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ABSTRACT

Transfer functions that are reslizable by R-C networks are those
whose poles lie on the negative real axis and are simple, This is the
additional restriction that is imposed on all R-C network functions be-
side all criteria that govern the physical realizability of network
functions of any type. The approximation problem for the_ aynthesis of
R=C networks is, therefore, the finding of a rational function that
approximates certain prescribed characteristlics and at the sams time con-
forms with the restrictions on lecations of poles of these functions.
The circultry part of the complete synthesis procedure is considered as
a separate problem. The complete synthesis problem is considered as
solved once the rational function is found.

A survey of work done in association with the approximation pro-
blem is presented. This includes the method due to Guillemin and that
due to Matthaei. Guillemin's mesthod consists of a change in scale and
a Fourier-series approximation of a modified function., This mathod 1is
applicable to the synthesis of characteristics of any type. It also
serves as a proof that R-C networks are capable of reproducing frequency
characteristics of any type.

Matthaei's method enables one to produce equal-ripple frequency
characteristics of both the low-pass type and the band-pass type. It
makes use of the potential analogy concept and a technique that shifts

all poles to the real axis.



The method of potential analegy is discussed in detail., Its
potential usefulness in connection with the approximation problem of
R-C network synthesis is discussed. The usefulness of the method of
conformal transformation 1s emphasized. Conditionc governing the
validity of this method, the necessity of the existence of certein
kinds of symmetry as well as its limitations ars pointed out.

Conformal transformations are used to solve several approxi-
mation problems in the synthesis of low-pass R-C networks. In par-
ticular, two types of transformations are used--——the trigénomstric or
hyperbolic functions and the elliptic functions.

The transformation s = sin f‘ is used to map the entire complex-
frequency plane into strips of width of 4T in another complex plane.
All polss are placed uniformly along the real axis in the transformed
plane and the function representing these singularities can be written
into one single term and the algebra is greatly simplifieds The fol-
lowing groups of notwo:k functions have heen investigated on the basis
of this simplification.

(1) Networks containing two poles and one zero with poles

spaced T units apart.

(2) Networks containing three poles and one pair of conjugate

zeros with poles spaced E;E-unita apart.

(3) Networks containing four poles and one double zero with

poles spaced ; units apart.

(4) Networks containing four poles and one pair of conjugate
zeros with poles spaced g:unita apart,

In cases (1) and (3), zeros are placed along the real axis. In



cases (2) and (4), loci for the co-ordinates of zeros that give equal-
ripple characteristics in the pass band are determined. In all cases
network functions are written in closed form. From these functions,
expressions for tolerance in the pass band and pass-band angular fre-
quency are derived. These parameters are calculated for different
locations of zeros and plotted as curves, They are given in terms of
co-ordinates in the complex frequency plane. Thus the positions of
singularities in the complex-frequency plane corresponding to a cer-
tain tolerance and pass band may be found readily from these curves,
Further simplifications are achieved and more information is
obtained when elliptic-function tranaformations are used. The proper-
ties of elliptic functions related to the transformations used are
discussed. This type of transformation maps one complete complex
plane into finite rectangles in the other complex plane, The dimen-
sions of these rectangular cells depend on the value of the modulus of
the elliptic function used. These cells are all identical except for
their orientations. The cell that conteins the origin is taken as the
sample cell and all other cells are merely repetitions of this one,
The part of this cell that lies in the first quadrant corresponds to
the first quadrant of the original plane. Other quadrants will again
be repetitions of this quadrant, because of the quadrantal symmetry used.
An intermediate transformation is used so the point at infinity
in the complex-frequency plane can be placed at any point along the
edges of the cell, The elliptic function used is W=gn 2z, and the inter-

mediate transformation used is s= = , where A _ 1 i
Jﬂz - we k sn (aK, k)




The first case Investigated, with the use of the elliptic-func-
tion transformations, is the one containing one row of uniformly spaced
zeros and one row of uniformly spaced poles. By this arrangement the
equal-ripple property is insured and the network function msy be writ-
ten in closed form. These functions are expreased in terms of sn func-
tions of a different modulus and are different for the case of an even
number of poles and the case of an odd number of poles. The complex-
ity of these network functions does not depend on the number of singu~
larities. The number of poles and zeros included by these functions
depends only on the relative velues of the two moduli.

With the network functions expressed in closed form, expres-

sions for the tolerance inside the pass band and attenuation outside
the pass bsnd are derived. With a modulus and a number of poles given,
tolerances are computed for various positions of the row of zeros,
The steepness of cut-off is manifested by calculating the attenuation
at a frequency twice that of the pass band. Attenuation at this fre-
quency associated with each location of the row of zeros is also com~
puted. Tolerances and attenuations so obtained are plotted as design
curves,

The selection of the modulus for the elliptic function used in
the transformation is discussed by considering the effects of changing
the modulus, It is found that the value of the modulus affects the
final results only very slightly. Therefore the modulus used should be
the one that leads to the most practical conveniences,

The effect of the number of poles on the characteristics is very



similar to that of the modulus. An increase in the number of singulari-~
ties, however, also increases the relative bandwidth as well as the
number of elemsnts.

In another group of networks investigated, two rows of zeros are
included. In this case the relative positions of the rows of zeros
determines not only the pass-band tolerance but alse the characteristic
outside the pass band,

The gain of this group of networks has a maximum outside the
pass band and the part of the frequency characteristic that lies couw-
pletely under this maximum is taken as the stop band. Network funec-
tions are also expressed in closed form. From this result, expressions
for the tolerance and the attenuation outside the pass band are de-
rived. In order to obtain systematic resulte, locatiﬁna of rows of
zeros are found for several practical values of tolerance. Correspond-
ing to each of these arrangements the characteristic outside the pass
band is indicatively represented by the stop band and stop-band at-
tenuation which are obtained after the maximum point outside the
pass band is located, From these curves singularities in the trans-
formed plane are all determined for the specified characteristic
and their locations in the complex-frequency plane can be found by
the inverse transformation.

The last group of networks investigated are those that con-
tain one row of zeros and one row of double-gzeros. The behavior of
these networks is similer to the previous group. The inclusion of
a row of double zeros eliminates the possibility of a half-order
zero on the imaginary axis which appears in the previous group and

requires two networks connected in tandem by a vacuum tube.



Studies similar to those made on the previous group of networks are
also made on this one,

Design curves obtained in this research can all be used readily
for practical purposes, Several numerical examples are given as illus-
trations as well as verifications, Similar curves may be constructed

for comparison or consideration whenever desired.



CHAPTER 1
INTRODUCTION

In many problems of network synthesis, it is scmetimes desirable
to furnish certain arbitrarily specified transfer characteristics with
networks containing only two types of network elements. For low-
frequency application, for instance, netwerks containing only resis-
tance and capacitance are suitable. This is chiefly because when the
frequency range over which a network is designed to operate falls on
the extremely low part of the frequency spectrum, the required in-
ductive elements of acceptable quality may be too difficult to obtain,

There are other reasons why the synthesis of R-C networks 1s
of practical importance. An R-C network may cost less to construct
than an R-IL-C network of similar performance, notwithstanding that
the former may require considerably larger number of elements. R-C
networks contain only one kind of energy storage element and they are
not prone to undesirable oscillations which can take place in networks
containing R, L and C.

There is no theoretical limitation as to what type of character-
istics R-C networks are able to furnish. The method by Guillemin (1)
and Patrick and Thomas (2) of approximating any given characteristic
by functions realizable by R-C networks discussed in the next chapter
serves as a proof that, except for a constant multiplier, any pre-

scribed amplitude characteristic may be approximated to any desired



degree of accuracy by transfer functions realizable by R-C networks.
In other words, it is always possible to synthesize an R-C network to
glve any desired shape of frequency response.

Almost all R~C networks have approximately as many resistive
elements as capacitive elements. Therefore it may be expected that R-C
networks possess considerable energy loss, This makes the insertion
loss of R~C networks a serious problem and it must be compensated for
by adequate amplification. Fialkow and Gerst (3)(4) calculated the
minimum insertfion loss realizable by R-C networks when their poles

and zeros are given.

Transfer functions that are realizable by R-C networks are those
whose poles are all simple and lie on the negative real axis of the
conplex—frequenéy plane, 8 = o+ jw, provided that all other require-
ments for functions that are realizable by general networks are met,
Therefors problems in R-C networks are identical to problems in general
networks except for this additional restriction.

The complete synthesis procedure for any network may be divided
into two steps-—the approximation and the realization. The approxi-
mation part of the problem involves the finding of a rational function
of suitable property whose variation along the imaginary axis approxi-
mates the specified frequency characteristic to a predetermined degree
of accuracy. It is this approximation part of the R-C network synthe-
sis procedure that this research is devoted to.

The realization part of the synthesis procedure is the actual
construction of a network whose transfer function has its poles and

zeros coinciding with those of the rational function found in the



approximation part of the procedure. Considerable advancement has been
attained in recent years in this field.

A method was demonstrated by Guillemin (5); and Patrick and
Thomas (6) by which an R-C admittance fimection may be realized by a
number of parallel-connected ladder networks loaded by a one-ohm resis-
tor. This method was improved by Ordung and others (7) so the number
of parallel networks is reduced.

An alternative method is provided by Orchard (8) which is also
applicable to a generator with non-sero internal impedance and functions
which are not of the minimum-phase type.

A lattice R-C network realization method for voltage~ratio func-
tions has been discussed by Bower and Ordung (9) for both open-circuited
and R-C loaded output terminal-pairs.

Fleck (10) offered a method of realizing a transfer ratio by
means of one single ladder network.

Another method which leads to canonical sections derived from
parallel-T networks was devised by Dasher (11). This method results
readily in unbalanced two terminal-pair R-C networks.

Fialkow (12) showed a method for realiszing voltage-ratio functions
by successively splitting the function and subtracting a proper resis-
tance ;} capacitance. This method results in & complicated network
with a very large number of alements,

This wide variety of methods for realizing networks for a given
transfer function jJustifies our leaving this part of the synthesis pro-
cedure as a separate problem. It will be agssumed that the synthesis

is completed once the approximation part of the procedure is solved,



CHAPTER II
FOURIER SERIES METHOD OF APPROXIMATION

One of the earliest methods dealing with the approximation pro-
blem of R-C networks is due to Guillemin (13). This method makes use
of a scale transformation and Fourier analysis. It will be summarized
here.

Assume .tha.t it is desired to find a function T(s) such that
|T(5«)|? approximates a certain prescribed characteristic, |F(jw)|2,

(Fig. 1). First apply the scale transformation
$ = 2 tan "t )

This transformation is multiple-valued and the new plot G{(¢) = |F(jw)|2
is periodic as shown in Fig. 2.
The function, G(¢), may be approximated by a Fourier series

g(¢) = a, + mycos¢d + 85 co8 2¢ ++ + - -+ + + & cosn¢ (2)

to any desired degree of accuracy provided n is sufficilently large.
Since cos k¢ is a polynomial of degree k in cos¢ , where k is
any positive integer, g(¢) is an n-th degree polynomial in cos¢.

Thus, we have
g(¢) = by + by cos¢ + bzcoa%? t e+ o4 tbycos?d. (3)

But from equation (1), we have
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cosé="£"’:“3"§" . (4)
So that g(®) may be written as
£(@) = 1(D) - AO+ALM2+A2wh+.....ﬂEMh . (5)
(1 + 2" |

Thus we have obtained a function in w? which approximates |F(jw)|? with-
in the same tolerance as g(¢) approximates G(¢).

As what would have been the final step of the problem we try to
find a function hy(s) such that |hy(jw)|? is identical to h(w?). Since
the zeros and poles of h(-32) cceur in symmetrieal quadruplets, this
step may be accomplished by including all the zeros and poles of h(-82)
in the left half-plane as the zeros and poles of hy(s), if a minimum-
phase network is desired. But a difficulty arises in that all the poles
of h(-82) fall on s=+1. Since all poles of an R-{ transfer function
must lie on the negative real axis and must be simple, the resultant
hi(s) will not be realizable by an R-C network.

To remedy this difficulty the following procedure may be used.

What is desired here is a function of the form

_ Aot A1w2+kgu£‘+o R -ani_ A(:.Jz)
ftuz)- B, + Blw2+32w“"+- e e s .+an2n - B(aﬁ) (6)

which approximates |F(jw)| 2 to the desired accuracy. We may proceed by
choosing arbitrarily a function B(.#) so that roots of B(~82)=0 are
all real and simple. Furthermore, we may write

A(?)
2 T4 m

a . a
B(.5) (Sgd é)n 5(9)



where g, (¢) and g,(%) are toth n-th degree polynomials in cos $. Since
B(«?) is known, g5(¢) can readily be found by applying equation (4).

Then if a function g;(¢) is computed to approximate g,($)G(¢) in the same
way as the function g(¢) of equation (5) was computed, f(«?) will approxi-
mate |F(jw)| 2 to the same degree of accuracy as G(¢) does, end the func-
tion r(wz) will have the desired propertiss, The function T(s) may now
be formed by including the left half-plane zeros and poles of f(-s2) and
the process is completed. .

No rule that governs the selection of positions of roots of the
squation B(mz) = 0 hasc yet been develcped., As far as the above analysis
is concerned their lccations are imiarial. It may be considered as
absolutely arbitrary for that purpose, Thus the location of the zeros
of P(s), which are also the poles of our final networklflmction, must
obviously be decided by other practical considerations.

One of the direct consequences of the locations of the poles of
T(s), for instance, is the spread of elsment values of the final network.
Obviously if these poles are placed very close togesther or very far apart,
a very wide spread of element values will be needed. Certain optimum
distributions of poles must exist between these two extreme situations,
although they may not be very critical. Other considerations may be
exemplified by matters such as insertion loss, mathematical simplifica-
tion, etc,

Locating the poles so they have their geometric mean at s = -1
has been suggested as an apparently good choice from several points of
view. By this distribution, the function g,(¢) will be symmetrical
about ¢=_"27.., and thus will have only even order terms. This symmetiry



of g-(¢, about ¢-= ;’27. is also a necessary condition for equal-ripple
behavior in both the pass band and stop band when a low-pass charac-
teristic is belng approximated by this method.

Beside 1ts practical usefulness, this method also has an impor-
tant merit in that it furnishes a proof that R-C networks are capable
of reproducing any shape of frequency characteristics. Since resiatances
may be considered as coils of extremely low Q, a corollary may be derived
from this proof that any given frequency characteristic may be realized
by networks contailning resistances, capacitances and inductances with
any value of Q.

The major disadvantage of this method may be seen from the fact
that it is virtually impossible to predict the accuracy of the approxi-
mating function. One must start with a choice of the number of poles
of T(s), n, as well as the pole positions. From these poles, B(w?) 4
82(4)G(¢) and £(w?) may be computed. Whether this f(«?) falle within
the acceptable range or not cannot be known until this complete process
is finished. On the other hand whether this n is the minimum permissi-
ble value of n or not is not known until some other values of n have

been tried and compared. Unless the required value of n is small

these processes can be very tedious,



CHAPTER III
POTENTIAL ANALOGY

The_analogy.--The transfer function of a passive network with

lumped elemsnts may generally be expressed in the form

T(ﬂ)=o°‘+jﬁ'=x ("'"‘1)('-13). c oo (8-A)
(’*Bl)(’-nzj e c.(’ﬂnn)

(8)

where A's and B's are, respectively, seros and poles of T(s). This
expression 1s identical to the expenential of the complex potential,
P(s), in a two dimensional electrostatic field with pesitive unit line
charges located at A's and negative unit line charges at B's. Also

P(s) = 1n T(a)* (9)

Thus there exists a complete analogy betwoen an slectrostatic
field and a corresponding network function. Those quantities that
are analogous to sach other may be itemiged as follows:

(1) Poles and positive unit line charges.

(2) Zeros and negative unit line charges.

(3) Singularities (poles and zsroa) and sources (charges).

(4) Transmission function and complex potential.

(5) Transfer function and exponential of eomplex potential.

(6) Gain and potential.

(7) Phase and stream function.



Inzcmuch as for each quantity in the electrostatic domain there
is an analogous quantity in the network-function domain, and vice versa,
it is nct necessary to introduce two sets of notations. One notation
used to denote a certain quantity in one domain can also be used to
denote its analogous guantity in the other domain. For instance, the
function (o¢) may represent either potential or gain depending on what
domain it is referred to.

Furthermore, we could actually regard each pair of analogous
quantities as exactly the same quantity and use them interchangeably.
Throughout this research the gquantities within each item listed above
will be considered as synonyms,

By this correlation of these two fields the number of problems
is reduced to one half of the original. If any property has been in-
vestigated in one domain, its analogous property in the other damain is
already found. If the analogy between network functions and electro-
static functions fails, the existing problem in one domain may have a
meaningless dual problem in the other. This will in no way devaluate
our analogy concept because although in these instances we do not gain
anything, neither do we lose anything.

The advantage of pointing out this analogy lies mainly in the
fact that extensive study has already been done in the theory of electro-
static fields. Thus we may apply all cur knowledge and techniques from
the field theory to network problems through this analogy. At the present
time we would very likely view many network problems from the electro-
static field standpoint, because we have more experience in this field.

This situation need not be a permanent one. It is entirely possible



that some day we will be able to manipulate any problem in both domains
with equal ease, Then the analogy concept will no longer be of value
to us in the same way or to the same extent that it is today. It i=
also possible that some day we may be able to solve some potential prob-
lems by the aid of their network correspondencs,

In network problems, we are mainly interested in the finding of
a rational function whose magnitude over an axis follows a certain de-
sired pattern. Thus the electrostatic field problems that are of
interest are those of determining a set of line charges to produce
certain desired potential variations along an axis. Other network
problems may include phase characteristics over a part of or over the
entire axis. Their analogous problems in the electrostatic field must
include the considerstion of flux functions. Several useful methods
will be discussed later in this chapter.

Restrictions on charge arrangements.-—Because of the conditions

imposed on the distribution of zervs and poles for network functions,
only certain types of charge distribution are directly useful for our
purpeses, if final network functions are to be physically realizable.
These restrictions are:

(1) All charges must be of equal strength or some simple mul-
tiple of a unit charge.

(2) Since singularities of physically realizable network func-
tions occur in conjugate pairs, charges mst be placed seo they are
symmetrical about the real axis.

(3) Positive charges must be confined to the left half-plane.



(4) For R-C networks, positive charges must be placed on the
negative real axis, and they must all be of equal strength.

(5) If network functions are to be of the minimum-phase type,
all negative charges must be confined to the left half-plane,

Arranging charges so they maintain the required symmetry and then
modifying this original arrangement to conform with the restrictions
listed above while preserving certain characteristics, may simplify the
electrostatic field a grest deal.

If, for instance, the gain characteristic is the specified quan-
tity, one half of each charge in the left half-plane may be moved to
its negative point. This operation does not alter the potential along
the imaginary axis. Thus we may at first double the desired potential
variation, and arrange all charges in quadrantal symmetry to produce
this doubled potential variation, and finally discard all the charges
in the right half-plane,

In a simdlar manner if a unit charge of opposite sign is placed
at the negative point of each charge in the left half-plane, the flux
function along the imaginary axis will merely be doubled, Thus if a
phase characteristic is to be matched a similar simplification may be
obtained as when a gain characteristic is to be matched,

Useful methods.—Several methods applicable to solving two-dimen-

sional field problems in electrostatic theory which are also useful in

aiding the solution of certain network problems will be described

below:
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(1) Experimental method.--The calculation of the frequency
characteristic of a network function with known locations of poles and
zeros is usually a complicated procedure especially when the number of
singularities is large. As an alternative one may actually construct
the network and measure its frequency response. This is not always
a practical method. For instance, if the frequency characteristic
needs slight modification by the shifting of certain singularitiss, the
whole procedure must be repesated with exactly the same amount of work
as the previcus function. Therefore a means of directly riaasuring the
frequency characteristic without either numerical calculation or actual
construction of the network is highly desirable.

It would be extremesly difficult, if possible at all , to set wp
a two-dimensional electrostatic field. However, the electroconductive
field analog of each electrostatic field problem is very simple to
approximate in the laboratory. 3ince the solutions of these two fields
are both the sclutions of Laplace's equation their analogy is easy to
see,

Thus an electrostatic field msy be simulated by a thin layer of
a uniform conducting medium. Its sources may be simulated by currents
of proper polarities, The strength of these currents must be propor-
tionel to the strength of charges. With this arrangement the potential
in these two fields will have the same variation throughout the entire
s-plane, Their absolute values may also be related so one can be com-
puted from the other,

Two types of conducting media that have been widely used are

electrolytes and electroconduction paper. Electrolytic tanks were used
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by Hansen and Lundstrom (14), Huggins (15), Boothroyd (16) and others.
Electroconduction paper has been adapted in recent years and is made

of a special type of paper impregnated with carbon or graphite. This
material is considerably easler to handle and ite preparation for
fields of odd shapes requires much less effort than that of electrolytic
tanks. However the accuracy of this method depends largely on the
uniformity of the menufacture of the conducting paper and is usually
inferior to that of electrolytic tanks.

(2) Distributed charge method.~—In order to teke advantage of
certain analytical results in electrostatic theory, a continuous charge
distribution along a certain predetermined contour te give a certain
potential variation in the region enclosed by the contour may first be
found by any of the analytical methods., Then this distributed charge is
approximated by a set of lumped charges of equal strength placed at the
center of gravity of the disiributed charge it is to represent. An ex-
tensive survey of those analytical methods that may be useful for this
operation is made by Darlington (17).

(3) Conformal Transformation.~—Another pewsrful method of solving
two-dimensional field problems is the conformal transformation. This
transformation can be used to reduce the complexity of the problem by
changing the geometry of the field and its boundaries to a simpler onse.
In many instances the field in the new tranaformed plane has certain
symmetry that does not exist in the original plane. Since the trans-
formation preserves the orthogonality of conjugate functions the solu-
tion in the transformed plane is identical to that in the original plane

provided their sources and boundary conditions correspond to each other.
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A well known example of its application in connection with network

theory is the low-pass to band-pass transformation of the frequency scale
i

w=4a If this scale transformation is extended to be valid over

17wy
the complete complex frequency plane, or s = 8y * "s-i*’ and if poles and
zeros are known in s-plane in the low-pass case they are alsc known

for the band-pass case in the s-plane.

This transformation is depicted in Fig. 3. The transformation
from the s-plane to the sy-plane is double-valued. Therefore the s-plane
mist be a Riemann surface of two sheets on top of each other and joined
by the branch cut which is that part of the real axis that is outside
a and ¢, Thus it is seen that the band-pass to low-pass transformation
gives simplification only if charges of similar sign are placed so they
are geometrically symmetrical about the unit circle. By so doing their
s-plane mappings are made to fall on tO‘p of each other and only one
sheet of the Riemann surface needs to be studied.

Another example is given by the work of Matthaei (18) for the
design of R~C band pass filters. The task is accomplished by a hyper-
elliptic-function transformation which transforms the entire s-plane
into a Riemann surface of two rectangular sheets joined by four branch
cuts as shown in Fig. 4. The charges in these two sheets are arranged
identically and, therefore, only ane sheet needs to be studied. This
can only be true when charges in the s-plane are arranged so they are
geometrically symmetrical about the w,~circle.

The separation of two Riemann sheets, as was done in the two

examples menticned above, is permissible only when the following con-

ditions are satisfied:



s~plane

h,k

8- plane

Fig. 3. The transformation s = sy + .1,
81
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(1) The behavior of the field in the vicinity of the branch
cuts is the same on both sheets.

(2) No flux lines cross the branch cut,

(3) When an axis is folded up against itself each pair of points
that are combined must be at the same potential.

These conditions are all satisfied in both examples mentioned
above,

An example where these conaitions are not fulfilled is the one
shown in Pig. 5, in which an attempt was made to design a low-pass R-C
filter, Due to the difference in the arrangement of quadrants on the
two sheets, charges do not fall on top of each other and all three con-
ditions listed above are violated. Therefore the two sheets cannot be
geparated. 3ince a Riemann surface of this type ls almost impossible
to approximate the transformation is of very little practical value for
this problem.

This transformation method has been used to great advantage by
many. In setting up an electroconductive analogy of a two-dimensional
electrostatic field, such as an analytic tank or an electroconduction
sheet, 1t is not possible to include the complete complex plane,
Certain transformations will map the complete plane into a finite
region, such as a rectangle or a circle, and make it possible to repre-
sent accurately the complete plane by a finite area.

Poles of Butterworth's filter will lie on a straight line if an
exponential mapping is used. Tschebytacheff's filters can be simpli-
fied to the same extent by a hyperbolic mapping. Fano (19) applied

this technique in the reverse direction and obtained filters that
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Ancther hyper-elliptic function transformation.

Fig. 5.



display equal-ripple property in both the pass-band and the stop band.
Conformal transformations will be used frequently herein and the
detailed properties of each transformation will be discussed wherever

it 1is being used,



CHAPTER IV
POLE SHIFTING METHOD OF PRODUCING LOW-PASS R~C FILTERS

A scheme which makes use of several of the ideas discussed in the
last chapter together with a tricky method of pole shifting to obtain
squal-ripple characteristic over certain regions was suggested by
Matthael (20).

The preliminary preparation required for this method is the
arrangement of charges so they produce equal-ripple potential within
certain designated regions. To achieve this goul various methods may
be employed as alds. A useful method would be the use of the charged
conducting plate which insures the uniformity of potential throughout
the region occupied by it. The distributed charge on the conducting
plate may finally be approximated by lumped charges.

As an example, suppose it is desired to produce a low-pass
frequency characteristic with pass-band designated as from O to w, and
stop-bfnd from w, on out, and if three poles and three zaros are to
be had by the network function, we may plaee three conducting platss
along the jw-axis as shown in Fig. 6 and put appropriate units of
charge on these plates. The charge distribution on these plates may be
found. This distribution of charge may be approximated by lumped charges
by placing one unit charge of the correct sign at the center of gravity
of each reglon that contains one unit of charge. Thus, the potential
in Fig. 6 is approximated by that of Fig. 7, whose charge positions
may now be taken as the singularities of a fumction T'2 (s).
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Fig. 7. Lumped-charge approximation of Fig. 6.
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3ince it is not permlssible to leave poles inside the pass band,
a new function, T(s), should be taken as our final network function,

where

Tiﬁa) (10)

(2)X(-a) = 1+ C T%(s)

This transformation from T'(s) to T(s) given by egquation (10)
involves the following steps:

(1) Take the reciprocal of T!2(s).

(2) Add a constant C to the reciprocal of T'2(s).

(3) Take the reciprocal of (2).

The result of this transformation shifts all poles away from the
Jw -axis while all zeros remain unaltered. This operation also leaves
the positions of maxims and minima within the pass btand and stop band
unchanged; thus equal-ripple property in both regions is retained. As
the final step, the charges in the right half-plane are discarded, and
the singularities of T(s) are shown in Fig. 8. The frequency characteris-
tic will have the shape as shown in Fig. 9.

The foregoing results may be approached by a different method.
The problem is simplified to a great extent if conformal transformation
is used. The transformation that is useful for this particular example
is that of a certain elliptic function, which will be discussed later
in another chapter. For the present purpose, we need only to suppose
that a transformation can be found that maps the entire s-plane onto a
rectangle in the z-plane.l\‘ Then the corresponding problems of those of
Figs. 6, 7 and & are shown in Figs. 10, 11 and 12.
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Fig. 8. Poles and zeros of T(s).

Fig. 9. \Frequency characteristic of T(s).
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Fig. 11. The z-plane correspondent of Fig. 7.
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Fig. 12. The z-plane correspondent of Fig. 8.
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In the z-plane the conducting plstes are parallel to each other
and the charge distribution will obviously be uniform. Their lumped
charge approximation is simply rows of uniformly spaced charges. Thus
poles and zeros of T'2(z) as well as T(z) will be wniformly apwid.
The charge-arrangement part of the problem is greatly simplified.
Moreover, one can dirsctly arrive at the arrangement shown in Pig, 12
and be sure of the equal-ripple property in the two frequency ranges
without the aid of the conducting-plate middle step.

This example is mentioned here merely for the purpose of illus-
treting the pole-shifting technique. As can be seen from Fig. 8 the
function T(s) is not realizable by any B-C network,

When this method is applied to R-C networks certain additional
restrictions mist be imposed on the charge arrangement. Most of all,
all poles must {inally be shifted to the real axis and they must be
separate., This can be achieved only if there are as many separate points
that are at the same potential as there are poles. If this is the case
we may make C equsl to the negative of 1/71%(s) st these points, and
these points may be made poles of T(s)T(~s).

For instance, if a certain charge arrangement gives a variation
of T'%(s) along the C-axis as shown in Pig, 13, it is suitable to be
used in connection with our pole shifting technique to change it to a
function that is rezlizable by an B~C network,

Thus, if it is desired to preduce a low-pass filter with equal-
ripple property in both the pass bend and the stop band the charge
arrangement &s shown in Fig. 7 can no longer be suitable as is evident
from Fig. 11 in which it is clear that potential decreases monotonically
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along the real axis as the distance from the origin incresses.

Hence if a network function bssed on a derivation similar to
that of Fig., 8 is to be designed so it 1s realizable by an R-C network,
certain modifications must be made. Certainly some charges must be
placed near or on the real axis to modify the potential variation along
it. For that particuler example we may, for 1nstanca; start our process
by finding the charge distribution on metal sheets with four unit charges
placed on the o-axis as shown in Fig. l4. The negative charges are
placed close to the origin sc as to lower the potential on the part of
the resl axis, while the function of the positive charges is just the
opposite. After the charges on the metal plates are quantized the
charge arrangement has the form as shown in Fig. 15. The potential vari-
ation along the O-axis now has the form shown in Fig. 16. After eque-
tion (10) in association with a proper constant C has been applied, the
charge distribution will take the form shown in Fig. 17 in the gz-plane
and Fig. 18 in the s-plane. This arrangement is realizable by two R-C
networks connected in tandem with a buffer amplifier and they together
will contain six poles.

The essence of this method is well illustrated by the examples
Just discussed and other problems of a similar nature may be derived
accordingly. The success of this method depends largely on the place-
ment of poles and zeros on or near the real axis to produce sufficient
saddle points on the real axis. This step is usually a difficult one
and a straight forward rule has not yet been devised,

To create a sufficient number of ripples of potential of approxi-

mately the same level a minimum number of charges must be used on or
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near the real axis, and certainly no more charges should be used,
Matthaei (21) has shown that this number iz (Z - 2) where Z is the
total number of poles and also the total number of zeros.

Experimental methods can be of great aid to this method. An
electrolytic or an electroconduction sheet may be set up to find the
charge distribution on the metal sheets in Pig. 14, for instance. The
same devices can be used to make preliminary determination of charge
positions to give proper potentlal variation along the real axis, thus
eliminating many uncertain guesses required if a numerical cut-and-try
method is to be used.

The way results are arrived at by this method is ingenious and
direct. However, if the number of poles is large, the calculation may
be quite involved and the quantitative results cannot be predicted.
Such design quantities as tolerance, sharpness of cut-off and stop-

band attenuation can not yet be controlled.
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CHAFTER V

DESIGN OF LOW=-PASS R~C NETWORKS
BY TRIGONOMETRIC AND HYPERBOLIC TRANSFORMATIONS

The Transformation s = sin.% and Its Application

The transformation z = 4 sin ' s maps the s-plane into strips of
width 4, in the z-plane. These strips are joined by branch cuts
which correspond to that part of the real axls that is outside s = & 1,
The geometry of this transformation is depleted in Fig. 19.

In Fig. 19 (¢) is shown the arrangement of quadrants in the
z-plane. With the symmetry of charge arrangement to be used, only one
strip needs to be illustrated. The others wlll be repetitions of this
one.

In network problems the gain characteristic along the real
frequency axis is of primary interest. Therefore we are primarily
interested in the potential variation along the y-axis in the z-plane,
Since the corresponding points along the w-axls are arranged in the
same sequence on the y-axis, the variations along these two axes in the
two planes are of the same shape except for a change in scale.

The usefulness of a conformal transformation depends on its
simplification of charge arrangements. Since for R-C networks poles
are confined to the real axls, we may place all positive charges in
the z-plane only on the real axis and space them uniformly apart.

This enables us to represent all positive charges by one single term

in the complex potentlial function. The following groups of networks
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are designed on the basis of this simplification.

Networks Containing Two Poles and One Zero
Potential function.——The general charge arrangement for this

group of networks is shown in Fig. 20, Positive charges are spaced
7 units apart and negative charges € units away frem the origin.
The function that has these singularities is

5 .8 z_8
sl & cos(h+2)coa(4 2) )
B8 cos = ! (
where
. ri- (27 - 6) (12)
or
6 =2m - 2a. (13)
It can be seen that -z-i-% .-:t:-—' when z=%86,
Along the y-axis, z =]y, and
cosh £ + cos a
)2 = 2 (1)
eoshzz-—
2 2

The variation of|T| 2 in equation (14) will have one of the two forms
shown in Fig, 21. Curve A, which has a maximum, has a more desirable
characteristic as a low-pass filter.

Pass_band.—The region corresponding to that between 0 and y;
in Fig. 21 will be taken as the pass band. In the s-plane the pass
band will be denocted by «w.,. Thus

P
wp = sinh 7L | (15)
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The point y, may be found by equating IT|2 at this point and that
at the origin, or

cosh? YL _ 1
2 2. . —— - (16)
cosh Y1 4 cos a 2(1 + cos a)
2

Equation (16) may be reduced to

[(1+ cos a) coah;.ldl + OB u)l (caah?-l):ﬂ. (17)
2 F
Thus
. 2cos a *l . (13)
coah_é_._ 2( cos a +1)

Por equation (18) to have a significant solution

-2coBa=-1=2¢c03a+2.

€03 & <

This ylelds 3 ,
b~

and
0 < 8294,8', (19)

This is the 1imit of the distance ¢ wdthin which the|T|2 curve will
have the form A shown in Fig. 2.

Tolerance.—The pass band tolerance is defined as the maximum
deviation within the pass band. Tolerance will be denoted by £ and
expressed in db,

To locate the point where|T|2 is maximum, we may set the deriva-

tive of |T|2 with respect to cosh ¥ equal to sero.
2
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27 _1
d cosh 2”3

2 0 (20)
d (cosh Z) cosh L + cos a
2 2
This gives
2 (cosh% + cos a) ceahz-z-—(coahz%- %) = 0. (1)
Prom this equation, we obtain
- JI, cos?a - 2
weulii %: 2 cos a +2 cos?a - 2 . (22)

Substitute this value of cosh % into equation (14) to get

1

2 = -~
ITIm -2¢cosa + [L cosa - 2 ° (23)
Thus
|7l zm= 1 )
]'rlzo 2(1+cos a)(-~2cos at+ f L cos?g - 2) (2
and

" T2,
Tolerance = & = 10 log max
2l=,

1l
2(1 + cos a)(~2 cos a + [k coa®a - 2) |,

(25)

=10log[

Here a factor 10 1s used as the multiplier of the logarithm instead of
20 because the charges in the right half-plane are already ineluded.
Results and data.-—~A complete study of this group of R-C networks

would be completed if Yy and tolerance were plotted against all values

of O, In Fig. 22, this is done in terms of parameters in the s-plane.
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In the s-plane, poles are fixed to be at 8 = = 0.942 and 3 = -~ 0,383,
and the distance from the zero to the origin is denoted by ¢, as
shown in Fig. 20. Thus these final results are directly usable for

design purpose.

Networks Containing Three Poles and Qne Pair of Conjugate Zeros
Potential function.-—The general charge arrangement for this

group of networks is shown in Fig. 23. Positive charges are spaced

E_j'll'_ units apart and negative charges are placed @ units from the y-

axig and 2b units from the xz-axis. The function that has these singu-
larities is

cos(T +§+£) cos (T += --':’-E) cos(—i—ﬁ-r;-t-’-) cos(=-= g
2(a)rl-o)e 472732 1.223’ L 2 2 L 2 2 (26)

cos (=
2

where a has the same meaning as before. The numerator in expression
(26) may be simplified to

—}:[cos (-3- +3Jb) + cos a][cos (-%—Jb) +cos a]

<2 z 2

= Z—{coa (-2- +Jb) cos (—2 jb)

¥ [cos (—% +Jb) + cos (-‘5 - Jb)]cos a + cos? a}

= lEcosZ % +2 cos -;-cos a cosh b + cos? a +cosh2 b - 1};

while the denominator may be written as

AcosB%-Scoa%.

Thus we have
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eos‘?% + 2 cos%cos a cosh b+coaza+cosh2b -1 (27)
T(8)T(-8)= *

L (4 0033%—3 cos %)

Along the y-axis, z = jy, and

coah2%+2 coah%coa a cosh b +cos? a +mh2b-—1

lTJa = .
i (4 cosh® £ - 3 cosh I) (28)

Let u = cosh %, f=cos a and g =cosh by equation (28) becomes

w2 +2fgu+fR +g 1

|72 = TR T (29)

Positions of zeros to yleld equal-ripple characteristic.--The

variation of |T|2 along the y-axis will have one of the forms shown in
Fig. 24. Among them eurve B, whose maximm is equal to the value of
the function at the origin, displays the equal-ripple property. This
curve is reproduced in Fig. 25 and will be treated in more detail.

In order to determine the position of zeros so that |T|2 will
vary like curve B, the equation

712 -11|% =0 (30)

must have a real double root. Since when y=0, u=1, equation (30)

becamea
hu -3u - 1 (31)
ul+2 fgu+ 2+ g2 .1 22 g+ 12 +g2
or
(8fg+ 422+ 4g?) w3~ u? - (8fg+3£2+3g2) u + (1 - £2-g2) = 0.  (32)

This equation must contain a factor (u - 1). After this factor is re-
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moved from equation (32), we obtain
(8tg+ 422+ 1g?) u? + (8fg+ut?+ug? = 1) u + (£2+g2 - 1) =0.  (33)

If equation (30) has a real double root other then u=1, the

discriminant of quadratic equation (33) mmst vanish. Or
(82g + 4e2 + 4g2 - 1)%- 4 (£2 + g2 - 1)(8fg + 42 + 4g?) = 0. (34)

Simplifying equation (34), there is obtained

(£+g)32g +8)+ 1 =0, (35)
This is the conditional equation for the coordinates of positiona of
zeros to produce frequency characteristic of the type shown in Fig. 25.
The locus of these positions may be plotted by solving ecuation (35).
This locus in the s-plane is plotted in Fig. 26.

Tolerance and pass band.—The definitions of tolerance and pass
band are the same aes before. They are denoted by £ and ¥y respectively
and are indicated in Fig. 25.

Differentiating |T|2 of equation (29) with respect to u and set-
ting the derivative equal to zero, there is obtained

(w2t 202 u+ P+ g% - 1)(12 u® -~ 3) - (4 v -3u)(20 +2fg) = 0 (36)
or

uby 4eg w3 + (3024382 -2.25) uR - 0.75(22+ g2 - 1) = 0.  (37)

One of the roots of this equation will give the value of y at which
the minimm of |T|2 occurs. Thus|T|Z;i, may be found. Since |T|2 ..
= |?|2,, we have

T| 2
Tolerance = & = 10 log[...l_z_.o__} (38)
17| “ntn J,
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With the value of |T|?_, lnown the point y;, the pass band, can
be found by locating the point where|T|? again drops tolT|Zy4,.

Tolerance and pass band in the s-plane, € and wp respectively,
are plotted in Fig, 26 for different positions of zeros. The poles of
these networks are located at ®=-sin -, -sin § and sin 47 or —0.2588,
~0.7071 and -0.9660 in the s—plane.

Networks Containing Four Poles and One Double Zero
Potential function.——Charges for this group of networks are

arranged in the manner shown in Fig. 27. The function that has these

gingularities is

GOS£+GDS&

rafa(-s) & et (39)

The potential along the y-axis may be written as

\2
-r|2 = (u +_£)
| gut ~8u+1 i

by letting 3= jy in equation (39). Quantities a, u and f have the same
meaning as before.

Pass band.—~The variation of |T|2 in equation (40) will have one
of the two forms shown in Fig. 21. Curve A, which has a maximum, has a
more desirable characteristic as low-pass filter. The region correspond-
ing to that between O and y; will be taken as the pass band. Let uy=

cosh f.:.‘-., we have
2

2
(ul + f) s (l & f)Z. (il-l)
8 ulh = u12 + 1
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After equation (41) is simplified there is obtained
a(r » 12wt - [a(r+ 1%+ 1w -20u +(2x +1) =0, (42)

This equation must contain a factor (uj - 1). After this factor is

removed, we obtain
8(f « 1)21113 + 8(f + 1)21112 -uy - (2¢ +1) = 0.- (43)

The root of this equation that 1s greater than 1 is the point corres-
ponding to yy.

If equation (43) again has a root u;= 1, y; approaches zero.
This is the boundary condition between the two curve shapes indicated

in Fig. 2. Let uy=1 in equation (43) and we have

8(f+1)2+8(f+1)2 -1-20-1=0 (4ds)
or
£ = -0.975.
This gives
a = 180° - 28%57
and
8 = 57954 = 0.3217 . (45)

This is the 1imiting value of the distance @ if the|T|2 curve is to

take on the form of curve A in Fig, 21.
Tolerance.--To find the point where maximum potentlal occurs we

set

d ('ll*'i’)2
du[sul"-Suz-*l (48)
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equal to zero to obtain
(u+ £)232u2 - 16u) - (Buk ~8u2+1)2u+)=0. (47)
After simplification, there is obtained
ub+ 2 £ud-ru-0.125 = 0. (48)

Solution of equation (48) for different values of £ gives the

point at which llem occurs. Thus,

T _ 171 4pax
Olermﬂ = £ - 10 lﬂg -—I-—E—-— (&-9)
TI o 3

Results and data.—~Pass band and tolerance values have been

calculated for different positions of double-zeros. These results are
transformed to the s-plane and plotted in Fig. 29, Poles in the s-plane
are located at -sin 1'8-, -sin %"-T, -gin %—T and -sin % which are also equal

to ~0.1951, ~0.5556, -0.8315 and -0.9808 respectively.

Networks Containing Four Poles and One Pair of Conjugate Zeros

Potential function.--Charges for this group of networks are

arranged in the manner shown in Fig. 28. The function that haa these

singularities is

cos(-}z: +% +322) cos (% +% —-%1) "'°5('E - % +j§3) coa({‘; % % —*%’-)

cos 2z

NeN-s)= (50)
in which the numerator is identical to that of equation (26) and the
denominator is identical to that of equation (39). Thus the potential

along the y-axis in the z-plane will be
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u? + 2fgu + 2 4+ g2 -1
L (8 ut - 8u2 +1)

iT|= = (51)

which has the numerator of equation (29) and the denominator of eguation

(40).
Positions of zeros to yleld equal-ripple characteristic.-—The

variation of potential will have one of the forms shown in Fig. 24.
The shape of curve B is the ddsirable one which is shown in Fig. 25 in

more detail. This is realized if the equation
) IT)2 =|7| 2, =0 (52)
has a double-root. Equation (52) is explicitly

u2+2£gu+f2L52-1 2
i P e (r + g)~. (53)

After simplification, there is obtained
8(r + g)zuh -[8(f+ g)z* 1]0.2 -2fgu+2fg+ 1 =0. (54)
After a factor (u - 1) is extracted from this equation, it becomes

3 2 _ 1 _ 2oz t1l
T s A T ° (25
let A=20g+1 and B= 1 and equation (55) may be rewritten
e an T e) equation (55) may re

as

u3+u2—3u-AB=0. (56)

This equation contains a real double~root if its discriminant vanishes,

or
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18 AB®+ 4 AB + B2 + L BY - 27 A%B% = 0. (57)
After simplification we obtain
LB2 4+ (-7 A2 +18A+1)B+ 4 A =0, (58)

This is the conditional equation for the co-ordinates of positions of
zeros to produce frequency characteristics of the type shown in Fig. 25.
The locus of these positions is plotted in Fig. 30.

Tolerance and pass band.—The value of u at which|T|2 is a mini-

mum ean be found by setting

d Bub -8u2+1
du| u? »2fgu+£2+ g2 -1

equal to zero. This process yields
(8ub - 8u2 +1)(2u+ 2fg)
-+ 2rgu+ 2+ g?-1)(32u7 -2 u) =0, (59)
Rearranging, we have
16 u’ + L8 fgul'+32 (r2+gz—1) ul

-16fgu?- (1622 +16 g2 +18)u -2 g = 0. (60)

The real root of equation (60) that is greater than unity gives
the value of u which corresponds to the minimm of 'le. Thus |T|2pin
can be calculated and tolerance will be given by equation (38)

The edge of the pass band in the z-plane, yy, may be computed by
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finding the point uy where |T|2 again equals]!lzhin.
The results for this group of networks are plotted in Fig. 30
and are given in tems of parameters in the s-plane. The positions

M Kl K3

in the case where four poles and one double-zero were contained in the

of their poles are located at -sin I, -sin 3T _ein 57 and -gin 17 as

networks.
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CHAPTER VI

DESIGN OF R~C NETWORKS
BY THE USE OF ELLIPTIC~FUNCTION TRANSFORMATIONS

Elliptie Functions

Elliptic functions may be defined by the following relationships:
It

(61)

de
B = ’
0 R - k2 s:l.nE&
then sn (z,k) = sin¢, cn (z,k) = cos¢ and dn (z,k) = /1 - k2 si.nqu 4

where z 1s referred to as the argument and k the modulus of the functions.
The modulus k is usually amitted in writing whenever its absence causes
no confusion. In such instances elliptic functions are written as an 3,
en z and dn z. These functions are single-valued and doubly periodic,

Their quarter periods are K and jK' givem by

7
8
K_-./ 4 (62)
0 ]1 - ? linzﬂ

and aT
: (2]
d
K= 6

/fl-k-iamie g =

0
where k'= [1 - k2 is the complementary modulus. Thus,

sn (z + 4mK + J4oK') = sn 3, (64)

where m and n are any integers. The quantities K and K' are also
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known as complete elliptic integrals of the first kind,

When k = 0, we have K = %, K' oo, so that sn (2,0) = sin g,
en (z,0) = cos z, dn (z,0) = 1. When k = 1, we have K = oo, K'= .g, 30
that sn (z,1) = tanh z, cn (z,1) = dn (2,1) = sech 3. Thus, when k = 0,
elliptic functions degenerate into ordinary circular functions, and
when k = 1, they degenerate into hyperbelic functions.

The ratio of two elliptic funetions is denoted by the combina-
tion of the first letter of each function, that of the numerator pre-

ceding that of the denominator, e.g.

cd z = Sl (65)
dn z

The reciprocal of an elliptic function is denoted by interchang-

ing two letters which dencte the original function, e.g.

1
sn %

g (66)

ns z =

The following are some formulae useful for calculations herein:

a. Imaginary arguments,

sn (Jy,k) = J se (y, k') (67)
en (Jy,k) = nc (y, k') (68)
dn (JY:k) = de (Y, k') (69)

b. Addition theorems,

snuenvdnv+en venudnu

1 - k2 sn?u sn?v

(70)

sn (u +v)=
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ecnuenv-snudnusmvdnv

o8 o+ w) © 1 - k% sn? sn?v (72)
_ dnudnv-ksmuenusvenv
a4 o b 0= 1 - k2 sn%u m3v (72)
¢, Complex argument.
Assume s1 = sn (x,k), ey = en (x,k), d; = dn (x,k),
s2 = sn (y,k'), ©¢3=cen (y,k'), dy=dn (y,k'),
then
snz=sn (x+ Jy, k)= '1634'301(11’282, (73)
02 + k2 8,2 3,2
- d
s scnlesdy e 1%"39%%4 (74)
022 + kz 312 !22
d - 2
dnz=-dn(x+dy,k)=-—i—-cz-—2-f‘-g—"k sl—:l’sz (75)
ex™ + kz 812 80
d. Special relationships. '
sn (-u) = -en u (76)
sn (ut+t K)=cdu (1)
m(u-r-JK'):%nsu (78)
m(u+K+JK')=%dcu (79)

The Transformation w = sn 2
The transformation w = sn 2 maps a rectangle in the z-plane on-
to the entire w-plane. Since the sn function is doubly periodic the in-

verse transformation is multiple-valued. Each point in the w-plane is
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mapped into an infinite number of points in the z-plane. Repetition
occurs for every LK along the x-direction and every 2K'!' along the y-
direction. Points spaced 4mK + j2nK! apart, where m and n are any in-
tegers, are sald to be congruent. Thus congruent points in the z-plane
are mapped into the same point. in the w-plane.

If the z-plane is divided into rectangles of width 2K and height
2K!', the entire z-plane can be considered as the congruent regions of
any one single rectangle. These rectangles are termed cells just as in
the case of circular and hyperbolic functions where strips of width 2w
are termed as their cells. One of these cells, whose vertices are
located at K + jK' and its points of quadrantal symmetry, is shown in
Fig. 31(a).

The correspondence betwsen the w-plane and a cell in the z~-plane
is shown in Fig. 31(a) and Fig. 31(b). The manner in which cells in
the z-plane are stacked up is illustrated in Fig. 31(c).

Fig. 32 shows how this transformation may be visualized by con-
sidering the w-plane as being an elastic sheet, The real axis is part-
ly split and then folded upward and downward, and at the same time the
extreme upper and lower parts of the plane as well as the imaginary

axis are compressed until finally a rectangle is formed.

The Modified Transformation

The transformation just discussed maps the entire imaginary axis
into the line segment aa', Fig. 31, and its congruent regions. Experi-
ence has shown that in order to benefit from the transformation method,

the imaginary axis should be bent at strategic points., For reasons which
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will be apparent later it is desired to place the point at infinity

somewhere between & and h, and positioned gquadrantally symmetrical to

it. This can be achieved by introducing another transformation.
Suppose it is desired to place s = co at a point aK from the

imaginary axis along a-h., Then this point will be on the u-axis

sn (aK+JK') = % sn (aK) away from the origin in the w-plane. If the

w-plane is mapped into the s-plane by the transformation

L (e0)

where A = i- ns (aK), point aK+ JK' in the z-plane is mapped to the point
at infinity in the s-plane.

Other properties of this series of trensformations are depicted
in Fig. 33. The entire imaginary axis is now mapped into the broken
lines p-a-e-a'-p' and g-a-e-a'-q'. A disgram similar to that in Fig. 34
can be drawn for this modified transformation. The only difference is
that in the present case not only the real axis but also the imaginary
axis is partly split and bent. Such a diagram is given in Fig. 34.

Networks Employing One Row of Simple Zeros in the z-plane
Arrangement of charges.—The modified elliptic-function trans-

formation can be used for designing low-pass R-C transfer functions with
equal-ripple response inside the pass band. In Fig. 35 is shown a
quadrant of one cell in the z-plane. As was shown in Fig. 33, the jw-
axis in the s-plane is mapped into e-a-q, with the part where O<w<]
corresponding to line segment e-a. This portion of the jw-axis is

conveniently chosen to be the pass band.
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The ¢-axis is mapped into e-f-h-q, This 1s the only portion in
the s-plane where poles are permitted to lie. If we place all the
positive charges uniformly along h-f, and place all negative charges
unifromly along a line passing through q and parallel to a-e or h-f,
the potential variations can thus be obtained. This arrangement is
exemplified by that shown in Fig. 36.

The equal-ripple property is more evident when several cells
are shown together, as in Fig. 37. Since there are an infinite number
of cells in both horizontal and vertical directions the effect due to
all charges at a certain point and all its congruent points are identi-
cal. Therefore the potential pattern in every cell is identical.

In the s-plane there must be equal mmbers of positive and nega-
tive charges., Therefore this must also be true within each cell in
the z-plane. Due to quadrantal symmetry this must also hold within
each quadrant of a cell. In Fig. 36, for instance, two negative charges
are completely enclosed by the boundaries. The uppermost negative charge
is shared by this cell and the one immediately on top of it. Therefore
only one-half of this charge can be considered as lying within this
quarter-cell. All five positive charges, however, are shared by this
quarter-cell and the one adjacent to it and on its right. Therefore
only half of each charge lies within this quadrant. By this considera-
tion, within this quadrant there are two and one-half units of negative
charges and the same number of positive charges.

Observations of arrangements similar to Pigs. 36 and 37 indicates

that negative charges should be spaced twlce as far apart among them-
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selves as positive charges. A more precise diagram of charges contained
in one cell is shown in Fig. 38.

¥hen charges are mapped into the s-plane, every half-unit charge
will combine with the other half-unit charge located at its conjugate
polnt to form s unit charge. The final charge arrangement thus conforms
with the requirement that all charges in the s-plane must be of unit
strength., 3uch combination, however, does not take place for any charge
placed st f or d. Also, any charge placed at points like h will be
shared by four cells, and thus only one-quarter of a unit charge lies
in each gell. So charges placed at h, f or d will result in half-unit
charges in the s-plane, Therefore placement of charges at such points
is not permissible. |

Along a=-q, Pig. 35, the potential decresses monotonically as one
approachea the negative charge &t g. Since a~q corresponds to the
region cutside the pass~band, the desired gensral shape of the freoquency
characteristic is obtained.

Numerical sxample.--As a numerical example, the following values

of parameters are chosen:

k = 0031&2’ kzﬂ 001’ & = 005' n = 3’

where n is the number of poles that the final tranafer fumction will

contain, Corresponding to these parameters, K = 1.4124 and XK' = 2,5781.
One cell in the s-plane is indiosted in Fig. 39, which is drawn

approximately to scale. Positive charges are placed at (K + J 0.430),

(K + 51.289) and (K + § 2.148); negative charges are placed at

(0.806 + j 0.860) and (0.806 + J K'). Only positions of chsrges in
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the first quadrant are stated here since others can be located by sym-—

metry. )
Locations of these charges in the s-plane as well as in the in-

termediate w-plane are listed below:

Z-plane w-plane s~-plane
Positive charge K +J 0.430 1.083 0.252
Positive charge K +J1.289 1.780 0.439
Positive charge K +J2.18 2.915 0.876
Negative charge  0.806 + J 0.860 1.002 + J 0.639  0.224 + J 0.154
Negative charge 0.806 +J K bo4y25 oo

The transformation from the w-plane to the s-plane is

W

L5235 -

Charges in the s-plane are shown in Fig. 40. As a final step,
we discard all the charges in the right half-plane. The final transfer
function should have singularities coinciding with charges in the left
half-plane as illustrated in Fig. 41. Hence

1(s) = {82 0:22h * JO.154)(s + 0.224 - 0.154)
- (s + 0.252)(s + 0.439)(s + 0.876)

82 + 0.448 8 + 0,074
8 + 1.567 a% + 0.716 s + 0.097

A plot of |T|? along the imaginary axis based on the function
given above is shown in Fig. 42 which displays the equal-ripple low-

pass characteristic.
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Functions that have the desired s arities.--The potential

due to charge arrangements of the type shown in Fig. 37 can be expressed
in closed form. First let n be odd. Consider the function nn?(clz, k)
in the Cyz-plane, where Cl is a constant and ky is another modulus,

both to be determined later. This function consists of an infinite
number of horizontal rows of double zeros and double poles spaced Ky'
apart along the Cyy direction. Zero and pole rows alternate with each
other starting with one zero row passing through the origin. Within
each row, poles or zeros are spaced 2K1 apart. Constant Ky and Ky' are
complete elliptical integrals of moduli ky and ky'= /I = 32 respec-
tively. This singularity arrangement is depicted in Fig. 43.

Zeros of the function sn?(Cy3z, ky) can be shifted to any desired
positions by adding a proper constant to it. In particular, the func-
tion

m?(Cyz, k) - sn’(ak) + § K;*, ky) (81)

obviously vanishes at Clz = aKl + ] Ki and gll its ccngrvent points.
Thus function (81) has the distribution of singularities as shown in
Fig. L4. This process of shifting zeros does not affect the positions
of poles,
Similarly, the function
'

K
anz(clz, ky) - mz(Kl"' j% s ky) (82)

will have its zeros located at Ky + J ELL and all its congruent points,
2

Tts singularities are depicted in Fig. 45.
Finally if function (82) is divided into fumction (8l), the poles
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of function (82) will cancel with those of function (8l), the zeros
of function (82) become poles of this new function, and the zeros of

function (8l) are also zeros of this new function. Thus the function

snz(clz, ky) - anz(axli- 3K )

2 8
sn?(C1z, k1) - sn2(Ky + J %—. k1) (63)

will have singularities as shown in Fig. 46. It is clear that this
arrangement 1s similer to that in Pig, 37. Expression (83) may be
reduced to
5 _
mz(clz, k].) - EIZMZ(E.KI, kl)
T[8(z)] T[~8(2)] = - (84)

anz(clz, ky) - %‘I

In order to make equation (84) capable of representing the charge
distribution in the z-plane k; must be so adjusted that the dimension
of n cells of modulus k; in the Cyz~plane is proportional to one cell
of modulus k in the z-plane, and Cy be so adjusted that those two cells

are identical. Thus

iy (85)

and
5o,
C1 '
This adjustment of k; and Cg is illustrated by Fig. 47.

For a given k (and thus K and K') and n, the new modulus k can

be found by its nome q;, which in turn is given by
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G = K = e nk (87)

EKnowing a kl may be elther calculated by infinite series or found

from a table.

When n is even, it is necessary to place one zero on the real
axis. Therefore the function representing it is slightly different.
Expression (82) need not be changed since whether n is even or odd
poles are all equally spaced about the real axis and no poles may be
placed on it. Expression (8l), however, must be modified to read

sn?(Cyz, k;) - sn(ak), k;). (e8)

This places one zero on the real axis. The singularities of function
(88) are shown in Fig. 48. When function (82) is divided into function

(88), the new function

snz(clz, ) - unz(axl, k)
8n2(Cy%, k) - sn?(Ky+J f_ﬁ; s k1)
2

(89)

will have singularities as shown in Pig. 49. Function (89) may be sim-

plified to read

2(Cyz, ky) - sn2(aky, k)
Bn 152 1 an 3% A . (%)
sn“(C13, k1) - fq

il

T(s(z)) T[-8(z)]

Tolerance and attenuation outside the pass band.-—Consider the

case when n is odd. In equation (84), the first term in both the numer-

ator and the denominator, anz(clr., k1), is negative along the imaginary
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axis, and is increasing numerically from zero to infinity as Cyz is in-
creased from zero to JK;'. The second term in the numerator is always

greater than the second term in the denominator, or

1
X% en?(aky)

’ (91)

—
ky
since sn(akKy) < 1. Therefore |T|2 is monotonically decreasing along
the imsginary axis as C;z is increased from zero to JKy'. The poten-
tial along the remainder of the axis will merely be the repetitions of
this vardiation.

It follows that maxima occur at every point 2mK;' from the origin,
where m is any integer, and minima occur at every point midway between
two maxima. Therefore the maximum potential along the imaginary axis

1s
17 ek = 712 = m (92)
and the minimum is
7|00 = |T[3m0 = 1. (93)
Hence,
Tolerance = £ = 20 log{%:::—:} = 10 log [m] . (94)

When n is even, the charge arrangement is in essence the same as when n
is odd. The only difference is that in one case charges are shifted in
the vertical direction by an amount equal to K;' from the other. There-

fore for even n the minimum points are located at the origin and points
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<mK; ' away from it, while maximum points are located at points like jK;'.

From equation (90) we have

|T|2pax = 17133k = 1 (95)
and
|71 %0in = IT|% = Ky sn?(aky, k). (96)
Hence
Tolerance = £ = 20 log[_lﬂ.;%_] =10 log[ i ] (97)
Tlatn | iy sn?(aky ', k)

which is the same as equation (94).
If it is desired to find the attenuation at a certain point

outside the pass band, it is first necessary to locate its correspond-

ing point in the z-plane. Let the frequency in question be «5. Then

w2

Jw, = T -
]F sn?(aK, k) ~ "2

L]

Square both sides and put w,= 80 Z,, to obtain

2
.-(.dzz = 1 = (‘2)
= - ane
2 ek, ) 2
and solve for sn(zp). Thus,
-

sn?(z,) = (98)

(cuzz - 1) k2 en?(akK, k)

Let 25 = j K' + bK; then
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sn (zp) = sn (JK'+ bK) =

-

ns (bK).

Substitute this expression for sn(ap) into equation (98):

sn (bK) = El okt 4 sn (aK). (99)

)

From this equation b can be found. Substitution of C,z, = bK; + JKj'
into equation (84) or (90) gives the attenuation at «,.
As an illustrative example let it be desired to find the magni-

tude of |T|2 at «w, = 2 for the numerical example of Fig. 41, in which
¥° = 0.1, a=0.5 n=3, K =1.6124, K'= 2.578L.

It is found that K

g = e °K = 0.1873

and
kl = 0.9782-
Since
K
sn(E Y I
I 1+ k!
we have |
sn (aK) = sn (0.5K) = 1 = 0.7162.
[T+ 0.9487
Thus _
sn (bK) = 0.6202,
and
D S Y
900

from a table.



So

ky2 an?(bKy, k)
In equation (84)

1
lq® an*(aky, ky)

= 1.2625

and

1 _
kl "1.0223.

Hence

2 0 1-&3 - 1.262 = 00177 ol
I71%52 = 1.a399‘-_§‘- 1.022 -ﬁm-—- 0.425.

From equation (94)

PR = 1 = 1.235.

2 - = L -
|’i'| max 1.235
Also, from the network function

s? + 0.448 s + 0.07L

snz(clzz, kl) £ 1 = 1.4399.

e) = —7 1.567 32 + 0.70L6 s + 0.097

we have
7|42 = 0.200

'lemax - ITI 20 = 0.582.

75
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ITi%;,  0.200 o~

T R 0.582

which agrees with our previous calculation.

Selection of the modulus k.--At this point a question msy be

raised: What value of k should be taken for the transformation from the
s-plane to the w-plane? This question can best be answered by inves-
tigating effects of changing the value of k.

For a given value of k, and thus X and K', except for very low
tolerance, there exists a corresponding value of a that gives the speci-
fied tolerance inside the pass band., Therefore k is not a controlling
factor over the tolerance. If there are two values of k, and the a's
in both cases are so adJusted that the tolerances are the same, although
their maxima and minima occur at different values of w in the s~plane,
they have the saeme msximum and minimum values as well as the same band
edge. What may be affected by the different values of k is the part of
the characteristic that is outside the pass band. But this effect is
expected to be very slight. This may be inferred by observing that
despite the fact that two rectangles may have different proportions,
the variation of potential along that portion of the upper horizontal
side of a cell corresponding to p-q in Fig. 33, for two values of k, do
not differ from each other materially since the charge arrangements
are similar in both cases and any discrepancy will be of only second
order,

Fig. 50 gives the attenuation at w=2 for different tolerances

for n = 3 when k is allowed to assums two extreme values, The difference
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is so little that the slight improvement in the steepness ocutside the
pass band hardly justifies the use of high value of k which will lead
to inconvenient slement values,

As was shown in Fig. 33, the region in which we place poles is
that part of real axis between k sd(aK) and sc(aK). As k is increased
both of these quantities approach unity. The result of this is that all
poles will jam into a very narrow region in the neighborhood of s = 1
in the s-plane, which will require elements of extreme siges in the
final network.,

When k is very amall; k sd(ak) approaches k sin !-é"- and sc(ak)
approaches tan Egl. Thus one velue may approach zero while the other
may become unreasonably large. Poles which lie somewhere between these
two points may be scattered very far apart in ratios which also result
in inconvenient element sizes.

Thus the choice of the value of k ia the one that will scatter
the poles in a nearly uniform msnner. One can not really pin down a
single value of k which is indisputably superior to all others since
pole distribution is basically somewhat arbitrary for R-C transfer
function. As an example, a value of kz equal to 0.l renders reasonable
pole distributions for almost all values of a.

Selection of n.-—Increasing n increases the number of cells that

are to be included in one rectangle which is te be transformed into the
entire s-plzne. This reduces the height of each cell, which is also
what happens when k is increased, Therefore, so far as the geometry
in the Cyz-plane is concerned, the effect of changing n is similar to

that of changing k, except that n can only be an integer.
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It follows that if two sets of values of n and k are adjusted
so they have similarly proportioned cells in the Cjz-plane, the value
of a for a particular tolerance will also be the sams in both instances,
The set with higher value of n (lower k) will have its final rectangle,
which is to be transformed into the entire s-plane, relatively, higher
than the one with lower n. But for the set with a smaller k, b will be
larger for the same Ws e This means the point in the z-plane which
corresponds to @=¢j, lies farther away from the imaginary axis when n
is larger. This gives rise to an additional increase in .staepnass out-
side the pass band aside from that due to reproportioning the cells in
the C;z-plane by using a higher k alone as was discussed in the previous
section. Therefore increasing n improves the steepness outside the pass
band to a -greater extent, although still slight, than increasing k. The
price is paid of a greater number of elements, Fig. 51 ;s a plot of at-
tenuation at w =2 forn = 3 and n = 20 when k2=- 0.1,

It is clear that the improvement of the low-pass characteristic
obtained by increasing n is still so little that it hardly seems worth
the price we pay in additional elements, However, there is another
consequence due to increasing n, and that is the relative bandwidth,
Fig. 52 shows the arrangement of poles for n equal to 1, 3 and 5 while
the proportion of cells are maintained to be the same. If these rect-
angles are drawn so they all have the same width, it is clear that the
portion that is to be mapped into the pass-band increzses as n is in-
creased, while the portion that is to be mapped into non-pass band region
remains unchanged, Thus it is expected that relative band width is

increased when n is made larger.
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Since the bandwidth 1s normalized to be unity in this treatment,
an increase in relative bandwidth is equivalent to a movement of poles
toward the imaginary axis. This is illustrated by the example given in
Fig. 52.

Networks Bumploying Two Rows of Zeros in the z-plane

The method used in the last section employs a single row of zeros
parallel to the uniformly spaced row of peles in the z-plane, The
ability and potentiality of such an arrangement have been studied.

One common method of improving the cut-off characteristic of R-C
low pass networks is to place zeros along the real frequency axis, The
use of this device and of the elliptic-function transformation yield the

following charge arrangements.

Charge arrangement in the z-plane.--In Fig. 53(a) is shown a
quarter of a rectangle which is finally to be mapped onto the entire
s-plane. The charge arrangement in this figure is of the type used in
the last section. This arrangement will be modified such that a zero
will eventually be placed on the imaginary axis. The mapping geomstry
will be kept unchanged. Region a-e will atill be the pass band, region
h-f the region where poles are allowsd to lie and point gq the point
at infinity.

If it is desired to place a zero along the Jw -axls in the s-
plane, a negative charge must be placed between a and q, say cK from
point a. This is shown in Fig. 53(b). Accompanying the addition of this
zero it is desirable to bring in also the rest of the complete row of

zeros parallel to a-e which includes the zero at z = cK + JjK'.
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The reasons for bringing in a complete row of zeros are: (1)

The addition of a zero alone upsets the equal-ripple characteristic
along a-e¢; (2) The usefulness of the elliptical-fumction transforma-
tion depends mostly on our being able to write the potential function
in reasonably simple closed form. As was seen in the last section this,
in turn, depends on the possibility of dividing the rectangle into
several smaller rectangles with identical charge content.

Thus the desired arrangement should be as illustrated in Fig.
53(¢c). The frequency characteristic of R-C networks based on this type
of charge arrangement will take the general form shown in Fig. 54. As
before, pass~band angular frequeney is normalized to be unity. Point
@y, beyond uhich|T|2 does not exceed a certain magnitude, may be de-
fined as the lower bound of the stop-band. Definitions of other quan-
tities are self-evident from the figure.

Functions with desired singularities.—To write a function that
will yield singularities coinciding with charges in Fig. 53(c), for %/,

odd, consider the following functions:

sn?(Cyz, ky) - m?(ak; + K, k) (100)
n?(Cy2, ky) - sn?(cky + JKy', ky) (101)
an?(Cyz, ky) - sn’(K; + 4 .K_i.'., k) (102)
an?(Cyz, kq) - sn?(Ky + ;13_?_', ky) (103)

Their singularities are depicted in Fig. 55. PFor each function

only a part of the first quadrant is shown.



85

Thus the function

[en2(Cy 2,k )-8n?(aky + JK; ! Jkp)|[502(Cy 2,k )-an2(cKy + 3Ky ,kl)]

[s02(Cy 2,k )-sn2(K, + 3%-'-. ky)|[502(C, 3,k )-em2(K, + jafl* )]

(104)

will have singularities as shown in Fig. 56.
Finally, if the modulus k,, whose quarter periods are Ky and K ',
and C; are so adjusted that "/, cells of modulus ¥ are included in one

cell of modulus k which is to be mapped onto the entire s-plane, or

nk, ! X! K
1 i S
= = K, (105)
2K, X Wiy

function (104) will be the sought-for expression.

Pass-band tolerance and stop-band attenuation.--Function (104)

may be written as

2 1
klzsnz( aky, ky)

1l
2K '
a2, )

T(s)T(-s) =

snz(Clz s ) -

1

2sn2(aky, k
X . (1 1 k) (106)

an?(RL', & 1)
4

snz(cls, ) -

The maximum of this function along the jw-axis occurs when s=0,

where sn(Cyz, k3)=0. Hence,
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an?(FL', 1 ) an2(PEL', 1y 1)
L + L kl (107)

IT| 2pax =
kgh an?(aky, lq) sn*(cky, k)
Its minimum occurs when C,2 =J1§K1‘, where m is any odd integer, at

which snz(clz, kyj)=w . Hence

IT|%n = 1. (108)

Thus

Tolerance = € = 20 log ITIW
|T| min

an2(5, 1 1) (L, i 1)
ky% sn2(aky, ky) sn?(cKy, ky)

for odd /5.

A similar snalysis for even B/, gives

'nz(clﬁ » kl) - 'n2< axl ’ kl)
T(8)T(-8) = = 1
sn (Clz, kl) e dﬁi Kl' " ')

cnz(clz, k) - anz(ckl, kl)
% (110)

1
wi{Cy%s ) - TET )
= Xy

and

Tolerance = &

1
> Ka ! T
snz(aKl, k1) snz(cﬂl, k) dnz(_}:_, k') dnz(%., k') |

= 10 log (111)



as

Now if it is desired to calculate the attenuation at any parti-
cular point, w,, outside the pass band, let the corresponding point in
the Cjz-plane of this point be xKj from point a, Fig. 53, along a-q.

Substitute Cyz = xKy + jK;' into equation (106),

1 _ 1
k2 sn2(xKy, ki) kg2 en(aky, ky)
1 1

ky? en’(xky, Ky ) dnz(%-’-, )

T(s)T(-s) =

3 1

SU —

k2 sn®(xky, ky)  lgan*(cK;, k)
1 LI |

g2 sn2(xky, By)  gn?( 2Rl :1', kL)

®

anz(xxl, ) - ﬂnz(ﬂxl: ky )

2 1 2¢K)" 1
sn“(xKy, k1) — El-idn (T-; k')

an?(xK, , k) - en(cK;, k)

2XK, . 2;}_]'._'_ '
8131(].1‘1) klzdn(f&’kl)

X

Hence

|‘1‘|21 [snz(xKl,li - snz(aﬂl,kl)][snz(xKl,l&) - snz(cKl,kl)J . (112)

1 ' 1 :
1l [Sn2(xff1:k1) - ;17‘“‘2(%’#1’)][5“2(“1:"1) L dnz(s_il_’w)}



89

With quantities a and ¢ given, function (112) is the ratio of two
quadratics in sn?(xKj,k;). This makes the investigation of the behavior
of the portion of the response characteristic outside the pass band very
simple. In particular, «w, can be located by differemtiating (112) with
respect to anz(xxl,kl). After setting the derivative equal to zero and
solving for anz(xxl,kl) » the argument xK, is the distance from point a
to the point that corresponds to 8 = j w, in the s-plane. By the same
token wy can be located by equating (112) to maximum found at «, and
golving for snz(:d(]_;kl). The argument xK, now gives the distance fram
a to the point..that corresponds to the peint s=j«,, in the s-plane.

Design data and considerations.-—By the same reasoning given in

the end of the last section it may be inferred that, by the use of this
type of charge arrangement, the number of poles, n, has only very slight
effect on the cut-off characteristic. This is specially true when n is
not small. Therefore an investigation of a particular set of n positive
and n negative charges will give a good indication of the gquality of this
type network.

For a fixed pass-band tolerance the two rews of zeros may assume
different relative positions, provided they satisfy certain conditions.
Fram equation (109), for any value of a that lies within a certain limit,
there exdsts a corresponding value of ¢ which will give the same toler-~
ance. However, the stop band attenuation and «, will be different for
each set of different values of a and c.

Therefore, for certain pass-band tolerances same precalculated
data about their stop-band attenuation and «y will be very informative.

Figs. 57, 58, 59 and 60 are plots of stop-band attenuation, «, and ¢ for
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different values of a for tolerances of 3db, 2db, 1db and idb. In any
case n 1s taken ss 6 and ¥ as O.1. Semple computations for these curves
are given in Appendix I.

The curves in Figs. 57 to 60 are plotted for the type of charge
arrsngement a8 shown in Fig, 61. Corresponding zeros and poles of these
charge sets in the s-plane are shown in Fig. 62, In the process of
realizing this network, the right half-plane singularities are discarded.
This lesves two half-unit charges on the ] «w -—axis. Since this is not
physically realizable it ie necessary to double all charges (Fig. 63(a))
and two networks must be constructed, conmnected in tandem and isolated
by & vacuum tube, One takes in the two single zeros on the j «w -axls
and one half of each double-singularity (Fig. 63(b)) and the other takes
in the other half of each singularity only (Fig. 63(c)). Thus tolerances
and attenuations of final networks must be twice those given by equa-
tions 109, 111 and 112, This has already been taken into account in
the curves in Figs. 57 to é0. In other words, these curves give com~

bined tolerances and sttenuatlions of both stages.

Networks Employing One Row of 3imple-Zervs and One Row of Doubls Zerus
The difficulty caused by half-unit charges on the imaginary-

axis may be overcome by a2 different method than doubling the charges

in the left half-plane, namely, by doubling the charges in the row closer

to the pass band before charges are mapped onto the s-plane, as shown in

Fig. 64. This leaves two unit charges on the imaginary axis after right

half-plane charges have been discarded. This 1s shown in Fig. 65. Some

conjugate pairs of double zeros will be left in the left half-~plane.
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But this is not objectionable. Accompanying this process, the number
of poles must be increased accordingly.

The reasons for doubling the complete row of negative charges
rather than just the one on the jw-axis alone are precisely the same
as those for bringing in a new row of negative charges in Fig. 53. It
is evident that now n must be a multiple of 3. And the singularities
required in each cell in this case are 1.5 times those in the previous
one, But since it 1s necessary to construct two networks in tandem
when half-unit charges are left on the jw-~axis, we actually eliminate
25 per cent of the poles when this new schemes is used.

Functions with desired singularities.--Following the procedure

by which equation (104) was arrived at, the function that possesses

singularities coinciding with charges shown in Fig. 64 may be written

snz((}ln, kl) - emz(al{l*'.j!l‘, kl)
anz(clz, k) - snz(Kl + j%:., k)

T(s)T(-s) =

2 2 o
[sn (Cy2z, k) - sn=(cKy + JKy', kl)]
snz(Clz, kl) o 8112(}(1 + .i__K‘]?' l » k].)

X

. 1
sn?(Cyz, k) - sn2(Ky + J%tl—': k1)
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2
sn<(Cyz, ky) - klﬁ_mz%aﬂlg ky )
: §
dnz(xl Iy ! )

=

snz(clz, lrl) -

1 2

[832((;12, kl) o kli_ nni_(cxl, k]_)
1
Ky!

dnz( ; kl')

x

en?(C,z, k) -

X .3 (113)
2, )

for odd /3, and

snz(clz, k) - ﬂnz(ﬂlx k'_l_)
snz(clz, kl) - mz(Kl + 35%:.. k)

T(s)T¢e) =

[anz(clz, kl) - an(cKl, kl)]z

x )
anz(cls, i) - ana(xl*' JE!'—*: k1)
2

i

ACURTELSCTR Y

.

3} [sr2(c12, ¥q) - sn?(aky, k) ][en2(cy2, ky) - o (cky, "Q]z

on?(Cy z, ky) - 61, [8112(0 z, ky)~ % ]
[ v an®(2L, 1) J T w® )

% 1 (114)

snz(clz. ky) - -
dn (5:1 k')
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for even 1/3,

The modulus k¥, whose quarter periods are K; and K 'y and Cl
must be so adjusted that
nky ! K' K

Ry = X and —él—-' = K. (115)

Pass-band tolerance and stop-band attenuation.--(One of the maxima

of function (113) along the jw-axis occurs when s =0, where sn(Cyz)=0.
Hence
Ky! Ky!
dnz(—ﬁ- 1) @l k) an(ZL, i)

7| %pax = . (116)

Its minima occur when Cyz = jmK;', where m is any odd integer, at which
points anz(clz, ky)=oo. Thus

IT) 2m4n = 1. (117)

Hence, when N/3 is odd

Tolerance = & = 20 105[..'3'3_“.;..
T) atn

2K " 5][1

an’( L, k1) e, i) e, i)

= 101 : 118

A similar analysis from equation (114) will give, when N/5 is even,

Tolerance = £
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1

=10 log
mz(‘t klr)anz("l kl')dn2(5"1 key')an?(aky kg Jend(cky k) J.

(119)

The potential at any point outside the pass band may be found by
substituting Cyz = xKy + JKy ', where x has the sams meaning as before,
into equation (113). Thus

@2(%‘_} kl') mZ(Ejfl, kl') dn2(26n__1) kll)

)2 =
klé mz(axl, k) an‘*(cxl, ky )
sn2(xK), ky) - sn2(aky, k)
snz(xﬁl, kl) - kl%‘ dnz(x—t—'-’ kl')
2 — R
. an (xKl, kl) an (BKJK" kl)
sn?(xKy, k) - Lo (2, 1, k')
o2
X & o . (120)
anz(xl{l, k]_) - ;i—'zdnz(-é'—-, q)
Hence,
2 _ 1

Toex a1y - e 1)

X

2 il 2K
sn”(xKy, k) - dn (=, Ig ')

[snz(xKl, kl) = an(cK]_, kl)]z
sn?(xKy, ky) - qlz““ (5K1 e *)

(121)
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The point corresponding to s = ju‘ in the s-plane may be found
either by setting the derivative of expression (121) with respect to
snz(xxl, ki), equal to zero and solving for anz(xKl, k1), or by a cut-
and-try method. After the potential at this point is found, the point
corresponding to s = Juwy in the s-plane, which has the same potential,
can be located readily.

Design data.--The stop-band attenuation and the value of Wy for
different positions of the two rows of zeroa when tolerances are held
fixed at certain practical values are plotted in Figs. 66, 67 and 68,
Sample computations for these curves are given in Appendix I. The value
of n in these figures is taken as 9 and modulus k'?' again 0.1. Charac=
teristics for n greater than 9 and other values of k do not differ

materially from these, These curves can be used directly for design

purposes.

Conclusions

The modified elliptic function transformation can be used to find
R-C network functions with equal-ripple characteristics in both the pass
band and the stop band. By properly arranging charge rows in the z-
plane the potential can be written in closed form. Three cases have
been investigated: one includes one row of zeros (equations (84) and (90)),
one includes two rows of zeros (equation (104)) and one includes one row
of simple zeros and one rows of double zsros (equations (113) and (114))
in the z-plane. From their potential expressions, tolerance and stop-
band attenuation as well as stop-band angular frequency can be calcu~-

lated for any values of k and n.
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For each case investigated the positioning of zero rows as well
as their associated design parameters, viz. stop-~band angular frequency
and stop-band attenuation, are presented in the form of curves for some
practical values of tolerance. They are shown in Figs, 50, 51, 57, 58,
59, 60, 66, 67 and 68. An example for the use of these curves are given
in Appendix II.

It is found that the values of k and n have only slight effect on
the low-pass characteristics. The cholce of these values, therefore,
depends on other practical considerations. Curves for other values of

k and n may be computed and compared.
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APPENDIX I
SAMPLE COMPUTATIONS

For networks of the type shown in Fig. 53.-—A sample series of

computations will be given here to i1llustrate how points in Fig. 57 to
Fig. 60 are obtained. They correspond to those networks that have two
rows of zeros in the z-plane, as shown in Fig. 53.

Since these curves are computed for the values
n=6 and k2 = 0.1,
corresponding to these values, one finds

K = 1.6124 and K = 2.5781.

From equation (87), we have

<K'
qlﬂ- e"zx =001871ll
From the table, one finds

kl = 0- 97&1.5.

Suppose that it is desired to calculate all design parameters

for a pass-band tolerance of 1 db and a value of a equal to 0.80. From

equation (109), we have

2/F" 235
dn (Tt kl') dn (—r: l’i)
10 log = 0.5

ki sn?(aky, ky) sn?(cky, k)
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1
& — = 10%:925 = 1 059254,
ky m(aKl, kl) sn(cKy, kq)

After substituting the values
dn (Ei_', ky') = 0.996769
dn (_3_‘;"1_', ky') = 0.981318
sn (0.80K), ky) = 0.991437
ky = 0.978148
there is obtained
an (cxl, kl) = 0.991437,
which gives
e = 0.67677

by the use of a table.

After substituting
sn(ak,, k) = 0.982947
sn?(eKy, ky) = 0.947673

L an25L k) = 1.019037
o? 4 0 =

, ky1)=1.003241
klz L 1
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into equation (112) and setting

d Ty
d en<(xKy, ki) IT] zm
equal to zero, it is found that the point corresponding to «w, is
sn?(xX, , k) = 0.972386.

This, in turn, gives

—2  -0.181219
12 %

which corresponds to a stop-band attenuation of

20 th= 14,828 db.
0.131319

To find w,, from equation (112), we have

[sn2(bx]_, li - 0.98291.7J [anz(bxl, kl) - 0.%7673]

=0,181319
[mz(bxl, ky) - 1.019037] [mztbx,_, k) - 1.003241]

and

snz(bltl, kl) = 0,92,572.

Thus
b = 0062?38

From a table. From equation (80), we have
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sn (bK + jK', k)

Jwb = T
/ - sn?(bK + JK', k)
k2 sn?(ak, k)
So
L sn(ak, k .
b sn2( X, k) - sn2(bK, k)
Since
sn(aK, k) = 0.95342
and

sn(bK, k) = 0.84012,
there is obtained

Wy = 2.1150.

For networks of the type shown in Fig. éL.--In this section, a

sample series of computations will bes given to illustrate how curves in
Figs. 66, 67 and 68 are obtalned. The singularities of these network
functions are shown in Fig. &4 and Fig. 65 in the Cjz-plane and the
s-plane respectively.

Since these curves are computed for the values

n=9 and ¥ =0.1,

_we have, again
kl = 009?&15

as in the preceeding section.
Again a sample set of values of design parameters for a pass-band

tolerance of 1 db and a value of a equal to 0,80 will be calculated here.

From equation (118), we have



25 1) @P( k) @l )

10 log P =1
k& en?(aKy, ky) snb(cK), k;)

or

dn (5";—', ky!) dn (%—'-, ky ') dn (2L, iy 1)

= 100.05 = 1,12202.
k13 sn (aKl, kl) anz(cll, kl)

Substitution of
dn (E%_, k') = 0.998521
dn (5)5_', kyt) = 0.989013
dn (i:Lkl'J = 0.979596
sn (aky, ky) = 0.991437
g2 = 0.935866

into the equation above gives

sn?(cKy, ky) = 0.929237
and

sn (cKy, k3) = 0.963969.

By interpolating values given by a table of elliptic functions, there is

obtained

c = 0.6363%.




Substitution of
sn?(aky, ky) = 0.982947

sn?(cKy, k1) = 04929237

_l_dnz(i, I f) = 1.022339
K2 2

1 5Ky ' oty = 1.002962
FcInz(_é_,l) 1.0029

into equation (121) gives the relative magnitude of |[T|2 outside the pass

band

|7j2 [an?(xKy , ky)=0.982947 | [sn2(xKy k) - 0.929237]
(TPnax  [sn2(xK1, ky)-1.042089en(xky, Iy )~1.022339][n? (xKy , )y )-1.002963]

This expression is found by cut-and-try to have a maximum at

which corresponds to wg,. This maximum is

which, in turmn, gives

Attenuation = 10 log

1__ |
0n18850| - M'
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2
Again by trial-and-error method it is found that IT| also

K
assumes g valus of 0,18850 at ' max

en?(xKj , h:l) = 0.84056
which corresponds to @y, the stop-band. Thus
b = 0,51278.
Substituting
sn (aK, k) = 0.95342,

and

into the equation

sn (aX, k)
W=
| sn2(ak, k) -~ sn?(bK, k)

gives

Wy = 1.5554.




APPENDIX 1I
BUMERICAL REXAMPLES

Example 1.-~It is desired to design two identical interstage R-C
networks to be used in the first two stages of the forward circuit of
a feedback amplifier. The networks are to have a total insertion loss
of not greater than 5 db below 4LO cycles per sscond. The total loss
at 4.4 ke, however, must be greater than 35 db.

Since the specifications of these interstage networks call for a
low-pass R-C filter function with a drop of approximately 6 db per octave
outside the pass band, it may be anticipated that the use of a network
of the type shown in Fig. 20 may be attempted.

Choose the tolerance to be 1 db, From Fig. 22, it is found that

a = 0.275
and

wp = 0.756.
Thus, we have, the network function for cne single interstage

E2 s +0.275 .
By (s + 0.924)(s + 0.383)

T(s) =

The insertion loss of this function at zero frequency is

20 log[ 0'923.27;;'283 :l = 20 log (1.287) = 2.19 db.
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At a frequency one decade beyond the pass band, wW=7.56,

. = E2__ 0.275 + 37.56
E1 (C.924 + 37.56)(0.383 + 37.56)
and
E2 I2 - 57.229 _ 1
El 58«%7 x57.30° 580079

This gives the insertion loss at w=7.56 to be 17.64 db. Therefore
this function satisfies all requirements and may be used.

Finally, since the pass-band angular frequency must be 21rx,L0
= 2764, the actual network function can be obtained by replacing s by
'5'7%1; . This yields

2764(s + 760
T(s) = s + 2554)(a + 1059)

Example 2.-~As an example for the application of data obtained
in Chapter VI, a network function will be calculated based on the in-
formation contained therein.

From Fig. 58 it can be seen that if a value of a equal to 0.65
is chosen, _

c = 0.5677.

The pass-band tolerance will be 2 db and the stop-band attenuation will
be greater than 24.6 db for w>2.15.

For this network function, poles must be placed at

K‘ Kl KT
+ X' + 3K
K + JK! K + 3250 K + 22Kl

iz T 12
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and zeros at

ak + J-;‘-'-, K + J-;E-'-,
ak + JK', ¢k + jK°.

The position for these singularities in the w-plane will be

sn (X +J%)=1.0208 +30
Kl

sn (K +-JE— ) =1.1899 +j 0
en (K + 3250) = 1.5375 + § 0
en (K +j—g!-)=2.0568+30

m(xﬂ%) =2.6575 +3 0

11K’

—-1-2-—,=3.0979 +J0

sn (K + J

for the poles and
sn (aK + j’;—')= 1.1789 + J 0.4539

sn (cK + j%l') = 1.0912 + j 0.5391
sn (aK + J K') = 3.6826 +J O

sn (¢K + J K') = 4.022, +] O
For the geros.

In the s-plane, by the use of equation (80), poles are located at

0.2885, 0.3414, 0.4595,
0.6723, 1.0424, 1.5559,
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and zeros at

003286 + j 0.1-‘1'31) o
0.2986 + J 0.1654,

0 + 3 2.4850,

The singularities listed above are arranged in the same sequence
as before. In all three planes only the singularities in the first
quadrant are indicated since they are the easiest ones to handle. Other

singularities can be located by symmetry.
By taking the singularities in the left half-plane only, the

network function 1s formed; hence

(s +0.329 + J0.143)%(s +0.329 - J0 143%(s +0.299 +30.165)2
(s+0.299 - 30.165)%(s + J2.485)(s - 42.485)

(s +0.288)%(s +0.341)%(8 + 0.459)%(s +0.673)2(s + 1.042)%(s +1.556)2

T(s)=

) (824 0.657 8 +0.129)2(82+ 0.597 8+0.117)%(s2 +6.180) )
(8+0.288)2(s +0.341)2(s+ 0.459)2(s + 0.673)2(s + 1.042)2(s +1.556)2

This function has a value at s =0 equal to

0.129°x 0117 6.180

7(0) = = 0.5814.
0.288° x 0.3L1%x 0.456%x 0.673°x 10422 x 1.556%
At 3 =Jl, the band edge,
1.136 x 1.190 x 5.180
= 0.462.

POV T T * 1.3 » i35 2.086 X 3.4
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Thus

Tolerance = 20 log T_(OL’ = 20 log(l.259) = 2 db.

T(J1)

At 8 =) 2.15

22.19 x 21.95 x 1.557

132 15)| =TT A W ST R S KT = 0-03s.

Therefore,

Attenuation = 20 mgl—r@)——’ = 20 log 16.86 = 24.6 db.
T(j2.15)

Both the tolerance and the stop band attenuation obtained here

check with values given by Fig. 58.



8= g4 Ju
E =X+ Jy

Vau+ v

T(s)

ng

APPENDIX III
LIST OF SYMBOLS
Modulus and complementery modulus.

Ccmplete elliptic integral of the first
kind of moduld k and k' respectively.

Complex-frequency variasble,

Pass-band angulsr frequency.
Stop~band anguleyr frequency.

Transfer functica.
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