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ABSTRACT 

Transfer functions that are realisable by R-C networks are those 

whose poles lie on the negative real axis and are simple. This is the 

additional restriction that is imposed on all R-C network functions be

side all criteria that govern the physical realizahility of network 

functions of any type. The approximation problem for the synthesis of 

R-C networks is, therefore, the finding of a rational function that 

approximates certain prescribed characteristics and at the seme time con

forms with the restrictions on locations of poles of these functions, 

The circuitry part of the complete synthesis procedure is considered as 

a separate problem. The complete synthesis problem is considered as 

solved once the rational function is found. 

A survey of work done in association with the approximation pro

blem is presented* This includes the method due to Guillemin and that 

due to Matthaei. Guillemin *s method consists of a change in scale and 

a Fourier-series approximation of a modified function. This method is 

applicable to the synthesis of characteristics of any type. It also 

serves as a proof that R-C networks are capable of reproducing frequency 

characteristics of any type. 

Matthaei1s method enables one to produce equal-ripple frequency 

characteristics of both the low-pass type and the band-pass type. It 

makes use of the potential analogy concept and a technique that shifts 

all poles to the real axis. 
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The method of potential analogy is discussed in detail. Its 

potential usefulness in connection with the approximation problem of 

R-C network synthesis is discussed. The usefulness of the method of 

conformal transformation is emphasized* Conditions governing the 

validity of this method, the necessity of the existence of certain 

kinds of symmetry as well as its limitations arc pointed out* 

Conformal transformations are used to solve several approxi

mation problems in the synthesis of low-pass R-C networks. In par

ticular, two types of transformations are used—the trigonometric or 

hyperbolic functions and the elliptic functions. 

z 

The transformation s = sin £ is used to map the entire complex-

frequency plane into strips of width of 4TT in another complex plane. 

All poles are placed uniformly along the real axis in the transformed 

plane and the function representing these singularities can be written 

into one single term and the algebra is greatly simplified» The fol

lowing groups of network functions haw been investigated on the basis 

of this simplification. 

(1) Networks containing two poles and one zero with poles 

spaced V units apart. 

(2) Networks containing three poles and one pair of conjugate 

2 ^ 
zeros with poles spaced —*— units apart. 

(3) Networks containing four poles and one double zero with 

poles spaced ~ units apart. 

(4) Networks containing four poles and one pair of conjugate 

zeros with poles spaced ̂  units apart. 

In cases (1) and (3)« zeros are placed along the real axis. In 
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cases (2) and (4) , loci for the co-ordinates of zeros that give equal-

ripple characteristics in the pass band are determined. In all cases 

network functions are written in closed form. From these functions, 

expressions for tolerance in the pass band and pass-band angular fre

quency are derived. These parameters are calculated for different 

locations of zeros and plotted as curves« They are given in terms of 

co-ordinates in the complex frequency plane. Thus the positions of 

singularities in the complex-frequency plane corresponding to a cer

tain tolerance and pass band may be found readily from these curves. 

Further simplifications are achieved and more information is 

obtained when elliptic-function transformations are used. The proper

ties of elliptic functions related to the transformations used are 

discussed. M s type of transformation maps one complete complex 

plane into finite rectangles in the other complex plane. The dimen

sions of these rectangular cells depend on the value of the modulus of 

the elliptic function used* These cells are all identical except for 

their orientations. The cell that contains the origin is taken as the 

sample cell and all other cells are merely repetitions of this one. 

The part of this cell that lies in the first quadrant corresponds to 

the first quadrant of the original plane. Other quadrants will again 

be repetitions of this quadrant, because of the quadrantal symmetry used* 

An intermediate transformation is used so the point at infinity 

in the complex-frequency plane can be placed at any point along the 

edges of the cell. The elliptic function used is *f=sn z, and the inter-

mediate transformation used is s = ; ^ ^ ^ ^ H S » * where A - 1_ 

JA2 - w2 k sn (aK, k) 
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The first case investigated, with the use of the elliptic-func

tion transformations, is the one containing one row of uniformly spaced 

zeros and one row of uniformly spaced poles. By this arrangement the 

equal-ripple property is insured and the network function may be writ

ten in closed form. These functions are expressed in terms of sn func

tions of a different modulus and are different for the case of an even 

number of poles and the case of an odd number of poles. The complex

ity of these network functions does not depend on the number of singu

larities. The number of poles and zeros included by these functions 

depends only on the relative values of the two moduli. 

With the network functions expressed in closed form, expres

sions for the tolerance inside the pass band and attenuation outside 

the pass band are derived. With a modulus and a number of poles given, 

tolerances are computed for various positions of the row of zeros. 

The steepness of cut-off is manifested by calculating the attenuation 

at a frequency twice that of the pass band. Attenuation at this fre

quency associated with each location of the row of zeros is also com

puted. Tolerances and attenuations so obtained are plotted as design 

curves. 

The selection of the modulus for the elliptic function used in 

the transformation is discussed by considering the effects of changing 

the modulus. It is found that the value of the modulus affects the 

final results only very slightly. Therefore the modulus used should be 

the one that leads to the most practical conveniences. 

The effect of the number of poles on the characteristics is very 
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similar to that of the modulus* An increase in the number of singulari

ties, however, also increases the relative bandwidth as well as the 

number of elements. 

In another group of networks investigated, two rows of zeros are 

included. In this case the relative positions of the rows of zeros 

determines not only the pass-band tolerance but also the characteristic 

outside the pass band* 

The gain of this group of networks has a maximum outside the 

pass band and the part of the frequency characteristic that lies com

pletely under this oa&ad rnnm is taken as the stop band. Network func

tions are also expressed in closed form. Froffl this result, expressions 

for the tolerance and the attenuation outside the pass band are de

rived. In order to obtain systematic results, locations of rows of 

zeros are found for several practical values of tolerance. Correspond

ing to each of these arrangements the characteristic outside the pass 

band is indieatively represented by the stop band and stop-band at

tenuation which are obtained after the maximum point outside the 

pass band is located. From these curves singularities in the trans

formed plane are all determined for the specified characteristic 

and their locations in the complex-frequency plane can be found by 

the inverse transformation. 

The last group of networks investigated are those that con

tain one row of zeros and one row of double-zeros • The behavior of 

these networks is similar to the previous group. The inclusion of 

a row of double zeros eliminates the possibility of a half-order 

zero on the imaginary axis which appears in the previous group and 

requires two networks connected in tandem by a vacuum tube. 
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Studies similar to those made on the previous group of networks are 

also made on this one, 

Design curves obtained in this research can all be used readily 

for practical purposes. Several numerical examples are given as illus

trations as well as verifications. Similar curves may be constructed 

for comparison or consideration whenever desired, 
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CHAPTER I 

INTfiOIXJCTIOI 

In many problems of network synthesis, it is sometimes desirable 

to furnish certain arbitrarily specified transfer characteristics with 

networks containing only two types of network elements. For low-

frequency application, for instance, networks containing only resis

tance and capacitance are suitable. Ibis is chiefly because when the 

frequency range over which a network ia designed to operate falls on 

the extremely low part of the frequency spectrum, the required in

ductive elements of acceptable quality may be too difficult to obtain. 

Wiere are other reasons why the synthesis of R-C networks is 

of practical Importance. An R-C network may cost less to construct 

than an R-L-C network of similar performance, notwithstanding that 

the former may require considerably larger number of elements. R-C 

networks contain only one kind of energy storage element and they are 

not prone to undesirable oscillations which can take place in networks 

containing R, L and C. 

There is no theoretical limitation as to what type of character

istics R-C networks are able to furnish. The method by Guillemin (1) 

and Patrick and Thomas (2) of approximating any given characteristic 

by functions realizable by R-C networks discussed in the next chapter 

serves as a proof that, except for a constant multiplier, any pre

scribed amplitude characteristic inay be approximated to any desired 
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degree of accuracy ty transfer functions realizable by R-C networks. 

In other words, it is always possible to synthesize an ft-C network to 

give any desired shape of frequency response. 

Almost all &-C networks have approximately as many resistive 

elements as capacitive elements. Therefore it may be expected that R-C 

networks possess considerable energy loss. This makes the insertion 

loss of R-C networks a serious problem and it must be compensated for 

by adequate amplification. Fialkow and Gerst (3) (4) calculated the 

minimum insertion loss realizable by &*G networks when their poles 

and zeros are given. 

Transfer functions that are realizable by R-C networks are those 

whose poles are all simple and lie on the negative real axis of the 

complex-frequency plane, s = tr-f jo), provided that all other require

ments for functions that are realizable by general networks are met. 

Therefore problems in R-C networks are Identical to problems in general 

networks except for this additional restriction* 

The complete synthesis procedure for any network may be divided 

into two steps the approximation and the realization. The approxi

mation part of the problem involves the finding of a rational function 

of suitable property whose variation along the imaginary axis approxi

mates the specified frequency characteristic to a predetermined degree 

of accuracy. It is this approximation part of the R-C network synthe

sis procedure that this research is devoted to* 

The realization part of the synthesis procedure is the actual 

construction of a network whose transfer function has its poles and 

zeros coinciding with those of the rational function found in the 
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approximation part of the procedure. Considerable advancement has been 

attained in recent years in this field, 

A method was demonstrated by Oiillemin (5)# and Patrick and 

Thomas (6) by which an R-C admittance function may be realized by a 

number of parallel-connected ladder networks loaded by a one-ohm resis

tor, This method was improved by Ordung and others (7) so the number 

of parallel networks is reduced, 

An alternative method is provided by Orchard (8) which is also 

applicable to a generator with non-zero internal Impedance and functions 

which are not of the minimum-phase type, 

A lattice R-C network realization method for voltage-ratio func

tions has been discussed by Bower and Ordung (9) for both open-circuited 

and R-C loaded output terminal-pairs. 

Fleck (10) offered a method of realizing a transfer ratio by 

means of one single ladder network. 

Another method which leads to canonical sections derived from 

parallel-T networks was devised by Dasher (11), This method results 

readily in unbalanced two terminal-pair R-C networks, 

Fialkow (12) showed a method for realizing voltage-ratio functions 

by successively splitting the function and subtracting a proper resis

tance of capacitance. This method results in a complicated network 

with a very large number of elements. 

This wide variety of methods for realizing networks for a given 

transfer function justifies our leaving this part of the synthesis pro

cedure as a separate problem. It will be assumed that the synthesis 

is completed once the approximation part of the procedure is solved, 
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CHAPTER II 

FOURIER SERIES METHOD OF APPROXIMATION 

One of the earliest methods dealing with the approximation pro

blem of R-C networks is due to Guillemin (13)» This method makes use 

of a scale transformation and Fourier analysis* It will be summarized 

here. 

Assume that it is desired to find a function T(s) such that 

|T(J*>)| approximates a certain prescribed characteristic, |F(j">)|2, 

(Fig. 1). First apply the scale transformation 

j> = 2 taiT1^ (1) 

This transformation i s multiple-valued and the new plot G{^) = |FQ«>)|3 

i s periodic as shown in Fig. 2 . 

The function, G(4>), may be approximated by a Fourier series 

g(^) = aQ f a^cos </> + a 2 cos 2+ + * • • • • • + a^ cos n<f> (2) 

to any desired degree of accuracy provided n i s suf f ic ient ly large. 

Since cos k^ i s a polynomial of degree k in cos<£ , where k i s 

any positive integer, g(< )̂ i s an n-th degree polynomial in cos<j>. 

Thus, we ĵ ave 

g(<f>) = b 0 + b^ cos^ t b 2 c o s ^ t - + bjj cosn<£ . (3) 

But from equation (1 ) , we have 



* • y 

PiS. 1. |p(jw)|2 characteristic 

Pig. 2 . Plot of G(<J>). 
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1 + cJ 2 

So that g(<£) may be written as 

1 - ^ 2 
cos<(» T" * (4) 

>2n 
g(«) = h(J>) . . _ A o ^ A l ^ ^ ^ ^ - " - - ^ ^ . (5) 

(1 + <J*f 

Thus we have obtained a function In <o2 which approximates |F(J^)|^ with

in the same tolerance as g(^) approximates G(<£). 

As what would have been the final step of the problem we try to 

find a function h^(s) such that |h^(jiJ)|2 is identical to h(ur). Since 

the zeros and poles of h(-s ) occur in symmetrical quadruplets, this 

step may be accomplished by including all the zeros and poles of h(-s2) 

in the left half-plane as the zeros and poles of h^(s), If a minimum-

phase network is desired. But a difficulty arises in that all the poles 

of h(-s2) fall on s»±l. Since all poles of an R-C transfer function 

must lie on the negative real axis and must be simple! the resultant 

hx(s) will not be realizable by an R-C network. 

To remedy this difficulty the following procedure may be used. 

What is desired here is a function of the fora 

Apt A l t j
2 + A 2 m

4 + ^Anu) 2* A ^ ) 

B0+ Biu^+BgJ^ •+BftU>
2n " B(w2) (6) 

which approximates |F(j<*>)| 2 to the desired accuracy. We may proceed by 

choosing arbitrarily a function B(u^) so that roots of B(-s2)»0 are 

all real and simple. Furthermore, we may write 

&£) 
f U ) ' ^T* B(^) - T ^ T " s W (7) 

(1 + j2jn 
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where gj_(<£) and &2^ a r e ^°^1 n"*tn degree polynomials In cos </>. Since 

B(aP) is known, £2^) c a n ^adily be found by applying equation (/*.)• 

Then if a function g i W is confuted to approximate g2(^)G(<f) In the same 

way as the function g(<£) of equation (5) was computed, f(«^) will approxi

mate |F(j<*0[ to the same degree of accuracy as Q(4>) does, and the func-

tion f(w ) will have the desired properties. The function T(s) may now 

be formed by including the left half-plane zeros and poles of f (*s2) and 

the process is completed. 

No rule that governs the selection of positions of roots of the 

equation B(«Oj = 0 has yet been developed* As far as the above analysis 

is concerned their locations are immaterial* It may be considered as 

absolutely arbitrary for that purpose* thus the location of the zeros 

of F(s), which are also the poles of our final network function, must 

obviously be decided by other practical considerations* 

One of the direct consequences of the locations of the poles of 

T(B ) , for instance, is the spread of element values of the final network* 

Obviously if these poles are placed very close together or very far apart, 

a very wide spread of element values will be needed* Certain optimum 

distributions of poles must exist between these two extreme situations, 

although they may not be very critical* Other considerations may be 

exemplified by matters such as insertion loss, mathematical simplifica

tion, etc* 

Locating the poles so they have their geometric mean at s = -1 

has been suggested as an apparently good choice from several points of 

view. By this distribution, the function g2(f) will be symmetrical 

about <£ = -Jr> and thus will have only even order terms. This symmetry 
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°£ &2^J aDout ^ = -S- *3 ^-s0 a necessary condition for equal-ripple 

behavior in both the pass band and stop band when a low-pass charac

teristic is being approximated by this method* 

Beside its practical usefulness, this method also has an impor

tant merit in that it furnishes a proof that R-C networks are capable 

of reproducing any shape of frequency characteristics. Since resistances 

may be considered as coils of extremely low Q, a corollary may be derived 

from this proof that any given frequency characteristic may be realized 

by networks containing resistances, capacitances and inductances with 

any value of Q. 

The major disadvantage of this method may be seen from the fact 

that it is virtually impossible to predict the accuracy of the approxi

mating function. One must start with a choice of the number of poles 

of T(s), n, as well as the pole positions. From these poles, B(ar), 

g 2 W G M and f(«o2) may be computed. Whether this f(<*̂ ) falls within 

the acceptable range or not cannot be known until this complete process 

is finished. On the other hand whether this n is the minimum permissi

ble value of n or not is not known until some other values of n have 

been tried and compared. Unless the required value of n is small 

these processes can be very tedious • 
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CHAPTER m 

PCTSSTIAL wxuxz 

The analogy.—The transfer function of n passive network with 

lumped elements aay generally be expressed in the fora 

«.) = • « + ^ = K ' ' - ^ ^ <«- V (8) 
(• - Btf(» - 82) • • . . ( • - B J 

where A*s and S's are, respectively* seros end poles of T(s). This 

expression is identical to the exponential of the complex potential, 

P(s), in a two dimensional electrostatic field with positive unit line 

charges located at Afs and negative unit line charges at S*o# Also 

P(s) = 1 A T ( S ) » (9) 

Thus there exists a complete analogy between an electrostatio 

field and a corresponding network function. Those quantities that 

are analogous to each other may be itemised as follows 1 

(1) Poles and positive unit line charges • 

(2) Zeros and negative unit line charges. 

(3) Singularities (poles and seros) and sources (charges)* 

(/») Transmission function and complex potential* 

(5) Transfer function and exponential of complex potential. 

(6) Gain and potential. 

(7) Phase and stream function. 
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Inasmuch as for each quantity in the electrostatic domain there 

is an analogous quantity in the network-function domain, and vice versa, 

it is not necessary to introduce two sets of notations. One notation 

used to denote a certain quantity in one domain can also be used to 

denote its analogous quantity in the other domain* For instance, the 

function (<*) may represent either potential or gain depending on what 

domain it is referred to. 

Furthermore, we could actually regard each pair of analogous 

quantities as exactly the same quantity and use them interchangeably. 

Throughout this research the quantities within each item listed above 

will be considered as synonyms. 

By this correlation of these two fields the number of problems 

is reduced to one half of the original. If any property has been in

vestigated in one domain, its analogous property in the other domain is 

already found. If the analogy between network functions and electro

static functions fails, the existing problem in one domain may have a 

meaningless dual problem in the other« This will in no wqy devaluate 

our analogy concept because although in these instances wo do not gain 

anything, neither do we lose anything* 

The advantage of pointing out this analogy lies mainly in the 

fact that extensive study has already been done in the theory of electro

static fields. Thus we may apply all our knowledge and techniques from 

the field theory to network problems through this analogy. At the present 

time we would very likely view many network problems from the electro

static field standpoint, because we have more experience in this field. 

This situation need not be a permanent one. It is entirely possible 
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that some day we will be able to manipulate any problem in both domains 

with equal ease. Then the analogy concept will no longer be of value 

to us in the same way or to the same extent that it is today. It is 

also possible that some day we may be able to solve some potential prob

lems by the aid of their network correspondence. 

In network problems, we are mainly interested in the finding of 

a rational function whose magnitude over an axis follows a certain de

sired pattern. Thus the electrostatic field problems that are of 

interest are those of determining & set of line charges to produce 

certain desired potential variations along an axis. Other network 

problems may include phase characteristics over a part of or over the 

entire axis. Their analogous problems in the electrostatic field must 

include the consideration of flux functions. Several useful methods 

will be discussed later in this chapter, 

Restrictions on charge arrangements«—Because of the conditions 

imposed on the distribution of zeros and poles for network functions, 

only certain types of charge distribution are directly useful for our 

purposes, if final network functions are to be physically realizable. 

These restrictions arej 

(1) All charges must be of equal, strength or some simple mul

tiple of a unit charge. 

(2) Since singularities of physically realizable network func

tions occur in conjugate pairs, charges must be placed so they are 

symmetrical about the real axis. 

(3) Positive charges must be confined to the left half-plane. 
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(4) For R-C networks, positive charges must be placed on the 

negative real axis, and they must all be of equal strength* 

(5) If network functions are to be of the minimum-phase type, 

all negative charges must be confined to the left half-plane. 

Arranging charges so they maintain the required symmetry and then 

modifying this original arrangement to conform with the restrictions 

listed above while preserving certain characteristics! may simplify the 

electrostatic field a great deal* 

If, for instance, the gain characteristic is the specified quan

tity, one half of each charge in the left half-plane may be moved to 

its negative point* This operation does not alter the potential along 

the imaginary axis* Thus we may at first double the desired potential 

variation, and arrange all charges in qoadrantal symmetry to produce 

this doubled potential variation, and finally discard all the charges 

in the right half-plane* 

In a similar manner if a unit charge of opposite sign is placed 

at the negative point of each charge in the left half-plane, the flux 

function along the imaginary axis will merely be doubled* Thus if a 

phase characteristic is to be matched a similar simplification may be 

obtained as when a gain characteristic is to be matched* 

Useful methods.—Several methods applicable to solving two-dimen

sional field problems in electrostatic theory which are also useful in 

aiding the solution of certain network problems will be described 

below: 
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(1) Experimental method.—The calculation of the frequency 

characteristic of a network function with known locations of poles and 

zeros is usually a complicated procedure especially when the number of 

singularities is large. As an alternative one may actually construct 

the network and measure its frequency response. This is not always 

a practical method. For instance, it the frequency characteristic 

needs slight modification by the shifting of certain singularities-, the 

whole procedure must be repeated with exactly the same amount of work 

as the previous function. Therefore a means of directly measuring the 

frequency characteristic without either numerical calculation or actual 

construction of the network is highly desirable. 

It would be extremely difficult, if possible at all, to set up 

a two-dimensional electrostatic field. However, the electroconductive 

field analog of each electrostatic field problem is very simple to 

approximate in the laboratory* Since the solutions of these two fields 

are both the solutions of Laplace »s equation their analogy is easy to 

see. 

Thus an electrostatic field may be simulated by a thin layer of 

a uniform conducting medium. Its sources may be simulated by currents 

of proper polarities. The strength of these currents must be propor

tional to the strength of charges. With this arrangement the potential 

in these two fields will have the same variation throughout the entire 

s-plane. Their absolute values may also be related so one can be com

puted from the other. 

Two types of conducting media that have been widely used are 

electrolytes and electroconduction paper. Electrolytic tanks were used 
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by Hansen and Lundstrom (14), Huggins (15), Boothroyd (16) and others, 

Electro conduction paper has been adapted in recent years and is made 

of a special type of paper impregnated with carbon or graphite. This 

material is considerably easier to handle and its preparation for 

fields of odd shapes requires much less effort than that of electrolytic 

tanks. However the accuracy of this method depends largely on the 

uniformity of the manufacture of the conducting paper and is usually 

inferior to that of electrolytic tanks. 

(2) Distributed charge method.—In order to take advantage of 

certain analytical results in electrostatic theory, a continuous charge 

distribution along a certain predetermined contour to give a certain 

potential variation in the region enclosed by the contour may first be 

found by any of the analytical methods* Then this distributed charge is 

approximated by a set of lumped charges of equal strength placed at the 

center of gravity of the distributed charge it is to represent. An ex

tensive survey of those analytical methods that may be useful for this 

operation is made by Darlington (17)* 

(3) Conformal Transformation.—Another powerful method of solving 

two-dimensional field problems is the conformal transformation. This 

transformation can be used to reduce the complexity of the problem by 

changing the geometry of the field and its boundaries to a simpler one. 

In many instances the field in the new transformed plane has certain 

symmetry that does not exist in the original plane. Since the trans

formation preserves the orthogonality of conjugate functions the solu

tion in the transformed plane is identical to that in the original plane 

provided their sources and boundary conditions correspond to each other. 
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A well known example of its application in connection with network 

theory is the low-pass to band-pass transformation of the frequency scale 
1 

u> = ̂  - <j. * If this scale transformation is extended to be valid over 
1 

the complete complex frequency plane, or 8 s 8, + a"""*' 8n^ ^ poles and 

zeros are known in s-plane in the low-pass case they are also known 

for the band-pass case in the s-plane. 

This transformation is depicted in Fig. 3» The transformation 

from the s-plane to the s-plane is double-valued• therefore the s-plane 

must be a Riemann surface of two sheets on top of each other and joined 

by the branch cut which is that part of the real axis that is outside 

a and c. Thu3 it is seen that the band-pass to low-pass transformation 

gives simplification only if charges of similar sign are placed so they 

are geometrically symmetrical about the unit circle* By so doing their 

s-plane mappings are made to fall on top of each other and only one 

sheet of the Riemann surface needs to be studied. 

Another example is given by the work of JIatthaei (18) for the 

design of R-C band pass filters* The task is accomplished by a hyper-

elliptic-function transformation which transforms the entire s-plane 

into a Riemann surface of two rectangular sheets Joined by four branch 

cuts as shown in Fig, 4. The charges in these two sheets are arranged 

identically and, therefore, only one sheet needs to be studied* This 

can only be true when charges in the s-plane are arranged so they are 

geometrically symmetrical about the *>a-circle. 

The separation of two Riemann sheets, as was done in the two 

examples mentioned above, is permissible only when the following con

ditions are satisfied: 
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(1) The behavior of the field in the vicinity of the branch 

cuts is the same on both sheets, 

(2) No flux lines cross the branch cut. 

(3) T ĥen an axis is folded up against itself each pair of points 

that are combined must be at the same potential, 

These conditions are all satisfied in both examples mentioned 

above, 

An example -where these conditions are not fulfilled is the one 

shown in Fig, 5» in which an attempt was made to design a low-pass ft-C 

filter. Due to the difference in the arrangement of quadrants on the 

two sheets, charges do not fall on top of each other and all three con

ditions listed above are violated. Therefore the two sheets cannot be 

separated. Since a Riemann surface of this type is almost Impossible 

to approximate the transformation is of very little practical value for 

this problem, 

This transformation method has been used to great advantage by 

many. In setting up an electroconductlve analogy of a two-dimensional 

electrostatic field, such as an analytic tank or an electroconduction 

sheet, it is not possible to include the complete complex plane, 

Certain transformations will map the complete plane into a finite 

region, such as a rectangle or a circle, and make it possible to repre

sent accurately the complete plane by a finite area, 

Poles of Butterworth's filter will lie on a straight line if an 

exponential mapping is used, Tschebytscheff*s filters can be simpli

fied to the same extent by a hyperbolic mapping, Fano (19) applied 

this technique in the reverse direction and obtained filters that 



19 

0 B-plane 

€> 

x—x-*-x—x-x—H 

r* 

or °; 
-*—x-x— x—*-x——x-

0 

z-plane 

Fig. 5. Another hyper-elliptic function transformation 



20 

display equal-ripple property in both the pass-band and the stop band. 

Confonnal transformations will be used frequently herein and the 

detailed properties of each transformation will be discussed wherever 

it is being used. 
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CHAPTER IV 

POLE SHIFTING METHOD OF PRODUCING LOW-PASS R-C FILTEBS 

A scheme which makes use of several of the ideas discussed in the 

last chapter together with a tricky method of pole shifting to obtain 

equal-ripple characteristic over certain regions was suggested by 

Matthaei (20). 

The preliminary preparation required for this method is the 

arrangement of charge* so they produce equal-rlpple potential within 

certain designated regions. To achieve this goal various methods may 

be employed as aids. A useful method would be the use of the charged 

conducting plate which insures the uniformity of potential throughout 

the region occupied by it* The distributed charge on the conducting 

plate may finally be approximated by lumped charges. 

As an example, suppose it is desired to produce a low-paes 

frequency characteristic with pass-band designated as from 0 to co[ and 

stop-band from cot on out, and if three poles and three aeroa are to 

be had by the network function, we may place three conducting plates 

along the J a) -axis as shown in Fig. 6 and put appropriate units of 

charge on these plates. The charge distribution on these plates may be 

found. This distribution of charge may be approximated by lumped charges 

by placing one unit charge of the correct sign at the center of gravity 

of each region that contains one unit of charge. Thus, the potential 

in Fig. 6 is approximated by that of Fig. 7* whose charge positions 

may now be taken as the singularities of a function T* (s). 



-6 units 
of charge 

+12 units 

s-plane 

jaJj 

jcJ, 

-6 units-

-jrf, 

Fig. 6. The arrangement of charged conducting plates 

<*> 

j ^ 

i-*i 

H 
* 

T-J4*1' 
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Since it is not permissible to leave poles inside the pass band, 

a new function, T(s), should be taken as our final network function, 

where 

T,2{3) 
T(s)T(-s) = ~>%, : (10) 

' N 1 + C T1 (s) 

This transformation from T'(s) to T(s) given by equation (10) 

involves the following steps: 

(1) Take the reciprocal of T ' ^ s ) . 

(2) Add a constant C to the reciprocal of T!^(s), 

(3) Take the reciprocal of (2), 

The result of this transformation shifts all poles away from the 

ja>-axis while all zeros remain unaltered* This operation also leaves 

the positions of maxima and minima within the pass band and stop band 

unchanged; thus equal-ripple property in both regions is retained. As 

the final step, the charges in the right half-plane are discarded, and 

the singularities of T(s) are shown in Fig. 8. The frequency characteria 

tic will have the shape as shown in Fig, 9-

The foregoing results may be approached by a different method. 

The problem is simplified to a great extent if conformal transformation 

is used. The transformation that is useful for this particular example 

is that of a certain elliptic function, which will be discussed later 

in another chapter. For the present purpose, we need only to suppose 

that a transformation can be found that maps the entire s-plane onto a 

\ 
rectangle in the z-plane. Then the corresponding problems of those of 

Figs. 6, 7 and £ are shown in Figs. 10, 11 and 12. 
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In the s-plane tha conducting plates are parallel to each other 

and the charge distribution will obviously be uniform* Their looped 

charge approximation is simply rows of uniformly spaced charges« Thus 

poles and zeros of f ,2(a) as well as T(s) will be uniformly spaced. 

The charge-arrangement part of the problem is greatly simplified* 

Moreover, one can directly arrive at the arrangement shown in Fig* 12 

and be sure of the equal-ripple property in the two frequency ranges 

without the aid ot the conductlng-pl&te middle step* 

This example is mentioned hers merely for the purpose of illus

trating the pole-shifting technique* A* can be seen from Fig* $ the 

function T(s) is not realisable by any B*C network* 

When this msthod is applied to &-C networks certain additional 

restrictions oast be imposed on the charge arrangement* Most of all, 

all polos must finally be shifted to the real axis and they must be 

separate* This can be achieved only If there are as many separate points 

that are at the same potential as there are poles* If this is the case 

we may make C equal to the negative of 1/?|2(*) ** these points, and 

these points may be made poles of T(s)T(-s)« 

For instance, if a certain charge arrangement gives a variation 

of ?' (s) along the cr-axis as shown In Fig* 13$ It is suitable to be 

used in connection with our pole shifting technique to change It to a 

function that is realizable by an B*G network* 

Thus, if it is desired to produce a low-pass filter with equal-

ripple property in both the pass band and the stop band the charge 

arrangement as shown in Fig. 7 can no longer be suitable as Is evident 

from Fig. 11 in which it is clear that potential decreases monotonlcally 
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along the real axis as the distance from the origin increases. 

Hence if a network function based on a derivation similar to 

that of Fig. 8 is to be designed so it is realizable by an R-C network, 

certain modifications must be made. Certainly some charges must be 

placed near or on the real axis to modify the potential variation along 

it. For that particular example we may, for Instance, start our process 

by finding the charge distribution on metal sheets with four unit charges 

placed on the cr-axis as shown in Fig. 14* The negative charges are 

placed close to the origin so as to lower the potential on the part of 

the real axis, while the function of the positive charges is just the 

opposite. After the charges on the metal plates are quantised the 

charge arrangement has the form as shown in Fig* 15. The potential vari

ation along the cr-axis now has the form shown in Fig* 16, After equa

tion (10) in association with a proper constant C has been applied, the 

charge distribution will take the form shown In Fig. 17 in the z-plane 

and Fig. 16 in the s-plane. This arrangement Is realizable by two R-C 

networks' connected In tandem with a buffer amplifier and they together 

will contain six poles* 

The essence of this method is well illustrated by the examples 

just discussed and other problems of a similar nature may be derived 

accordingly. The success of this method depends largely on the place

ment of poles and zeros on or near the real axis to produce sufficient 

saddle points on the real axis. This step is usually a difficult one 

and a straight forward rule has not yet been devised* 

To create a sufficient number of ripples of potential of approxi

mately the same level a minimum number of charges must be used on or 



Potential 

V- • / K N 
\ <r- axis ! 

/ ° \ 1 
\ 1 

Pig. 16. Potential variation along the a-axia. 

J ^ i J^i s-plane j f 

) • C 

) 
n 

c 

DO 

) 

) 

H«<* x \j 0 

c 

c 

00 
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near the real axLs, and certainly no more charges should be used. 

Matthaei (21) has shown that this number is (Z - 2) where Z is the 

total number of poles and also the total number of zeros. 

Experimental methods can be of jpreat aid to this method. An 

electrolytic or an electroconduction sheet may be set up to find the 

charge distribution on the metal sheets in Fig. 14, for instance. The 

same devices can be used to make preliminary determination of charge 

positions to give proper potential variation along the real axis, thus 

eliminating many uncertain guesses required if a numerical cut~and-try 

method is to be used. 

The way results are arrived at by this method is ingenious and 

direct. However, if the number of poles is large, the calculation may 

be quite involved and the quantitative results cannot be predicted. 

Such design quantities as tolerance, sharpness of cut-off and stop-

band attenuation can not yet be controlled. 



CHAFTER V 

DESKS! OF LOW-PASS B-C NETWORKS 

BY TRIGONOMETRIC AND HYPERBOLIC TRANSFORMATIONS 

The Transformation s * sin £ and Its Application 

The transformation z » U sin"1 » maps the s-plane into strips of 

width 4 in the z-plane. These strips are joined by branch cuts 

which correspond to that part of the real axis that is outside s » ± 1, 

The geometry of this transformation is depicted in Fig, 19* 

In Fig. 19 (c) is shown the arrangement of quadrants in the 

z-plane. With the symmetry of charge arrangement to be used, only one 

strip needs to be illustrated• The others will be repetitions of this 

one. 

In network problems the gain characteristic along the real 

frequency axis is of primary interest. Therefore we are primarily 

interested in the potential variation along the y-axis in the z-plane. 

Since the corresponding points along the &J-axi3 are arranged in the 

3ame sequence on the y-axis, the variations along these two axes in the 

two planes are of the same shape except for a change in scale. 

The usefulness of a conformal transformation depends on its 

simplification of charge arrangements. Since for R-C networks poles 

are confined to the real axis, we may place all positive charges in 

the z-plane only on the real axis and space them uniformly apart. 

This enables us to represent all positive charges by one single term 

in the complex potential function. The following groups of networks 
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are designed on the basis of this simplification. 

Networks Containing Two Poles and One Zero 

Potential function.—The general charge arrangement for this 

group of networks is shown in Fig. 20. Positive charges are spaced 

TT units apart and negative charges • units away from the origin. 

The function that has these singularities is 

0 0 , ( 1 . f ) C Q 8 ( i - f ) 

r(s)T(-s) = ^ 7 - * , (U) 

where 

or 

a * - (2-K - *) (12) 
2 

0 * 2-n - 2a. (13) 

It can be seen that ~ ± — = ± £> when z - ± 8. 
4 2 2 

Along the y-axis, z ~jy, and 

cosh £ + eos a 
|T|2 = " i (14) 

cosh2 Z - -

The variation of |T| 2 in equation (14) will have one of the two forms 

shown in Fig. 21. Curve A, which has a maximum, has a more desirable 

characteristic as a low-pass filter. 

Pass band.—The region corresponding to that between 0 and y, 

in Fig. 21 will be taken as the pass band. In the s-plane the pass 

band will be denoted by <op. Thus 

">p - •ix* ji . (15) 
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The point y, may be found by equating ft \ & at this point and that 

at the origin, or 

cosh2 Ik - I , 
2 2 ^ r 

cosh £1 •+• c o s a 2(1 + cos a) 
2 

3 eoa a ^ - , * 

(16) 

Equation (16) may be reduced to 

(1 * cos a) coah £ l f & + cos a) 1 (cosh £k - 1) = 0 . (17) 
L 2 a -1 2 

Thus 

T, 2 cos a * 1 / l t t \ 
cosh £ l =* - — ; — r - * * ' 

2 2( eos a + 1) 

For equation (18) to have a significant solution 

- 2 cos a - 1 ^ 2 eos a +• 2 • 

This yields 

and 

B =5 $2?k&*. (19) 

This is the limit of the distance & idthin which the(T|2 curve will 

have the form A shown in Fig. 21. 

Tolerance,—Hie pass band tolerance is defined as the maximum 

deviation within the pass band. Tolerance will be denoted by & and 

expressed in db. 

To locate the point where |T|2 is maximum, we may set the deriva

tive of |T|2 with respect to cosh Z equal to sero, 
2 
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d (cosh -) 
v 2 

cosh2 Z - i 
2 2 

cosh — + cos a 
2 

= 0 . 

This gives 

2 (cosh ̂  + cos a) co«h-^—{coah — - —) « 0. 

(20) 

(21) 

From t h i s equation, we obtain 

cosh -x = 2 cos a + 74 cos*a - 2 
2 

(22) 

Substitute t h i s value of cosh — into equation (14) t o get 
2 

Thus 

and 

aax - 2 eos a •»• J 4 cosaa - 2 

max 
| T | 2 2 (1 + cos a)(~ 2 cos a * y 4 cos*a - 2) 

(23) 

(24) 

Tolerance s a = 10 log max 

o J 

10 log 
2(1 * cos a) (-2 cos a * J 4 coa2a - 2) 

(25) 

Here a factor 10 is used as the multiplier of the logarithm instead of 

20 because the charges in the right half-plane are already included. 

Results and data.—A complete study of this group of R-C networks 

would be completed if y and tolerance were plotted against all values 

of 6\ In Fig. 22, this is done in terms of parameters in the s-plane. 
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In the s-plane, poles are fixed to be at s » - 0.942 and s *• - 0.3#3, 

and the distance from the zero to the origin is denoted by (T̂  as 

shown in Fig. 20. Ems these final restilts are directly usable for 

design purpose* 

Networks Containing Three Poles and One Pair of Conjugate Zeros 

Potential function.—Hie general charge arrangement for this 

group of networks Is shown in Fig. 23. Positive charges are spaced 

2 IT 
- — units apart and negative charges are placed 0 units from. the y-
3 

axis and 2b units from the x-asds. The function that has these singu

larities is 

,8 a jbv ,% & Jb* /Z a jb% ,% a Jb* 

T(s)T(-e)» " * ,. ^ ^ (26) 
cos(2|) 

where a has the same meaning aa before. The numerator in expression 

(26) may be simplified to 

— cos (~+jb) + cos all cos (^-Jb)+cos a 

= ijcos (| +Jb) cos (|- jb) 

cos a -f cos a *[eOS (|4jb) * COS (|- Jb)] 

= i/co32 5. +2 cos 5. cos a cosh b + cos2 a + cosh2 b - if: 
4l 2 2 V 

while the denominator may be written as 

4 cos3 — - 3 cos — . 

Thus we have 
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cos2 "p + 2 cos "T cos a cosh b -*cos2a + coshna - 1 , , 
T(s)T(-s)= — * — — J I 2 " 

4 (4 cos3 •£ - 3 cos ̂ ) 

Along the y-axis, z = jy, and 

cosh2 — + 2 cosh — cos a cosh b * cos2 a * cosh2 b - 1 

JT)2 = — TT~—~T (28) 
4 (4 cosh^ ? - 3 cosh ~) 

Let u = cosh - , f = cos a and g *cosh b; equation (2d) becomes 
2 

u2 + 2 f g u + f 2 + g 2 - l 
|T |2 = 4 a « 3 _ 3 « ) <»> 

Positions of geros to yield equal-ripple characteristic—The 

variation of |T|2 along the y-axis will hare one of the forms shown in 

Fig. 24. Among them curve B, whose TOflTritmm i s equal to the value of 

the function at the origin, displays the equal-ripple property. This 

curve i s reproduced in Pig. 25 and wil l be treated in more detail . 

In order to determine the position of zeros so that |T 12 wil l 

vary like curve B, the equation 

JT|2 -|TJ2
0 - 0 (30) 

must have a real double root. Since when y=-0, u»l, equation (30) 

becomes 

4 u3 - 3 u 1 

u2 + 2 f g u + f2 • g2 - 1 2 f g + f2 + g2 
(3D 

or 

(8fg^4f2*4g2) u3- u2 - (8fg + 3f2 + 3g2) u + (i _ f2-g2) - 0. (32) 

This equation must contain a factor (u - 1). After this factor is re-
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moved from equation (32), we obtain 

(8fg + 4 f 2 * 4 g 2 ) u 2 ^ (8fg + 4 f 2 * 4 g 2 - 1 ) u + ( f 2 - ^ 2 - 1) * 0. (33) 

If equation (30) has a real double root other then u = l, the 

discriminant of quadratic equation (33) must vanish. Or 

(8fg 4 4f« * 4g2 . i )
2 . 4 (f2 + g2 - l)(dfg -v 4f2 + 4g2) = o. (34) 

Simplifying equation (34), there is obtained 

(f * g)2(32fg * I) • 1 » 0* (35) 

This is the conditional equation for the coordinates of positions of 

zeros to produce frequency characteristic of the type shown in Fig* 25* 

The locus of these positions may be plotted by solving equation (35 )• 

This locus in the s-plane is plotted in Fig* 26, 

Tolerance and pass band.—»The definitions of tolerance and pass 

band are the same as before. They are denoted by £ and y^ respectively 

and are indicated in Fig. 25. 

Differentiating |T|2 of equation (29) with respect to u and set

ting the derivative equal to sero, there is obtained 

(u2+2fg u + f 2 ^ 2 - 1)(12 u 2 -3) - (4 u3 -3u)(2a+-2fg) » 0 (36) 

or 

u^+ 4fg u3 • (3f2+ 3g2 -2.25) u 2 - 0.75(f2+ g2 - 1) = 0. (37) 

One of the roots of this equation will give the value of y at which 

the minimum of|T|2 occurs. ThuslT^jgia may be found. Since |T[ ̂ f l T 

~ |T|20, we have 
Tolerance s t * 10 log W2o 

7 T min J. 
(38) 
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With the value of |T|2^^ known the point y*, the pass band, can 

be found by locating the point where|TI2 again drops tolTl2^^. 

Tolerance and pass band in the s-plane, e, and «J respectively, 

are plotted in Pig, 26 for different positions of zeros, The poles of 

these networks are located at s = -sin -Sir, -sin 4* and sin ir or -0.2588, 

-0.7071 and -O.966O in the s-plaae. 

Networks Containing Pour Poles and One Double Zero 

Potential function.^-Charges for this group of networks are 

arranged in the manner shown in Fig, 27. The function that has these 

singularities is 

cos •- + cos a 
K, ) T(_) = ^ - — (39) 

COS 2S 

The potential along the y-axis may be written as 

| T , 2 . * * < \ \ — m 

by letting a = jy in equation (39)* Quantities a, u and f have the sane 

meaning as before. 

Pass band.—The variation of |T|2 in equation (40) will have one 

of the two forms shown in Fig, 21. Curve A, which has a maximum, has a 

more desirable characteristic as low-pagis filter. The region correspond

ing to that between 0 and y^ will be taken as the pass band. Let u^= 

cosh Q, we have 
2 

( r t . - (i • ff- cu) 
8 Ujk - 8 u^2 + 1 
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After equation (41) is simplified there is obtained 

B(f + l ) 2 ^ 4 - [s(f + 1)2+ l j ^ 2 - 2f ̂  + (2T + 1) = 0* (42) 

This equation oust contain a factor (u^ - 1). After this factor is 

removed, we obtain 

8(f + l ) ^ ! 3 + B(f + l ) 2 ^ 2 - u 1 - ( 2 f t l ) » 0. (43) 

The root of this equation that is greater than 1 is the point corres

ponding to y^. 

If equation (43) again has a root u^= 1, y* approaches zero, 

This is the boundary condition between the two curve shapes indicated 

in Pig. 21. Let u^= 1 in equation (43) and we hare 

or 

8(f + l ) 2 + 8(f + I) 2 - 1 - 2f - 1 = 0 

f - -0.375-

This gives 

and 

a = lflQ° - 2S°57t 

e = 57054. = 0.3217 . 

(44) 

(45) 

This is the limiting value of the distance $ if the|T|2 curve is to 

take on the form of curve A in Fig, 21, 

Tolerance.—To find the point where maximum potential occurs we 

set 

(u + f ) 2 
d 

du 8 u ^ - d u 2 + 1 
(46) 
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equal to zero to obtain 

(u + f )2(32 u2 - 16 u) - (8 u^ - 8 u 2 + 1) 2(u + f) « 0. (47) 

After simplification, there i s obtained 

u^t 2 f n? - f u - 0.125 = 0. (48) 

Solution of equation (48) for different values of f gives the 

point at which IT|2
mnT occurs. Thus, 

Tolerance * z * 10 log 
lf\2 

max 
ITI 2 

(49) 

Results and data.—Pass band and tolerance values have been 

calculated for different positions of double-zeros. These results are 

transformed to the s-plane and plotted in Fig. 29. Poles in the s-plane 

are located at -sin 2L -sin ̂ T, -sin -2? and -sin 2£ which are also equal 

to -0.1951, -0*5556, -0.8315 and -0*9808 respectively. 

Networks Containing Four Poles and One Pair of Conjugate Zeros 

Potential function.—Charges for this group of networks are 

arranged in the manner shown in Pig. 28. The function that has these 

singularities is 

e o s ( £ + f i f ) c o s ( | + | . ^ ) o o s ( « - ! + 4 b ) e o ^ . l - J b ) 

iWK-s) ~ — — ' (50) 
cos 2z 

in which the numerator is identical to that of equation (26) and the 

denominator is identical to that of equation (39) • Thus the potential 

along the y-axis in the z-plane will be 
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u 2 + 2fg u + f2 + g 2 - 1 

4 ( 8 u ^ - 8 a 2 + l ) ITI 2 * —; 7r± 7zrrr»— (51) 

which has t he numerator of equation (29) and the denominator of equation 

(40) . 

Posi t ions of zeros to yie ld equal - r ipple character is t ic .—Ifce 

var ia t ion of po ten t i a l w i l l have one ot the forms shown in Fig . 24. 

The shape of curve B i s thecfesirable one which i s shown in Fig. 25 i n 

more d e t a i l . This i s real ized i f the equation 

| T | 2 - | T | 2
o » 0 (52) 

has a double-root . Equation (52) i s e x p l i c i t l y 

u 2 + 2 f g u + f 2 + g 2 - l 2 

a ^ - e u 2 * i s ( f + g ) * (53) 

After simplification, there is obtained 

8(f + g)2u4 ~[8(f + g)2t l ] u
2 - 2fg u + 2fg + 1 = 0. (54) 

After a factor (u - 1) is extracted from this equation, it becomes 

3 2 1 2fg + 1 ^ /r_v 

u-> + u * - . _ . -ju- a — n y = 0 (55) 
S(f + g)^ a(r 4 g)^ w ' 

i—-w- and equation (55) may be rewritten 
6(f + g)* 

Let A * 2f g + 1 and B =. ̂ ,. \ 

as 

3 2 
u + u - B u - A B * 0 . (56) 

This equation contains a real double-root if its discriminant vanishes, 

or 
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18 AB2 + 4 AB + B2 + 4 B3 - 27 A^2 « 0. (57) 

After simplification me obtain 

4 B2 + (-27 A2 + 1 3 A + 1) B + 4 A = 0. (58) 

this is the conditional equation for the co-ordinates of positions of 

zeros to produce frequency characteristics of the type shown in Fig. 25. 

The locus of these positions is plotted in Fig, 30. 

Tolerance and pass band.—The value of u at which |TI2 is a mini-

mum can be found by setting 

8tt^8n2n  

u 2 * 2fg u + f2 + g2 - 1 

equal to zero. Hiis process yields 

(8 u^ - 8 u 2 + 1)(2 u + 2fg) 

- (u2 + 2fg u + f2 + g2 - 1)(32 u 3 - 16 u) - 0. (59) 

Rearranging, we have 

16 u5 *• 48 fg u4 + 3 2 (f2 +• g2 - 1) u3 

- 16 fg u 2 - (16 f2 + 16 g2 + 18) u - 2 fg = 0. (60) 

The real root of equation (60) that is greater than unity gives 

the value of u which corresponds to the minimum of |T|2. ^hus^^in 

can be calculated and tolerance will be given by equation (38) 

The edge of the pass band In the s-plane, y^, may be computed by 

d 

du 
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finding the point u^ where |T|2 again equalsiTl^mjw 

The results for this group of networks are plotted in Fig. 30 

and are given in terms of parameters in the s-plane. The positions 

of their poles are located at -sin JL, -sin 22L -sin 22. and -sin 1JT as 

8 IT 8 8 

in the case where four poles and one double-zero were contained in the 

networks, 
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CHAPTER VI 

DESIGN OP R-C NETWORKS 

BY THE USE OF ELLIPTIC-FUNCTION TRANSFORMATIONS 

Elliptic Functions 

Elliptic functions may be defined by the following relationships: 

If . 

then sn (z,k) * sinf, en (z,k) = cos<£ and dn (z,k) s Jl - k 2 sin2^ , 

where z is referred to as the argument and k the modulus of the functions. 

The modulus k is usually omitted in writing whenever its absence causes 

no confusion. In such instances elliptic functions are written as sn z, 

en z and dn z. These functions are single-valued and doubly periodic* 

Their quarter periods are K and jK1 given by 
n 

tuCh-*J*k (62) 

and 2: 

g « s / p a a d mamm , (63) 
/ / l - k<* s i n ^ 
0 ' 

where is the complementary modulus. Thus, 

sn (z + 4mK + jAnK») = sn z, (64) 

where m and n are any integers. The quantities K and K' are also 
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known as complete elliptic integrals of the first kind, 

When k - 0, we have K * Z, Kf co, so that sn (z,0) = sin z, 

en (z,0) = cos z, dn (z,0) * 1. When k » 1, we have K •* co, K* = £, so 

that sn (z,l) = tanh z, en (z,l) - dn (z,l) = sech z. Thus, when k - 0, 

elliptic functions degenerate into ordinary circular functions, and 

when k — 1, they degenerate Into hyperbolic functions. 

The ratio of two elliptic functions is denoted by the combina

tion of the first letter of each function, that of the numerator pre

ceding that of the denominator, e.g. 

en z 
cd z * * (65) 

dn z 

The reciprocal of an elliptic function is denoted by interchang

ing two letters which denote the original function, e.g. 

ns * * TTT* <66> 

The following are some formulae useful for calculations herein: 

a. Imaginary arguments, 

an (jy,k) = J sc (y, k») (67) 

en (jy,k) * nc (y, k') (68) 

dn (Jy.k) = dc (y, k«) (69) 

b. Addition theorems. 

s n u c n v d n v + s n v c n u d n u 
sn (u + v) * 5 r 5 (70) 

1 - k̂  snni sn^v 
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c n u c n v - a n u d n u an v dnv 
en (u + v) = — - J o 5- (71) 

1 - k* snni sn*v 

dn u d n v - k 2 s n u c n a s n v c n v 
dn (n + T) = i - t f . A . A ( 7 2 ) 

c. Complex argument. 

Assume ax =• sn (x,k), c p en (xfk)f d^ = dn (x,k), 

82 - sn (y,k')» c2 = en (y,k«), d2 = dn (y,k
f), 

then 

sn z - sn (x + jy, k) = 81 d2 + J •! dl «2 °2 > (73) 
c 2 2 + k 2 8 l 2 *2 2 

en z * en (x + jy, k) * Cl °2 ~ 3 *! *! a2 d2 , (74) 

c22 + k2°l2 s22 

dn . - dn (x + Jy, k), d 1 ^ ; 3 ^ ^ 3 2 . (75) 
02 + k* s^ «2 

d. Special relationships. 

sn (-a) = -sn u (76) 

sn (u *• K) =• cd u (77) 

sn (u 4* jK!) = jrns u (78) 

sn (u + K + JK»)« r de u (79) 

The Transformation w c sn z 

The transformation w « sn z maps a rectangle in the z-plane on

to the entire w-plane. Since the sn function is doubly periodic the in

verse transformation is multiple-valued. Each point in the w-plane is 
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mapped into an infinite number of points in the z-plane. Repetition 

occurs for every 4& along the x-direction and every 2K» along the y-

direction. Points spaced 4mK * J2nKf apart, where m and n are any in

tegers, are said to be congruent. Thus congruent points in the z-plane 

are mapped into the same point in the w-plane. 

If the z-plane is divided into rectangles of width 2K and height 

2K!, the entire z-plane can be considered as the congruent regions of 

any one single rectangle. These rectangles are termed cells just as in 

the case of circular and hyperbolic functions where strips of width 2*T 

are termed as their cells. One of these cells, whose vertices are 

located at K + jKf and it3 points of quadrantal symmetry, is shown in 

Fig. 31(a). 

The correspondence between the w-plane and a cell in the z-plane 

is shown in Fig. 31(a) and Fig. 31(b)* The manner in which cells in 

the z-plane are stacked up is illustrated in Fig. 31(c), 

Fig, 32 shows how this transformation may be visualized by con

sidering the w-plane as being an elastic sheet. The real axis is part

ly split and then folded upward and downward, and at the same time the 

extreme upper and lower parts of the plane as well as the imaginary 

axis are compressed until finally a rectangle is formed. 

The Modified Transformation 

The trans format ion just discussed maps the entire imaginary axis 

into the line segment aa1, Fig. 31> and its congruent regions. Experi

ence has shown that in order to benefit from the transformation method, 

the imaginary axis should be bent at strategic points. For reasons which 
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Fig. 52. Compression of the w-plane into a rectangle 
by the transformation w « sn z. 
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will be apparent later it is desired to place the point at infinity 

somewhere between a and h, and positioned qnadrantally symmetrical to 

it. This can be achieved by Introducing another transformation. 

Suppose it is desired to place s = oo at a point aK from the 

imaginary axis along a-h. Then this point will be on the u-axis 

sn (aK + jK») ^ r- mi (aK) away from the origin in the w-plane. If the 

w-plane is mapped into the s-plane by the transformation 

8 = J £ If ' (eo) 

where A « => ns (aK), point aK +JK1 in the z-plane is mapped to the point 
k 

at infinity in the s-plane. 

Other properties of this series of transformations are depicted 

in Fig. 33. The entire imaginary axis is now mapped into the broken 

lines p-a-e-a'-p» and q-a-e-a'-q1. A diagram similar to that in Fig. 34 

can be drawn for this modified transformation. The only difference is 

that in the present case not only the real axis but also the imaginary 

axis is partly split and bent. Such a diagram is given in Fig. 34* 

Networks Employing One How of Simple Zeros in the z-plane 

Arrangement of charges.—The modified elliptic-function trans

formation can be used for designing low-pass R-C transfer functions with 

equal-ripple response inside the pass band. In Fig. 35 is shown a 

quadrant of one cell In the z-plane. As was shown in Fig. 33 , the JtJ-

axis in the s-plane is mapped into e-a-q, with the part where Q<-**<\ 

corresponding to line segment e-a. This portion of the jo)-axis is 

conveniently chosen to be the pass band. 
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The <r-axis is mapped into e-f-h-q. This is the only portion in 

the s-plane where poles are permitted to lie. If we place all the 

positive charges uniformly along h-f, and place all negative charges 

unifromly along a line passing through q and parallel to a-e or h-f, 

the potential variations can thus be obtained. this arrangement is 

exemplified by that shown in Pig. 36. 

The equal-ripple property is more evident when several cells 

are shown together, as In Fig. 37• Since there are an infinite number 

of cells in both horizontal and vertical directions the effect due to 

all charges at a certain point and all its congruent points are identi

cal. Therefore the potential pattern in every cell is identical. 

In the s-plane there must be equal numbers of positive and nega

tive charges. Therefore this must also be true within each cell in 

the 2-plane. Due to quadrantal symmetry this must also hold within 

each quadrant of a cell. In Fig. 36, for instance, two negative charges 

are completely enclosed by the boundaries, the uppermost negative charge 

is shared by this cell and the one immediately on top of it. Therefore 

only one-half of this charge can be considered as lying within this 

quarter-cell. All five positive charges, however, are shared by this 

quarter-cell and the one adjacent to it and on its right. Therefore 

only half of each charge lies within this quadrant. By this considera

tion, within this quadrant there are two and one-half units of negative 

charges and the same number of positive charges. 

Observations of arrangements similar to Figs. 36 and 37 indicates 

that negative charges should be spaced twice as far apart among them-
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Fig. 35« A quarter of a cell 
in the z-plane. 

Fig. 36. An arrangement that 
produces equal ripple 
potential along the 
imaginary axis. 
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salves aa positive charges. A acre precise diagram of charges contained 

in one cell is shown in Fig* 3d. 

When charges are mapped into the s-plane, every half-unit charge 

will combine with the other half-unit charge located at its conjugate 

point to form a unit charge. The final charge arrangement thus conforms 

with the requirement that all charges in the s-plane must be of unit 

strength. Such combination, however, does not take place for any charge 

placed at f or d. Also, any charge placed at points like h will be 

shared by four cells, and thus only one-quarter of a unit charge lies 

in each cell. So charges placed at h, f or d will result in half-unit 

charges in the s-plane. Therefore placement ot charges at such points 

is not permissible. 

Along a-q, Fig. 35» the potential decreases monotonically as one 

approaches the negative charge at q. Since a-q corresponds to the 

region outaide the pass-band, the desired general shape of the frequency 

characteristic is obtained. 

Kuaerical example,—Aa a numerical example, the following values 

of parameters are chosen: 

k = 0.3162, k2 * 0.1, a = 0.5, n = 3 , 

where n is the number of poles that the final transfer function will 

contain. Corresponding to these parameters, K = 1.6124 and Kv — 3.5781. 

One cell in the s-plane is Indicated in Fig. 39* which is drawn 

approximately to scale. Positive charges are placed at (K + j 0.430), 

(K + j 1.269) and (K + J 2.148)j negative chargee are placed at 

(0.606 + j 0.860) and (0.606 + j K'). Only positions of charges in 
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the f i r s t quadrant are stated here since others can be located by sym

metry. 

Locations of these charges in the s-plane as well as in the i n 

termediate w-plane are l i s t e d below: 

z-plane w^plane s-plane 

Positive charge K + j 0.430 1.083 0,252 

Positive charge K + j 1.289 1.780 0.439 

Positive charge K + j 2.148 • 2.915 0.876 

Negative charge 0.806 + J 0.860 1.QG2 + j 0.639 0.224 + j 0.154 

Negative charge 0.8Q6 + j V 4*425 oo 

The transformation from the w-plane t o the s-plane i s 

v 
8 s j •• : -"' • 

JTJ&P -W2 

Charges in the s-plane are shown in Fig* 40. As a final step, 

we discard all the charges in the right half -plane. The final transfer 

function should have singularities coinciding with charges in the left 

half-plane as illustrated in Fig. 41 • Hence 

.,* s (3 + 0.224 4 JQ.lft)(a j 0.224 - JO.lft) 
u s ; (s + 0.252)(s + 0.439)(s + 0.876) 

s s2 + 0.448 a + 0.074  

s3 t 1.567 e2 • 0.716 s + 0.097 

A plot of |T 12 along the imaginary axis based on the function 

given above is shown in Fig. 42 which displays the equal-ripple low-

pass characteristic. 
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Functions that have the desired singularities,—The potential 

due to charge arrangements of the type shown in Fig* 37 can be expressed 

in closed form. First let n be odd. Consider the function sn2(C125, k^) 

in the C^z-plane, where C, is a constant and k^ is another modulus, 

both to be determined later. This function consists of an infinite 

number of horizontal rows of double zeros and double poles spaced K^ 

apart along the Cjy direction. Zero and pole rows alternate with each 

other starting with one zero row passing through the origin. Within 

each row, poles or zeros are spaced 2K^ apart. Constant K^ and Kj' are 

complete elliptical integrals of moduli k^ and k^' = Jl - E p respec

tively. This singularity arrangement is depicted in Fig, 43. 

Zeros of the function sn2(C^z, k-̂ ) can be shifted to any desired 

positions by adding a proper constant to it. In particular, the func

tion 

sn^C-jZ, kx) - s n 2 ^ * - j K^, kx) (SI) 

obviously vanishes at C^z = aK^ + j KJ and all its congruent points. 

Thus function (81) has the distribution of singularities as shown in 

Fig. 44* Ikis process of shifting zeros does not affect the positions 

of poles. 

Similarly, the function 

m^CjB, kx) - m
2(K 1+ J ~ - » *i) (82) 

will have its zeros located at Ei + j 1 and all its congruent points. 
2 

ai 
2 

Its singularities are depicted in Fig, 45. 

Finally if function (82) is divided into function (81), the poles 
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of function (82) will cancel with those of function (81), the zeros 

of function (82) become poles of this new function, and the zeros of 

function (81) are also zeros of this new function. Thus the function 

s n ^ & z , k1) - sn2(AK.+j-K,'* k, ) 
(33) 

3n2(CizJ Iq.) - M ^ ^ + J l|i, kj.) 

will have singularities as shown in Fig* 4-6. It is clear that this 

arrangement is similar to that in Pig* 37. Expression (83) may be 

reduced to 

sn2(Clz, kx) ~ JTJ ns
2(aK1, k^) 

T[8(Z)] T[-(.)] - — 1 • (84) 
*n (C^z, k^; - -— 

In order to make equation (84) capable of representing the charge 

distribution in the z-plane k^ must be so adjusted that the dimension 

of n cells of modulus k^ in the C^z-pLane is proportional to one cell 

of modulus k in the z-plane, and C^ be so adjusted that those two cells 

are identical. Thus 

nKi1 K» 

-±— = , (85) Kl K 

and 

SL 
Cl 

» K. 

This adjustment of k^ and C^ is illustrated by Fig. 47. 

For a given k (and thus K and K1) and n, the new modulus k^ can 

be found by its nome q-̂ , which in turn is given by 
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\> K' 

qL - e " ^ « e"n7 (87^ 

Knowing q^, k, may be either calculated by infinite series or found 

from a table. 

When n is even, it is necessary to place one zero on the real 

axis. Therefore the function representing it is slightly different. 

Expression (82) need not be changed since whether n is even or odd 

poles are all equally spaced about the real axis and no poles may be 

placed on it. Expression (El), however, oust be modified to read 

sn2(01z, k1) - sn
2(a£L, k x ) . l&8) 

This places one zero on the real axis. The singularities of function 

(88) are shown in Fig. 48. When function (82) is divided into function 

(88), the new function 

sn2(Ciz, fa) - sn2(aK1, fa) 
(89) 

sn2(Ciz, kx) - sn2(Kit j V . , kj) 
2 

will have singularities as shown in Fig. 49. Function (89) may be sim

plified to read 

sn^CjZ, kx) - sn2(aK1, fa) 
T[S(Z)]T[-S(Z)] = ±-T-± 1 " # (90) 

sn^Cjz, kx) - - j — 

Tolerance and attenuation outside the pass band.—-Consider the 

case when n is odd. In equation (84), the first term in both the numer

ator and the denominator, sn2(Ciz, fcjj, is negative along the imaginary 
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axis, and is increasing numerically from zero to infinity as C^z is in

creased from zero to JK^'« The second term in the numerator is always 

greater than the second term in the denominator, or 

kl2 2(aKx) 
(91) 

since sn(aK^) ̂  1. Therefore |T|2 Is monotonically decreasing along 

the imaginary axis as C^z is increased from zero to jK^Y» ftie poten

tial along the remainder of the axis will merely be the repetitions of 

this variation. 

It follows that maxima occur at every point 2mK^' from the origin, 

where m is any integer, and minima occur at every point midway between 

two maxima. Therefore the maximum potential along the imaginary axis 

is 

*IT|2_ »•*- 3L 
l*| m a x - F l o " ^ 8 n2( a K l) (92) 

and the minimum is 

lT!2»in " I T I V = I-

Hence, 

Tolerance = £ =• 20 log 
|T| max 

JT|min _ 
= 10 log 

^ s n ^ a ! ^ ) _ 

(93) 

(94) 

When n i s even, the charge arrangement i s in essence the same as when n 

i s odd. The only difference i s that in one case charges are shifted in 

the vertical direction by an amount equal to K '̂ from the other. There

fore for even n the minimum points are located at the origin and points 
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2mK̂ » away from i t , while maximum points are located at points like jK '̂ 

From equation (90) we have 

|T|2-^= ITIV = 1 max 
and 

Hence 

T l 2 « i n * lTl2o a H ^2(BK1$ kx). 

Î lmax Tolerance = Z. = 20 log 

LITl«in J 
= 10 log 

Iq, sn2(aKi', k±) 

(95) 

(96) 

(97) 

which is the same as equation (94). 

If it is desired to find the attenuation at a certain point 

outside the pass band, it is first necessary to locate its correspond

ing point in the z-plane. Let the frequency in question be ^g. Then 

t<o*~ 
"2 

• wo2 
k* sn2(aK, k) " " 2 

Square both sides and put w 2~ sn %-» *° obtain 

-&jJ2 -
2 

811 2(«2) 

k2 J(rf. k) • " , a ( ,2 ) 

and solve for sn(z2)« Thus, 

i°22 

5 n 2 ( Z 2 ) = (<o?
2 - 1) k2 sn2(aK, k) (98) 

Let z2 = j K1 4 bK; then 
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sn (z2) = an (JK» t bK) = j ns (bK). 

Substitute this expression for s n ^ ) into equation (98)* 

/u^2 _ i 
sn (bK) - *-r sn (aK). (99) 

^2 

From this equation b can be found. Substitution of C^Zo - ̂ Kl + ̂ l ' 

into equation (84) or (90) gives the attenuation at A ^ * 

As an illustrative example let It be desired to find the magni

tude of |T|2 at CO2 « 2 for the numerical example of Fig. 41, in which 

k2 = 0,1, a = 0.5, n * 3, K = 1.&24, K» -- 2.5781. 

I t i s found tha t 
K' 

qx ^ « ~ » * «- 0.1873 

and 

Since 

k-L =0.9782, 

sn(|) = - _ J L 
J l + k < 

we have 

sn (aK) = sn (0.5K) = X = 0.7162. 
J 1 + 0.9487 

Thus 

sn (bK) * 0.6202, 

and 

b * 3 7 ' 6 2 ° « 0.418 
90° 

from a t ab le . 
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8n
z(C1z2, fa) = - ± — = 1.4399. 

kx2 •n2(MCL, kx) 

In equation (84) 

2 2 k ^ sn^aJ^, 1^) 
= 1.262-5 

and 

x: = 1.0223. 
*1 

Hence 

iTi2 _ 1.4399 - 1.2625 _ 0.1774 _ 0 ^ 
lT' J2 ~ 1.4399 - 1.022^ ~ 0.4176 ~ 0#4Z5 

From equation (94) 

= 1.235. 
k̂  «T(aKI# kx) 

Thus 

, ,1 J = — = 0.344. 
i T i W 1.235 

Also, from the network function 

s 2 -t- 0.44B • + 0.074 
T(g) — - - - - - -

s3 + 1.567 s 2 + 0.716 a + 0.097 

we have 
|T|2 j 2 = 0.200 

and 

lT|2max = lT |2o ~ °«582-
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So 

|T|2
i2 0.200 
± f — = =:0.3U 

I T I ^ 0.532 

which agrees with our previous calculation. 

Selection of the modulus k.—At this point a question nay be 

raised: What value of k should be taken for the transformation from, the 

s-plane to the w-plane? This question can best be answered by inves

tigating effects of changing the value of k. 

For a given value of k, and thus K and K», except for very low 

tolerance, there exists a corresponding value of a that gives the speci

fied tolerance inside the pass band. Therefore k is not a controlling 

factor over the tolerance. If there are two values of k, and the a's 

in both cases are so adjusted that the tolerances are the same, although 

their maxima and minima occur at different values of u> in the s-plane, 

they have the same maximum and minimum values as well as the same band 

edge. What may be affected by the different values of k is the part of 

the characteristic that is outside the pass band* But this effect is 

expected to be very slight. This may be inferred by observing that 

despite the fact that two rectangles may have different proportions, 

the variation of potential along that portion of the upper horizontal 

side of a cell corresponding to p-q in Fig. 33> for two values of k, do 

not differ from each other materially since the charge arrangements 

are similar in both cases and any discrepancy will be of only second 

order. 

Fig. 50 gives the attenuation at cJ=2 for different tolerances 

for n = 3 when k is allowed to assume two extreme values. The difference 
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i3 so little that the slight improvement in the steepness outside the 

pass band hardly justifies the use of high value of k which will lead 

to inconvenient element values. 

As was shown in Fig. 33$ the region in which we place poles is 

that part of real axis between k sd(aK) and sc(aK). As k is increased 

both of these quantities approach unity. The result of this is that all 

poles will jam into a very narrow region in the neighborhood of s = 1 

in the s-plane, which will require elements of extreme sizes in the 

final network, 

When k is very small, k sd(aK) approaches k sin —w— and sc(aK) 

approaches tan ~2L . Thus one value may approach zero while the other 

may become unreasonably large. Poles which lie somewhere between these 

two points may be scattered very far apart in ratios which also result 

in inconvenient element sizes. 

Thus the choice of the value of k is the one that will scatter 

the poles in a nearly uniform manner. One can not really pin down a 

single value of k which is indisputably superior to all others since 

pole distribution is basically somewhat arbitrary for R~C transfer 

function. As an example, a value of %r equal to 0.1 renders reasonable 

pole distributions for almost all values of a. 

Selection of n.—Increasing n increases the number of cells that 

are to be included in one rectangle which is to be transformed into the 

entire s-plane. This reduces the height of each cell, which is also 

what happens when k is increased. Therefore, so far as the geometry 

in the C^z-plane is concerned, the effect of changing n is similar to 

that of changing k, except that n can only be an integer, 
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It follows that if two sets of values of n and k are adjusted 

so they have similarly proportioned cells in the C^z-plane, the value 

of a for a particular tolerance will also be the same in both instances. 

The set with higher value of n (lower k) will have its final rectangle, 

which is to be transformed into the entire s-plane, relatively, higher 

than the one with lower n. But for the set with a smaller k, b will be 

larger for the same m*«, This means the point in the z-plane which 

corresponds to ** = oJ2 lies farther away from the imaginary axis when n 

is larger. This gives rise to an additional increase in steepness out

side the pass band aside from that due to reproportioning the cells in 

the C^z-plane by using a higher k alone as was discussed in the previous 

section. Therefore increasing n improves the steepness outside the pass 

band to a -greater extent, although still slight, than increasing k. The 

price is paid of a greater number of elements. Fig. 51 is * plot of at-

2 
tenuation at ui = 2 for n = 3 and n = 20 when k =» 0.1. 

It is clear that the improvement of the low-pass characteristic 

obtained by increasing n is still so little that it hardly seems worth 

the price we pay in additional elements. However, there is another 

consequence due to increasing n, and that is the relative bandwidth. 

Fig* 52 shows the arrangement of poles for n equal to 1, 3 and 5 while 

the proportion of cells are maintained to be the same. If these rect

angles are drawn so they all have the same width, it is clear that the 

portion that is to be mapped into the pass-band increases as n is in

creased, while the portion that is to be mapped into non-pass band region 

remains unchanged. Thus it is expected that relative band width is 

increased when n is made larger. 
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Since the bandwidth is normalized to be unity in this treatment, 

an increase in relative bandwidth is equivalent to a movement of poles 

toward the imaginary axis. This is illustrated by the example given in 

Fig. 52. 

Networks Employing Two Hows of Zeros in the z-plane 

The method used in the last section employs a single row of zeros 

parallel to the uniformly spaced row of poles in the z-plane. The 

ability and potentiality of such an arrangement have been studied. 

One common method of improving the cut-off characteristic of R-C 

low pass networks is to place zeros along the real frequency axis. The 

use of this device and of the elliptic-function transformation yield the 

following charge arrangements. 

Charge arrangement in the z-plane.—In Fig. 53(a) is shown a 

quarter of a rectangle which is finally to be mapped onto the entire 

s-plane. The charge arrangement in this figure is of the type used in 

the last section. This arrangement will be modified such that a zero 

will eventually be placed on the imaginary axis. The mapping geometry 

will be kept unchanged. Region a-e will still be the pass band, region 

h-f the region where poles are allowed to lie and point q the point 

at infinity. 

If it is desired to place a zero along the Jco -axis in the s-

plane, a negative charge must be placed between a and q, say cK from 

point a. This is shown in Fig. 53(b). Accompanying the addition of this 

zero it is desirable to bring in also the rest of the complete row of 

zeros parallel to a-e which includes the zero at z = cK + jKf. 
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The reasons for bringing in a complete row of zeros are: (1) 

The addition of a zero alone upsets the equal-ripple characteristic 

along a-e; (2) The usefulness of the elliptical-function transforma

tion depends mostly on our being able to write the potential function 

in reasonably simple closed form. As was seen in the last section this, 

in turn, depends on the possibility of dividing the rectangle into 

several smaller rectangles with identical charge content. 

Thus the desired arrangement should be as illustrated in Fig. 

53(c). Itoe frequency characteristic of R-C networks based on this type 

of charge arrangement will take the general form shown in Fig. 54. As 

before, pass-band angular frequency is normalized to be unity. Point 

c*)^, beyond which |T|2 does not exceed a certain magnitude, may be de

fined as the lower bound of the stop-band. Definitions of other quan

tities are self-evident from the figure. 

Functions with desired singularities«—To write a function that 

will yield singularities coinciding with charges in Fig. 53(c), for n/2 

odd, consider the following functions r 

sn^Ojjz, kx) - sn
2(aK1+ j^', kx) (100) 

sn2(ClZ, kx) - s n ^ c K ^ Jit̂ ', kx) (101) 

sn^Cxz, kj) - B B ^ K X + J Q-, kx) (102) 
4 

s n ^ z , kx) - s n
2 ^ + J?Stl, fcx) (103) 

4 

Their singularities are depicted in Fig. 55. For each function 

only a part of the first quadrant is shown, 
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Thus the function 

[sn2(C1z,k1)-sn
2(aK1 + % ' ,fcl)][«i

2(C1«fk1)-«i
2(oK1 + %»,k x)] 

[sn2(C1z,k1).sn
2(K1+ J^l, k1)][sn

2(C1z,k1)-en
2(K1+ J^il,^)] 

(104) 

will have singularities as shown in Fig. 56. 

Finally, if the modulus k-*, whose quarter periods are K^ and K^1, 

and Cj_ are so adjusted that n/2 •*!• •* •»*>!<»> *i • » included In one 

cell of modulus k which is to be mapped onto the entire s-plane, or 

n&,» K' % 

- A ~ * ^ 1T = K, (105) 
2KX K cl 

function (104) will be the sought-for egression. 

Pass-band tolerance and atop-band attenuation.—Function (104) 

may be written as 

2 azr(Q]Z9 k^) -
k^sn^al^, kx) 

T(s)T(-s) = 

8n2(Cl2' "^ - dn« t iv ) 
4 " 1 

sn2(C^z, k^) -
ki2sn2(aK1> kj) 

1 
s n 2 ^ , kx) — 

d n 2 ( 3 K l ' f k •) 
4 

The maximum of this function along the jc*)-axis occurs when s = 0, 

where sn(Ciz, k]_)=-0. Hence, 

(106) 
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|T| 
max — 

dn2(5il, tat) dn2(2ii l , V ) 
4 4 

k]> sn2(aKi, lqj sn2(cKi, KL) 
(107) 

Its mini mum occurs when C,a = jaK^1, where m i s any odd integer, at 

which sn2(C^z, k^)-oo. Hence 

| T | 2 B i n - l . 

Thus 
ITI 

Tolerance = E - 20 log ' 'm&x 

Plata* 

= 10 log 

d n 2 ( S ^ V ) dn2(^SLl, V ) 
4 X 4 X 

.. k ^ an2(aKIf fejj m2(oK1, k )̂ 

for odd n/2. 

A similar analysis Tor even n/s fiivea 

T(s)T(-s)= 

8n2(C^&j k^) - sn2(aK^, fc^) 

sn2(Ciz, Ifl) » A 

(108) 

(109) 

an2(C,z, k,) - sn2(cK,, k,) 

-««x- v - ̂ ( i v ) 
(no) 

and 

Tolerance =» 2. 

s=. 10 log 
sn (aKx> kx) sn^cK^, kx) <kr(_A_, kx») dn^(rlA, k^) 

(111) 
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Now if it is desired to calculate the attenuation at any parti

cular point, cJx> outside the pass band, let the corresponding point in 

the C]_z~plane of this point be x&i from point a, Fig. 53> along a-q. 

Substitute C^z = xK^ + JK^' into equation (1D6), 

1 1 
k!2 sn2(xK1# y kx

z mtftaKL, k^) 
- 3 ; = : — z T(s)T( . 

2 2, 

Hence 

k^ «iz(xK l f %) dn 2 ( ! l l , Iq/) 
4 

1 _ 1 
2 —2/^, ^ x T5Z5] k^ sn^(xKlf kx) IfsirCcK^ kx) 

kx2 s n 2 ^ , k l ) d n 2 ( B 4 kl') 
4 

dn2(£L, V ) dn2(B^, V ) -
4 4 

k^ tuflia*!, k )̂ sir^c]^, fr^ 

sn2(xKi, k±) - sn2(aJ^, k^) 

" sn2(xK1# * ! ) - ^ ^ 2 ( ^ 1 , 1 ^ . ) 

sn2(xK,, k~) - sn2(cX,, k*) 
)< ; _ _ _ _ _ _ _ « 

s n 2 ^ , kx) - ~ ir dn2(2SJ., k^) 
kL 4 

| T | 2
X [ s n 2 ^ , ^ ) - sn2(aK1,k1)][sn2(xK1,li) - s n ^ c K ^ ) ] # ( n 2 ) 

^ • a x [sn2(xK1,k1) - ^2{^9^)][an2{xK^kl) . ^ 2 ( 2 ^ . ) ] 
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With quantities a and c given, function (112) is the ratio of two 

quadratics in sn2(xKi,k^). This makes the investigation of the behavior 

of the portion of the response characteristic outside the pass band very 

simple. In particular, a)a can be located by differentiating (112) with 

respect to sn2(xK1,k,), After setting the derivative equal to zero and 

solving for an^xK-^k.), the argument JdL is the distance from point a 

to the point that corresponds to s * j *Ja in the s-plane, By the same 

to&en o>b can be located by equating (112) to maximum found at AJ& and 

8olving for sn^xfu ,k^). The argument x£* now gives the distance from 

a to the point that corresponds to the point s = j ^ in the s-plane, 

Design data and considerations •—By the same reasoning given in 

the end of the last section it may be inferred that, by the use of this 

type of charge arrangement, the number of poles, n, has only very slight 

effect on the cut-off characteristic* This is specially true when n is 

not small. Therefore an investigation of a particular set of n positive 

and n negative charges will give a good indication of the quality of this 

type network. 

For a fixed pass-band tolerance the two rows of zeros may assume 

different relative positions, provided they satisfy certain conditions. 

From equation (109), for any value of a that lies within a certain limit, 

there exists a corresponding value of c which will give the same toler

ance. However, the stop band attenuation and *>b will be different tor 

each set of different values of a and c. 

Therefore, for certain pass-band tolerances some precalculated 

data about their stop-band attenuation and ^ will be very informative. 

Figs. 57, 5&, 59 and 60 are plots of stop-band attenuation, o>e and c for 
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different values of a for tolerances of 3db, 2db, ldb and Jdb. In any 

case n is taken as 6 and \T as 0*1. Sample computations for these curves 

are given in Appendix I. 

The curves in Fifcs« 57 to 60 are plotted for the type of charge 

arrangement as shown in Fig, 61* Corresponding zeros and poles of these 

charge sets in the s-plane are shown in Pig* 62* In the process of 

realizing this network, the right half-plane singularities are discarded. 

This leaves two half-unit charges on the j <A* -axis. Since this is not 

physically realizable it is necessary to double all charges (Fig* 63(a)) 

and two networks oust be constructed, connected in tandem and isolated 

by a vacuum tube* One takes in the two single zeros on the j **•> -axis 

and one half of each double-oingularity (Fig* 63(b)) and the other takes 

in the other half of each singularity only (Fig* 63(c)). Thus tolerances 

and attenuations of final networks oust be twice those given by equa

tions 109, 111 and 112* this has already been taken into account in 

the curves in Figs. 57 to 60* In other words, these curves give com

bined tolerances and attenuations of both stages* 

Networks Employing One How of Single-Zeros and One How of Double Zeros 

the difficulty caused by half-unit charges on the imaginary-

axis may be overcome by a different aethod than doubling the charges 

in the left half-plane, namely, by doubling the charges in the row closer 

to the pass band before charges are napped onto the s-plane, as shown in 

Fig* 64. This leaves two unit charges on the imaginary axis after right 

half-plane charges have been discarded* This) is shown in Fig* 65. Soae 

conjugate pairs of double zeros will be left in the left half-plane* 
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But this is not objectionable. Accompanying this process, the number 

of poles must be increased accordingly. 

The reasons for doubling the complete row of negative charges 

rather than just the one on the j«o-axis alone are precisely the same 

as those for bringing in a new row of negative charges in Fig. 53. It 

is evident that now n must be a multiple ot 3. And the singularities 

required in each cell in this case are 1.5 times those in the previous 

one. But since it is necessary to construct two networks in tandem 

when half-unit charges are left on the jeJ-axis, we actually eliminate 

25 per cent of the poles when this new scheme is used. 

Functions with desired singularities.—Following the procedure 

by which equation (104) was arrived at, the function that possesses 

singularities coinciding with charges shown in Fig. 64 may be written 

as 

T(s)T(-s) = 
sn^C^a, kx) - sn2(a£L + jK1

,# *%) 

sn2(C1z, kx) - sn2(Kx t jEkl, k^) 
6 

[sn2(ClZ> kx) - a n 2 ^ * j ^ S kx)] 

sn2(ClZ, kx) - *n2(Kx * &L, kx) 
2 

sn2(C1Z, kj.) - sn2(K! + j£^l, kx) 
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•frCl*. k!) - g gjg- ^ 
8n2(v>v- sgJn?) 

8 n 2 ^ C l z ' kl> - kx2 .^(cKi , kx) 

sn2(C^z, k*) -
d«2(M, v ) 

2 x 

sn2(C . , k l ) - 2 M^l 
dn*(-~L-, kx*) 

6 

for odd n/$> and 

T(s)Te«) = 
a n 2 ^ , kx) - a n 2 ^ , tgj 

an^C^a, k )̂ - «n2(Kx + j J L , k )̂ 

[ a n 2 ^ , kx) - a n 2 ^ , k^J 

a n 2 ^ , kr) - an2(K1+- jBtl, kx) 
2 

(113) 

a n 2 ^ , k )̂ - s n ^ K ^ J , ? 1 ' , 1 )̂ 
6 

[sn2(Ciz, k )̂ - sn2(aKx, k )̂ ]|sn2(Gr2i, k )̂ - ar̂ CcX *̂ k^)] 
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for even n/3« 

The modulus k^, whose quarter periods are E^ and & 1 , and CL 

must be so adjusted that 

nKi' K 

3*1 K 
and 

Cl 
(115) 

Pass-band tolerance and stop-band attenuation.'—One of the marl ma 

of function (113) along the j o - a x i s occurs when s » 0 # where sn(Giz)~Q. 

Hence 

|T| 
dn2(%l, V ) dn2(%l, V ) d n 2 ( ^ l , kx') k T-

max 
k j 6 sn^aKp kL) sn^cKp k^) 

(116) 

Its minima occur when Cxz » JmKj.1, where m is any odd Integer, at which 

points sn^C^a, k^) = oo . Thus 

lTlSdB-1. 

Hence, when n/j i s odd 

Tolerance a t » 20 log 
iti max 

tm-in j 

= 10 log 
dn2(%l, V ) d n 2 ^ V ) *> 2 (^> V ) 

6 2 6 
kx

6 sn2(aK1, kx) sn^(cKx, kx) 

(117) 

(118) 

A similar analjsis from equation (114) will give, when n/j i s even, 

Tolerance = £ 
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- 1 0 log 
I dn^C^k^dnSf^kVJdn^c i^ l^VJsn^CaK,^ , Jsn^cK, ,k , ) 

6 2 6 X x x x x 

(119) 

The potential at any point outside the pass band may be found by 

substituting C ẑ - x&t + jKi », where x has the same meaning as before, 

into equation (113). Thus 

2 _ |T|^ = 

d n 2 ( * l \ kx») d n 2 ( ^ , k^) dn2(5Kl', 1^') 

kx
6 sn2(aK1# kx) an^(eKl9 kx) 

sn2(xK1, k^) - sn^aK^, k^) 

sn2(xK1$ kx) - ^ j d n 2 ( S l , %') 
k^ 6 

Hence, 
IT|2 

s n 2 ^ , kx) - sn2(cK1# kx) 

s n 2 ^ , kL) - 1 d n 2 ( £ | l , te^} 
*1 

8112(3%, kx) - J ^ d n 2 ^ , u 

nfi max s n 2 ^ , 1̂ ) - l<te2(%l, l^i) 

(120) 

sn2(xKp Itĵ ) - sn2(aK^, k^) 

s n 2 ^ , k^) - - L . dn2(%!-, k x ' ) 
fcf 2 

/J 

[sn^xKj, ^ ) - an^cKi, 1^)] 

an2(jdtx, ki) - J ^ d n 2 ( ^ l , >*«) 

(121) 
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The point corresponding to s =. j«j in the s-plane may be found 

either by setting the derivative of expression (121) with respect to 

sn2(xK^, k^), equal to zero and solving for sn2(xK^, kj^), or by a cut-

and-try method. After the potential at this point is found, the point 

corresponding to s a jo)^ in the s-plane, which has the same potential, 

can be located readily. 

Design data.—The stop-band attenuation and the value of to. for 

different positions of the two rows of zeros when tolerances are held 

fixed at certain practical values are plotted in Figs. 66, 67 and 68. 

Sample computations for these curves are given in Appendix I. The value 

2 

of n in these figures is taken as 9 and modulus k again 0*1. Charac

teristics for n greater than 9 and other values of k do not differ 

materially from these. These curves can be used directly for design 

purposes. 

Conclusions 

The modified elliptic function transformation can be used to find 

R-C network functions with equal-ripple characteristics in both the pass 

band and the stop band. By properly arranging charge rows in the z~ 

plane the potential can be written in closed form. Three cases have 

been inveatigated: one includes one row of zeros (equations (84) and (90)) 

one includes two rows of zeros (equation (104)) and one includes one row 

of simple zeros and one rows of double zeros (equations (113) and (114)) 

in the z-plane. From their potential expressions, tolerance and stop-

band attenuation as well as stop-band angular frequency can be calcu

lated for any values of k and n. 
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For each case investigated the positioning of zero rows as well 

as their associated design parameters, viz. stop-band angular frequency 

and stop-band attenuation, are presented in the form of curres for some 

practical values of tolerance. They are shown in Figs* 50, 51, 57, 58, 

59, 60, 66, 67 and 63. An example for the use of these curves are given 

in Appendix II. 

It is found that the values of k and n have only slight effect on 

the low-pass characteristics. The eholce of these values, therefore, 

depends on other practical considerations. Curves for other values of 

k and n may be computed and compared. 
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APPEHDIX I 

SAMPLE COMPUTATIONS 

For networks of the type shown in Fig. 53.-*A sample series of 

computations will be given here to illustrate how points in Fig. 57 to 

Fig* 60 are obtained. Ihey correspond to those networks that have two 

rows of zeros in the z-plane, as showi in Fig. 53. 

Since these curves are computed for the values 

n = 6 *nd k2 * 0.1, 

corresponding to these values, one finds 

K = 1.6124 and K> = 2.5781, 

From equation (87), we have 

2K> V 
c^ =, e 2K = 0.1874 

From the table, one finds 

kl s 0-97&5. 

Suppose that it is desired to calculate all design parameters 

for a pass-band tolerance of 1 db and a value of a equal to 0.80. From 

equation (109), we have 

10 log 

dn^&V)^,^) 1 

4 _2 k-f «r(aKlf kx) «r(cKlt kx) 
- 0.5 
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or 

dn&l, kiOdn^ki.) 
ft * = K ) 0 , 0 2 5 = 1.059254. 

k^ sn(aK̂ , k^) sn(cK^, k^) 

After substituting the values 

there is obtained 

which gives 

dn (Kl\ V ) = 0.996769 
4 

dn (£V f kli) = 0.981318 
4 

sn (0.80^, kx) =• 0.991437 

kx = 0.978148 

sn (cKp kx) = 0.991437, 

e - 0.67677 

by the use of a table. 

After substituting 

^ ( a ^ , kx) « 0.982947 

sn^cK^ kx) = 0*947673 

1 2,*i ' 
^-5 <far(-£-, kx«) * 1.019037 

J^dn 2(^l, kx»)« 1-003241 



into equation (112) and setting 

i * 
d 8n*(jcK^, k^) W2 

max 

equal to zero, i t is found that the point corresponding to co& i s 

s n 2 ^ , 1 )̂ = 0.972386, 

This, in turn, gives 

T|2 
•£-—=0.181319 

max 

which corresponds to a stop-band attenuation of 

20 log 
L 0.160319 

„ 14.828 db 

To find co^y from equation (112) 4 we have 

[ s n 2 ^ , kx) - 0.982947] \m&{\\9 \ ) - 0.947673] 

and 

pm^M^, kx) - 1.019037] fa^fes^, kx) - 1.003241] 

3n2(b%, k^ ~ 0.924572. 

=0.181319 

Thus 

b = 0.6273S 

From a table. From equation (80), we have 



no 

So 

Since 

and 

,„ sn (bg+Jl', k)  

J " b - , i 
/ - 7 r; — - sn2(bK+jK», k) 
J k2 sn2(aK, k) 

* J sn2( aK, k) - sn2(bK, k) 

sn(aK, k) = 0.95342 

there is obtained 

sn(bK, k) = 0.34012, 

<ob = 2.1150. 

For networks of the type shown in Fig. 64.—In this section, a 

sample series of computations will be given to illustrate how curves In 

Figs. 66, 67 and 63 are obtained. The singularities of these network 

functions are shown in Fig. 64 and Fig. 65 in the C^z-plane and the 

s-plane respectively. 

Since these curves are computed for the values 

n ^ 9 and k2 - 0.1, 

we have, again 

k^ « Oo97815 

as in the proceeding section. 

Again a sample set of values of design parameters for a pass-band 

tolerance of 1 db and a value of a equal to 0.#0 will be calculated here. 

From equation (118), we have 



Ill 

10 log 

dn2(l|l, V ) dn2(̂ l, kx») **H^ V ) 

k̂ .6 s n 2 ^ , kx) sn^c^, kx) 
= 1 

or 

dn (^1, V > dn (Si, fc^) dn ( 5 ^ kx») 

— - 100.05 = 1.12202. 
k̂ 3 sn (aK̂ , k^) sn2(cK^f k^) 

Substitution of 

dn d^L kif) - 0,9985a 
6 

to f*1'* V)=* 0.989013 
2 x 

dn (5*l',y) = 0.979596 

sn (aKx, kx) =. Q.99H37 

lq3 = 0.935866 

into the equation above gives 

«n2(c*i, ki) = 0,929237 

and 

sn (cKx, 1̂ ) = 0.963969. 

By interpolating values given by a table of elliptic functions, there is 

obtained 

c = 0.636390. 
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Substitution of 

sn2(aKi, k±) = 0.982947 

•n2(cKx, Iq.) = 0*929237 

^ y t a 2 ( ^ l , kx ') = 1^042089 

1 dn2(*l'. k.f) = 1.022339 
kx2 2 

1 dn2(5^l , .k1Q = 1.002962 
kj.2 &^ 

into equation (121) gives the relative magnitude of | T | 2 outside the pass 

band 

|T|2 [*n2(xKx, k1)-0#982947][sn2(xK1,k1) - 0.929237] 

iTftaax ~"[an2(xKx, kx)-.1.042Q89j[sn2(xKl, kL)-1.022339][sn2(xKi,kl)-l.002962] 

This expression i s found by cut-and-try to have a maximum at 

Bn2(3dK1, ki) = 0.97U0 

which corresponds to o)a, This maximum is 

|T|2a 
- = 0.18850 

I max 

which, in turn, gives 

Attenuation = 10 log 
0.18850 

= 7.247 db, 
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Again by trial-and-error method i t i s found that ' ' also 

assumes a value of 0*18850 at 
|T|2 

sax 

sn2(xK!, kx) = 0.8/056 

which corresponds to <*>^, the stop-band, Thus 

Substituting 

and 

into the equation 

b =0.51278. 

«i (aK, k) = 0.952*2, 

•n (bK, k) a 0.73021 

^ sn (aK, k) 

b J s»2(aK, k) - sn2(bK, k) 

gives 

^ ~ 1.5554. 
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APPENDIX II 

NUMERICAL EXAMPLES 

Example 1.—It is desired to design two identical Interstage R-C 

networks to be used In the first two stages of the forward circuit of 

a feedback amplifier. The networks are to have a total inaertion loss 

of not greater than 5 db below 440 cycles per second. Tfte total loss 

at 4*4 kc, however, must be greater than $5 db. 

Since the specifications of these interstage networks call for a 

low-pass R-C filter function with a drop of approximately 6 db per octave 

outside the pass band, it may be anticipated that the use of a network 

of the type shown in Fig. 20 may be attempted, 

Choose the tolerance to be 1 db. From Fig* 22, it is found that 

<rx *• 0.275 

and 

^P * O.756o 

Thus, we have, the network function for one single interstage 

T(8) a J&L. 111*™ 
E x (s + 0.924)(« + 0.383) 

The insertion loss of this function at zero frequency is 

20 log 
0.924 x 0.383 1 
— 0.275 = 2° lo* (1-287) * 2.19 db 
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At a frequency one decade beyond the pass band, 0)^7.56, 

and 

T ~ 

E2 

El 

B2 0.275 + 37.56 

EX (O.924 + J7.56)(0.383 +37-56) 

57.229 1 

58.007 x 57.300 58.079 

This gives the insertion l o s s at o>=7.56 to be 17.64 db. Therefore 

this function sa t i s f i e s a l l requirements and may be used. 

Finally, since the pass-band angular frequency must be 21TX440 

= 2764, the actual network function can be obtained by replacing s by 

This yields 

«/ % 2764(s ± 760) 
T< 8> a (s + Wzt* ? 1059) 

s 

2764 

Example 2.—As an exanple for the application of data obtained 

in Chapter 71, a network function will be calculated based on the in

formation contained therein. 

From Fig. 58 it can be seen that if a value of a equal to 0.65 

is chosen, 

c = 0.5677. 

The pass-band tolerance w i l l be 2 db and the stop-band attenuation wi l l 

be greater than 24.6 db for w>2.15. 

For th i s network function, poles must be placed at 

' • & 

K + j 7K« 
12"' « + *¥> 

K + # , 

K + j UK' 
12 ' 
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and zeroa at 

aK 4 j |L, cK 4 j | l , 
3 3 

aK + JK', cK + JK». 

The position for these singularities in the w-plane will be 

an (K + j | i ) a 1.0208 + J 0 

an (K + j P ) * 1.1899 + J 0 
4 

an (K + j g 4 = 1,5375 + J 0 

sn (K + Jl<P = 2*056S + d Q 

an (K + j S l ) = 2.6575 + j 0 

T1 iff 

an (K + j i g - ) =3.0979 +J 0 

for the poles and 

an (aK + j | l ) * 1.1789 + J 0.4539 

sn (cK * j j - ) = 1.0912 + J 0.5391 

an (aK + j K») » 3.6826 + J 0 

an (cK + j l ' ) s 4.0224 + j 0 

For the zeros. 

In the s-plane, by the use of equation (80), poles are located at 

0.2885, 0.3414, 0.4595, 

0.6733, 1.0424, 1.5559, 



117 

and zeros at 

0.3286 + J 0.1431, * 

0.2986 + j 0.1654, 

0 t j 2.4850, 

The singularities listed above are arranged in the same sequence 

as before. In all three planes only the singularities in the first 

quadrant are indicated since they are the easiest ones to handle. Other 

singularities can be located by symmetry. 

By taking the singularities In the left half-plane only, the 

network function is formed; hence 

(s 10.329 + j0.143)2(s +0.329 - jQ.143?(s +0.299 +J0.165)2 

T(a)= (• + o.ayy - 3Q.i6?)2(s i 32.48?)(s - Jg-W? 
(s+0.288)2(s + 0.341)2(a + 0.459)2(s+0.673)2(s + 1.042)2(s+1.556)2 

( s 2 t 0.657 s +0.129)2(s2+ 0,597 s+0.117) 2 ( s 2 +6.180)  

" (s + 0.288)2(s +0.341)2(s+ 0.459)2(s + 0.673)2(s + 1.042)2(s +1.556)2 

This function has a value at a =0 equal to 

T(Q) 0.129 x Q l f x 6.180  
TCO; - o o 0 . ,,0 o .9 - 0.5814-

0.288^x0.341^* OTiffix 07UtTxO/^x 1755? 

At s •=• Jl, the band edge. 

1.136 x 1.190 x 5.180 

lT*J1)r 1.083 x 1.116 x 1.210 x 1.453 * 2.086 x 3.421 * 0*h62' 
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Thus 

Tolerance =• 20 log 1 T(0) 
T(jl) 

= 20 log(1.259) = 2 db. 

At s = j 2.15 

|T(j2.15) |«X 
22.19 x 21.95 x 1.557 

4.705 * 4.739 * 4.833 * 5.075 * 5.708 x 7.044 = 0.03449. 

Therefore, 

Attenuation •> 20 log . = 20 log 16.86 =^24.6 db. 
T(J2.15) 

Both the tolerance and the atop band attenuation obtained here 

check with values given by Fig. 58. 
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APFSHDXX III 

U S T QF SXMBOIS 

k# k* Modulus and ccaglesBs&ary Modulus. 

K, K' Ccsaplete elliptic Integral of tne first 
kind of aodull k and k' respectively. 

s m a + jta GcaaqpleX'frequeDcy variable* 

t - x + Jy Canplax variable* 

» » u + jv Complex variable* 

e Tolerance* 

"p Pass-Dead angular frequency. 

^b Stop-band angular frequency* 

T(s) Transfer function* 
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