

2∆GVC (S)

4γ

)
≤

n2U∑
i=(dU)−1t

2n2(i+1)dUt−1

exp

(
−ε

2i

4

)
=

n2U∑
i=(dU)−1t

2n2(i+1)dUt−1− ε2i
4 logn . (1.1)

Note that we’re free to choose t, and it can be checked that for U ≤ nc1 , setting t ≥

(28 + 4c1)c2dU log nε−2 bounds this by n−c2 for any c2 ≥ 1. Note that if U is larger than

O(poly(n)), we could set t = O(dU2 log nε−2) and still achieve w.h.p., but for our practical

purposes assuming U = O(poly(n)) is more than sufficient because U will always be

O(poly(log n, ε−1)).

1.9 Maintaining (1 + ε)-Approximate Undirected Bipartite Min-Cut

In this section, we will again consider the bipartite minimum s−t cut problem of Section 1.7,

and will improve the approximation guarantee to (1+ε). This improvement will require many

of the techniques from Section 1.7, but we will bypass the loss of a factor 2 approximation

by utilizing the vertex sampling scheme presented in Section 1.8. A high level overview of

these techniques is in Section 1.4.3. The dynamic algorithm given in this section will rely

heavily on the definitions and observations of Subsection 1.7.1, which we encourage the

reader to revisit.

Lemma 1.8.3, along with the framework from Section 1.7 allow us sample a large set

of vertices if the optimal minimum s− t cut is small, and will guarantee that the sampled

vertices have O(poly(log n, ε−1)) degree. However, Lemma 1.8.3 as stated require incident

edges of all sampled vertices to have weight within factorO(poly(log n, ε−1)) of one another.

In this section, we integrate this subroutine into the data structure framework, leading to our

74

main result for approximating undirected bipartite maximum flows:

Theorem 1.2.3. Given a dynamically changing unweighted, undirected, bipartite graph

G = (A,B,E) with demand −1 on every vertex in A and demand 1 on every vertex in

B, we can maintain a (1 − ε)-approximation to the value of the maximum flow, as well

as query access to the associated approximate minimum cut, with amortized update time

poly(log n, ε−1) per edge insertion / deletion.

Section 1.9.1 will show how the vertex sampling scheme given in Section 1.8 can

be iteratively applied, reducing to a graph with O(|V C| poly(log n, ε−1)) vertices and

O(|V C| poly(log n, ε−1)) edges. This section will first present the full vertex sparsification

scheme, and then examine the two primary components of this scheme. Section 1.9.1 will

show how we can pre-process a graph to ensure that all edge weights of each sampled vertex

are close to each other, which will be necessary for bucketing sampled vertices. Section 1.9.1

will utilize these bounded properties and the vertex sampling of Section 1.8 to give a vertex

sparsification scheme for each bucket, culminating in a proof of correctness for the full

scheme in terms of approximation guarantees and bounds on the number of edges and

vertices. Section 1.9.1 will extend vertex sparsification to general graphs without bounds on

degree for the static case, proving Corollary 1.4.2.

Section 1.9.2 will then use this vertex sparsification scheme along with many of the

components from Section 1.7 to give a fully dynamic algorithm for maintaining a minimum

s− t cut on a bipartite graph. The correctness of this algorithm will follow from the correct-

ness of the dynamic algorithm in Section 1.7 and the correctness of vertex sparsification.

Accordingly, it will then only be necessary to establish that we can dynamically update all

necessary data structures in O(poly(log n, ε−1)) time.

1.9.1 Vertex Sparsification in Quasi-Bipartite Graphs

The general framework of the routine is shown in Figure 1.10.

75

VERTEXSPARSIFY(G, VC,XG, d, ε)
Input: Graph G with vertex cover VC and XG = V \ VC, such that the degree of each vertex
in XG is bounded by d.

1. Build Ĝ on the same vertex set as G s.t. G ≈ε/2 Ĝ and for each x in XĜ, the weights are
within a factor of O(d/ε) of each other.

2. Bucket Ĝ by maximum edge weights in each Nx into Ĝ1 . . . ĜL, along with Ĝ \XG

3. Set t = O(d2 log3 nε−3), initialize H = (VC, ∅).

4. With error ε/2, sparsify Ĝ \XG and BOUNDEDVERTEXSPARSIFY each Ĝi, giving Hi

5. Return the union of each sparsified graph, H = H \XG ∪H1 ∪ . . . ∪HL.

Figure 1.10: Vertex Sampling in G

Theorem 1.9.1. Given any graph G, vertex cover VC and XG = V \ VC, such that

the degree of each vertex in XG is bounded by d, with weights in [γ,O(γW)] where

logW = O(poly(log n)), and error ε. Then there is a t = O(d2 log3 nε−3) whereby

VERTEXSPARSIFY(G, VC,XG, d, ε) returns H s.t. w.h.p.

1. H \XG is a multi-graph on VC with O(|V C| poly(log n, ε−1)) edges, and each Hi

is a bipartition with VC on one side, and at most O(|VC|t log n) vertices of XG on

the other.

2. H ≈VCε G.

3. All edge weights of H are in [γ,O(γnW)]

Here the constant in front of t depends on W as well as in the w.h.p. condition.

A proof of Theorem 1.9.1 will be given at the end of Section 1.9.1.

Reduction to Bounded Weight Case

The idea here will be to look at each Nx and move the low weight edges into G \X , thereby

ensuring that the remaining edges in Nx have weight within a O(poly(log n, ε−1)) factor.

76

VERTEXBUCKETING(G, VC,XG, d, ε)
Input: Bipartite graph G with bipartition (VC,XG) s.t. the degree of each vertex in XG is
bounded by d.

1. Initialize Ĝ \X = G \X , and Ĝi = (VC, ∅) for i = 1 . . . L with L = O(logW)

2. For each x ∈ XG

(a) Let (x, u) be the edge with maximum weight in Nx, where w(x, u) ∈ [γ2i−1, γ2i]

(b) For each (x, v) ∈ Nx, if w(x, v) < ε
d
w(x, u), then put (u, v)x in Ĝ \X . Otherwise,

put (x, v) in Ĝi

3. Return the multi-graph Ĝ \X , and graphs Ĝ1 . . . ĜL

Figure 1.11: Vertex Bucketing in G

This will create a multi-graph in G \X , where will use the normal notation (u, v)x to denote

an edge added by Nx.

Theorem 1.9.2. Given G with bipartition (V C,XG) with weights in [γ, γW], such that the

degree of each vertex inXG is bounded by d, for any ε, VERTEXBUCKETING(G, V C,XG, d, ε)

will return Ĝ = Ĝ \X ∪ Ĝ1 ∪ . . . ∪ ĜL such that

1. G ≈ε Ĝ

2. For each Ĝi, the weights of Ĝi are in [γ, 2γdε−1] for some γ

3. Any edge e∅ ∈ Ĝ must be in Ĝ \X

4. If x ∈ X has non-zero degree in Ĝi, then x has zero degree in Ĝ \ Ĝi, and the degree

of x in Ĝi is bounded by d

Proof. Items 2, 3, and 4 follow from construction, and because XG is an independent set in

G, we can conclude that G ≈ε Ĝ from Lemma 1.9.3 and Lemma 1.9.4 below.

77

Lemma 1.9.3. Consider a graph on three vertices, x, u, and v with edges between xu and

xv. If w(x, v) ≤ εw(x, u), then the graph with edges xu with weight w(x, u) and uv with

weight w(x, v) is an ε-approximation on all cuts.

Proof. The only interesting cuts are singletons:

1. Removing v has w(x, v) before and after.

2. Removing x has w(x, u) + w(x, v) before, and w(x, u) after, a factor of ε difference

since

w(x, u) + w(x, v) ≤ (1 + ε)w(x, u).

3. Removing u has w(x, u) before, and w(x, u) + w(x, v) after, same as above.

Invoking this repeatedly on small stars gives:

Lemma 1.9.4. A star x with degree d can be reduced to one whose maximum and minimum

weights is within a factor of O(dε−1) while only distorting cuts by a factor of 1 + ε.

Proof. Let the neighbors of x be v1 . . . vd s.t. w(x, v1) ≥ w(x, v2) ≥ . . . ≥ w(x, vd).

Suppose w(x, vi) < ε/dw(x, v1), then applying Lemma 1.9.3 gives a multiplicative error

of 1 + ε/d. Applying this at most d times gives the approximation ratio, and moves all the

light edges onto v1.

Bounded Weight Vertex Sparsification

The bucketing of vertices in the independent set ensures that all the weights in each bucket

are within a factor O(d/ε), which will allow us to iteratively reduce the number of vertices

by applying the SAMPLE algorithm given in Section 1.8 O(log n) times. Note that our

SAMPLE algorithm doubles the weights of each sampled star, so N i
x will denote the star x

in ith iteration graph Gi with updated weights for that graph.

78

BOUNDEDVERTEXSPARSIFY(G, VC,XG, t)
Input: Bipartite graph G with bipartition (VC,XG)

1. Initialize G0 ← G, XG0 ← XG, and H ← ∅

2. For each i = 0 to l − 1

(a) Compute a t-bundle vertex set XGlight
i ⊆ XGi of Gi

(b) (Gi+1, XGi+1)← Sample(Gi, VC,XGi, XG
light
i)

(c) Add
⋃
x∈XGlighti

N i
x to H

3. Return H = H ∪Gl

Figure 1.12: Bounded Weight Vertex Sparsification in G

Theorem 1.9.5. Given a bipartite graph G with bipartition (V C,XG), and weights in

[γ, Uγ] where U = O(poly(n)), with degree of x ∈ XG bounded by d, and error ε. Then

there is a t = O(dU log3 nε−2) whereby BOUNDEDVERTEXSPARSIFY(G, V C,XG, t) re-

turns H , s.t. w.h.p.

1. H is a bipartition with VC on one side and at most O(|V C|t log n) vertices on the

other

2. H ≈V Cε G

Proof. (1): Set l = O(log n) and note that |XG| ≤ n, so Gl is unlikely to have many

remaining vertices after samplingO(log n) times by a standard argument using concentration

bounds. Then, Lemma 1.9.8 will show |XGlight
i | ≤ t|V C| for all i, giving the desired size.

(2): By construction of BOUNDEDVERTEXSPARSIFY(G, V C,XG), the weights of each

Gi are in [2iγ, 2iγU]. We will show in Lemma 1.9.8 that for each Gi and XGi, we can

find a t-bundle vertex set XGlight
i of XGi, such that XGheavy

i = XGi \ XGlight
i is a

2iγ(dU)−1t− heavy vertex subset. Assuming that this is the case, from Lemma 1.8.3, if

79

we set ε̂ = ε
l
, then with high probability

Gi ≈VCε̂ Gi+1 ∪
⋃

x∈XGlighti

N i
x

By construction, for all j < i, XGlight
j ∩ XGi = ∅, so adding each

⋃
x∈XGlightj

N j
x to

both sides will still preserve the relation above. Applying this argument inductively and

using ε̂ = ε
l

gives H ≈VCε G with high probability.

In order to complete the proof of Theorem 1.9.5, it is now necessary to show that for each

Gi and XGi, we can construct XGlight
i such that XGi \XGlight

i is a 2iγ(dU)−1t− heavy

subset of XGi. The idea will simply be to construct XGlight
i from t disjoint spanning

forests in Gi
VC with some additional properties that will allow O(poly(log n, ε−1)) dynamic

maintenance in the following subsection.

Definition 1.9.6. Given G with vertex bipartition (VC,X), we say that F = F1 ∪ . . . ∪ Ft

is a t-clique forest if

1. Each Fi is a forest of GVC and all are disjoint.

2. For any x ∈ X , at most one edge ex ∈ Kx is in F .

3. For all x ∈ X such that F ∩ Kx = ∅, for any ex = (u, v)x ∈ Kx, u and v are

connected in all Fi

Lemma 1.9.7. Given G with vertex bipartition (VC,X) such that all x ∈ X have maximum

degree d, weights in [γ, γU] and a t-clique forest F , if X light = {x ∈ X|F ∩Kx = ∅}, then

Xheavy = X \X light is an γ(dU)−1t− heavy subset of X

Proof. For some (u, v)x ∈ Kx with x ∈ Xheavy, suppose (u, v)x is in a cut SVC ⊂ VC such

that ∆GVC (SVC) < γ(dU)−1t. From Lemma 1.7.10, all edges in GVC have weight at least

80

LIGHTVERTICES(Gi, VC,XGi)
Input: Bipartite graph Gi with bipartition (VC,XGi)

1. Initialize XGlight
i ← ∅ and Fi =

⋃
j∈[t] Fi,j with Fi,j ← ∅ for all j

2. For each j = 1 to t

(a) While some edge ex ∈ Gi
VC can be added to forest Fi,j

(b) Place ex in Fi,j , place x in XGlight
i , and remove Kx from Gi

VC

3. Return XGlight
i

Figure 1.13: Light Vertex Set of XG

γ(dU)−1. Therefore, there must exist some Fj such that u and v are not connected, giving a

contradiction.

Note that after the algorithm terminates Gi
VC =

⋃
x∈XGheavyi

Kx, which will be necessary

for the dynamic maintenance. The following lemma follows by construction and the fact

that each forest has at most |V C| − 1 edges.

Lemma 1.9.8. Fi is a t-clique forest of Gi
VC , |XGlight

i | ≤ t|V C|, and XGheavy
i is a

2iγ(dU)−1t− heavy subset of XGi

Proof of Theorem 1.9.1 (1) The first part follows from Theorem 1.6.1 and the second part

follows from Theorem 1.9.5

(2) Property (1) of Theorem 1.9.2 gives us G ≈ε/2 Ĝ with U = 4dε−1 for each Ĝi from

property (2). Then, property (3) implies that each Ĝi is bipartite, and property (4) implies

that each vertex in XĜi is bounded by d. We can then apply Theorem 1.9.5 to each Ĝi,

with U = 4dε−1 to get Ĝi ≈V Cε/2 Hi with high probability. Note that we are implicitly

assuming U = O(poly(n)), aka ε−1 = O(poly(n)). As was discussed at the end of

Section 1.8, we could avoid this assumption by adding an extra ε−1 factor to the t-bundle,

81

but any ε−1 = ω(poly(n)) loses any practical value. L = O(logW) = O(poly(log n))

by assumption, and property (4) of Theorem 1.9.2 ensures that a vertex is only sampled

in one Ĝi, so taking the union over O(poly(log n)) buckets preserves Ĝ ≈V Cε/2 H w.h.p.

for sufficient constants in t. G ≈ε/2 Ĝ is a stronger statement than G ≈V Cε/2 Ĝ, implying

G ≈V Cε H

(3) Edge weights are only changed in SAMPLE where they are either doubled or left alone.

VERTEXSPARSIFY calls SAMPLE at most O(log n) times for each bucket of Ĝ, giving the

appropriate bound.

Improved Static Algorithm for General Graphs

Composing this routine O(log n) times, along with spectral sparsifiers, leads to a static

routine:

Corollary 1.4.2. Given any graph G = (V,E), and a vertex cover VC of G, where

X = V \ VC, with error ε, we can build an ε-approximate terminal-cut-sparsifier H

with O(|VC| poly(log n, ε−1)) vertices in O(m · poly(log n, ε−1)) work.

Now that we have sufficient notation in place, by terminal − cut − sparsifier, we

mean that G ≈VCε H with high probability. Note that this is almost equivalent to Theo-

rem 1.9.1, but we make no assumptions on the degree of vertices in X . Also, we will specify

poly(logn, ε−1) as log18 nε−7.

Proof. Consider running the following routine iteratively:

1. Sparsify G with error ε̂ = ε
O(logn)

and output G̃

2. Find the bipartite subgraph Ĝ containing VC and vertices XĜ ⊆ X whose degree

are less than O(log2 nε−2). Run VERTEXSPARSIFY on Ĝ, VC, XĜ, with d =

O(log2 nε−2) and with error ε̂ = ε
O(logn)

, returning Ĥ

3. G← G̃ \ Ĝ and H ← H ∪ Ĥ

82

If at any point, we have |X| < |VC| log17 nε−7, then return H ∪G.

From [55], and the number of edges in G̃ is O(n log nε̂−2) with high probability. There-

fore, at least half of |X| have degree less than O(log2 nε̂−2) because otherwise the number

of edges in G̃ would be O(|X| log2 nε̂−2) = O(n log2 nε̂−2) by the assumption |X| ≥ |VC|.

This eliminates half the vertices in X with high probability for every run of the routine, so

the process can continue at most O(log n) times. From Theorem 1.9.1 each bucket of Ĥ will

have at most O(|VC|t log n) vertices with t = O(d2 log3 nε̂−3) and d = O(log2 nε̂−2), giv-

ing O(|VC| log15 nε−7). We run sparsification on G and VERTEXSPARSIFY on Ĝ O(log n)

times, so from the guarantees of Theorem 1.6.1 and property (3) of Theorem 1.9.1, the

weights are within a factor O(nO(logn)). Therefore, there are at most O(log2 n) buckets of

Ĥ , and at most O(|VC| log17 nε−7) vertices which has the appropriate size requirement.

Sparsification gives G ≈ε̂ G̃ with high probability, which is a stronger statement than

G ≈VCε̂ G̃. Theorem 1.9.1, which is still applicable for weight within a factor O(nO(logn)),

gives Ĝ ≈VCε̂ Ĥ with high probability. Therefore (G̃ \ Ĝ)∪ Ĥ ≈VC2ε̂ G with high probability.

Applying this inductively for O(log n) steps gives the desired relation by setting ε̂ = ε
O(logn)

as was done in the iterative routine above.

Sparsifying G requires O(m ·poly(log n, ε−1)) work [55]. Furthermore, in Section 1.9.2

we will show that VERTEXSPARSIFY can be maintained dynamically in worst-case update

time of O(poly(log n, ε−1)), so it’s static runtime must be O(m · poly(log n, ε−1)).

1.9.2 Dynamic Minimum Cut of Bipartite Graphs

Now that we have the full process of VERTEXSPARSIFY, we will give the dynamic algorithm

for maintaining a (1 + ε)-approximate minimum cut in amortized O(poly(log n, ε−1)) time.

The algorithm in Figure 1.14 will be analogous to the one given in Section 1.7, but will

replace sparsification of GVC with VERTEXSPARSIFY, improving the approximation by a

factor of 2.

83

1. Dynamically maintain a sparsified G, which we will denote G̃

2. Dynamically maintain a branch vertex cover, VC, on G̃, where we ensure s, t ∈ VC

3. Dynamically maintain a vertex sparsified G̃ using VC and XG̃ = V \ VC which we will
denote H

4. Every ε
2
∆H(ŜVH) dynamic steps, recompute ŜVH ⊂ VH , an approximate minimum s− t

cut on H , ignoring all degree zero vertices

Figure 1.14: Dynamic (1 + ε)-approximate Minimum s− t Cut

In this algorithm we run into the same issue of returning a cut of size O(n) in amortized

O(poly(log n, ε−1)) time, and will allow a similar querying scheme. Let VH be the non-

zero degree vertex set of H . Our vertex sparsification process ensures that VC ⊆ VH , so

for the computed ŜVH ⊂ VH , we will maintain the cut ŜVH ∩ VC ⊂ VC with s ∈ ŜVH .

For a vertex v ∈ VC, return v is with s iff v ∈ ŜVH ∩ VC, which takes O(1) time. For

a vertex x /∈ VC, note that all of N(x) must be in VC, and return that x is with s iff

w(x, ŜVH ∩ VC) = w(x)(ŜVH ∩ VC) in G̃, taking O(poly(log n, ε−1)) time to compute

w(x, ŜVH ∩ VC) and w(x)(ŜVH ∩ VC), by Corollary 1.6.2 and Corollary 1.7.4. Note that by

restricting to VC we will be able take advantage of the approximation guarantees of vertex

sparsification in the corollary below.

Corollary 1.9.9. The dynamic algorithm maintains a (1 + ε)-approximate minimum s− t

cut in G, and will only compute an approximate minimum s− t cut on H every O(εOPT)

dynamic steps, taking O(OPT · poly(log n, ε−1)) time each computation

Proof. G̃ = F1 ∪ . . . ∪ FK for some K = O(poly(log n, ε−1)) by Corollary 1.6.2, so

from Lemma 1.4.1 and Corollary 1.7.4, we know |VC| = O(OPT · poly(log n, ε−1))

and the degree of all vertices in XG̃ is O(poly(log n, ε−1)). From Corollary 1.6.2, the

weights of G̃ are in [1, O(n)], and so property (1) of Theorem 1.9.1 implies that H has

O(OPT · poly(log n, ε−1)) edges. Therefore, we can find a (1 + ε̂) approximate minimum

84

s− t cut in H , in O(OPT · poly(log n, ε−1)) time.

Assume ŜVH ⊂ VH is returned as a (1 + ε̂)-approximate minimum s− t cut in H , with

ε̂ = ε
O(1)

. Let ŜVC = ŜVH ∩ VC be its restriction to VC, and let

Ŝ = ŜV C ∪ {x ∈ XG̃ : w(x, ŜV C) = w(x)(ŜV C)}

be the extension of ŜVC onto G̃, which is the cut returned by our vertex querying scheme.

From Corollary 1.6.2 and Theorem 1.9.1, we have G ≈ε̂ G̃ and G̃ ≈VCε̂ H , respectively,

which gives

∆G(Ŝ) ≤ (1 + ε̂)∆G̃(Ŝ) = (1 + ε̂)∆G̃(ŜV C) ≤ (1 + ε̂)2∆H(ŜV C).

On the other hand, let S ⊂ V be the minimum s − t cut in G, and SV C ⊂ VC be its

restriction to VC. Using the fact that ∆G̃(SVC) is the weight of the minimal extension of

SVC in G̃, along with the approximations G ≈ε̂ G̃ and G̃ ≈VCε̂ H gives

∆G(S) ≥ (1− ε̂)∆G̃(S) ≥ (1− ε̂)∆G̃(SV C) ≥ (1− ε̂)2∆H(SV C).

The near-optimality of ŜVH on H and setting ŜVC = ŜVH ∩ VC, gives,

∆H(SV C) ≥ (1− ε̂)∆H(ŜVH) ≥ (1− ε̂)∆H(ŜVC)

Therefore, ∆G(Ŝ) ≤ (1 + ε̂)5∆G(S), and by choosing ε̂ = ε
O(1)

we maintain a (1 + ε
2
)-

approximate minimum s− t cut in G.

An approximate minimum s− t cut on H will be re-computed in ε
2
∆H(ŜVH) dynamic

steps. OPT = ∆G(S) ≤ (1 + ε)∆H(ŜVH), so ∆H(ŜVH) = O(OPT)

All that is left to be shown is that data structures can be maintained inO(poly(log n, ε−1))

time per dynamic update. As a result of Corollary 1.6.2, it suffices to show the following

85

Theorem 1.9.10. For each addition/deletion of an edge in G̃, maintaining Ĝ, H , and VC

takes O(poly(log n, ε−1)) time.

As in Section 1.7.3, most of the necessary analysis for Theorem 1.9.10 will follow from

the fact that all x ∈ XG̃ have degree O(poly(log n, ε−1)), and the only substantial changes

made to the data structures in one dynamic step, are done within the neighborhood of some

x ∈ XG̃. We will also assume all of the dynamic data structure analysis of Section 1.7.3

with regards to maintaining a corresponding GVC of some G.

In the rest of this section, we will first examine dynamically maintaining the pre-

processing routine, particularly when vertices are moved in and out of the vertex cover.

Then we will consider dynamically maintaining our vertex sparsification routine. Most of

the time complexity analysis will follow from Section 1.7.3, and the only tricky part will be

ensuring that dynamic changes do not multiply along iterations of the sparsification routine.

Maintaining Ĝ As with the multi-graph GVC , for Ĝ \XG̃, an edge e∅ denotes an edge

originally in G̃ and ex denotes an edge that was moved into Ĝ \ XG̃ from Nx. For each

x ∈ XG̃, let xmax denote the vertex such that (x, xmax) has the maximum weight in Nx. Let

bucket(x) be the i ∈ [L] such that w(x, xmax) ∈ [2i−1, 2i]. We can use 1 as our scalar here

because all weights of G are 1, so from Corollary 1.6.2, all weights of G̃ are in [1, O(n)].

In order to maintain each xmax, we will assume that the data structure of G̃ is such that the

adjacency list of each x is sorted by edge weight. Consequently, edge insertions/deletions in

G̃ will require O(log n) time.

Maintaining each bucket for an edge insertion/deletion in G̃ will be analogous to main-

taining GVC in Section 1.7.3. We will first show that moving a vertex in and out of XG̃

can be done in O(poly(log n, ε−1)) time, then give the overall update process, which will

primarily just be composed of these two operations.

Lemma 1.9.11. If v is not in VC, then running REMOVEXG(Ĝ,XG̃, v) will output Ĝ with

v ∈ VC in O(degv log n) time, where degv is the degree of v in G̃

86

REMOVEXG(G̃,XG̃, v)

1. Delete all edges ev incident to vmax from Ĝ \XG̃

2. Delete all edges incident to v from Ĝbucket(v)

3. For all edges e incident to v in G̃, add e∅ into Ĝ \XG̃

Figure 1.15: Removing a Vertex from XG̃

Proof. Costs of the three steps are:

1. Deleting all edges ev incident to vmax from Ĝ \XG̃ takes O(log n) time per deletion

and O(degv) deletions.

2. Deleting all edges incident to v from Ĝbucket(v) takes O(log n) time per deletion and

O(degv) deletions.

3. Adding e∅ into Ĝ \XG̃ takes O(log n) time and is done for all edges e incident to v

in G̃, so O(degv) times

If v is not in VC, then v cannot be incident to any vertices in XG̃. Therefore, placing

v in VC implies that v cannot be incident to any edges in all Ĝk and no edges ev exist in

Ĝ\XG̃. REMOVEXG(Ĝ,XG̃, v) performs exactly these removals and inserts all necessary

e∅ incident to v into Ĝ \XG̃

Lemma 1.9.12. If v is not in VC, but was placed in VC for Ĝ, then INSERTXG(Ĝ,XG̃, v)

will output Ĝ with v /∈ VC in O(degv log n) time, where degv is the degree of v in G̃

Proof. Costs of the two steps are:

1. Deleting all edges e∅ incident to v in Ĝ \XG̃ takes O(log n) time per deletion and

O(degv) deletions.

87

INSERTXG(Ĝ,XG̃, v)

1. Delete all edges e∅ incident to v in Ĝ \XG̃

2. For all edges e = (v, w) ∈ G̃ incident to v

(a) If w(v, w) < ε
d
w(v, vmax): insert (w, vmax)v into Ĝ \XG̃

(b) Otherwise: insert (v, w) into Ĝbucket(v)

Figure 1.16: Inserting a Vertex into XG̃

2. Checking if w(v, w) < ε
d
w(v, vmax) and inserting (w, vmax)v into Ĝ \X or inserting

(v, w) into Ĝbucket(v) takes O(log n) time. This is done for all edges e = (v, w) ∈ G̃

incident to v, so O(degv) times

If v is not in VC, but was placed in VC for Ĝ, then only edges e∅ are incident to v in

Ĝ. Removing v from VC requires deleting all of these edges. Further, all edges e in Nv of

sufficiently small weight must be moved to Ĝ \XG̃ as ev, and the rest of Nv must be placed

in the appropriate Ĝi. INSERTXG(Ĝ,XG̃, v) performs exactly these operations.

The full dynamic update process of Ĝ for each e = (u, v) insertion/deletion in G̃ will

then be as follows.

1. For u and v, REMOVEXG(Ĝ,XG̃, v) if v /∈ VC

2. Update VC and G̃ as done in section 5

3. Add/delete (u, v)∅ from Ĝ \XG̃

4. Update umax and vmax, which will simply require looking at the first edge incident to

u and v in G̃, as the list is sorted by weight

5. For u and v, INSERTXG(Ĝ,XG̃, v) if v /∈ VC

88

Lemma 1.9.13. For each edge addition/deletion in G̃, maintaining Ĝ = Ĝ \XG̃ ∪ Ĝ1 ∪

. . . ∪ ĜL takes O(poly(log n, ε−1)) time.

Proof. Note that INSERTXG(Ĝ,XG̃, v) and REMOVEXG(Ĝ,XG̃, v) are only performed

if v /∈ VC, which implies that the degree of v in G̃ is O(poly(log n, ε−1)). Updating VC

and G̃ is known to take O(poly(log n, ε−1)) time. Steps 3 and 4 clearly take O(log n) time.

Therefore, the full runtime of this update process is O(poly(log n, ε−1)).

Maintaining BoundedVertexSparsify We will dynamically sparsify the multi-graph Ĝ \

XG̃ as per usual, so each edge insertion/deletion requires O(poly(log n, ε−1)) update time

for Ĝ \XG̃. Accordingly, we will only consider maintaining the necessary data structures

for BOUNDEDVERTEXSPARSIFY of each Ĝk, which we will simply denote as G with

bipartition (VC,XG).

Alterations to G are made by the dynamic update process in the previous section, which

implies that we only need to consider the following changes to G. Add/Delete a vertex x

from X , and add/delete Nx from G. Add/Delete an edge within Nx for some x ∈ X . If an

edge is added/deleted from Nx, we will simply delete Nx from G, and then add Nx with the

edge added/deleted to G. Accordingly, in order to establish that our data structures can be

maintained in O(poly(log n, ε−1)) update time, we just need to show that adding/deleting

any Nx from G can be done in O(poly(log n, ε−1)) update time.

For each level i of computing a light vertex set and running SAMPLE, we need to

maintain Gi, Gi
VC , XGlight

i and all Fi,j in Fi. The data structures for Gi and Gi
VC will be as

in Subsection 1.7.3. Assume that the data structure of each Fi,j is such that we can search

for edges in O(log n)-time, either by search trees or linked lists with back pointers (see

e.g. [78], Chapters 10.2, 10.3, and 13). The data structure each XGlight
i will just be a list of

vertices with insertion/deletion taking O(log n) time.

We will still assume edge additions/deletions in Gi, Gi
VC can be maintained in time

89

INSERTSTAR(Gi, XGi, XG
light
i , Nx)

1. Update Gi ← Gi ∪Nx, XGi ← XGi ∪ x, and insert Kx into Gi
VC

2. For the first ex ∈ Kx that can be added to some Fi,j: Update Fi,j ← Fi,j ∪ ex, XGlight
i ←

XGlight
i ∪ x, and remove Kx from Gi

VC

3. If no ex ∈ Kx can be added to any Fi,j , with probability 1
2
: run

INSERTSTAR(Gi+1, XGi+1, XG
light
i+1 , 2Nx)

Figure 1.17: Add Nx to Gi

O(poly(log n, ε−1)), as was shown in Subsection 1.7.3. Most of the time complexity analysis

will then follow from this, and we just need to establish that the additions/deletions will not

multiply as we move down the pipeline. This will ultimately follow from our construction

of the t-clique forests.

Adding some Nx to Gi The algorithm in Figure 1.17 will add a vertex x to Gi, along with

the corresponding Nx.

Lemma 1.9.14. INSERTSTAR(Gi, XGi, XG
light
i , Nx) adds Nx to Gi while maintaining

t-clique forest Fi

Proof. If some ex ∈ Kx can be added to some Fi,j , then by construction, Fi ∩Kx = ex and

x ∈ XGlight
i . Therefore, Fi is still a t-clique forest, and x ∈ XGlight

i implies x /∈ XGi+1,

so it is only necessary to add ex to Fi,j and x to XGlight
i .

If no ex ∈ Kx can be added to any Fi,j , then Fi ∩Kx = ∅ and x ∈ XGheavy
i . Therefore,

Fi is still a t-clique forest, and x ∈ XGheavy
i implies a coin must be flipped to determine

whether x is added to XGi+1 and 2Nx is added to Gi+1.

Furthermore, we still maintain Gi
VC =

⋃
x∈XGheavyi

Kx

90

REMOVESTAR(Gi, XGi, XG
light
i , Nx)

1. Update Gi ← Gi \Nx, XGi ← XGi \ x, and remove Kx from Gi
VC

2. If some ex is in some Fi,j

(a) Update Fi,j ← Fi,j \ ex, XGlight
i ← XGlight

i \ x
(b) If some edge fy ∈ Gi

VC can be added to Fi,j

• Update Fi,j ← Fi,j ∪ fy, XGlight
i ← XGlight

i ∪ y, and remove Ky from Gi
VC

• run REMOVESTAR(Gi+1, XGi+1, XG
light
i+1 , 2Ny) if y ∈ XGi+1

3. If no ex ∈ Kx is in any Fi,j , run REMOVESTAR(Gi+1, XGi+1, XG
light
i+1 , 2Nx) if x ∈

XGi+1

Figure 1.18: Remove Nx from Gi

Deleting some Nx from Gi The algorithm in Figure 1.18 will delete a vertex x from Gi,

along with the corresponding Nx.

Lemma 1.9.15. REMOVESTAR(Gi, XGi, XG
light
i , Nx) removes Nx from Gi while main-

taining t-clique forest Fi

Proof. If we had Fi∩Kx = ex, then xwas inXGlight
i , so ex must be removed from some Fi,j

and x must be removed from XGlight
i . Fi was a t-clique forest and Gi

VC =
⋃
x∈XGheavyi

Kx

(as was noted), implying that multiple edges in Gi
VC cannot be added to Fi,j without creating

a cycle. If fy is added to Fi,j then y is added to XGlight
i and Fi ∩Ky = fy. Therefore, Fi

is still a t-clique forest, and because y ∈ XGlight
i , it is now necessary to remove 2Ny from

Gi+1 if y ∈ XGi+1.

If we have Fi ∩ Kx = ∅, then x ∈ XGheavy
i and Fi is still a t-clique forest. Further

XGi+1 ⊆ XGi, so it is necessary to remove 2Nx from Gi+1 if x ∈ XGi+1.

Furthermore, we still maintain Gi
VC =

⋃
x∈XGheavyi

Kx

91

Lemma 1.9.16. For any addition/deletion of some x from XG0 and Nx from G0, maintain-

ing H takes O(t · poly(log n, ε−1)) time

Proof. Checking each forest for an edge insertion/deletion takes O(t log n) time. It follows

almost immediately from the analysis in Subsection 1.7.3 that the rest of the computation in

one iteration of INSERTSTAR and REMOVESTAR takes O(poly(log n, ε−1)) time. Further-

more, both can make at most one recursive call to themselves, so adding/deleting Nx from

G0 takes O(l · t · poly(log n, ε−1)) time where l = O(log n).

Proof of Theorem 1.9.10 : Any edge insertion/deletion in G̃ requires O(poly(log n, ε−1))

update time for Ĝ and VC from Lemma 1.9.13. Therefore, there are at mostO(poly(log n, ε−1))

additions/deletions of someNx to some Ĝi, which will requireO(t ·poly(log n, ε−1)) update

time from Lemma 1.9.16, where t = O(poly(log n, ε−1)). Thus, the full dynamic update

process of all data structures takes O(poly(log n, ε−1)) time per dynamic update of G̃.

1.10 Omitted Proofs of Section 1.5.2

In the following we give the omitted proofs of section Section 1.5.2, which mainly use

standard arguments.

Lemma 1.5.5. The outputH of LIGHT-SPECTRAL-SPARSIFY is a (1±ε)-spectral sparsifier

with probability at least 1−n−(c+1) for any input graph G that is independent of the random

choices of the algorithm.

Proof. Let

R =
ε2

3(c+ 1) lnn
.

For every edge e ∈ G \B, let Xe be the random variable that is 4wG(e) · Le with probability

92

1/4 and 0 with probability 3/4. We further set LB(j) for every 1 ≤ j ≤ d1/Re as follows:

L
B

(j)
i

=


R · LBi if 1 ≤ j ≤ b1/Rc

LBi − b1/RcR · LBi if j = d1/Re

Note that this definition simply guarantees that
∑d1/Re

j=1 LB(j) = LBi and L
B

(j)
i
≤ R · LBi

for every 1 ≤ j ≤ d1/Re. We now want to apply Theorem 1.5.4 with the random variables

Y =
∑

e∈G\BXe +
∑d1/Re

j=1 LB(j) and Z = LG. Observe that

E [Y] = E

 ∑
e∈G\B

Xe +

d1/Re∑
j=1

LB(j)


=

∑
e∈G\B

E [Xe] +

d1/Re∑
j=1

LB(j)

=
∑
e∈G\B

Le + LB = LG = Z .

For every edge e ∈ G \B, using Lemma 1.5.3, we have

Xe � 4wG(e) · Le �
α

t
· LG ≤ R · LG .

Furthermore, using B � G, we have

L
B

(j)
i
≤ R · LBi � R · LGi−1

for every 1 ≤ j ≤ d1/Re. Thus, the preconditions of Theorem 1.5.4 are satisfied. We

conclude that we have LGH � (1 + ε)LG with probability at least

n · exp(−ε2/2R) ≥ n · exp((c+ 1) lnn) = 1/nc+1 .

A symmetric argument can be used for (1− ε)LG � LH .

93

Lemma 1.5.6. The output H of algorithm SPECTRAL-SPARSIFY is a (1 ± ε)-spectral

sparsifier with probability at least 1− 1/nc+1 for any input graph G that is independent of

the random choices of the algorithm.

Proof. Note that since H =
⋃k
i=1Bi ∪Gk we have

LH = LGk +
k∑
i=1

LBi .

We now prove by induction on j that LGk +
∑k

i=k−j+1 LBi � (1 + ε/(2k))jLGk−j . This

claim is trivially true for j = 0. For 1 ≤ j ≤ k, we use the induction hypothesis and

Lemma 1.5.5, which both hold with high probability, to get

LGk +
k∑

i=k−j+1

LBi = LGk +
k∑

i=k−j+2

LBi + LBk−j+1

� (1 + ε/(2k))j−1LGk−j+1
+ LBk−j+1

� (1 + ε/(2k))j−1(LGk−j+1
+ LBk−j+1

)

� (1 + ε/(2k))jLGk−j .

We now have LH � (1 + ε/(2k))kLG with high probability by setting j = k. Using

symmetric arguments we can prove (1− ε/(2k))kLG � LH . Since (1− ε/(2k))k ≥ 1− ε

and (1 + ε/(2k))k ≤ 1 + ε, the claim follows.

Lemma 1.5.7. With probability at least 1− 2n−c, the number of iterations before algorithm

SPECTRAL-SPARSIFY terminates is

min{dlog ρe, dlogm/((c+ 1) log n)e}.

94

Moreover the size of H is

O

(∑
1≤j≤i

|Bi|+m/ρ+ c log n

)
,

and the size of the third output of the graph is at most max{O(c log n), O(m/ρ)}.

Proof. We will show that, with probability 1− 2n−c+1, every iteration j computes a graph

Gj+1 with half the number of edges in Gj . By a union bound, the probability that this fails

to be true for any j < n is at most 2n−c. This implies all claims.

We use the following standard Chernoff bound: Let X =
∑N

k=1 Xk, where Xk = 1

with probability pk and Xk = 0 with probability 1 − pk, and all Xk are independent. Let

µ = E [X] =
∑N

k=1 pk. Then P [X ≥ (1 + δ)µ] ≤ exp(− δ2

2+δ
µ) for all δ > 0.

We apply this bound on the output of LIGHT-SPECTRAL-SPARSIFY for every j. Con-

cretely, we assign a random variable to each edge e of Gj , with Xe = 1 if and only if

e is added to Gj+1. Then E [X] = N/4. By construction, the number of edges in Gj is

N ≥ (c+ 1) log n. Applying the Chernoff bound with δ = 2 we get

P [X ≥ 2N] ≤ 1

eN/4
≤ 1

e((c+1) logn)/4
=

1

e1/4nc+1
≤ 1

2nc+1
.

1.11 Guarantees of Combinatorial Reductions

We show some of the structural results necessary for the reductions in Sections 1.7, 1.8, and

1.9. We first show the guarantees of Kx:

Proof. (of Theorem 1.7.9) For any x ∈ X and SVC ⊂ VC, let wKx(SVC) denote the weight

of cutting SVC in Kx. Consequently, for any SVC ⊂ VC, ∆GVC (SVC) = ∆G\X(SVC) +∑
x∈X wKx(SVC), and it suffices to show that for all x ∈ X , 1

2
w(x)(SVC) ≤ wKx(SVC) ≤

w(x)(SVC).

95

Lemma 1.11.1. For any x ∈ X and S ⊂ VC, we have 1
2
wKx(S) ≤ w(x)(S) ≤ wKx(S)

Proof. Without loss of generality, assumew(x, S) ≤ w(x, VC\S), sow(x)(S) = w(x, S) =∑
u∈S∩N(x) w(x, u)

wKx(S) =
∑

u∈S∩N(x)

∑
v∈(VC\S)∩N(x)

w(x, u)w(x, v)∑
i∈N(x) w(x, i)

=
∑

u∈S∩N(x)

w(x, u)
w(x, VC \ S)∑
i∈N(x)w(x, i)

where by definition
∑

i∈N(x)w(x, i) = w(x, S) + w(x, VC \ S) and so by assumption

1

2
≤ w(x, VC \ S)∑

i∈N(x) w(x, i)
≤ 1

Proof. (of Lemma 1.7.10) Each edge in (u, v)x ∈ GVC has weight

w(u,v)x =
w(x, v)w(x, u)∑
i∈N(x) w(x, i)

,w(x, v)w(x, u) ≥ γ2 and
∑

i∈N(x) w(x,i) ≤ γUd. Also, we further note that
∑

i∈N(x) w(x, i) ≥

max{w(x, v)w(x, u)}, implying

w(x, v)w(x, u)∑
i∈N(x) w(x, i)

≤ max{w(x, v)w(x, u)}2∑
i∈N(x) w(x, i)

≤ max{w(x, v)w(x, u)}

Next we bound the size of the vertex cover formed by removing all leaves, compared to

the optimum.

Proof. (of Lemma 1.7.2) From [77, 79], given a tree T0 with root r0, leaves l(T0), and

parents of the leaves p(T0), the greedy algorithm of taking p(T0) and iterating on T1 =

T0 \ {l(T0) ∪ p(T0)}, with r1 = r0 or r1 arbitrary if r0 ∈ p(T0), will give a minimum

96

vertex cover of T0. If T1 is a forest, iterate on each tree of the forest, where r0 is the root of

whichever tree it is contained in, and the remaining trees are arbitrarily rooted. Assume that

if Ti = ri for some i, then p(Ti) = ∅.

Set T = T0 and r = r0, and suppose T0 can be decomposed into T0 . . . Td as above.

Therefore,
⋃d
i=0 p(Ti) is a minimum vertex cover, and VC is p(Td) ∪

⋃d−1
i=0 (p(Ti) ∪ l(Ti+1))

By construction, all p(Ti) and l(Tj) are disjoint, and we claim that |p(Ti)| ≥ |l(Ti+1)| for

all i. Assume Ti is a tree, and this will clearly still hold if Ti is a collection of disjoint trees.

Each vertex in l(Ti+1) was not a leaf in Ti and is now a leaf in Ti+1. Further, ri /∈ l(Ti+1)

because if ri ∈ Ti+1, then ri+1 = ri. Therefore, each vertex in l(Ti+1) must have had its

degree reduced by removing l(Ti) and p(Ti). A vertex in l(Ti+1) cannot be connected to

a vertex in l(Ti) because then it would be in p(Ti). Consequently, it must be connected

to some vertex in p(Ti), and if |p(Ti)| < |l(Ti+1)|, then two vertices in l(Ti+1) must be

connected to the same vertex in p(Ti), creating a cycle in Ti, giving a contradiction. Thus

|VC| = p(Td) +
d−1∑
i=0

(|p(Ti)|+ |l(Ti+1)|) ≤ p(Td) +
d−1∑
i=0

2|p(Ti)| ≤ 2
d∑
i=0

|p(Ti)| = 2|MVC|

97

CHAPTER 2

DETERMINANT-PRESERVING SPARSIFICATION OF SDDM MATRICES

This was joint work with John Peebles, Richard Peng, and Anup B. Rao.

2.1 Abstract

We show variants of spectral sparsification routines can preserve the total spanning tree

counts of graphs, which by Kirchhoff’s matrix-tree theorem, is equivalent to determinant of a

graph Laplacian minor, or equivalently, of any SDDM matrix. Our analyses utilize this com-

binatorial connection to bridge between statistical leverage scores / effective resistances and

the analysis of random graphs by [Janson, Combinatorics, Probability and Computing ‘94].

This leads to a routine that in quadratic time, sparsifies a graph down to about n1.5 edges

in ways that preserve both the determinant and the distribution of spanning trees (provided

the sparsified graph is viewed as a random object).

Extending this algorithm to work with Schur complements and approximate Cholesky

factorizations leads to algorithms for counting and sampling spanning trees which are

nearly optimal for dense graphs. Specifically, we give an algorithm that computes a (1± δ)

approximation to the determinant of any SDDM matrix with constant probability in about

n2δ−2 time. This is the first routine for graphs that outperforms general-purpose routines for

computing determinants of arbitrary matrices. We also give an algorithm that generates in

about n2δ−2 time a spanning tree of a weighted undirected graph from a distribution with

total variation distance of δ from the w-uniform distribution .

98

2.2 Introduction

The determinant of a matrix is a fundamental quantity in numerical algorithms due to its

connection to the rank of the matrix and its interpretation as the volume of the ellipsoid

corresponding of the matrix. For graph Laplacians, which are at the core of spectral graph

theory and spectral algorithms, the matrix-tree theorem gives that the determinant of the

minor obtained by removing one row and the corresponding column equals to the total

weight of all the spanning trees in the graph [80] . Formally on a weighted graph G with n

vertices we have:

det
(
LG1:n−1,1:n−1

)
= TG,

where LG is the graph Laplacian of G and and TG is the total weight of all the spanning

trees of G. As the all-ones vector is in the null space of LG, we need to drop its last row

and column and work with LG1:n−1,1:n−1, which is precisely the definition of SDDM matrices

in numerical analysis [40]. The study of random spanning trees builds directly upon this

connection between tree counts and determinants, and also plays an important role in graph

theory [81, 82, 64].

While there has been much progress in the development of faster spectral algorithms, the

estimation of determinants encapsulates many shortcomings of existing techniques. Many

of the nearly linear time algorithms rely on sparsification procedures that remove edges

from a graph while provably preserving the Laplacian matrix as an operator, and in turn,

crucial algorithmic quantities such as cut sizes, Rayleigh quotients, and eigenvalues. The

determinant of a matrix on the other hand is the product of all of its eigenvalues. As a

result, a worst case guarantee of 1± (ε/n) per eigenvalue is needed to obtain a good overall

approximation, and this in turn leads to additional factors of n in the number of edges needed

in the sparse approximate.

Due to this amplification of error by a factor of n, previous works on numerically

approximating determinants without dense-matrix multiplications [83, 84, 85] usually focus

99

on the log-determinant, and (under a nearly-linear running time) give errors of additive εn

in the log determinant estimate, or a multiplicative error of exp(εn) for the determinant.

The lack of a sparsification procedure also led to the running time of random spanning tree

sampling algorithms to be limited by the sizes of the dense graphs generated in intermediate

steps [86, 87, 88].

In this paper, we show that a slight variant of spectral sparsification preserves determinant

approximations to a much higher accuracy than applying the guarantees to individual edges.

Specifically, we show that sampling ω(n1.5) edges from a distribution given by leverage

scores, or weight times effective resistances, produces a sparser graph whose determinant

approximates that of the original graph. Furthermore, by treating the sparsifier itself as

a random object, we can show that the spanning tree distribution produced by sampling

a random tree from a random sparsifier is close to the spanning tree distribution in the

original graph in total variation distance. Combining extensions of these algorithms with

sparsification based algorithms for graph Laplacians then leads to quadratic time algorithms

for counting and sampling random spanning trees, which are nearly optimal for dense graphs

with m = Θ(n2).

This determinant-preserving sparsification phenomenon is surprising in several aspects:

because we can also show—both experimentally and mathematically—that on the complete

graph, about n1.5 edges are necessary to preserve the determinant, this is one of the first

graph sparsification phenomenons that requires the number of edges to be between >> n.

The proof of correctness of this procedure also hinges upon combinatorial arguments based

on the matrix-tree theorem in ways motivated by a result for Janson for complete graphs [4],

instead of the more common matrix-concentration bound based proofs [55, 57, 89, 90].

Furthermore, this algorithm appears far more delicate than spectral sparsification: it requires

global control on the number of samples, high quality estimates of resistances (which is the

running time bottleneck in Theorem 2.5.1 below), and only holds with constant probability.

Nonetheless, the use of this procedure into our determinant estimation and spanning tree

100

generation algorithms still demonstrates that it can serve as a useful algorithmic tool.

2.2.1 Our Results

We will use G = (V,E,w) to denote weighted multigraphs, and du
def
=
∑

e:e3uwe to denote

the weighted degree of vertex u. The weight of a spanning tree in a weighed undirected

multigraph is:

w (T)
def
=
∏
e∈T

we.

We will use TG to denote the total weight of trees, TG
def
=
∑

T∈T w(T). Our key

sparsification result can be described by the following theorem:

Theorem 2.2.1. Given any graph G and any parameter δ, we can compute in O(n2δ−2)

time a graph H with O(n1.5δ−2) edges such that with constant probability we have

(1− δ) TG ≤ TH ≤ (1 + δ) TG.

This implies that graphs can be sparsified in a manner that preserves the determinant,

albeit to a density that is not nearly-linear in n.

We show how to make our sparsification routine to errors in estimating leverage scores,

and how our scheme can be adapted to implicitly sparsify dense objects that we do not have

explicit access to. In particular, we utilize tools such as rejection sampling and high quality

effective resistance estimation via projections to extend this routine to give determinant-

preserving sparsification algorithms for Schur complements, which are intermediate states

of Gaussian elimination on graphs, using ideas from the sparsification of random walk

polynomials.

We use these extensions of our routine to obtain a variety of algorithms built around our

graph sparsifiers. Our two main algorithmic applications are as follows. We achieve the

first algorithm for estimating the determinant of an SDDM matrix that is faster than general

101

purpose algorithms for the matrix determinant problem. Since the determinant of an SDDM

m corresponds to the determinant of a graph Laplacian with one row/column removed.

Theorem 2.2.2. Given an SDDM matrix M , there is a routine DETAPPROX which in

Õ (n2δ−2) time outputs D such that D = (1± δ) det(M) with high probability

A crucial thing to note which distinguishes the above guarantee from most other similar

results is that we give a multiplicative approximation of the det(M). This is much stronger

than giving a multiplicative approximation of log det(M),which is what other work typically

tries to achieve.

The sparsifiers we construct will also approximately preserve the spanning tree distri-

bution, which we leverage to yield a faster algorithm for sampling random spanning trees.

Our new algorithm improves upon the current fastest algorithm for general weighted graphs

when one wishes to achieve constant—or slightly sub-constant—total variation distance.

Theorem 2.2.3. Given an undirected, weighted graph G = (V,E,w), there is a routine

APPROXTREE which in expected time Õ (n2δ−2) outputs a random spanning tree from a

distribution that has total variation distance ≤ δ from the w-uniform distribution on G.

2.2.2 Prior Work

Graph Sparsification

In the most general sense, a graph sparsification procedure is a method for taking a potentially

dense graph and returning a sparse graph called a sparsifier that approximately still has

many of the same properties of the original graph. It was introduced in [91] for preserving

properties related to minimum spanning trees, edge connectivity, and related problems. [92]

defined the notion of cut sparsification in which one produces a graph whose cut sizes

approximate those in the original graph. [93] defined the more general notion of spectral

sparsification which requires that the two graphs’ Laplacian matrices approximate each

102

other as quadratic forms.1 In particular, this spectral sparsification samples Õ(n/ε2) edges

from the original graph, yielding a graph with Õ(n/ε2) whose quadratic forms—and hence,

eigenvalues—approximate each other within a factor of (1 ± ε). This implies that their

determinants approximate each other within (1± ε)n. This is not useful from the perspective

of preserving the determinant: since one would need to samples Ω(n3) edges to get a

constant factor approximation, one could instead exactly compute the determinant or sample

spanning trees using exact algorithms with this runtime.

All of the above results on sparsification are for undirected graphs. More recently, [94]

has defined a useful notion of sparsification for directed graphs along with a nearly linear

time algorithm for constructing sparsifiers under this notion of sparsification.

Determinant Estimation

Exactly calculating the the determinant of an arbitrary matrix is known to be equivalent to

matrix multiplication [95]. For approximately computing the log of the determinant, [96]

uses the identity log(det(A)) = tr(log(B))+tr(log(B−1A)) to do this whenever one can find

a matrix B such that the tr(log(B)) = log(det(B)) and tr(log(B−1A)) = log(det(B−1A)

can both be quickly approximated.2

For the special case of approximating the log determinant of an SDD matrix, [97]

applies this same identity recursively where the B matrices are a sequence of ultrasparsifiers

inspired by the recursive preconditioning framework of [40]. They obtain a running time of

O(m(n−1ε−2 + ε−1)polylog(nκ/ε)) for estimating the log determinant to additive error ε.

[98] estimates the log determinant of arbitrary positive definite matrices, but has runtime

that depends linearly on the condition number of the matrix.

In contrast, our work is the first we know of that gives a multiplicative approximation of

the determinant itself, rather than its log. Despite achieving a much stronger approximation

1If two graphs Laplacian matrices approximate each other as quadratic forms then their cut sizes also
approximate each other.

2Specifically, they take B as the diagonal of A and prove sufficient conditions for when the log determinant
of B−1A can be quickly approximated with this choice of B.

103

guarantee, our algorithm has essentially the same runtime as that of [97] when the graph is

dense. Note also that if one wishes to conduct an “apples to apples” comparison by setting

their value of ε small enough in order to match our approximation guarantee, their algorithm

would only achieve a runtime bound of O(mnδ−2polylog(nκ/ε)), which is never better than

our runtime and can be as bad as a factor of n worse.3

Sampling Spanning Trees

Previous works on sampling random spanning trees are a combination of two ideas: that

they could be generated using random walks, and that they could be mapped from a random

integer via Kirchoff’s matrix tree theorem. The former leads to running times of the form

O(nm) [99, 100], while the latter approach[101, 102, 103, 104] led to routines that run in

O(nω) time, where ω ≈ 2.373 is the matrix multiplication exponent [105].

These approaches have been combined in algorithms by Kelner and Madry [86] and

Madry, Straszak and Tarnawski [87]. These algorithms are based on simulating the walk

more efficiently on parts of the graphs, and combining this with graph decompositions

to handle the more expensive portions of the walks globally. Due to the connection with

random-walk based spanning tree sampling algorithms, these routines often have inherent

dependencies on the edge weights. Furthermore, on dense graphs their running times are

still worse than the matrix-multiplication time routines.

However, recent work after the publication of this result improved upon these techniques

to simulate random walks with clever ball growing techniques and amortization of the

costs to achieve an almost linear random sampling procedure for weighted graphs [106].

Additionally, this random sampling does not incur any error in the distribution. While this

result does supersede our result on spanning tree generation, it uses substantially different

techniques and does not apply to determinant sparsification or computation.

3This simplification of their runtime is using the substitution ε = δ/n which gives roughly (1 ± δ)
multiplicative error in estimating the determinant for their algorithm. This simplification is also assuming
δ ≤ 1, which is the only regime we analyze our algorithm in and thus the only regime in which we can
compare the two.

104

When this work was published, the previous best running time for generating a random

spanning tree from a weighted graph was Õ
(
n5/3m1/3 log2 (1/δ)

)
in [88]. It works by

combining a recursive procedure similar to those used in the more recent O(nω) time

algorithms [104] with spectral sparsification ideas, achieving a runtime of Õ(n5/3m13).

When m = Θ (n2) , the algorithm in [88] takes Õ
(
n7/3

)
time to produce a tree from a

distribution that is o(1) away from the w-uniform distribution, which is slower by nearly a

n1/3 factor than the algorithm given in this paper.

Our algorithm can be viewed as a natural extension of the sparsification0-based approach

from [88]: instead of preserving the probability of a single edge being chosen in a random

spanning tree, we instead aim to preserve the entire distribution over spanning trees, with the

sparsifier itself also considered as a random variable. This allow us to significantly reduce

the sizes of intermediate graphs, but at the cost of a higher total variation distance in the

spanning tree distributions. This characterization of a random spanning tree is not present

in any of the previous works, and we believe it is an interesting direction to combine our

sparsification procedure with the other algorithms.

2.2.3 Organization

Section 2.3 will introduce the necessary notation and some of the previously known funda-

mental results regarding the mathematical objects that we work with throughout the paper.

Section 2.4 will give a high-level sketch of our primary results and concentration bounds for

total tree weight under specific sampling schemes. Section 2.5 leverages these concentration

bounds to give a quadratic time sparsification procedure (down to Ω(n1.5) edges) for general

graphs. Section 2.6 uses random walk connections to extend our sparsification procedure to

the Schur complement of a graph. Section 2.7 utilizes the previous routines to achieve a

quadratic time algorithm for computing the determinant of SDDM matrices. Section 2.8

combines our results and modifies previously known routines to give a quadratic time

algorithm for sampling random spanning trees with low total variation distance. Section 2.9

105

extends our concentration bounds to random samplings where an arbitrary tree is fixed,

and is necessary for the error accounting of our random spanning tree sampling algorithm.

Section 2.10 proves the total variation distance bounds given for our random sampling tree

algorithm.

2.3 Background

2.3.1 Graphs, Matrices, and Random Spanning Trees

The goal of generating a random spanning tree is to pick tree T with probability proportional

to its weight, which we formalize in the following definition.

Definition 2.3.1 (w-uniform distribution on trees). Let PrGT (·) be a probability distribution

on TG such that

PrGT (T = T0) =
Πe∈T0we
TG

.

We refer to PrGT (·) as the w-uniform distribution on the trees of G.

When the graph G is unweighted, this corresponds to the uniform distribution on TG.

We refer to PrGT (·) as the w-uniform distribution on TG. When the graph G is un-

weighted, this corresponds to the uniform distribution on TG. Furthermore, as we will

manipulate the probability of a particular tree being chosen extensively, we will denote such

probabilities with PrG(T̂), aka:

PrG
(
T̂
)

def
= PrGT

(
T = T̂

)
.

The Laplacian of a graph G = (V,E,w) is an n× n matrix specified by:

Luv
def
=


du if u = v

−wuv if u 6= v

106

We will write LG when we wish to indicate which graph G that the Laplacian corresponds

to and L when the context is clear. When the graph has multi-edges, we define wuv as

the sum of weights of all the edges e that go between vertices u, v. Laplacians are natural

objects to consider when dealing with random spanning trees due to the matrix tree theorem,

which states that the determinant of L with any row/column corresponding to some vertex

removed is the total weight of spanning trees. We denote this removal of a vertex u as L−u.

As the index of vertex removed does not affect the result, we will usually work with L−n.

Furthermore, we will use det (M) to denote the determinant of a matrix. As we will work

mostly with graph Laplacians, it is also useful for us to define the ‘positive determinant’

det+, where we remove the last row and column. Using this notation, the matrix tree

theorem can be stated as:

TG = det(LG−n) = det+

(
LG
)
.

We measure the distance between two probability distributions by total variation distance.

Definition 2.3.2. Given two probability distributions p and q on the same index set Ω, the

total variation distance between p and q is given by

dTV (p, q)
def
=

1

2

∑
x∈Ω

|p(x)− q(x)| .

Let G = (V,E,w) be a graph and e ∈ E an edge. We write G/e to denote the graph

obtained by contracting the edge e, i.e., identifying the two endpoints of e and deleting any

self loops formed in the resulting graph. We write G\e to denote the graph obtained by

deleting the edge e from G. We extend these definitions to G/F and G\F for F ⊆ E to

refer to the graph obtained by contracting all the edges in F and deleting all the edges in F ,

respectively.

Also, for a subset of vertices V1, we use G[V1] to denote the graph induced on the vertex

of V1. letting G(V1) be the edges associated with L[V1,V1] in the Schur complement.

107

2.3.2 Effective Resistances and Leverage Scores

The matrix tree theorem also gives connections to another important algebraic quantity: the

effective resistance between two vertices. This quantity is formally given asReff (u, v)
def
=

χᵀ
uvL

−1χuv where χuv is the indicator vector with 1 at u, −1 at v, and 0 everywhere else.

Via the adjugate matrix, it can be shown that the effective resistance of an edge is precisely

the ratio of the number of spanning trees in G/e over the number in G:

Reff (u, v) =
TG/e
TG

.

As we · TG/e is the total weight of all trees in G that contain edge e, the fraction4 of spanning

trees that contain e = uv is given by weReff (u, v). This quantity is called the statistical

leverage score of an edge, and we denote it by τ e. It is fundamental component of many

randomized algorithms for sampling / sparsifying graphs and matrices [55, 107, 57].

The fact that τ e is the fraction of trees containing e also gives one way of deriving the

sum of these quantities:

Fact 2.3.3. (Foster’s Theorem) On any graph G we have

∑
e

τ e = n− 1.

The resistanceReff (u, v), and in turn the statistical leverage scores τ e can be estimated

using linear system solves and random projections [55]. For simplicity, we follow the

abstraction utilized by Madry, Straszak, and Tarnawski [87], except we also allow the

intermediate linear system solves to utilize a sparsifier instead of the original graph.

Lemma 2.3.4. (Theorem 2.1. of [87])

LetG = (V,E) be a graph with m edges. For every ε > 0 we can find in Õ(min{mε−2,m+

nε−4}) time an embedding of the effective resistance metric into <O(ε−2 logm) such that with
4provided one thinks of an edge with weight w as representing w parallel edges, or equivalently, counts

spanning trees with multiplicity according to their weight

108

high probability allows one to compute an estimate R̃eff (u, v) of any effective resistance

satisfying

∀u, v ∈ V (1− ε) R̃eff (u, v) ≤ Reff (u, v) ≤ (1 + ε) R̃eff (u, v) .

Specifically, each vertex u in this embedding is associated with an (explicitly stored) z u ∈

<O(ε−2 logm), and for any pair of vertices, the estimate R̃eff (u, v) is given by:

R̃eff (u, v) = ‖z u − z v‖2
2 ,

which takes O(ε−2 logm) time to compute once we have the embedding.

2.3.3 Schur Complements

For our applications, we will utilize our determinant-preserving sparsification algorithms in

recursions based on Schur complements. A partition of the vertices, which we will denote

using

V = V1 t V2,

partitions the corresponding graph Laplacian into blocks which we will denote using indices

in the subscripts:

L =

 L[V1,V1] L[V1,V2]

L[V2,V1] L[V2,V2]

 .
The Schur complement of G, or L, onto V1 is then:

SC (G, V1) = SC
(
LG, V1

) def
= LG[V1,V1] − LG[V1,V2]

(
LG[V2,V2]

)−1
LG[V2,V1],

and we will use SC (G, V1) and SC
(
LG, V1

)
interchangeably. We further note that we will

always consider V1 to be the vertex set we Schur complement onto, and V2 to be the vertex

set we eliminate, except for instances in which we need to consider both SC (G, V1) and

109

SC (G, V2).

Schur complements behave nicely with respect to determinants determinants, which

suggests the general structure of the recursion we will use for estimating the determinant.

Fact 2.3.5. For any matrix M where M [V2,V2] is invertible,

det (M −n) = det
(
M [V2,V2]

)
· det+(SC (M , V1)).

This relationship also suggests that there should exist a bijection between spanning tree

distribution inG and the product distribution given by sampling spanning trees independently

from SC (L, V1) and the graph Laplacian formed by adding one row/column to L[V2,V2].

Finally, our algorithms for approximating Schur complements rely on the fact that they

preserve certain marginal probabilities. The algorithms of [108, 103, 104, 88] also use

variants of some of these facts, which are closely related to the preservation of the spanning

tree distribution on SC (L, V1). (See Section 2.8 for details.)

Fact 2.3.6. Let V1 be a subset of vertices of a graph G, then for any vertices u, v ∈ V1, we

have:

RG
eff (u, v) = RSC(G,V1)

eff (u, v) .

Theorem 2.3.7 (Burton and Premantle [109]). For any set of edges F ⊆ E in a graph

G = (V,E,w), the probability F is contained in a w-uniform random spanning tree is

PrGT (F ⊆ T) = det(M (L,F)),

where M (L,F) is a |F | × |F | matrix whose (e, f)’th entry, for e, f ∈ F, is given by√
w(e)w(f)χTe L

†χf .

By a standard property of Schur complements (see [110]), we have

(
L−1

)
[V1, V1] = SC (G, V1)† .

110

Here (L†)[V1, V1] is the minor of L† with row and column indices in V1. This immediately

implies that when F is incident only on vertices in V1, we have M (L,F) = M (SC(G,V1),F).

Putting these together, we have

Fact 2.3.8. Given a partition of the vertices V = V1 t V2. For any set of edges F contained

in G[V1], we have

PrGT (F ⊆ T) = Pr
SC(G,V1)
T (F ⊆ T).

2.4 Sketch of the Results

The starting point for us is the paper by Janson [4] which gives (among other things)

the limiting distribution of the number of spanning trees in the Gn,m model of random

graphs. Our concentration result for the number of spanning trees in the sparsified graph is

inspired by this paper, and our algorithmic use of this sparsification routine is motivated by

sparsification based algorithms for matrices related to graphs [39, 47, 41]. The key result

we will prove is a concentration bound on the number of spanning trees when the graph

is sparsified by sampling edges with probability approximately proportional to effective

resistance.

2.4.1 Concentration Bound

Let G be a weighted graph with n vertices and m edges, and H be a random subgraph

obtained by choosing a subset of edges of size s uniformly randomly. The probability of

a subset of edges, which could either be a single tree, or the union of several trees, being

kept in H can be bounded precisely. Since we will eventually choose s > n1.5, we will treat

the quantity n3/s2 as negligible. The probability of H containing a fixed tree was shown by

Janson to be:

Lemma 2.4.1. If m ≥ s2

n
, then for any tree T , the probability of it being included in H is

P [H]T ∈ H =
(s)n−1

(m)n−1

= pn−1 · exp

(
−n

2

2s
−O

(
n3

s2

))
.

111

where (a)b denotes the product a · (a− 1) · · · (a− (b− 1)).

By linearity of expectation, the expected total weight of spanning trees in H is:

E [H] TH = TG · pn−1 · exp

(
−n

2

2s
−O

(
n3

s2

))
. (2.1)

As in [4], E [H] T 2
H = E [H]

∑
(T1,T2) w(T1)w(T2)Pr (T1, T2 ∈ H), can be written as a sum

over all pairs of trees (T1, T2) . Due to symmetry, the probability of a particular pair of

trees T1, T2 both being subgraphs of H depends only on the size of their intersection. The

following bound is shown in Appendix 2.11.

Lemma 2.4.2. LetG be a graph with n vertices andm edges, andH be a uniformly random

subset of s > 10n edges chosen from G, where m ≥ s2

n
. Then for any two spanning trees T1

and T2 of G with |T1 ∩ T2| = k, we have:

P [H]T1, T2 ∈ H ≤ p2n−2 exp

(
−2n2

s

)(
1

p

(
1 +

2n

s

))k
,

where p = s/m.

The crux of the bound on the second moment in Janson’s proof is getting a handle on

the number of tree pairs (T1, T2) with |T1 ∩ T2| = k in the complete graph where all edges

are symmetric. An alternate way to obtain a bound on the number of spanning trees can also

be obtained using leverage scores, which describe the fraction of spanning trees that utilize

a single edge. A well known fact about random spanning tree distributions [109] is that the

edges are negatively correlated:

Fact 2.4.3 (Negative Correlation). Suppose F is subset of edges in a graph G, then

PrGT (F ⊆ T) ≤ Πe∈FPr
G
T (e ∈ T) .

An easy consequence of Fact 2.4.3 is

112

Lemma 2.4.4. For any subset of edges F we have that the total weight of all spanning trees

containing F is given by

∑
T is a spanning tree of G

F⊆T

w (T) ≤ TG
∏
e∈F

τ e.

The combinatorial view of all edges being interchangable in the complete graph can

therefore be replaced with an algebraic view in terms of the leverage scores. Specifically,

invoking Lemma 2.4.4 in the case where all edges have leverage score at most n
m

gives the

following lemma which is proven in Appendix 2.11.

Lemma 2.4.5. In a graph G where all edges have leverage scores at most n
m

, we have

∑
T1,T2

|T1∩T2|=k

w (T1) · w (T2) ≤ T 2
G ·

1

k!

(
n2

m

)k

With Lemma 2.4.5, we can finally prove the following bound on the second moment

which gives our concentration result.

Lemma 2.4.6. Let G be a graph on n vertices and m edges such that all edges have

statistical leverage scores ≤ n
m

. For a random subset of s > 10n edges, H , where m ≥ s2

n

we have:

E [H] T 2
H ≤ T 2

Gp
2n−2 exp

(
−n

2

s
+O

(
n3

s2

))
= E [H] TH2 exp

(
O

(
n3

s2

))
.

Proof. By definition of the second moment, we have:

E [H] T 2
H =

∑
T1,T2

w (T1) · w (T2) · P [H]T1 ∪ T2 ⊆ H.

Re-writing the above sum in terms of the size of the intersection k, and invoking Lemma 2.4.2

113

gives:

E [H] T 2
H ≤

n−1∑
k=0

∑
T1,T2

|T1∩T2|=k

w (T1) · w (T2) · p2n−2 exp

(
−2n2

s

)(
1

p

(
1 +

2n

s

))k
.

Note that the trailing term only depends on k and can be pulled outside the summation of

T1, T2, so we then use Lemma 2.4.5 to bound this by:

E [H] T 2
H ≤

n−1∑
k=0

T 2
G ·

1

k!

(
n2

m

)k
· p2n−2 exp

(
−2n2

s

)(
1

p

(
1 +

2n

s

))k
.

Which upon pulling out the terms that are independent of k, and substituting in p = s/m

gives:

E [H] T 2
H ≤ T 2

G · p2n−2 · exp

(
−2n2

s

)
·
n−1∑
k=0

1

k!
·
(
n2

s

(
1 +

2n

s

))k
.

From the Taylor expansion of exp(·), we have:

E [H] T 2
H ≤ T 2

G · p2n−2 · exp

(
−2n2

s

)
· exp

(
n2

s

(
1 +

2n

s

))
= T 2

G · p2n−2 · exp

(
−n

2

s

)
· exp

(
O

(
n3

s2

))
.

This bound implies that once we set s2 > n3, the variance becomes less than the square

of the expectation. It forms the basis of our key concentration results, which we show

in Section 2.5, and also leads to Theorem 2.2.1. In particular, we demonstrate that this

sampling scheme extends to importance sampling, where edges are picked with probabilities

proportional to (approximations of) of their leverage scores.

A somewhat surprising aspect of this concentration result is that there is a difference

between models Gn,m and the Erdos-Renyi model Gn,p when the quantity of interest is the

114

number of spanning trees. In particular, the number of spanning trees of a graph G ∼ Gn,m

is approximately normally distributed when m = ω (n1.5) , whereas it has approximate

log-normal distribution when G ∼ Gn,p and p < 1.

An immediate consequence of this is that we can now approximate det+(LG) by com-

puting det+(LH). It also becomes natural to consider speedups of random spanning tree

sampling algorithms that generate a spanning tree from a sparsifier. Note however that we

cannot hope to preserve the distribution over all spanning trees via a single sparsifier, as

some of the edges are no longer present.

To account for this change in support, we instead consider the randomness used in

generating the sparsifier as also part of the randomness needed to produce spanning trees. In

Section 2.10.1, we show that just bounds on the variance of TH suffices for a bound on the

TV distances of the trees.

Lemma 2.4.7. SupposeH is a distribution over rescaled subgraphs of G such that for some

parameter some 0 < δ < 1 we have

E [H ∼ H] T 2
H

E [H ∼ H] TH2 ≤ 1 + δ,

and for any tree T̂ and any graph from the distribution that contain it, H we have:

wH
(
T̂
)

= wG
(
T̂
)
· P [H ′ ∼ H] T̂ ⊆ H ′

−1
· E [H ′ ∼ H] TH′

TG
,

then the distribution given byPrG(T), p, and the distribution induced by E [H ∼ H]PrH(T),

p̃ satisfies

dTV (p, p̃) ≤
√
δ.

Note that uniform sampling meets the property about wH(T) because of linearity of

expectation. We can also check that the importance sampling based routine that we will

discuss in Section 2.5.2 also meets this criteria. Combining this with the running time

115

bounds from Theorem 2.2.1, as well as the Õ(m1/3n5/3) time random spanning tree sampling

algorithm from [88] then leads to a faster algorithm.

Corollary 2.4.8. For any graph G on n vertices and any δ > 0, there is an algorithm that

generates a tree from a distribution whose total variation is at most δ from the random tree

distribution of G in time Õ(n
13
6

=2.1666...δ−2/3 + n2δ−2).

2.4.2 Integration Into Recursive Algorithms

As a one-step invocation of our concentration bound leads to speedups over previous routines,

we investigate tighter integrations of the sparsification routine into algorithms. In particular,

the sparsified Schur complement algorithms [41] provide a natural place to substitute spectral

sparsifiers with determinant-preserving ones. In particular, the identity of

det+(L) = det (L[V2,V2]) · det+(SC (L, V1)).

where det+ is the determinant of the matrix minor, suggests that we can approximate

det (L−n) by approximating det (L[V2,V2]) and det+(SC (L, V1)) instead. Both of these

subproblems are smaller by a constant factor, and we also have |V1|+ |V2| = n. So this leads

to a recursive scheme where the total number of vertices involved at all layers is O(n log n).

This type of recursion underlies both our determinant estimation and spanning tree sampling

algorithms.

The main difficulty remaining for the determinant estimation algorithm is then spar-

sifying SC (G, V1) while preserving its determinant. For this, we note that some V1 are

significantly easier than others: in particular, when V2 = V \ V1 is an independent set, the

Schur complement of each of the vertices in V2 can be computed independently. Further-

more, it is well understood how to sample these complements, which are weighted cliques,

by a distribution that exceeds their true leverage scores.

Lemma 2.4.9. There is a procedure that takes a graph G with n vertices, a parameter δ,

116

and produces in Õ(n2δ−1) time a subset of vertices V1 with |V1| = Θ(n), along with a graph

HV1 such that

TSC(G,V1) exp (−δ) ≤ E
[
HV1

]
THV1 ≤ TSC(G,V1) exp (δ) ,

and
E
[
HV1

]
T 2
HV1

E [HV1] THV1
2 ≤ exp (δ) .

Lemma 2.3.4 holds w.h.p., and we condition on this event. In our algorithmic applications

we will be able to add the polynomially small failure probability of Lemma 2.3.4 to the error

bounds.

The bound on variance implies that the number of spanning trees is concentrated close

to its expectation, TSC(G,V1), and that a random spanning tree drawn from the generated

graph HV1 is —over the randomness of the sparsification procedure—close in total variation

distance to a random spanning tree of the true Schur complement.

As a result, we can design schemes that:

1. Finds an O(1)-DD subset V2, and set V1 ← V \ V2.

2. Produce a determinant-preserving sparsifier HV1 for SC (G, V1).

3. Recurse on both L[V2,V2] and HV1 .

However, in this case, the accumulation of error is too rapid for yielding a good approxi-

mation of determinants. Instead, it becomes necesary to track the accumulation of variance

during all recursive calls. Formally, the cost of sparsifying so that the variance is at most δ

is about n2δ−1, where δ is the size of the problem. This means that for a problem on Gi of

size βin for 0 ≤ βi ≤ 1, we can afford an error of βiδ when working with it, since:

1. The sum of βi on any layer is at most 2, 5 so the sum of variance per layer is O(δ).

5each recursive call may introduce one new vertex

117

2. The cost of each sparsification step is now βin
2δ−1, which sums to about n2δ−1 per

layer.

Our random spanning tree sampling algorithm in Section 2.8 is similarly based on this

careful accounting of variance. We first modify the recursive Schur complement algorithm

introduced by Coulburn et al. [108] to give a simpler algorithm that only braches two ways

at each step in Section 2.8.1, leading to a high level scheme fairly similar to the recursive

determinant algorithm. Despite these similarities, the accumulation of errors becomes far

more involved here due to the choice of trees in earlier recursive calls affecting the graph in

later steps. More specifically, the recursive structure of our determinant algorithm can be

considered analogous to a breadth-first-search, which allows us to consider all subgraphs at

each layer to be independent. In contrast, the recursive structure of our random spanning tree

algorithm, which we show in Section 2.8.2 is more analogous to a depth-first traversal of

the tree, where the output solution of one subproblem will affect the input of all subsequent

subproblems.

These dependency issues will be the key difficulty in considering variance across lev-

els. The total variation distance tracks the discrepancy over all trees of G between their

probability of being returned by the overall recursive algorithm, and their probability in the

w-uniform distribution. Accounting for this over all trees leads us to bounding variances

in the probabilities of individual trees being picked. As this is, in turn, is equivalent to the

weight of the tree divided by the determinant of the graph, the inverse of the probability of a

tree being picked can play a simliar role to the determinant in the determinant sparsification

algorithm described above. However, tracking this value requires analyzing extending

our concentration bounds to the case where an arbitrary tree is fixed in the graph and we

sample from the remaining edges. We study this Section 2.9, prove bounds analogous to

the concentration bounds from Section 2.5, and incorporate the guarantees back into the

recursive algorithm in Section 2.8.2.

118

2.5 Determinant Preserving Sparsification

In this section we will ultimately prove Theorem 2.2.1, our primary result regarding

determinant-preserving sparsification. However, most of this section will be devoted to

proving the following general determinant-preserving sparsification routine that also forms

the core of subsequent algorithms:

Theorem 2.5.1. Given an undirected, weighted graph G = (V,E,w), an error threshold

ε > 0, parameter ρ along with routines:

1. SAMPLEEDGEG() that samples an edge e from a probability distribution p (
∑

e pe =

1), as well as returning the corresponding value of pe. Here pe must satisfy:

τ e
n− 1

≤ ρ · pe

where τ e is the true leverage score of e in G.

2. APPROXLEVERAGEG(u, v, ε) that returns the leverage score of an edge u, v in G to

an error of ε. Specifically, given an edge e, it returns a value τ̃ e such that:

(1− ε) τ e ≤ τ̃ e ≤ (1 + ε) τ e.

There is a routine DETSPARSIFY(G, s, ε) that computes a graph H with s edges such that

its tree count, TH , satisfies:

E [H] TH = TG
(

1±O
(
n3

s2

))
,

and:
E [H] T 2

H

E [H] TH2 ≤ exp

(
ε2n2

s
+O

(
n3

s2

))
Furthermore, the expected running time is bounded by:

119

1. O(s · ρ) calls to SAMPLEEDGEG(e) and APPROXLEVERAGE(e) with constant error,

2. O(s) calls to APPROXLEVERAGE(e) with ε error.

We establish guarantees for this algorithm using the following steps:

1. Showing that the concentration bounds as sketched in Section 2.4 holds for approxi-

mate leverage scores in Section 2.5.1.

2. Show via taking the limit of probabilistic processes that the analog of this process

works for sampling a general graph where edges can have varying leverage scores.

This proof is in Section 2.5.2.

3. Show via rejection sampling that (high error) one sided bounds on statistical leverage

scores, such as those that suffice for spectral sparsification, can also be to do the initial

round of sampling instead of two-sided approximations of leverage scores. This, as

well as pseudocode and guarantees of the overall algorithm are given in Section 2.5.3.

2.5.1 Concentration Bound with Approximately Uniform Leverage Scores

Similar to the simplified proof as outlined in Section 2.4, our proofs relied on uniformly

sampling s edges from a multi-graph with m ≥ s2

n
edges, such that all edges have leverage

score within multiplicative 1± ε of n−1
s

, aka. approximately uniform. The bound that we

prove is an analog of Lemma 2.4.6

Lemma 2.5.2. Given a weighted multi-graph G such that m ≥ s2

n
, s ≥ n, and all edges

e ∈ E have (1−ε)(n−1)
m

≤ τ e ≤ (1+ε)(n−1)
m

, with 0 ≤ ε < 1, then

E [H] T 2
H

E [H] TH2 ≤ exp

(
n2ε2

s
+O

(
n3

s2

))

Similar to the proof of Lemma 2.4.6 in Section 2.4, we can utilize the bounds on the

probability of k edges being chosen using Lemma 2.4.2. The only assumption that changed

120

was the bounds on τ e, which does not affect E [H] TH2. The only term that changes is

our upper bound the total weight of trees that contain some subset of k edges that was the

produce of k leverage scores. At a glance, this product can change by a factor of up to

(1 + ε)k, which when substituted naively into the proof of Lemma 2.4.2 directly would yield

an additional term of

exp

(
n2ε

s

)
,

and in turn necessitating ε < n−1/2 for a sample count of s ≈ n1.5.

However, note that this is the worst case distortion over a subset F . The upper bound

that we use, Lemma 2.4.5 sums over these bounds over all subsets, and over all edges we

still have ∑
e ∈ Gτ e = n− 1.

Incorporating this allows us to show a tighter bound that depends on ε2.

Similar to the proof of Lemma 2.4.5, we can regroup the summation over all
(
m
k

)
subsets

of E(G), and bound the fraction of trees containing each subset F via
∑

T :F⊆T w(T) ≤

TG
∏

e∈F τ e via Lemma 2.4.4.

∑
T1,T2

|T1∩T2|=k

w (T1) · w (T2) ≤
∑
F⊆E
|F |=k

T 2
G

∏
e∈F

τ 2
e

The proof will heavily utilize the fact that
∑

e∈E τ e = n− 1. We bound this in first two

steps: first treat it as a symmetric product over τ 2
e, and bound the total as a function of

∑
e

τ 2
e,

then we bound this sum using the fact that
∑

e τ e = n− 1.

The first step utilizes the concavity of the product function, and bound the total by the

sum:

121

Lemma 2.5.3. For any set of non-negative values x1 . . .xm with
∑

i xi ≤ z, we have

∑
F⊆[1...m]
|F |=k

∏
i∈F

xi ≤
(
m

k

)(z
m

)k
.

Proof. We claim that this sum is maximized when xi =
(
z
m

)
for all e.

Consider fixing all variables other than some xi and xj , which we assume to be x1 ≤ x2

without loss of generality as the function is symmetric on all variables:

∑
F⊆[1...m]
|F |=k

∏
i∈F

xi = x1x2

 ∑
F⊆[3...m]
|F |=k−2

∏
i∈F

xi

+ (x1 +x2) ·

 ∑
F⊆[3...m]
|F |=k−1

∏
i∈F

xi

+
∑

F⊆[3...m]
|F |=k

∏
i∈F

xi.

Then if x1 < x2, locally changing their values to x1 + ε and x2 − ε keeps the second

term the same. While the first term becomes

(x1 + ε) (x2 − ε) = x1x2 + ε (x2 − x1)− ε2,

which is greater than x1x2 when 0 < ε < (x2 − x1).

This shows that the overall summation is maximized when all xi are equal, aka

xi =
z

m
,

which upon substitution gives the result.

The second step is in fact the k = 1 case of Lemma 2.4.5.

Lemma 2.5.4. For any set of values ye such that

∑
e

y = n− 1,

122

and
(1− ε)n

m
≤ ye ≤

(1 + ε)n

m
,

we have ∑
e

y2
e ≤

(1 + ε2)(n− 1)2

m
.

Proof. Note that for any a ≤ b, and any ε, we have

(a− ε)2 + (b+ ε)2 = a2 + b2 + 2ε2 + 2ε (b− a) ,

and this transformation must increase the sum for ε > 0. This means the sum is maximized

when half of the leverage scores are (1−ε)(n−1)
m

and the other half are (1+ε)(n−1)
m

. This then

gives

∑
e∈E

y2
e ≤

m

2

(
(1 + ε)(n− 1)

m

)2

+
m

2

(
(1− ε)(n− 1)

m

)2

=
(1 + ε2)(n− 1)2

m
.

Proof. (of Lemma 2.5.2)

We first derive an analog of Lemma 2.4.5 for bounding the total weights of pairs of trees

containing subsets of size k, where we again start with the bounds

∑
T1,T2

|T1∩T2|=k

w (T1) · w (T2) ≤
∑
F⊆E
|F |=k

∑
T1,T2

F⊆T1∩T2

w (T1) · w (T2) =
∑
F⊆E
|F |=k

(∑
T :F⊆T

w (T)

)2

Applying Lemma 2.4.4 to the inner term of the summation then gives

∑
T1,T2

|T1∩T2|=k

w (T1) · w (T2) ≤
∑
F⊆E
|F |=k

T 2
G ·
∏
e∈F

τ 2
e

123

The bounds on τ e and
∑

e τ e = n− 1 gives, via Lemma 2.5.4

∑
e

τ 2
e ≤

(1 + ε2)(n− 1)2

m
.

Substituting this into Lemma 2.5.3 with xi = τ 2
e then gives

∑
F⊆E
|F |=k

∏
e∈F

τ 2
e ≤

(
m

k

)(
(1 + ε2)n2

m2

)k
≤ mk

k!

(
(1 + ε2)n2

m2

)k
=

1

k!

(
(1 + ε2)n2

m

)k
.

which implies our analog of Lemma 2.4.5

∑
T1,T2

|T1∩T2|=k

w (T1) · w (T2) ≤ T 2
G ·

1

k!

(
(1 + ε2)n2

m

)k
.

We can then duplicate the proof of Lemma 2.4.6. Similar to that proof, we can regroup

the summation by k = |T1 ∩ T2| and invoking Lemma 2.4.2 to get:

E [H] T 2
H ≤

n−1∑
k=0

∑
T1,T2

|T1∩T2|=k

w (T1) · w (T2) · p2n−2 exp

(
−2n2

s

)(
1

p

(
1 +

2n

s

))k
.

where p = s/m. When incorporated with our analog of Lemma 2.4.5 gives:

E [H] T 2
H ≤

n−1∑
k=0

p2n−2 exp

(
−2n2

s

)(
1

p

(
1 +

2n

s

))k
· T 2

G

1

k!

(
(1 + ε2)n2

m

)k
= T 2

Gp
2n−2 · exp

(
−2n2

s

)
·
n−1∑
k=0

1

k!
·
(

(1 + ε2)n2

s

(
1 +

2n

s

))k
.

Substituting in the Taylor expansion of
∑

k
zk

k!
≤ exp(z) then leaves us with:

E [H] T 2
H ≤ T 2

G · p2n−2 · exp

(
−n

2

s
+
n2ε2

s
+O

(
n3

s2

))

and finishes the proof.

124

2.5.2 Generalization to Graphs with Arbitrary Leverage Score Distributions

The first condition of m ≥ s2

n
will be easily achieved by splitting each edge a sufficient

number of times, which does not need to be done explicitly in the sparsification algorithm.

Furthermore, from the definition of statistical leverage score splitting an edge into k copies

will give each copy a kth fraction of the edge’s leverage score. Careful splitting can then

ensure the second condition, but will require ε-approximate leverage score estimates on

the edges. The simple approach would compute this for all edges, then split each edge

according to this estimate and draw from the resulting edge set. Instead, we only utilize

this algorithm as a proof technique, and give a sampling scheme that’s equivalent to this

algorithm’s limiting behavior as m→∞. Pseudocode of this routine is in Algorithm 1.

Algorithm 1: IDEALSPARSIFY(G, τ̃ , s): Sample s (multi) edges of G to produce H
such that TG ≈ TH .

Input: Graph G, approximate leverage scores τ̃ , sample count s
1 Initialize H as the empty graph, H ← ∅;
2 for i = 1 . . . s do
3 Pick edge e with probability proportional to τ̃ e;
4 Add e to H with new weight:

we (n− 1)

τ̃ es
exp

(
n2

2 (n− 1) s

)
.

5 Output H

Note that this sampling scheme is with replacement: the probability of a ‘collision’ as

the number of copies tend to∞ is sufficiently small that it can be covered by the proof as

well.

The guarantee that we will show for Algorithm 1 is:

Lemma 2.5.5. For any graph G and any set of approximate leverage scores τ̃ such that

(1− ε) τ e ≤ τ̃ e ≤ (1 + ε) τ e

125

for all edges e. The graph H = IDEALSPARSIFY(G, τ̃ , s) satisfies:

(
1−O

(
n3

s2

))
TG ≤ E [H] TH ≤ TG,

and
E [H] T 2

H

E [H] TH2 ≤ exp

(
O

(
ε2n2

s
+
n3

s2

))
.

Our proof strategy is simple: claim that this algorithm is statistically close to simulating

splitting each edge into a very large number of copies. Note that these proofs are purely for

showing the convergence of statistical processes, so all that’s needed is for the numbers that

arise in this proof (in particular, m) to be finite.

We first show that G and τ̃ can be perturbed to become rational numbers.

Lemma 2.5.6. For any graph G and any set of τ̃ such that (1− ε)τ (G)
e ≤ τ̃ e ≤ (1 + ε)τ (G)

e

for all edges e for some constant ε > 0, and any perturbation threshold δ, we can find graph

G′ with all edge weights rationals, and τ̃ ′ with all entries rational numbers such that:

1. TG ≤ TG′ ≤ (1 + δ)TG, and

2. (1− 2ε)τ (G′)
e ≤ τ̃ ′e ≤ (1 + 2ε)τ (G′)

e for all edges e.

Proof. This is a direct consequence of the rational numbers being everywhere dense, and

that perturbing edge weights by a factor of 1± α perturbs leverage scores by a factor of up

to 1±O(α), and total weights of trees by a factor of (1± α)n−1.

Having all leverage scores as integers means that we can do an exact splitting by setting

m, the total number of split edges, to a multiple of the common denominator of all the τ̃ ′e

values times n− 1. Specifically, an edge with approximate leverage score τ̃ ′e becomes

τ̃ ′e ·
m

n− 1

126

copies, each with weight
we (n− 1)

τ̃ ′em
,

and ‘true’ leverage score
τ e (n− 1)

τ̃ ′em
.

In particular, since

(1− 2ε) ≤ τ e
τ̃ e
≤ (1 + 2ε) ,

this splitted graph satisfies the condition of Lemma 2.5.2. This then enables us to obtain the

guarantees of Lemma 2.5.5 by once again letting m tend to∞.

Proof. (of Lemma 2.5.5) We first show that Algorithm 1 works for the graph with rational

weights and approximate leverage scores as generated by Lemma 3.4.3.

The condition established above means that we can apply Lemma 2.5.2 to the output of

picking s random edges among these m split copies. This graph H ′ satisfies

E [H ′] TH′ = TG′
(s
m

)n−1

exp

(
−n

2

2s
−O

(
n3

s2

))
,

and
E [H ′] T 2

H′

E [H ′] TH′2
≤ exp

(
n2ε2

s
+O

(
n3

s2

))
.

The ratio of the second moment is not affected by rescaling, so the graph

H ′′ ← m

s
exp

(
n2

2s (n− 1)

)

meets the requirements on both the expectation and variances. Furthermore, the rescaled

weight of an single edge being picked is:

we (n− 1)

τ̃ ′em
· m
s

exp

(
n2

2s (n− 1)

)
=
we (n− 1)

τ̃ ′es
exp

(
n2

2s (n− 1)

)
,

127

which is exactly what Algorithm 1 assigns.

It remains to resolve the discrepancy between sampling with and without replacement:

the probability of the same edge being picked twice in two different steps is at most 1/m, so

the total probability of a duplicate sample is bounded by s2/m. We then give a finite bound

on the size of m for which this probability becomes negligible in our routine. The rescaling

factor of a single edge is (very crudely) bounded by

(n− 1)

τ̃ ′es
exp

(
n2

2s (n− 1)

)
≤ exp

(
n3
) 1

mine τ̃
′
e

,

which means that any of the H ′′ returned must satisfy

TH′′ ≤ exp
(
n4
)(1

mine τ̃
′
e

)n
TG′ ,

which is finite. As a result, as m→∞, the difference that this causes to both the first and

second moments become negligible.

The result for H ← IDEALSPARSIFY(G, τ̃ , s) then follows from the infinitesimal

perturbation made to G, as the rational numbers are dense everywhere.

2.5.3 Incorporating Crude Edge Sampler Using Rejection Sampling

Under Lemma 2.5.5 we assumed access to ε-approximate leverage scores, which could be

computed with m calls to our assumed subroutine APPROXLEVERAGEG, where m here

is the number of edges of G. However, we roughly associate APPROXLEVERAGEG with

Lemma 2.3.4 that requires Õ(ε−2) time per call (and we deal with the w.h.p. aspect in the

proof of Theorem 2.2.1), and to achieve our desired sparsification of O(n1.5) edges, we will

need ε = n−1/4 for the necessary concentration bounds. Instead, we will show that we can

use rejection sampling to take s edges drawn from approximate leverage scores using a

cruder distribution pe, which will only require application of APPROXLEVERAGEG with

error ε for an expected O(s) number of edges.

128

Rejection sampling is a known technique that allows us to sample from some distribution

f by instead sampling from a distribution g that approximates f and accept the sample with

a specific probability based on the probability of drawing that sample from f and g.

More specifically, suppose we are given two probability distributions f and g over the

same state space X , such that for all x ∈ X we have Cg(x) ≥ f(x) for some constant C.

Then we can draw from f by instead drawing x ∼ g, and accepting the draw with probability

f(x)
Cg(x)

.

This procedure only requires a lower bound on g with respect to f , but in order to accept

a draw with constant probability, there need to be weaker upper bound guarantees. Our

guarantees on τ̃ e will fulfill these requirements, and the rejection sampling will accept a

constant fraction of the draws. By splitting into a sufficient number of edges, we ensure

that drawing the same multi-edge from any split edge will occur with at most constant

probability.

Specifically, each sample is drawn via. the following steps:

1. Draw a sample according the distribution g, e.

2. Evaluate the values of f(e) and g(e).

3. Keep the sample with probability f(e)/g(e).

As the running time of APPROXLEVERAGEG(e, ε) will ultimately depend on the value of ε

apply this algorithmic framework, we also need to perform rejection sampling twice, once

with constant error, and once with leverage scores extracted from the true approximate

distribution. Pseudocode of this routine is shown in Algorithm 2.

We first show that this routine will in fact sample edges according to ε-approximate

leverage scores, as was assumed in IDEALSPARSIFY

Lemma 2.5.7. The edges are being sampled with probability proportional to τ̃ (G,ε), the

leverage score estimates given by APPROXLEVERAGEG(·, ε).

129

Algorithm 2: DETSPARSIFY(G, s, SAMPLEEDGEG()), ρ,APPROXLEVERAGEG(u, v, ε)):
Sample s (multi) edges of G to produce H such that TG ≈ TH .

Input: Graph G.
Sample count s, leverage score approximation error 0 < ε < 1/2,
SAMPLEEDGEG() that samples an edge e from a probability distribution p
(
∑

e pe = 1), and returning the corresponding value of pe.
ρ that bounds the under-sampling rate of SAMPLEEDGEG().
APPROXLEVERAGEG(u, v, ε) that returns the approximate leverage score of an edge
u, v in G to an error of ε.

1 Initialize H as the empty graph, H ← ∅;
2 while H has fewer than s edges do
3 e,pe ← SAMPLEEDGEG().
4 Let p ′e ← 2

n−1
APPROXLEVERAGEG(u, v, 0.1)

5 Reject e with probability 1− p ′e/(4ρ · pe).
6 Let p ′′e ← 1

n−1
APPROXLEVERAGEG(u, v, ε)

7 Reject e with probability 1− p ′′e/p
′
e.

8 Add e to H with new weight

we
p ′′es

exp

(
n2

2(n− 1)s

)
.

9 Output H

130

Note that this algorithm does not, at any time, have access to the full distribution τ̃ (G,ε).

Proof. Our proof will assume the known guarantees of rejection sampling, which is to say

that the following are true:

1. Given distributions p and p ′, sampling an edge e from p and accepting with probabil-

ity p ′e/(4ρ·pe) is equivalent to drawing an edge from p ′ as long as p ′e/(4ρ·pe) ∈ [0, 1]

for all e.

2. Given distributions p ′ and p ′′, sampling an edge e from p ′ and accepting with proba-

bility p ′′e/p
′
e is equivalent to drawing an edge from p ′′ as long as p ′′e/p

′
e ∈ [0, 1] for

all e.

As a result, we only need to check that p ′e/(4ρpe) and p ′′e/p
′
e are at most 1.

The guarantees of SAMPLEEDGEG() gives

τ e
n− 1

≤ ρpe.

As p ′e was generated with error 1.1, we have

p ′e ≤
2.2τ e

(n− 1)
≤ 2.2ρpe,

so p ′e/(4ρpe) ≤ 1. To show p ′′e/p
′
e ≤ 1, once again the guarantees of SAMPLEEDGEG()

gives:

p ′′e ≤ (1 + ε)
τ e
n− 1

≤ 2 · 0.9 τ e
n− 1

≤ p ′e.

It remains to show that this rejection sampling process still makes sufficiently progress,

yet also does not call APPROXLEVERAGEG(e, ε) (the more accurate leverage score estima-

tor) too many times.

131

Lemma 2.5.8. The probability of DETSPARSIFY calling APPROXLEVERAGEG(e, ε) is at

most 1
ρ
, while the probability of it adding an edge to H is at least 1

8ρ
.

Proof. The proof utilizes the fact
∑

e τ e = n− 1 (Fact 2.3.3) extensively.

If the edge e is picked, APPROXLEVERAGEG(e, ε) is called with probability

p ′e
4ρ · pe

≤ 2.2τ e
4ρ · pe · (n− 1)

Summing over this over all edge e by the probability of picking them gives:

∑
e

pe
2.2τ e

4ρ · pe · (n− 1)
=

2.2
∑

e τ e
4ρ · (n− 1)

≤ 1

ρ
.

On the other hand, the probability of picking edge e, and not rejecting it is:

pe ·
p ′e

4ρ · pe
· p
′′
e

p ′e
=

τ̃ (G,ε)

4ρ(n− 1)
.

where this follows by cancellation and how we set p ′′e in our algorithm. Summing over all

edges then gives the probability of not rejecting an edge to be

∑
e

τ̃ (G,ε)

4ρ(n− 1)
≥
∑
e

(1− ε)τ e
4ρ(n− 1)

=
(1− ε)

∑
e τ e

4ρ(n− 1)
≥ 1

8ρ

Proof. (of Theorem 2.5.1) Lemma 2.5.7 implies that edges are sampled in DETSPARSIFY

with probability proportional to ε-approximate leverage scores from APPROXLEVERAGEG(·, ε).

Therefore, we can apply Lemma 2.5.5 to achieve the desired expectation and concentration

bounds. Finally, Lemma 2.5.8 implies that we expect to sample at most O(s · ρ) edges, each

of which require a call to SAMPLEEDGEG(e) and APPROXLEVERAGEG with constant error.

It additionally implies that we expect to make O(s) calls to APPROXLEVERAGEG with ε

error.

132

Directly invoking this theorem leads to the sparsification algorithm.

Proof. (of Theorem 2.2.1) Consider invoking Theorem 2.5.1 with parameters

s← O
(
n1.5δ−2

)
,

ε← n−1/4.

This gives:
ε2n2

s
,
n3

s2
≤ δ,

which then implies

(
1−O

(
δ2
))
TG ≤ E [H] TH ≤

(
1 +O

(
δ2
))
TG,

and

E [H] T 2
H ≤

(
1 +O

(
δ2
))

E [H] TH2.

The second condition is equivalent to Var [H] TH ≤ δ2E [H] TH , which by Chebyshev

inequality gives that with constant probability we have

(1−O (δ)) TG ≤ TH ≤ (1 +O (δ)) TG.

Combining this with the bounds on E [H] TH , and adjusting constants gives the overall

bound.

Constructing the probability distribution p for sampling edges only requires computing

constant approximate leverage scores for all edges, and then sampling proportionally for

each edge, giving a constant value for ρ. By Lemma 2.3.4, this requires Õ(m) time. The

running time then is dominated by the O(s) calls made to the effective resistance oracle

133

with error ε = n−1/4. Invoking Lemma 2.3.4 gives that this cost is bounded by

O
(
nε−4 + sε−2

)
= O

(
n2δ−2

)
.

Furthermore, because Lemma 2.3.4 holds w.h.p. we can absorb the probability of failure

into our constant probability bound

Another immediate consequence of our sparsification routine in Theorem 2.5.1, along

with bounds on total variation distance that we prove in Section 2.10, is that we can give a

faster spanning tree sampling algorithm for dense graphs by plugging the sparsified graph

into previous algorithms for generating random spanning trees.

Proof. (of Corollary 2.4.8) As in the proof of Theorem 2.2.1, we invoke Theorem 2.5.1 with

parameters

s← O
(
n1.5δ−2

)
,

ε← n−1/4.

giving
E [H] T 2

H

E [H] TH2 ≤ 1 + δ2.

Applying Lemma 2.4.7, which is proven in Section 2.10.1, we then have that drawing a tree

from H according to the w-uniform distribution gives a total variation distance of δ from

drawing a tree according to the w-uniform distribution of G. The running time of drawing H

is dominated by the O(s) calls made to the effective resistance oracle with error ε = n−1/4.

Invoking Lemma 2.3.4 gives that this cost is bounded by

O
(
nε−4 + sε−2

)
= O

(
n2δ−2

)
.

Furthermore, because Lemma 2.3.4 holds w.h.p. we can absorb the probability of

134

failure into our total variation distance bound (where we implicitly assume that δ is at most

polynomially small).

We then use the Õ(m1/3n5/3) time algorithm in [88] with m = O(n1.5δ−2) to draw a

tree from H . This then achieves our desired running time and total variation distance bound.

2.6 Implicit Sparsification of the Schur Complement

Note that the determinant sparsification routine in Theorem 2.5.1 only requires an oracle that

samples edges by an approximate distribution to resistance, as well as access to approximate

leverage scores on the graph. This suggests that a variety of naturally dense objects, such as

random walk matrices [47, 111] and Schur complements [41, 88] can also be sparsified in

ways that preserve the determinant (of the minor with one vertex removed) or the spanning

tree distributions. The latter objects, Schur complements, have already been shown to lead

to speedups in random spanning tree generation algorithms recently [88].

Furthermore the fact that Schur complements preserve effective resistances exactly

(2.3.6) means that we can directly invoke the effective resistances data structure as con-

structed in Lemma 2.3.4 to produce effective resistance estimates on any of its Schur

complements. As a result, the main focus of this section is an efficient way of producing

samples from a distribution that approximates drawing a multi-edge from the Schur com-

plement with probabilities proportional to its leverage score. Here we follow the template

introduced in [41] of only eliminating (1 + α)-diagonally-dominant subsets of vertices, as it

in turn allows the use of walk sampling based implicit sparsification similar to those in [47,

111].

(1 + α)-diagonally-dominant subsets have been used in Schur complement based linear

system solvers to facilitate the convergence of iterative methods in the L[V2,V2] block [41].

Formally, the condition that we require is:

Definition 2.6.1. In a weighted graph G = (V,E,w), a subset of vertices V2 ⊆ V is

135

(1 + α)-diagonally-dominant, or (1 + α)-DD if for every u ∈ V2 with weighted degree du

we have: ∑
v∼u,v /∈V2

wuv ≥
1

1 + α
du =

1

1 + α

∑
v∼u

wuv.

It was shown in [41] that large sets of such vertices can be found by trimming a uniformly

random sample.

Lemma 2.6.2. (Lemma 3.5. of [41] instantiated on graphs)

There is a routine ALMOSTINDEPENDENT(G,α) that for a graph G with n vertices, and

a parameter α ≥ 0, returns in O(m) expected time a subset V2 with |V2| ≥ n/(8(1 + α))

such that LG,[V2,V2] is (1 + α)-DD.

Given such a subset V2, we then proceed to sample edges in SC (G, V1) via the following

simple random walk sampling algorithm:

1. Pick a random edge in G.

2. Extend both of its endpoints in random walks until they first reach somewhere in V1.

Incorporating this scheme into the determinant preserving sparsification schemes then leads

these guarantees:

Theorem 2.6.3. Conditioned on Lemma 2.3.4 holding, there is a procedure SCHURSPARSE

that takes a graph G, and an 1.1-DD subset of vertices V2, returns a graph HV1 in Õ(n2δ−1)

expected time such that the distribution over HV1 satisfies:

TSC(G,V1) exp (−δ) ≤ E
[
HV1

]
THV1 ≤ TSC(G,V1) exp (δ) ,

and
E
[
HV1

]
T 2
HV1

E [HV1] THV1
2 ≤ exp (δ) .

Furthermore, the number of edges of HV1 can be set to anywhere between O(n1.5δ−1) and

O(n2δ−1) without affecting the final bound.

136

We let this subset of vertices produced to be V2, and let its complement be V1. Our key

idea is to view SC (G, V1) as a multi-graph where each multi-edge corresponds to a walk in

G that starts and ends in V1, but has all intermediate vertices in V2. Specifically a length k

walk

u0, u1, . . . uk,

with u0, uk ∈ V1 and ui ∈ V2 for all 0 < i < k, corresponds to a multi-edge between u0 and

uk in SC (G, V1) with weight given by

wSC(G,V1)
u0,u1,...uk

def
=

∏
0≤i<k w

G
uiui+1∏

0<i<k d
G
ui

. (2.2)

We check formally that this multi-graph defined on V1 is exactly the same as SC (G, V1) via

the Taylor expansion of L−1
[V2,V2] based Jacobi iteration.

Lemma 2.6.4. Given a graph G and a partition of its vertices into V1 and V2, the graph

GV1 formed by all the multi-edges corresponding to walks starting and ending at V1, but

stays entirely within V2 with weights given by Equation 2.2 is exactly SC (G, V1).

Proof. Consider the Schur complement:

SC (G, V1) = L[V1,V1] − L[V2,V1]L
†
[V2,V2]L[V1,V2].

If there are no edges leaving V2, then the result holds trivially. Otherwise, L[V2,V2] is a strictly

diagonally dominant matrix, and is therefore full rank. We can write it as

L[V2,V2] = D −A

where D is the diagonal of L[V2,V2] and A is the negation of the off-diagonal entries, and

137

then expand L−1
[V2,V2] via the Jacobi series:

L−1
[V2,V2] = (D −A)−1 = D−1/2

(
I −D−1/2AD−1/2

)−1

D−1/2

= D−1/2

[
∞∑
k=0

(
D−1/2AD−1/2

)k]
D−1/2 =

∞∑
k=0

(
D−1A

)k
D−1. (2.3)

Note that this series converges because the strict diagonal dominance of L[V2,V2] implies

(AD−1)k tends to zero as k →∞. Substituting this in place of L−1
[V2,V2] gives:

SC (G, V1) = L[V1,V1] −
∞∑
k=0

L[V1,V2]

(
D−1A

)k
D−1L[V2,V1].

As all the off-diagonal entries in L are non-positive, we can replace L[V1,V2] with −L[V1,V2]

to make all the terms in the trailing summation positive. As these are the only ways to form

new off-diagonal entries, the identity based on matrix multiplication of

[(
−L[V1,V2]

) (
D−1A

)k
D−1

(
−L[V2,V1]

)]
u0,uk

=
∑

u1...uk−1

∏
0≤i<k w

G
uiui+1∏

0<i<k d
G
ui

gives the required identity.

This characterization of SC (G, V1), coupled with the (1 + α)-diagonal-dominance of

V2, allows us to sample the multi-edges in SC (G, V1) in the same way as the (short) random

walk sparsification algorithms from [47, 111].

Lemma 2.6.5. Given any graph G = (V,E,w), an (1 + α)-DD subset V2, and access to

2-approximations of statistical leverage scores on G, τ̃G, SAMPLEEDGESCHUR returns

edges in G according to the distribution pe in O(α) expected time per sample. Furthermore,

the distribution that it samples edges in SC (G, V1) from, p , satisfies

O (1) · pu0,...uk
≥
τ SC(G,V1)
u0,...uk

n− 1
.

138

Algorithm 3: SAMPLEEDGESCHUR(G = (V,E,w), V1): samples an edge from
SC (G, V1)

Input: Graph G, vertices V1 to complement onto, and (implicit) access to a
2-approximation of the leverage scores of G, τ̃G.

Output: A multi-edge e in SC (G, V1) corresponding to a walk u0, u1, . . . uk, and the
probability of it being picked in this distribution pu0,u1,...uk

1 Sample an edge e from G randomly with probability drawn from τ̃Ge ;
2 Perform two independent random walks from the endpoints of e until they both reach

some vertex in V1, let the walk be u0 . . . uk;
3 Output edge u0uk (corresponding to the path u0, u1, . . . uk) with

wu0...uk ←
∏

0≤i<k w
G
uiui+1∏

0<i<k d
G
ui

, (same as Equation 2.2)

pu0...uk
← 1∑

e′ τ̃
G
e′

∑
0≤i<k

τ̃Guiui+1
·

(∏
0≤j<i

wGujuj+1

duj+1

·
∏

i+1≤j<k

wGujuj+1

duj

)
.

for every edge in SC (G, V1) corresponding to the walk u0, . . . uk.

The guarantees of this procedure are analogous to the random walk sampling sparsifica-

tion scheme from [47, 111], with the main difference being the terminating condition for the

walks leads to the removal of an overhead related to the number of steps in the walk. The

modification of the initial step to picking the initial edge from G by resistance is necessary

to get ρ to a constant, as the about n1.5 samples limits the amount of overhead that we can

have per sample.

Proof. We first verify that p is indeed a probability on the multi-edges of SC (G, V1),

partitioned by the walks that they correspond to in G, or formally

∑
u0,u1,...uk:
u0,uk∈V1,

ui∈V2 ∀1≤i<k

pu0,u1...uk
= 1.

To obtain this equality, note that for any random walk starting at vertex i, the total proba-

bilities of walks starting at i and ending in V1 is upper bounded by 1. Algebraically this

139

becomes: ∑
u1,u2,...uk

∏
0≤i<k

wuiui+1

dui
= 1,

so applying this to both terms of each edge e gives that the total probability mass over any

starting edge is τ̃Ge∑
e′ τ̃

G
e′

, and in turn the total.

For the running time, since V2 is (1 + α)-almost independent, each step of the walk

takes expected time O(α). Also, the value of pu0,u1,...uk
can be computed in O(k) time by

computing prefix/suffix products of the transition probabilities along the path (instead of

evaluating each summand in O(k) time for a total of O(k2)).

Finally, we need to bound the approximation of p compared to the true leverage scores

τ . As τ̃Ge is a 2-approximation of the true leverage scores,
∑

e τ̃
G
e is within a constant factor

of n. So it suffices to show

O (1) ·
∑

0≤i<k

τ̃Guiui+1

(∏
0≤j<i

wGujuj+1

duj+1

·
∏

i+1≤j<k

wGujuj+1

duj

)
≥ RSC(G,V1)

eff (u0, uk) · wu0,u1,...uk .

Here we invoke the equivalence of effective resistances in G and SC (G, V1) given by

Fact 2.3.6 in the reverse direction. Then by Rayleigh’s monotonicity principle, we have

RSC(G,V1)
eff (u0, uk) = RG

eff (u0, uk) ≤
∑

0≤i<k

2τ̃Guiui+1

wuiui+1

,

which when substituted into the expression for wu0,u1,...uk from Equation 2.2 gives

(∑
0≤i<k

2τ̃Guiui+1

wuiui+1

)
wu0,u1,...uk =

∑
0≤i<k

2τ̃Guiui+1

(∏
0≤j<i

wGujuj+1

duj+1

·
∏

i+1≤j<k

wGujuj+1

duj

)
.

This sampling procedure can be immediately combined with Theorem 2.5.1 to give

algorithms for generating approximate Schur complements. Pseudocode of this routine is in

Algorithm 4.

140

Algorithm 4: SCHURSPARSE(G, V1, δ)

Input: Graph G, 1.1-DD subset of vertices V2 and error parameter δ
Output: Sparse Schur complement of SC (G, V1)

1 Set ε← 0.1;
2 Set s← n2δ−1;
3 Build leverage score data structure on G with errors 0.1 (via Lemma 2.3.4);
4 Let HV1 ←

DETSPARSIFY(SC (G, V1) , s, SAMPLEEDGESCHUR(G, V1), LEVERAGEAPPROXG, ε);

5 Output HV1;

Proof. (Of Theorem 2.6.3) Note that the choices of ε and s must ensure that

n2ε2

s
= δ

n3

s2
≤ δ

This is then equivalent to s ≥ n1.5δ−1 and s
ε2

= n2δ−1. This further implies that ε ≥ n1/4.

Our ε and s in SCHURSPARSE meet these conditions (and the ones specifically chosen in

the algorithm will also be necessary for one of our applications). The guarantees then

follow from putting the quality of the sampler from Lemma 2.6.5 into the requirements

of the determinant preserving sampling procedure from Theorem 2.5.1. Additionally,

Lemma 2.6.5 only requires access to 2-approximate leverage scores, which can be computed

by Lemma 2.3.4 in Õ(m) time. Furthermore, Lemma 2.6.5 gives that our ρ value is constant,

and our assumption in Theorem 2.6.3 that we are given an 1.1-DD subset V2 implies that

our expected O(s · ρ) calls to SAMPLEEDGESCHUR will require O(1) time. The only

other overheads are the computation and invocations of the various copies of approximate

resistance data structures. Since m ≤ n2 and ε ≥ n1/4, Lemma 2.3.4 gives that this cost is

bounded by Õ(m+ n2 + s
ε2

) = Õ(n2δ−1).

141

2.7 Approximate Determinant of SDDM Matrices

In this section, we provide an algorithm for computing an approximate determinant of SDDM

matrices, which are minors of graph Laplacians formed by removing one row/column.

Theorem 2.2.1 allows us to sparsify a dense graph while still approximately preserving

the determinant of the graph minor. If there were some existing algorithm for computing

the determinant that had good dependence on sparsity, we could achieve an improved

runtime for determinant computation by simply invoking such an algorithm on a minor

of the sparsified graph.6 Unfortunately, current determinant computation algorithms (that

achieve high-accuracy) are only dependent on n, so simply reducing the edge count does not

directly improve the runtime for determinant computation. Instead the algorithm we give

will utilize Fact 2.3.5

det+(L) = det
(
L[V2,V2]

)
· det+(SC (L, V1)).

(where we recall that det+ is the determinant of the matrix minor) to recursively split the ma-

trix. Specifically, we partition the vertex set based upon the routine ALMOSTINDEPENDENT

from Lemma 2.6.2, then compute Schur complements according to SCHURSPARSE in The-

orem 2.6.3. Our algorithm will take as input a Laplacian matrix. However, this recursion

naturally produces two matrices, the second of which is a Laplacian and the first of which

is a submatrix of a Laplacian. Therefore, we need to convert L[V2,V2] into a Laplacian. We

do this by adding one vertex with appropriate edge weights such that each row and column

sums to 0. Pseudocode of this routine is in Algorithm 5, and we call it with the parameters

LV2 ← ADDROWCOLUMN(L[V2,V2]).

The procedure ADDROWCOLUMN outputs a Laplacian LV2 such that L[V2,V2] can be

obtained if one removes this added row/column. This immediately gives det+(LV2) =

6To get with high probability one could use standard boosting tricks involving taking the median of several
estimates of the determinant obtained in this fashion.

142

Algorithm 5: ADDROWCOLUMN(M) : complete M into a graph Laplacian by
adding one more row/column

Input: SDDM Matrix M
Output: Laplacian matrix L with one extra row / column than M

1 Let n be the dimension of M ;
2 for i = 1 to n do
3 Sum non-zero entries of row i, call s i;
4 Set L(n+ 1, i),L(i, n+ 1)← −s i;
5 Let L(n+ 1, n+ 1)←

∑n
i=1 s i;

6 Output L;

det(L[V2,V2]) by definition, and we can now give our determinant computation algorithm of

the minor of a graph Laplacian.

Algorithm 6: DETAPPROX(L, δ, n) : Compute det+(L) with error parameter δ
Input: Laplacian matrix L, top level error threshold δ, and top level graph size n
Output: Approximate det+(L)

1 if this is the top-level invocation of this function in the recursion tree then
2 δ′ ← Θ(δ2/ log3 n)
3 else
4 δ′ ← δ

5 if L is 2× 2 then
6 return the weight on the (unique) edge in the graph

7 V2 ← ALMOSTINDEPENDENT(L, 1
10

) {Via Lemma 2.6.2}
8 V1 ← V \ V2 ;
9 LV1 ← SCHURSPARSE(L, V1, δ

′); {|V1| /n is the value of β in Lemma 2.7.1.}
10 LV2 ← ADDROWCOLUMN(L[V2,V2]);
11 Output DETAPPROX(LV1 , δ′ |V1| /n, n) · DETAPPROX(LV2 , δ′ |V2| /n, n);

Our analysis of this recursive routine consists of bounding the distortions incurred at

each level of the recursion tree. This in turn uses the fact that the number of vertices across

all calls within a level and the total “amount” of δ across all calls within a level both remain

unchanged from one level to the next. This can be summarized by the following Lemma

which bounds the error accumulated within one level of recursion in our algorithm.

Lemma 2.7.1. Suppose we are given some small δ ≥ 0 and non-negative β1, ..., βk such

that
∑k

i=1 βi = O(1), along with Laplacian matrices L(1), . . . ,L(k) and each having a

143

corresponding vertex partition V1(i), V2(i), where

L(i) =

 L (i)[V1(i),V1(i)] L (i)[V1(i),V2(i)]

L (i)[V2(i),V1(i)] L (i)[V2(i),V2(i)]

 .
Let LV1(i) denote the result of running SCHURSPARSE to remove the V2(i) block in each of

these matrices:7

LV1(i) def
= SCHURSPARSE (L(i), V1(i), βiδ) .

Then conditioning upon a with high probability event8 in each of these calls to SCHURSPARSE,

for any p we have with probability at least 1− p:

k∏
i=1

det+ (L (i)) =
(

1±O
(√

δ/p
)) k∏

i=1

det
(
L[V2(i),V2(i)](i)

)
· det+

(
LV1(i)

)
.

Here the βi corresponds to the |V1| /n and |V2| /n values that δ is multiplied against in

each call parameter to SCHURSPARSE. An example of the main steps in this determinant

approximation algorithm, as well as the graphs corresponding to applying Lemma 2.7.1 to

one of the layers is in Figure 2.1.

Applying Lemma 2.7.1 to all the layers of the recursion tree gives the overall guarantees.

Proof of Theorem 2.2.2.

Running Time: Let the number of vertices and edges in the current graph corresponding

to L be n and m respectively. Calling ALMOSTINDEPENDENT takes expected time O(m)

and guarantees
n

16
≤ |V2| ≤

n

8
,

7This Lemma only applies when the matrices are fixed with respect to the randomness used in the
invocations of SCHURSPARSE mentioned in the Lemma. In other words, it only applies when the result of
running SCHURSPARSE on each of these L(i) matrices is independent of the result of running it on the other
matrices. This is why the Lemma only immediately bounds error within a level of the recursion—where this
independence holds—rather than for the entire algorithm.

8namely, the event that all the leverage score estimation calls to Lemma 2.3.4 from SCHURSPARSE succeed

144

G on n vertices with Laplacian L

L(1)

SCHURSPARSE(LG, V1, βδ)

L(2)

ADDROWCOLUMN(LG[V2,V2])

LV1(1), |V1(1)| = β1n

SCHURSPARSE(L(1), V1(1), β1δ)

LV2(1) LV1(2), |V1(2)| = β2n

SCHURSPARSE(L(2), V1(2), β2δ)

LV2(2)

Figure 2.1: Two layers of the call Structure of the determinant approximation algorithm
DETAPPROX (algorithm 6), with the transition from the first to the second layer labeled as
in Lemma 2.7.1.

which means the total recursion terminates in O(log n) steps.

For the running time, note that as there are at most O(n) recursive calls, the total number

of vertices per level of the recursion is O(n). The running time on each level are also

dominated by the calls to SCHURSPARSE, which comes out to

Õ

(
|V1 (i)|2 n

δ′ |V1 (i)|

)
= Õ

(
|V1 (i)|nδ−2

)
,

and once again sums to Õ(n2δ−2). We note that this running time can also be obtained from

more standard analyses of recursive algorithms, specifically applying guess-and-check to a

running time recurrence of the form of:

T (n, δ) = T (θn, θδ) + T ((1− θ)n+ 1, (1− θ) δ) + Õ(n2δ−1).

Correctness. As shown in the running time analysis, our recursion tree has depth at

most O(log n), and there are at most O(n) total vertices at any given level. We associate

each level of the recursion in our algorithm with the list of matrices which are given as input

145

to the calls making up that level of recursion. For any level in our recursion, consider the

product of det+ applied to each of these matrices. We refer to this quantity for level j as qj .

Notice that q0 is the determinant we wish to compute and q# levels−1 is what our algorithm

actually outputs. As such, it suffices to prove that for any j, qj = (1 ± δ
levels)qj−1 with

probability of failure at most 1
10·# levels . However, by the fact that we set δ′ = Θ(δ2/ log3 n)

in the top level of recursion with sufficiently small constants, this immediately follows from

Lemma 2.7.1.

A minor technical issue is that Lemma 2.7.1 only gives guarantees conditioned on a

WHP event. However, we only need to invoke this Lemma a logarithmic number of times, so

we can absorb this polynomially small failure probability into the our total failure probability

without issue.

Standard boosting techniques—such as running O(log n) independent instances and

taking the medians of the estimates— give our desired with high probability statement.

It remains to bound the variances per level of the recursion.

Proof. (Of Lemma 2.7.1) As a result of Fact 2.3.5

k∏
i=1

det+ (L(i)) =
k∏
i=1

det
(
L (i)[V2(i),V2(i)]

)
det+ (SC (L (i) , V1 (i))) .

Consequently, it suffices to show that with probability at least 1− p

k∏
i=1

det+ (SC (L (i) , V1 (i))) =
(

1±O
(√

δ/p
)) k∏

i=1

det+

(
LV1(i)

)
.

Recall that LV1(i) denotes the random variable that is the approximate Schur complement

generated through the call to SCHURSPARSE(L(i), V1(i), βiδ).

Using the fact that our calls to SCHURSPARSE are independent along with the assump-

146

tion of
∑k

i=1 βi = O(1), we can apply the guarantees of Theorem 2.6.3 to obtain

E
[
LV1(1) . . .LV1(k)

] k∏
i=1

det+

(
LV1(1)

)
=

k∏
i=1

E
[
LV1(i)

]
det+L

V1(i)

= (1±O (δ))
k∏
i=1

det+ (SC (L(i), V1(i))) ,

and

E
[
LV1(1) . . .LV1(k)

]∏k
i=1 det+

(
LV1(i)

)2

E
[
LV1(1) . . .LV1(k)

]∏k
i=1 det+

(
LV1(i)

)2 =
k∏
i=1

E
[
LV1(i)

]
det+

(
LV1(i)

)2

E
[
LV1(i)

]
det+

(
LV1(i)

)2

≤
k∏
i=1

exp (O (βiδ)) ≤ exp (O (δ)).

By assumption δ is small, so we can approximate exp (O(δ)) with 1 +O(δ), which with

bound above gives

Var
[
LV1(1) . . .LV1(k)

] k∏
i=1

det+

(
LV1(i)

)
≤ O (δ)E

[
LV1(1) . . .LV1(k)

] k∏
i=1

det+

(
LV1(i)

)2

,

Then applying the approximation on E []
∏k

i=1 det+ (SCHURSPARSE(L(i), V1(i), βiδ)) gives

Var
[
LV1(1) . . .LV1(k)

] k∏
i=1

det+

(
LV1(i)

)
≤ O (δ)

(
k∏
i=1

det+ (SC (L(i), V1(i)))

)2

.

At which point we can apply Chebyshev’s inequality to obtain our desired result.

2.8 Random Spanning Tree Sampling

In this section we will give an algorithm for generating a random spanning tree from

a weighted graph, that uses SCHURSPARSE as a subroutine, and ultimately prove Theo-

147

rem 2.2.3.

In order to do so, we will first give an O(nω) time recursive algorithm using Schur

complement that exactly generates a random tree from the w-uniform distribution. The

given algorithm is inspired by the one introduced in [108], and its variants utilized in [103,

104, 88]. However, we will (out of necessity for our further extensions) reduce the number

of branches in the recursion to two, by giving an efficient algorithmic implementation of a

bijective mapping between spanning trees in G and spanning trees in SC (G, V2) when V1,

the set of vertices removed, is an independent set. We note that this also yields an alternative

algorithm for generating random spanning trees from the w-uniform distribution in O(nω)

time.

The runtime of this recursion will then be achieved similar to our determinant algorithm.

We reduce δ proportional to the decrease in the number of vertices for every successive

recursive call in exactly the same was as the determinant approximation algorithm from

Section 2.7. As has been previously stated and which is proven in Section 2.10.1, drawing

a random spanning tree from a graph after running our sparsification routine which takes

Õ(n2δ−1), will have total variation distance
√
δ from the w-uniform distribution.

Similar to our analysis of the determinant algorithm, we cannot directly apply this bound

to each tree because the lower levels of the recursion will contribute far too much error when

δ is not decreasing at a proportional rate to the total variation distance. Thus we will again

need to give better bounds on the variance across each level, allowing stronger bounds on

the contribution to total variation distance of the entire level.

This accounting for total variance is more difficult here due to the stronger dependence

between the recursive calls. Specifically, the input to the graph on V2 depends on the set of

edges chosen in the first recursive call on V1, specifically SC (G, V1), or a sparsified version

of it.

Accounting for this dependency will require proving additional concentration bounds

shown in Section 2.9, which we specifically achieve by sampling s = O(n2δ−1) edges

148

in each call to SCHURSPARSE. While this might seem contradictory to the notion of

“sampling”, we instead consider this to be sampling from the graph in which all the edges

generated from the Schur complement are kept separate and could be far more than n2

edges.

2.8.1 Exact O(nω) Time Recursive Algorithm

We start by showing an algorithm that samples trees from the exact w-uniform distribution

via the computation of Schur complements. Its pseudocode is in Algorithm 7, and it forms

the basis of our approximate algorithm: the faster routine in Section 2.8.2 is essentially the

same as inserting sparsification steps between recursive calls.

Algorithm 7: EXACTTREE(G) : Take a graph and output a tree randomly from the
w-uniform distribution

Input: Graph G
Output: A tree randomly generated from the w-uniform distribution of G

1 If there is only one edge e in G, return G ;
2 Partition V evenly into V1 and V2;
3 T1 = EXACTTREE(SC(G, V1));
4 for each e ∈ T1 do
5 with probability we(G)

we(SC(G,V1))
, G← G/e, T ← T ∪ e ;

6 Delete the remaining edges, i.e., G← G \ E(V1);
7 T2 = EXACTTREE(SC(G, V2));
8 T ← T ∪ PROLONGATETREE(G, V1 t V2, T2);
9 Output T ;

The procedure PROLONGATETREE is invoked when V1 = V \ V2 maps a tree T2 from

the Schur complement SC (G, V2) to a tree back in G. It crucially uses the property that V1

is an independent set, and its pseudocode is given in Algorithm 8.

Lemma 2.8.1. The procedure EXACTTREE(G) will generate a random tree of G from the

w-uniform distribution in O(nω) time.

The algorithm we give is similar to the divide and conquer approaches of [108, 103, 104,

88]. The two main facts used by these approaches can be summarized as follows:

149

Algorithm 8: PROLONGATETREE(G, V1 t V2, T2): prolongating a tree on SC (G, V2)
to a tree on G.

Input: A graph G, a splitting of vertices V1 t V2 such that V1 is an independent set,
tree T2 of SC (G, V2).

Output: A tree in G
1 T ← ∅;
2 for each e = xy ∈ T2 do
3 Create distribution λe, set λe(∅) = we(G);
4 for each v ∈ V1 such that (v, x), (v, y) ∈ E(G) do
5 Set λe(v) = w(v,x)(G)w(v,y)(G)d v(G)−1;

6 Randomly assign f(e) to {∅ ∪ V1} with probability proportional to λ;

7 for each v ∈ V1 do
8 for each e = (x, y) ∈ T2 such that (v, x), (v, y) ∈ E(G) do
9 if f(e) 6= v then

10 Contract x and y ;

11 for each contracted vertex X in the neighborhood of v do
12 Connect X to v with edge (v, u) ∈ G with probability proportional to

wG((v, u)) ;
13 T ← T ∪ (v, u);

14 Output T ;

150

1. Schur complements preserves the leverage score of original edges, and

2. The operation of taking Schur complements, and the operation of deleting or contract-

ing an edge are associative.

We too will make use of these two facts. But unlike all previous approaches, at every

stage we need to recurse on only two sub-problems. All previous approaches have a

branching factor of at least four.

We can do this by exploiting the structure of the Schur complement when one eliminates

an independent set of vertices. We formalize this in Lemma 2.8.5.

Before we can prove the lemma, we need to state an important property of Schur

complements that follows from Fact 2.3.8. Recall the notation from Section 2.3 that for

a weighted graph G = (V,E,w), PrGT (·) denotes the probability of · over trees T picked

from the w-uniform distribution on spanning trees of G.

Lemma 2.8.2. Let G be a graph with a partition of vertices V = V1 t V2. Then for any set

of edges F contained in G[V1], the induced subgraph on V1, we have:

PrGT (T ∩ E (G [V1]) = F) = Pr
SC(G,V1)
T (T ∩ E (G [V1]) = F) ,

where the edges in SC (G, V1) are treated as the sum of G[V1] and Gsc[V1], the new edges

added to the Schur complement.

Proof. If F contains a cycle, then PrGT (T ∩ E (G [V1]) = F) = 0 = Pr
SC(G,V1)
T (T ∩

E (G [V1]) = F). Therefore, we will assume F does not contain any cycle, and we will

prove by induction on the size of F . If |F | > |V1| − 1, then F will have to contain a cycle.

When |F | = |V1| − 1, then F will have to be the edge set of a tree in SC(G, V1). Then

by Fact 2.3.8, the corollary holds. Now suppose that the corollary holds for all F with

151

|F | = |V1| − 1− k. Now consider some F with |F | = |V1| − 1− (k + 1). We know

PrGT (F ⊆ T) = PrGT (F = (T ∩ E (G [V1]))) +
∑
F ′⊃F

PrGT (F ′ = (T ∩ E (G [V1]))) .

Since |F ′| > |F |, by assumption

∑
F ′⊃F

PrGT (F ′ = (T ∩ E (G [V1]))) =
∑
F ′⊃F

Pr
SC(G,V1)
T (F ′ = (T ∩ E (G [V1]))) ,

then by Fact 2.3.8 we have PrGT (F ⊆ T) = Pr
SC(G,V1)
T (F ⊆ T), which implies

PrGT (F = (T ∩ E (G [V1]))) = Pr
SC(G,V1)
T (F = (T ∩ E (G [V1]))) .

The tracking of edges from various layers of the Schur complement leads to another

layer of overhead in recursive algorithms. They can be circumvented by merging the edges,

generating a random spanning tree, and the ‘unsplit’ the edge by random spanning. The

following is a direct consequence of the definition of w(T):

Lemma 2.8.3. Let Ĝ be a multi-graph, and G be the simple graph formed by summing the

weights of overlapping edges. Then the procedure of:

1. Sampling a random spanning tree from G, T .

2. For each edge e ∈ T , assign it to an original edge from Ĝ, ê with probability

wê

(
Ĝ
)

we (G)
.

Produces a w-uniform spanning tree from Ĝ, the original multi-graph.

This then leads to the following proto-algorithm:

152

1. Partition the vertices (roughly evenly) into

V = V1 t V2.

2. Generate a w-uniform tree of SC (G, V1), and create F1 = T ∩ E(G[V1]) by re-

sampling edges in G[V1] using Lemma 2.8.3. By Lemma 2.8.2, this subset is precisely

the intersection of a random spanning tree with G[V1].

3. This means we have ‘decided’ on all edges inG[V1]. So we can proceed by contracting

all the edges of F1, and deleting all the edges corresponding to E(G[V1])\F . Let the

resulting graph be G′ and let V ′1 be the remaining vertices in V1 after this contraction.

4. Observe that V ′1 is an independent set, and its complement is V2. We can use another

recursive call to generate a w-uniform tree in SC(G′, V2). Then we utilize the fact that

V ′1 is an independent set to lift this to a tree in G′ efficiently via Lemma 2.8.5.

Our key idea for reducing the number of recursive calls of the algorithm, that when V1

(from the partition of vertices V = V1 t V2) is an independent set, we can directly lift a tree

from SC(G, V2) to a tree in G. This will require viewing GSC[V2] as a sum of cliques, one

per vertex of V1, plus the original edges in G[V2].

Fact 2.8.4. Given a graph G and a vertex v, the graph SC(G, V \ v) is the induced graph

G[V \ {v}] plus a weighted complete graph K(v) on the neighbors of v. This graph K(v)

is formed by adding one edge xy for every pair of x and y incident to v with weight

w(v,x)w(v,y)

degv
,

where d v
def
=
∑

xw(v,x) is the weighted degree of v in G.

Lemma 2.8.5. Let G be a graph on n vertices and V1 an independent set. If T is drawn from

the w-uniform distribution of SC(G, V2), then in O(n2) time PROLONGATETREE(G, V1 t

153

V2, T2) returns a tree from the w-uniform distribution of G.

Proof. The running time of PROLONGATETREE is O(n2) as T2 has ≤ n − 1 edges and

|V1| ≤ n.

Now we will show the correctness. Let V1 = {v1, ..., vk}. We will represent SC(G, V2)

as a multi-graph arising by Schur complementing out the vertices in V1 one by one and

keeping the new edges created in the process separate from each other as a multi-graph. We

represent this multi-graph as

SC(G, V2) = G [V2] +K (v1) + ...+K (vk) ,

where G[V2] is the induced subgraph on V2 and K(vi) is the weighted complete graph on

the neighbors of vi. Then

• By the unsplitting procedure from Lemma 2.8.3, the function f maps T2 to a tree in

the multi-graph G[V2] +K(v1) + ...+K(vk), and

• the rest of the sampling steps maps this tree to one in G.

We will now prove correctness by induction on the size of the independent set V1. The

case of |V1| = 0 follows from SC (G, V2) = G. If |V1| = 1, i.e, V1 = {v} for some vertex v,

then SC(G, V2) is G[V2] +K(v). Given a tree T2 of SC(G, V2), the creation of f will first

map T2 to a tree in the multigraph G[V2] +K(v) by randomly deciding for each edge e ∈ T

to be in G(V1) or K(v) depending on it’s weight. If we let T ′(V2) = T ′ ∩ G[V2], then by

Lemma 2.8.2,

PrGT (T ∩ E(G [V2]) = T ′ (V2)) = Pr
G[V2]+K(v)
T (T ∩ E(G [V2]) = T ′ (V2)) .

Therefore, we can contract all the edges of T ′(V2) ∩ G [V2] and delete all other edges of

G [V2]. This results in a multi-graph star with v at the center. Now, PROLONGATETREE

does the following to decide on the remaining edges. For every multi-edge of the star graph

154

obtained by contracting or deleting edges in G[V2], we choose exactly one edge, randomly

according to its weight. This process generates a random tree of multi-graph star.

Now we assume that the lemma holds for all V ′1 with |V ′1 | < k. Let V1 = {v1, ..., vk}.

The key thing to note is that when V1 is an independent set, we can write

SC (G, V2) = G [V2] +K (v1) + . . .+K (vk) ,

and

SC (G, V2 ∪ vk) = G [V2 ∪ vk] +K (v1) + . . .+K (vk−1) .

Therefore, by the same reasoning as above, we can take a random tree T ′ of the multi-graph

G[V2] +K(v1) + ...+K(vk) and map it to a tree on G[V2 ∪ vk] +K(v1) + ...+K(vk−1) =

SC (G, V2 ∪ vk) by our procedure PROLONGATETREE. We then apply our inductive hy-

pothesis on the set V1 \ {vk} to map SC(G, V2 ∪ vk) to a tree of G by PROLONGATETREE,

which implies the lemma.

We also remark that the running time of PROLONGATETREE can be reduced toO(m log n)

using dynamic trees, which can be abstracted as a data structure supporting operations on

rooted forests [112, 113]. We omit the details here as this does not bottleneck the running

time.

With this procedure fixed, we can now show the overall guarantees of the exact algorithm.

Proof. of Lemma 2.8.1 Correctness follows immediately from Lemmas 2.8.2 and 2.8.5.

The running time of PROLONGATETREE is O(n2) and contracting or deleting all edges

contained in G[V1] takes O(m) time. Note that in this new contracted graph, the vertex set

containing V1 is an independent set. Furthermore, computing the Schur complement takes

O(nω) time, giving the running time recurrence

T (n) = 2T (n/2) +O (nω) = O (nω) .

155

2.8.2 Fast Random Spanning Tree Sampling using Determinant Sparsification of Schur

complement

Next, we note that the most expensive operation from the exact sampling algorithm from

Section 2.8.1 was the Schur complement procedure. Accordingly, we will substitute in our

sparse Schur complement procedure to speed up the running time.

However, this will add some complication in applying Line 5 of EXACTTREE. To

address this, we need the observation that the SCHURSPARSE procedure can be extended to

distinguish edges from the original graph, and the Schur complement in the multi-graph that

it produces.

Lemma 2.8.6. The procedure SCHURSPARSE(G, V1, δ) given in Algorithm 4 can be mod-

ified to record whether an edge in its output, HV1 is a rescaled copy of an edge from the

original induced subgraph on V1, G[V1], or one of the new edges generated from the Schur

complement, GSC(V1).

Proof. The edges forHV1 are generated by the random walks via SAMPLEEDGESCHUR(G, V1),

whose pseudocode is given in Algorithm 3. Each of these produces a walk between two

vertices in V1, and such a walk belongs toG[V1] if it is length 1, andGSC(V1) otherwise.

We can now give our algorithm for generating random spanning trees and prove the

guarantees that lead to the main result from Theorem 2.2.3.

Note that the splitting on Line 7 is mapping T1 first back to a tree on a the sparsified

multi-graph of SC (G, V1): where the rescaled edges that originated from G[V1] are tracked

separately from the edges that arise from new edges involving random walks that go through

vertices in V2.

The desired runtime will follow equivalently to the analysis of the determinant algorithm

in Section 2.7 as we are decreasing δ proportionally to the number of vertices. It remains to

156

Algorithm 9: APPROXTREE(G, δ, n) Take a graph and output a tree randomly from a
distribution δ-close to the w-uniform distribution

Input: Graph G, error parameter δ, and initial number of vertices n
Output: A tree randomly generated from a distribution δ-close to the w-uniform

distribution of G
1 V2 ← ALMOSTINDEPENDENT(G, 1

10
); {Via Lemma 2.6.2}

2 H1 ← SCHURSPARSE(G, V1, δ · |V1|/n)), while tracking whether the edge is from
G[V1] via the modifications from Lemma 2.8.6 ;

3 T1 = APPROXTREE(H1, δ, n);
4 G′ ← G ;
5 for each e ∈ T1 do
6 if RAND[0, 1] ≤ worie (G1)/we(G1) then

{worie (G1) is calculated using the weights tracked from Line 2);
7 G′ ← G′/{e} ;
8 T ← T ∪ {e};

9 Delete all edges between (remaining) vertices in V1 in G′, G′ ← G′ \ E(G′[V1]) ;
10 H2 ← SCHURSPARSE(G′, V2, δ · |V2|/n) ;
11 T2 = APPROXTREE(H2, δ, n);
12 T ← T ∪ PROLONGATETREE(G, V1 t V2, T2) ;
13 Output T ;

bound the distortion to the spanning tree distribution caused by the calls to SCHURSPARSE.

Bounds on this distortion will not follow equivalently to that of the determinant al-

gorithm, which also substitutes SCHURSPARSE for exact Schur complements, due to the

dependencies in our recursive structure. In particular, while the calls to SCHURSPARSE

are independent, the graphs that they are called upon depend on the randomness in Line 6

and PROLONGATETREE, which more specifically, are simply the resulting edge contrac-

tions/deletions in previously visited vertex partitions within the recursion. Each subgraph

SCHURSPARSE is called upon is additionally dependent on the vertex partitioning from

ALMOSTINDEPENDENT.

The key idea to our proof will then be a layer-by-layer analysis of distortion incurred by

SCHURSPARSE at each layer to the probability of sampling a fixed tree. By considering an

alternate procedure where we consider exactly sampling a random spanning tree after some

layer, along with the fact that our consideration is restricted to a fixed tree, this will allow us

157

to separate the randomness incurred by calls to SCHURSPARSE from the other sources of

randomness mentioned above. Accordingly, we will provide the following definition.

Definition 2.8.7. For any L ≥ 0, the level-L truncated algorithm is the algorithm given by

modifying APPROXTREE(G, δ, n) so that all computations of sparsified Schur complements

are replaced by exact calls to Schur complements (aka. SC (G, V1) or SC (G′, V2))) after

level l.

The tree distribution T (L) is defined as the output of the level-L truncated algorithm.

Note that in particular, T (0) is the tree distribution produced by EXACTTREE(G), or the

w-uniform distribution; while T (O(logn)) is the distribution outputted by APPROXTREE(G, δ).

The primary motivation of this definition is that we can separate the randomness between

T (l) and T (l+1) by only the calls to SCHURSPARSE at level l+ 1, which will ultimately give

the following lemma that we prove at the end of this section

Lemma 2.8.8. For an invocation of APPROXTREE on a graph G with variance bound δ,

for any layer L > 0, we have

dTV
(
T (L−1), T (L)

)
≤ O(

√
δ).

To begin, we consider the differences between T (0) and T (1) and the probability of

sampling a fixed tree T̂ on a recursive call on G. The most crucial observation is that the

two recursive calls to APPROXTREE(G1, δ, n) and APPROXTREE(G2, δ, n) can be viewed

as independent:

Claim 2.8.9. For a call to APPROXTREE(G, δ, n) (Algorithm 9) to return T̂ , there is only

one possible choice of G′ as generated via Lines 4 to 9.

Proof. Note that the edges removed from Line 7 are precisely the edges in T with both

endpoints contained in V1, E(T [V1]). For a fixed T̂ , this set is unique, so G′ is unique as

well.

158

This allows us to analyze a truncated algorithm by splitting the probabilities into those

that occur at level l or above. Specifically, at the first level, this can be viewed as pairs of

graphs SC (G, V1) and SC (G, V2) along with the ‘intended’ trees from them:

Definition 2.8.10. We define the level-one probabilities of returning a pair of trees T1 and

T2 that belong a pair of graphs G1, G2,

p(≤1)
(

(G,G1, G2) , (T1, T2) , T̂
)
.

as the product of:

1. The probability (from running ALMOSTINDEPENDENT) that G is partitioned into

V1 t V2 so that SC (G, V1) = G1 and SC (G′, V2) = G2, where G′ is G with the edges

T ∩G[V1] contracted and all other edges in G[V1] are deleted.

2. The probability that T1 is mapped to T̂ [V1] in Line 6.

3. The probability that T2 is mapped to T̂ /T̂ [V1] by the call to PROLONGATETREE on

Line 12.

This definition then allows us to formalize the splitting of probabilities above and below

level 1. More importantly, we note that if we instead call SCHURSPARSE to generate

G1 and G2, this will not affect the level-one probability because (1) both the calls to

ALMOSTINDEPENDENT and PROLONGATETREE do not depend on G1 and G2, and (2) we

can consider T1 to be drawn from the multi-graph of G1 where we track which edges are

from the original graph and which were generated by the Schur complement.

Consequently, the only difference between the distributions T (0) and T (1) will be the

distortion of drawing T1 and T2 from G1 and G2 vs the sparsified version of G1 and G2. This

handling of sparsifiers of the Schur complements is further simplified with by the following

observation:

159

Claim 2.8.11. The output of SCHURSPARSE(G, V ′, δ) is identical to the output of

IDEALSPARSIFY
(
SC (G, V ′) , τ̃ , n2δ−1

)
,

for some set of 1.1-approximate statistical leverage scores of SC (G, V ′), τ̃ .

This can be seen by revisiting the Schur complement sparsification and rejection sam-

pling algorithms from Section 2.6 and 2.5.3 which show that this statement also extends to

the approximate Schur complements produced on lines 2 and 10 of Algorithm 9.

This means we can letH1 andH2 denote the distribution produced by IDEALSPARSIFY

on G1 and G2 respectively.

Lemma 2.8.12. There exists a collection of graphs and tree pairs (~G, ~T)≤1 such that for

any tree T̂ , with the probabilities given above in Definition 2.8.10 we have:

PrT
(0)
(
T̂
)

=
∑

((G,G1,G2),(T1,T2))∈(G,T)(≤1)

p(≤1)
(

(G,G1, G2) , (T1, T2) , T̂
)

· PrG1 (T1) · PrG2 (T2) .

and

PrT
(1)
(
T̂
)

=
∑

((G,G1,G2),(T1,T2))∈(G,T)(≤1)

p(≤1)
(

(G,G1, G2) , (T1, T2) , T̂
)

· E [H1 ∈ H1]PrH1 (T1) · E [H2 ∈ H2]PrG2 (T2).

We can then in turn extend this via induction to multiple levels. It is important to note

that in comparing the distributions T (L−1) and T (L) for L ≥ 1 both will make calls to

IDEALSPARSIFY through level L. We will then need to additionally consider the possible

graphs generated by sparsification through level L, then restrict to the corresponding exact

graphs at level L+ 1.

160

Definition 2.8.13. We will use ~G(≤L), ~T (L) to denote a sequence of graphs on levels up to

L − 1, plus the peripheral exact Schur complements on level L, along with the spanning

trees generated on these peripheral graphs.

As these graphs and trees can exist on different vertex sets, we will use (~G, ~T)(≤L) to

denote the set of graph/tree pairs that are on the same set of vertices. For a sequence of

graphs ~G≤L and a sequence of trees on their peripherals, ~TL, we will use

p(≤L)
(
~G(≤L), ~T (L), T̂

)

to denote the product of the probabilities of the level-by-level vertex split and resulting

trees mapping back correctly as defined in Definition 2.8.10, times the probabilities that the

subsequent graphs are generated as sparsifiers of the ones above

Furthermore, we will use ~G(L) to denote just the peripheral graphs, and ~H(~G(L)) to

denote the product distribution over sparsifiers of these graphs, and ~H(L) to denote one

particular sequence of such sparsifiers on this level. We can also define the probabilities of

trees being picked in a vector-wise sense:

Pr
~G(L)

(
~T (L)

)
def
=
∏
j

Pr
~G

(L)
j

(
~T

(L)
j

)
, Pr

~H(L)
(
~T (L)

)
def
=
∏
j

Pr
~H

(L)
j

(
~T

(L)
j

)
.

Applying Lemma 2.8.12 inductively then allows us to extend this to multiple levels.

Corollary 2.8.14. There exists a collection of graphs and tree pairs (~G, ~T)(≤L) such that

for any tree T̂ we have:

PrT
(L−1)

(
T̂
)

=
∑

(~G(≤L), ~T (L))∈(G,T)(≤L)

p(≤L)
(
~G(≤L), ~T (L), T̂

)
· Pr ~G(L)

(
~T (L)

)
,

161

and

PrT
(L)
(
T̂
)

=
∑

(~G(≤L), ~T (L))∈(G,T)(≤L)

p(≤L)
(
~G(≤L), ~T (L), T̂

)
· E
[
~H(L) ∼ ~H

(
G(L)

)]
Pr

~H(L)
(
~T (L)

)
.

This reduces our necessary proof of bounding the total variation distance between T (L−1)

and T (L) to examining the difference between

Pr
~G(L)

(
~T (L)

)
and E

[
~H(L) ∼ ~H

(
G(L)

)]
Pr

~H(L)
(
~T (L)

)
.

Recalling the definition of Pr ~H
(L)

(~T (L)): we have that the inverse of each probability

in the expectation is

Pr
~H

(L)
j

(
~T

(L)
j

)−1

=
T ~H(L)

j

w
~H

(L)
j

(
~T

(L)
j

) ,
and we have concentration bounds for the total trees in ~H

(L)
j . However, it is critical to note

that this probability is 0 (and cannot be inverted) when ~T
(L)
j is not contained in ~H

(L)
j for

some j.

This necessitates extending our concentration bounds to random graphs where we condi-

tion upon a certain tree remaining in the graph. This will be done in the following Lemma,

proven in Section 2.9, and we recall that we set s such that δ = O(n
2

s
) in SCHURSPARSE.

Lemma 2.8.15. Let G be a graph on n vertices and m edges, τ̃ be an 1.1-approximate

estimates of leverage scores, s be a sample count such that s ≥ 4n2 and m ≥ s2

n
. Let H

denote the distribution over the outputs of IDEALSPARSIFY(G, τ̃ , s), and for a any fixed

spanning T̂ , letH|T denote the distribution formed by conditioning on the graph containing

T̂ . Then we have:

P [H ∼ H] T̂ ⊆ H
−1
· E
[
H|T̂ ∼ H|T̂

]
PrH|T̂

(
T̂
)−1

=

(
1±O

(
n2

s

))
PrG

(
T̂
)−1

,

162

and

P [H ∼ H] T̂ ⊆ H
−2
· Var

[
H|T̂ ∼ H|T̂

]
PrH|T̂

(
T̂
)−1

≤ O

(
n2

s

)
PrG

(
T̂
)−2

.

Due to the independence of each call to IDEALSPARSIFY, we can apply these concentra-

tion bounds across the product

Pr
~H(L)

(
~T (L)

)
=
∏
j

Pr
~H

(L)
j

(
~T

(L)
j

)

and use the fact that δ decreases proportionally to vertex size in our algorithm:

Corollary 2.8.16. For any sequence of peripheral graphs ~G(l), with associated sparsifier

distribution HS , and any sequence of trees ~T (L) as defined in Definition 2.8.13 such that

Pr
~G(L)

(~T (L)) > 0, we have

P
[
~H(L) ∼ ~H

(
G(L)

)]
Pr

~H(L)
(
~T (L)

)−1

· E
[
~H(L) ∼ ~H

(
G(L)

) ∣∣∣Pr ~H(L)
(
~T (L)

)
> 0

]
Pr

~H(L)
(
~T (L)

)−1

= (1± δ)Pr ~G(L)
(
~T (L)

)−1

,

and

P
[
~H(L) ∼ ~H

(
G(L)

)]
Pr

~H(L)
(
~T (L)

)−2

· E
[
~H(L) ∼ ~H

(
G(L)

) ∣∣∣Pr ~H(L)
(
~T (L)

)
> 0

]
Pr

~H(L)
(
~T (L)

)−2

≤ (1 + δ)Pr
~G(L)

(
~T (L)

)−2

.

Proof. The independence of the calls to IDEALSPARSIFY, and the definition of

Pr
~G(L)

(
~T (L)

)
def
=
∏
j

Pr
~G

(L)
j

(
~T

(L)
j

)
, Pr

~H(L)
(
~T (L)

)
def
=
∏
j

Pr
~H

(L)
j

(
~T

(L)
j

)
.

163

Applying Lemma 2.8.15 to each call of IDEALSPARSIFY, where swas set such that δ/n = n2

s

gives gives that the total error bounded by

exp

(∑
j

∣∣V (G(L)
)∣∣

n

)
,

and the bound then follows form the total size of each level of the recursion being O(n̄).

It then remains to use concentration bounds on the inverse of the desired probability to

bound the total variation distance, which can be done by the following lemma which can be

viewed as an extension of Lemma 2.4.7, and is also proven in Section 2.10.

Lemma 2.8.17. Let U be a distribution over a universe of elements, u, each associated with

random variable Pu such that

E [u ∼ U]E []Pu = 1,

and for each Pu we have

1. Pu ≥ 0, and

2. P []Pu > 0−1 · E [p ∼ Pu |p > 0] p−1 = 1± δ, and

3. P []Pu > 0−2E [p ∼ Pu |p > 0] p−2 ≤ 1 + δ,

then

E [u ∼ U] |1− E []Pu| ≤ O
(√

δ
)
.

To utilize this lemma, we observe that the values

p(≤L)
(
~G(≤L), ~T (L), T̂

)
· Pr ~G(L)

(
~T (L)

)

forms a probability distribution over tuples ~G(≤L), ~T (L), T̂ , while the distributionH(~G(L)),

once rescaled, can play the role of Pu. Decoupling the total variation distance per tree into

164

the corresponding terms on pairs of ~G(≤L), ~T (L) then allows us to bound the overall total

variation distance between T (L−1) and T (L).

Proof of Lemma 2.8.8. By the definition of total variation distance

dTV
(
T (L−1), T (L)

)
=
∑
T̂

∣∣∣PrT (L−1)
(
T̂
)
− PrT (L)

(
T̂
)∣∣∣ .

By Corollary 2.8.14 and triangle inequality we can then upper bound this probability by

dTV
(
T (L−1), T (L)

)
≤
∑
T̂

∑
(~G(≤L), ~T (L))∈(G,T)(≤L)

p(≤L)
(
~G(≤L), ~T (L), T̂

)
·
∣∣∣Pr ~G(L)

(
~T (L)

)
− E

[
~H(L) ∼ ~H

(
G(L)

)]
Pr

~H(L)
(
~T (L)

)∣∣∣ .
The scalar p(≤L)(~G(≤L), ~T (L), T̂) is crucially the same for each, and the inner term in the

summation is equivalent to

|p(≤L)
(
~G(≤L), ~T (L), T̂

)
· Pr ~G(L)

(
~T (L)

)
− p(≤L)

(
~G(≤L), ~T (L), T̂

)
· E
[
~H(L) ∼ ~H

(
G(L)

)]
Pr

~H(L)
(
~T (L)

)
|

Our goal is to use Lemma 2.8.17 where U here is the distribution over tuples (~G(L), ~T (L), T̂)

with density equaling:

p(≤L)
(
~G(≤L), ~T (L), T̂

)
· Pr ~G(L)

(
~T (L)

)
,

and Pu is the distribution over the corresponding value ofH(~G(L)), with the same density,

and values equaling to:

Pr
~G(L)

(
~T (L)

)−1

Pr
~H(L)

(
~T (L)

)
.

165

Note that the fact that each ~TL maps back to some tree T̂ imply that U is a distribution, as

well as E [u ∼ U]E []Pu = 1. A rescaled version of Corollary 2.8.16 then gives the required

conditions for Lemma 2.8.17, which in turn gives the overall bound.

Proof of Theorem 2.2.3. The running time follows the same way as the analysis of the

determinant estimation algorithm in the Proof of Theorem 2.2.2 at the end of Section 2.7.

For correctness, the total variation distance bound is implied by appropriately setting

δ, and then invoking the per-layer bound from Lemma 2.8.8. Note that factors of log n are

absorbed by the Õ notation.

Finally, note that for simplicity our analysis of total variation distance does not account

for the failure probability of Lemma 2.3.4. To account for these, we can simply use the fact

that only O(n log n) calls to SCHURSPARSE are made. Hence, the probability of any call

failing is polynomially small, which can be absorbed into the total variation distance.

2.9 Conditional Concentration Bounds

In this section, we extend our concentration bounds to conditioning on a certain tree being

in the sampled graph, specifically with the goal of proving Lemma 2.8.15. By edge splitting

arguments similar to those in Section 2.5.2, it suffices to analyze the case where all edges

have about the same leverage score.

Lemma 2.9.1. Let G be a graph on n vertices and m edges such that all edges have

statistical leverage scores τ e ≤ 2n
m

, and s be a sample count such that s ≥ 4n2 and m ≥ s2

n
.

Let H be a subgraph containing s edges picked at random without replacement, and letH

denote this distribution over subgraphs on s edges. Furthermore for any fixed spanning tree,

T̂ , let H|T denote the distribution induced by those in H that contain T̂ , and use H|T̂ to

166

denote such a graph, then

P [H ∼ H] T̂ ⊆ H
−1
· E
[
H|T̂ ∼ H|T̂

]
PrH|T̂

(
T̂
)−1

=

(
1±O

(
n2

s

))
PrG

(
T̂
)−1

,

and

P [H ∼ H] T̂ ⊆ H
−2
· Var

[
H|T̂ ∼ H|T̂

]
PrH|T̂

(
T̂
)−1

≤ O

(
n2

s

)
PrG

(
T̂
)−2

.

Note that the ‘uniform leverage score’ requirement here is not as strict as the analysis

from Lemma 2.5.2. This is because we’re eventually aiming for a bound of s ≈ n2 samples.

This also means that constant factor leverage score approximations suffices for this routine.

The starting point of this proof is the observation that because we’re doing uniform

sampling, the only term in

PrH|T̂
(
T̂
)

=
wH|T̂

(
T̂
)

TH|
T̂

=
wG
(
T̂
)

TH|
T̂

that is dependent on H|T̂ is TH|
T̂

. The proof will then follow by showing concentration

of this variable which will be done similarly to the concentration of TH that was done in

Section 2.4 and 2.5.

The primary difficulty of extending the proof will come from the fact that trees will

have different probabilities of being in the sampled graph depending on how many edges

they share with T̂ . Much of this will be dealt with by the assumption that s ≥ 4n2, which

makes the exponential terms in the probabilities associated with a tree being in a sampled

graph negligible. Additionally, this assumption implies that for any fixed tree T̂ the expected

number of edges it shares with a random tree is close to 0. As a result, trees that intersect

with T̂ will have negligible contributions, and our analysis can follow similarly to that in

Section 2.4 and 2.5.

We further note that due to the larger sample count of s ≥ 4n2, the concentration bounds

167

in this section will also hold, and would in fact be slightly simpler to prove, if the edges

were sampled independently with probability s/m. We keep our assumption of sampling s

edges globally without replacement though in order to avoid changing our algorithm, and

the analysis will not require much additional work.

The section will be organized as follows: In Section 2.9.1 we give upper and lower

bounds on the expectation of TH|
T̂

. In Section 2.9.2 we give an upper bound on the variance

of TH|
T̂

. In Section 2.9.3 we combine the bounds from the previous two sections to prove

Lemma 2.9.1.

2.9.1 Upper and Lower Bounds on Conditional Expectation

In order to prove upper and lower bounds on E
[
H|T̂

]
TH|

T̂
, we will first give several helpful

definitions, corollaries, and lemmas to assist in the proof. Our examination of E
[
H|T̂

]
TH|

T̂

will require approximations of P
[
H|T̂

]
T ⊆ H|T̂ , and, as we are now fixing n− 1 edges

and drawing s− n+ 1 edges from the remaining m− n+ 1 edges, each edge will now have

probability s−n+1
m−n+1

of being in the sampled graph. We will denote this probability with

p̂
def
=

s− n+ 1

m− n+ 1
.

It will often be easier to exchange p̂ for

p
def
=

s

m
,

the probability of a single edge being picked without the conditioning on T̂ . The errors of

doing so is governed by:

(
1− n

s

)
p =

s− n
m
≤ s− n+ 1

m− n+ 1
= p̂ ≤ s

m
= p. (2.4)

168

We remark that these errors turn out to be acceptable even when p̂ is raised to the O(n)

power.

Furthermore, our assumption of s ≥ 4n2 implies that we expect a randomly chosen tree

not to intersect with T̂ . This will often implicitly show up in the form of the geometric

series below, for which a bound is immediately implied by our assumption.

Lemma 2.9.2. If s ≥ 4n2, then

∞∑
k=1

(
2n2

s

)k
= O

(
n2

s

)
.

The change in our sampling procedure will alter the formulation of P
[
H|T̂

]
T ⊆ H|T̂ ,

so we first want to write E
[
H|T̂

]
TH|

T̂
in terms of values that we are familiar with while only

losing small errors. Additionally, many of the exponential terms in the previous analysis

will immediately be absorbed into approximation error by our assumption that s ≥ 4n2.

Lemma 2.9.3. Let G be a graph on n vertices and m edges and s a value such that m ≥ s2

n
,

Fix some tree T̂ ∈ G. For a random subset of s ≥ 4n2 edges containing T̂ , H|T̂ ⊇ T̂ , we

have

E
[
H|T̂

]
TH|

T̂
=

(
1−O

(
n2

s

)) n−1∑
k=0

pn−1−k
∑

T : |T∩T̂ |=k
w(T),

where p = s/m is the probability of each edge being picked in the sample.

Proof. Given that all edges of T̂ are in H|T̂ , the remaining s − n + 1 edges are chosen

uniformly from all m − n + 1 edges not in T̂ . Accordingly, for any tree T ∈ G, the

probability P
[
H|T̂

]
T ⊆ H|T̂ is obtained by dividing the number of subsets of s− n + 1

edges that contain all edges in T \ T̂ , against the number of subsets of s− n+ 1 edges from

m− n+ 1:

P
[
H|T̂

]
T ⊆ H|T̂ =

(m− n+ 1−
∣∣∣T \ T̂ ∣∣∣

s− n+ 1−
∣∣∣T \ T̂ ∣∣∣

)
/

(
m− n+ 1

s− n+ 1

)
=

(s− n+ 1)|T\T̂ |
(m− n+ 1)|T\T̂ |

.

169

Following the proof Lemma 2.4.1, this reduces to

P
[
H|T̂

]
T ⊆ H|T̂ = p̂|T\T̂ | exp

−
∣∣∣T \ T̂ ∣∣∣2

2s
−O

(
n3

s2

) ,

which we can further reduce using the assumption of s ≥ 4n2 to:

P
[
H|T̂

]
T ⊆ H|T̂ =

(
1−O

(
n2

s

))
p̂|T\T̂ |,

and in turn obtain via linearity of expectation:

E
[
H|T̂

]
TH|

T̂
=

(
1−O

(
n2

s

))∑
T

w(T)p̂|T\T̂ |.

We then subdivide the summation based on the amount of edges in the intersection of T

and T̂ and move our p̂ term inside the summation

E
[
H|T̂

]
TH|

T̂
=

(
1−O

(
n2

s

)) n−1∑
k=0

p̂n−1−k
∑

T :T∩T̂=k

w(T).

Finally, we can use Equation 2.4 to replace p̂ by p because

1 ≥
(

1− n

s

)n
≥
(

1− 2n2

s

)

where n2s < 0.1.

We will also require a strong lower bound of the expectation. The following lemma

shows that most of the trees do not intersect with T̂ . Restricting our consideration to such

trees will be much easier to work in obtaining the lower bound on E
[
H|T̂

]
TH|

T̂
.

Lemma 2.9.4. Let G be a graph on n vertices and m edges such that m ≥ 4n2 and all

170

edges have statistical leverage scores ≤ 2n
m

. For any tree T̂ ∈ G.

∑
T : |T∩T̂ |=0

w(T) ≥
(

1−O
(
n2

s

))
TG.

Proof. By definition, we can classify the trees by their intersection with T̂ :

TG =
n−1∑
k=0

∑
T : |T∩T̂ |=k

w(T).

Consider each inner summation and further separating into each possible forest of T̂ with k

edges gives:

∑
T : |T∩T̂ |=k

w(T) =
∑
F⊆T̂
|F |=k

∑
T

F=T∩T̂

w(T) ≤
∑
F⊆T̂
|F |=k

∑
T :F⊆T

w(T).

Invoking Lemma 2.4.4 on the inner summation and the fact that there are
(
n−1
k

)
forests

of T̂ with k edges, gives an upper bound of

∑
T : |T∩T̂ |=k

w(T) ≤
(
n− 1

k

)
TG
(

2n

m

)k
≤ TG

(
2n2

m

)k
.

We will utilize this upper bound for all k > 0 and achieve a lower bound from rearranging

our initial summation

∑
T : |T∩T̂ |=0

w(T) = TG −
n−1∑
k=1

∑
T : |T∩T̂ |=k

w(T) ≥ TG

(
1−

n−1∑
k=1

(
2n2

m

)k)
.

Applying the assumption of m ≥ 4n2 and Lemma 2.9.2 gives our desired result.

With the necessary tools in place, we will now give upper and lower bounds on the

expectation in terms of TGpn−1, which we note is also a close approximation of E [H] TH

171

by our assumption that s ≥ 4n2.

Lemma 2.9.5. Let G be a graph on n vertices and m edges such that all edges have

statistical leverage scores ≤ 2n
m

, and let s be such that m ≥ s2

n
. Fix some tree T̂ ∈ G. For a

random subset of s ≥ 4n2 edges that contain T̂ , H|T̂ ⊆ T̂ we have:

E
[
H|T̂

]
TH|

T̂
=

(
1±O

(
n2

s

))
TGpn−1.

Proof. We will first prove the upper bound. From Lemma 2.9.3 we have

E
[
H|T̂

]
TH|

T̂
≤

n−1∑
k=0

pn−1−k
∑

T : |T∩T̂ |=k
w (T) ,

while a proof similar to Lemma 2.9.4 gives

∑
T : |T∩T̂ |=k

w(T) ≤ TG
(

2n2

m

)k
.

Moving pn−1 outside the summation and substituting s
m

for p gives

E
[
H|T̂

]
TH|

T̂
≤ TGpn−1

n−1∑
k=0

(
2n2

s

)k
,

and applying Corollary 2.9.2 to upper bound the summation gives

E
[
H|T̂

]
TH|

T̂
≤
(

1 +O

(
n2

s

))
TGpn−1.

For the lower bound, we again first using Lemma 2.9.3 and then restrict to trees that do

172

not intersect T̂ using Lemma 2.9.4. Formally we have:

E
[
H|T̂

]
TH|

T̂
=

(
1−O

(
n2

s

)) n−1∑
k=0

pn−1−k
∑

T : |T∩T̂ |=k
w (T)

≥
(

1−O
(
n2

s

))
pn−1

∑
T : |T∩T̂ |=0

w (T) ≥
(

1−O
(
n2

s

))
pn−1TG.

2.9.2 Upper Bound on Conditional Variance

The bound on variance is by upper bounding E
[
H|T̂

]
T 2
H|

T̂
in a way similar to Lemma 2.4.6.

Once again, the assumption of s > 4n2 means the situation is simpler because the exponen-

tial term is negligible.

As with the proof of Lemma 2.4.6, we will often separate summations of pairs of trees

based upon the number of edges in their intersection, then frequently invoke Lemma 2.4.4.

However there will be more moving pieces in each summation due to intersections with T̂ ,

so Lemma 2.9.7 proven later in this section, which is analogous to Lemma 2.4.5, will be

much more involved.

Lemma 2.9.6. Let G be a graph on n vertices and m edges such that all edges have

statistical leverage scores ≤ 2n
m

, and s a sample count such that m ≥ s2

n
. For some tree

T̂ ∈ G, let H|T̂ denote a random subset of s edges such that T̂ ⊆ H|T̂ , then:

E
[
H|T̂

]
T 2
H|

T̂

E
[
H|T̂

]
TH|

T̂

2 ≤
(

1 +O

(
n2

s

))
.

Proof. By analogous reasoning to the proof in Lemma 2.9.3, for any pair of trees T1, T2 ∈ G

173

we have

P
[
H|T̂

]
T1, T2 ⊆ H|T̂ =

(m− n+ 1−
∣∣∣(T1 ∪ T2) \ T̂

∣∣∣
s− n+ 1−

∣∣∣(T1 ∪ T2) \ T̂
∣∣∣
)
/

(
m− n+ 1

s− n+ 1

)

=
(s− n+ 1)|(T1∪T2)\T̂ |
(m− n+ 1)|(T1∪T2)\T̂ |

.

As a consequence of Equation 2.4, specifically the bound s−k
m−k ≤

s
m

when k ≥ 0, we

can obtain the upper bound

P
[
H|T̂

]
T1, T2 ⊆ H|T̂ ≤ p|(T1∪T2)\T̂ |,

and in turn summing over all pairs of trees:

E
[
H|T̂

]
T 2
H|

T̂
≤
∑
T1,T2

w (T1)w (T2) p|(T1∪T2)\T̂ |.

We note that |(T1 ∪ T2) \ T̂ | = |T1 \ T̂ | + |T2 \ T̂ | − |(T1 ∩ T2) \ T̂ |. Furthermore,

|T1 \ T̂ | = n− 1− |T1 ∩ T̂ , so we separate the summation as per usual by each possible

size of |T1 ∩ T̂ | and |T2 ∩ T̂ |, and bring the terms outside of the summation that only depend

on these values.

E
[
H|T̂

]
T 2
H|

T̂
≤ p2n−2

∑
k1,k2

p−k1−k2

∑
T1,T2

|T1∩T̂ |=k1

|T2∩T̂ |=k2

w (T1)w (T2) p−(T1∩T2)\T̂ .

In order to deal with the inner most summation we will need to again separate based on the

174

size of |(T1 ∪ T2) \ T̂ |, and we further note that |(T1 ∩ T2) \ T̂ | = |(T1 \ T̂) ∩ (T2 \ T̂)|:

E
[
H|T̂

]
T 2
H|

T̂
≤ p2n−2

∑
k1,k2

p−k1−k2

n−1∑
k=0

p−k
∑
T1,T2

|T1∩T̂ |=k1

|T2∩T̂ |=k2

|(T1\T̂)∩(T2\T̂)|=k

w (T1)w (T2) .

The last term is bounded in Lemma 2.9.7, which is stated and proven immediately after this.

Incorporating the resulting bound, and grouping the terms by the summations over k1, k2,

and k respectively gives:

E
[
H|T̂

]
T 2
H|

T̂
≤ p2n−2

∑
k1,k2

p−k1−k2

n−1∑
k=0

p−k
(
m

k

)(
n

k1

)(
n

k2

)(
2n

m

)2k+k1+k2

T 2
G

= T 2
Gp

2n−2

(
n−1∑
k1=0

p−k1

(
n

k1

)(
2n

m

)k1
)

·

(
n−1∑
k2=0

p−k2

(
n

k2

)(
2n

m

)k2
)(

n−1∑
k=0

p−k
(
m

k

)(
2n

m

)2k
)
.

We then plug in s
m

for p in each summation and use the very crude upper bound
(
a
b

)
≤ ab:

E
[
H|T̂

]
T 2
H|

T̂
≤ T 2

Gp
2n−2

(
n−1∑
k1=0

(
2n2

s

)k1
)(

n−1∑
k2=0

(
2n2

s

)k2
)(

n−1∑
k=0

(
2n2

s

)k)
.

Lemma 2.9.2 then upper bounds each summation by 1 +O(n2/s), giving

E
[
H|T̂

]
T 2
H|

T̂
≤
(

1 +O

(
n2

s

))
T 2
Gp

2n−2.

It remains to prove the following bound on the number of of pairs of trees with a certain

intersection size with T̂ , and each other. The following Lemma is a generalization to

Lemma 2.4.5, and is proven analogously using the negative correlation of edges in spanning

175

trees from Fact 2.4.3 and Lemma 2.4.4.

Lemma 2.9.7. Let G be graph with m edges and n vertices such that every edges has

leverage score ≤ 2n
m

. For any tree T̂ ∈ G and any integers k, k1, k2 ∈ [0, n− 1],

∑
T1,T2

|T1∩T̂ |=k1

|T2∩T̂ |=k2

|(T1\T̂)∩(T2\T̂)|=k

w (T1)w (T2) ≤
(
m

k

)(
n

k1

)(
n

k2

)(
2n

m

)2k+k1+k2

T 2
G .

Proof. We will first separate the summation over all possible forests F of size k that could

be the intersection of T1 \ T̂ and T2 \ T̂ :

∑
T1,T2

|T1∩T̂ |=k1

|T2∩T̂ |=k2

|(T1\T̂)∩(T2\T̂)|=k

w (T1)w (T2) =
∑
F⊆E
|F |=k

∑
T1,T2

|T1∩T̂ |=k1

|T2∩T̂ |=k2

F=(T1\T̂)∩(T2\T̂)

w (T1)w (T2) .

We first consider the inner summation, and will relax the requirement to only needing

F ⊆ (T1 \ T̂) ∩ (T2 \ T̂),

which we note is equivalent to F ⊆ (T1 \ T̂) and F ⊆ (T2 \ T̂). This then allows us to

separate the summation again for a particular F into terms involving just T1 and T2:

∑
T1,T2

|T1∩T̂ |=k1

|T2∩T̂ |=k2

F=(T1\T̂)∩(T2\T̂)

w (T1)w (T2) ≤


∑

T1: |T1∩T̂ |=k1

F⊆(T1\T̂)

w (T1)




∑
T2: |T2∩T̂ |=k2

F⊆(T2\T̂)

w (T2)

 .

We further examine the first term in the product, and the second will follow equivalently.

Once again, we will split the summation by all possible forests F̂ of T̂ with size k1 that

176

T1 \ T̂ could intersect in, and further relax to them only having to contain F̂ .

∑
T1: |T1∩T̂ |=k1

F⊆(T1\T̂)

w (T1) ≤
∑
F̂⊆T̂
|F̂ |=k1

∑
T1

F̂⊆(T1∩T̂)

F⊆(T1\T̂)

w (T1) .

Since T1 ∩ T̂ and T1 \ T̂ are disjoint, we can restrict to F̂ that are disjoint from F , as

well as relaxing to requiring (F̂ ∪ F) ⊆ T1 (instead of F̂ ⊆ (T1 ∩ T̂) and F ⊆ (T1 \ T̂)):

∑
T1: |T1∩T̂ |=k1

F⊆(T1\T̂)

w (T1) ≤
∑
F̂⊆T̂
|F̂ |=k1

(F̂∩F)=∅

∑
(F̂∪F)⊆T

w (T) .

The assumption of F̂ and F being disjoint means their union must have exactly k+k1 edges.

We can then apply Lemma 2.4.4 to the inner summation and use the fact that there are at

most
(
n−1
k1

)
sets F̂ to achieve the upper bound

∑
T1: |T1∩T̂ |=k1

F⊆(T1\T̂)

w (T1) ≤
(
n

k1

)(
2n

m

)k+k1

TG.

Similarly, we can also obtain

∑
T2: |T2∩T̂ |=k2

F⊆(T2\T̂)

w (T2) ≤
(
n

k2

)(
2n

m

)k+k2

TG,

which, along with the fact that there are
(
m
k

)
edge sets F of size k, gives our desired

bound.

177

2.9.3 Concentration of Inverse Probabilities

We now complete a proof of Lemma 2.9.1 using the concentration results on the number of

trees in a sampled graph, conditioned upon a certain tree being contained in the graph.

Proof of Lemma 2.9.1. The definition of

PrH|T̂
(
T̂
)−1

=
TH|

T̂

w(T̂)

and Lemma 2.4.1 give

P [H ∼ H] T̂ ⊆ H
−1
· E
[
H|T̂ ∼ H|T̂

]
PrH|T̂

(
T̂
)−1

=

(
1

p

)n−1

exp

(
n2

2s
+O

(
n3

s2

)) E
[
H|T̂ ∼ H|T̂

]
TH|

T̂

w
(
T̂
) .

Our condition of s ≥ 4n2 allows us to bound the term exp(n2/(2s) + O(n3/s2))

by (1 + O(n2/s)), and incorporating our approximation of E
[
H|T̂ ∼ H|T̂

]
TH|

T̂
from

Lemma 2.9.5 gives

P [H ∼ H] T̂ ⊆ H
−1
· E
[
H|T̂ ∼ H|T̂

]
PrH|T̂

(
T̂
)−1

=

(
1±O

(
n2

s

))
· TG
w
(
T̂
) ,

and the definition of PrG
(
T̂
)−1

implies the bounds on expectation.

For the variance bound, we use the identity

Var
[
H|T̂ ∼ H|T̂

]
PrH|T̂

(
T̂
)−1

=

E
[
H|T̂ ∼ H|T̂

]
PrH|T̂

(
T̂
)−2

− E
[
H|T̂ ∼ H|T̂

]
PrH|T̂

(
T̂
)−12

,

which by the definition

PrH|T̂
(
T̂
)−1

=
TH|

T̂

w(T̂)

178

reduces to

Var
[
H|T̂ ∼ H|T̂

]
PrH|T̂

(
T̂
)−1

=
E
[
H|T̂ ∼ H|T̂

]
T 2
H|

T̂
− E

[
H|T̂ ∼ H|T̂

]
TH|

T̂

2

w
(
T̂
)2 ≤ O

(
n2

s

)
· T

2
Gp

2n−2

w(T̂)2
,

where the last inequality is from incorporating Lemmas 2.9.5 and 2.9.6. Applying Lemma 2.4.1,

and once again using the condition of s ≥ 4n2 to bound

exp

(
n2

2s
+O(

n3

s2

)
≤
(

1 +O

(
n2

s

))
≤ O (1)

gives:

P [H ∼ H] T̂ ⊆ H
−2
· Var

[
H|T̂ ∼ H|T̂

]
PrH|T̂

(
T̂
)−1

≤ O

(
n2

s

)
· T

2
G

w(T̂)2
,

and the variance bound follows from the definition of PrG
(
T̂
)−1

.

2.10 Bounding Total Variation Distance

In this section we will first bound the total variation distance between drawing a tree from

the w-uniform distribution of G, and uniformly sampling s edges, H , from G, then drawing

a tree from the w-uniform distribution of H . The first bound will only be based on a

concentration for the number of trees in H , and will give the Õ(n13/6) time algorithm for

sampling spanning trees from Corollary 2.4.8.

Next we will give a more general bound on the total variation distance between two

distributions based on concentration of inverse probabilities. The resulting Lemma 2.8.17

is used for proving the bound on total variation distance in the recursive algorithm given

in Section 2.8. However, as this bound requires a higher sample count of about n2, the

direct derivation of TV distances from concentration bounds is still necessary for uses of the

179

Õ(n1.5) edge sparsifier in Corollary 2.4.8.

2.10.1 Simple Total Variation Distance Bound from Concentration Bounds

We give here a proof of total variation distance being bounded based on the concentration of

spanning trees in the sampled graph.

Proof. (of Lemma 2.4.7) Substituting the definition of p and p̃ into the definition of total

variation distance gives:

dTV (p, p̃) =
∑
T̂

∣∣∣PrG (T̂)− E [H ∼ H]PrH
(
T̂
)∣∣∣ .

Substituting in the conditions of:

PrH
(
T̂
)

=
wH (T)

TH
, (by definition of PrH(T̂))

wH
(
T̂
)

= wG
(
T̂
)
· P [H ′ ∼ H] T̂ ⊆ H ′

−1
· E [H ′ ∼ H] TH′

TG
, (by given condition)

Using the fact that

E [H ∼ H]1
(
T̂ ⊆ H

)
= P [H ′ ∼ H] T̂ ⊆ H ′,

we can distribute the first term into:

dTV (p, p̃) =
∑
T̂

∣∣∣E [H ∼ H]1
(
T̂ ⊆ H

)
· P [H ′ ∼ H] T̂ ⊆ H ′

−1
· PrG

(
T̂
)
− PrH

(
T̂
)∣∣∣ ,

which by the condition on wH(T̂) simplifies to:

dTV (p, p̃) =
∑
T̂

∣∣∣∣∣∣E [H ∼ H]1
(
T̂ ⊆ H

)
·

wH
(
T̂
)

E [H ′ ∼ H] TH′
− PrH

(
T̂
)∣∣∣∣∣∣ .

180

As 1(T̂ ⊆ H) = 1 iff PrH(T̂) > 0, this further simplifies into

dTV (p, p̃) =
∑
T̂

P [H ′ ∼ H′] T̂ ⊆ H ′

∣∣∣∣∣∣E [H ∼ H|T]
wH
(
T̂
)

E [H ′ ∼ H] TH′
− PrH

(
T̂
)∣∣∣∣∣∣ ,

which by triangle inequality gives:

dTV (p, p̃) =
∑
T̂

P [H ′ ∼ H′] T̂ ⊆ H ′ · E [H ∼ H|T]

∣∣∣∣∣∣
wH
(
T̂
)

E [H ′ ∼ H] TH′
− PrH

(
T̂
)∣∣∣∣∣∣,

at which point we can rearrange the summation to obtain:

dTV (p, p̃) ≤ E [H]
∑
T̂⊆H

∣∣∣∣∣∣PrH
(
T̂
)
−

wH
(
T̂
)

E [H ′] TH′

∣∣∣∣∣∣
= E [H]

∑
T̂⊆H

wH
(
T̂
)
·
∣∣∣∣ 1

TH
− 1

E [H ′] TH′

∣∣∣∣.
which by definition of TH simplifies to:

dTV (p, p̃) ≤ E [H]

∣∣∣∣1− TH
E [H ′] TH′

∣∣∣∣.
By the Cauchy-Schwarz inequality, which for distributions can be instantiated as E [X] f(X) ≤√

E [X] f(X)2 for any random variable X and function f(X), we then get:

dTV (p, p̃) ≤

√
E [H]

(
1− TH

E [H ′] TH′

)2

=

√
E [H]

(
TH

E [H ′] TH′

)2

− 1 =
√
δ.

2.10.2 Total Variation Distance Bound from Inverse Probability Concentration

We give here our proof of Lemma 2.8.17, that is a more general bound on total variation

distance based upon concentration results of the inverse probabilities.

181

Lemma 2.10.1. Let X be a random variable such that X > 0 over its entire support, and

given some δ ≥ 0, such that E []X = (1± δ)µ and Var []X ≤ δµ2, then

P [] |X−1 − µ−1| > 4k
√
δµ−1 ≤ 1

k2

if 1 < k < δ−1/2/4

Proof. Chebyshev’s inequality gives

P [] |X − (1± δ)µ| > k
√
δµ ≤ 1

k2
.

Furthermore, if we assume X such that

|X − (1± δ)µ| ≤ k
√
δµ

which reduces to (
1− 2k

√
δ
)
µ ≤ X ≤

(
1 + 2k

√
δ
)
µ.

Inverting and reversing the inequalities gives

µ−1

1 + 2k
√
δ
≤ X−1 ≤ µ−1

1− 2k
√
δ
.

Using the fact that 1
1+ε

= 1− ε
1+ε
≤ 1− ε for ε > 0, and 1

1+ε
= 1 + ε

1−ε ≤ 1 + 2ε for

ε ≤ 1/2, we can then conclude,

(
1− 4k

√
δ
)
µ−1 ≤ X−1 ≤

(
1 + 4k

√
δ
)
µ−1,

which implies

P []
∣∣X−1 − µ−1

∣∣ > 4k
√
δµ−1 ≤ P [] |X − (1± δ)µ| > k

√
δµ

182

and proves the lemma.

This bound does not allow us to bound E [X] |X − µ because when X close to 0, the

value of X−1 can be arbitrarily large, while this bound only bounds the probability of such

events by O(δ−1). We handle this by treating the case of X small separately, and account

for the total probability of such cases via summations over I and x̂ . First we show that once

these distributions are truncated to avoid the small X case, its variance is bounded.

Lemma 2.10.2. Let Y be a random variable such that for parameters δ, µY > 0 we have

0 < Y ≤ 2µY over its entire support, and that E []Y −1 = (1± δ)µ−1
Y , Var []Y −1 ≤ δµ−2

Y ,

then

E [] |Y − µY | ≤ O
(√

δ
)
µY .

Proof. Since |Y − µY | ≤ µY , we can decompose this expected value into buckets of 2 via:

E [] |Y − µY | ≤
log(δ−1/2/4)∑

i=0

P [Y] |Y − µY | ≥ 2i
√
δµY ·

(
2i
√
δµY

)
,

where the last term is from the guarantee of Y ≤ 1. Lemma 2.10.1 gives that each of the

intermediate probability terms is bounded by O(2−2i), while the last one is bounded by 1
δ
,

so this gives a total of

E [] |Y − µ| ≤
log(δ−1/2)∑

i=0

(
2i
√
δµY

)
O
(
2−2i

)
≤
√
δµY

We can now complete the proof via an argument similar to the proof of Lemma 2.4.7 in

Section 2.10.1. The only additional step is the definition of BADu, which represents the

portion of the random variable Pu with high deviation.

Proof of Lemma 2.8.17. For each u, we define a scaling factor corresponding to the proba-

183

bility that Pu is non-zero:

pu+
def
= P [p ∼ Pu] p > 0.

By triangle inequality, we have for each Pu

|1− E []Pu| ≤ pu+ · E [p ∼ Pu |p > 0]
∣∣p−1
u+ − p

∣∣.
We will handle the case where p is close and far from p−1

u+ separately. This requires

defining the portion of Pu with non-zero values, but large variance as

BADu
def
=

{
p ∈ supp (Pu) :

∣∣p−1
u+ − p

∣∣ > 1

2
p−1
u+

}
.

Lemma 2.10.1 gives that for each u,

P [p ∼ Pu |p > 0] p ∈ BADu ≤ O
(√

δ
)
,

which with the outer distribution and factoring the value of p−1
u+ gives gives:

E [u ∼ U] pu+ · E [p ∼ Pu |p > 0]1 (p ∈ BADu) · p−1
u+ ≤ O

(√
δ
)
, (2.5)

E [u ∼ U] pu+ · E [p ∼ Pu |p > 0]1 (p /∈ BADu) · p−1
u+ ≥ 1−O

(√
δ
)
. (2.6)

We then define the ‘fixed’ distributions P̃u with the same distribution over p as Pu, but

whose values are set to p−1
u+ whenever p ∈ BADu. Lemma 2.10.2 then gives:

E
[
p ∼ P̃u |p > 0

] ∣∣p−1
u+ − p

∣∣ ≤ O
(√

δp−1
u+

)
,

or taken over the support of U , and written with indicator variables:

E [u ∼ U] pu+ · E [p ∼ Pu |p > 0]1 (p /∈ BADu) ·
∣∣p−1
u+ − p

∣∣ ≤ O
(√

δ
)
.

184

Combining this with the lower bound on the mass of p−1
u+ on the complements of the bad

sets from Equation 2.6 via the triangle inequality p ≥ p−1
u+ − |p−1

u+ − p| gives:

E [u ∼ U] pu+ · E [p ∼ Pu |p > 0]1 (p /∈ BADu) · p ≥ 1−O
(√

δ
)
,

or upon taking complement again:

E [u ∼ U] pu+ · E [p ∼ Pu |p > 0]1 (p ∈ BADu) · p ≤ O
(√

δ
)
,

which together with Equation 2.5 and the non-negativity of p−1
u+ and p gives

E [u ∼ U] pu+ · E [p ∼ Pu |p > 0]1 (p ∈ BADu) ·
∣∣p−1
u+ − p

∣∣ ≤ O
(√

δ
)
.

Combining these two summations, and invoking the triangle inequality at the start then gives

the bound.

2.11 Deferred Proofs

We now provide detailed proofs of the combinatorial facts about random subsets of edges

that are discussed briefly in Section 2.4.

Proof. (of Lemma 2.4.1)

This probability is obtained by dividing the number of subsets of s edges that contain the

n− 1 edges in T , against the number of subsets of s edges from m, which using
(
a
b

)
= (a)b

(b)b
,

gives:

(
m− n+ 1

s− n+ 1

)
/

(
m

s

)
=

(m− n+ 1)s−n+1 (s)s
(m)s (s− n+ 1)s−n+1

, (2.7)

and the two terms can be simplified by the rule (a)b/(a− k)b−k = (a)k.

Furthermore,

185

(a)b = ab
(

1− 1

a

)
· · ·
(

1− b− 1

a

)
= ab exp

(
b−1∑
i=1

ln

(
1− i

a

))

We then use the Taylor expansion of ln(1− x) = −
∑∞

i=1
xi

i
to obtain

= ab exp

(
−
∑b−1

i=1 i

a
−
∑b−1

i=1 i
2

2a2
−
∑b−1

i=1 i
3

3a3
−

)
= ab exp

(
− b

2

2a
−O

(
b3

a2

))

Substituting into (s)n−1

(m)n−1
gives

pn−1 exp

(
−n

2

2s
+
n2

2m
−O

(
n3

s2

)
+O

(
n3

m2

))
= pn−1 exp

(
−n

2

2s
−O

(
n3

s2

))

where n2

2m
is absorbed by O

(
n3

s2

)
because m ≥ s2

n
was assumed.

Proof. (Of Lemma 2.4.2)

As before, we have

P [H]T1, T2 ∈ H = p|T1∪T2| exp

(
−|T1 ∪ T2|2

2s
−O

(
n3

s2

))

Invoking the identity:

|T1 ∪ T2| = 2n− 2− |T1 ∩ T2|

gives

P [H]T1, T2 ∈ H = p2n−2p−k exp

(
−(2n− 2− k)2

2s
−O

(
n3

s2

))
.

Using the algebraic identity

(2n− 2− k)2 ≥ 4n2 + 4nk

186

and dropping the trailing (negative) lower order term gives:

P [H]T1, T2 ∈ H ≤ p2n−2 · p−k exp

(
−4n2

2s
+

4nk

2s

)
,

upon which we can pull out the 4n2

2s
term in the exponential to get a term that only depends

k. Grouping the p−k term together with the exp(2n
s

)k term, and using the fact that exp(t) ≤

1 + 2t when t ≤ 0.1 then gives the result.

Proof. (of Lemma 2.4.5) We first separate the summation in terms of all possible forests F

of size k that any pair of trees could intersect in

∑
T1,T2

|T1∩T2|=k

w (T1) · w (T2) =
∑
F⊆E
|F |=k

∑
T1,T2

F=T1∩T2

w (T1) · w (T2)

We then consider the inner summation, the number of pairs of trees T1, T2 with T1∩T2 =

F for some particular set F of size k. This is upper bounded by the square of the number of

trees containing F :

∑
T1,T2

F=T1∩T2

w (T1) · w (T2) ≤
∑
T1,T2

F⊆T1∩T2

w (T1) · w (T2) =

(∑
T :F⊆T

w (T)

)2

This allow us to directly incorporate the bounds from Lemma 2.4.4, and in turn the

assumption of τ e ≤ n
m

to obtain the bound:

∑
T1,T2

F=T1∩T2

w (T1) · w (T2) ≤
(
TG
(n
m

)k)2

.

Furthermore, the number of possible subsets of F is bounded by
(
m
k

)
, which can be

bounded even more crudely by mk

k!
. Incorporating this then gives:

∑
T1,T2

|T1∩T2|=k

w (T1) · w (T2) ≤ mk

k!
·
(
TG
(n
m

)k)2

= T 2
G ·

1

k!

(
n2

m

)k
.

187

188

CHAPTER 3

ON THE COMPLEXITY OF NASH EQUILIBRIA IN ANONYMOUS GAMES

This was joint work with Xi Chen and Anthi Orfanou.

3.1 Abstract

We show that the problem of finding an ε-approximate Nash equilibrium in an anonymous

game with seven pure strategies is complete in PPAD, when the approximation parameter ε

is exponentially small in the number of players.

3.2 Introduction

The celebrated theorem of Nash [114, 115] states that every game has an equilibrium point.

The concept of Nash equilibrium has been tremendously influential in economics and social

sciences ever since (e.g., see [116]), and its computation has been one the most well-studied

problems in the area of Algorithmic Game Theory. For normal form games with a bounded

number of players, much progress has been made during the past decade in understanding

both the complexity of Nash equilibrium [117, 118, 119, 120, 121, 122, 123] as well as its

efficient approximation [124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135].

In this paper we study a large and important class of succinct multiplayer games called

anonymous games (see [136, 137, 138, 139, 140] for studies of such games in the eco-

nomics literature). These are special multiplayer games in that the payoff of each player

depends only on (1) the pure strategy of the player herself, and (2) the number of other

players playing each pure strategy, instead of the full pure strategy profile. In such a game,

the (expected) payoff of a player is highly symmetric over (pure or mixed) strategies of other

players. For instance, two players switching their strategies would not affect the payoff

189

of any other player. A consequence of this very special payoff structure is that O(αnα−1)

numbers suffice to completely describe the payoff function of a player, when there are α

pure strategies shared by n players. Notably this is polynomial in the number of players

when α is bounded, and hence the game is succinctly representable. Throughout the paper,

we focus on succinct anonymous games with a bounded number of pure strategies.

Other well-studied multiplayer games with a succinct representation include graphi-

cal, symmetric, and congestion games (for more details see [141]). While graphical and

congestion games are both known to be hard to solve [142, 143, 144], there is indeed

a polynomial-time algorithm for computing an exact Nash equilibrium in a symmetric

game [141]. Because anonymous games generalize symmetric games by allowing player-

dependent payoff functions, it is a natural question to ask whether there is an efficient

algorithm for finding an (exact or approximate) Nash equilibrium in an anonymous game as

well.

Culminating in a sequence of beautiful papers [145, 146, 147, 148, 149] Daskalakis and

Papadimitriou obtained a polynomial-time approximation scheme (PTAS) for ε-approximate

Nash equilibria in anonymous games with a bounded number of strategies (see more

discussion on related work in Section 3.2.1). However, the complexity of finding an exact

Nash equilibrium in such games remains open, and was conjectured to be hard for PPAD in

[148, 149]. 1

In this paper we give an affirmative answer to the conjecture of Daskalakis and Papadim-

itriou, by showing that it is PPAD-complete to find an ε-approximate Nash equilibrium in

an anonymous game, when the approximation parameter ε is exponentially small in n. To

formally state our main result, let (α, c)-ANONYMOUS denote the problem of finding a

(2−n
c
)-approximate Nash equilibrium in an anonymous game with α pure strategies and

1When the number of pure strategies is a sufficiently large constant, an anonymous game with rational
payoffs may not have any rational equilibrium (e.g., by embedding in it a rational three-player game with
no rational equilibrium). But for the case of two strategies, it remains unclear as whether every rational
anonymous game has a rational Nash equilibrium, which was posed as an open problem in [149].

190

payoffs from [0, 1]. 2

Here is our main theorem:

Theorem 3.2.1. For any α ≥ 7 and c > 0, the problem (α, c)-ANONYMOUS is PPAD-

complete.

The greatest challenge to establishing the PPAD-completeness result stated above is

posed by the rather complex but also highly symmetric payoff structure of anonymous games.

Before discussing our approach and techniques in Section 3.2.3, we first review related work

in Section 3.2.1, then define anonymous games formally and introduce some useful notation

in Section 3.2.2.

3.2.1 Related Work

Anonymous games have been studied extensively in the economics literature [136, 150, 137,

138, 139, 140, 151], where the game being considered is usually nonatomic and consists of a

continuum of players but a finite number of strategies. For the discrete setting, two special

families of anonymous games are symmetric games [141, 152] and congestion games [153].

[141] gave a polynomial-time for finding an exact Nash equilibrium in a symmetric game.

For congestion games, PLS-completeness of pure equilibria was established in [142, 143,

144]3, and efficient approximation algorithms for various latency functions were obtained in

[154, 155, 156].

While an anonymous game does not possess a pure Nash equilibrium in general, it was

shown in [145, 157, 149] that when the payoff functions are λ-Lipschitz, there exists an

ε-approximate pure Nash equilibrium and it can be found in polynomial time, where ε has a

linear dependency on λ. Furthermore, in [158] Babichenko presented a best-reply dynamic

for λ-Lipschitz anonymous games with two strategies which reaches an approximate pure

equilibrium in O(n log n) steps.
2Since we are interested in the additive approximation, all payoffs are normalized to take values in [0, 1].
3These PLS-hardness results have no implication to the setup of this paper since the number of pure

strategies in the congestion games considered there are unbounded.

191

Regarding our specific point of interest, i.e., (mixed) Nash equilibria in anonymous

games with a scaling number of players but a non-scaling number of strategies, there have

been a sequence of positive and negative results obtained by Daskalakis and Papadimitriou

[145, 147, 146, 148] (summarized in the journal version [149]). We briefly review these

results below.

In [145], Daskalakis and Papadimitriou presented a PTAS for finding an ε-approximate

Nash equilibrium in an anonymous game with two pure strategies, with running time

nO(1/ε2) · U , where U denotes the number of bits required to describe the payoffs. The

running time was subsequently improved in [146] to poly(n) · (1/ε)O(1/ε2) · U . The first

PTAS in [145] is based on the existence of an ε-approximate Nash equilibrium consisting

of integer multiples of ε2, while the second PTAS in [146] is based on the existence of an

ε-approximate Nash equilibrium satisfying the following special property: either at most

O(1/ε3) players play mixed strategies, or all players who mix play the same mixed strategy.

Later [147] extended the result of [145], giving the only known PTAS for anonymous games

with any bounded number of pure strategies with time ng(α,1/ε) · U for some function g of α,

number of pure strategies, and 1/ε.

All three PTAS obtained in [145, 146, 147] are so-called oblivious algorithms [148], i.e.,

algorithms that enumerate a set of mixed strategy profiles that is independent of the input

game as candidates for approximate Nash equilibria (hence, the game is used only to

verify if a given mixed strategy profile is an ε-approximate Nash equilibrium). In [148],

Daskalakis and Papadimitriou showed that any oblivious algorithm for anonymous games

must have running time exponential in 1/ε. In contrast to this negative result, they also

presented a non-oblivious PTAS for two-strategy anonymous games with running time

poly(n) · (1/ε)O(log2(1/ε)) · U .

192

3.2.2 Anonymous Games and Polymatrix Games

Before giving a high-level description of our approach and techniques in Section 3.2.3,

we first give a formal definition of anonymous games and introduce some useful notation.

Consider a multiplayer game with n players [n] = {1, . . . , n} and α pure strategies [α] =

{1, . . . , α} with α being a constant. For each pure strategy b ∈ [α], let ψb(t) denote the

number of b’s in a tuple t ∈ [α]n−1, and define Ψ(t) = (ψ1(t), . . . , ψα(t)), which we will

refer to as the histogram of pure strategies in t .

In an anonymous game, the payoff of each player p ∈ [n] depends only on Ψ(s−p) and

her own strategy sp, given a pure strategy profile s ∈ [α]n. (We follow the convention and

use s−p ∈ [α]n−1 to denote the pure strategy profile of the n− 1 players other than player p

in s .) Informally, Ψ(s−p) can be described as what player p “sees” in the game when s is

played.

We now formally define anonymous games.

Definition 3.2.2. An anonymous game G = (n, α, {payoff p}) consists of a set [n] of n

players, a set [α] of α pure strategies, and a payoff function payoffp : [α]×K → R for each

player p ∈ [n], where

K =
{

(k1, . . . , kα) : kj ∈ Z≥0 for all j and
∑α

j=1 kj = n− 1
}

is the set of all histograms of pure strategies played by n− 1 players. Specifically, when

s ∈ [α]n is played, the payoff of player p is given by payoff p(sp,Ψ(s−p)).

As usual, a mixed strategy is a probability distribution x = (x1, . . . , xα), and a mixed

strategy profile X is an ordered tuple of n mixed strategies (xp : p ∈ [n]), one for each

player p. Given X , let up(b,X) denote the expected payoff of p playing b ∈ [α], which has

193

the following explicit expression:

up(b,X) =
∑
k∈K

payoffp(b,k) · PrX [p,k],

where PrX [p,k] denotes the probability of player p seeing histogram k under X :

PrX [p,k] =
∑

s−p∈Ψ−1(k)

(∏
q 6=p

xq,sq

)
.

Note that sq denotes the pure strategy of player q from a profile s−p ∈ Ψ−1(k). We also use

up(X) to denote the expected payoff of player p from playing xp:

up(X) =
∑
b∈[α]

xp,b · up(b,X).

It is worth pointing out that, while up(b,X) contains exponentially many terms, it can be

computed in polynomial time using dynamic programming [145, 149] when α is a constant.

For a detailed presentation of the algorithm for 2-strategy anonymous games, see [149]. This

then implies that checking whether a given profile X is a (approximate) Nash equilibrium is

in polynomial time.

Next we define (approximate) Nash equilibria of an anonymous game.

Definition 3.2.3. Given an anonymous game G = (n, α, {payoff p}), we say a mixed

strategy profile X is a Nash equilibrium of G if up(X) ≥ up(b,X) for all players p ∈ [n]

and strategies b ∈ [α].

For ε ≥ 0, we say X is an ε-approximate Nash equilibrium if up(X) + ε ≥ up(b,X) for

all p ∈ [n] and b ∈ [α]. For ε ≥ 0, we say X is an ε-well-supported Nash equilibrium if

up(a,X) + ε < up(b,X) implies that xp,a = 0, for all p ∈ [n] and a, b ∈ [α].

As discussed in Section 3.2.3, the hardness part of Theorem 3.2.1 is proved using a

polynomial-time reduction from the problem of finding a well-supported Nash equilibrium

194

in a polymatrix game (e.g. see [159]). For our purposes, such a game (with n players

and two strategies each player) can be described by a payoff matrix A ∈ [0, 1]2n×2n with

Ak,` = 0 for all k, ` ∈ {2i− 1, 2i} and i ∈ [n].

Each player i ∈ [n] has two pure strategies that correspond to rows 2i− 1 and 2i of A.

Let Aj denote the jth row of A. Given a vector y ∈ R2n
≥0, where (y2i−1, y2i) is the mixed

strategy of player i, expected payoffs of player i for playing rows 2i− 1 and 2i are A2i−1 ·y

and A2i · y respectively.

An ε-well-supported Nash equilibrium of A is a vector y ∈ R2n
≥0 such that y2i−1 +y2i = 1

and

A2i−1 · y > A2i · y + ε ⇒ y2i = 0 and A2i · y > A2i−1 · y + ε ⇒ y2i−1 = 0,

for all players i ∈ [n]. We need the following result on such games:

Theorem 3.2.4 ([160]). The problem of computing a (1/n)-well-supported Nash equilibrium

in a

polymatrix game is PPAD-complete.

3.2.3 Our Approach and Techniques

A commonly used approach to establishing the PPAD-hardness of approximate equilibria is

to design gadget games that can perform certain arithmetic operations on entries of mixed

strategies of players (e.g. see [120, 121]). Such gadgets would then yield a reduction

from the problem of solving a generalized circuit [120, 121], a problem complete in PPAD.

However, we realized that this approach may not work well with anonymous games; we

found that it was impossible to design an anonymous game G= that enforces equality

constraints.4

4For example, we can rule out the existence of an anonymous game G= with 4 players and 2 pure strategies
such that x is a Nash equilibrium ofG= if and only if x1 = x2 ∈ [µ, ν] ⊆ [0, 1] and x3 = x4 ∈ [µ′, ν′] ⊆ [0, 1],
where we use xi to denote the probability that player i plays the first pure strategy.

195

Instead we show the PPAD-hardness of anonymous games via a reduction from the

problem of finding a (1/n)-well-supported equilibrium in a two-strategy polymatrix game

(see Section 3.2.2). Given a 2n × 2n polymatrix game A, our reduction constructs an

anonymous game GA with n “main” players {P1, . . . , Pn} (and two auxiliary players). We

have each main player Pi simulate in a way a player i in the polymatrix game, as discussed

below, such that any ε-well-supported Nash equilibrium of GA with an exponentially small ε

can be used to recover a (1/n)-well-supported Nash equilibrium of the polymatrix game

A efficiently. We then prove a connection between approximate Nash equilibria and well-

supported Nash equilibria of anonymous games to finish the proof of Theorem 3.2.1.

The greatest challenge to establishing such a reduction is posed by the complex but highly

structured, symmetric expression of expected payoffs in an anonymous game. As discussed

previously in Section 3.2.2, the expected payoff up(b,X) of player p is a linear form of

probabilities PrX [p,k], each of which is function over mixed strategies of all players other

than p. This rather complex function makes it difficult to reason about the set of well-

supported Nash equilibria of an anonymous game, not to mention our goal is to embed a

polymatrix game in it. To overcome this obstacle, we need to find a special (but hard enough)

family of anonymous games with certain payoff structures which allow us to perform a

careful analysis and understand their well-supported equilibria. The bigger obstacle for our

reduction, however, is to in some sense remove the anonymity of the players and break the

inherent symmetry underlying an anonymous game.

To see this, a natural approach to obtain a reduction from polymatrix games is to directly

encode the 2n variables of y in mixed strategies of the n “main” players {P1, . . . , Pn}.

More specifically, let {s1, s2} denote two special pure strategies of GA, and we attempt

to encode (y2i−1, y2i) in (xi,s1 , xi,s2), probabilities of Pi playing s1, s2, respectively. The

reduction would work if expected payoffs of Pi from s1 and s2 in GA can always match

closely expected payoffs of player i from rows 2i− 1 and 2i in A, given by two linear forms

A2i−1 · y and A2i · y of y. However, it seems difficult, if not impossible, to construct GA

196

with this property, since anonymous games are highly symmetric: the expected payoff of

Pi is a symmetric function over mixed strategies of all other players. This is not the case

for polymatrix games: a linear form such as A2i · y in general has different coefficients for

different variables, so different players contribute with different weights to the expected

payoff of a player (and the problem of finding a well-supported equilibrium in A clearly

becomes trivial if we require that every row of A has the same entry).

An alternative approach is to encode the 2n variables of y in probabilities PrX [p,k].

This may look appealing because expected payoffs up(b,X) are linear forms of these

probabilities so one can set the coefficients payoffp(b,k) to match them easily with those

linear forms Aj · y that appear in the polymatrix game A. However, the histogram k seen

by a player p (as a vector-valued random variable) is the sum of n− 1 vector-valued random

variables, each distributed according to the mixed strategy of a player other than p. The

way these probabilities PrX [p,k] are derived in turn imposes strong restrictions on them,5

which makes it a difficult task to obtain a correspondence between the 2n free variables in y

and the probabilities PrX [p,k].

Our reduction indeed follows the first approach of encoding (y2i−1, y2i) in (xi,s1 , xi,s2)

of player Pi. More exactly, the former is the normalization of the latter into a probability

distribution. Now to overcome the difficulty posed by symmetry, we enforce the following

“scaling” property in every well-supported Nash equilibrium X of GA: probabilities of Pi

playing {s1, s2} satisfy

xi,s1 + xi,s2 ≈ 1/N i, (3.1)

where N is exponentially large in n. This property is established by designing an anony-

mous game called generalized radix game G∗n,N , and then using it as the base game in the

construction of GA. We show that (3.1) holds approximately for every anonymous game that

is payoff-wise close to G∗n,N . In particular, (3.1) holds for any well-supported equilibrium of

5For example, as it is pointed out in [145, 147] for anonymous games with two strategies, players can
always be partitioned into two sets such that the probabilities PrX [p,k] over k must follow approximately a
Poisson and a discretized Normal distribution on each set respectively.

197

GA, as long as we make sure GA is close to G∗n,N . The “scaling” property plays a crucial role

in our reduction because, as the base game for GA, it helps us reason about well-supported

Nash equilibria of GA; it also removes anonymity of the n “main” players Pi (since they

must play the two special pure strategies {s1, s2} with probabilities of different scales) and

overcome the symmetry barrier.

Equipped with the “scaling” property (3.1), we prove a key technical lemma called

the estimation lemma. It shows that one can compute efficiently coefficients of a linear

form over probabilities of histograms PrX [Pi,k] seen by player Pi, which guarantees to

approximate additively xj,s1 (or xj,s2) i.e. probability of another player Pj plays s1 (or s2),

whenever the profile X satisfies the “scaling” property (this holds when GA is close to G∗n,N

and X is a well-supported equilibrium of GA). As

(y2j−1, y2j) ≈ N j(xj,s1 , xj,s2)

given (3.1), these linear forms for xj,s1 , xj,s2 can be combined to derive a linear form

of PrX [Pi,k] to approximate additively any linear form of y, particularly A2i−1 · y or

A2i · y that appear as expected payoffs of player i in the polymatrix game A. The proof of

the estimation lemma is the technically most involved part of the paper. We indeed derive

explicit expressions for coefficients of the desired linear form where substantial cancellations

yield an additive approximation of xj,s1 or xj,s2 .

Finally we combine all ingredients highlighted above to construct an anonymous game

GA from polymatrix game A. This is done by first using the estimation lemma to compute,

for each main Pi coefficients of linear forms of probabilitiesPrX [Pi,k] seen by Pi that yield

additive approximations of xj,s1 and xj,s2 . We then perturb payoff functions of players Pi in

the generalized radix game G∗n,N using these coefficients so that 1) the resulting game GA is

close to G∗n,N and thus, any well-supported equilibrium X of GA automatically satisfies the

“scaling” property; 2) expected payoffs of Pi playing s1, s2 in a well-supported equilibrium

198

X of GA match additively expected payoffs of player i playing rows 2i− 1, 2i in A, given y

derived from X by normalizing (xj,s1 , xj,s2) for each j. The correctness of the reduction, i.e.,

y is a (1/n)-well-supported equilibrium of A whenever X is an ε-approximate equilibrium

of GA with an exponentially small ε, follows from these properties of GA.

3.2.4 Organization

In Section 2, we define the radix game, and show that it has a unique Nash equilibrium as a

warm-up. We also use it to define the generalized radix game which serves as the base of

our reduction. In section 3, we characterize well-supported Nash equilibria of anonymous

games that are close to the generalized radix game (i.e., those that can be obtained by adding

small perturbations to payoffs of the generalized radix game). In section 4, we prove the

PPAD-hardness part of the main theorem. Our reduction relies on a crucial technical lemma,

called the estimation lemma, which we prove in Section 5. We prove the membership in

Section 6, and conclude with open problems in Section 7.

3.3 Warm-up: Radix Game

In this section, we first define a (n + 2)-player anonymous game Gn,N , called the radix

game. As a warmup for the next section, we show that it has a unique Nash equilibrium. We

then use the radix game to define the generalized radix game G∗n,N , by making a duplicate

of a pure strategy in Gn,N . The latter will serve as the base game for our polynomial-time

reduction from polymatrix games.

3.3.1 Radix Game

The radix game Gn,N to be defined has a unique Nash equilibrium of a specific form: given

N ≥ 2 as an integer parameter of the game, each of the n “main” players mixes over the

first two strategies with probabilities 1/N i and 1− 1/N i, respectively, for each i ∈ [n], in

the unique Nash equilibrium. The remaining two “special” players are created to achieve

199

the aforementioned property.

Game 1 (Radix Game Gn,N). Let n ≥ 1 and N ≥ 2 denote two integer parameters. Let

δ = 1/N .

Let Gn,N denote the following anonymous game with n+ 2 players {P1, . . . , Pn, Q,R}

and 6 pure strategies {s, t, q1, q2, r1, r2}. We refer to {P1, . . . , Pn} as the main players.

Each main player Pi is only interested in strategies s and t (e.g., by setting her payoff of

playing any other four actions to be −1 no matter what other players play). Player Q is only

interested in strategies {q1, q2}, and player R is only interested in strategies {r1, r2}.

Next we define the payoff function of each player. When describing the payoff of a player

below we always use k = (ks, kt, kq1 , kq2 , kr1 , kr2) to denote the histogram of strategies this

player sees.

1. For each i ∈ [n], the payoff of player Pi when she plays s only depends on ks:

payoff Pi(s,k) =


δi +

∏
j∈[n] δ

j if ks = n− 1

∏
j∈[n] δ

j otherwise.

The payoff of player Pi when she plays t only depends on kr1:

payoff Pi(t,k) =


2 if kr1 = 1

0 otherwise.

2. The payoff of player Q when she plays q1 or q2 is given by

payoffQ(q1,k) =


1 if ks = n

0 otherwise

and payoffQ(q2,k) =


1 if kr1 = 1

0 otherwise.

200

3. The payoff of player R when she plays r1 or r2 is given by

payoffR(r1,k) =


1 if kq1 = 1

0 otherwise

and payoffR(r2,k) =


1 if kq2 = 1

0 otherwise.

This finishes the definition of the radix game Gn,N .

Fact 3.3.1. Gn,N is an anonymous game with payoff functions taking values from [−1, 2].

Since the main players Pi are only interested in {s, t}, Q is only interested in {q1, q2},

and R is only interested in {r1, r2}, each Nash equilibrium X of Gn,N can be fully specified

by a (n+ 2)-tuple X = (x1, . . . , xn, y, z) ∈ [0, 1]n+2, where xi denotes the probability of Pi

playing strategy s for each i ∈ [n], y denotes the probability of Q playing q1, and z denotes

the probability of R playing r1.

Given X = (x1, . . . , xn, y, z) we calculate the expected payoff of each player as follows

(we skip X in the expected payoffs up(b,X), when X is clear from the context, and we use

ui to denote the expected payoff of Pi instead of uPi for convenience):

Fact 3.3.2. Given X = (x1, . . . , xn, y, z), the expected payoff of player Pi for playing s is

ui(s) = δi · Prks = n− 1 +
∏
j∈[n]

δj = δi
∏

j 6=i∈[n]

xj +
∏
j∈[n]

δj.

The expected payoff of Pi for playing t is ui(t) = 2z.

The expected payoff of player Q for playing q1 is

uQ(q1) = Prks = n =
∏
i∈[n]

xi.

The expected payoff of Q for playing q2 is uQ(q2) = z.

The expected payoff of R for playing r1 is uR(r1) = y and that for r2 is uR(r2) = 1− y.

201

We show that xi = δi in a Nash equilibrium X of Gn,N . We start with the following

lemma.

Lemma 3.3.3. In a Nash equilibrium X = (x1, . . . , xn, y, z) of Gn,N , we have that z =∏
i∈[n] xi.

Proof. Assume for contradiction that z >
∏

i xi. As uQ(q2) > uQ(q1) and X is a Nash

equilibrium, player Q never plays q1 and thus, y = 0. This in turn implies uR(r2) = 1 >

0 = uR(r1) and z = 0, which contradicts with the assumption that z >
∏

i xi ≥ 0.

Next, assume for contradiction that z <
∏

i xi, giving us that uQ(q2) < uQ(q1). Player

Q never plays q2 and y = 1. This implies that uR(r1) > uR(r2) and thus z = 1, which

contradicts with the assumption that z <
∏

i xi ≤ 1 (as xi ∈ [0, 1]). This finishes the proof

of the lemma.

We now show that the radix game Gn,N has a unique Nash equilibrium X with xi = δi.

Lemma 3.3.4. In a Nash equilibrium X = (x1, . . . , xn, y, z) of Gn,N , we have xi = δi for

all i ∈ [n].

Proof. First we show that
∏

i∈[n] xi =
∏

i∈[n] δ
i. Consider for contradiction the following

two cases:

Case 1:
∏

i∈[n] xi <
∏

i∈[n] δ
i. Then there is an i ∈ [n] such that xi < δi. For Pi, we

have

ui(s) = δi
∏
j 6=i

xj +
∏
j∈[n]

δj >
∏
j∈[n]

xj +
∏
j∈[n]

xj = 2
∏
j∈[n]

xj = 2z = ui(t). (3.2)

This implies that xi = 1, contradicting with the assumption that xi < δi < 1 as

N ≥ 2.

Case 2:
∏

i∈[n] xi >
∏

i∈[n] δ
i. Then there is an i ∈ [n] such that xi > δi. For Pi, we

202

have

ui(s) = δi
∏
j 6=i

xj +
∏
j∈[n]

δj <
∏
j∈[n]

xj +
∏
j∈[n]

xj = 2
∏
j∈[n]

xj = 2z = ui(t). (3.3)

This implies that xi = 0, contradicting with the assumption that xi > δi > 0.

As a result, we must have
∏

i xi =
∏

i δ
i, which also implies that xi > 0 for all i ∈ [n].

Now we show that xi = δi for all i. Assume for contradiction that xi 6= δi for some

i ∈ [n].

Case 1: xi < δi. Then the same strict inequality (3.2) holds for Pi, which implies that

xi = 1, contradicting with the assumption that xi < δi < 1 as N ≥ 2.

Case 2: xi > δi. Then the same strict inequality (3.3) holds for Pi, which implies that

xi = 0, contradicting with the assumption that xi > δi > 0.

This finishes the proof of the lemma.

Notice that Lemma 3.3.3 and 3.3.4 together imply that Gn,N has a unique Nash equi-

librium because of Lemma 3.3.3 as well as the fact that 0 < z < 1 implies uR(r1) = y =

1− y = uR(r2) and thus y = 1/2.

3.3.2 Generalized Radix Game

We use Gn,N to define an anonymous game G∗n,N , called the generalized radix game, with the

same set of n + 2 players {P1, . . . , Pn, Q,R} but seven strategies {s1, s2, t, q1, q2, r1, r2}.

To this end, we replace strategy s in Gn,N with two of its duplicate strategies s1, s2 in G∗n,N

and make sure that the players in G∗n,N treat both s1 and s2 the same as the old strategy s,

and have their payoff functions derived from those of players in Gn,N in this fashion. We

will show in the next section that in any Nash equilibrium of G∗n,N , player Pi must have

probability exactly δi distributed among s1, s2.

203

For readers who are familiar with previous PPAD-hardness results of Nash equilibria in

normal form games [120, 121], this is the same trick used to derive the game generalized

matching pennies from matching pennies. We define G∗n,N formally as follows.

Game 2 (Generalized Radix Game G∗n,N). Let n ≥ 1 and N ≥ 2 be two parameters.

Let δ = 1/N . We use G∗n,N to denote an anonymous game with the same n + 2 players

{P1, . . . , Pn, Q,R} as Gn,N but now 7 pure strategies {s1, s2, t, q1, q2, r1, r2}. The payoff

function payoff∗T of a player T in G∗n.N is defined using payoffT of the same player T in

Gn,N as follows:

payoff∗T
(
b,
(
ks1 , ks2 , kt, kq1 , kq2 , kr1 , kr2

))
= payoffT

(
φ(b),

(
ks1+ks2 , kt, kq1 , kq2 , kr1 , kr2

))
,

where φ(s1) = φ(s2) = s and φ(b) = b for every other pure strategy.

Since the payoff of player Pi is always −1 when playing q1, q2, r1 or r2, she is only

interested in s1, s2 and t. Similarly Q is only interested in q1, q2 and R is only interested in

r1, r2. As a result, a Nash equilibrium X of G∗n,N can be fully specified by 2n+ 2 numbers

(xi,1, xi,2, y, z : i ∈ [n]), where xi,1 (or xi,2) denotes the probability of Pi playing strategy s1

(or strategy s2, respectively), so the probability of Pi playing t is 1− xi,1 − xi,2. We also let

xi = xi,1 + xi,2 for each i ∈ [n].

Given the definition of G∗n,N from Gn,N , Lemma 3.3.4 suggests xi = xi,1 + xi,2 = δi, for

all i ∈ [n], in every Nash equilibrium X of G∗n,N . This indeed follows from the main lemma

of the next section concerning ε-well-supported Nash equilibria of not only the generalized

radix game G∗n,N itself, but also anonymous games obtained by perturbing payoff functions

of G∗n,N .

3.4 Generalized Radix Game after Perturbation

In this section, we analyze ε-well-supported Nash equilibria of anonymous games obtained

by perturbing payoff functions of the generalized radix game G∗n,N . Recall that n ≥ 1 and

204

N ≥ 2, and we use payoff∗T to denote the payoff function of a player T in G∗n,N . Given

x, y ∈ R and ξ ≥ 0, we write x = y ± ξ to denote |x− y| ≤ ξ. We first define anonymous

games that are close to G∗n,N .

Definition 3.4.1. For ξ ≥ 0, we say an anonymous game G is ξ-close to G∗n,N if

1. G has the same set {P1, . . . , Pn, Q,R} of players and same set of 7 strategies as G∗n,N .

2. For each player T ∈ {P1, . . . , Pn, Q,R}, her payoff function payoffT in G satisfies

payoff T (b,k) = payoff ∗T (b,k)± ξ,

for all b ∈ {s1, s2, t, q1, q2, r1, r2} and all histograms k of strategies played by n+ 1

players.

To characterize ε-well-supported Nash equilibria of a game G ξ-close to G∗n,N we first

show that when ε, ξ are small enough, each player in G remains only interested in a subset of

strategies, i.e., {s1, s2, t} for Pi, {q1, q2} for Q, and {r1, r2} for R, in any ε-well-supported

Nash equilibrium of G.

Lemma 3.4.2. Let G be an anonymous game ξ-close to G∗n,N for some ξ ≥ 0. When

2ξ + ε < 1, every ε-well-supported Nash equilibrium of G satisfies: player Pi only plays

{s1, s2, t}; player Q only plays {q1, q2}; player R only plays {r1, r2}.

Proof. We only prove (1) since the proof of (2) and (3) is similar.

Given an ε-well-supported Nash equilibrium X , as the payoff of Pi when playing

b /∈ {s1, s2, t} is always −1 in G∗n,N , her expected payoff when playing b in G is at most

−1 + ξ; as the payoff of Pi when playing b ∈ {s1, s2, t} is always nonnegative in G∗n,N ,

her expected payoff in G is at least −ξ. It follows from 2ξ + ε < 1 and the assumption of

X being an ε-well-supported equilibrium that Pi only plays strategies in {s1, s2, t} with

positive probability.

205

It follows from Lemma 3.4.2 that an ε-well-supported Nash equilibrium of G can be

fully described by a tuple of 2n + 2 numbers (xi,1, xi,2, y, z : i ∈ [n]), when ξ, ε satisfy

2ξ + ε < 1: xi,1 denotes the probability of Pi playing s1, xi,2 denotes the probability of Pi

playing s2, y denotes the probability of Q playing q1, and z denotes the probability of R

playing r1.

Recall that δ = 1/N ≤ 1/2. Let κ =
∏

i∈[n] δ
i. We prove the main lemma of this

section.

Lemma 3.4.3. Let G denote an anonymous game that is ξ-close to G∗n,N . Suppose that

ξ, ε ≥ 0 satisfy

τ =
36ξ + 18ε

κ
≤ 1/2. (3.4)

Then every ε-well-supported Nash equilibrium of G satisfies xi,1 + xi,2 = δi ± τδi for all

i ∈ [n].

Proof. Let X = (xi,1, xi,2, y, z : i ∈ [n]) be an ε-well-supported Nash equilibrium of G.

For each i ∈ [n] we let xi = xi,1 + xi,2. Since G is ξ-close to G∗n,N , we have the following

estimates:

1. The expected payoff of Pi for playing strategy s1 or s2 is

ui(s1), ui(s2) =

δi · Pr[ks1 + ks2 = n− 1
]

+
∏
j∈[n]

δj

± ξ
=

(
δi
∏
j 6=i

xj + κ

)
± ξ,

where we write ks1 , ks2 to denote the numbers of players that play s1, s2 respectively,

as seen by player Pi (same below). The expected payoff of Pi for playing t is

ui(t) = 2z ± ξ.

206

2. The expected payoff of Q for playing q1 is

uQ(q1) = Pr
[
ks1 + ks2 = n

]
± ξ =

∏
j∈[n] xj ± ξ.

The expected payoff of Q for playing q2 is uQ(q2) = z ± ξ.

3. The expected payoff of R for playing r1 is uR(r1) = y ± ξ and for r2 is

uR(r2) = (1− y)± ξ.

To rest of the proof follows those of Lemma 3.3.3 and Lemma 3.3.4. First we show that z

must satisfy

z =
∏
j∈[n]

xj ± (2ξ + ε). (3.5)

The proof is the same as that of Lemma 3.3.3, using the assumption that X is ε-well-

supported.

Given (3.5), next we show that the xi’s satisfy

∏
i∈[n]

xi =
∏
i∈[n]

δi ± (6ξ + 3ε) = κ± (6ξ + 3ε). (3.6)

To this end we follow the proof of the first part of Lemma 3.3.4 and consider the following

two cases:

Case 1:
∏

i∈[n] xi < κ− (6ξ + 3ε). Then there exists an i ∈ [n] such that xi < δi. For

Pi:

ui(s1) ≥ δi
∏
j 6=i

xj+κ−ξ > 2
∏
j∈[n]

xj+5ξ+3ε and ui(t) ≤ 2z+ξ ≤ 2
∏
j∈[n]

xj+5ξ+2ε.

This implies that Pi does not play t in X , an ε-well-supported Nash equilibrium of G,

and thus, xi = xi,1 + xi,2 = 1, contradicting with xi < δi < 1 as N ≥ 2.

Case 2:
∏

i∈[n] xi > κ+ (6ξ + 3ε). Then there exists an i ∈ [n] such that xi > δi. For

207

Pi:

ui(s1), ui(s2) ≤ δi
∏
j 6=i

xj+κ+ξ < 2
∏
j∈[n]

xj−5ξ−3ε and ui(t) ≥ 2
∏
j∈[n]

xj−5ξ−2ε.

This implies that Pi plays neither s1 nor s2 and thus, we have xi,1 = xi,2 = 0 and

xi = 0 as well, contradicting with xi > δi > 0.

By (3.5) and (3.6), z = κ ± (8ξ + 4ε). (3.6) also implies that xi > 0 since κ > 0 and

κ ≥ 72ξ + 36ε by (3.4).

Finally, assume for contradiction that either xi < (1− τ)δi or xi > (1 + τ)δi for some

i ∈ [n].

Case 1: xi < (1− τ)δi. Then using τ ≤ 1/2 and 1 ≤ 1/(1− τ) ≤ 2, we have

ui(s1)− ui(t) ≥ δi
∏
j 6=i

xj + κ− 2z − 2ξ

>
κ− 6ξ − 3ε

1− τ
+ κ− 2z − 2ξ ≥ τκ− 30ξ − 14ε.

Plugging in the definition of τ in (3.4), we have ui(s1)− ui(t) > ε and thus, xi = 1,

which contradicts with the assumption that xi < (1− τ)δi < 1.

Case 2: xi > (1 + τ)δi. Then using τ ≤ 1/2 and 2/3 ≤ 1/(1 + τ) ≤ 1, we have

ui(s1)− ui(t) ≤ δi
∏
j 6=i

xj + κ− 2z + 2ξ

<
κ+ 6ξ + 3ε

1 + τ
+ κ− 2z + 2ξ ≤ −2τκ

3
+ 24ξ + 11ε.

The same inequality holds for ui(s2)− ui(t). Plugging in (3.4), we have

ui(s1)− ui(t) < −ε as well as ui(s2)− ui(t) < −ε. This in turn implies that

xi,1 = xi,2 = 0 and thus, xi = 0, which contradicts with the assumption that

xi > (1 + τ)δi > 0.

208

This finishes the proof of the lemma.

3.5 Reduction from Polymatrix Games to Anonymous Games

In this section we prove the hardness part of Theorem 3.2.1. For this purpose we present a

polynomial time reduction from the problem of finding a 1/n-well-supported Nash equilib-

rium in a polymatrix game to the problem of finding an ε-well-supported Nash equilibrium

in an anonymous game with 7 strategies, for some exponentially small ε. We first give some

intuition behind this quite involved reduction in Section 3.5.1. Details of the reduction and

the proof of its correctness are then presented in Section 3.5.2 and 3.5.3, respectively, with

a key technical lemma proved in Section 3.6. We finish the proof of the hardness part in

Section 3.5.4 by showing that any approximate Nash equilibrium of an anonymous game can

be converted into a well-supported equilibrium efficiently (since Theorem 3.2.1 is concerned

with approximate Nash equilibria).

3.5.1 Overview of the Reduction

Given as input a polymatrix game specified by a matrix A ∈ [0, 1]2n×2n, our goal is to

construct in polynomial time an anonymous game GA, and show that every ε-well-supported

Nash equilibrium of GA, where ε = 1/2n
6 , can be used to recover a (1/n)-well-supported

equilibrium of A in polynomial time. Note that this is not exactly the PPAD-hardness result

as claimed in Theorem 3.2.1 but we will fill in the gap in Section 3.5.4 with some standard

arguments.

Given A, we construct GA by perturbing payoff functions of the Generalized Radix

game G∗n,N with N = 2n, so that GA is ξ-close to G∗n,N for some exponentially small ξ > 0

to be specified later. (Thus, GA has the same set of n + 2 players {P1, . . . , Pn, Q,R} as

well as the same set of 7 strategies {s1, s2, t, q1, q2, r1, r2} as G∗n,N .) By Lemma 3.4.2 and

Lemma 3.4.3 we know that every ε-well-supported equilibrium of GA can be fully described

209

by a tuple X = (xi,1, xi,2, y, z : i ∈ [n]) that satisfies

xi,1 + xi,2 ≈ δi (3.7)

for each i ∈ [n], where δ = 1/N = 1/2n.

Our construction of GA has player P` simulate row 2` − 1 and 2` of the polymatrix

game A for each ` ∈ [n]. The goal is to show at the end that, after normalizing (x`,1, x`,2),

i.e., probabilities of P` playing s1, s2 in an ε-well-supported equilibrium X of GA, into a

distribution (y2`−1, y2`):

y2`−1 =
x`,1

x`,1 + x`,2
and y2` =

x`,2
x`,1 + x`,2

, (3.8)

we get a (1/n)-well-supported Nash equilibrium y = (y1, . . . , y2n) of A. By (3.7) we have

y2`−1 ≈ N ` · x`,1 and y2` ≈ N ` · x`,2.

For player P` to simulate row 2`− 1 and 2` of the polymatrix game A, we perturb the

original payoff function payoff∗` of P` in G∗n,N in a way such that the following two linear

forms of y:

A2`−1 · y =
∑

j /∈{2`−1,2`}

A2`−1,j · yj and A2` · y =
∑

j /∈{2`−1,2`}

A2`,j · yj

appear as additive terms in the expected payoffs u`(s1,X) and u`(s2,X) of P` obtained from

s1, s2, respectively. Let u∗`(σ,X) denote the expected payoff of player P` in the original

generalized radix game G∗n,N for strategies σ ∈ {s1, s2}. Then more specifically, we would

like to perturb carefully the payoff functions of G∗n,N such that for every ` ∈ [n], the expected

payoffs of player P` in an ε-well-supported Nash equilibrium X of GA satisfy

210

u`(s1,X) ≈ u∗`(s1,X) + ξ∗ ·A2`−1 · y

≈ u∗`(s1,X) + ξ∗
∑
j 6=`

N j
(
A2`−1,2j−1 · xj,1 + A2`−1,2j · xj,2

)
(3.9)

u`(s2,X) ≈ u∗`(s2,X) + ξ∗ ·A2` · y

≈ u∗`(s2,X) + ξ∗
∑
j 6=`

N j
(
A2`,2j−1 · xj,1 + A2`,2j · xj,2

)
(3.10)

where ξ∗ is a parameter small enough to make sure that the resulting game is ξ-close to

G∗n,N .

If one can perturb the payoff functions of players P` in G∗n,N so that (3.9) and (3.10)

hold for every ε-well-supported Nash equilibrium X of GA, then the vector y obtained from

X using (3.8) must be a (1/n)-well-supported equilibrium of A. To see this, assume for

contradiction that

A2`−1 · y > A2` · y + 1/n (3.11)

but y2` > 0. Using (3.11), (3.9), and (3.10), we have u`(s1,X) is bigger than u`(s2,X) by

ξ∗/n (assuming that errors hidden in both (3.9) and (3.10) are negligible). As long as our

choice of ξ∗ satisfies ξ∗/n > ε we must have x`,2 = 0 and thus, y2` = 0 from (3.8).

However, perturbing the generalized radix game so that (3.9) and (3.10) hold is challeng-

ing. While

∑
j 6=`

N j
(
A2`−1,2j−1 ·xj,1 +A2`−1,2j ·xj,2

)
and

∑
j 6=`

N j
(
A2`,2j−1 ·xj,1 +A2`,2j ·xj,2

)
(3.12)

are merely two linear forms of (xj,1, xj,2 : j 6= `) from X , they are extremely difficult to

obtain due to the nature of anonymous games: the expected payoff of player P` is

u`(σ,X) =
∑
k∈K

payoff`(σ,k) · PrX [P`,k], (3.13)

a linear form of PrX [P`,k], the probability of P` seeing histogram k given X . As each

211

PrX [P`,k] is a highly complex and symmetric expression of variables in X , it is not clear

how one can extract from (3.13) the desired linear forms of (3.12).

This is where the fact that xi,1 + xi,2 ≈ δi helps us tremendously. (Recall that this holds

as long as the generalized radix game G∗n,N and GA are ξ-close.) The core of the construction

of GA uses the following key technical lemma which we refer to as the estimation lemma. It

shows that under any mixed strategy profile X = (xi,1, xi,2, y, z : i ∈ [n]) such that xi,1 +

xi,2 ≈ δi, there is indeed a linear form of PrX [P`,k] that gives us a close approximation of

xj,1 (or xj,2), j 6= `, and its coefficients can be computed in polynomial time in n. We delay

its proof to Section 3.6.

Lemma 3.5.1 (Estimation Lemma). Let N = 2n and λ = 2−n
3
. Given ` ∈ [n] and j 6=

` ∈ [n] one can compute in polynomial time in n vectors B[`,j],C[`,j] of length |K| (indexed

by k ∈ K) such that every mixed strategy profile X = (xi,1, xi,2, y, z : i ∈ [n]) with

xi,1 + xi,2 = δi ± λ for all i satisfies

∑
k∈K

B
[`,j]
k ·PrXP`,k = xj,1±O

(
j2δj+1

)
and

∑
k∈K

C
[`,j]
k ·PrXP`,k = xj,2±O

(
j2δj+1

)
.

Moreover, the absolute value of each entry of B[`,j] and C[`,j] is at most Nn2
.

With the estimation lemma in hand we can derive linear forms of PrX [P`,k] that are

close approximations of the two linear forms of (xj,1, xj,2 : j 6= `) in (3.12). We then

use the coefficients of these linear forms of PrX [P`,k] to perturb G∗n,N and wrap up the

construction of GA.

3.5.2 Construction of Anonymous Game GA

Let A ∈ [0, 1]2n×2n denote the input polymatrix game. We need the following parameters:

N = 2n, δ = 1/N = 2−n, λ = 2−n
3

, ξ = 2−n
4

, ξ∗ = 2−n
5

and ε = 2−n
6

.

212

We remark that we do not attempt to optimize the parameters here but rather set them in

different scales to facilitate the analysis later.

Game 3 (Construction of GA). We use the polynomial-time algorithm promised in the

Estimation Lemma to compute B[`,j] and C[`,j], for all ` ∈ [n] and j 6= ` ∈ [n].

Starting with the generalized radix game G∗n,N , we modify payoff functions of players

P1, . . . , Pn as follows (payoff functions of Q and R remain unchanged). Let payoff∗` denote

the payoff function of P` in G∗n,N . Then for each player P` and each histogram k ∈ K, we

set

payoff`(s1,k) = payoff∗`(s1,k) + ξ∗
∑
j 6=`

N j
(
A2`−1,2j−1 ·B[`,j]

k + A2`−1,2j · C [`,j]
k

)
payoff`(s2,k) = payoff∗`(s2,k) + ξ∗

∑
j 6=`

N j
(
A2`,2j−1 ·B[`,j]

k + A2`,2j · C [`,j]
k

)
,

and keep all other payoffs of P` the same (i.e., payoff`(σ,k) = payoff∗`(σ,k) for all

σ /∈ {s1, s2}).

A few properties of GA then follow directly from its construction. First, observe that

entries of A lie in [0, 1] and entries of B[`,j] and C[`,j] have absolute values at most Nn2
=

2n
3 . We have

Property 3.5.2. Given A ∈ [0, 1]2n×2n, GA is an anonymous game ξ-close to G∗n,N where

ξ = 2−n
4 .

By Lemma 3.4.2, an ε-well-supported Nash equilibrium of GA is fully described by a

(2n + 2)-tuple X = (xi,1, xi,2, y, z : i ∈ [n]), where Pi plays strategies s1, s2 and t with

probabilities xi,1, xi,2 and 1− xi,1 − xi,2, respectively. We also get the following corollary

from Lemma 3.4.3.

Corollary 3.5.3. Every ε-well-supported equilibrium X = (xi,1, xi,2, y, z : i ∈ [n]) of GA

satisfies

xi,1 + xi,2 = δi ± λ, for all i ∈ [n].

213

Therefore, the conditions of the estimation lemma are met. It follows that

Property 3.5.4. Given an ε-well-supported equilibrium X of GA, the expected payoffs of

P` satisfy

u`(s1,X) = u∗`(s1,X) + ξ∗
∑
j 6=`

N j
(
A2`−1,2j−1 · xj,1 + A2`−1,2j · xj,2

)
±O(n3ξ∗δ) and

u`(s2,X) = u∗`(s2,X) + ξ∗
∑
j 6=`

N j
(
A2`,2j−1 · xj,1 + A2`,2j · xj,2

)
±O(n3ξ∗δ).

3.5.3 Correctness of the Reduction

We are now ready to show that, given an ε-well-supported Nash equilibrium X of GA, the

vector y derived from X using (3.8) is a (1/n)-well-supported Nash equilibrium of the

polymatrix game A.

Lemma 3.5.5. Let X = (xi,1, xi,2, y, z : i ∈ [n]) be an ε-well supported Nash equilibrium

of GA. Then the vector y ∈ [0, 1]2n derived from X using (3.8) is a (1/n)-well-supported

Nash equilibrium of A.

Proof. Firstly, note that xi,1 + xi,2 > 0 so y is well defined and satisfies y2i−1 + y2i = 1 for

all i.

Assume towards a contradiction that y derived from X using (3.8) is not a (1/n)-well-

supported Nash equilibrium of A, i.e., there is a player ` ∈ [n] such that, without loss of

generality,

A2`−1 · y > A2` · y + 1/n (3.14)

but y2` > 0, which in turn implies that x`,2 > 0.

Since xj,1 + xj,2 = δj ± λ, we have

y2j−1 =
xj,1

xj,1 + xj,2
= N jxj,1 ± O(N2jλ) = N jxj,1 ±O (N2nλ).

214

Similarly we also have y2j = N jxj,2 ±O (N2nλ). Combining these with Property 3.5.4, we

have

u`(s1,X) = u∗`(s1,X) + ξ∗ ·A2`−1 · y ±
(
O(n3ξ∗δ) +O(nξ∗N2nλ)

)
and

u`(s2,X) = u∗`(s2,X) + ξ∗ ·A2` · y ±
(
O(n3ξ∗δ) +O(nξ∗N2nλ)

)
. (3.15)

By our choices of parameters, nξ∗N2nλ � n3ξ∗δ so the former can be absorbed into the

latter.

Combining (3.14) and (3.15) (as well as the fact that u∗`(s1,X) = u∗`(s2,X) because the

payoffs of s1 and s2 are exactly the same in the generalized radix game G∗n,N), we have

u`(s1,X)− u`(s2,X) ≥ ξ∗ (A2`−1 · y −A2` · y)−O (n3ξ∗δ) ≥ ξ∗/n−O (n3ξ∗δ) > ε,

for sufficiently large n, by our choices of parameters δ, ξ∗ and ε. It then follows that x`,2 = 0,

since X is assumed to be an ε-well-supported Nash equilibrium of GA, contradicting with

y2` > 0. This finishes the proof.

3.5.4 Proof of the Hardness Part of Theorem 3.2.1

From our definitions of G∗n,N and GA, it is clear that all payoffs of GA are in [−1, 3]. Using

standard arguments (invariance of Nash equilibria under shifting and scaling), we can

easily see that given an anonymous game G = (n, α, {payoffp}) such that all payoffs are

in the interval [a, b], where a, b ∈ R and a < b, a mixed strategy profile X is an (b − a)ε-

well-supported equilibrium of G if and only if X is an ε-well-supported equilibrium of

G ′ = (n, α, {payoff′p}), where

payoff′p(σ,k) =
payoffp(σ,k)− a

b− a
. (3.16)

215

The new game G ′ now has all payoffs from in [0, 1].

As a result, we can construct G ′A from GA in polynomial time such that all payoffs of

G ′A lie in [0, 1], and Lemma 3.5.5 holds for all (ε/4)-well-supported Nash equilibria of G ′A.

It follows that

Corollary 3.5.6. Fix any α ≥ 7. The problem of finding a 2−(n6+2)-well-supported Nash

equilibrium of an anonymous game with α actions and [0, 1] payoffs is PPAD-hard.

This can be further strengthened using a standard padding argument.

Lemma 3.5.7. Fix any α ∈ N and a > b > 0. There is a polynomial-time reduction from

the problem of finding a (2−n
a
)-well-supported equilibrium to that of finding a (2−n

b
)-well-

supported equilibrium, in an anonymous game with α actions and [0, 1] payoffs.

Proof. For convenience, we will refer to the problem of finding a (2−n
a
)-well-supported

equilibrium as problem A and the other as problem B.

Let G = (n, α, {payoffp}) denote an input anonymous game of problem A. We define a

new game padG = (nt, α, {payoff′p}) as follows, where t = a/b > 1 and thus, nt > n. To

this end, define a map φ : Zα → Zα such that φ(k1, . . . , kα) = (k1 − (nt − n), k2, . . . , kα).

We then define payoff functions of players {1, . . . , nt} in padG as follows:

• For each i > n, the payoff function of player i is given by

payoff′i(σ,k) =


1 if σ = 1

0 otherwise

So player i always plays strategy 1 in any ε-well-supported equilibrium with ε < 1.

• The payoff of each player i ∈ [n] is given by

payoff′i(σ,k) =


payoffi(σ, φ(k)) if k1 ≥ nt − n

0 otherwise

216

Note that in any ε-well-supported equilibrium with ε < 1, the latter case never occurs.

By the definition of padG, it is easy to show that X is an ε-well-supported equilibrium in

padG, for some ε < 1, iff 1) each player i > n plays strategy 1 with probability 1 and 2) the

mixed strategy profile of the first n players in X is an ε-well-supported equilibrium of G. As

a result, a solution to padG as an input of problem B must be an ε-approximate equilibrium

of G with ε = 2−(nt)b = 2−n
a
. As padG can be constructed from G in polynomial time, this

finishes the proof of the lemma.

Combining Corollary 3.5.6 and Lemma 3.5.7, we have

Corollary 3.5.8. Fix any α ≥ 7 and c > 0. The problem of finding a (2−n
c
)-well-supported

Nash equilibrium in an anonymous game with α actions and [0, 1] payoffs is PPAD-hard.

To prove the hardness part of Theorem 3.2.1, we next give a polynomial-time algorithm

to compute a well-supported equilibrium from an approximate equilibrium.

Lemma 3.5.9 (Approximate to Well-Supported Nash Equilibria). Let G = (n, α, {payoffp})

be an anonymous game with payoffs from [0, 1]. Given an ε2/(16αn)-approximate Nash

equilibrium X of G, one can compute in polynomial time an ε-well-supported Nash equilib-

rium Y of G.

Proof. Let X = (xi : i ∈ [n]) be an ε′-approximate Nash equilibrium of G, with ε′ =

ε2/(16αn). For each player i ∈ [n], we have for any mixed strategy x′i,

ui(x
′
i,X−i) ≤ ui(X) + ε′, (3.17)

where we let ui(x′i,X−i) denote the expected payoff of player i when she plays x′i and other

players play X−i. Let σi be a strategy with the highest expected payoff for player i (with

respect to X−i):

ui(σi,X) = max
k∈[α]

ui(k,X),

217

and let Ji = {j : ui(σi,X) ≥ ui(j,X) + ε/2}. We then define a mixed strategy yi for

player i using xi, σi and Ji as follows: Set yi,j = 0 for all j ∈ Ji, and set

yi,σi = xi,σi +
∑
j∈Ji

xi,j.

All other entries of yi are the same as xi. As yi increases the expected payoff of player i by

at least

(ε/2) ·
∑
j∈Ji

xi,j,

we have from (3.17) that
∑

j∈Ji xi,j ≤ 2ε′/ε.

Repeating this for every player i ∈ [n], we obtain a new mixed strategy profile Y (clearly

Y can be computed in polynomial time given X). We finish the proof of the lemma by

showing that Y is indeed an ε-well-supported Nash equilibrium of G. Below we write

ζ = 2ε′/ε.

First, by the definition of Y , |xi,j − yi,j| ≤ ζ for all i, j. Thus, for any pure strategy

profile s−i,

∏
q 6=i

yq,sq ≥
∏
q 6=i

max
{

0, xq,sq − ζ
}
≥
∏
q 6=i

xq,sq − ζ ·
∑
q 6=i

∏
p/∈{i,q}

xp,sp and

∏
q 6=i

xq,sq ≥
∏
q 6=i

max
{

0, yq,sq − ζ
}
≥
∏
q 6=i

yq,sq − ζ ·
∑
q 6=i

∏
p/∈{i,q}

yp,sp .

218

Since all payoffs are in [0, 1], we have for any player i ∈ [n] and pure strategy j ∈ [α] that

∣∣ui(j,Y)− ui(j,X)
∣∣ ≤ ∑

s−i∈[α]n−1

∣∣∣∣∣ ∏
q 6=i

yq,sq −
∏
q 6=i

xq,sq

∣∣∣∣∣
≤ ζ

∑
s−i

∑
q 6=i

∏
p/∈{i,q}

xp,sp + ζ
∑
s−i

∑
q 6=i

∏
p/∈{i,q}

yp,sp

= ζ
∑
q 6=i

∑
s−i

∏
p/∈{i,q}

xp,sp + ζ
∑
q 6=i

∑
s−i

∏
p/∈{i,q}

yp,sp

≤ αζ
∑
q 6=i

 ∑
sr:r/∈{i,q}

∏
p/∈{i,q}

xp,sp

+ αζ
∑
q 6=i

 ∑
sr:r/∈{i,q}

∏
p/∈{i,q}

yp,sp


= 2(n− 1)αζ.

This implies that for any pure strategies j, k ∈ [α] we have

∣∣(ui(j,X)− ui(k,X))− (ui(j,Y)− ui(k,Y))
∣∣ < ε/2.

Therefore, the new mixed strategy profile Y = (yi : i ∈ [n]) satisfies

ui(j,Y) < ui(k,Y) + ε ⇒ ui(j,X) < ui(k,X) + ε/2 ⇒ yi,j = 0

for all i, j and k. This finishes the proof of the lemma.

Fix any α ≥ 7 and c > 0. It then follows from Lemma 3.5.9 that the problem of finding a

(2−n
c/2

) well-supported equilibrium in an anonymous game with α actions and [0, 1] payoffs

is polynomial-time reducible to problem (α, c)-ANONYMOUS. As the former problem is

PPAD-hard by Corollary 3.5.8, (α, c)-ANONYMOUS is PPAD-hard. The finishes the proof

of the hardness part of Theorem 3.2.1.

219

3.6 Proof of the Estimation Lemma

We prove the estimation lemma (Lemma 3.5.1) in this section.

Recall that there are n main players P1, . . . , Pn, and they are only interested in three

strategies {s1, s2, t}. For convenience we will refer to s1 as strategy 1, s2 as strategy 2, and

t as strategy 3 in this section. Player Pi plays strategy b ∈ [3] with probability xi,b, and∑
b xi,b = 1. While xi,b’s are unknown variables, by the assumption of the lemma we are

guaranteed that

xi,1 + xi,2 = δi ± λ, where λ = δn
2

. (3.18)

Throughout this section we will fix two distinct integers r, ` ∈ [n], and the goal will be

to derive an approximation of the unknown xr,1 for P` using a linear form of the following

probabilities:

{
Pr
[
k1 = i, k2 = j

]
: i, j ∈ [0 : n−1]

}
, where Pr

[
k1 = i, k2 = j

]
=

∑
k∈K

k1=i,k2=j

PrX [P`,k],

(3.19)

and kb denotes the random variable that counts players playing b ∈ [3] other than player

P` herself. We will show that coefficients in the desired linear form can be computed in

polynomial time in n.

First we would like to give the reader some intuition for the rest of the section, by

showing how one can get a good estimate of x1,1 and x2,1, assuming ` > 2. We believe this

to be useful for more easily understanding the rest of the section, but the reader should feel

free to skip it, if desired.

Remark 3.6.1 (Informal). As N = 2n is large, we have xi,3 ≈ 1 for each i. This gives

Prk1 = 1, k2 = 0 ≈ x1,1 + x2,1 + · · ·+ xn,1 = x1,1 ±O(δ2)

as xi,1 ≤ δi + λ. Similarly, Prk1 = 2, k2 = 0 ≈ x1,1x2,1 ± O(δ4). Using xi,1 + xi,2 ≈ δi,

220

we have

Prk1 = k2 = 1 ≈ x1,1(δ2−x2,1)+x2,1(δ−x1,1)±O(δ4) = δ2x1,1+δx2,1−2x1,1x2,1±O(δ4).

Combining all three estimates, we have

N
(
Prk1 = k2 = 1 + 2 · Prk1 = 2, k2 = 0

)
− δ · Prk1 = 1, k2 = 0 ≈ x2,1 ±O(δ3).

Since x2,1 ≤ δ2 + λ, the linear form on the LHS gives us an additive approximation of x2,1.

We need some notation in order to generalize and formalize this. Let S = [n] \ {`},

the set of players observed by player P`. Let kb, b ∈ [3], denote the random variable that

counts players from S that play strategy b. We write L = {i ∈ S : i ≤ r} and m = |L|,

i.e., L = [r] and m = r if ` > r, and L = [r] \ {`} and m = r − 1 if ` < r. We start by

understanding the following probabilities

{
Pr
[
k1 = m− j, k2 = j

]
: j ∈ [0 : m]

}
.

It will become clear that players from S \L have probabilities too small to significantly

affect these probabilities (so their contribution will just be absorbed into the error term).

For j ∈ [0 : m], let ∆j denote the set of partitions of S into sets of size m − j, j and

n− 1−m:

∆j =
{

(S1,S2,S3) : S1,S2,S3 are pairwise disjoint, S1∪S2∪S3 = S, |S1| = m−j, |S2| = j
}
.

So, by definition, we have

Pr
[
k1 = m− j, k2 = j

]
=

∑
(S1,S2,S3)∈∆j

(∏
i∈S1

xi,1
∏
i∈S2

xi,2
∏
i∈S3

xi,3

)
.

221

By (3.18) we can write xi,1 + xi,2 = δi + λi for some λi with |λi| ≤ λ. We can substitute to

get

Pr
[
k1 = m− j, k2 = j

]
=

∑
(S1,S2,S3)∈∆j

(∏
i∈S1

xi,1
∏
i∈S2

(δi + λi − xi,1)
∏
i∈S3

(1− δi − λi)

)
.

(3.20)

Next, we split ∆j into two sets ∆∗j and ∆′j: (S1,S2,S3) ∈ ∆j is in ∆∗j if S1 ∪ S2 = L;

otherwise, it is in ∆′j . This splits the sum in (3.20) into two sums accordingly, one over ∆∗j

and one over ∆′j . We show in the following lemma that the contribution from the second

sum is negligible.

Lemma 3.6.2. Given the parameters in (3.18), we have

∑
(S1,S2,S3)∈∆′j

(∏
i∈S1

xi,1
∏
i∈S2

(δi + λi − xi,1)
∏
i∈S3

(1− δi − λi)

)
= O

(
δ
∏
i∈L

δi
)
.

Proof. Since all terms in the sum are nonnegative, it suffices to show that

∑
(S1,S2,S3)∈∆′j

(∏
i∈S1

xi,1
∏
i∈S2

(δi + λi − xi,1)

)
= O

(
δ
∏
i∈L

δi
)
. (3.21)

Fix a set T ⊆ S such that |T | = m but T 6= L. We have

∏
i∈T

(δi + λi) =
∏
i∈T

(
xi,1 + (δi + λi − xi,1)

)
=
∑
S1⊆T

∏
i∈S1

xi,1
∏

i∈T \S1

(δi + λi − xi,1)

 .

Since every term on the RHS is nonnegative, we have

∑
S1⊆T
|S1|=m−j

∏
i∈S1

xi,1
∏

i∈T \S1

(δi + λi − xi,1)

 ≤∏
i∈T

(δi + λi) = (1 + o(1)) ·
∏
i∈T

δi,

given that λi = δn
2 in (3.18). Let h(T) =

∏
i∈T δ

i. To prove (3.21), it now suffices to show

222

that ∑
T ⊆S

|T |=m,T 6=L

h(T) = O
(
δ · h(L)

)
= O

(
δ
∏
i∈L

δi
)
.

For this purpose, notice that h(T) ≤ δ · h(L) for any T such that T ⊆ S , |T | = m, but

T 6= L. It is also easy to see that there is at most one T such that h(T) = δ · h(L). Because

every other T has h(T) ≤ δ2 · h(L) and the total number of T ’s is at most 2n−1 = N/2, we

have ∑
T

h(T) ≤ δ · h(L) + (N/2) · δ2 · h(L) = O(δ · h(L)),

as δ = 1/N . This finishes the proof of the lemma.

Combining (3.20) and Lemma 3.6.2, we have

Pr
[
k1 = m− j, k2 = j

]
=

∑
S1⊆L
|S1|=m−j

∏
i∈S1

xi,1
∏

i∈L\S1

(δi + λi − xi,1)
∏
i/∈L

(1− δi − λi)

±O(δ · h(L)).

The next lemma further simplifies this estimate by absorbing all the λi’s into the error term.

Lemma 3.6.3. Given the parameters in (3.18), we have

Prk1 = m− j, k2 = j =
∑
S1∈L

|S1|=m−j

∏
i∈S1

xi,1
∏

i∈L\S1

(δi − xi,1)
∏
i/∈L

(1− δi)

±O(δ · h(L)).

Proof. First the number of S1’s is at most 2n−1 < N . Further, fixing an S1 and multiplying

out ∏
i∈S1

xi,1
∏

i∈L\S1

(δi + λi − xi,1)
∏
i/∈L

(1− δi − λi)

will yield 3j · 3n−1−m ≤ 3n−1 < N2 many terms. The absolute value of each term with at

least one λi must be less than or equal to λ because all factors are less than or equal to 1.

There are at most N2 many such terms, for each S1, and there are at most N different S1’s.

223

Using N3λ� δh(L) by (3.18), we can absorb all terms with at least one λi into the error

term O(δ · h(L)).

Using Lemma 3.6.3 and the fact that
∏

i/∈L(1− δi) > 1/2 as δ = 1/2n, we have

(∏
i/∈L

(1− δi)

)−1

Pr
[
k1 = m− j, k2 = j

]
=

∑
S1⊆L
|S1|=m−j

∏
i∈S1

xi,1
∏

i∈L\S1

(δi − xi,1)

±O(δ · h(L)).

To understand the RHS better, we define a polynomial Pm
d for each d ∈ [0 : m] to be

Pm
d =

∑
T ⊆L, |T |=d

∏
i∈T

xi,1
∏
i∈L\T

δi

 ,

and prove the following lemma that establishes a connection between them.

Lemma 3.6.4. Given Pm
d defined above, we have

∑
S1⊆L
|S1|=m−j

∏
i∈S1

xi,1
∏

i∈L\S1

(δi − xi,1)

 =

j∑
i=0

(−1)i ·
(
m− j + i

m− j

)
· Pm

m−j+i (3.22)

Proof. Note that every monomial that appears on the two sides of (3.22) has the form∏
i∈T xi,1 for some T ⊆ L with |T | = d ≥ m − j. Fix such a T . The coefficient of∏
i∈T xi,1 on RHS of (3.22) is

(−1)d−m+j ·
(

d

m− j

)
·
∏
i∈L\T

δi.

On the other hand, for an S1 ⊆ L with |S1| = m− j, we have

∏
i∈S1

xi,1
∏

i∈L\S1

(δi − xi,1) =
∑

S′⊆L\S1

∏
i∈S1

xi,1
∏
i∈S′

(−xi,1)
∏

i∈L\{S1∪S′}

δi

 .

224

Hence,
∏

i∈T xi,1 occurs exactly once in this sum if and only if S1 ⊆ T , and will take the

form ∏
i∈S1

xi,1
∏

i∈T \S1

(−xi,1)
∏
i∈L\T

δi = (−1)d−m+j
∏
i∈T

xi,1
∏
i∈L\T

δi.

Further, there are
(

d
m−j

)
many S1 such that S1 ⊆ T and |S1| = m − j. The lemma is

proven.

Combining Lemma 3.6.3 and 3.6.4, we immediately get the following corollary:

Corollary 3.6.5. For any j ∈ [0 : m], we have

(∏
i/∈L

(1− δi)

)−1

Prk1 = m− j, k2 = j =

j∑
i=0

(−1)i·
(
m− j + i

m− j

)
·Pm
m−j+i±O

(
δ·h(L)

)
.

Taking a step back, we have derived a set of linear equations that hold with high precision

over Pr[k1 = m, k2 = 0], . . . ,Pr[k1 = 0, k2 = m] and Pm
m , . . . , P

m
0 . This then allows us

to attain a close approximation for Pm
1 , using a linear form of the m probabilities. Note that

Pm
1 =

∑
i∈L

xi,1
∏

j∈L\{i}

δj = h(L) ·
∑
i∈L

N i · xi,1 (3.23)

is a linear form of the xi,1’s, i ∈ L, including xr,1 (recall that r is the largest integer in L).

So from here, it will be straightforward to get an approximation of xr,1.

The next lemma gives us a linear form to approximate Pm
1 .

Lemma 3.6.6. The m probabilities and Pm
1 satisfy

(∏
i/∈L

(1− δi)

)−1 m∑
j=1

j · Prk1 = j, k2 = m− j = Pm
1 ±O

(
m2δ · h(L)

)
.

Proof. By Corollary 3.6.5 (and replacing j init by m− j), we see that it suffices to show

that

Pm
1 =

m∑
j=1

j ·

(
m−j∑
i=0

(−1)i ·
(
j + i

j

)
· Pm

j+i

)
. (3.24)

225

Consider Pm
d for some d ∈ [m]. Pm

d appears in the jth term on the RHS of (3.24) if and

only if d ≥ j, and when this is the case, the coefficient of Pm
d is

j · (−1)d−j ·
(
d

j

)
.

So the RHS of (3.24) is

m∑
d=1

Pm
d ·

(
d∑
j=1

(−1)d−j · j ·
(
d

j

))
.

For d = 1, the coefficient of Pm
1 is clearly 1. For d > 1, using j

(
d
j

)
= d
(
d−1
j−1

)
we have

d∑
j=1

(−1)d−j · j ·
(
d

j

)
= d ·

d∑
j=1

(−1)d−j ·
(
d− 1

j − 1

)
= d ·

d−1∑
j=0

(−1)d−j−1

(
d− 1

j

)
= 0.

This finishes the proof of the lemma.

Lemma 3.6.6 gives us a linear form to approximate Pm
1 . Denote this linear form by Ym.

Then for the special case when L = {r} (so r is the only integer in L), we are done since

Pm
1 is exactly xr,1, and we have attained a linear form that approximates xr,1 with error

O(m2δ · h(L)).

Otherwise suppose |L| > 1. We use r′ to denote the largest integer in L other than r and

write L′ = {i ∈ S : i ≤ r′} (|L′| = m− 1). Repeating the same line of proof so far over

L′ and m − 1, we obtain a linear form of Pr[k1 = m − 1 − j, k2 = j], j ∈ [0 : m − 1],

denoted by Ym−1, to approximate

Pm−1
1 =

∑
i∈L′

xi,1
∏

j∈L′\{i}

δj = h(L′) ·
∑
i∈L′

N i · xi,1 (3.25)

with error O(m2δ · h(L′)). By the definition of Pm
1 and Pm−1

1 in (3.23) and (3.25), we have

xr,1 = δr
(
Pm

1

h(L)
− Pm−1

1

h(L′)

)
.

226

As a result, we have obtained a linear form

δr
(
Ym
h(L)

− Ym−1

h(L′)

)
= xr,1 ±O(m2δr+1) (3.26)

over Pr[k1 = m− j, k2 = j], j ∈ [0 : m] and Pr[k,1 = m−1− j, k2 = j], j ∈ [0 : m−1].

Finally, it follows easily from our derivation of Ym and Ym−1 that coefficients of this

linear form can be computed in polynomial time in n, and every coefficient has absolute

value at most Nm2 .

3.7 Membership in PPAD

In this section we show that (α, c)-ANONYMOUS is in PPAD for any constants α ∈ N and

c > 0, i.e. the problem of finding an ε-approximate equilibrium in an anonymous game

G = (n, α, {payoffp}) with payoffs from [0, 1] is in PPAD, where ε = 1/2n
c . Below we

use SIZE(G) to denote the input size of an anonymous game G, i.e., length of the binary

representation of G. We write SIZE(a) to denote the length of the binary representation of a

rational number a, and let SIZE(aaa) =
∑

i SIZE(ai) for a rational vector aaa (e.g., a rational

mixed strategy profile).

Fix constants α ∈ N and c > 0. We show the membership of (α, c)-ANONYMOUS

by reducing it to a “weak-approximation” fixed point problem [122] (see [122] for the

difference between weak and strong approximations). Given G = (n, α, {payoffp}), we

define a map F : ∆→ ∆ (this is the map commonly used to prove the existence of Nash

equilibria, e.g., see [115]), where

∆ =
{

(xi : i ∈ [n]) : xi ∈ Rα
+ is a mixed strategy of player i ∈ [n]

}

is the set of all mixed strategy profiles. For each i ∈ [n] and j ∈ [α], the (i, j)th component

227

of F

Fi,j(X) =
xi,j + max (0, ui(j,X)− ui(X))

1 +
∑

k∈[α] max (0, ui(k,X)− ui(X))
, (3.27)

where X = (xi : i ∈ [n]) ∈ ∆ and xi = (xi,1, . . . , xi,α) for each i ∈ [n].

Observe that F is continuous and maps ∆ to itself. We also have

Property 3.7.1. The map F defined above is polynomial-time computable: Given a rational

X ∈ ∆, F (X) is rational and can be computed in polynomial time in SIZE(G) and SIZE(X).

Proof. This follows from the fact that there is a polynomial-time dynamic programming

algorithm (see [149]) that computes ui(j,X), given G and X .

We say X ∈ ∆ is an ε-approximate fixed point of F if ‖F (X)− X‖∞ ≤ ε. We prove

Lemma 3.7.2 in Section 3.7.1, showing that approximate fixed points of F are approximate

Nash equilibria of G.

Lemma 3.7.2. Given X ∈ ∆ and 0 ≤ ε ≤ 1, if ‖F (X) − X‖∞ ≤ ε, then we have

ui(j,X) ≤ ui(X) + ε′ for all players i ∈ [n] and pure strategies j ∈ [α], where ε′ = α2ε1/3.

So to find an ε-approximate Nash equilibrium X of G, it suffices to find an (ε3/α6)-

approximate fixed point of F . Moreover, we show in Section 3.7.2 that F is polynomially

Lipschitz continuous:

Lemma 3.7.3. For all X ,Y ∈ ∆, we have

‖F (X)− F (Y)‖∞ ≤ 10nαn+2 · ‖X − Y‖∞.

Combining Property 3.7.1 and Lemma 3.7.3, it follows from Proposition 2.2 (Part 2) of

[122] that given G and ε (in binary), the problem of finding an ε-approximate fixed point X

of F is in PPAD. The PPAD membership of (α, c)-ANONYMOUS then follows from Lemma

3.7.2.

228

3.7.1 Proof of Lemma 3.7.2

For convenience, we write maxi,k(X) = max (0, ui(k,X)− ui(X)) for i ∈ [n] and k ∈ [α].

In the pursuit of a contradiction, assume that there exist a player i ∈ [n] and an action

` ∈ [α] such that ui(`,X) > ui(X) + ε′. This, along with the fact that maxi,k(X) ∈ [0, 1],

implies that,

ε′ <
∑

k∈[α] maxi,k(X) ≤ α− 1. (3.28)

We will show that cases xi,` ≤ αε1/3 and xi,` > αε1/3 both result in the existence of a

strategy j ∈ [α] such that |Fi,j(X)− xi,j| > ε, contradicting our initial assumption.

Case 1: xi,` ≤ αε1/3. Apply (3.27), (3.28) and ε′ = α2ε1/3 to get

Fi,`(X) >
xi,` + ε′

α
⇒ Fi,`(X)− xi,` >

ε′ − (α− 1)xi,`
α

≥ ε′ − (α− 1)αε1/3

α

= ε1/3 ≥ ε.

Case 2: xi,` > αε1/3. Let J = {j ∈ [α] : ui(j,X) ≤ ui(X)}. We must have

∑
j∈J xi,j

(
ui(X)− ui(j,X)

)
≥ xi,`

(
ui(`,X)− ui(X)

)
,

where ui(X)− ui(j,X) ≤ 1− ε′, ui(`,X)− ui(X) ≥ ε′, and xi,` > αε1/3.

Therefore,

∑
j∈J xi,j ≥

αε′ε1/3

1− ε′
,

which implies that there exists some strategy j ∈ J such that xi,j ≥ ε′ε1/3/(1− ε′).

229

Apply (3.27) and (3.28) to get Fi,j(X) < xi,j/(1 + ε′), which implies that

∣∣Fi,j(X)− xi,j
∣∣ > ε′xi,j

1 + ε′
≥ (ε′)2ε1/3

(1− ε′)(1 + ε′)
≥ α4ε ≥ ε.

This finishes the proof of Lemma 3.7.2.

3.7.2 Proof of Lemma 3.7.3

As X −Y is of length nα, we have ‖X −Y‖1 ≤ nα · ‖X −Y‖∞. Thus, it suffices to show

that

‖F (X)− F (Y)‖∞ ≤ 16αn+1‖X − Y‖1.

Fix i ∈ [n] and j ∈ [α]. We have

∣∣Fi,j(X)− Fi,j(Y)
∣∣ =

∣∣∣∣∣ xi,j + maxi,j(X)

1 +
∑

k∈[α] maxi,k(X)
− yi,j + maxi,j(Y)

1 +
∑

k∈[α] maxi,k(Y)

∣∣∣∣∣ .
Multiplying the terms in the RHS to get a common denominator, which is clearly ≥ 1, we

get

∣∣Fi,j(X)− Fi,j(Y)
∣∣ ≤ ∣∣xi,j − yi,j∣∣+

∣∣∣∣∣xi,j ∑
k∈[α]

max
i,k

(Y)− yi,j
∑
k∈[α]

max
i,k

(X)

∣∣∣∣∣ (3.29)

+
∣∣∣max

i,j
(X)−max

i,j
(Y)
∣∣∣+ (3.30)∣∣∣∣∣max

i,j
(X)

∑
k∈[α]

max
i,k

(Y)−max
i,j

(Y)
∑
k∈[α]

max
i,k

(X)

∣∣∣∣∣.
To bound |Fi,j(X)− Fi,j(Y)|, we shall use the following simple trick several times in

the rest of the proof. If a1, a2, b1, b2 ∈ [0, 1], then we have

|a1a2 − b1b2 | = |(a1 − b1)a2 + b1(a2 − b2)| ≤ |a1 − b1 |+ |a2 − b2 |,

230

which easily extends to

|a1 · · · an − b1 · · · bn | ≤ |a1 − b1 |+ · · ·+ |an − bn |,

when all the ai’s and bi’s are in [0, 1].

Now we come back to (3.29). By the definition of maxi,j(X), we have

∣∣∣max
i,j

(X)−max
i,j

(Y)
∣∣∣ ≤ ∣∣(ui(j,X)− ui(X))− (ui(j,Y)− ui(Y))

∣∣
≤
∣∣ui(j,X)− ui(j,Y)

∣∣+
∣∣ui(X)− ui(Y)

∣∣.
As X ,Y ∈ ∆ we have xi,j, yi,j ∈ [0, 1]. Since all payoffs of G are in [0, 1], we have

ui(j,X), ui(j,Y), ui(X), ui(Y) ∈ [0, 1] for all i, j, which in turn implies that we have both

maxi,j(X),maxi,j(Y) ∈ [0, 1].

Using these properties above, along with the trick, we can conclude

∣∣∣∣∣xi,j ∑
k∈[α]

max
i,k

(Y)− yi,j
∑
k∈[α]

max
i,k

(X)

∣∣∣∣∣ ≤∑
k∈[α]

∣∣∣xi,j ·max
i,k

(Y)− yi,j ·max
i,k

(X)
∣∣∣

≤
∑
k∈[α]

(
|xi,j − yi,j|+ |ui(k,X)− ui(k,Y)|+ |ui(X)− ui(Y)|

)
.

Similarly, we also have

∣∣∣∣∣max
i,j

(X)
∑
k∈[α]

max
i,k

(Y)−max
i,j

(Y)
∑
k∈[α]

max
i,k

(X)

∣∣∣∣∣
≤
∑
k∈[α]

(
|ui(j,X)− ui(j,Y)|+ 2|ui(X)− ui(Y)|+ |ui(k,X)− ui(k,Y)|

)
.

231

Plugging all these back into (3.29), we have

∣∣Fi,j(X)− Fi,j(Y)
∣∣ ≤ (1 + α) · |xi,j − yi,j |+ (1 + 3α) · |ui(X)− ui(Y)|

+ (1 + α) · |ui(j,X)− ui(j,Y)|+ 2 ·
∑
k∈[α]

|ui(k,X)− ui(k,Y)|.

Finally, we bound |ui(k,X)− ui(k,Y)| in terms of ‖X − Y‖1. Let S be the set of pure

strategy profiles. Then, by applying the trick and the fact that all payoffs are in [0, 1], it

follows that

|ui(k,X)− ui(k,Y)| ≤
∑
s∈S−i

∣∣∣∣∣∏
q 6=i

xq,sq −
∏
q 6=i

yq,sq

∣∣∣∣∣ ≤ ∑
s∈S−i

∑
q 6=i

|xq,sq − yq,sq | ≤ αn−1‖X − Y‖1

|ui(X)− ui(Y)| ≤
∑
s∈S

∣∣∣∣∣ ∏
q∈[n]

xq,sq −
∏
q∈[n]

yq,sq

∣∣∣∣∣ ≤∑
s∈S

∑
q∈[n]

|xq,sq − yq,sq | ≤ αn‖X − Y‖1.

Applying these inequalities, along with |xi,j − yi,j | ≤ ‖X − Y‖1, we get

∣∣Fi,j(X)− Fi,j(Y)
∣∣ ≤ 10αn+1 · ‖X − Y‖1.

This finishes the proof Lemma 3.7.3.

3.8 Open Problems

Can the number of strategies be further reduced from seven in our PPAD-hardness result?

Specifically, could we construct an anonymous game similar to the radix game Gn,N , partic-

ularly its set of approximate Nash equilibria after perturbation, but without the four special

(auxiliary) pure strategies {q1, q2, r1, r2}? While we believe this to be possible, constructing

such a game can be highly non-trivial and would require specifying different payoffs for

many of the possible outcomes seen by each player. Accordingly, proving a result similar to

Lemma 3.4.3 after duplicating the first strategy would be even more difficult.

232

However, even the construction of such a game would only reduce the number of

strategies used in the hardness proof down to three (due to the strategy duplication in

the generalized radix game later), leading to the next open question: Is there an FPTAS

for two-strategy anonymous games? As was posited by Daskalakis and Papadimitriou, it

remains unclear whether a rational two-strategy anonymous game always has a rational

Nash equilibrium. Additionally, in their sequence of paper’s proving a PTAS for a bounded

number of strategies, Daskalakis and Papadimitriou found that the form of the PrX [p,k]

is significantly simpler for two-strategy anonymous games. Correspondingly, we found

that constructing useful gadgets for reductions with just two strategies to be very difficult,

suggesting that an FPTAS for two-strategy anonymous games is certainly a possibility.

Moreover, could there be an FPTAS for anonymous games with any bounded number

of pure strategies? There is no clear way to strengthen our current construction to obtain

a PPAD-hardness result for 1/poly(n)-approximate Nash equilibrium. In order for the

estimation lemma to hold, we need xi,1 + xi,2 ≈ δi for all i. So even if we set N = 2,

ensuring that xi,1 + xi,2 = δi±O(1/poly(n)) would still not be sufficient for the estimation

lemma to hold. Accordingly, in order to modify our construction to get such a hardness

result, we would need to construct an anonymous game, which contains n players with the

same properties as the main players in the generalized radix game, but with the additional

property that O(1/poly(n)) shifts in the payoffs would only cause O(1/2poly(n)) shifts in

xi,1 + xi,2, which seems incredibly unlikely.

233

CHAPTER 4

INDIVIDUAL SENSITIVITY PREPROCESSING FOR DATA PRIVACY

This was joint work with Rachel Cummings.

The sensitivity metric in differential privacy, which is informally defined as the largest

marginal change in output between neighboring databases, is of substantial significance in

determining the accuracy of private data analyses. Techniques for improving accuracy when

the average sensitivity is much smaller than the worst-case sensitivity have been developed

within the differential privacy literature, including tools such as smooth sensitivity, Sample-

and-Aggregate, Propose-Test-Release, and Lipschitz extensions.

In this work, we provide a new and general Sensitivity-Preprocessing framework for

reducing sensitivity, where efficient application gives state-of-the-art accuracy for privately

outputting the important statistical metrics median, mean, and variance when no underlying

assumptions are made about the database. In particular, our framework compares favorably

to smooth sensitivity for privately outputting median, in terms of both running time and

accuracy. Furthermore, because our framework is a preprocessing step, it can also be

complementary to smooth sensitivity and any other private mechanism, where applying both

can achieve further gains in accuracy.

We additionally introduce a new notion of individual sensitivity and show that it is an

important metric in the variant definition of personalized differential privacy. We show that

our algorithm can extend to this context and serve as a useful tool for this variant definition

and its applications in markets for privacy.

Given the effectiveness of our framework in these important statistical metrics, we

further investigate its properties and show that: (1) Our construction is conducive to efficient

implementation with strong accuracy guarantees, evidenced by an O(n) implementation for

median (with presorted data), and O(n2) implementation for more complicated functions

234

such as mean, α-trimmed mean, and variance. (2) Our construction is both NP-hard and also

optimal in the general setting (3) Our construction can be extended to higher dimensions,

although it incurs accuracy loss that is linear in the dimension.

4.1 Introduction

Differentially private algorithms for data analysis guarantee that any individual entry in a

database has only a bounded effect on the outcome of the analysis [161]. These algorithms

ensure that the outcomes on any pair of neighboring databases—that differ in a single

entry—are nearly indistinguishable. This is typically achieved by perturbing the analysis

or its output, using noise that scales with the magnitude of change in the analysis between

neighboring databases. This perturbation necessarily leads to decreased accuracy of the

analysis. A fundamental challenge in differentially private algorithm design is to simulta-

neously satisfy privacy guarantees and provide accurate analysis of the database. Privacy

alone can be achieved by outputting pure noise, but this fails to yield useful insights about

the data. Intuitively, stronger privacy guarantees should yield weaker accuracy guarantees.

Quantifying this privacy-accuracy tradeoff has been one major contribution of the existing

differential privacy literature. In the last several years, accurate and differentially private

algorithms have been designed for a diverse collection of data analysis tasks (see [162] for

a survey), and have been implemented in practice by major organizations such as Apple,

Google, Uber, and the U.S. Census Bureau. The formal guarantees of differential privacy

give sharp contrast to ad hoc privacy measures such as anonymization and aggregation,

which have both led to infamous privacy violations [163, 164].

We formalize data analysis tasks as functions that map from the space of all databases

to real-valued outputs. The global sensitivity of a function is the worst-case difference in

the function’s value between all pairs of neighboring databases. Since differential privacy

guarantees must hold for all pairs of neighboring databases, this is the scale of noise that must

be added to preserve privacy. Strong bounds on global sensitivity imply that the function

235

is well-behaved over the entire data universe, and often allows for privacy-preserving

output with strong accuracy guarantees. However, this worst-case measure allows a single

outlier database to significantly skew the accuracy of the privacy-preserving algorithm for

all databases. Although it is necessary to preserve the privacy of outlying databases, we

would prefer to add less noise for improved accuracy guarantees when the average-case

sensitivity is far smaller than the worst-case. A variety of well-known techniques have been

employed to address this problem including smooth sensitivity and Sample-and-Aggregate

[11], Propose-Test-Release [12], and Lipschitz extensions [13, 14, 15].

Initial work in this space considered a database-specific definition of sensitivity, known

as local sensitivity, which is the maximum change in the function’s value between a given

database and its neighbors [11, 12]. Ideally, we would like to add noise that scales with

the local sensitivity of each database. This would allow us to add less noise to well-

behaved regions of the database universe, and only the outliers would require substantial

noise. Unfortunately this procedure does not satisfy differential privacy because the amount

of noise added to a given database may be highly disclosive. To avoid this information

leakage, [11] defined an intermediate notion of smooth sensitivity, which smoothed the

amount of noise added across databases to preserve differential privacy once again. This

technique was also combined with random subset sampling to give an efficient and private

procedure, Sample-and-Aggregate, with strong error guarantees when each database was

well-approximated by a random subset of its entries [11].

Later work considered partitioning the database universe into well-behaved and outlying

databases. Propose-Test-Release defined this partition with respect to local sensitivity and

gave accurate outputs only on databases that were sufficiently far from outliers [12]. Propose-

Test-Release avoided some of the information leakage issues by outputting NULL for any

outlying database, and gave efficient implementations for a variety of important functions.

The Lipschitz extension framework instead partitioned according to global sensitivity, by

identifying a subset of the data universe where the given function had small global sensitivity.

236

On this subset, the function of interest is simply a Lipschitz function with the constant

defined as the small global sensitivity [13, 14, 15]. Extending the Lipschitz function to the

remaining data universe achieves a function with small global sensitivity that is identical

to the original function on the well-behaved databases. Applying any differential privacy

algorithm to this Lipschitz function will allow for the use of a much smaller global sensitivity

input and will achieve high accuracy on the well-behaved databases.

In this work, we introduce a Sensitivity-Preprocessing framework that will similarly ap-

proximate a given function with a sensitivity bounded function, which we call the Sensitivity-

Preprocessing Function. Our Sensitivity-Preprocessing Function will take advantage of the

specific metric space structure of the data universe to give a more constructive approach. At

a high-level, while Lipschitz extensions are initialized with a well-behaved subset of the data

universe, our algorithm will find this well-behaved subset as it constructs the Sensitivity-

Preprocessing Function. As a result, our procedure will be much more localized and can

always give an exponential-time construction even in the most general setting, whereas

Lipschitz extensions can often be uncomputable. In addition, similar to smooth sensitivity,

we achieve optimality and NP-hardness guarantees for accuracy in this generalized setting

under several reasonable metrics of optimality.

Furthermore, our Sensitivity-Preprocessing Function only requires a simple recursive

construction that is more conducive to efficient implementation, which we achieve for

important statistical functions such as median, mean, and variance. These functions have

been of particular interest for similar techniques because they are highly important statistics

and also have large worst-case sensitivity, but small average sensitivity. We will compare

our results to previous results in the following section, where our framework gives state-

of-the-art accuracy for median and mean when no underlying assumptions are made to the

database. The key assumption that we would aim to avoid is that data points are drawn iid,

which is a popular assumption in previous results for outputting functions such as mean

(i.e., Propose-Test-Release [12]). While this assumption is quite standard, we contend that

237

real world data are often not iid, and so consideration of the more general case is still an

important problem. Comparing our framework to those that apply the iid assumptions

(and sometimes further assumptions, such as being drawn from a Gaussian [KLSU18]), we

will also achieve similarly high accuracy for well concentrated databases, but concede that

mechanisms specifically catered for that setting will often be superior. However, we note

that because our framework is a preprocessing routine, it can be run before applying any

differentially private mechanism such as Propose-Test-Release to achieve further gains in

accuracy. In avoiding this iid assumption, the primary technique we will then compare our

framework with will be smooth sensitivity which is popularly used for privately outputting

median. Both frameworks have database-specific accuracy and direct comparison will be

difficult, but we give strong evidence in the next section of why our framework compares

favorably to smooth sensitivity for median.

The localized construction of our Sensitivity-Preprocessing Function will also allow

us to tailor the new sensitivity parameters beyond previous techniques. To this end, we

introduce a more refined sensitivity metric, which we call individual sensitivity, and show

that it is important for a variant definition of personalized differential privacy introduced in

[165], and used in subsequent works on market design for private data [166, 167]. We can

apply our construction as a preprocessing step for more refined sensitivity tailoring to take

advantage of personalized differential privacy guarantees. We believe this application of our

results may of independent interest for future work in these directions.

In this work we cover a broad range of the more immediate results from this new frame-

work, but believe that there is still a substantial amount of work in this direction. While some

of our proofs will become involved, all of our results follow from first principles, suggesting

the potential for further results using more sophisticated tools within this framework. These

further results include: efficient implementations of more difficult functions such as linear

regression; optimizing the trade-off between decreasing the sensitivity parameter and the

error incurred by our Sensitivity-Preprocessing for specific functions; applying our algorithm

238

in the markets for privacy literature; and variants of our algorithm that are optimized for

specific computational settings or application domains.

4.1.1 Differential Privacy and Sensitivity

We first give some of the basic definitions associated with differential privacy that will

be useful for the remainder of the paper. The first definition is the notion of neighboring

databases, where two databases are considered neighbors if the only difference is that the

data of only one individual has been added or removed.

Definition 4.1.1. Given a set of databases D, we say that two databases D,D′ ∈ D are

neighboring, or d(D,D′) = 1, if the only difference is one individuals data has been added

or removed. For much of this result, we will consider D to be the set of all real-valued

vectors, andD,D′ are neighbors if one has an additional entry in it’s vector but are otherwise

identical

The goal is then to protect the privacy of this one individual adding or removing their

data by ensuring that the output from the mechanism maintains the privacy of this change

by drawing from a similar probability distribution, hence differential privacy.

Definition 4.1.2 (Differential Privacy [161]). Given a set of databases, or data universe, D

and some metric space O. Let M be a randomized mechanism mapping D ∈ D to s ∈ O.

We say that this mechanism M is ε-differentially private if for any D,D′ ∈ D such that

d(D,D′) = 1 and any subset S ⊂ O, we must have

P [M(D) ∈ S] ≤ eεP [M(D′) ∈ S]

Given that this considers preserving the privacy of all neighboring databases, it is then

natural to consider the maximum change in the output of neighboring databases if our

goal is to privately release a given function. More specifically, suppose we have some

function, f : D → R, mapping databases to the reals. For instance this could simply be the

239

function that computes the mean of each database. In order to output this function privately,

it becomes critical to consider the maximal change that can occur between neighboring

databases, defined as the global sensitivity.

Definition 4.1.3 (Global Sensitivity). Given a function f : D → R, we let ∆(f) denote the

global sensitivity of f which is defined as

∆(f)
def
= max

D,D′:d(D,D′)=1
|f(D)− f(D′)|

4.1.2 Our Results

Our results will primarily revolve around the Sensitivity-Preprocessing Function, which

we introduce below. It is an alternate schema for fitting a general function to a sensitivity-

bounded function in the context of differential privacy. More specifically, we consider the

general problem of taking any function f : D → R and constructing a new function g : D →

R that satisfies given sensitivity parameters and minimizes the difference |f(D)− g(D)|

over all databases D ∈ D. The sensitivity parameters we consider will be more refined and

we define individual sensitivity, which is the maximum change in a function’s value from

adding or removing a single specific data entry. We use ∆i to denote individual sensitivity

to the i-th data entry. When a database is comprised of data from multiple individuals, ∆i

captures the sensitivity of the function to person i’s data.

In this section, we first give an overview of our recursively constructed Sensitivity-

Preprocessing Function that works in a highly generalized setting, along with the corre-

sponding runtime and error guarantees. We then examine the optimality and hardness of

this general function in the context of minimizing |f(D)− g(D)| over all databases D ∈ D.

While constructing our Sensitivity-Preprocessing Function will require exponential time

in general, we show that it can be simply and efficiently implemented in O(n) time for

median, and in O(n2) time for several other important statistical measures including mean

and variance. We show that our Sensitivity-Preprocessing Function tailors an important

240

metric (individual sensitivity) in the variant definition of personalized differential privacy,

which provides different privacy guarantees to different individuals in the same database, and

is a useful tool in the design of markets for privacy. We further generalize our construction

of Sensitivity-Preprocessing Function to bound the `1 sensitivity of 2-dimensional functions

f : D → R2, and show that such techniques cannot be extended to higher dimensions.

Sensitivity-preprocessing function overview

Our construction of the Sensitivity-Preprocessing Function is similar to the Lipschitz ex-

tension framework, but we extend only from the empty set. We start with f(∅) = g(∅),

and inductively construct g for larger databases while trying to achieve two desiderata: (1)

maintain the appropriate individual sensitivity bounds; and (2) keep g as close as possible

to f . The first objective will be strictly maintained, and we will optimize over the second

objective.

The primary difficulty in this construction is that we often consider D to be infinite. As

a result, checking to make sure we do not violate any sensitivity constraints when defining g

on a new database can require checking all databases on which g was previously defined.

For example, general Lipschitz extensions require checking all previously defined databases

to extend to another database, which can often be uncomputable for general functions. To

avoid these uncomputability issues, we take advantage of the lattice structure of neighboring

databases in the differential privacy landscape. This will allow us to give a far more localized

construction that critically utilizes the following two key properties of the data universe

metric space:

1. While each database could have infinitely many neighboring databases, it only has a

finite number of neighbors with strictly fewer entries.

2. Any two neighbors of a strictly larger database must also be neighbors of a strictly

smaller database.

241

These properties ensure that whenever we define g on a new database, we only need

to check that sensitivity constraints of strictly smaller neighboring databases are satisfied.

Once we have found the feasible range of g that does not violate any sensitivity constraints,

we will define g to be as close as possible to f within this feasible range.

Definition 4.1.4 (Informal version of Definition 4.3.1). Given a function f : D → R and

fixed sensitivity parameters, we recursively define our Sensitivity-Preprocessing Function g :

D → R such that g(∅) = f(∅)1 and for any D ∈ D,

g(D) = closest point to f(D) in FEASIBLE(D),

where FEASIBLE(D) is the set of all points that do not violate the sensitivity constraints

based upon g(D′) for all neighbors D′ of D with fewer entries.

The recursive structure of this function allows us to compute g(D) by only looking at

the subsets of D, which unfortunately takes exponential time. Later in the paper (Sections

4.5 and 4.6), we utilize the simplicity of the recursive structure to efficiently implement

this algorithm for several functions of interest that exhibit additional structure. Theorem

4.1.5 summarizes our main result on the running time and accuracy guarantees of our

Sensitivity-Preprocessing Function algorithm.

Theorem 4.1.5 (Informal version of Theorem 4.3.3). For any function f : D → R and

desired sensitivity bounds {∆i}, let g : D → R be the Sensitivity-Preprocessing Function of

f . Given query access to f in T (n) time for a database of size n, we give O((T (n) + n)2n)

time access to g(D) for any D ∈ D with n entries. We also give instance-specific bounds

on each |f(D)− g(D)| based on the sensitivity of f and {∆i}.

Our algorithm for computing the Sensitivity-Preprocessing Function g (Algorithm 10) is

robust to informational assumptions. We only assume query access to f , and do not require

any knowledge of the database universe D or the sensitivity of f .
1See Remark 4.3.2 for a discussion of how to initialize g(∅) if f(∅) is not well-defined.

242

This algorithm easily extends to functions that map to Rd, by treating each dimension

independently. See Remark 4.3.4 and Section 4.8 for more details on handling high-

dimensional functions.

Approximate Optimality and Hardness

The construction of our Sensitivity-Preprocessing Function is quite simple in its greedy struc-

ture and requires exponential running time. To justify these two properties, we complement

our algorithm with both optimality guarantees and hardness results.

In particular, we still consider the general problem of taking any function f : D → R

and constructing a new function g : D → R with individual sensitivity bounds {∆i}.

The goal will then be to minimize the difference |f(D)− g(D)| across databases D ∈ D.

Despite its simplicity, we show that our Sensitivity-Preprocessing Function still achieves a

2-approximation to the optimal function in the `∞ metric in this generalized setting.

Proposition 4.1.6 (Informal version of Corollary 4.4.4). Given any function f : D → R

and sensitivity parameters {∆i}, let g : D → R be our Sensitivity-Preprocessing Function.

For any function f ∗ : D → R with individual sensitivity bounds {∆i},

max
D∈D
|f(D)− g(D)| ≤ 2 max

D∈D
|f(D)− f ∗(D)| .

Our guarantees are even stronger because they also hold over finite subsets of the data

universe. While Proposition 4.1.6 measures error in the worst-case over D, we also show

(Lemma 4.4.2) that when the optimal error is small on certain subsets of the data universe,

then our error is also small.

Furthermore, we can show that our Sensitivity-Preprocessing Function is Pareto optimal:

there is no strictly superior sensitivity-bounded function that improves accuracy over all

databases.

Proposition 4.1.7 (Informal version of Lemma 4.4.5). Given any f : D → R, let g : D → R

243

be the Sensitivity-Preprocessing Function of f with individual sensitivity parameters {∆i}.

For any f ∗ : D → R with individual sensitivity parameters {∆i}, if there is some D ∈ D

such that

|f(D)− f ∗(D)| < |f(D)− g(D)| ,

then there also exists some D′ ∈ D such that

|f(D′)− f ∗(D′)| > |f(D′)− g(D′)| .

These results imply that our Sensitivity-Preprocessing Function does quite well fitting to

the original function under the metrics we are considering. However, it does take exponential

time, so we complement these results by showing that getting the same approximation

guarantees is NP-hard even for a single sensitivity parameter {∆i} = ∆.

Proposition 4.1.8 (Informal version of Proposition 4.4.6). Given any function f : D → R

and sensitivity parameter ∆, it is NP-hard to construct any function f ∗ : D → R with

sensitivity ∆ that enjoys the same accuracy guarantees as our Sensitivity-Preprocessing

Function.

We further argue that it is uncomputable to do better than a 2-approximation in the `∞

metric, and also uncomputable to achieve even a constant approximation in any `p metric for

p <∞, which justifies our choice of metric. We believe that the combination of these results

gives a strong indication that our Sensitivity-Preprocessing Function and corresponding

exponential time construction is the best we can hope to achieve for the general problem

under reasonable metrics of optimality.

Efficient Implementation for Important Statistical Measures

One of the main benefits of our Sensitivity-Preprocessing Function is that its simple recursive

structure is conducive to giving simple efficient variants for specific functions through

largely straightforward state space reductions and dynamic programming. To this end, we

244

give efficient implementations of our Sensitivity-Preprocessing Function for the important

statistical functions mean, median, α-trimmed mean, maximum, minimum, and variance.

These statistical metrics can be surprisingly difficult to release privately without assuming

the input is restricted to some range, and often requires further assumptions for metrics like

mean, such as data being drawn from identical and independent distributions. In fact, for

Propose-Test-Release even the iid assumption is not sufficient to apply their framework

to mean, and other works required further concentration properties such as being drawn

from the normal distribution. However, our Sensitivity-Preprocessing Function does not

require bounded sensitivity of the input function f , and can also avoid any iid requirements.

As a result, we are able to efficiently implement each of these statistical metrics with no

constraints on the inputs. It is important to note that our implementations only consider a

single sensitivity parameter ∆, but we believe each can be efficiently extended for individual

sensitivity parameters {∆i}.

For each of these statistical metrics, we are simply implementing our Sensitivity-

Preprocessing Function more efficiently, so all of the previously stated optimality guarantees

still apply. To further strengthen these optimality guarantees, we give a more rigorous treat-

ment of the error incurred by our efficient implementation of median, mean, and variance,

which we consider to be three of the most fundamental statistical tasks.

Median We focus on privately and accurately computing median, because it has been

extensively studied under smooth sensitivity [11]. Both our framework and smooth sensi-

tivity provide database-specific accuracy guarantees, so a direct comparison of accuracy

will be difficult. Nevertheless, we show that our framework compares favorably to smooth

sensitivity on median.

We begin by stating our result. As in [11], we define A(k)(D) = max0≤t≤k+1(xm+t −

xm+t−k−1) andm = n+1
2

2, which is essentially the k-local sensitivity of median for database

2For simplicity we assume that n is odd and the median is xm. The definition is nearly identical when n is
even and will be treated more rigorously in Section 4.5.2

245

D. More formally,

A(k)(D) = max
d(D,D′)≤k

LSf (D
′).

We also need to define median on the empty set. Since this is not naturally defined, we allow

it to be an input parameter med(∅) chosen by the data analyst as the estimated median. As

our comparison will mostly be with smooth sensitivity which must assume values are in

a bounded range [min,max], the natural choice would be med(∅) = max−min
2

. Further, it

would be natural in this setting to set our parameter ∆ = max−min
n

.

Theorem 4.1.9. Let med : R<N → R be the median function for the data universe of all

finite-length real-valued vectors. For chosen parameters med(∅) and ∆, along with any

database D = (x1,, xn) ∈ R<N, if x1 ≤ · · · ≤ xn we give O(n) time access to a function

g : R<N → R with sensitivity ∆ such that g(D) = med(D) wheneverA(k)(D) ≤ 2(k+1)∆

for k ≤ n/4 and med(D) ∈ [med(∅)− n
2
∆,med(∅) + n

2
∆].

To interpret this accuracy result, we begin by comparing performance on the example

considered by [11], where smooth sensitivity performed well. In fact, it was exactly this

setting that motivated our choice of assumptions under which to show our framework

outperforms smooth sensitivity. Consider an environment where data points x1, . . . , xn lie

in a bounded range [0, 1], and we naturally set med(∅) = 1/2 and ∆ = 1/n. Consider

the particular database D = (x1, . . . , xn), where xi = i/n. In this example, it is easy

to check that the assumptions are satisfied for our Sensitivity-Preprocessing Function to

correctly output g(D) = med(D). Privately answering the query g(D) using the Laplace

mechanism (see Definition 4.7.2 for a formal definition) outputs med(D) plus noise with

scale ∆/ε = 1
εn

. In contrast the noise parameter added under smooth sensitivity (without

our sensitivity preprocessing) would have to scale 1
ε2n

, which is asymptotically larger, and

would thus yield significantly lower accuracy.

The assumptions in Theorem 4.1.9 that A(k)(D) ≤ 2(k + 1)∆ for all k ≤ n/4 and

med(D) ∈ [med(∅) − n
2
∆,med(∅) + n

2
∆] are then exactly the generalization of this

246

condition where our database still has values that are reasonably spread out, but also has

low local sensitivity and we would still like to achieve high accuracy. Further note that

these assumptions allow both the bottom and top quartile values to be arbitrarily small and

large, implying that our construction is able to handle outliers well. Restricting our attention

to databases that satisfy these conditions allows us to consider all of the databases under

which smooth sensitivity performs well. Under these assumptions, smooth sensitivity will

achieve a noise magnitude of ∆
ε2

, whereas we instead achieve an asymptotically better noise

magnitude of ∆
ε

. Note that smooth sensitivity requires a bounded range, which we are

considering here to be of size n∆, giving a global sensitivity of n∆ for median. Accordingly,

standard mechanisms would have noise magnitude of n∆
ε

, which is significantly worse than

both our framework and smooth sensitivity.

It is important to acknowledge that our Sensitivity-Preprocessing framework will not

outperform smooth sensitivity in general. For example, consider again the domain where

all data points are bounded in [0, 1], and consider the database D of all 1’s. Then our

g(D) = 1, and the Laplace Mechanism would have noise of magnitude 1
εn

. However, the

smooth sensitivity of this database will be e−εn/2, and the smooth sensitivity framework

only requires noise of magnitude e−εn/2/ε. More generally, smooth sensitivity will often do

better if most data entries are exponentially close to one value. To achieve benefits from

both techniques, an analyst could simply apply the smooth sensitivity framework after our

preprocessing step. Our preprocessing algorithm will only improve the smooth sensitivity

parameters, so this approach will continue to achieve the strong accuracy guarantees of

smooth sensitivity on highly concentrated databases. This can be done efficiently, as both

smooth sensitivity and our preprocessing step take timeO(n2) on database-ordered functions

3. On the example above, if we first apply our Sensitivity-Preprocessing Function and

then add noise based on the smooth sensitivity, then we will also have noise that scales

3Database-ordered functions will be defined in Section 4.5, and it will be seen that this general class can be
implemented in O(n2) time for our framework. While it is outside the scope of this paper, it is straightforward
to see that this also holds for the smooth sensitivity framework and that this property is preserved when
applying our preprocessing to the median function. We leave formal proofs of these to future work.

247

approximately as e−εn/2/ε. Since our algorithm is a preprocessing step, it is compatible

with all techniques for improving accuracy of differentially private algorithms. We view

this as an exciting avenue for future work, to optimize the use of each tool under different

parameter settings.

Mean. We first note that mean is not naturally defined on the empty set, so we define it to be

an input parameter µ̂ chosen by the data analyst as the estimated mean. The analyst’s choice

of µ̂ should reflect her prior knowledge, and will play a role in our accuracy guarantees.

Intuitively, if two databases have means that are exponentially far apart, we cannot hope

to output both means accurately. As such, our Sensitivity-Preprocessing Function will be

accurate on databases with mean reasonably close to µ̂. Our efficient implementation of

mean will take O(n2) time and provide the following guarantees.

Theorem 4.1.10. Let µ : R<N → R be the mean function for the data universe of all

finite-length real-valued vectors. For chosen parameters µ̂ and ∆, along with any database

D = (x1,, xn) ∈ R<N, we give O(n2) time access to a function g : R<N → R with

sensitivity ∆ such that,

|g(D)− µ(D)| ≤ max
{
|µ(D)− µ̂| − n

3
∆, 0

}
+

n∑
i=1

max

{
27 |xi − µ(D)|

n
−∆, 0

}
.

Additionally, if we are guaranteed that each xi ∈ [µ̂+α∆, µ̂+(α+n)∆] for α ∈ [−n, 0],

then g(D) = µ(D)

As was previously mentioned, we claim that our framework gives state-of-the-art ac-

curacy for privately outputting mean when no underlying assumptions are made on the

database. It turns out that the lack of assumptions on the database makes outputting mean

privately incredibly difficult, where even Propose-Test-Release was unable to privately

output mean with iid assumptions. Often further assumptions such as data drawn from a

normal distribution or other distributions that concentrate well are necessary to guarantee

248

highly-accurate private output of mean. To our knowledge, the best algorithm to output

mean privately when no underlying assumptions are made is the naive algorithm, that simply

considers the range [µ̂ − n
2
∆, µ̂ + n

2
∆] of length n∆, and rounds up or down any value

outside of this range. It is important to note that this range must be chosen independently of

the database, as catering the range to the considered database can easily be shown to violate

privacy. Restricting values to a range of n∆ will then ensure that global sensitivity is at

most ∆ and standard mechanisms can be applied from here. For all databases with values

inside the range [µ̂− n
2
∆, µ̂+ n

2
∆] this will then give accurate output.

Note that our second accuracy guarantee similarly considers databases under which our

preprocessing correctly outputs the mean. It can be immediately seen that the allowable

range for values in the database extends beyond the range for the naive algorithm, and can

in some ways be seen to double this range. Essentially, the minimum and maximum values

must still be within n∆ for us to guarantee correctly outputting the mean, but the range

under with minimum and maximum values can fall is now doubled. Given the significance

of mean as a statistical metric, we still believe this improvement is of significance and is the

first to improve upon the naive algorithm when no underlying assumptions are made with

regard to the database.

To complement this comparison to the naive algorithm, we also give strong accuracy

guarantees for all databases not just the ones output correctly in our preprocessing. Un-

packing the bound in Theorem 4.1.10, the first term says that the mean of the database

cannot be too far from µ̂. The second term considers the individual sensitivity of each data

point, where |xi − µ(D)| /n is roughly the amount the mean changes from adding xi to the

database. The sensitivity bound on g requires that each individual change can only be offset

by an additive ∆, and we need to consider this contribution from each input. Intuitively,

our error is small for databases whose mean is reasonably close to µ̂ and do not have many

significant outliers, which is exactly what one would expect.

249

Variance. Variance is also not naturally defined on the empty set, so we define it to be 0

for simplicity. Our efficient implementation of variance takes O(n2) time and provides the

following guarantee.

Theorem 4.1.11. Let Var : R<N → R be the variance function for the data universe

of all finite-length real-valued vectors. For fixed parameter ∆, along with any database

D = (x1,, xn) ∈ R<N, we have O(n2) time access to a function g : R<N → R with

sensitivity ∆ such that,

|g(D)− Var [D] | ≤ max
{

Var [D]− n

2
∆, 0

}
+

n∑
i=1

max

{
n∑
j=1

4(xi − xj)2

n2
−∆, 0

}
.

The primary takeaway from the bound in Theorem 4.1.11 is that databases with reason-

ably small variance and no major outliers will have low error bounds. The first term in the

error bound says that the variance of our database cannot be too large, which follows from

our choice of the empty set to be defined at 0. The second term is a bit more messy, but has

a natural interpretation under the known deformulation of variance, where we can consider∑n
j=1(xi − xj)2/n2 to be the contribution of input xi to the variance. This contribution can

then be offset by ∆, and we need to consider this contribution from each input.

Personalized Privacy

Due to the preprocessing aspect of our Sensitivity-Preprocessing Function, we can also

apply our framework to variant definitions of differential privacy. In particular, we consider

personalized differential privacy introduced in [165], which allows for a more refined

definition whereby each individual receives their own εi privacy parameter. Our definition

of individual sensitivity is then motivated by this privacy variant, as it can be exactly

seen as the complementary sensitivity measure for this variant. More specifically, most

privacy mechanisms add noise proportional to ∆f/ε for outputting functions f : D → R

while still preserving ε-differential privacy. This intimate connection between ∆f and

250

ε in the output accuracy will be equivalent for the individual sensitivity measures ∆i(f)

and its respective εi. Consequently, the necessary noise for personalized privacy will

be proportional to maxi ∆i(f)/εi. We will formally prove this fact for two of the most

fundamental mechanisms, Laplace and Exponential, and further remark (Remark 4.7.6) that

this approach extends to any ε-differentially private mechanism.

Theorem 4.1.12 (Informal version of Propositions 4.7.3 and 4.7.5). For both the Laplace

and Exponential Mechanisms, instead of adding noise proportional to ∆/ε, the added noise

can be proportional to maxi ∆i/εi to ensure personalized differential privacy for privacy

parameters {εi}.

As a result, it is no longer necessarily optimal to set the individual sensitivity parameters

{∆i} in our Sensitivity-Preprocessing Function to be equal, but instead set them according

to the given {εi} privacy parameters towards the goal of having each ∆i(g)/εi roughly equal.

This extends the interest in our Sensitivity-Preprocessing Function beyond the context of

dealing with worst-case sensitivity being much greater than average sensitivity.

For example, consider a well-behaved function where {∆i} = ∆, and {εi} = ε for all i

except for some individual j where εj = ε/2. Under this situation it may instead be optimal

to halve the individual sensitivity of j, which will allow adding half as much noise while

only incurring a small additive error by restricting the sensitivity of just one person.

In addition, the error bounds from our general procedure allow for the intuitive fact that

increasing any individual sensitivity will increase the accuracy of our preprocessing step

for databases including that individual. We note that when trying to preserve the fraction

∆i(g)/εi, any increase in εi (reduced privacy for individual i) will allow us to increase our

∆i parameter, improving accuracy as desired. In this way, our Sensitivity-Preprocessing

Function is able to fully take advantage of the heterogeneous εi in the variant definition

of personalized privacy, and is the first to give accuracy bounds that increase/decrease

independently with respect to each εi.

We believe that these accuracy guarantees can be of further interest in the context of

251

markets for privacy, where individuals sell their data to an analyst and demand different

amounts of privacy, represented by their respective εi. The trade-off between privacy and

accuracy is naturally formalized in these markets through the analyst’s budget for procuring

accurate estimates of population statistics. Applying our Sensitivity-Preprocessing Func-

tion to achieve individualized privacy guarantees will allow the analyst to more optimally

balance these trade-offs because the accuracy will respond proportionally to changes in

privacy for each individual.

Higher-Dimensional Extensions for `1 Sensitivity

Our Sensitivity-Preprocessing Function was only defined for 1-dimensional f : D →

R. We also consider the setting where f : D → Rd. We note that our Sensitivity-

Preprocessing Function could instead be given parameters {∆i} where ∆i = (∆i,1, ...,∆i,d)

has different sensitivity parameters for each dimension of the function. We could then apply

our Sensitivity-Preprocessing Function to each dimension independently and would achieve

the corresponding bounds on sensitivity. However, this approach would require adding noise

independently to each dimension when applying a differentially private mechanism on the

Sensitivity-Preprocessing Function. Instead, we would like to only require bounds on the `1

sensitivity of our constructed function.

We give a natural extension of our Sensitivity-Preprocessing Function to higher di-

mensions, and show that the accuracy guarantees continue to hold in `1-distance when f

is 2-dimensional (Theorem 4.8.3). We also show that this construction fails to extend to

higher dimensions because a key fact about the intersection of `1 balls only holds in 1 and 2

dimensions.

4.1.3 Related Work

Our work touches upon several areas of interest. We first discuss previous work on deal-

ing with outlying databases within the data universe, and then discuss previous work on

252

personalized differential privacy and its use within the markets for privacy literature.

Worst-case vs average-case sensitivity

Instance-specific noise for dealing with worst-case sensitivity was first introduced in [11],

where they considered adding noise proportional to local sensitivity. In order to avoid leaking

too much information through noise added by local sensitivity, [11] constructed a smooth

sensitivity metric that minimized the instance-specific noise while still ensuring differential

privacy. They further showed that smooth sensitivity could be efficiently computed and

utilized for a variety of important functions for which average sensitivity was much smaller

than global sensitivity. However, for some functions computing smooth sensitivity was

NP-hard or even uncomputable, which inspired the introduction of Sample-and-Aggregate,

a technique that preserved privacy and was efficient on all functions with bounded range

and for sufficiently large databases. The general idea was to approximate the function

with random subsets of the given database in order to impose stronger bounds on the

sensitivity of this approximation. Combining this with smooth sensitivity allowed for

strong error guarantees under the assumption that random subsets of the database often

well-approximated the full database.

In order to avoid some of these assumptions, an alternate framework, Propose-Test-

Release, was provided in [12], which also heavily relied on the notion of local sensitivity.

In particular, their framework would check if a given database was “far away” from an

outlier, and only release an accurate estimate of the output under this specific circumstance,

while outputting Null otherwise. Furthermore, this algorithm would define the outlying

databases by explicitly setting the allowable upper bound on local sensitivity. They show

how to implement this framework efficiently for several important functions, and give strong

error guarantees when the mechanism does not output Null.

Both of these frameworks relied upon local sensitivity, which is still a worst-case

metric. It is possible for most databases to have high local sensitivity while still having

253

small average sensitivity. To remedy this issue, previous work instead considered fitting

the original function to one with global sensitivity closer to the average sensitivity. This

preprocessing step can largely be thought of as forcing the output of outlying databases

to be closer to that of the well-behaved databases. This procedure then fits in the general

notion of Lipschitz extensions. Informally, Lipschitz extensions show that there always

exists an extension of a smooth function restricted to a subspace to the entire metric space.

By considering “smoothness” in the context of differential privacy to be the sensitivity of the

function, previous work generally considers the restricted subspace to be the well-behaved

databases.

Lipschitz extensions were first implicitly used in [13] under the context of node differen-

tial privacy. This work considered restricting the maximum degree of graphs for outputting

a variety of graph statistics in bounded-degree graphs. This work was then extended in [15]

which gave efficient Lipschitz extensions for higher-dimensional functions on graphs such as

degree distribution. In this work, [15] further utilize Lipschitz extensions for a generalization

of the exponential mechanism. Lipschitz extensions were also considered in [14] were

the goal was to achieve a restricted sensitivity under a certain hypothesis of the database

universe and extending to the entire data universe with this global sensitivity constraint.

While this procedure was in general computationally inefficient, [14] gave efficient versions

for subgraph counting queries and local profile queries.

Our technique of considering only strictly smaller neighboring databases is related to

a technique used to achieve differential privacy over graphs. The down sensitivity [RS15]

(also called empirical global sensitivity in [CZ13]) of a function at a graph G is the global

sensitivity of the function when restricted to the space of all subgraphs of G. That is, it

is the maximum change in the function’s value between any two neighboring subgraphs

of G. Similar to our work, this requires checking sensitivity on a smaller number of

neighboring databases, and can allow less noise to be added to analysis on databases with

small down sensitivity. Through this lens, our construction of Sensitivity-Preprocessing

254

Function can be viewed as ensuring that all databases have low down sensitivity. However,

an important distinction between these two results is that down sensitivity considers all

pairs of neighboring subgraphs of G, which, for example, may be the empty graph and a

single node for a large graph G. To contrast, at each recursive step of our algorithm, we

only consider only smaller neighbors of the current database, i.e., with one entry removed.

This refined analysis means that a database might have large down sensitivity, and our

Sensitivity-Preprocessing Function can still be accurate

Personalized privacy and markets for privacy

We show how our Sensitivity-Preprocessing framework can be applied to personalized

differential privacy, where each user in the database has her own privacy parameter εi. This

definition was first introduced by [165], in the context of purchasing data from privacy-

sensitive individuals. A subsequent line of work on market design for private data [166,

168, 169, 170, 171, 165, 172, 167, 173, 174, 175] leveraged personalized privacy guarantees

to purchase data with different privacy guarantees from individuals with heterogeneous

privacy preferences. The vast majority of this work focused on the market design problem

of procuring data, and not on the differentially private algorithms that provided personalized

privacy guarantees. [167] gave a technique for achieving personalized privacy for linear

functions by reweighting each person’s data inversely proportional to their privacy guarantee.

Unfortunately, this reweighting technique does not extend beyond linear functions. [166]

proposed an even stronger notion of personalized privacy, that was both personalized and

data-dependent, but did not give any algorithmic techniques to satisfy this definition.

Several other results gave mechanisms specific to personalized differential privacy by

randomly keeping each individuals data in the database with probability proportional to

their respective εi [176, 177, 178]. However, they are unable to provide corresponding error

guarantees with such procedures for general functions. [179] gave a technique for providing

two-tiered personalized privacy guarantees. Some users received differential privacy and

255

some users received a stronger guarantees of local differential privacy, where the users do

not trust the data analyst to see their true data.

Finally, there is a small body work on high probability privacy guarantees and average-

case privacy guarantees [180, 181, 182]. This work addresses a very different problem

than we study here. These papers assume that databases are sampled according to some

distribution over the data universe, and provide high probability guarantees with respect to

the sampling distribution, allowing a failure of either privacy or accuracy on some set of

unlikely databases. To contrast, we assume that databases are fixed, not randomly sampled.

We provide privacy and accuracy guarantees that depend on the well-behavedness of a given

function over the data universe, and our guarantees hold everywhere in the data universe.

4.1.4 Organization

In Section 4.2, we introduce some of the notation and basic definitions that will be used

throughout the paper. In Section 4.3, we introduce our Sensitivity-Preprocessing Func-

tion and prove its general accuracy guarantees. In Section 4.4, we give optimality and

hardness guarantees for our sensitivity-preprocessing procedure. In Section 4.5, we show

that several important functions can be efficiently implemented in our framework, such

as mean, median, maximum, minimum, and we also give strong error guarantees on the

implementation of mean. In Section 4.6, we efficiently implement our framework for vari-

ance and give corresponding error guarantees. In Section 4.7, we prove several useful facts

regarding individual sensitivity and the variant definition of personalized differential privacy,

and show how our framework can be very useful in this context. In Section 4.8, we consider

a natural extension of our algorithm that bounds a function’s sensitivity in the `1 metric for

2 dimensions.

256

4.2 Preliminaries

We introduce the standard notion of differential privacy and the corresponding global

sensitivity metric. We say that two databases are neighboring if they differ in at most one

entry.

Definition 4.2.1 (Differential privacy [161]). A mechanismM : D → R is ε-differentially

private if for every pair of neighboring databases D,D′ ∈ D, and for every subset of

possible outputs S ⊆ R,

Pr[M(D) ∈ S] ≤ exp(ε)Pr[M(D′) ∈ S].

Definition 4.2.2 (Global Sensitivity). The global sensitivity of a function f : D → Rd is:

∆f = max
D,D′, neighbors

‖f(D)− f(D′)‖1 .

Our result is primarily concerned with tailoring a more refined version of global sensitiv-

ity, for which we will need more specific notation for neighboring databases. In particular,

we will consider the data universe D to be composed of (a possibly infinite) collection of

individuals, where xi will denote the data of individual i. Any database D ∈ D is then

composed of the data of some finite subset of individuals I , so D = {xi : i ∈ I}. For ease

of notation, we will often assume that D = (x1, ..., xn). Further, if individual i’s data is

contained in database D, then we will consider D − xi to be the database with individual

i’s data removed. Similarly, if i’s data is not included in database D, then we consider the

database D + xi to be the database with i’s data added. We will also sometimes use i ∈ D

to denote that individual i’s data is included in database D. Finally, we also assume that for

any D ∈ D, if D′ ⊂ D is non-empty, then D′ ∈ D.

With this notation, we introduce the notion of individual sensitivity that is the maximum

change in output that is possible by adding individual i’s data.

257

Definition 4.2.3 (Individual Sensitivity). The individual sensitivity of a function f : D →

Rd with respect to i is:

∆i(f)
def
= max

xi,{D:i/∈D}
‖f(D)− f(D + xi)‖1 .

We further let {∆i(f)} denote the individual sensitivities of f to all individuals.

For reference, we also provide the definition of local sensitivity that will not be used in

this work, but was referred to extensively in related works.

Definition 4.2.4 (Local Sensitivity). The local sensitivity of a function f : D → Rd at

database D ∈ D is:

∆Df = max
D′: neighbor of D

‖f(D)− f(D′)‖1 .

4.3 Sensitivity-Preprocessing Function

In this section we formally define our Sensitivity-Preprocessing Function, give the corre-

sponding constructive algorithm for accessing this function, and prove instance-specific

error bounds between the original function and our Sensitivity-Preprocessing Function.

Recall that our primary goal is to give an alternate schema for fitting a general function to a

sensitivity bounded function. More specifically, suppose we are given a function f : D → R

and desired sensitivity parameters {∆i}, and want to produce another function g : D → R

that closely approximates f , and has individual sensitivity at most ∆i for all i.

The Sensitivity-Preprocessing Function will ultimately be defined as a simple greedy

recursion that builds up from the empty set. The key insight is that we can take advantage

of the particular metric space structure of databases such that defining our function on a

new database only depends on the subsets of that database. We first use the fact that while

each database could have infinitely many neighboring databases, it only has a finite amount

of neighbors with strictly fewer entries. This will allow us to only consider the constraints

incurred by eachD−xi for some databaseD. In particular, for each g(D−xi) it is allowable

258

to place g(D) anywhere in the region [g(D − xi)−∆i, g(D − xi) + ∆i]. Intersecting each

of these intervals will give the feasible region for g(D), and we will greedily chose the point

closest to f(D). We then use the fact that any two neighbors of a strictly larger database

must also be neighbors of a strictly smaller database. This will ensure that the intersection

of all feasible intervals is non-empty, even under our greedy construction.

As a result, the Sensitivity-Preprocessing Function g is defined inductively starting from

the empty set, and new data points are added one by one. The algorithm ensures that the

value of g changes by at most ∆i when new data point xi is added, while minimizing the

distance |f(D)− g(D)| at every point.

Definition 4.3.1 (Sensitivity-Preprocessing Function). Given any function f : D → R

and non-negative parameters {∆i}, we say that a function g : D → R is a Sensitivity-

Preprocessing Function of f with parameters {∆i}, if g(∅) = f(∅)4 and

g(D) =


UPPER(D), if UPPER(D) ≤ f(D)

LOWER(D), if LOWER(D) ≥ f(D)

f(D), otherwise

where UPPER(D) = minj∈D{g(D − xj) + ∆j} and LOWER(D) = maxj∈D{g(D − xj)−

∆j}.

If {∆i} = ∆ for some non-negative ∆, then we say that g is a Sensitivity-Preprocessing

Function of f with parameter ∆.

The generalization from global sensitivity to individual sensitivities is critical to our

personalized privacy results in Section 4.7. This generalization does not increase the running

time, and it is easy to see that this yields global sensitivity equal to the maximum individual

sensitivity.

4See Remark 4.3.2 for a discussion of how to initialize g(∅) if f(∅) is not well-defined.

259

4.3.1 Algorithmic Construction of Sensitivity-Preprocessing Function

The algorithm PREPROCESSING is presented in Algorithm 10. It begins by initializing

g(∅) = f(∅), and building up g to be defined on databases of increasing size. At each step,

the algorithm ensures that no sensitivity constraints are violated and chooses the best value

for g(D) subject to those constraints.

For a given database D, UPPER(D) is the maximum value g(D) can take without

letting it increase too much from a smaller database (violating an individual sensitivity

parameter). Similarly, LOWER(D) is the minimum value we can make g(D) without letting

it decrease too much from a smaller database. We then define g(D) to be the value in

[LOWER(D),UPPER(D)] that is the closest to f(D).

Algorithm 10: Sensitivity-Preprocessing Function Algorithm : PREPROCESSING(f :
D → R, {∆i}, D)

Input: Function f : D → R, individual sensitivity bounds {∆i}, and database D of size
n.
Output: g(D), where g satisfies individual sensitivity ∆i for all i.
Initialize g(∅) = f(∅) for k=1, . . . , n do

for every database D′ ⊆ D of size k do
Set UPPER(D′) = mini∈D′{g(D′ − xi) + ∆i}
Set LOWER(D′) = maxi∈D′{g(D′ − xi)−∆i}

Set g(D′) =


UPPER(D′), if UPPER(D′) ≤ f(D′)

LOWER(D′), if LOWER(D′) ≥ f(D′)

f(D′), otherwise

Output g(D)

This construction of g ensures that the individual sensitivity of g does not exceed ∆i for

each i. We can then use these bounds on the sensitivity of g to calibrate the scale of noise

that must be added to ensure differential privacy. In the special case that ∆i = ∆ for all i,

then the global sensitivity of g is ∆, and we can add noise that scales with O(∆
ε
) to achieve

ε-differential privacy. Note that this guarantee holds even if f has unbounded sensitivity. In

Section 4.7, we show how to satisfy differential privacy under heterogeneous ∆i.

260

Remark 4.3.2. Our algorithm is initialized using f(∅), and thus centers g around this

point. In the case that f(∅) is undefined—for example, when f computes the mean of a

database—the analyst should initialize g(∅) using some domain knowledge or prior beliefs

on reasonable centering of the function. If no prior knowledge is available, the analyst can

sample multiple databases and evaluate f on the samples to estimate a reasonable centering

point for g(∅). The sensitivity bounds will still hold regardless of the centering of g, but

accuracy may suffer if g(∅) is set to be far from most values of f .

In addition to sensitivity guarantees and runtime analysis, we also provide an instance-

specific error bound. Unfortunately this bound will not be in a clean form, but it does capture

the intuitive fact that if we increase any ∆i then it is likely that accuracy also increases.

However, we are able to obtain a bit more intuition on our instance-specific error bounds,

and can consider them in a similar context to local sensitivity. Given that our Sensitivity-

Preprocessing Function defines a database recursively in terms of its subsets, it makes sense

that our error guarantees will be in terms of these subsets. These error bounds can then be

seen as capturing the sensitivity between the neighboring subsets of D. Analogously to

local sensitivity, we will have larger errors for databases with high sensitivity between the

neighboring subsets.

Theorem 4.3.3. Given T (n) time query access to an arbitrary function f : D → R, and

sensitivity parameters {∆i}, PREPROCESSING provides O((T (n) + n)2n) time access to

the Sensitivity-Preprocessing Function g : D → R such that ∆i(g) ≤ ∆i for all i. Further,

for any database D = (x1, ..., xn),

|f(D)− g(D)| ≤ max
σ∈σD

|D|∑
i=1

max{
∣∣f(Dσ(<i) + xσ(i))− f(Dσ(<i))

∣∣−∆σ(i), 0},

where σD is the set of all permutations on [n], and Dσ(<i) = (xσ(1), ..., xσ(i−1)) is the subset

of D that includes all individual data in the permutation before the ith entry.

261

Remark 4.3.4. We can easily extend this theorem to f : D → Rd by running PREPROCESS-

ING on each dimension independently in terms of sensitivity parameters and error bounds

Specifically, suppose we were instead given parameters {∆i} where ∆i = (∆i,1, ...,∆i,d)

has different sensitivity parameters for each dimension of the function. We could then

consider the function restricted to a single dimension d′, and run PREPROCESSING on this

projection with sensitivity parameters {∆i,d′}. This will give the desired sensitivity bounds

in that single dimension, then running PREPROCESSING on all dimensions and composing

across dimensions will give the appropriate Sensitivity-Preprocessing Function in d dimen-

sions. In Section 4.8, we consider extensions to higher dimensions where each dimension is

not treated independently.

4.3.2 Sensitivity-Preprocessing Function Correctness

We first prove that the Sensitivity-Preprocessing Function given in Definition 4.3.1 both

meets the individual sensitivity criteria and is also defined on all databases.

Lemma 4.3.5. For any function f : D → R and non-negative sensitivity parameters {∆i},

if g : D → R is defined according to Definition 4.3.1, then g is defined on all databases

D ∈ D and ∆i(g) ≤ ∆i for all i.

Proof. It suffices to show that for any D ∈ D with at least one entry and for any xi ∈ D, we

have g(D− xi)−∆i ≤ g(D) ≤ g(D− xi) + ∆i. By our construction, this must always be

true if LOWER(D) ≤ g(D) ≤ UPPER(D) for any D ∈ D \ {∅}. Our construction of g will

always place g(D) ∈ [LOWER(D),UPPER(D)] if the interval is non-empty, so it suffices to

show that for all D ∈ D \ {∅},

LOWER(D) ≤ UPPER(D).

We will prove this by induction starting with D = xi with one entry. Therefore,

UPPER(D) = f(∅)+∆i and LOWER(D) = f(∅)−∆i, which implies our desired inequality

262

because ∆i ≥ 0.

We now consider an arbitrary D and assume that our claim holds for all D′ ⊂ D. Let

xk ∈ D minimize g(D − xi) + ∆i over all xi ∈ D, so

UPPER(D) = g(D − xk) + ∆k,

and let xj ∈ D maximize g(D − xi)−∆i over all xi ∈ D, so

LOWER(D) = g(D − xj)−∆j.

If k = j then the desired inequality immediately follows. Otherwise we consider

D − xk − xj . By our inductive hypothesis, we know LOWER(D − xk) ≤ g(D − xk) ≤

UPPER(D − xk), so

g(D − xk) ≥ LOWER(D − xk) ≥ g(D − xk − xj)−∆j.

Similarly, we have LOWER(D − xj) ≤ g(D − xj) ≤ UPPER(D − xj), so

g(D − xj) ≤ UPPER(D − xj) ≤ g(D − xk − xj) + ∆k.

Combining these inequalities gives g(D − xk) + ∆j ≥ g(D − xj)−∆k, which implies

our desired result.

4.3.3 Error Bounds for Sensitivity-Preprocessing Function

We now prove the desired instance-specific error bounds between the original function and

our Sensitivity-Preprocessing Function.

Lemma 4.3.6. For any function f : D → R and non-negative sensitivity parameters {∆i},

263

if g : D → R is defined according to Definition 4.3.1, then for any database D ∈ D,

|f(D)− g(D)| ≤ max
σ∈σD

|D|∑
i=1

max{
∣∣f(Dσ(<i) + xσ(i))− f(Dσ(<i))

∣∣−∆σ(i), 0},

where σD is the set of all permutations on [n], and Dσ(<i) = (xσ(1), . . . , xσ(i−1)) is the

subset of D that includes all individual data in the permutation before the ith entry.

Proof. We will prove this claim inductively and first consider D = xj with one entry for

some j. We need to show

|f(D)− g(D)| ≤ max{|f(D)− f(∅)| −∆j, 0},

which follows easily from construction of g. We now consider an arbitrary D and assume

that the claim is true for all D′ ⊂ D. From our construction we claim that

|f(D)− g(D)| ≤ max
xi∈D
{|f(D)− g(D − xi)| −∆i, 0}.

This follows from the fact that if f(D) = g(D) then we must have |f(D)− g(D − xi)| ≤

∆i for all i, and otherwise there must be some xi ∈ D such that the constraint on g(D) with

respect to ∆i is tight. Using this fact we can bound |f(D)− g(D)| in the following way:

|f(D)− g(D)| ≤ max
xi∈D
{|f(D)− g(D − xi)| −∆i, 0}

= max
xi∈D
{|f(D)− f(D − xi) + f(D − xi)− g(D − xi)| −∆i, 0}

≤ max
xi∈D
{|f(D)− f(D − xi)| −∆i + |f(D − xi)− g(D − xi)| , 0}

≤ max
xi∈D
{max{|f(D)− f(D − xi)| −∆i, 0}+ |f(D − xi)− g(D − xi)|}

We then apply the inductive hypothesis to |f(D − xi)− g(D − xi)|, which immediately

implies our desired bound.

264

4.3.4 Proof of Theorem 4.3.3

Proof of Theorem 4.3.3. The individual sensitivity guarantees are given by Lemma 4.3.5,

and the error bounds are given by Lemma 4.3.6. It then remains to show the running time.

If we assume T (n) time access to f for a database with n entries, then because we need to

query each subset of D, this will contribute time O(T (n)2n). Furthermore, for each subset

we need to compute UPPER(D) and LOWER(D) which takes O(n) time for each subset.

This then gives our full runtime of O((T (n) + n)2n).

4.4 Optimality and Hardness of Sensitivity-Preprocessing Function

Our algorithm in Section 4.3 took exponential time to query the Sensitivity-Preprocessing

Function g at each database D of interest, and, while we did achieve bounds on the error

incurred, their complicated formulation makes it difficult to determine whether these bounds

are strong. In this section we give strong justification for our construction of the Sensitivity-

Preprocessing Function in terms of both error incurred and the exponential running time for

the general setting.

In Section 4.4.1 we consider the general problem of approximating an arbitrary function

f : D → R with one that has individual sensitivity bounded by {∆i}. Under the `∞

metric, our Sensitivity-Preprocessing Function will achieve a 2-approximation of the optimal

function. Furthermore, this 2-approximation can still be obtained when the optimal function

is restricted to certain subsets of the data universe. Informally, this will imply that on

subsets which allow for small error between f and a function with individual sensitivity

bounded by {∆i}, our Sensitivity-Preprocessing Function will also have small error. Due

to `∞ being a worst-case metric, it is then natural to ask if our Sensitivity-Preprocessing

Function actually still performs well on the non-worst-case databases. To this end, we

show that our Sensitivity-Preprocessing Function is Pareto optimal, meaning that for any

265

other function with individual sensitivity bounded by {∆i}, if it has smaller error on some

database relative to our Sensitivity-Preprocessing Function, then there must exist another

database on which it has higher error.

In Section 4.4.2 we show that it is NP-hard to achieve our approximation guarantees

with respect to the `∞ metric. We further show that it is uncomputable to do better than

a 2-approximation in the `∞ metric, and also uncomputable to achieve even a constant

approximation in any `p metric for p < ∞ which justifies our choice of metric. We

believe that the combination of these results gives a strong indication that our Sensitivity-

Preprocessing Function and corresponding exponential time construction is the best we can

hope to achieve for the general problem.

4.4.1 Optimality guarantees

In this section we prove that our Sensitivity-Preprocessing Function achieves certain opti-

mality guarantees. As there are many ways in which to measure how close one function

is to another, it is first necessary to be more specific about the definition of optimality we

use here. The set that we are trying to optimize over will be all functions with bounded

individual sensitivity:

Definition 4.4.1. Given a data universeD and individual sensitivity parameters {∆i}, define

F{∆i}(D)
def
= {f : D → R | ∆i(f) ≤ ∆i,∀i}.

In this context, the general goal will then be to show that our Sensitivity-Preprocessing

Function is close to the optimal function on this set. Here we will consider optimal to be

under the `∞ metric, where we want f ∗ ∈ F{∆i}(D) to minimize the maximum difference

|f(D)− f ∗(D)| over all D ∈ D. Our Sensitivity-Preprocessing Function achieves a 2-

approximation to the optimal f ∗ ∈ F{∆i}(D) with respect to the `∞ metric. For unbounded

sensitivity functions, the value |f(D)− f ∗(D)| will be unbounded, so we will instead show

266

the stronger result that this 2-approximation also holds if we restrict the data universe to a

single database and its subsets. Specifically, we show that if for certain subsets of the data

universe it is possible to perfectly fit f to a {∆i} individual sensitivity bounded function,

then our Sensitivity-Preprocessing Function will also perfectly fit to f in this subset. These

guarantees are formalized in the following lemma.

Lemma 4.4.2. Given any f : D → R, let g : D → R be the Sensitivity-Preprocessing

Function of f with parameters {∆i}. For any arbitrary D ∈ D, define D′ = {D′ ⊆ D}.

Then,

max
D′∈D′

|f(D′)− g(D′)| ≤ 2 min
f∗∈F{∆i}(D

′)
max
D′∈D′

|f(D′)− f ∗(D′)|

Proof. We will prove this inductively on the size of D. It is immediately true for D = ∅.

We now prove for arbitrary D where we assume the claim for all strict subsets of D. Our

proof will be by contradiction, where we suppose that our claim is not true for some D.

We first determine the database at which |f(D′) − g(D′)| is maximized. Suppose

arg maxD′∈D′ |f(D′) − g(D′)| = D̃ such that D̃ ⊂ D. Define D̃ = {D′ ⊆ D̃}. Because

D̃ ⊂ D, it must follow that

min
f∗∈F{∆i}(D̃)

max
D′∈D̃

|f(D′)− f ∗(D′)| ≤ min
f∗∈F{∆i}(D

′)
max
D′∈D′

|f(D′)− f ∗(D′)|.

By our assumption that the claim is not true on D, it follows that

|f(D̃)− g(D̃)| > 2 min
f∗∈F{∆i}(D

′)
max
D′∈D′

|f(D′)− f ∗(D′)|.

Combining this with the previous inequality implies,

|f(D̃)− g(D̃)| > 2 min
f∗∈F{∆i}(D̃)

max
D′∈D̃

|f(D′)− f ∗(D′)|,

which contradicts our inductive hypothesis. Therefore we must have maxD′∈D′ |f(D′) −

g(D′)| = |f(D)− g(D)|.

267

We now apply Lemma 4.4.3, which we prove subsequently, to see that there must exist

D̃ ⊂ D such that |f(D) − f(D̃)| ≥ |f(D) − g(D)| +
∑

i∈D\D̃ ∆i. Therefore for any

f ∗ ∈ F{∆i}(D′) it must be true that

max{|f(D̃)− f ∗(D̃)|, |f(D)− f ∗(D)|} ≥ |f(D)− g(D)|
2

,

because of the sensitivity constraints. We then use the fact that maxD′∈D′ |f(D′)− g(D′)| =

|f(D)− g(D)| to conclude,

max
D′∈D′

|f(D′)− g(D′)| ≤ 2 min
f∗∈F{∆i}(D

′)
max
D′∈D′

|f(D′)− f ∗(D′)|.

This contradicts our assumption, so the claim must therefore be true for D.

Lemma 4.4.3. Given any f : D → R, let g : D → R be the Sensitivity-Preprocessing

Function of f with individual sensitivity parameters {∆i}. For any D ∈ D such that

f(D) 6= g(D) there must exist some D̃ ⊂ D such that g(D) ≥ f(D̃) +
∑

i∈D\D̃ ∆i if

f(D) > g(D) and g(D) ≤ f(D̃)−
∑

i∈D\D̃ ∆i if f(D) < g(D).

Proof. We prove the claim inductively, starting with the immediate observation that by

construction it is true when D only has one entry.

We now consider an arbitrary D and assume our claim for all subsets. Without loss of

generality, we will prove the claim if f(D) > g(D), and can symmetrically apply the proof

for the case when f(D) < g(D). If f(D) > g(D), then there must exist some xi ∈ D such

that g(D) = g(D − xi) + ∆i. If f(D − xi) ≤ g(D − xi), then we can set D̃ = D − xi

and the claim follows. Otherwise we must have f(D − xi) > g(D − xi) and we apply our

inductive hypothesis to obtain some D̃ ⊂ D − xi such that

g(D − xi) ≥ f(D̃) +
∑

j∈(D−xi)\D̃

∆j.

268

We then use the fact that g(D) = g(D − xi) + ∆i to achieve

g(D) ≥ f(D̃) +
∑
j∈D\D̃

∆j.

We note that because Lemma 4.4.2 achieves a 2-approximation when the optimal

function is restricted to subsets of the data universe, we easily achieve a 2-approximation on

the full data universe.

Corollary 4.4.4. Given any f : D → R, let g : D → R be the Sensitivity-Preprocessing

Function of f with parameters {∆i}. Then,

max
D′∈D

|f(D′)− g(D′)| ≤ 2 min
f∗∈F{∆i}(D)

max
D′∈D

|f(D′)− f ∗(D′)|.

Pareto Optimality

We now complement our localized 2-approximation of the `∞ metric with a Pareto optimality

result. As `∞ is a worst-case metric we would still like our Sensitivity-Preprocessing

Function to perform well on the non-worst-case databases. In particular, for the databases

that do not contribute to the `∞ error, we still want the error to be minimized. The following

lemma will conclude that we cannot improve the error of a single database without incurring

more error on another database, indicating that we are still performing well on the non-

worst-case databases.

Lemma 4.4.5. Given any f : D → R, let g : D → R be the Sensitivity-Preprocessing

Function of f with individual sensitivity parameters {∆i}. For any h ∈ F{∆i}(D) if there is

some D ∈ D such that

|f(D)− h(D)| < |f(D)− g(D)| ,

269

then there also exists some D′ ∈ D such that

|f(D′)− h(D′)| > |f(D′)− g(D′)| .

Proof. Suppose there is some h ∈ F{∆i}(D) such that

|f(D)− h(D)| < |f(D)− g(D)|

for some D ∈ D, and for all D′ ∈ D,

|f(D′)− h(D′)| ≤ |f(D′)− g(D′)|

Then it must be true that h(∅) = g(∅) because g(∅) = f(∅). Let D be the smallest database

such that h(D) 6= g(D), which implies that |f(D)− h(D)| < |f(D)− g(D)|. This

inequality implies g(D) 6= f(D), and by our construction of g, either UPPER(D) < f(D)

or LOWER(D) > f(D).

Without loss of generality, assume UPPER(D) < f(D) and thus g(D) = UPPER(D).

Using the fact that |f(D)− h(D)| < |f(D)− g(D)|, we can conclude that h(D) > g(D).

However, since UPPER(D) = g(D − xi) + ∆i for some xi ∈ D, we must have h(D) >

g(D − xi) + ∆i. Our assumption that D was the smallest database such that h(D) 6= g(D)

then implies h(D) > h(D − xi) + ∆i, contradicting the individual sensitivity of i being at

most ∆i in h.

Therefore, F{∆i}(D) cannot contain such an h, which implies our claim.

4.4.2 Hardness of approximation

In this section we justify the exponential running time of our implementation of the

Sensitivity-Preprocessing Function for the general setting. Recall that in our construc-

270

tion we did not make any assumptions about D and only required query access to the

function f : D → R. Under this limited knowledge setting it is reasonable that our localized

greedy construction is the best we can hope for, despite taking exponential time. Accord-

ingly, we show here that even if we restrict D to be exponential-sized, set all {∆i} to be

the same ∆, and further force f to be polytime representable, it is still NP-hard to compute

our Sensitivity-Preprocessing Function. This proof will further imply that it is NP-hard to

compute a function that has identical individual sensitivity guarantees and achieve the same

approximation guarantees that our Sensitivity-Preprocessing Function does in Lemma 4.4.2.

After proving this NP-hardness result, we will discuss the issues with computing in-

dividual sensitivity bounded functions that obtain better approximations. We give strong

justification that it is uncomputable to achieve better than a 2-approximation in the `∞

metric. Further, we give similar reasons why it is uncomputable to achieve even a constant

approximation on average error for the general setting, which justifies our choice of metric

for proving our approximation guarantees in the previous section. We believe these ideas

could be formalized in a straightforward manner, but think that doing so is unnecessary for

the scope of this paper.

NP-hardness

Proposition 4.4.6. For certain f : D → R such that |D| = O(3n), it is NP-hard to compute

our Sensitivity-Preprocessing Function g with parameter ∆ on a specific database.

Proof. In order to prove this claim, we will construct a gadget function that takes an arbitrary

SAT formula φ and constructs a function f : D → R such that |D| = O(3n) and on a

specified database D ∈ D, g(D) < n if and only if φ is satisfiable. We construct that gadget

function below.

Gadget Function: Let D be the data universe with n individuals such that xi ∈ {T, F}.

Let φ : {T, F}n → {0, 1} be an arbitrary SAT formula of n variables that outputs 0 if false

271

and 1 if true. For any D ∈ D, let D + T ∈ {T, F}n be the assignment of variables that

correspond to D and set all variables not in D to be true. Let the function fφ : D → R be

defined as fφ(D) = |D| − φ(D + T) where |D| = |{i ∈ D}|. Further, define fφ(∅) = 0

and let ∆ = 1.

Claim: For the constructed gadget function f from SAT formula φ and our corresponding

Sensitivity-Preprocessing Function g with parameter ∆, we must have that g(F n) < n iff φ

is satisfiable.

First, we assume φ is unsatisfiable which implies fφ(D) = |D| for all D. Therefore the

sensitivity of f is 1, and g will be identical to f , so g(F n) = n.

Next, we show that if g(F n) ≥ n then there cannot exist a satisfying assignment of φ.

Suppose there does exist a satisfying assignment, then take the one with the fewest false

assignments and denote this as x∗ ∈ {T, F}n. Further, consider the database D ⊆ F n that

consists of all of the false assignments of x∗. By definition, we must have that fφ(D) =

|D| − 1, and we further show that g(D) = |D| − 1.

For any D′ ⊂ D, we have fφ(D′) = |D′| by construction of fφ and our assumption that

x∗ was the satisfying assignment with the fewest false assignments. It is easy to see that

g(D′) = |D′| by construction, which implies that g(D) = |D| − 1. Since the sensitivity is

set to be 1, we have that for every D̃ such that D̃ ⊇ D it must be true that g(D̃) ≤ |D̃| − 1.

By construction, we know D ⊆ F n, which implies g(F n) < n. This gives a contradiction

and implies that φ is unsatisfiable.

Note that to satisfy the approximation guarantees given in Lemma 4.4.2, any f ∗ ∈ F∆(D)

would require f ∗(D) = |D| − 1 in our proof as well. Accordingly, for any f ∗ ∈ F∆(D) that

satisfies the approximation guarantees of Lemma 4.4.2, it must also be true that f(F n) < n

iff φ is satisfiable. Therefore, any algorithm that achieves the same guarantees must also be

NP-hard to compute.

272

Uncomputability of better approximations

We now argue that it is uncomputable to achieve better approximation factors than our

Sensitivity-Preprocessing Function, with respect to both the `∞ metric and any `p metric.

Remark 4.4.7. We claim that no finitely computable algorithm can obtain a function with

appropriately bounded individual sensitivities that achieves better than a 2-approximation

on the `∞ error. Let D only contain the empty set and databases of size one, each containing

a single real-valued data entry x ∈ [0, 1], and set ∆ = 1. Consider any finite algorithm

that constructs a ∆-sensitivity function h to minimize the maximum difference between

(adversarially chosen) f and h over all databases.

If f is arbitrary and only query accessible, then the algorithm can only query a finite

number of databases, and an adversary could just set f(x) = f(∅) = 0 for all queried

databases. In order to achieve even a constant approximation, the algorithm would need to

set f(x) = 0 just in case f(x) = 0 for all x ∈ [0, 1]. However, the adversary could then set

f(y) = 2 for all non-queried databases. The function that minimizes the `∞ error would

then set f(x) = 1/2 for all queried databases and f(y) = 3/2 for all non-queried databases.

As a result, the finite algorithm can only achieve a 2-approximation.

Remark 4.4.8. We further claim that no finitely computable algorithm can obtain a function

with appropriately bounded individual sensitivities that achieves a constant approximation

on the average `p error. The optimal function in this scenario would be f ∗ that minimizes:

min
f∗∈F{∆i}(D)

(∑
D∈D (f(D′)− f ∗(D′))p

|D|

)1/p

.

We consider the same example as above, and note that the number of queried databases is

finite and the number of non-queried databases is infinite. In order to achieve a constant

approximation, the algorithm would need to set f(x) = 0 just in case f(x) = 0 for all

x ∈ [0, 1]. However, it would then have to set f(y) = 1 for all non-queried databases and

the average `p error would be a constant. If instead it set f(x) = 1 for all queried databases

273

and f(y) = 2 for all non-queried databases, then the average `p error would approach 0

because the non-queried databases are infinite and the queried databases are finite. As a

result, no finitely computable algorithm can achieve a constant approximation in this metric.

4.5 Efficient Implementation of Several Statistical Measures

In this section, we take our general recursive algorithm and show how it can be made

efficient for a variety of important statistical measures such as mean, α-trimmed mean,

median, minimum, and maximum. It is important to note that we will not change the key

recursive structure, but instead show that when we have more information about the function,

we can ignore many of the subproblems of the recursion for significant runtime speedups.

As a result, the algorithm given for these statistical tasks will take O(n2) time and have a

simple dynamic programming construction.

The key idea will be that given a database D = (x1, ..., xn) where we assume for

simplicity that x1 ≤ · · · ≤ xn,5 the only important subproblems will be D− x1 and D− xn.

Consequently, instead of considering every possible subset of D, we only need to consider

every contiguous subset, which limits the number of subproblems to O(n2).

We first give a general class of functions—which includes mean, median, α-trimmed

mean, minimum, and maximum—for which it is straightforward to show our algorithm

can be applied efficiently. We then give a more in-depth analysis of the error guarantees

that correspond with this implementation for mean. These bounds will ultimately be quite

intuitive, but the proofs will be more involved.

4.5.1 Efficient implementation for a simple class of functions

We will first define a class of functions under which database ordering is preserved for any

subset, which allows us to presort the data according to this ordering and restrict the number

of subproblems. Intuitively, it implies that for any database D = (x1, ..., xn) there is an

5Our algorithm will presort and only incur O(n log n) running time.

274

ordering of the x1, ..., xn such that the extreme points in our recursion are determined by the

databases that remove the maximum or the minimum. In particular, if we consider the mean

function µ : R<N → R then for any D = (x1, ..., xn) if we assume x1 ≤ · · · ≤ xn, then we

know µ(D − xn) ≤ µ(D − xi) and µ(D − x1) ≥ µ(D − xi) for any i. This will ultimately

imply that our upper and lower bounds on the allowable region for g(D) will be defined by

g(D − x1) and g(D − xn), respectively.

Definition 4.5.1 (Database-ordered function). A function f : D → R is database-ordered

if for any D = (x1, ..., xn) ∈ D and any pair xi, xj ∈ D, we have that for every subset

database D′ ⊂ D such that xi, xj /∈ D′, then either f(D′+xi) ≤ f(D′+xj) for every D′ or

f(D′ + xi) ≥ f(D′ + xj) for every D′. Furthermore, if f(D′ + xi) ≤ f(D′ + xj) for every

D′, we say that xi ≤ xj in the entry-ordering, and vice-versa if f(D′ + xi) ≥ f(D′ + xj)

for every D′.

The general idea of our efficient implementation will be to use the ordering and only

consider contiguous subsets according to this ordering.

Lemma 4.5.2. Given a database-ordered function f : D → R, let g : D → R be the

Sensitivity-Preprocessing Function of f with parameter ∆. Then for any D = (x1, ..., xn)

where x1 ≤ · · · ≤ xn in the entry-ordering we must have UPPER(D) = g(D−xn) + ∆ and

LOWER(D) = g(D − x1)−∆, and our PREPROCESSING algorithm only requires solving

O(n2) subproblems

Proof. We first want to show UPPER(D) = g(D−xn)+∆ and LOWER(D) = g(D−x1)−∆.

It is sufficient to show g(D− xn) ≤ g(D− xn−1) ≤ · · · ≤ g(D− x1), which we will prove

by induction on the size of the database. If D only has one entry, then this must be true.

Assume this is true for all D with at most n− 1 entries, and we want to show g(D −

xi+1) ≤ g(D − xi) for any i ∈ [n − 1]. Since f is database-ordered, we know that

f(D − xi+1) ≤ f(D − xi). It then suffices to show UPPER(D − xi+1) ≤ UPPER(D − xi)

and LOWER(D−xi+1) ≤ LOWER(D−xi). By our inductive hypothesis, UPPER(D−xi) =

275

g(D − xi − xn) + ∆ and UPPER(D − xi+1) = g(D − xi+1 − xn) + ∆ if i < n − 1, and

we note that UPPER(D − xn−1) = UPPER(D − xn). Also by our inductive hypothesis,

g(D− xi+1− xn) ≤ g(D− xi− xn), implying UPPER(D− xi+1) ≤ UPPER(D− xi). The

proof for LOWER(D − xi+1) ≤ LOWER(D − xi) follows symmetrically.

With this fact, it is straightforward to see that for our algorithm, instead of considering

all subsets of size k, it suffices to consider (x1, . . . , xk), (x2, . . . , xk+1), . . . , (xn−k, . . . , xn).

Then the total number of subproblems that need to be solved is O(n2).

If our function is efficiently computable and the entry-ordering is efficiently computable,

this then gives an efficient implementation of our recursive algorithm. In particular, for

several functions of statistical interest including mean, α-trimmed mean, median, maximum,

and minimum, this easily yields an efficient algorithm.

Algorithm 11: Efficient Implementation for database-ordered functions
Input: Database-ordered function f : R<N → R, sensitivity bound ∆, estimate for the
empty set µ̂, and database D = (x1, ..., xn) ∈ Rn for some arbitrary n.
Output: g(D), where g is the Sensitivity-Preprocessing Function of f .
Initialize g(∅) = µ̂
Sort D (We will assume x1 ≤ · · · ≤ xn for simplicity)
For k = 1, . . . , n
For i = 1, . . . , n− k + 1
For every database D′ = (xi, ..., xi+k−1)

Let g(D′) =


g(D′ − xi+k−1) + ∆, if g(D′ − xi+k−1) + ∆ ≤ f(D′)

g(D′ − xi)−∆, if g(D′ − xi)−∆ ≥ f(D′)

f(D′), otherwise
Output g(D)

Corollary 4.5.3. We can implement our Sensitivity-Preprocessing Function with parameter

∆ in O(n2) time for the functions mean, α-trimmed mean, median, maximum, and minimum.

Proof. Let f be any of the functions listed above. It is simple to see that for any D =

(x1, ..., xn) ∈ Rn, and any y, z ∈ R, if y ≤ z then f(D + y) ≤ f(D + z), and if y ≥ z then

f(D + y) ≥ f(D + z). This implies that f is database-ordered, then by Lemma 4.5.2 we

only need to solve O(n2) subproblems.

276

Further, we note that finding the entry-ordering simply requires sorting the entries of

D in O(n log n) time. If the database is ordered, then computing median, minimum, and

maximum only requires O(1) time. If we know the mean or α-trimmed mean for D− xi for

some xi, we can compute the mean or α-trimmed mean of D in O(1) time using the fact that

x1 + ...+ xn
n

=
n− 1

n

(
x1 + ...+ xn−1

n− 1

)
+
xn
n

Note that we compute D − xi for some i in our subproblems, so we will in fact have access

to this value. As a result, the full running time will take O(n2) time.

4.5.2 Improved runtime and accuracy for median

In the previous section, we showed that for several important statistical measures we could

give a simple efficient version of our general algorithm. To complement this result, we

further examine the median function and give an improved analysis that requires only O(n)

time for presorted data and provides strong accuracy guarantees. Improving the running

time will utilize the critical property that removing the minimum and maximum value does

not change the median. As was seen in our previous section, our recursion was reduced by

only considering removing the maximum or minimum value. The related fact regarding

median will be incorporated into an inductive claim that we never overshoot the true median,

and can further reduce our recursion.

Lemma 4.5.4. Let med : R<N → R be the median function and g : R<N → R be the

Sensitivity-Preprocessing Function of med with parameter ∆. Then for any D = (x1, ..., xn)

such that x1 ≤ · · · ≤ xn, computing g(D) takes O(n) time.

Proof. It follows immediately from Lemma 4.5.2 and Lemma 4.5.5 that if med(D) ≥

med(∅) then g(D) = min{med(D), g(D− xn) + ∆} and otherwise we must have g(D) =

max{med(D), g(D − x1)−∆}. We can calculate med(D) and any contiguous subset of

277

D in O(1) time, and the recursion will only be upon one subproblem, implying a runtime of

O(n).

Lemma 4.5.5. If med(D) ≥ med(∅), then med(∅) ≤ g(D) ≤ med(D)

Proof. The proof will be inductive, and it is easy to verify that the inequality holds for

|D| ≤ 2. We then consider an arbitrary D = (x1, ..., xn) where we assume without loss

of generality that x1 ≤ · · · ≤ xn and n ≥ 3. The critical fact we use here will be that

the median does not change if you remove the minimum and maximum values, which is

to say that med(D) = med(D − x1 − xn). Therefore, if med(D) ≥ med(∅), then we

must also have med(D − x1 − xn) ≥ med(∅), which by our inductive claim implies that

med(∅) ≤ g(D − x1 − xn) ≤ med(D − x1 − xn) = med(D). Applying Lemma 4.5.2, we

then have

g(D − x1) ≤ g(D − x1 − xn) + ∆ ≤ med(D) + ∆

and

g(D − xn) ≥ g(D − x1 − xn)−∆ ≥ med(D)−∆

We then reapply Lemma 4.5.2 to achieve our desired result that med(∅) ≤ g(D) ≤

med(D)

As in [11], define A(k)(D) = max0≤t≤k+1(xm+t − xm+t−k−1) and m = n+1
2

, which is

essentially the k-local sensitivity of median for database D. More formally,

A(k)(D) = max
d(D,D′)≤k

LSf (D
′).

Combining this assumption with our previous lemma will then allow for stronger bounds

upon g(D).

Lemma 4.5.6. Given some parameter ∆ and med(∅), if A(k)(D) ≤ 2(k+ 1)∆ for k ≤ n/4

and med(D) ∈ [med(∅)− n
2
∆,med(∅) + n

2
∆], then g(D) = med(D)

278

Proof. Without loss of generality, assume that med(D) ≥ med(∅). By Lemma 4.5.5 we

know g(D) ≤ med(D), then applying Lemma 4.5.7 gives our desired result.

Lemma 4.5.7. Given some parameter ∆ and med(∅), assume A(k)(D) ≤ 2(k + 1)∆ for

k ≤ n/4 and med(D) ∈ [med(∅) − n
2
∆,med(∅) + n

2
∆]. Let D[1:k] = (x1, ..., xk), if

med(D) ≥ med(∅), then g(D[1:k]) ≥ med(D)− (n− k)∆

Proof. It is immediately implied by our assumptions that

med(D[1:k]) ≥ med(D)− (n− k)∆

for any k ≥ n/2. We then consider our base case to be k = n/2, and note that from

Lemma 4.5.5 we have g(D[1:k]) ≥ min{med(∅),med(D[1:k]), which by our assumptions

immediately implies g(D[1:n/2]) ≥ med(D)− n
2
∆.

We then assume this is true for k−1 ≥ n/2, so g(D[1:k−1]) ≥ med(D)− (n−k)∆−∆.

We then also know from Lemma 4.5.2 that

g(D[1:k]) ≥ min{med(D[1:k]), g(D[1:k−1]) + ∆}

which implies our desired inequality.

Proof of Theorem 4.1.9

We now have all the necessary components to give our proof of Theorem 4.1.9, which we

restate and prove below.

Theorem 4.1.9. Let med : R<N → R be the median function for the data universe of all

finite-length real-valued vectors. For chosen parameters med(∅) and ∆, along with any

database D = (x1,, xn) ∈ R<N, if x1 ≤ · · · ≤ xn we give O(n) time access to a function

g : R<N → R with sensitivity ∆ such that g(D) = med(D) wheneverA(k)(D) ≤ 2(k+1)∆

for k ≤ n/4 and med(D) ∈ [med(∅)− n
2
∆,med(∅) + n

2
∆].

279

Proof of Theorem 4.1.9. The runtime guarantees follow immediately from Lemma 4.5.4.

Furthermore, if we assume that med(D) ≥ med(∅), then Lemma 4.5.5 implies that

g(D) ≤ med(D) and Lemma 4.5.7 implies that g(D) ≥ med(D) because we have the

same assumptions, and g(D) = med(D) The symmetric version of these lemmas follows

immediately, and we also have g(D) = med(D) when med(D) ≤ med(∅).

4.5.3 Accuracy bounds for mean

We next consider the mean function, and provide strong bounds on the accuracy of our

Sensitivity-Preprocessing Function. While the analysis will be rather involved, we believe

that the ultimate guarantees are highly intuitive. Our proof will also show that for databases

with entries bounded in a ∆ sensitivity range, we perfectly preserve the accuracy between

our new function and the mean function. Further, the key ideas in our proof are closely

related to the construction of our recursive function, and we believe could be extended to

other functions using a similar framework.

The general proof idea will be to give two simpler recursive functions that yield reason-

ably tight upper and lower bounds on our function. Due to their further simplicity, it will be

much easier to give nice error bounds with respect to the true mean for these functions.

The idea behind constructing the upper and lower bound functions will be simple. Recall

that we showed our g for the mean function has the property that UPPER(D) = g(D−xn)+∆

and LOWER(D) = g(D−x1)−∆ because we showed g(D−xn) ≤ g(D−xn−1) ≤ · · · ≤

g(D − x1) if we assume x1 ≤ · · · ≤ xn. Intuitively, this is due to the fact that removing

the maximum value will minimize mean and removing the minimum value will maximize

mean. Accordingly, we will just iteratively remove the maximum value to give a lower

bound on our function and iteratively remove the minimum value to give an upper bound

on our function. These functions then only require solving O(n) subproblems which will

simplify the analysis.

280

Definition 4.5.8 (Mean-bounding functions). For any D = (x1, ..., xn), define

hlower(D) =


hlower(D − xn) + ∆, if hlower(D − xn) + ∆ ≤ µ(D)

hlower(D − xn)−∆, if hlower(D − xn)−∆ ≥ µ(D)

µ(D), otherwise

and

hupper(D) =


hupper(D − x1) + ∆, if hupper(D − x1) + ∆ ≤ µ(D)

hupper(D − x1)−∆, if hupper(D − x1)−∆ ≥ µ(D)

µ(D), otherwise

We will first show that hupper and hlower are upper and lower bounds, respectively, of

our Sensitivity-Preprocessing Function g with parameter ∆. Then we further examine the

properties of these functions.

Lemma 4.5.9. Let µ : R<N → R be the mean function with chosen parameters µ̂ and ∆.

For any D = (x1, ..., xn) ∈ Rn with x1 ≤ x2 ≤ · · · ≤ xn, then hlower(D) ≤ g(D) and

hupper(D) ≥ g(D) where g : R<N → R is our Sensitivity-Preprocessing Function with

parameter ∆.

Proof. We will prove both inequalities by induction, where we first note that if D only has

one entry, then by construction hlower(D) = g(D) = hupper(D).

For any database D of n entries, by induction we have hlower(D − xn) ≤ g(D − xn)

and note that within the proof of Lemma 4.5.2 we showed g(D − xn) ≤ g(D − x1), which

implies hlower(D) ≤ g(D). Similarly, by induction we have hupper(D − x1) ≥ g(D − x1)

and Lemma 4.5.2 gives g(D − x1) ≥ g(D − xn), which implies hupper(D) ≤ g(D).

We now use the simpler recursive structure of hlower and hupper to get more explicit

forms of their output.

281

Lemma 4.5.10. Let µ : R<N → R be the mean function with chosen parameters µ̂ and ∆.

For any D = (x1, ..., xn), assume that x1 ≤ x2 ≤ · · · ≤ xn, and let D[i:j] = (xi, ..., xj). Let

k be the largest index such that hlower(D[1:k]) ≥ µ(D[1:k]) (if one exists), then

hlower(D[1:k]) = max{µ̂− k∆, µ(D[1 : k])}.

Let l be the smallest index such that hupper(D[l:n]) ≥ µ(D[l:n]) (if one exists), then

hupper(D[l:n]) = min{µ̂+ (n− l)∆, µ(D[l:n])}.

Proof. We consider the first equality here, and the second follows symmetrically.

Note that µ(D[1:k]) is increasing in k because x1 ≤ · · · ≤ xn. By construction of hlower, if

for some index k′ we have hlower(D[1:k′]) ≤ µ(D[1:k′]), then hlower(D[1:k′+1]) ≤ µ(D[1:k′+1]).

Accordingly, if we let kmin be the first index such that hlower(D[1,kmin]) ≤ µ(D1,kmin), then in

the case that k ≥ kmin we must have hlower(D[1:k]) = µ(D[1:k]). If k < kmin, then we must

have hlower(D[1:k]) > µ(D[1:k]), and furthermore hlower(D[1:k′]) > µ(D[1:k′]) for all k′ ≤ k,

which implies that we always decreased by ∆ and we get hlower(D[1:k]) = µ̂− k∆.

We use the explicit forms of hlower and hupper to sandwich the loss in accuracy, by

considering the inflection point of n/3 and bounding the error from hlower separately for

k ≤ n/3 and for k ≥ n/3. The analogous result follows symmetrically for hupper.

Lemma 4.5.11. Let µ : R<N → R be the mean function with chosen parameters µ̂ and ∆.

If g : R<N → R is our Sensitivity-Preprocessing Function with parameter ∆, then given any

D = (x1, ..., xn),

|g(D)− µ(D)| ≤ max{|µ̂− µ(D)| − n

3
∆, 0}+

n∑
i=1

max

{
27 |xi − µ(D)|

n
−∆, 0

}
.

Proof. If we can instead prove the same upper bounds for both |hlower(D)− µ(D)| and

|hupper(D)− µ(D)|, then the desired bound for |g(D)− µ(D)| follows from Lemma 4.5.9.

282

We give the desired bound for |hlower(D)− µ(D)|, and the bound for |hupper(D)− µ(D)|

follows symmetrically.

Again, let k be the largest index such that hlower(D[1:k]) ≥ µ(D[1:k]) (if one exists). If

k ≤ n/3 or none exists, then it immediately follows from Lemma 4.5.10 that hlower(D) ≥

µ̂+ n
3
∆, which implies |µ(D)− hlower(D)| ≤ |µ(D)− µ̂| − n

3
∆.

If k ≥ n/3, then it is implied by Lemma 4.5.10 that hlower(D) = max{µ̂−k∆, µ(D[1:k])}+

(n− k)∆ ≥ µ(D[1:k]) + (n− k)∆ and therefore,

µD−hlower(D) ≤ µ(D)−µ(D[1:k])+(n−k)∆ =
n−1∑
i=k

(
µ(D[1:i+1])− µ(D[1:i])

)
−(n−k)∆.

Furthermore,

µ(D[1:i+1])− µ(D[1:i]) =
x1 + · · ·+ xi+1

i+ 1
− x1 + · · ·+ xi

i
=

1

i(i+ 1)

(
i∑

j=1

xi+1 − xj

)
.

We use the fact that i ≥ n/3 to achieve,

µ(D)− hlower(D) ≤

(
9

n2

n∑
i=k

i∑
j=1

(xi − xj)

)
− (n− k)∆.

Applying Lemma 4.5.12 (stated below) gives,

µ(D)− hlower(D) ≤

(
27

n

n∑
i=k

|xi − µ(D)|

)
− (n− k)∆ =

n∑
i=k

(
27 |xi − µ(D)|

n
−∆

)

We then add in non-negative terms that are necessary for the symmetric version with hupper

to achieve our desired bound.

We used the following lemma to simplify the bounds in Lemma 4.5.11 beyond those

stated in the more general Lemma 4.3.6. We relegate the proof of this lemma to the appendix.

Lemma 4.5.12. For any set of reals D = (x1, ..., xn) where x1 ≤ · · · ≤ xn, given any index

283

k ∈ [n],
1

n2

n∑
i=k

i∑
j=1

1

3
|xi − xj| ≤

1

n

n∑
i=k

|xi − µ(D)| .

To finally obtain all the necessary components for the proof of Theorem 4.1.10, it is

only left to show that when all the inputs of the database are in a nicely bounded range, our

Sensitivity-Preprocessing Function will perfectly fit to the function µ.

Lemma 4.5.13. Let µ : R<N → R be the mean function with chosen parameters µ̂ and ∆.

If g : R<N → R is our Sensitivity-Preprocessing Function with parameter ∆, then given

any D = (x1, ..., xn) ∈ Rn, if for all xi ∈ D we have xi ∈ [µ̂ + α∆, µ̂ + (α + n)∆] for

α ∈ [−n, 0], then g(D) = µ(D).

Proof. First, it is straightforward to see by the construction of hlower and hupper that

hlower(D) ≤ µ(D) if µ(D) ≥ µ̂−n∆ and hupper(D) ≥ µ(D) if µ(D) ≤ µ̂+n∆. Therefore,

by Lemma 4.5.9, the desired result is implied if hlower(D) ≥ µ(D) and hupper(D) ≤ µ(D).

Here we show that hlower(D) ≥ µ(D), and hupper(D) ≤ µ(D) will be implied symmetri-

cally.

Suppose it is not true that hlower(D) ≥ µ(D), then there must exist the last index

k < n such that hlower(D[1:k]) ≥ µ(D[1:k]), which by construction implies that hlower(D) =

hlower(D[1:k]) + (n − k)∆. To achieve our contradiction, we want to show that µ(D) −

hlower(D[1:k]) ≤ (n− k)∆.

By our restriction of each xi and by assumption we have,

µ̂+ α∆ ≤ µ(D[1:k]) ≤ hlower(D[1:k]).

Furthermore, because all of the remaining xi ≤ µ̂+ (α + n)∆, we must have,

µ(D) ≤
kµ(D[1:k]) + (n− k)(µ̂+ (α + n)∆)

n
≤
k · hlower(D[1:k]) + (n− k)(µ̂+ (α + n)∆)

n
,

where the second inequality follows from our assumption that hlower(D[1:k]) ≥ µ(D[1:k]).

284

This implies,

µ(D)− hlower(D[1:k]) ≤
k · hlower(D[1:k]) + (n− k)(µ̂+ (α + n)∆)

n
− hlower(D[1:k])

=
(k − n)hlower(D[1:k]) + (n− k)(µ̂+ n

2
∆)

n

We use the fact that hlower(D[1:k]) ≥ µ̂+ α∆ and k < n to get,

µ(D)− hlower(D[1:k]) ≤
(k − n)(µ̂+ α∆) + (n− k)(µ̂+ (α + n)∆)

n
= (n− k)∆,

giving our desired contradiction, which implies hlower(D) ≥ µ(D).

Proof of Theorem 4.1.10

We now have all the necessary components to give our proof of Theorem 4.1.10, which we

restate and prove below.

Theorem 4.1.10. Let µ : R<N → R be the mean function for the data universe of all

finite-length real-valued vectors. For chosen parameters µ̂ and ∆, along with any database

D = (x1,, xn) ∈ R<N, we give O(n2) time access to a function g : R<N → R with

sensitivity ∆ such that,

|g(D)− µ(D)| ≤ max
{
|µ(D)− µ̂| − n

3
∆, 0

}
+

n∑
i=1

max

{
27 |xi − µ(D)|

n
−∆, 0

}
.

Additionally, if we are guaranteed that each xi ∈ [µ̂+α∆, µ̂+(α+n)∆] for α ∈ [−n, 0],

then g(D) = µ(D)

Proof of Theorem 4.1.10. The fact that g has sensitivity ∆ follows from the fact that it is

our Sensitivity-Preprocessing Function and the guarantees of Lemma 4.3.5. The runtime

follows from Corollary 4.5.3. We then achieve the error bounds from Lemma 4.5.11 and

Lemma 4.5.13.

285

4.6 Efficient Implementation for Variance

In this section, we show how to efficiently extend our recursive algorithm to variance, which

is an important statistical metric and a more complicated function than those considered in

Section 4.5. The general idea will remain the same as we reduce the number of subproblems

to O(n2) by using structural properties of variance. We first formally define the discrete

version of variance with two equivalent equations.

Definition 4.6.1. For any D = (x1, ..., xn) ∈ Rn, let µ(D) = 1
n
(x1 + · · ·+ xn) and define

the variance function,

Var [D]
def
=

1

n

n∑
i=1

(xi − µ(D))2 ,

or equivalently,

Var [D]
def
=

1

n2

n∑
i=1

n∑
j=1

1

2
(xi − xj)2 .

As with mean, α-trimmed mean, median, maximum, and minimum, we will first sort the

entries of the database. Intuitively, we can decrease the variance most by removing either

the minimum or maximum value. We make use of the following fact, which we prove in the

appendix for completeness.

Fact 4.6.2. Given D = (x1, ..., xn) ∈ Rn such that x1 ≤ · · · ≤ xn, then for any i,

min{Var [D − x1] ,Var [D − xn]} ≤ Var [D − xi] .

We will use this fact to show that the lower bound on g(D) will be defined by g(D− x1)

or g(D − xn). The difficulty now becomes that to increase variance the most, we would

want to remove an entry between x1 and xn. This poses a significant complication in

constructing a dynamic program for the subproblems. More specifically, even if g(D) only

required solving two subproblems g(D − xi) and g(D − xj) for some xi, xj , we are still

doubling the number of subproblems at each step. The straightforward dynamic program for

286

ordered-databases was able to reuse different subproblems to avoid a runtime blow-up. The

key idea will then be that we can bound, with respect to the original variance, the amount

variance can be increase by removing an entry. In particular, we use the following fact that

is likely a folklore result, but we could not find a citation, so we prove it in the appendix for

completeness.

Fact 4.6.3. Given any unordered (x1, ..., xn) ∈ Rn,

Var [x1, ..., xn−1] ≤ n

n− 1
Var [x1, ..., xn] .

We can then use this strong bound to show that if we initialize g(∅) = 0, the Sensitivity-

Preprocessing Function will never go above Var [D] for any g(D). As a result, the

Sensitivity-Preprocessing Function will never actually use LOWER(D). This will then

allow us to only recurse on subproblems where the minimum or maximum has been re-

moved, and the dynamic program will be analogous to the one given for mean.

We first give the efficient implementation for variance and show that it can be done in

O(n2) time. Then we give stronger bounds on the error incurred by this efficient implemen-

tation, and finally use these facts to prove Theorem 4.1.11.

4.6.1 Efficient algorithm for variance

As with mean and the database-ordered functions, the key to our efficient implementation

will be showing that the Sensitivity-Preprocessing Function can be equivalently defined

using far fewer subproblems. Using some of the intuition above, we are able to prove the

following lemma that reduces the Sensitivity-Preprocessing Function to a much simpler

recursion.

Lemma 4.6.4. Let Var : R<N → R be the variance function and set Var [∅] = 0. Then

the Sensitivity-Preprocessing Function with parameter ∆ can be equivalently defined as

g(∅) = 0 and g(D) = min{Var [D] , g(D−x1)+∆, g(D−xn)+∆} whereD = (x1, ..., xn)

287

with x1 ≤ · · · ≤ xn.

We will prove this lemma with the following two helper lemmas. The first will show that

the Sensitivity-Preprocessing Function will never exceed the true variance. The second uses

the fact that variance is minimized by either removing the minimum or maximum value to

show that the lower bound can simply consider the subproblems g(D − x1) and g(D − xn).

Lemma 4.6.5. Given any D = (x1, ..., xn) ∈ Rn, if g is the Sensitivity-Preprocessing

Function of variance with parameter ∆ and g(∅) = 0, then,

g(D) ≤ Var [D] .

Proof. We will prove this by induction. If D contains only a single entry, then Var [D] = 0

and by construction g(D) = 0.

We then considerD = (x1, ..., xn) and assume the inequality holds for all subsets. By the

definition of the Sensitivity-Preprocessing Function, it suffices to show that g(D−xi)−∆ ≤

Var [D] for all xi. Our inductive claim gives g(D − xi) ≤ Var [D − xi], and Fact 4.6.3

implies:

Var [D − xi]− Var [D] ≤ 1

n− 1
Var [D] ,

These combine to give,

g(D − xi)− Var [D] ≤ 1

n− 1
Var [D] .

We now consider two cases. If g(D − xi) ≤ Var [D], then g(D − xi)−∆ ≤ Var [D]

because ∆ ≥ 0 and we have our desired inequality. If Var [D] ≤ g(D − xi) then,

g(D − xi)− Var [D] ≤ 1

n− 1
g(D − xi).

Further, by the definition of Sensitivity-Preprocessing Function and the fact that g(∅) = 0,

288

we must have g(D − xi) ≤ (n− 1)∆, implying,

g(D − xi)− Var [D] ≤ ∆,

which is our desired inequality.

Lemma 4.6.6. Given D = (x1, ..., xn) ∈ Rn such that x1 ≤ · · · ≤ xn and g is the

Sensitivity-Preprocessing Function of variance with parameter ∆ and g(∅) = 0, then,

min{g(D − x1), g(D − xn)} ≤ g(D − xi),

for any xi ∈ D.

Proof. We will prove this by induction. If D has just one entry then x1 = xi = xn and each

term is equivalent.

We then consider D = (x1, ..., xn) and assume the inequality holds for all subsets. We

will consider two cases. Our first case is g(D − xi) = Var [D − xi]. Lemma 4.6.5 implies:

min{g(D − x1), g(D − xn)} ≤ min{Var [D − x1] ,Var [D − xn]}.

Furthermore, by Fact 4.6.2 we have min{Var [D − x1] ,Var [D − xn]} ≤ Var [D − xi].

Combining this with the assumption g(D − xi) = Var [D − xi] gives the desired inequality.

It is implied by Lemma 4.6.5 that the only other case we need to consider is g(D −

xi) < Var [D − xi]. This assumption and our definition of Sensitivity-Preprocessing

Function together imply,

g(D − xi) = min
j 6=i
{g(D − xi − xj) + ∆}.

289

The definition of Sensitivity-Preprocessing Function also gives:

min{g(D−x1), g(D−xn)} ≤ min{min
j 6=1
{g(D−x1−xj)+∆},min

j 6=n
{g(D−xn−xj)+∆}}.

As a result, if minj 6=1{g(D − xi − xj) + ∆} is minimized for j = 1 or j = n, then we

easily have min{g(D − x1), g(D − xn)} ≤ g(D − xi). Furthermore, if j 6= 1, n, then it

suffices to show that,

min{g(D − x1 − xj), g(D − xn − xj)} ≤ g(D − xi − xj),

which follows from the inductive hypothesis and implies our desired result.

These two helper lemmas now easily imply Lemma 4.6.4.

Proof of Lemma 4.6.4. Lemma 4.6.5 implies that we will never need to use LOWER(D), so

we can eliminate that case. Further, Lemma 4.6.6 implies that UPPER(D) = min{g(D −

x1) + ∆, g(D − xn) + ∆}. Combining these facts implies our recursion defined in the

lemma statement is equivalent to the Sensitivity-Preprocessing Function.

With this reduction in the number of subproblems for the Sensitivity-Preprocessing

Function, we will be able to give a similar efficient dynamic programming algorithm for the

implementation.

It immediately follows that the number of subproblems that we need to consider isO(n2),

but we still need to efficiently compute Var [D]. This computation would normally take

O(n) time and increase our running time to O(n3). However, we can use the computation

from previous subproblems to compute the variance in O(1) time with the following folklore

fact that we prove in the appendix.

290

Algorithm 12: Efficient Implementation for Variance
Input: Variance function Var : R<N → R, sensitivity bound ∆, and database
D = (x1, ..., xn) ∈ Rn for some arbitrary n.
Output: g(D) where g is the Sensitivity-Preprocessing Function of variance with
parameter ∆.
Initialize g(∅) = 0
Sort D (We will assume x1 ≤ · · · ≤ xn for simplicity) for k=1, . . . , n do

for i = 1, . . . n-k+1 do
for every database D′ = (xi, ..., xi+k−1) do

Let g(D′) = min{Var [D′] , g(D′ − xi) + ∆, g(D′ − xi+k−1) + ∆}

Output g(D)

Fact 4.6.7. For any D = (x1, ..., xn) ∈ Rn and any xa 6= xb ∈ D,

Var [D] =(
n− 1

n

)2

Var [D − xa] +

(
n− 1

n

)2

Var [D − xb]−
(
n− 2

n

)2

Var [D − xa − xb]

+
1

n2
(xa − xb)2.

With this fact we can now show that we implement the Sensitivity-Preprocessing Func-

tion for variance with parameter ∆ in O(n2) time.

Lemma 4.6.8. Let Var : R<N → R be the variance function and set Var [∅] = 0. Then

Algorithm 12 will compute g(D) for any database of n entries in O(n2) time where g is the

Sensitivity-Preprocessing Function for variance with parameter ∆.

Proof. Correctness of the procedure follows immediately from Lemma 4.6.4. The running

time follows from the fact that we have O(n2) subproblems and from Fact 4.6.7 we can

compute Var [D] in O(1) time using the previous subproblems.

4.6.2 Accuracy guarantees for variance implementation

In this section we give stronger bounds on the error incurred by the Sensitivity-Preprocessing

Function. The proofs will be similar to those in Section 4.5.3 for mean, but will be slightly

291

simpler due to that fact that the Sensitivity-Preprocessing Function will never go above

the actual variance. As a result, we achieve a simpler form for the error of the Sensitivity-

Preprocessing Function with respect to variance in the following lemma.

Lemma 4.6.9. Given D = (x1, ..., xn) ∈ Rn and g that is the Sensitivity-Preprocessing

Function of variance with parameter ∆ and g(∅) = 0, then there must exist some D′ ⊆ D

such that g(D) = Var [D′] + (n− k)∆ for k = |D′|.

Proof. We prove this inductively on the size of D and see immediately that the claim holds

by construction for D with a single entry.

We then consider D = (x1, ..., xn) and assume that our claim holds for all subsets. From

Lemma 4.6.5 we know that Var [D] ≥ g(D) for all databases. If Var [D] = g(D), then our

claim is immediately implied. If g(D) < Var [D] then we must have g(D) = g(D−xi)+∆

for some xi. Applying the inductive hypothesis on g(D − xi) gives our desired claim.

With this lemma in hand, the main idea for bounding accuracy is to condition on the

size of D′, which we denote k, and give bounds separately for the cases when k ≤ n/2 and

k ≥ n/2. When k is small we will just bound our error by Var [D] − (n − k)∆ and use

the fact that (n− k)∆ is large. When k is large we will look at the loss in accuracy from

Var [D]− Var [D′] where we will bound this by iteratively applying the following lemma.

Lemma 4.6.10. For any D = (x1, ..., xn) ∈ Rn and any xa ∈ D, then

Var [D]− Var [D − xa] ≤
1

n2

n∑
i=1

(xa − xi)2 .

Proof. By the definition of variance,

Var [D]− Var [D − xa] =
1

n2

n∑
i=1

n∑
j=1

1

2
(xi − xj)2 − 1

(n− 1)2

∑
i 6=a

∑
j 6=a

1

2
(xi − xj)2 .

292

This reduces to,

Var [D]− Var [D − xa] =
1

n2

n∑
i=1

(xa − xi)2 − 2n− 1

n2(n− 1)2

∑
i 6=a

∑
j 6=a

1

2
(xi − xj)2 ,

which gives our desired equality.

Recall that we want to use this lemma to bound Var [D]−Var [D′] where D′ is a subset

of D with size k. Suppose D′ = (x1, ..., xk) and let Di = (x1, ..., xi) for any i; we will

use the fact that Var [D]− Var [D′] =
∑n

i=k+1 Var [Di]− Var [Di−1]. The above Lemma

4.6.10 allows us to bound this sum, which will be the key step in our accuracy bounds.

Lemma 4.6.11. Given D = (x1, ..., xn) ∈ Rn and g that is the Sensitivity-Preprocessing

Function of variance with parameter ∆ and g(∅) = 0, then

|Var [D]− g(D)| ≤ max
{

Var [D]− n

2
∆, 0

}
+

n∑
i=1

max

{
n∑
j=1

4(xi − xj)2

n2
−∆, 0

}
.

Proof. Note that Lemma 4.6.5 implies |Var [D]− g(D)| = Var [D]−g(D). From Lemma 4.6.9

we know that g(D) = Var [D′] + (n− k)∆ for some D′ ⊆ D of size k, and we can rewrite

Var [D]− g(D) = Var [D]− Var [D′]− (n− k)∆. If k ≤ n/2, then

Var [D]− g(D) ≤ Var [D]− n

2
∆,

because (n− k) ≥ n/2 and Var [D′] ≥ 0.

If k ≥ n/2, then for simplicity we will assume D′ = (x1, ..., xk) and address this

assumption later. We then let Di = (x1, ..., xi) for any i and use the fact that Var [D] −

Var [D′] =
∑n

i=k+1 Var [Di]− Var [Di−1]. Lemma 4.6.10 along with the fact that k ≥ n/2

allows us to then bound this summation as

n∑
i=k+1

Var [Di]− Var [Di−1] ≤ 4

n2

n∑
i=k+1

n∑
j=1

(xi − xj)2

293

We can then use this to achieve (for D′ = (x1, ..., xk))

Var [D]− Var [D′]− (n− k)∆ ≤
n∑

i=k+1

(
n∑
j=1

4(xi − xj)2

n2
−∆

)

At this point we address the assumption that D′ = (x1, ..., xk) by simply adding non-

negative terms to the summation and ensuring that all of the entries in D′ are be included in

this summation. This gives us,

Var [D]− Var [D′]− (n− k)∆ ≤
n∑
i=1

max

{
n∑
j=1

4(xi − xj)2

n2
−∆, 0

}
.

Adding both errors for k ≤ n/2 and k ≥ n/2 gives our desired bound.

4.6.3 Proof of Theorem 4.1.11

We now have all the necessary pieces for Theorem 4.1.11, which we restate and prove here.

Theorem 4.1.11. Let Var : R<N → R be the variance function for the data universe

of all finite-length real-valued vectors. For fixed parameter ∆, along with any database

D = (x1,, xn) ∈ R<N, we have O(n2) time access to a function g : R<N → R with

sensitivity ∆ such that,

|g(D)− Var [D] | ≤ max
{

Var [D]− n

2
∆, 0

}
+

n∑
i=1

max

{
n∑
j=1

4(xi − xj)2

n2
−∆, 0

}
.

Proof. The fact that g has sensitivity ∆ follows from the fact that it is our Sensitivity-

Preprocessing Function from Lemma 4.6.8, and the guarantees of Lemma 4.3.5. The runtime

also follows from Lemma 4.6.8. We then achieve the error bounds from Lemma 4.6.11.

294

4.7 Sensitivity preprocessing for personalized privacy guarantees

In this section, we introduce personalized differential privacy, where each individual in

a database may receive a different privacy parameter εi. We show that our Sensitivity-

Preprocessing Function is naturally compatible with this privacy notion, and demonstrate

the use of sensitivity-bounded functions for achieving personalized privacy guarantees,

using the Laplace Mechanism and the Exponential Mechanism as illustrative examples. The

notion of personalized privacy has been previously applied to the design of markets for

privacy. We demonstrate the use of Sensitivity-Preprocessing Function for this application

in Section 4.7.2, and hope that our results may be useful tools for this well-studied problem

in algorithmic economics.

4.7.1 Personalized differential privacy

We begin by defining personalized differential privacy, which extends the standard definition

of differential privacy (Definition 4.2.1) to a setting where different individuals participating

in the same computation may experience different, personalized privacy guarantees. Similar

definitions have also been used in previous work [176, 183, 177, 178]. Recall from Section

4.2 that two databases are neighboring if they differ in at most one entry. We will say that

two databases are i-neighbors if they differ only in the i-th entry.

Definition 4.7.1 (Personalized differential privacy). A mechanismM : D → R is {εi}-

personally differentially private if for all i, for every pair of i-neighbors D,D′ ∈ D, and for

every subset of possible outputs S ⊆ R,

Pr[M(D) ∈ S] ≤ exp(εi)Pr[M(D′) ∈ S].

Note that any {εi}-personally differentially private algorithm is also (maxi εi)-differentially

private, since differential privacy provides a worst-case guarantee over all pairs of neighbor-

ing databases.

295

In this section, we show that personalized differential privacy can be achieved by

combining our sensitivity preprocessing step with existing differentially private mechanisms.

An analyst can first apply our preprocessing step to get g with desired individual sensitivity

bounds, and then evaluate g using a differentially private algorithm. The resulting {εi}-

personal differential privacy guarantees will depend on the chosen sensitivity parameters

{∆i}. Since the function g is independent of the database, the sensitivity preprocessing step

does not leak any additional privacy.

Individual sensitivity guarantees are critical for accurate analysis in this new privacy

model. Using only global sensitivity bounds ∆, personally differentially private mecha-

nisms add noise that scales with maxi{∆/εi}. This alone cannot offer significant accuracy

improvements because the noise must still scale inversely proportionally to the smallest εi.

By utilizing individual sensitivity bounds, an analyst can tune each ∆i to scale with εi to

achieve overall accuracy improvements with personalized differential privacy.

We note that local differential privacy [184] also affords different privacy guarantees

to different individuals in the same database, by perturbing each user’s data locally before

submitting it to the database. Significantly stronger accuracy guarantees are possible in the

presence of a trusted curator—which we assume in our model—because the analyst can

leverage correlation of noise across individuals [185].

A formal statement of the privacy and accuracy guarantees that arise from applying

differentially private algorithms to sensitivity-bounded functions will depend on the exact

algorithm used. We illustrate this approach below applying it on two of the most foundational

differentially private algorithms: the Laplace Mechanism and the Exponential Mechanism.

Laplace Mechanism

The Laplace Mechanism [161] is perhaps the most fundamental of all differentially private

algorithms. It first evaluates a real-valued function f on an input database D, and then

perturbs the answer by adding Laplace noise scaled to the global sensitivity of f divided by

296

ε. The Laplace distribution with scale b, denoted Lap(b), has probability density function:

Lap(x|b) =
1

2b
exp

(
−|x|
b

)
.

Definition 4.7.2 (Laplace Mechanism [161]). Given any function f : D → R, the Laplace

Mechanism is defined as,

ML(D, f,∆f/ε) = f(D) + Y,

where Y is drawn from Lap(∆f/ε).6

The Laplace Mechanism is ε-differentially private [161]. We now show how to combine

the Laplace Mechanism with our Sensitivity-Preprocessing Function to achieve personalized

differential privacy guarantees.

Proposition 4.7.3. Let g : D → R be a function with individual sensitivities {∆i}. For any

{εi}, the Laplace Mechanism ML (D, g,maxj{∆j/εj}) is {εi}-personally differentially

private.

Proof. Let D,D′ ∈ D be i-neighbors, let g : D → R be a function with individual

6We note that the standard definition of the Laplace Mechanism in [161] takes ε as input instead of ∆f
ε .

We use the latter here for ease of notation when extending to personalized differential privacy. This change
does not affect the algorithm at all.

297

sensitivities {∆i}, and let r ∈ R be arbitrary.

Pr[ML(D, g,maxj{∆j/εj}) = r]

Pr[ML(D′, g,maxj{∆j/εj}) = r]
=

exp
(
−maxj{ εj∆j

}|g(D)− r|
)

exp
(
−maxj{ εj∆j

}|g(D′)− r|
)

= exp

(
max
j
{ εj

∆j

} (|g(D′)− r| − |g(D)− r|)
)

≤ exp

(
max
j
{ εj

∆j

} (|g(D)− g(D′)|)
)

≤ exp

(
max
j
{ εj

∆j

}∆i

)
≤ exp(εi)

Then this version of the Laplace Mechanism run on a function with individual sensitivities

{∆i} is {εi}-personally differentially private.

Proposition 4.7.3 shows that to achieve personalized privacy guarantees for a given

function f , one can apply our Sensitivity-Preprocessing Function to produce Sensitivity-

Bounded g, and then apply the Laplace Mechanism. The accuracy guarantees of this

procedure will depend on the worst-case ratio of ∆i/εi, as well as global sensitivity of

the original function f . If one person j requires significantly higher privacy protections

than the rest of the population, the analyst can account for this by reducing ∆j . This may

greatly improve accuracy over the standard approach, which would require the analyst to

add increased noise to the entire population. We address this challenge more concretely in

Section 4.7.2, using the application of market design for private data.

Exponential Mechanism

The Exponential Mechanism [186] is a powerful private mechanism for answering non-

numeric queries with an arbitrary range, such as selecting the best outcome from a set of

alternatives. The quality of an outcome is measured by a score function q : D ×R → R,

which relates each alternative to the underlying data through a real-valued score. The global

298

sensitivity of the score function is measured only with respect to the database argument; it

can be arbitrarily sensitive in its range argument:

∆q = max
r∈R

max
D,D′ neighbors

|q(D, r)− q(D′, r)|.

We define the individual sensitivity of a quality score analogously with respect to only its

database argument:

∆i(q) = max
r∈R

max
D,D′ i−neighbors

|q(D, r)− q(D′, r)|.

The Exponential Mechanism samples an output from the range R with probability

exponentially weighted by score. Outcomes with higher scores are exponentially more likely

to be selected, thus ensuring both privacy and a high quality outcome.

Definition 4.7.4 (Exponential Mechanism [186]). Given a quality score q : D ×R → R,

the Exponential Mechanism is defined as:7

ME(D, q,∆q/ε) = output r ∈ R with probability proportional to exp

(
εq(D, r)

2∆q

)
.

The Exponential Mechanism is ε-differentially private [186]. We now show that when a

score function has bounded individual sensitivity, the Exponential Mechanism is personally

differentially private.

Proposition 4.7.5. Let q : D×R → R be a score function with individual sensitivities {∆i}.

For any {εi}, the Exponential Mechanism ME (D, q,maxj{∆j/εj}) is {εi}-personally

differentially private.

Proof. Let D,D′ ∈ D be i-neighbors, let q be a score function with individual sensitivities

7As with the Laplace Mechanism, we define the Exponential Mechanism to take ∆q
ε as input, instead of ε.

This change is purely notational, and has no impact on the algorithm.

299

{∆i}, and let r ∈ R be an arbitrary element of the output range.

Pr[ME(D, q,maxj{∆j/εj}) = r]

Pr[ME(D′, q,maxj{∆j/εj}) = r]

=

(
exp

(
maxj{

εj
∆j
}q(D,r)/2

)
∑
r′∈R exp

(
maxj{

εj
∆j
}q(D,r′)/2

)
)

(
exp

(
maxj{

εj
∆j
}q(D′,r)/2

)
∑
r′∈R exp

(
maxj{

εj
∆j
}q(D′,r′)/2

)
)

=

 exp
(

maxj{ εj∆j
}q(D, r)/2

)
exp

(
maxj{ εj∆j

}q(D′, r)/2
)
 ·

∑r′∈R exp
(

maxj{ εj∆j
}q(D′, r′)/2

)
∑

r′∈R exp
(

maxj{ εj∆j
}q(D, r′)/2

)


= exp

(
max
j
{ εj

∆j

} (q(D, r)− q(D′, r)) /2
)
·

∑r′∈R exp
(

maxj{ εj∆j
}q(D′, r′)/2

)
∑

r′∈R exp
(

maxj{ εj∆j
}q(D, r′)/2

)


≤ exp

(
1

2
max
j
{ εj

∆j

}∆i

)
· exp

(
1

2
max
j
{ εj

∆j

}∆i

)
·

∑r′∈R exp
(

maxj{ εj∆j
}q(D, r′)/2

)
∑

r′∈R exp
(

maxj{ εj∆j
}q(D, r′)/2

)


= exp

(
max
j
{ εj

∆j

}∆i

)
≤ exp(εi)

Remark 4.7.6. The Exponential Mechanism is a canonical ε-differentially private algorithm:

every ε-differentially private algorithmM can be written as an instantiation of the Exponen-

tial Mechanism using quality score q(D, r) = ln(Pr[M(D) = r]) with global sensitivity

∆q = ε. We can use this reduction to show that any ε-differentially private algorithm can be

modified to give personal privacy guarantees using our Sensitivity-Preprocessing Function.

First, re-write private mechanismM as an Exponential MechanismME , and then perform

Sensitivity-Preprocessing on the quality score ofME . Proposition 4.7.5 shows that the

sensitivity-bounded version ofME will satisfy personalized differential privacy.

300

4.7.2 Application: Markets for privacy

One motivating application for wanting personalized privacy guarantees come from algo-

rithmic game theory and the study of market design for privacy. This is a well-studied

problem in the algorithmic economics community [166, 168, 169, 170, 171, 165, 172, 167,

173, 174, 175], and of practical importance as growing amounts of data are collected about

individuals. In a market for privacy, a data analyst wishes to purchase and aggregate data

from multiple strategic individuals. These individuals may have privacy concerns, and will

require compensation for their privacy loss from sharing data. On the opposite side of the

market, firms demand accurate estimates of population statistics, for uses such as market

research or operational decision making.

The analyst must first purchase data from these strategic individuals, and then aggregate

the collected data into an accurate estimate for firms. Her goal is to perform this task

while maximizing her own profits. One of the tools at her disposal is differential privacy:

by offering individuals formal privacy guarantees, their privacy costs from sharing data

are diminished, and the analyst can provide smaller payments. However, the noise from

differential privacy may introduce additional error.

It is the analyst’s task to determine the optimal privacy level for the market that balances

these opposing effects. Due to potentially heterogeneous privacy costs of the individuals, it

may be optimal in terms of her profit for the analyst to provide different privacy guarantees

to different individuals in the population. She could then use our Sensitivity-Preprocessing

Function to algorithmically provide the heterogeneous privacy levels demanded by the

market. We leave the challenge of modeling specifics of these markets as an open question

to the algorithmic game theory community, and hope our preprocessing tool and mechanisms

for personalized privacy will open new avenues for designing markets for privacy.

301

4.8 Extension to 2-dimensions for `1 sensitivity

In this section we show that our Sensitivity-Preprocessing Function can be naturally extended

to functions that map to 2-dimensional space where we consider the sensitivity in the

`1 distance metric. While there is a natural extension of our Sensitivity-Preprocessing

Function to higher dimensions, the primary difficulty will be ensuring that our greedy

construction still yields a non-empty intersection of the constraints. Interestingly, we show

that this set of constraints will give a non-empty intersection for 2 dimensions, and provide

a counter-example for higher dimensions.

Recall that our Sensitivity-Preprocessing Function found a range [LOWER(D),UPPER(D)]

where it could feasibly place g(D), then choose the point in that segment closest to

f(D). This range of feasible points came from intersecting each constraint [g(D − xi)−

∆i, g(D− xi) + ∆i] induced by the neighbors of D that are strictly smaller. The Sensitivity-

Preprocessing Function then chose the point in this intersection closest to f(D). The key

property needed by the algorithm was that this intersection was non-empty.

To prove this key property we took advantage of the data universe structure, which

immediately yielded the fact that for any xi, xj ∈ D we must have [g(D − xi)−∆i, g(D −

xi) + ∆i] ∩ [g(D − xj)−∆j, g(D − xj) + ∆j] 6= ∅. As a result, we had a finite set of line

segments whose intersection was pair-wise non-empty, which immediately implies that the

intersection of all line segments was non-empty. We note that [g(D−xi)−∆i, g(D−xi)+∆i]

is the `1 ball with radius ∆i around g(D − xi) in one dimension. For higher dimensions,

the constraints will now be the `1 ball with radius ∆i around g(D − xi) in d dimensions.

The structure of the data universe will still give that each of these `1 balls has a non-empty

pair-wise intersection. However, this only implies that the intersection of all these `1 balls is

non-empty if we are in 2 dimensions. We first formally define the notion of an `1 ball in

higher dimensions.

302

Definition 4.8.1 (`1 ball). The `1 ball around point x∗ ∈ Rd with radius ∆ is the set:

(x∗,∆)d1
def
= {x ∈ Rd| ‖x− x∗‖1 ≤ ∆}.

To ensure that our choice of g(D) does not violate the individual sensitivity parameter

∆i, we must place g(D) ∈ (g(D − xi),∆i)
d
1. In the one-dimensional case, we had the same

constraints, but they were simpler to handle because the `1 ball is simply a line segment.

We now define our Sensitivity-Preprocessing Function for two dimensions, which chooses

the point that satisfies our constraints and is closest to f(D), just as in the one-dimensional

case.

Definition 4.8.2 (2-dimensional Sensitivity-Preprocessing Function). Given a function

f : D → R2 for any data universe such that for any D ∈ D, all D′ ⊂ D are also in D. For

any non-negative individual sensitivity parameters {∆i}, we say that a function g : D → R2

is a Sensitivity-Preprocessing Function of f with parameters {∆i} if g(∅) = f(∅) and

g(D) = closest point in ∩xi∈D (g(D − xi),∆i)
2
1 to f(D) in the `2 metric.

If all ∆i = ∆ for some non-negative ∆, then we say that g is a Sensitivity-Preprocessing

Function of f with parameter ∆.

Our primary goal of this section will then be to prove the following theorem that is

equivalent to Theorem 4.3.3 but works for 2-dimensions. We will also point out the key spot

within the proof where it breaks for dimensions greater than 2.

Theorem 4.8.3. Given T (n)-time query access to an arbitrary f : D → R2, and sensitivity

parameters {∆i}, we provide O((T (n) + n)2n) time access to Sensitivity-Preprocessing

Function g : D → R2 such that ∆i(g) ≤ ∆i. Further, for any database D = (x1, . . . , xn),

‖f(D)− g(D)‖1 ≤ max
σ∈σD

|D|∑
i=1

max{
∥∥f(Dσ(<i) + xσ(i))− f(Dσ(<i))

∥∥
1
−∆σ(i), 0},

303

where σD is the set of all permutations on [n], and Dσ(<i) = (xσ(1), ..., xσ(i−1)) is the subset

of D that includes all individual data in the permutation before the ith entry.

As before, we will break the proof of this theorem into two parts. It immediately follows

from construction that our 2-dimensional Sensitivity-Preprocessing Function will have the

appropriate individual sensitivity parameters, but only if the function is well-defined. To this

end, we first show in Section 4.8.1 that the intersection of the `1 balls is always non-empty

if each pair-wise intersection is non-empty. Then in Section 4.8.2 we give the analogous

error guarantees where the proof will just follow equivalently to the one-dimensional case.

4.8.1 Correctness of Sensitivity-Preprocessing Function

In this section we show that for our 2-dimensional Sensitivity-Preprocessing Function, it is

always the case that g(D) is defined. This is equivalent to showing:

⋂
xi∈D

(g(D − xi),∆i)
2
1 6= ∅.

We will first take advantage of the structure of data universes to show that the pair-wise

intersection is always non-empty. Then we will use the fact that pair-wise intersection of `1

balls in 2-dimensions implies that the intersection of all `1 balls is non-empty. Intuitively,

this is because `1 balls in 2-dimensions are simply rotated squares. Further, we will show

that this is exactly the step that breaks the algorithm for higher dimensions.

Lemma 4.8.4. Given any f : D → R2 and desired sensitivity parameters {∆i}, let

g : D → R2 be the Sensitivity-Preprocessing Function with parameters {∆i}. For any

D ∈ D with at least two entries, assume that g(D′) is defined for any D′ ⊂ D. Then for

any xi, xj ∈ D,

(g(D − xi),∆i)
2
1 ∩ (g(D − xj),∆j)

2
1 6= ∅.

Note that we have not yet proven that g(D) is defined on all databases, so we will need

to first assume that it is on all subsets of D. Our proof of this fact will be done inductively.

304

Proof. We use the fact that D has at least two entries and consider the database D−xi−xj .

Due to our assumption that g(D′) is defined on all D′ ⊂ D, it follows from our construction

of g that

‖g(D − xi)− g(D − xi − xj)‖1 ≤ ∆j,

and

‖g(D − xj)− g(D − xi − xj)‖1 ≤ ∆i,

Applying triangle inequality gives,

‖g(D − xi)− g(D − xj)‖1 ≤ ∆i + ∆j,

which implies our claim by the definition of `1 balls.

With this pair-wise intersection property, it now remains to be shown that this implies

the intersection of all `1 balls is non-empty. For this we prove a general fact about the

intersection of `1 balls in 2-dimensions.

Lemma 4.8.5. Consider any set of points y1, ..., yn ∈ R2, where we let (yi)1 and (yi)2

denote the respective coordinates of yi. Consider any set of non-negative ∆1, ...,∆n. If for

any yi, yj ,

(yi,∆i)
2
1 ∩ (yj,∆j)

2
1 6= ∅,

then,
n⋂
i=1

(yi,∆i)
2
1 6= ∅.

Our proof will first rewrite each `1 ball as a set of 4 linear inequalities. From this

interpretation we will then use two critical facts. First, each inequality has a corresponding

parallel inequality in any other `1 ball. Second, removing any one of these constraints gives

an unbounded polytope.

305

Proof. Further examination of Definition 4.8.1 shows that

(yi,∆i)
2
1

def
= {x ∈ R2| ‖x− yi‖1 ≤ ∆i} = {x ∈ R2| |(x)1 − (yi)1|+ |(x)2 − (yi)2| ≤ ∆i}.

We then use a known trick of converting absolute values into linear inequalities where

|x| ≤ k becomes x ≤ k and −x ≤ k.

(yi,∆i)
2
1 ={x ∈ R2|(x)1 + (x)2 ≤ (yi)1 + (yi)2 + ∆i}

∩ {x ∈ R2| − (x)1 − (x)2 ≤ −(yi)1 − (yi)2 + ∆i}

∩ {x ∈ R2|(x)1 − (x)2 ≤ (yi)1 − (yi)2 + ∆i}

∩ {x ∈ R2| − (x)1 + (x)2 ≤ −(yi)1 + (yi)2 + ∆i}

At this point we note that each of the balls have parallel inequalities, so we can use the

following fact:

{x ∈ R2|(x)1 + (x)2 ≤ (yi)1 + (yi)2 + ∆i}∩{x ∈ R2|(x)1 + (x)2 ≤ (yj)1 + (yj)2 + ∆j}

=
{
x ∈ R2|(x)1 + (x)2 ≤ min{(yi)1 + (yi)2 + ∆i, (yj)1 + (yj)2 + ∆j}

}
.

We apply this fact to the full intersection and obtain,

n⋂
i=1

(yi,∆i)
2
1 ={x ∈ R2|(x)1 + (x)2 ≤ min

i∈[n]
{(yi)1 + (yi)2 + ∆i}}

∩ {x ∈ R2| − (x)1 − (x)2 ≤ min
i∈[n]
{−(yi)1 − (yi)2 + ∆i}}

∩ {x ∈ R2|(x)1 − (x)2 ≤ min
i∈[n]
{(yi)1 − (yi)2 + ∆i}}

∩ {x ∈ R2| − (x)1 + (x)2 ≤ min
i∈[n]
{−(yi)1 + (yi)2 + ∆i}}.

Intuitively, if this intersection exists, it must be a rectangle that is rotated 45 degrees. To

306

more easily see this fact, we now multiply the second and fourth constraint by -1.

n⋂
i=1

(yi,∆i)
2
1 ={x ∈ R2|(x)1 + (x)2 ≤ min

i∈[n]
{(yi)1 + (yi)2 + ∆i}}

∩ {x ∈ R2|(x)1 + (x)2 ≥ min
i∈[n]
{(yi)1 + (yi)2 −∆i}}

∩ {x ∈ R2|(x)1 − (x)2 ≤ min
i∈[n]
{(yi)1 − (yi)2 + ∆i}}

∩ {x ∈ R2|(x)1 − (x)2 ≥ min
i∈[n]
{(yi)1 − (yi)2 −∆i}}

With this interpretation it is straightforward to see that
⋂n
i=1(yi,∆i)

2
1 = ∅ if and only if

min
i∈[n]
{(yi)1 + (yi)2 + ∆i} < min

i∈[n]
{(yi)1 + (yi)2 −∆i},

or

min
i∈[n]
{(yi)1 − (yi)2 + ∆i} < min

i∈[n]
{(yi)1 − (yi)2 −∆i}.

Let k be the index that minimizes (yi)1 + (yi)2 + ∆i and let l be the index that minimizes

(yi)1 + (yi)2 −∆i. If

(yk)1 + (yk)2 + ∆k < (yl)1 + (yl)2 −∆l,

then we must have,

∆k + ∆l < (yl)1 − (yk)1 + (yl)2 − (yk)2 ≤ |(yl)1 − (yk)1|+ |(yl)2 − (yk)2| ,

which contradicts our assumption that (yk,∆k)
2
1 ∩ (yl,∆l)

2
1 6= ∅. This follows identically

for the second inequality, so therefore neither of them can hold and the intersection must be

non-empty.

We now remark that Theorem 4.8.3 cannot be extended to higher dimensions or to `p

norms.

307

Remark 4.8.6. For extending to dimensions greater than two, the proof breaks down at

Lemma 4.8.5. Intuitively, we can still interpret each `1 ball as a set of linear inequalities,

however it no longer has the critical property that removing one of the constraints creates

an unbounded polytope. More specifically, consider the following counter-example for 3

dimensions:

Let A = {(1, 1,−1), (1,−1, 1), (−1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)} and

set ∆ = 3. It is not difficult to see that taking the intersection of ∆-radius `1 balls around

each point in A will only contain the origin (0, 0, 0). We then consider adding the point

(3/2, 3/2, 3/2), and it is straightforward to verify that the `1 distance between this point and

any point in A is at most 11/2 < 2∆. However, the origin is not within the `1 ball around

(3/2, 3/2, 3/2). Therefore, if we consider the set of `1 balls of radius ∆ around the points in

A ∪ (3/2, 3/2, 3/2), then each pair of `1 balls will intersect, but the full intersection will be

empty, giving our counter-example.

Remark 4.8.7. Even in 2-dimensions, we cannot have Lemma 4.8.5 for the `p ball with

p ∈ (1,∞) due to the curvature of each ball. For instance, consider the `2 ball with radius 1

for the points (−1, 0), (1, 0), (0,
√

3). Each of pair of these points is exactly distance 2 apart

in the `2 metric, so their `2 balls of radius 1 each pairwise intersect. However it is easy to

see that the intersection of all three is empty.

We can similarly extend this counter-example to other `p balls using the fact that there

must be some curvature of the `p ball, and the midpoint between any two points in the `p

metric is unique if p ∈ (1,∞).

With these lemmas, we are now able to show that our 2-dimensional Sensitivity-

Preprocessing Function must always be defined.

Lemma 4.8.8. Given any f : D → R2 with sensitivity parameters {∆i}, let g : D → R2 be

308

the Sensitivity-Preprocessing Function with parameters {∆i}. Then for any D ∈ D,

⋂
xi∈D

(g(D − xi),∆i)
2
1 6= ∅.

Proof. We will prove this fact inductively, and note that it is immediately true when D only

has one entry.

We then consider an arbitrary database D and assume that it is true for all D′ ⊂ D.

With this inductive claim we can apply Lemma 4.8.4 to get that all of the `1 balls have

non-empty pairwise intersection. Our desired result then immediately follows from applying

Lemma 4.8.5.

4.8.2 Error bounds for the 2-dimensional extension

The following lemma gives the desired error bounds on the 2-dimensional Sensitivity-

Preprocessing Function.

Lemma 4.8.9. Given any f : D → R2 and desired sensitivity parameters {∆i}, let

g : D → R2 be the Sensitivity-Preprocessing Function with parameters {∆i}. Then for any

D ∈ D,

‖f(D)− g(D)‖1 ≤ max
σ∈σD

|D|∑
i=1

max{
∥∥f(Dσ(<i) + xσ(i))− f(Dσ(<i))

∥∥
1
−∆σ(i), 0},

where σD is the set of all permutations of the set [n], and let Dσ(<i) = (xσ(1), ..., xσ(i−1)) be

the subset of D that includes all individual data in the permutation before the ith entry.

The proof of Lemma 4.8.9 follows identically to the proof of Lemma 4.3.6 where by

replacing any instance of absolute value with the 1-norm.

We are finally ready to complete the proof of our main theorem for two dimensions.

Proof of Theorem 4.8.3. The individual sensitivity guarantees follow from the construction

of g and Lemma 4.8.8. The error bounds are given by Lemma 4.8.9. It then remains to

309

prove the running time. For each subset of D we need to query f which takes T (n) time

by assumption. We note that within the proof of Lemma 4.8.5 we gave a construction for

obtaining the intersection of n different `1 balls which could clearly be done in O(n) time.

Finding the closest point to f(D) then takes O(1) time for the polytope defined by four

inequalities. Therefore, the running time is T (n) +O(n) for each of the 2n subsets, which

implies the desired running time.

4.9 Future Directions

We are especially interested in efficiently implementing our framework for more complicated

and, in particular, higher-dimensional functions such as linear regression. We believe

that leveraging the simple recursive construction of our algorithm along with non-trivial

structural properties of these more difficult functions can allow for efficient and accurate

implementation. We are particularly optimistic because all of our proofs in this work were

from first principles, suggesting that we may be able to obtain further results from this

framework by using more sophisticated tools.

While our construction did not generalize to any dimension under the `1 sensitivity

metric, we note that this was in the most general setting. If the class of functions we

consider is significantly restricted, then we believe the natural extension could both work

and be efficiently implementable. Furthermore, we have not yet investigated variants of our

algorithm that might work better under stronger assumptions or combining our construction

with other frameworks for handling worst-case sensitivity.

We also believe that our construction opens up several intriguing directions with respect

to personalized differential privacy and its application in markets for privacy. Our construc-

tion allows for tailoring individual sensitivity, but this presents a natural trade-off between

choosing small individual sensitivity parameters and the error incurred by our preprocessing

step. For specific functions, this may yield interesting optimization problems that can also

be considered in the context of markets for privacy.

310

4.10 Omitted Proofs

In this appendix we provide proofs that were omitted from Sections 4.5 and 4.6.

4.10.1 Proof of Lemma 4.5.12

Proof of Lemma 4.5.12. We start by decomposing the RHS:

1

n

n∑
i=k

|xi − µD| =
1

n

n∑
i=k

∣∣∣∣xi − x1 + · · ·+ xn
n

∣∣∣∣ =
1

n2

n∑
i=k

∣∣∣∣∣
n∑
j=1

(xi − xj)

∣∣∣∣∣ .
It now suffices to show,

n∑
i=k

i∑
j=1

1

3
|xi − xj| ≤

n∑
i=k

∣∣∣∣∣
n∑
j=1

(xi − xj)

∣∣∣∣∣ .
We further examine the RHS and use our assumption that x1 ≤ · · · ≤ xn, which implies

that for each i,

∣∣∣∣∣
n∑
j=1

(xi − xj)

∣∣∣∣∣ = max{
i∑

j=1

|xi − xj| −
n∑
j=i

|xi − xj| ,
n∑
j=i

|xi − xj| −
i∑

j=1

|xi − xj|}.

The idea will then be that because we have an ordering on x1, ..., xn, there will be a

transition index. In particular, there is some l ∈ [n− 1] such that

∣∣∣∣∣
n∑
j=1

(xi − xj)

∣∣∣∣∣ =
i∑

j=1

|xi − xj| −
n∑
j=i

|xi − xj|

for all i > l, and ∣∣∣∣∣
n∑
j=1

(xi − xj)

∣∣∣∣∣ =
n∑
j=i

|xi − xj| −
i∑

j=1

|xi − xj|

for all i ≤ l. If we then have l ≤ k, then,

n∑
i=k

∣∣∣∣∣
n∑
j=1

(xi − xj)

∣∣∣∣∣ =
n∑
i=k

(
i∑

j=1

|xi − xj| −
n∑
j=i

|xi − xj|

)
.

311

By cancellation, we get,

n∑
i=k

∣∣∣∣∣
n∑
j=1

(xi − xj)

∣∣∣∣∣ =
n∑
i=k

k∑
j=1

|xi − xj| .

Applying Fact 4.10.1 gives,

2
n∑
i=k

k∑
j=1

|xi − xj| ≥
n∑
i=k

n∑
j=1

|xi − xj| ≥
n∑
i=k

i∑
j=1

|xi − xj| ,

as desired. If l > k, then,

n∑
i=k

∣∣∣∣∣
n∑
j=1

(xi − xj)

∣∣∣∣∣ =

l∑
i=k

(
n∑
j=i

|xi − xj| −
i∑

j=1

|xi − xj|

)
+

n∑
i=l+1

(
i∑

j=1

|xi − xj| −
n∑
j=i

|xi − xj|

)
.

We will simply lower bound the first term in the sum by 0, and note that Fact 4.10.1 (stated

below) implies,
l∑

i=k

n∑
j=l

|xi − xj| ≥
l∑

i=k

i∑
j=1

|xi − xj| .

Furthermore, by cancellation, we get,

n∑
i=k

∣∣∣∣∣
n∑
j=1

(xi − xj)

∣∣∣∣∣ ≥
n∑

i=l+1

l+1∑
j=1

|xi − xj| .

We then use the fact that,

n∑
i=l+1

l+1∑
j=1

|xi − xj| ≥
l∑

i=k

i∑
j=1

|xi − xj| ,

and
n∑

i=l+1

l+1∑
j=1

|xi − xj| ≥
n∑

i=l+1

i∑
j=l

|xi − x+ j| ,

312

from Fact 4.10.1, to obtain:

3
n∑

i=l+1

l+1∑
j=1

|xi − xj| ≥
n∑
i=k

i∑
j=1

|xi − xj| ,

as desired.

Fact 4.10.1. For any ordered values x1 ≤ · · · ≤ xn, and any k ∈ [n− 1] such that,

k∑
j=1

|xk − xj| ≤
n∑

j=k+1

|xk − xj| ,

then for any i ≤ k, we must have,

k∑
j=1

|xi − xj| ≤
n∑

j=k+1

|xi − xj| .

Proof. This follows from the fact that x1 ≤ · · · ≤ xk, so
∑k

j=1 |xi − xj| ≤
∑k

j=1 |xk − xj|

and
∑n

j=k+1 |xk − xj| ≤
∑n

j=k+1 |xi − xj|.

4.10.2 Omitted proofs from Section 4.6

In this section we prove some important facts about variance that were necessary for

obtaining an efficient algorithm for variance. We first show the intuitive fact that if we want

to decrease the variance most, we should remove the maximum or minimum value.

Proof of Fact 4.6.2. It suffices to show that Var [D − x1] ≤ Var [D − xi] if xi ≤ µ(D) and

that Var [D − xn] ≤ Var [D − xi] if xi ≥ µ(D). We will show the first, and the second

follows equivalently.

We again use the definition of variance stated as,

Var [x1, ..., xn] =
1

n2

n∑
i=1

n∑
j>i

(xi − xj)2 ,

313

and by cancellation we see that showing Var [D − x1] ≤ Var [D − xi] is equivalent to,

1

n2

∑
j 6=1

(xi − xj)2 ≤ 1

n2

∑
j 6=i

(x1 − xj)2,

which is also equivalent to showing,

∑
j 6=1,i

(xi − xj)2 ≤
∑
j 6=1,i

(x1 − xj)2.

The proof then follows from the fact that this is a sum of least squares minimization for the

vector x2, ..., xi−1, xi+1, ..., xn, where we know that x1 ≤ xi and µ(D − x1 − xi) ≥ µ(D)

because x1, xi ≤ µ(D).

We now prove Fact 4.6.3 using the simple helper fact that if we add a data point and

want to minimize the variance, then the added data point should the mean of the remaining

points.

Fact 4.10.2. Given any set x1, ..., xn ∈ R with mean µ, then

arg min
y

Var [y, x1, ..., xn] = µ.

Proof. By definition,

Var [x1, ..., xn] =
1

n2

n∑
i=1

n∑
j>i

(xi − xj)2 .

The problem we are considering fixes x1, ..., xn and minimizes the variable y, so each term

in the summation that does not include y can be ignored, and our minimization problem

then reduces to,

arg min
y

Var [y, x1, ..., xn] = arg min
y

n∑
i=1

(y − xi)2,

314

which is minimized when y = µ.

We use this fact to lower bound the variance from adding one additional variable, and

complete our proof of Fact 4.6.3.

Proof of Fact 4.6.3. We first upper bound the variance of all variables:

min
y

Var [x1, ..., xn−1, y] ≤ Var [x1, ..., xn] .

Fact 4.10.2 implies that,

min
y

Var [x1, ..., xn−1, y] = Var
[
x1, ..., xn−1, µ[1:n−1]

]
,

where µ[1:n−1] is the mean of x1, ..., xn−1. We then apply the definition of variance to get,

Var
[
x1, ..., xn−1, µ[1:n−1]

]
=

1

n

n−1∑
i=1

(xi − µ[1:n−1])
2.

Together, this implies that,

min
y

Var [x1, ..., xn−1, y] =
n− 1

n
Var [x1, ..., xn−1] ,

which gives our desired result.

Finally, we also needed the following fact to reduce our running time to O(n2) for

implementation of variance.

Proof of Fact 4.6.7. We utilize the definition of variance as,

Var [x1, ..., xn] =
1

n2

n∑
i=1

n∑
j=1

1

2
(xi − xj)2 .

315

After cancellation from the scalars we have,

(
n− 1

n

)2

Var [D − xa] +

(
n− 1

n

)2

Var [D − xb]−
(
n− 2

n

)2

Var [D − xa − xb]

+
1

n2
(xa − xb)2

=
1

n2

∑
i 6=a

∑
j 6=a

1

2
(xi − xj)2 +

1

n2

∑
i 6=b

∑
j 6=b

1

2
(xi − xj)2 − 1

n2

∑
i 6=a,b

∑
j 6=a,b

1

2
(xi − xj)2

+
1

n2
(xa − xb)2.

Separating out within the summation gives,

1

n2

∑
i 6=a,b

∑
j 6=a,b

1

2
(xi − xj)2 +

1

n2

∑
i 6=a

(xb − xi)2 +
1

n2

∑
i 6=b

(xa − xi)2 +
1

n2
(xa − xb)2,

which is equivalent to Var [D] as desired.

316

REFERENCES

[1] I. Abraham, D. Durfee, I. Koutis, S. Krinninger, and R. Peng, “On fully dynamic
graph sparsifiers,” in Proceedings of the 57th annual Symposium on Foundations of
Computer Science, FOCS 2016, Available at https://arxiv.org/pdf/1604.02094v1.pdf,
2016.

[2] A. Andoni, A. Gupta, and R. Krauthgamer, “Towards (1+ ε)-approximate flow
sparsifiers,” in Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, Available at http://arxiv.org/abs/1310.3252, SIAM, 2014,
pp. 279–293.

[3] D. Durfee, J. Peebles, R. Peng, and A. B. Rao, “Determinant-preserving sparsifica-
tion of sddm matrices with applications to counting and sampling spanning trees,” in
2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS),
2017, pp. 926–937.

[4] S. Janson, “The numbers of spanning trees, hamilton cycles and perfect matchings
in a random graph,” Combinatorics, Probability and Computing, vol. 3, no. 01,
pp. 97–126, 1994.

[5] X. Chen, D. Durfee, and A. Orfanou, “On the complexity of nash equilibria in
anonymous games,” in Proceedings of the Forty-seventh Annual ACM Symposium
on Theory of Computing, ser. STOC ’15, Portland, Oregon, USA: ACM, 2015,
pp. 381–390, ISBN: 978-1-4503-3536-2.

[6] C. Daskalakis and C. Papadimitriou, “Computing equilibria in anonymous games,”
in Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer
Science, ser. FOCS ’07, Washington, DC, USA: IEEE Computer Society, 2007,
pp. 83–93, ISBN: 0-7695-3010-9.

[7] C. Daskalakis and C. H. Papadimitriou, “Discretized multinomial distributions and
nash equilibria in anonymous games,” in Proceedings of the 2008 49th Annual IEEE
Symposium on Foundations of Computer Science, ser. FOCS ’08, Washington, DC,
USA: IEEE Computer Society, 2008, pp. 25–34, ISBN: 978-0-7695-3436-7.

[8] C. Daskalakis, “An efficient ptas for two-strategy anonymous games,” in Proceed-
ings of the 4th International Workshop on Internet and Network Economics, ser.
WINE ’08, Shanghai, China: Springer-Verlag, 2008, pp. 186–197, ISBN: 978-3-540-
92184-4.

317

[9] C. Daskalakis and C. H. Papadimitriou, “On oblivious ptas’s for nash equilibrium,” in
Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing, ser.
STOC ’09, Bethesda, MD, USA: ACM, 2009, pp. 75–84, ISBN: 978-1-60558-506-2.

[10] R. Cummings and D. Durfee, “Individual sensitivity preprocessing for data privacy,”
vol. abs/1804.08645, 2018.

[11] K. Nissim, S. Raskhodnikova, and A. Smith, “Smooth sensitivity and sampling
in private data analysis,” in Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, ser. STOC ’07, 2007, pp. 75–84.

[12] C. Dwork and J. Lei, “Differential privacy and robust statistics,” in Proceedings of
the 41st ACM Symposium on Theory of Computing, ser. STOC ’09, 2009.

[13] S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova, and A. Smith, “Analyzing
graphs with node differential privacy,” in Theory of Cryptography, ser. TCC ’13,
2013, pp. 457–476.

[14] J. Blocki, A. Blum, A. Datta, and O. Sheffet, “Differentially private data analysis of
social networks via restricted sensitivity,” in Proceedings of the 4th Conference on
Innovations in Theoretical Computer Science, ser. ITCS ’13, 2013, pp. 87–96.

[15] S. Raskhodnikova and A. D. Smith, “Efficient lipschitz extensions for high-dimensional
graph statistics and node private degree distributions,” in Proceedings of the 57th
Annual IEEE Symposium on Foundations of Computer Science, ser. FOCS ’16, 2016,
pp. 495–504.

[16] D. A. Spielman and S.-H. Teng, “A local clustering algorithm for massive graphs and
its application to nearly linear time graph partitioning,” SIAM Journal on Computing,
vol. 42, no. 1, pp. 1–26, 2013.

[17] C. Borgs, M. Brautbar, J. Chayes, and S.-H. Teng, “A sublinear time algorithm for
PageRank computations,” in Algorithms and Models for the Web Graph, Springer,
2012, pp. 41–53.

[18] R. Andersen, F. Chung, and K. Lang, “Local graph partitioning using PageRank
vectors,” in Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science, ser. FOCS ’06, Washington, DC, USA: IEEE Computer Society,
2006, pp. 475–486, ISBN: 0-7695-2720-5.

[19] R. Andersen and Y. Peres, “Finding sparse cuts locally using evolving sets,” in
Proceedings of the 41st annual ACM symposium on Theory of computing, ser. STOC
’09, Bethesda, MD, USA: ACM, 2009, pp. 235–244, ISBN: 978-1-60558-506-2.

318

[20] L. Orecchia and N. K. Vishnoi, “Towards an SDP-based approach to spectral
methods: A nearly-linear-time algorithm for graph partitioning and decomposition,”
in Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, ser. SODA ’11, San Francisco, California: SIAM, 2011, pp. 532–545.

[21] S. O. Gharan and L. Trevisan, “Approximating the expansion profile and almost
optimal local graph clustering,” in Foundations of Computer Science (FOCS), 2012
IEEE 53rd Annual Symposium on, IEEE, 2012, pp. 187–196.

[22] M. R. Henzinger and V. King, “Randomized fully dynamic graph algorithms with
polylogarithmic time per operation,” Journal of the ACM, vol. 46, no. 4, pp. 502–516,
1999, Announced at STOC’95.

[23] J. Holm, K. Lichtenberg, and M. Thorup, “Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-
nectivity,” Journal of the ACM, vol. 48, no. 4, pp. 723–760, 2001, Announced at
STOC’98.

[24] B. M. Kapron, V. King, and B. Mountjoy, “Dynamic graph connectivity in poly-
logarithmic worst case time,” in Symposium on Discrete Algorithms (SODA), 2013,
pp. 1131–1142.

[25] K. Onak and R. Rubinfeld, “Maintaining a large matching and a small vertex cover,”
in Symposium on Theory of Computing (STOC), 2010, pp. 457–464.

[26] O. Neiman and S. Solomon, “Simple deterministic algorithms for fully dynamic
maximal matching,” in Symposium on Theory of Computing (STOC), 2013, pp. 745–
754.

[27] S. Baswana, M. Gupta, and S. Sen, “Fully dynamic maximal matching in O(log n
update time,” SIAM Journal on Computing, vol. 44, no. 1, pp. 88–113, 2015, An-
nounced at FOCS’11.

[28] S. Bhattacharya, M. Henzinger, and G. F. Italiano, “Deterministic fully dynamic data
structures for vertex cover and matching,” in Symposium on Discrete Algorithms
(SODA), 2015, pp. 785–804.

[29] S. Baswana, S. Khurana, and S. Sarkar, “Fully dynamic randomized algorithms for
graph spanners,” ACM Transactions on Algorithms, vol. 8, no. 4, 35:1–35:51, 2012,
Announced at ESA’06 and SODA’08.

[30] M. Patrascu, “Towards polynomial lower bounds for dynamic problems,” in Sympo-
sium on Theory of Computing (STOC), 2010, pp. 603–610.

319

[31] A. Abboud and V. Vassilevska Williams, “Popular conjectures imply strong lower
bounds for dynamic problems,” in Symposium on Foundations of Computer Science
(FOCS), 2014, pp. 434–443.

[32] M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak, “Unifying and
strengthening hardness for dynamic problems via the online matrix-vector multipli-
cation conjecture,” in Symposium on Theory of Computing (STOC), 2015, pp. 21–
30.

[33] A. A. Benczúr and D. R. Karger, “Randomized approximation schemes for cuts and
flows in capacitated graphs,” SIAM Journal on Computing, vol. 44, no. 2, pp. 290–
319, 2015.

[34] D. Spielman and S. Teng, “Spectral sparsification of graphs,” SIAM Journal on
Computing, vol. 40, no. 4, pp. 981–1025, 2011, Announced at STOC’04. Available
at http://arxiv.org/abs/0808.4134.

[35] J. Batson, D. A. Spielman, N. Srivastava, and S.-H. Teng, “Spectral sparsification
of graphs: Theory and algorithms,” Communications of the ACM, vol. 56, no. 8,
pp. 87–94, Aug. 2013.

[36] A. Madry, “Fast approximation algorithms for cut-based problems in undirected
graphs,” in Foundations of Computer Science (FOCS), 2010 51st Annual IEEE
Symposium on, Available at http://arxiv.org/abs/1008.1975, IEEE, 2010, pp. 245–
254.

[37] J. Sherman, “Nearly maximum flows in nearly linear time,” in 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013,
Berkeley, CA, USA, Available at http://arxiv.org/abs/1304.2077, 2013, pp. 263–269.

[38] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford, “An almost-linear-time al-
gorithm for approximate max flow in undirected graphs, and its multicommodity
generalizations,” in Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014,
Available at http://arxiv.org/abs/1304.2338, 2014, pp. 217–226.

[39] R. Peng and D. A. Spielman, “An efficient parallel solver for SDD linear systems,”
in Proceedings of the 46th Annual ACM Symposium on Theory of Computing, ser.
STOC ’14, Available at http://arxiv.org/abs/1311.3286, New York, New York: ACM,
2014, pp. 333–342, ISBN: 978-1-4503-2710-7.

[40] D. A. Spielman and S.-H. Teng, “Nearly linear time algorithms for preconditioning
and solving symmetric, diagonally dominant linear systems,” SIAM Journal on
Matrix Analysis and Applications, vol. 35, no. 3, pp. 835–885, 2014, Available at
http://arxiv.org/abs/cs/0607105.

320

[41] R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva, and D. A. Spielman, “Sparsified cholesky
and multigrid solvers for connection laplacians,” in Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, ACM, 2016, pp. 842–850.

[42] R. Peng, “Approximate undirected maximum flows in O(m polylog n) time,” in
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, Available at
http://arxiv.org/abs/1411.7631, 2016, pp. 1862–1867.

[43] I. Koutis, “Simple parallel and distributed algorithms for spectral graph sparsifica-
tion,” in Symposium on Parallelism in Algorithms and Architectures (SPAA), 2014,
pp. 61–66.

[44] J. Sherman, “Breaking the multicommodity flow barrier forO(
√

log n)-approximations
to sparsest cut,” in Proceedings of the 2009 50th Annual IEEE Symposium on Founda-
tions of Computer Science, ser. FOCS ’09, Washington, DC, USA: IEEE Computer
Society, 2009, pp. 363–372, ISBN: 978-0-7695-3850-1.

[45] L. Orecchia, S. Sachdeva, and N. K. Vishnoi, “Approximating the exponential, the
Lanczos method and an Õ(m)-time spectral algorithm for balanced separator,” in
Proceedings of the 44th symposium on Theory of Computing, ser. STOC ’12, New
York, New York, USA: ACM, 2012, pp. 1141–1160, ISBN: 978-1-4503-1245-5.

[46] R. Kyng, A. Rao, S. Sachdeva, and D. A. Spielman, “Algorithms for Lipschitz
learning on graphs,” in Proceedings of The 28th Conference on Learning Theory,
2015, pp. 1190–1223.

[47] D. Cheng, Y. Cheng, Y. Liu, R. Peng, and S. Teng, “Efficient sampling for Gaussian
graphical models via spectral sparsification,” Proceedings of The 28th Conference
on Learning Theory, pp. 364–390, 2015.

[48] J. A. Kelner and A. Levin, “Spectral sparsification in the semi-streaming setting,”
Theory of Computing Systems, vol. 53, no. 2, pp. 243–262, 2013, Announced at
STACS’11.

[49] I. Koutis, A. Levin, and R. Peng, “Improved spectral sparsification and numerical
algorithms for SDD matrices,” in 29th International Symposium on Theoretical
Aspects of Computer Science (STACS 2012), C. Dürr and T. Wilke, Eds., ser. Leibniz
International Proceedings in Informatics (LIPIcs), vol. 14, Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2012, pp. 266–277, ISBN: 978-
3-939897-35-4.

[50] M. Kapralov, Y. T. Lee, C. Musco, C. Musco, and A. Sidford, “Single pass spectral
sparsification in dynamic streams,” in 55th IEEE Annual Symposium on Foundations

321

of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014,
available at: http://arxiv.org/abs/1407.1289, 2014, pp. 561–570.

[51] Z. A. Zhu, Z. Liao, and L. Orecchia, “Spectral sparsification and regret minimization
beyond matrix multiplicative updates,” in Symposium on Theory of Computing
(STOC), 2015, pp. 237–245.

[52] Y. T. Lee and H. Sun, “Constructing linear-sized spectral sparsification in almost-
linear time,” in Symposium on Foundations of Computer Science (FOCS), 2015,
pp. 250–269.

[53] G. Jindal and P. Kolev, “Faster spectral sparsification of Laplacian and SDDM
matrix polynomials,” CoRR, vol. abs/1507.07497, 2015.

[54] D. Peleg and S. Solomon, “Dynamic (1 + ε)-approximate matchings: A density-
sensitive approach,” in Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January
10-12, 2016, 2016, pp. 712–729.

[55] D. A. Spielman and N. Srivastava, “Graph sparsification by effective resistances,”
SIAM Journal on Computing, vol. 40, no. 6, pp. 1913–1926, 2011.

[56] M. Elkin, Y. Emek, D. A. Spielman, and S.-H. Teng, “Lower-stretch spanning trees,”
SIAM Journal on Computing, vol. 38, no. 2, pp. 608–628, 2008, Announced at
STOC’05. Available at https://www.cs.bgu.ac.il/˜elkinm/sicomp final.pdf.

[57] J. A. Tropp, “User-friendly tail bounds for sums of random matrices,” Found. Com-
put. Math., vol. 12, no. 4, pp. 389–434, Aug. 2012.

[58] M. K. de Carli Silva, N. J. A. Harvey, and C. M. Sato, “Sparse sums of positive
semidefinite matrices,” ACM Transactions on Algorithms, vol. 12, no. 1, p. 9, 2016.

[59] A. Zouzias, “A matrix hyperbolic cosine algorithm and applications,” in Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP), 2012,
pp. 846–858.

[60] K. J. Ahn, S. Guha, and A. McGregor, “Spectral sparsification in dynamic graph
streams,” in Workshop on Approximation Algorithms for Combinatorial Optimization
Problems (APPROX), 2013, pp. 1–10.

[61] M. Kapralov and D. P. Woodruff, “Spanners and sparsifiers in dynamic streams,” in
Symposium on Principles of Distributed Computing (PODC), 2014, pp. 272–281.

[62] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu, “A simple, combinatorial
algorithm for solving SDD systems in nearly-linear time,” in Proceedings of the

322

45th Annual Symposium on Theory of Computing, ser. STOC ’13, Available at
http://arxiv.org/abs/1301.6628, Palo Alto, California, USA: ACM, 2013, pp. 911–
920, ISBN: 978-1-4503-2029-0.

[63] Y. T. Lee and A. Sidford, “Efficient accelerated coordinate descent methods and
faster algorithms for solving linear systems,” in Proceedings of the 2013 IEEE
54th Annual Symposium on Foundations of Computer Science, ser. FOCS ’13,
Washington, DC, USA: IEEE Computer Society, 2013, pp. 147–156, ISBN: 978-0-
7695-5135-7.

[64] W. S. Fung, R. Hariharan, N. J. Harvey, and D. Panigrahi, “A general framework
for graph sparsification,” in Proceedings of the forty-third annual ACM symposium
on Theory of computing, https://arxiv.org/abs/1004.4080, ACM, 2011, pp. 71–80.

[65] K. J. Ahn and S. Guha, “Graph sparsification in the semi-streaming model,” in
International Colloquium on Automata, Languages, and Programming (ICALP),
2009, pp. 328–338.

[66] K. J. Ahn, S. Guha, and A. McGregor, “Analyzing graph structure via linear mea-
surements,” in Symposium on Discrete Algorithms (SODA), 2012, pp. 459–467.

[67] ——, “Graph sketches: Sparsification, spanners, and subgraphs,” in Symposium on
Principles of Database Systems (PODS), 2012, pp. 5–14.

[68] M. Gupta and R. Peng, “Fully dynamic (1 + ε)-approximate matchings,” in Sympo-
sium on Foundations of Computer Science (FOCS), 2013, pp. 548–557.

[69] A. Bernstein and C. Stein, “Faster fully dynamic matchings with small approxima-
tion ratios,” in Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SIAM, 2016, pp. 692–711.

[70] M. Thorup, “Fully-dynamic min-cut,” Combinatorica, vol. 27, no. 1, pp. 91–127,
2007, Announced at STOC’01.

[71] M. Thorup and D. R. Karger, “Dynamic graph algorithms with applications,” in
Scandinavian Workshop on Algorithm Theory (SWAT), 2000, pp. 1–9.

[72] D. R. Karger, “Minimum cuts in near-linear time,” Journal of the ACM, vol. 47, no.
1, pp. 46–76, Jan. 2000, Announced at STOC’96.

[73] D. Kogan and R. Krauthgamer, “Sketching cuts in graphs and hypergraphs,” in Pro-
ceedings of the 2015 Conference on Innovations in Theoretical Computer Science,
ACM, 2015, pp. 367–376.

323

[74] N. Harvey, Matrix concentration and sparsification, Workshop on “Randomized
Numerical Linear Algebra (RandNLA): Theory and Practice”, 2012.

[75] S. Even and Y. Shiloach, “An on-line edge-deletion problem,” Journal of the ACM,
vol. 28, no. 1, pp. 1–4, 1981.

[76] D. Gibb, B. M. Kapron, V. King, and N. Thorn, “Dynamic graph connectivity with
improved worst case update time and sublinear space,” CoRR, vol. abs/1509.06464,
2015.

[77] M. Gupta and A. Sharma, “An O(log(n)) fully dynamic algorithm for maximum
matching in a tree,” ArXiv preprint arXiv:0901.2900, 2009.

[78] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
Third Edition, 3rd. The MIT Press, 2009, ISBN: 0262033844, 9780262033848.

[79] J. Dabney, B. C. Dean, and S. T. Hedetniemi, “A linear-time algorithm for broadcast
domination in a tree,” Networks, vol. 53, no. 2, pp. 160–169, 2009, Available at
http://people.cs.clemson.edu/˜bcdean/bcast tree.ps.

[80] G. Kirchhoff, “Uber die auflosung der gliechungen, auf welche man bei der unter-
suchung der linearen vertheilung galvanischer strome gefuhrt wird,” in Poggendorgs
Ann. Phys. Chem., 1847, pp. 497–508.

[81] N. Goyal, L. Rademacher, and S. Vempala, “Expanders via random spanning trees,”
in Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, ser. SODA ’09, New York, New York: Society for Industrial and Applied
Mathematics, 2009, pp. 576–585.

[82] A. Asadpour, M. X. Goemans, A. Madry, S. O. Gharan, and A. Saberi, “An o(log n/
log log n)-approximation algorithm for the asymmetric traveling salesman problem,”
in Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete
Algorithms, ser. SODA ’10, Austin, Texas: Society for Industrial and Applied
Mathematics, 2010, pp. 379–389, ISBN: 978-0-898716-98-6.

[83] C. Boutsidis, P. Drineas, P. Kambadur, and A. Zouzias, “A randomized algorithm for
approximating the log determinant of a symmetric positive definite matrix,” CoRR,
vol. abs/1503.00374, 2015, Available at: http://arxiv.org/abs/1503.00374.

[84] T. Hunter, A. E. Alaoui, and A. M. Bayen, “Computing the log-determinant of sym-
metric, diagonally dominant matrices in near-linear time,” CoRR, vol. abs/1408.1693,
2014, Available at: http://arxiv.org/abs/1408.1693.

324

[85] I. Han, D. Malioutov, and J. Shin, “Large-scale log-determinant computation through
stochastic chebyshev expansions.,” in ICML, Available at: https://arxiv.org/abs/1606.00942,
2015, pp. 908–917.

[86] J. Kelner and A. Madry, “Faster generation of random spanning trees,” in Proceed-
ings of the 50th annual Symposium on Foundations of Computer Science, FOCS
2009, Available at https://arxiv.org/abs/0908.1448, 2009, pp. 13–21.

[87] A. Madry, D. Straszak, and J. Tarnawski, “Fast generation of random spanning
trees and the effective resistance metric,” in Proceedings of the Twenty-Sixth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, Available at
http://arxiv.org/pdf/1501.00267v1.pdf, 2015, pp. 2019–2036.

[88] D. Durfee, R. Kyng, J. Peebles, A. B. Rao, and S. Sachdeva, “Sampling random
spanning trees faster than matrix multiplication,” CoRR, vol. abs/1611.07451, 2016.

[89] M. B. Cohen and R. Peng, “`p row sampling by Lewis weights,” in Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, ser.
STOC ’15, Available at http://arxiv.org/abs/1412.0588, Portland, Oregon, USA:
ACM, 2015, pp. 183–192, ISBN: 978-1-4503-3536-2.

[90] M. B. Cohen, “Nearly tight oblivious subspace embeddings by trace inequalities,”
in Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SIAM, 2016, pp. 278–287.

[91] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig, “Sparsification—a
technique for speeding up dynamic graph algorithms,” J. ACM, vol. 44, no. 5,
pp. 669–696, Sep. 1997.

[92] A. A. Benczúr and D. R. Karger, “Approximating s-t minimum cuts in õ(n2) time,” in
Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
ser. STOC ’96, Philadelphia, Pennsylvania, USA: ACM, 1996, pp. 47–55, ISBN:
0-89791-785-5.

[93] D. A. Spielman and S.-H. Teng, “Spectral sparsification of graphs,” SIAM J. Comput.,
vol. 40, no. 4, pp. 981–1025, Jul. 2011.

[94] M. B. Cohen, J. A. Kelner, J. Peebles, R. Peng, A. Rao, A. Sidford, and A. Vladu,
“Almost-linear-time algorithms for markov chains and new spectral primitives for
directed graphs,” 2017, Accepted to STOC 2017. Preprint available at https:
//arxiv.org/abs/1611.00755.

[95] W. Baur and V. Strassen, “The complexity of partial derivatives,” Theoretical Com-
puter Science, vol. 22, no. 3, pp. 317 –330, 1983.

325

https://arxiv.org/abs/1611.00755
https://arxiv.org/abs/1611.00755

[96] I. C. F. Ipsen and D. J. Lee, Determinant approximations, 2011. eprint: arXiv:
1105.0437.

[97] T. Hunter, A. E. Alaoui, and A. M. Bayen, “Computing the log-determinant of sym-
metric, diagonally dominant matrices in near-linear time,” CoRR, vol. abs/1408.1693,
2014.

[98] C. Boutsidis, P. Drineas, P. Kambadur, and A. Zouzias, “A randomized algorithm for
approximating the log determinant of a symmetric positive definite matrix,” CoRR,
vol. abs/1503.00374, 2015.

[99] A. Broder, “Generating random spanning trees,” in Proceedings of the 30th annual
Symposium on Foundations of Computer Science, FOCS 1989, 1989, pp. 442–447.

[100] D. Aldous, “The random walk construction of uniform spanning trees and uniform
labelled trees,” in SIAM Journal on Discrete Mathematics, 1990, pp. 450–465.

[101] A. Guenoche, “Random spanning tree,” Journal of Algorithms, vol. 4, no. 3, pp. 214–
220, 1983.

[102] V. G. Kulkarni, “Generating random combinatorial objects,” Journal of Algorithms,
vol. 11, no. 2, pp. 185–207, 1990.

[103] C. J. Colbourn, W. J. Myrvold, and E. Neufeld, “Two algorithms for unranking
arborescences,” Journal of Algorithms, vol. 20, no. 2, pp. 268–281, 1996.

[104] N. J. A. Harvey and K. Xu, “Generating random spanning trees via fast matrix
multiplication,” in LATIN 2016: Theoretical Informatics, vol. 9644, 2016, pp. 522–
535.

[105] V. V. Williams, “Multiplying matrices faster than coppersmith-winograd,” in Pro-
ceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing, ser.
STOC ’12, New York, New York, USA: ACM, 2012, pp. 887–898, ISBN: 978-1-
4503-1245-5.

[106] A. Schild, “An almost-linear time algorithm for uniform random spanning tree
generation,” in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, ser. STOC 2018, Los Angeles, CA, USA: ACM, 2018, pp. 214–227,
ISBN: 978-1-4503-5559-9.

[107] N. K. Vishnoi, “Lx = b laplacian solvers and their algorithmic applications,” 2012.

[108] C. J. Colbourn, R. P. Day, and L. D. Nel, “Unranking and ranking spanning trees of
a graph,” Journal of Algorithms, vol. 10, no. 2, pp. 271–286, 1989.

326

arXiv:1105.0437
arXiv:1105.0437

[109] R. Burton and R. Pemantle, “Local characteristics, entropy and limit theorems
for spanning trees and domino tilings via transfer-impedances,” The Annals of
Probability, pp. 1329–1371, 1993.

[110] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press, 2012.

[111] G. Jindal, P. Kolev, R. Peng, and S. Sawlani, “Density independent algorithms for
sparsifying k-step random walks,” CoRR, vol. abs/1702.06110, 2017.

[112] D. D. Sleator and R. E. Tarjan, “Self-adjusting binary search trees,” Journal of the
ACM (JACM), vol. 32, no. 3, pp. 652–686, 1985.

[113] S. Alstrup, J. Holm, K. D. Lichtenberg, and M. Thorup, “Maintaining information
in fully dynamic trees with top trees,” Acm Transactions on Algorithms (talg), vol.
1, no. 2, pp. 243–264, 2005.

[114] J. Nash, “Equilibrium points in n-person games,” Proceedings of the National
Academy of Sciences, vol. 36, no. 1, pp. 48–49, 1950.

[115] ——, “Non-cooperative games,” Annals of Mathematics, vol. 54, no. 2, pp. 286–295,
1951.

[116] C. Holt and A. Roth, “The Nash equilibrium: A perspective,” Proceedings of the
National Academy of Sciences, vol. 101, no. 12, pp. 3999–4002, 2004.

[117] T. Abbott, D. Kane, and P. Valiant, “On the complexity of two-player win-lose
games,” in Proceedings of the 46th Annual IEEE Symposium on Foundations of
Computer Science, 2005, pp. 113–122.

[118] X. Chen, X. Deng, and S.-H. Teng, “Sparse games are hard,” in Proceedings of the
2nd Workshop on Internet and Network Economics, 2006, pp. 262–273.

[119] X. Chen, S.-H. Teng, and P. Valiant, “The approximation complexity of win-lose
games,” in Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms, 2007, pp. 159–168.

[120] C. Daskalakis, P. Goldberg, and C. Papadimitriou, “The complexity of computing a
Nash equilibrium,” SIAM Journal on Computing, vol. 39, no. 1, 2009.

[121] X. Chen, X. Deng, and S.-H. Teng, “Settling the complexity of computing two-player
Nash equilibria,” Journal of the ACM, vol. 56, no. 3, pp. 1–57, 2009.

[122] K. Etessami and M. Yannakakis, “On the complexity of Nash equilibria and other
fixed points,” SIAM Journal on Computing, vol. 39, no. 6, pp. 2531–2597, 2010.

327

[123] R. Mehta, “Constant rank bimatrix games are PPAD-hard,” in Proceedings of the
46th Annual ACM Symposium on Theory of Computing, 2014, pp. 545–554.

[124] R. Lipton, E. Markakis, and A. Mehta, “Playing large games using simple strategies,”
in Proceedings of the 4th ACM Conference on Electronic Commerce, 2004, pp. 36–
41.

[125] I. Bárány, S. Vempala, and A. Vetta, “Nash equilibria in random games,” in Pro-
ceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science,
2005, pp. 123–131.

[126] S. Kontogiannis, P. Panagopoulou, and P. Spirakis, “Polynomial algorithms for ap-
proximating Nash equilibria of bimatrix games,” in Proceedings of the 2nd Workshop
on Internet and Network Economics, 2006, pp. 286–296.

[127] C. Daskalakis, A. Mehta, and C. Papadimitriou, “A note on approximate Nash
equilibria,” in Proceedings of the 2nd Workshop on Internet and Network Economics,
2006, pp. 297–306.

[128] ——, “Progress in approximate Nash equilibria,” in Proceedings of the 8th ACM
Conference on Electronic Commerce, 2007, pp. 355–358.

[129] H. Bosse, J. Byrka, and E. Markakis, “New algorithms for approximate Nash
equilibria in bimatrix games,” in Proceedings of the 3rd International Workshop on
Internet and Network Economics, 2007, pp. 17–29.

[130] R. Kannan and T. Theobald, “Games of fixed rank: A hierarchy of bimatrix games,”
in Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms,
2007, pp. 1124–1132.

[131] H. Tsaknakis and P. Spirakis, “An optimization approach for approximate Nash
equilibria,” in Proceedings of the 3rd International Workshop on Internet and
Network Economics, 2007, pp. 42–56.

[132] T. Feder, H. Nazerzadeh, and A. Saberi, “Approximating Nash equilibria using
small-support strategies,” in Proceedings of the 8th ACM Conference on Electronic
Commerce, 2007, pp. 352–354.

[133] S. Kontogiannis and P. Spirakis, “Efficient algorithms for constant well supported
approximate equilibria in bimatrix games,” in Proceedings of the 34th International
Colloquium on the Automata, Languages and Programming, 2007, pp. 595–606.

[134] L. Addario-Berry, N. Olver, and A. Vetta, “A polynomial time algorithm for find-
ing Nash equilibria in planar win-lose games,” Journal of Graph Algorithms and
Applications, vol. 11, no. 1, pp. 309–319, 2007.

328

[135] H. Tsaknakis and P. Spirakis, “Practical and efficient approximations of Nash
equilibria for win-lose games based on graph spectra,” in Proceedings of the 6th
International Conference on Internet and Network Economics, 2010, pp. 378–390.

[136] D. Schmeidler, “Equilibrium points of nonatomic games,” Journal of Statistical
Physics, vol. 7, no. 4, pp. 295–300, 1973.

[137] I. Milchtaich, “Congestion games with player-specific payoff functions,” Games
and Economic Behavior, pp. 111–124, 1996.

[138] M. Blonski, “Anonymous games with binary actions,” Games and Economic Behav-
ior, pp. 171–180, 1999.

[139] ——, “The women of Cairo: Equilibria in large anonymous games,” Journal of
Mathematical Economics, pp. 254–263, 2005.

[140] E. Kalai, “Partially-specified large games,” Proceedings of the 1st International
Workshop on Internet and Network Economics, pp. 3–13, 2005.

[141] C. Papadimitriou and T. Roughgarden, “Computing correlated equilibria in multi-
player games,” Journal of the ACM, vol. 55, no. 3, pp. 1–29, 2008.

[142] A. Fabrikant, C. Papadimitriou, and K. Talwar, “The complexity of pure Nash
equilibria,” in Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, 2004, pp. 604–612.

[143] H. Ackermann, H. Röglin, and B. Vöcking, “On the impact of combinatorial struc-
ture on congestion games,” Journal of the ACM, vol. 55, pp. 1–22, 6 2008.

[144] A. Skopalik and B. Vöcking, “Inapproximability of pure Nash equilibria,” in Pro-
ceedings of the 40th Annual ACM Symposium on Theory of Computing, 2008,
pp. 355–364.

[145] C. Daskalakis and C. Papadimitriou, “Computing equilibria in anonymous games,”
in Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer
Science, 2007, pp. 83–93.

[146] C. Daskalakis, “An efficient PTAS for two-strategy anonymous games,” in Proceed-
ings of the 4th International Workshop on Internet and Network Economics, 2008,
pp. 186–197.

[147] C. Daskalakis and C. Papadimitriou, “Discretized multinomial distributions and
Nash equilibria in anonymous games,” in Proceedings of the 49th Annual IEEE
Symposium on Foundations of Computer Science, 2008, pp. 25–34.

329

[148] ——, “On oblivious PTAS’s for Nash equilibrium,” in Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, 2009, pp. 75–84.

[149] ——, “Approximate Nash equilibria in anonymous games,” Journal of Economic
Theory, 2014.

[150] S. Rashid, “Equilibrium points of nonatomic games: Asymptotic results,” Economics
Letters, vol. 12, pp. 7–10, 1983.

[151] J. Ely and W. Sandholm, “Evolution in Bayesian games I,” Theory of Games and
Economic Behavior, vol. 53, pp. 83–109, 2005.

[152] F. Brandt, F. Fischer, and M. Holzer, “Symmetries and the complexity of pure Nash
equilibrium,” Journal of Computer and System Sciences, vol. 75, no. 3, pp. 163–177,
2009.

[153] R. Rosenthal, “A class of games possessing pure-strategy Nash equilibria,” Interna-
tional Journal of Game Theory, vol. 2, no. 1, pp. 65–67, 1973.

[154] I. Caragiannis, A. Fanelli, N. Gravin, and A. Skopalik, “Efficient computation of
approximate pure Nash equilibria in congestion games,” in Proceedings of the 52nd
Annual IEEE Symposium on Foundations of Computer Science, 2011, pp. 532–541.

[155] ——, “Approximate pure Nash equilibria in weighted congestion games: Existence,
efficient computation, and structure,” in Proceedings of the 13th ACM Conference
on Electronic Commerce, 2012.

[156] S. Chien and A. Sinclair, “Convergence to approximate Nash equilibria in congestion
games,” Games and Economic Behavior, vol. 71, no. 2, pp. 315–327, 2011.

[157] Y. Azrieli and E. Shmaya, “Lipschitz games,” Mimeo, Ohio State University, 2011.

[158] Y. Babichenko, “Best-reply dynamics in large binary-choice anonymous games,”
Games and Economic Behavior, vol. 81, pp. 130–144, 2013.

[159] Y. Cai and C. Daskalakis, “On minmax theorems for multiplayer games,” in Pro-
ceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms, 2011, pp. 217–
234.

[160] X. Chen, D. Paparas, and M. Yannakakis, “The complexity of non-monotone mar-
kets,” in Proceedings of the 45th Annual ACM Symposium on Theory of Computing,
2013, pp. 181–190.

330

[161] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitiv-
ity in private data analysis,” in Proceedings of the 3rd Conference on Theory of
Cryptography, ser. TCC ’06, 2006, pp. 265–284.

[162] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” Foun-
dations and Trends in Theoretical Computer Science, vol. 9, no. 34, pp. 211–407,
2014.

[163] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse datasets,”
in Proceedings of the 2008 IEEE Symposium on Security and Privacy, ser. SP ’08,
2008, pp. 111–125.

[164] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, J. V.
Pearson, D. A. Stephan, S. F. Nelson, and D. W. Craig, “Resolving individuals
contributing trace amounts of DNA to highly complex mixtures using high-density
SNP genotyping microarrays,” PLOS Genetics, vol. 4, no. 8, pp. 1–9, Aug. 2008.

[165] A. Ghosh and A. Roth, “Selling privacy at auction,” Games and Economic Behavior,
vol. 91, pp. 334–346, 2015, Preliminary Version appeared in the Proceedings of the
12th ACM Conference on Electronic Commerce (EC 2011).

[166] Y. Chen, S. Chong, I. A. Kash, T. Moran, and S. Vadhan, “Truthful mechanisms for
agents that value privacy,” in Proceedings of the 14th ACM Conference on Electronic
Commerce, ser. EC ’13, 2013, pp. 215–232.

[167] R. Cummings, K. Ligett, A. Roth, Z. S. Wu, and J. Ziani, “Accuracy for sale:
Aggregating data with a variance constraint,” in Proceedings of the 2015 Conference
on Innovations in Theoretical Computer Science, ser. ITCS ’15, 2015, pp. 317–324.

[168] K. Nissim, C. Orlandi, and R. Smorodinsky, “Privacy-aware mechanism design,”
in Proceedings of the 13th ACM Conference on Electronic Commerce, ser. EC ’12,
ACM, 2012, pp. 774–789.

[169] K. Nissim, R. Smorodinsky, and M. Tennenholtz, “Approximately optimal mech-
anism design via differential privacy,” in Proceedings of the 2012 Conference on
Innovations in Theoretical Computer Science, ser. ITCS ’12, 2012, pp. 203–213.

[170] K. Ligett and A. Roth, “Take it or leave it: Running a survey when privacy comes at
a cost,” in Proceedings of the 8th International Conference on Internet and Network
Economics, ser. WINE ’12, 2012, pp. 378–391.

[171] L. Fleischer and Y.-H. Lyu, “Approximately optimal auctions for selling privacy
when costs are correlated with data,” in Proceedings of the 13th ACM Conference
on Electronic Commerce, ser. EC ’12, 2012, pp. 568–585.

331

[172] A. Ghosh, K. Ligett, A. Roth, and G. Schoenebeck, “Buying private data without
verification,” in Proceedings of the Fifteenth ACM Conference on Economics and
Computation, ser. EC ’14, 2014, pp. 931–948.

[173] R. Cummings, S. Ioannidis, and K. Ligett, “Truthful linear regression,” in Proceed-
ings of The 28th Conference on Learning Theory, ser. COLT ’15, 2015, pp. 448–
483.

[174] B. Waggoner, R. Frongillo, and J. Abernethy, “A market framework for eliciting
private data,” in Advances in Neural Information Processing Systems 29, ser. NIPS
’15, 2015, pp. 3492–3500.

[175] R. Cummings, D. M. Pennock, and J. Wortman Vaughan, “The possibilities and lim-
itations of private prediction markets,” in Proceedings of the 17th ACM Conference
on Economics and Computation, ser. EC ’16, 2016, pp. 143–160.

[176] Z. Jorgensen, T. Yu, and G. Cormode, “Conservative or liberal? Personalized differ-
ential privacy,” in Proceedings of the IEEE 31st International Conference on Data
Engineering, 2015, pp. 1023–1034.

[177] M. Alaggan, S. Gambs, and A.-M. Kermarrec, “Heterogeneous differential privacy,”
Journal of Privacy and Confidentiality, vol. 7, no. 6, pp. 127–158, 2017.

[178] H. Li, L. Xiong, Z. Ji, and X. Jiang, “Partitioning-based mechanisms under person-
alized differential privacy,” in Advances in Knowledge Discovery and Data Mining,
ser. PAKDD ’17, 2017, pp. 615–627.

[179] B. Avent, A. Korolova, D. Zeber, T. Hovden, and B. Livshits, “Blender: Enabling
local search with a hybrid differential privacy model,” in 26th USENIX Security
Symposium, ser. USENIX Security ’17, 2017, pp. 747–764.

[180] A. Blum, K. Ligett, and A. Roth, “A learning theory approach to noninteractive
database privacy,” in Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, STOC, 2008, pp. 609–618.

[181] R. Cummings, K. Ligett, K. Nissim, A. Roth, and Z. S. Wu, “Adaptive learning with
robust generalization guarantees,” in 29th Annual Conference on Learning Theory,
ser. COLT ’16, 2016, pp. 772–814.

[182] R. Bassily and Y. Freund, “Typicality-based stability and privacy,” CoRR, vol.
abs/1604.03336, 2016.

[183] H. Ebadi, D. Sands, and G. Schneider, “Differential privacy: Now it’s getting
personal,” in Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’15, 2015, pp. 69–81.

332

[184] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith,
“What can we learn privately?” In Proceedings of the 49th Annual IEEE Symposium
on Foundations of Computer Science, ser. FOCS ’08, 2008, pp. 531–540.

[185] J. Ullman, “Tight lower bounds for locally differentially private selection,” arXiv
preprint 1802.02638, 2018.

[186] F. McSherry and K. Talwar, “Mechanism design via differential privacy,” in Pro-
ceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science,
2007, pp. 94–103.

333

	Title Page
	Acknowledgments
	Table of Contents
	List of Figures
	On Fully Dynamic Graph Sparsifiers
	Abstract
	Introduction
	Background
	Dynamic Graph Algorithms
	Running Times and Success Probabilities
	Cuts and Laplacians
	Graph Approximations
	Sampling Schemes for Constructing Sparsifiers
	Spanning Trees and Spanners

	Overview and Related Work
	Dynamic Spectral Sparsifier
	Dynamic Cut Sparsifier
	(1 -)-Approximate Undirected Bipartite Flow
	Discussion

	Dynamic Spectral Sparsifier
	Algorithm Overview
	Spectral Sparsification
	Decremental Spanner with Monotonicity Property
	Decremental Spectral Sparsifier
	Turning Decremental Spectral Sparsifier into Fully Dynamic Spectral Sparsifier

	Dynamic Cut Sparsifier
	Algorithm Overview
	Definitions
	A Simple Cut Sparsification Algorithm
	Dynamic Cut Sparsifier
	Handling Arbitrarily Long Sequences of Updates

	Application of Dynamic Cut Sparsifier: Undirected Bipartite Min-Cut
	Key Observations and Definitions
	Dynamic Algorithm for Maintaining a Minimum s-t Cut on Bipartite Graphs
	Dynamically Updating Data Structures

	Vertex Sampling in Bipartite Graphs
	Maintaining (1 +)-Approximate Undirected Bipartite Min-Cut
	Vertex Sparsification in Quasi-Bipartite Graphs
	Dynamic Minimum Cut of Bipartite Graphs

	Omitted Proofs of Section 1.5.2
	Guarantees of Combinatorial Reductions

	Determinant-Preserving Sparsification of SDDM Matrices
	Abstract
	Introduction
	Our Results
	Prior Work
	Organization

	Background
	Graphs, Matrices, and Random Spanning Trees
	Effective Resistances and Leverage Scores
	Schur Complements

	Sketch of the Results
	Concentration Bound
	Integration Into Recursive Algorithms

	Determinant Preserving Sparsification
	Concentration Bound with Approximately Uniform Leverage Scores
	Generalization to Graphs with Arbitrary Leverage Score Distributions
	Incorporating Crude Edge Sampler Using Rejection Sampling

	Implicit Sparsification of the Schur Complement
	Approximate Determinant of SDDM Matrices
	Random Spanning Tree Sampling
	Exact O(n) Time Recursive Algorithm
	Fast Random Spanning Tree Sampling using Determinant Sparsification of Schur complement

	Conditional Concentration Bounds
	Upper and Lower Bounds on Conditional Expectation
	Upper Bound on Conditional Variance
	Concentration of Inverse Probabilities

	Bounding Total Variation Distance
	Simple Total Variation Distance Bound from Concentration Bounds
	Total Variation Distance Bound from Inverse Probability Concentration

	Deferred Proofs

	On the Complexity of Nash Equilibria in Anonymous Games
	Abstract
	Introduction
	Related Work
	Anonymous Games and Polymatrix Games-0.06cm
	Our Approach and Techniques-0.06cm
	Organization-0.06cm

	Warm-up: Radix Game
	Radix Game
	Generalized Radix Game

	Generalized Radix Game after Perturbation
	Reduction from Polymatrix Games to Anonymous Games
	Overview of the Reduction
	Construction of Anonymous Game GA
	Correctness of the Reduction
	Proof of the Hardness Part of Theorem 3.2.1

	Proof of the Estimation Lemma
	Membership in PPAD
	Proof of Lemma 3.7.2
	Proof of Lemma 3.7.3

	Open Problems

	Individual Sensitivity Preprocessing for Data Privacy
	Introduction
	Differential Privacy and Sensitivity
	Our Results
	Related Work
	Organization

	Preliminaries
	Sensitivity-Preprocessing Function
	Algorithmic Construction of Sensitivity-Preprocessing Function
	Sensitivity-Preprocessing Function Correctness
	Error Bounds for Sensitivity-Preprocessing Function
	Proof of Theorem 4.3.3

	Optimality and Hardness of Sensitivity-Preprocessing Function
	Optimality guarantees
	Hardness of approximation

	Efficient Implementation of Several Statistical Measures
	Efficient implementation for a simple class of functions
	Improved runtime and accuracy for median
	Accuracy bounds for mean

	Efficient Implementation for Variance
	Efficient algorithm for variance
	Accuracy guarantees for variance implementation
	Proof of Theorem 4.1.11

	Sensitivity preprocessing for personalized privacy guarantees
	Personalized differential privacy
	Application: Markets for privacy

	Extension to 2-dimensions for 1 sensitivity
	Correctness of Sensitivity-Preprocessing Function
	Error bounds for the 2-dimensional extension

	Future Directions
	Omitted Proofs
	Proof of Lemma 4.5.12
	Omitted proofs from Section 4.6

	References

