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SUMMARY

A common problem that exists in F'TS is concerned with how to compensate
for sampling errors when an interferogram is sampled at nonuniform instants in the
path-difference domain. These errors, due to various mechanical irregularities, are
generally associated with a continuous scanning system, which samples the interfer-
ogram at either equal space or equal time intervals. In both systems, the accuracy
of the reconstructed signal can be significantly compromised if no error correction is
performed. For an IFTS, the off-axis effects also affect the accuracy of the sampling
locations. In addition, if the nonuniform sampling locations are unknown, which is
the case when a laser reference is not present, the reconstruction algorithm must be
able to correct the sampling errors “blindly.” The current technique for solving this
problem in the FTS industry involves a low-pass interpolation/resampling process,
which only has been applied to a single detector problem, and it does not offer a
solution when sampling locations are unknown. Furthermore, this method does not
allow any control over the quality of the outputs. Based on these facts, a reconstruc-
tion algorithm that provides optional controls over the quality of the reconstructed
signals is needed when sampling locations are obtainable. On the other hand, a re-
covery method that is capable of correcting the irregular sampling errors without
the knowledge of sample locations must be developed when no positional information
is present. In both cases, these algorithms must be simple and efficient enough for
applying to a multi-dimensional problem.

When sampling positions are available, two alternatives are presented in this the-

sis. The first method recovers the data using a truncated “sinc” interpolation, whereas

Xv



the second method solves the problem using a linear interpolation based on the in-
terferogram’s symmetry property. Each algorithm has its own unique strength: the
linear interpolation method is easy to implement, highly efficient, and is able to
produce exceptionally accurate results under low-noise conditions; the “sinc” inter-
polation method is more robust to noise, and is capable of controlling the output
quality through an adjustable truncation window length.

In the case where sampling locations are unknown, an optimization problem with
multiple objective and constraint functions is designed based on the spatial and spec-
tral characteristics of the data measurement. This problem is solved using an evo-
lutionary approach, in which potential solutions are competing to be the fittest in-
dividual in a simulated natural environment. Evolutionary algorithms are stochastic
global optimization methods that were founded on the principles of natural selec-
tion and adaptation. They can work on a variety of function types and require the
least amount of mathematic resources. Because of their simplicity, flexibility, and
effectiveness, two evolutionary algorithms are developed and compared to obtain the
most desirable solution in the reconstruction without reference case. One of which
emphasizes the estimation of sampling offsets while the other attempts to recover the
actual values of all correct samples. The choice between the two is made according
to each interferogram measurement’s spectral characteristics. The extensions of these

algorithms are made to solve the multi-dimensional array problem.

xvi



CHAPTER 1

INTRODUCTION

The study of the Earth’s atmospheric radiation has been one of the most important
scientific subjects for years. Various remote sensing instruments were designed for the
purpose of observing the energy exchange mechanisms between the atmosphere and
radiation. One particular optical instrument called a Fourier transform spectrometer
(FTS) has played a significant role in the development of remote sensing spectrometry.
A FTS is designed to record the Fourier transform of a broadband spectrum using
a photo-sensitive detector, and the actual spectrum can be obtained by numerical
transformation afterward. In recent years, the advancement of solid-state detector
technology has made it possible for the development of an Imaging FTS (IFTS).
Instead of using a single detector element, an IFTS utilizes a detector array and is
capable of collecting high-resolution spectral images across a large ground area. The
NASA’s New Millennium Program GIFTS (Geostationary Imaging Fourier Transform
Spectrometer) is an example of a high-resolution IFTS.

A common problem that exists in FTS is concerned with how to compensate for
sampling errors when an interferogram is sampled at nonuniform instants in the path-
difference domain. These errors, resulting from various mechanical irregularities, are
generally associated with a continuous scanning system, which samples the interfer-
ogram at either equal space or equal time intervals. In both systems, the accuracy
of the reconstructed signal can be significantly compromised if no error correction is
performed. For an IFTS, the off-axis effects also affect the accuracy of the sampling
locations. Furthermore, if the nonuniform sampling locations are unknown, which is

the case when a laser reference is not present, the reconstruction algorithm must be



able to correct the sampling errors “blindly.” The current technique for solving this
problem in the FTS industry involves a low-pass interpolation/resampling process,
which has been applied only to a single detector problem, and it does not offer a solu-
tion when sampling locations are unknown. Thus, a reconstruction algorithm that is
capable of correcting the irregular sampling errors without the knowledge of sample
positions must be developed. This is possible only because additional information on
the data itself allows us to impose a set of constraints to the solution.

These two cases, i.e., with-references and without-references, are treated individ-
ually for both the single-pixel and array problems. When sampling positions are
available, two alternatives are presented. The first method recovers the data using
a truncated “sinc” interpolation, whereas the second method solves the problem us-
ing a linear interpolation based on the interferogram’s symmetry property. In the
case where sampling locations are unknown, an optimization problem with multiple
objective and constraint functions is designed based on the spatial and spectral char-
acteristics of the data measurement. This problem is solved using an evolutionary
approach, in which potential solutions are competing to be the fittest individual in
a simulated natural environment. Two evolutionary algorithms are developed and
compared to obtain the most desirable solution. One emphasizes the estimation of
sampling offsets while the other attempts to recover the actual values of all correct
samples. The extensions of these algorithms are made to solve the multi-dimensional
array problem.

The organization of this thesis is as follows: Chapter 2 provides the scientific and
technological background of the atmospheric radiation and remote sensing. Chapter
3 explores the theoretical background, underlining problems, and the nature of the
problem. Chapter 4 presents a survey of some of the current techniques for nonuni-
form signal reconstruction. In Chapter 5, potential application-based solutions for

solving the problem are presented. Chapter 6 discusses the techniques developed for



solving the “with-reference” case. Two of the interpolative methods along with their
performance are introduced in this chapter. In Chapter 7, the designs of the two
evolutionary algorithms for reconstructing interferograms in the “without-reference”

case are presented in full details. And finally, Chapter 8 concludes the thesis.
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CHAPTER 2

ATMOSPHERIC RADIATION AND REMOTE SENSING
SPECTROMETRY

To develop an application-based signal reconstruction algorithm that compensates
for a particular type of instrumental error, the nature of the measurement itself
and methods for obtaining it must be studied and understood. The observation of
energy exchange mechanisms between the Earth’s atmosphere and radiation is of
no exception. The goal of this chapter is to glance through several major aspects
of the remote sensing Fourier transform spectrometry as well as to provide some
fundamental background information in the study of atmospheric radiation.

This chapter is organized as if it were answering a series of questions, and rele-
vant topics are arranged and introduced in a general-to-specific fashion. Starting off
with the most fundamental question, what is electromagnetic radiation? How does it
behave when it is in contact with matter, and specifically, how does it interact with
the Earth’s atmosphere? We examine the basic concept of observing and recording
atmospheric radiance via remote sensing methods, and then focus our interests on
one particular type of remote sensing optical instrument called a Fourier transform
spectrometer. The operational principle of the instrument along with its measure-
ment characteristics are reviewed. Then, we ask the question, what is the current
development trend in Fourier transform spectrometry? The answer is an imaging
Fourier transform spectrometer, which offers the latest remote sensing techniques.
Finally, details on the procedure and methods of processing the measured data are

explored in the last section.



2.1 Electromagnetic Radiation

What is the nature of light? For centuries, scientists have been searching for an an-
swer; inventing and re-inventing the properties of light. Today, we understand light as
traveling electromagnetic radiation by its dual nature — possessing the characteristics
of both waves and particles. In this section, some of the basic concepts of electro-
magnetic radiation are introduced. We will also investigate the interactions between

electromagnetic radiation and matter.
2.1.1 Electromagnetic Waves and Spectrum

Electromagnetic (EM) radiation can be described as energy transmitted by alternat-
ing electric and magnetic waves, propagating through a vacuum at the speed of light,
c=2.9979x 10* m/s. The distance between adjacent peaks of an oscillating EM field
observed at a given time is known as its wavelength, A. Alternatively, EM radiation

can be specified by its frequency, v, which is related to the wavelength by
v=—, (2.1)

in units of Hz or cycles per second. Because A is inversely proportional to the energy,
E = %, radiation is often preferably expressed in wavenumber, o = 1/ (in cm™).

'in frequency is

The conversion between these two systems is as follows: 1 cm™
approximately equal to 30 GHz [9].

A spectrum can be defined as the distribution of all EM radiant energies according
to frequency. Figure 2.1 shows regions of the EM spectrum grouped by their radi-
ation types, extending from the very energetic short-wave y-rays to a narrow range
of the visible region, at the other end of the spectrum lie the long-wave microwave
and radio-frequency regions [19, 28]. Different types of radiation are produced and
detected based on their unique properties. For instance, at the lower frequency end

of the spectrum, EM energy fields can be produced and detected by electronic cir-

cuits, whereas in the visible region, human eyes are sensitive to radiation ranging
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Figure 2.1: The electromagnetic spectrum (from [39]).

from 0.4 - 0.7 pm. Because most interactions between radiation and the Farth’s at-
mosphere occur in the so-called “optical” window extending over wavelengths from
the far ultraviolet (UV) to the far infrared (IR), approximately between 0.3-14 um,
most discussions in the following sections will focus on atmospheric radiative phe-
nomena, occurring in this particular region of the spectrum. Based on the properties
of the atmosphere, the optical window can be further subdivided into a reflective
region (~ 0.3-3 pum) and a thermal infrared region (~ 3-14 pum) [76]. The reflective
region is mostly dominated by interactions between reflected solar radiation and at-
mospheric constituents, whereas the absorption and emission of thermal radiation by

the atmosphere is mainly of interest in the thermal infrared region.



The fundamental quantity for measuring transported EM radiation is called radi-
ant energy (@) in units of Joules. The rate of radiant energy being transferred per
unit time can be expressed in radiant fluz (®) of units J/s or Watts, W. Irradiance
(E) is the radiant flux incident upon a unit area, denoted by W m 2. The monochro-
matic irradiance specifies the irradiance centered at a particular wavelength and is
written as E,. When radiation is no longer coming from a single direction, irradiance
can be determined only by integrating the incoming energy over all directions. The
quantity of radiance (or intensity) L is defined as the irradiance per unit solid angle

(in steradian) [39]. The solid angle Q2 can be interpreted as the area of the projection

solid
angle dQ

Figure 2.2: The concept of a solid angle is expressed as the relationship between
radiance Ly and irradiance £\ (from [35]).

onto a unit spherical surface from an object at a given distance. A differential element
of the solid angle is written as d{) = sin dfd¢ = —d cos 8d¢p, where 8 and ¢ are zenith

and azimuth angles, respectively. The solid angle surrounded by a point is

2m
0= / /"' sin 8dfd¢p = 4 sr. (2.2)
o Jo

For a spherical segment, the solid angle is

27 92
0= / / sin 8dfd¢ = 2m[cos ) — cos 6s]. (2.3)
o Jo



Using the small angle approximation for 8, the solid angle ) subtended by a spherical
cap is

2 pf
Q= / / sin 0'df’ dp = 271 — cos O] ~ 76> (2.4)
o Jo

The monochromatic irradiance E) can be obtained by integrating the radiance Ly over
a hemisphere (see Figure 2.2). Because L) represents radiation leaving or incident on

an area normal to the beam, at an arbitrary angle 6, L, is multiplied by cos . Hence,

2 pw/2 2
E), = / / L) cos @ sinf dfdp = / Ly cos6d2 (2.5)
o Jo 0

is the monochromatic irradiance [35, 41, 70].
2.1.2 Blackbody Radiation

EM radiation over a wide range of spectral regions is emitted from the surface of
a heated body; every object that has a temperature above absolute zero emits EM
energy. The spectral distribution of emitted energy depends on 1) the temperature
of the emitting object and 2) the ability of a given substance to absorb and emit
radiation at particular wavelengths. An ideal absorber, called a blackbody, is capa-
ble of absorbing and emitting energy at all wavelengths with 100% efficiency. For
such an object, the spectral distribution is only temperature dependent, as shown in
Figure 2.3. In 1900, Max Planck derived the theoretical solution that quantifies the
blackbody radiation distribution; the Planck function expresses the radiance emission

of a blackbody according to its wavelength as

2hA A5

B\(T) = ehe/ T _ 1

(2.6)

where h is Planck’s constant and k is Boltzmann’s constant. As A — oo, B, =
2kTco?; this is known as the Rayleigh-Jeans distribution (19, 39]. Alternatively,
Equation (2.6) can be written as a function of wavenumber . This conversion would

require the energy integrated over both systems to be equivalent, which is satisfied
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Figure 2.3: Blackbody radiation as a function as wavelength for a number of tem-
peratures (from [41]).

by the following relationship:
B\(T)d\ = —B,(T) do. (2.7)

Since A = —1/0, then d\/do = —o~% = —)?, and this would give us the equation of
B,(T) = A?B,(T). Using Equation (2.6), we can get

2hctod

= eheo/kT _ 1° (28)

B, (T)
Blackbody emission has a single peak at A,.., which can be determined by solving
the equation 0B, (T)/0OA = 0, the result is

AmazT = 2897.9 pm K, (2.9)

commonly known as Wein’s displacement law. Equation (2.6) represents the black-
body radiation at a single wavelength; the total radiant flux can be derived by in-

tegrating Bx(T) over all wavelengths as B(T) = [;° Bx(T)dA. Its final solution has



the form of

B(T) = o,T", (2.10)

and is called the Stefan-Boltzmann law, where oy is the Stefan-Boltzmann constant.
Radiation intensity sometimes is expressed in units of temperature commonly known
as the brightness temperature. At the given wavelength, this is the temperature
required to match the measured intensity, I, to the Planck function. Therefore, the
brightness temperature, T}, can be obtained by inverting Equation (2.8), and

2hcto®
I

Tb:h_ca[ln(

- +1)] " (2.11)

In the microwave portion of the spectrum, the brightness temperature can be simply
approximated using the Rayleigh-Jeans distribution [70].

Unlike a blackbody, energy incident on real materials (graybodies) will experience
a combination of interaction mechanisms, most of which can be categorized into
transmitted, reflected, and absorbed energies. If they were normalized by the total
incident energy to yield three related quantities, absorptance (), transmittance
(12), and reflectance (p,), under the assumption that no scattering is present, then

the law of thermodynamic equilibrium prevails, and
ayx+py+1=1 (212)

Similarly, the emittance of a substance is the total emitted energy normalized by the
blackbody radiation at the given wavelength and is defined as ex= E)/B), where B
is the radiation emitted by a blackbody. The relation between the emittance and
absorptance is given by Kirchhoff’s law as « = e, which simply states that objects

are as good absorbers as they are emitters [14, 19, 21, 35, 36, 39, 41].
2.1.3 Photons and Spectroscopy

Like most scientific theories that were discovered when well established principles

could no longer explain certain phenomena, the quantum standpoint of view was
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proposed by Max Planck to solve the problem of blackbody radiation, which could
not be adequately explained by the classical theory of radiation. Based on the particle
nature of light, EM radiation interacts with matter, absorbing or emitting energy only
in quantized small bundles, known as quanta. Quanta that have the lowest amount of
discrete energy can be viewed as the most elementary discrete units of the transported
energy are called photons [14, 19, 21]. The energy being carried by a single photon

is related to the frequency of the radiation by Planck’s equation:
E = hv. (2.13)

A transition is made between discrete energy states when atoms or molecules under
excitation absorb or emit a photon. Alternatively, Equation (2.13) can be rearranged
to express the relation between the wavelength and photon energy as

_he

E=—,

(2.14)

where hc = 1.986 x 1072° J m.

Spectroscopy is the study of spectral distributions of photon energy when radia-
tion interacts with matter. Since various materials respond to radiation differently,
depending on their structural properties, the spectral distribution shows the energy
being exchanged between radiation and matter that can be used to determine the
material in question. The interaction between molecules and radiation can be clas-
sified into five categories: ionization-dissociation, electronic, vibrational, rotational,
and forbidden transitions. When a molecule absorbs certain amount of radiation at a
given wavelength, its internal energy level makes a transition to a higher state [14, 21].
The type of the transition is frequency dependent. For example, in the IR portion
of the spectrum, transitions are mostly associated with changes of vibrational and
rotational states of a molecule; and electronic transitions occur in regions of UV
and visible portions of the spectrum. Vibrational transitions in the IR spectral re-

gion are particularly interesting in the study of atmospheric spectroscopy; two of
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the major absorbers in this section of the spectrum are carbon dioxide and water
vapor (35, 36, 41].

Apart from the wave nature of radiation, in which the spectrum of radiation from
a body is continuous, the emission spectrum of excited molecules is characterized by
discrete lines. This, of course, is idealized for motionless molecules experiencing no
external influences from other molecules. In non-ideal cases, spectral lines of finite
widths are broadened by collisions and Doppler effect in the upper atmosphere and
are mainly dominated by collisions in the lower atmosphere. The collision-broadened
spectral lines resulting from molecular interactions generally take on the form of
Lorentz lineshape

ar/m

fuv—v,) = ma (2.15)

where f; represents the shape factor of a spectral line, af, is the half width at the
half maximum of the line and is a function of atmospheric pressure and temperature,
v is the frequency, and v, is the idea center frequency line [35, 41, 70]. Doppler
broadening due to Doppler shifts resulted from molecular thermal motions has a

lineshape function of

folv— ) = Klﬁexp [ (=2)], (2.16)

ap

where ap is a measure of the Doppler width of the line [30, 41, 70]. These two line

shapes are plotted in Figure 2.4.

2.2 Interactions of Radiation with the Atmosphere

The atmospheric constituents interact with solar and terrestrial radiation to create
the environment we are living in. Surrounded by nature, we often marvel at the
beauty of a rainbow and aurora, and wonder why the sky is so blue and the grass so
green. The answers can be found by exploring the radiative behaviors occurring in

the atmosphere.
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Figure 2.4: The Doppler and Lorentz lineshapes (modified from [70]).

2.2.1 Solar and Terrestrial Spectra

The radiation that reaches the Earth is originated at the surface of the Sun, re-
ferred to as the photosphere. Most solar radiation reaching the top of the Earth’s
atmosphere (TOA) can be considered as direct incident parallel beams, the rest in-
cludes lunar reflected and particle-scattered solar radiation. In general, solar radi-
ation is quantified in irradiance because the solid angle subtended from the Sun at
the Earth is considerably small because of the distance traveled; therefore, it is rea-
sonable to assume the radiation is coming from a single direction. The Sun can be
approximated as a blackbody with a surface irradiance of E = 6.33 x 10°W m ™.
Applying the Stefan-Boltzmann law in Equation (2.10) yields the effective black-
body temperature of 5780 K. From Wein’s displacement law, the solar energy has
a maximum at about Aye; = 0.5um (green in the visible region) [35, 39, 41]. For
this reason, solar radiation is often referred to as the short-wave radiation because
its energy is concentrated in the UV, visible, and near IR regions with shorter
wavelengths. In practice, it is often convenient to convert this energy into pho-
ton units. By applying Equation (2.14), the photon energy F is obtained at 0.5um

(E = 3.972x107'°J); the equivalent irradiance in photon units can be then computed

13



as Fppoton = 6.33 x 10"W m™2/3.972 x 107'°J ~ 1.6 x 10°® photons s 'm~2 [19, 63].

Only a small portion of the Sun’s surface radiation reaches the TOA (at about
1368 W m~2), among which 40% of this incoming irradiance is absorbed by the
Earth’s surface. Based on the law of thermodynamic equilibrium, these energies must
be balanced by the emission of outgoing terrestrial radiation. Thus, the terrestrial
radiation spectrum can also be modeled as if it were emitted from a blackbody,
but at a much lower effective mean temperature of 255 K, which peaks around 10um.
Similarly, terrestrial radiation is also known as the long-wave, IR, or thermal radiation
because the wavelength range of maximum terrestrial emission is located in the IR
range. Unlike solar radiation, terrestrial radiation does not emit energy in visible
wavelengths because the Earth’s temperature is too low. This is why it is dark
during the nighttime. Thermal radiation is typically measured in radiance because
in this case, radiation can come from all directions. Figure 2.5(a) shows normalized
blackbody spectra plotted at solar and terrestrial effective temperatures. These two
spectra do not experience any significant overlaps, which makes it possible to study
their properties separately [41].

Among all incoming solar radiation at the TOA, about 20% is reflected back into
space and the rest is absorbed by the Earth’s atmosphere and surface. To maintain
thermal equilibrium within both systems (the Earth and its atmosphere), this would

require the absorbed energy to be reflected, scattered, or emitted outward [35].
2.2.2 Absorption, Scattering, and Emission of Radiation

The attenuation of solar radiation by the atmosphere is primarily dominated by ab-
sorption and scattering, whereas interactions between the atmosphere and thermal
radiation are usually associated with emission and absorption [16, 30, 35]. The at-

tenuated solar and thermal radiation spectra are shown in Figures 2.6 and 2.7. In
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Figure 2.5: The attenuation of solar radiation. (a) Normalized blackbody spectra at
solar and terrestrial effective temperatures. (b) Solar and thermal absorbance at sea
level. (c) solar and thermal absorbance at 11 km, near the middle-latitude tropopause
(adapted from [78]).

Figure 2.6, the top solid curve indicates solar irradiance at the TOA, and the bot-
tom solid curve is estimated solar radiation at sealevel. The shaded area represents
radiation absorbed by the atmosphere. In Figure 2.7, terrestrial radiance at sealevel
is plotted against blackbody spectra at several temperatures (in dashed curves) since
the envelope of the thermal radiation spectrum can be viewed as a combination of
these curves [36, 39].

The Earth’s atmosphere is composed of groups of gases, of both permanent and

variable concentration, along with various solid and liquid particles, such as clouds,
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Figure 2.6: The solar irradiance and absorption with spectra at the TOA and sea-
level. The shaded area indicates the absorption by the atmosphere (from [35]).
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Figure 2.7: Terrestrial radiance with blackbody curves at different temperatures
plotted in dashed lines (from [36]).
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aerosols, water drops, etc. These constituents interact with radiation at different spec-
tral bands according to their molecular structural properties. Figures 2.6 and 2.5(b)
have most of the major absorbers identified. In the UV region, solar radiation is
mostly absorbed by molecular and atomic oxygen and nitrogen species in the upper
atmosphere; O, and N, absorb for wavelengths less than 0.2um. In the near UV
region (=~ 0.2 —0.3um), ozone (O3) occurs in the stratosphere as a result of electronic
transitions. Radiation in the range of 0.3 and 0.4 um reaches the surface. There
is little absorption of solar radiation in the visible portion of the spectrum because
the corresponding energies are too lower for electronic transitions and too high for
vibrational transitions. Although ozone exhibits several weak absorption bands in
the visible and near IR portions at about 0.44 to 1.18 um, so does molecular oxygen,
which has two weak bands at red wavelengths. Chief absorbers lie in the IR region
are mainly composed of triatomic molecules such as HyO, O3, and CO,. Water vapor
absorbs solar radiation in bands centered at 0.94, 1.1, 1.38, and 1.87 ym due to the
vibrational and rotational transitions. Carbon dioxide also has a number of weak
absorption bands at 1.4, 1.6, and 2.0 um. Absorption is often accompanied by the
phenomenon of scattering, which occurs at all wavelengths in the spectrum. Atmo-
spheric scattering is caused by the presence of gas molecules, aerosols, clouds, etc.
When molecules have dimensions less than the wavelengths they affect, the amount
of scattering is proportional to A™* and is referred to as Rayleigh scattering. As a
consequence, the blue color of the sky is due to a relatively large amount of scattered
blue light. Atmospheric constituents, such as water vapor and dust with dimensions
that are of the order of the radiation wavelengths, will experience a different type of
scattering, which is called Mie scattering. A third type of scattering, non-selective
scattering, deals with particles that have even larger dimensions such as the cloud
droplets; in this case, the scattering is wavelength independent [30, 35, 36].

In the IR region, thermal radiation is mostly absorbed by carbon dioxide, water
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vapor, and ozone (Figures 2.7 and 2.5(b)). Carbon dioxide has a strong absorption
band centered at 15 pm. Water vapor absorbs thermal radiation at 6.3 and 20 um
bands. From 8-12 pm, the atmosphere is relatively transparent, except for the Os
feature at 9.6 um. Most of the Earth’s atmosphere is opaque due to the absorption of
gases. However, in several regions, the atmosphere is relatively transparent, allowing
radiation to propagate through; these regions are called atmospheric windows. In
the visible and IR regions, these windows are located at 3.7 um, 8.5-12.5 um (with
the exception of ozone at 9.3 um). In Figure 2.7, the absorption spectrum of the
Earth’s atmosphere is plotted as a function of the wavelength, with most absorbers
labeled [35, 36, 41].

Radiation traversed through the atmosphere experiences three basic types of pro-
cesses. It can be absorbed, scattered, or emitted by gases and aerosols. In the
scenario where a beam of solar radiation propagates through the atmosphere verti-
cally downward, let the irradiance entering the atmosphere be E), the thickness of

the atmosphere be dz, and the existing irradiance be F) + dF); then,
dE/\ = be,\E)\dz, (217)

with

bexr = byx + ban, (2.18)
bex, bsy, and b,y are the scattering, absorption and extinction coefficients in units of
m~'. Note that both scattering and absorption can remove energy from the light

beam; this attenuation is called extinction. The irradiance from altitude z to the

TOA is called optical depth 6, which can be obtained from the following integration:

00 00 dE)‘
0= [ badz = | —=. 2.19
v= [bad:= [ (2.19)
This would give us the solution in the form of
Ex. = Exgee ™, (2.20)
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and it is known as Beer’s law. The transmittance, defined earlier, at between altitude

z and the TOA can be expressed as

- E/\z
E/\oo

TA

=e 0, (2.21)

Naturally, the absorptance is ay, = 1 — 7y, = 1 —e 9. This unique nonlinear relation-
ship gives rise to the absorption bands in an absorption spectrum. As 4, increases,
discrete spectrum lines are broadened and merged together [30, 35].

Thermal radiation can be absorbed by the atmosphere, following an upward di-
rection; the atmosphere itself can also emit long-wave radiation. In contrast to solar
radiation, radiance Ly is used for describing thermal radiation because of its diffused
nature, instead of irradiance. Here, the upward absorption by the atmosphere is
—dLy = Lyog\pdz, where o) is the mass absorption coefficient (equals to byy/p)
with p representing the density of the absorber. The emission from the atmosphere is
dLy = Bhagapdz. The net contribution due to a layer of the atmosphere of thickness

dz is the sum of these two terms, which produces the final solution
Ly — By = (Lxo — By)e %%?, (2.22)
Notice that as d, increases, the radiance L) approaches the blackbody radiation [35].

2.3 Remote Sensing of the Atmosphere

The term remote sensing refers to the technique of gathering information about cer-
tain objects at a distance. Atmospheric remote sensing emphasizes the measurement
of EM radiation emitted or reflected from the Earth and its atmosphere in one or
several spectral regions.

Distant observations of terrestrial radiative activities are often collected from de-
ployed airborne or spaceborne remote sensing instruments. Although airborne remote
sensing systems are relatively easy to launch, they can be difficult to control and main-

tain compared to spaceborne platforms. A satellite is an example of a spaceborne
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vehicle that records EM radiation data while it circles the Earth like a man-made
moon, along a predetermined orbit. The orbiting system is defined by two key pa-
rameters: the orbital altitude (the height above the Earth’s surface) and inclination
(the angle between the circle of the orbit and the equator). Two types of commonly
used weather satellite orbiting systems include the low earth orbit system, which has a
typical altitude of about 700 to 1500 km, and geosynchronous orbits at around 36,000
km with a fixed position relative to the Farth’s surface. A geostationary satellite is
similar to a geosynchronous satellite, but without an inclination angle [50, 76].

In addition to its navigational methods, another major characteristic of a remote
sensing satellite is the spectral range it represents. Not all visible/IR frequencies are
suitable for remote sensing applications because, at certain wavelengths, the spectrum
is mostly opaque due to gaseous absorption. As mentioned in Section 2.1.1, the
spectral region between 0.3-14 um is mostly of interest for monitoring modulated
EM radiation induced by atmospheric constituents. Several windows are available for
measurements located at between 0.3-3 ym and 3-14 pm. The former (visible/near-
IR) is appropriate for collecting reflected solar energy, whereas in the latter case (mid-
and far-IRs), thermal radiation and re-emitted energy are measured. The remote
sensing devices described so far are called passive because they measure the energy
provided by external sources such as the Sun and the Earth [50, 76]. Instruments
designed to operate at microwave frequencies are usually active because they collect
the returned signals that have been transmitted by themselves. Radar is an example
of an active remote sensing instrument.

As described in [63], atmospheric radiation can be interpreted as a continuous
“rain” of photons. The purpose of a remote sensing instrument is to collect these
photons. The data acquired by a digital remote sensing system usually takes the form
of digital numbers (DN) that represent the radiance measurement, or equivalently,

the number of photons being collected. The quality of these measurements is typically
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characterized by four types of system resolutions: spatial, radiometric, spectral, and
temporal [15, 50, 62, 76]. Spatial resolution defines the smallest object that can be
resolved by a sensor as it integrates the radiation received across the instantaneous
field of view (IFOV). The IFOV is the angle subtended by a single detector element,
called a pixel, along the axis of the optical system, and is determined by IFOV & D/ f,
where D is the detector size and f is the focal length. The ground resolution element
GIFOV is equal to H - (D/f), with H indicating the altitude of the sensor. The
initial measurements made by the sensor are continuous electrical signals such as
voltages. These voltages are then converted into DNs using an analog-to-digital (A /D)
converter. The maximum number of different values that a sensor can distinguish is
resolved by the dynamic range of a quantizer. Radiometric resolution is proportional
to the number of bits ) used in this quantizer. For example, if the total number of
available discrete DNs is 2%, then the dynamic range is between [0, 29 — 1]. Similarly,
spectral resolution represents a sensor’s ability to resolve spectral features [60, 62].
Besides the bandwidth of each spectral band and the total number of measured bands,
spectral resolution is often expressed as the full width at half maximum (FWHM) of
the instrument response function. Finally, temporal resolution is usually associated

with the time period of repeated path converges.

2.4 Fourier Transform Spectrometry

In the previous section, remote sensing concepts and basic satellite operational prin-
ciples were introduced. In this section, we turn our attention to the design and
operational characteristics of an actual optical sensing system onboard a satellite.
Various types of remote sensing devices exist. This thesis is mainly concerned with
one particular optical instrument called a Fourier transform spectrometer (FTS). A
spectrometer is a device that measures the spectral distribution of the EM energy

radiated from a source. A FTS is a spectrometer designed to record the Fourier
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transformation of a broadband spectrum, and the actual spectrum can be obtained

via numerical transformation afterward.
2.4.1 The Michelson Interferometer

At the heart of a FTS is the Michelson interferometer (MI), originally invented for
studying the speed of the light by A. A. Michelson, the Michelson interferometer
has been adapted as a simple yet powerful tool in the study of Fourier transform
spectroscopy.

The basic optical arrangement consists of four arms (Figure 2.8). The first arm
contains a light source. The second has a fixed mirror, while the third arm has a
moving mirror, which is traveling at a constant velocity. The fourth arm is open.
At the intersection is a beam splitter, which transmits half of the incoming radiation
and reflects the other half when an IR source is present. One of the separated
beams strikes the moving mirror while the other strikes the stationary mirror; after
reflecting off their respective mirrors, these light beams are recombined at the fourth
arm. An optical path difference (OPD), z, is introduced as the difference in path
lengths traveled by these two light beams. When the OPD is zero, which occurs as
both mirrors are equally apart from the beam splitter, this condition is known as zero
path difference (ZPD) [66].

Suppose a monochromatic source of wavelength A and intensity Ej is traveling
through the MI. The interference of these two beams recombined at the beam splitter

has an intensity of

Iy =2Ey[1+ cos(%T‘T)] = 2FEp (1 + cos(2mox)]. (2.23)

The OPD varies as the mirror is moving at a constant velocity. As a result, an
intensity interference pattern with dark and bright fringes is formed. The intensity
reaches its maxima when z = nA, with n = 0,1,2,..., and this is known as the

constructive interference, which describes the condition when all wavelengths of light
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Figure 2.8: The Michelson interferometer as an IR spectrometer (modified from
[9).
are in-phase. In a similar fashion, the destructive interference occurs when r =
(n + 3)X; in this case, the intensity reaches its minima and all wavelengths of light
are out-of-phase [28, 38, 63].

Now suppose the monochromatic source is replaced by a polychromatic light,
which is composed of many frequencies, and has a spectrum of E(c). Then, at a
given OPD z, the differential element of the intensity according to Equation (2.23)

can be expressed as
dly(z,0) = 2E(0)[1 + cos(2moz)] do. (2.24)

By integrating both sides, the total intensity over the entire spectral band is

Iy(z) = Q/E(a)[l + cos(2mox)] do. (2.25)
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If we rearrange Equation (2.25) to obtain
Iy(z) = Q/E(d) do + 2/E(0) cos(2mwox) do, (2.26)
0 0

then we could subtract the constant term of I(0) = 2 [° E(c)do from Iy(z), and

derive an expression of
I(z) = Ip(x) — I(0) = Ip(z) — 2/E(0)da = Z/E(U) cos(2mox)do. (2.27)
0 0

The expression I(z) is called an interferogram, which represents a plot of light in-
tensity versus the optical path difference. To generate a complete interferogram, the
moving mirror is moved back and forth once, which is known as a scan. The interfer-
ogram has its maximum centered at ZPD because all wavelengths of light construc-
tively interfere at ZPD; as the mirror moves away from ZPD, the OPD increases.
Consequently, rays at different frequencies are growing more and more out-of-phase
or destructively interfering, causing the interferogram’s intensity to decay rapidly.
An illustrative diagram that explains the concept of broadband interfering can be
seen in Figure 2.9. Equation (2.27) relates the interferogram and its spectrum by a
cosine transform, which is suitable for an ideal interferogram that is symmetric about
the ZPD. When complex noises or phase offset errors are present, the relationship is
more appropriately expressed by a Fourier transform. Hence, we have the following

transform pair:

oc

I(z) = / E(0)e*™*do = F '{E(0)},
- (2.28)

oo

E(o) = / I(z)e *™*dy = F{I(z)}.

The FT pair reveals the fundamental principle of a FTS, which simply states that
the desired spectrum is the Fourier transform of the measured interferogram. In

addition, the F'TS can also be viewed as a frequency modulator that translates optical
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Figure 2.9: The concept of broadband interfering.

frequencies into electrical ones [9, 20]. To see the logic behind this operation, assume
the mirror is traveling at a constant velocity of Vm/s, then the displaced OPD z
during each scan can be written as x = 2V'¢t. Substitute this term into the frequency
variable in Equation (2.28), and get 2oz = 270 (2Vt) = 27vt, where v = 20V is the
newly converted frequency variable in Hz within electrical frequency range, and o is

the original optical frequency variable in wavenumber.
2.4.2 FTS Spectral Properties

In practice, the spectrum obtained from the collected interferogram data often expe-
riences some form of distortion due to various sources. As a result, the true spectrum
is transformed and modified by a distortion function. Several major contributors re-
sponsible for this effect include 1) the natural spectral broadening due to molecular

interactions described in Section 2.1.3, 2) the error caused by the truncation of an
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ideal infinitely long interferogram, and 3) the self-apodization errors resulting from
the off-axis effects of an extended source and a finite detector size. The first type
of line contribution is a physical effect that reflects the gas properties of the mea-
surement; therefore, it should not be removed or manipulated. The second and third
types of contribution are due to instrumental errors and limitations; together, they
produce the instrumental line shape (ILS) function [38]. This section focuses on the
derivations of these two types of distortion functions.

Because it is impossible to acquire an interferogram of infinite length, the mea-
surement is truncated to the total scan length of the OPD, L. In the space domain,

this effect can be written as
fL(iL‘) = HQL(.Z')I(Z'), (2.29)

where Ily;, is a rectangular window

I
Oy (x) = (2.30)
0, |z| > L.

And L is the total length of the OPD traveled by the mirror. In the frequency domain,

the equivalent relationship is expressed as a convolution operation:

Ep(v) =W,(v) x E(v), (2.31)
with

W (v) = 2L sinc(2nvL). (2.32)
Therefore, the new spectrum line shape has a resolution of v ~ 1.207/(2L), and is
defined by the FWHM (Full Width Half Maximum) of the sinc function. To reduce
the relatively large sidelobes caused by a sinc function, a different kind of windowing

function can be applied. These distortion functions are also known as the apodization

functions [9, 38].
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Figure 2.10: The OPDs for an on-axis beam and an off-axis beam with an off-axis
angle @ (modified from [20]).

A practical Michelson interferometer often uses a collimator (for example, a convex
lens) for collecting the light from the radiation source (Figure 2.8), and a detector of
finite size is placed at the fourth arm to measure the collected intensity. Real light
sources are never just points, but instead, they are extended sources with finite sizes.
As a consequence, light is entering the interferometer at different angles with respect
to the optical axis. This effect is known as the off-axis effect. Suppose the incoming
ray makes an angle 6 with respect to the optical axis, as shown in Figure 2.10; then,
the OPD traveled by this off-axis ray equals z cos(6), with z as the OPD path along
the optical axis in an ideal case. Therefore, these nonparallel (off-axis) rays in the
interferometer experience a slightly shorter OPD than the on-axis paths. To see how
the off-axis effects are reflected in the spectral line shape, first we use the small angle

—9—22— +... to get zcos(d) =~ z(1 ——92—2). In Figure 2.11, assume

approximation cos(f) ~ 1—
the area of a circular radiation source is a, and the focal length is f. Then, the radius
of the circle » =~ f6f. Substitute the value for r into a to obtain an expression of
a = nr? =~ m(f#)%. The solid angle () of the source as seen from the collimator is

Q ~ & = n6%. Hence, vcos(d) ~ z(1 — 4%). According to Equation (2.28), the

)
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Figure 2.11: The solid angle for a circular radiation source (modified from {38]).

intensity at the detector for a point source is

T) = / E(0)e’*™*do; (2.33)
for a circular source at an angle 6, the intensity is
o0
Iy(z) = / E(0)ei?roecost gy (2.34)
—00

then a small increment in solid angle d2 would result in

dlp(z) = dQ/E(o)eﬂ”“(’sgda (2.35)

= dQ/E(a)eﬂ””(l_%)do. (2.36)

The total intensity in the detector is obtained by integrating over the whole solid

angle of the radiation source, and it is written as

Q

Io(z) = / Io(a)dSY (2.37)
Q oo

In(z) = / / E(0)e?*0=5) 4 d(Y (2.38)

N .
- 0 / E(0) sinc(%)eﬂm(l—%)da. (2.39)

The off-axis effects are characterized by a shift of the measured wavenumber, oq =
o(1 — Q/4r) with oq as the measured wavenumber, and by the sinc function broad-

ening of the spectral lines [38]. The former is due to the off-axis angle, whereas the
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latter is caused by the integration over the solid angle associated with the finite de-
tector size. Since the distortion is non-local in both space and wavenumber domains,
and it depends on both the OPD and wavenumber, it is often referred to as the

self-apodization effect.
2.5 Imaging FTS — GIFTS

The advancement of solid-state detector technology has made it possible for the de-
velopment of an Imaging FTS (IFTS). Instead of using a single detector element, an
IFTS utilizes an array detector consisting of multiple photosensitive elements. As a
result, the IFTS is capable of collecting high resolution spectral images across multiple

ground pixels.
2.5.1 IFTS — GIFTS Instrumentation

The elements in an array detector are usually arranged as rectangular or square, and
they are placed in the focal plane of an IFTS. For this reason, it is often referred to
as the focal plane array (FPA). The FPA contains two components: a detector array
composed of photovoltaic (i.e., essentially no current is drawn) diodes, and a readout
integrated circuit that is responsible for reading the photo current from each pixel of
the detector array [6, 7].

The working principle behind an IR detector can be explained through the band
theory of solids. For a semiconductor material, electrons under excitation can rise
from the valence band to the conduction band if the photon energy during interactions
is greater than the band gap, creating an obtainable current, voltage, or charge [54].
For an intrinsic semiconductor, electrons can be liberated from the valence band to
the conduction band under sufficient thermal excitation. Because the photon energy
is inversely proportional to the wavelength, it grows relatively weaker at longer wave-
lengths such that it becomes comparable to the thermal noise generated by thermal

agitation of the electrons in the conductor. Since the thermal noise is temperature
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dependent as ~ kT, the control of temperature is critical in order to reduce the
thermal noise to a level where it does not affect the measurements significantly, i.e.,
the thermal noise is much less than the photon energy at the desired wavelength.
In the IR wavelength range between 1 and 12 pum, two of the most commonly used
detector semiconductor materials are indium antimonide (InSb) and mercury cad-
mium telluride (HgCdTe, or MCT). To reduce the thermal noise, a cooling method is
required so that the detector has a typical temperature range of 50-80 K [9]. Once a
voltage (or a current) signal is measured by each pixel, it is successively read through
a cascaded circuitry; signals are then being sent out in a desired sequence to form a
two-dimensional FPA image [7].

The NASA’s New Millennium Program GIFTS (Geostationary Imaging Fourier
Transform Spectrometer) is a high resolution sounding system designed to measure

temperature, moisture, and wind profiles over the IR spectral bands 685 to 1130 cm ™!

and 1650 to 2250 cm ! (Figure 2.12) using advanced IFTS technologies. ~GIFTS

Wavelength. microns
16.67 12.30 13,00 R.33 7.14 6.25 5.56 5.00 4,55 4.17
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Figure 2.12: GIFTS spectral coverage by two detector arrays plotted as brightness
temperature (from [49]).

gathers atmospheric spectral radiance measurements across 1724 spectral channels

1

simultaneously with a resolution up to 0.3 cm™" over a area of 512-km x 512-km for

every 10 seconds. To achieve a wide range of spectral resolutions and a large area
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Figure 2.13: GIFTS electro-optical module (from [68]).

coverage, GIF'TS uses an IFTS mounted on a geostationary satellite that employs two
128 x 128 MCT FPAs sensitive to LW emission of CO; and O3 and SW/MW emission
of H,O, CO, N3O and CO,. These detector arrays are cooled to 60 K in order to reduce
the thermal noise in the IR frequency regions. To realize high radiometric accuracy,
GIFTS uses two on-board blackbody calibration sources, along with a deep space look.
A layout of the GIFTS electro-optical module is shown in Figure 2.13. The collected
radiance data is processed by the supporting electronics, which consist of required
sampling mechanisms, a 14-bit A/D, and a high performance vector processor. A list

of selected parameter specifications can be seen in Table 2.1 [49, 68, 69].
2.5.2 Hyperspectral Image Characteristics

The spectral data obtained from a high resolution imaging FTS is often classified
as “hyperspectral.” A hyperspectral image has successive frames corresponding to
adjacent spectral channels, and each frame representing a two-dimensional spatial

scene. Hyperspectral data sets are usually recorded over many narrow, contiguous
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Table 2.1: Selected Specifications for GIFTS.

Configuration Michelson-type; continuous scan
Spectral coverage 685-1130 cm ™! (LW)
1650-2250 cm ™! (SW/MW)
Scan interval 10 sec
Max. spectral resolution 0.3 cm™!
Detector MCT 128 x 128-pixel FPA (2) at 60
K
Path difference control Stabilized 852-nm laser
IR footprint size 4 km
Sensitivity 0.2 mW/cm?sr cm™! (LW)
0.006 mW/cm?sr cm™! (SW/MW)
Calibration Absolute ¢ (Tb) < 0.2K
IFOV 512 x 512-km
A/D 14-bit

bands across a wide range of the EM spectrum. In addition, hyperspectral images are
generally oversampled such that the number of spectral bands is much higher than the
required number of bands for identifying the materials in question. This would provide
more detailed and accurate spectral images |8, 37]. Figure 2.14 illustrates the concept
of a hyperspectral data set, which can be seen as a stack of spatial images over different
spectral channels or as a stack of spectra arranged in an array of pixels. Because of
the spatial-spatial-spectral dimensional nature of the hyperspectral data sets, they are
often referred as image/data cubes [8]. In Figure 2.15(a), the interferogram for GIFTS
center pixel is plotted for 2048 samples; in Figure 2.15(b), one frame of the intensity
data from the GIFTS FPA is shown. It’s known that imaging spectrometer remote
sensing data are often correlated both spatially (intra-band) and spectrally (inter-
band) with the tendency of a higher spectral correlation. The spatial correlations are
caused by the homogeneities of ground features covered by neighboring pixels, while
the unique spectral characteristics are in part due to the overlap of information across

adjacent channels.

32



Intensiy in Proton Counts

%

\(\\Z\A‘\ A e

.

//

[ /
! .
Spectrum at One Pixel

Figure 2.14: Hyperspectral data

GIFTS Simuiated Data Cube Pixal (84, 84)
T

T —T

Intensity

—

2000 2500

1000 1600
Sample numbar (1-2048)

(a) GIFTS simulated interferogram at
pixel (64,64)

Wavelength (Spectral Channel)

concept (modified from [8]).

GIFTS Simulated Data Cube Frame 1024

Puels (1-128)

Pixels (1-126)

(b) GIFTS simulated FPA intensity at frame 1024

Figure 2.15: GIFTS simulated data cube with one pixel and one frame of data
shown.

2.6 Processing of Measured Data

For a complicated remote sensing system, desired atmospheric quantities are not

directly available from the measurements, instead, observed raw sensor data must
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undergo a hierarchy of processing stages in order to extract useable environmental in-
formation required by users [1, 62]. One of the most important steps is the calibration
of acquired measurements, i.e. raw data must be calibrated to correct instrumental
offsets and errors. The calibrations for a FTS can be generally divided into three basic
types: radiometric, spectral, and geometric. Radiometric calibration assigns absolute
radiance values to the measured intensity; similarly, spectral calibration deals with
the assignment of absolute wavenumbers to the spectrum. Finally, geometric calibra-
tion is typically concerned with the process of assigning latitude and longitude values
to the measured spectrum. Since the geometric calibration is not closely related to
FTS instrumentations, we will only discuss radiometric and spectral calibrations in

the following sections.
2.6.1 From Raw Sensor Data to Environmental Profiles

The measured raw sensor data are usually received as DNs, which bear no physical
meanings, therefore, incoming data packets must be reformatted before any further
computation can be performed. This stage can be viewed as the pre-processing step
because it is relatively independent from the measurement itself. The detected inter-
ferogram passes through the analog front-end electronics, then sampled by an A/D
before being filtered, trimmed, and packed in the target processor, and downlink
to the Earth. The received data (as DNs) must be loaded and sorted, and con-
verted from interferograms to spectra. In the second stage, raw spectra are calibrated
and assigned with absolute physical units according to calibration reference measure-
ments. Details on FTS calibrations will be reviewed in the following section. Once
the corrected spectra are obtained, the final stage involves the retrieval of desired
environmental profiles such as temperature, moisture, and pressure. The study of
atmospheric retrieval algorithms is a subject on its own, and it is well beyond the

scope of this report. However, retrieval methods generally require the finding of an
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inverse model and solving the inverse problem based on the assumed model [61].
2.6.2 Calibrations

Measurements made from any type of instrument will suffer from various distortions,
for example, the data could be contaminated by random noises, distorted by instru-
mental gain and offset factors, or transformed by a linear/nonlinear operator. For
this reason, an instrument must be calibrated against some form of reference so that
measurements can be corrected using these calibration information. For a FTS, the

uncalibrated spectrum can be modeled as
Co=[(F-L)o+0s|Rs +e¢, (2.40)

where C, is the observed uncalibrated complex spectrum from a scene, L, is the inci-
dent spectral radiance, R, is the spectral responsivity of the instrument, also referred
to as gain, O, is the instrument emission, or the offset term, F' is the instrument
operator, which accounts for instrumental effects such as self-apodization, modula-
tion, etc., and € is the complex noise. The linear (gain slope/offset) intensity response
is treated in radiometric calibration, whereas the instrumental operator is typically
compensated for during spectral calibration.

The references in radiometric calibration are usually provided by on-board internal
cavities that closely approximate blackbodies. Typically, the cavity has a conical
shape and its internal surfaces are coated with highly emissive paint so that the
absorptance of the cavity is & 1 [70]. For the GIFTS radiometric calibration, two
on-board blackbody targets (300 K and 265 K) along with deep space are viewed
during regular intervals. The instrument responsivity (gain slope) is determined by
the difference between the two blackbody views, while the self-emission (offset) of
the instrument is corrected using the deep space view. The blackbody cavity has
an emittance range of 0.993 to 0.996 [10]. In Equation (2.40), suppose we neglect

the instrument operator F' for now, and take the transmission of the telescope into
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account, then (£-L), = L, = N, with 7 given as the transmittance of the telescope,
and N as the true incident radiance that we wish to recover. Assume no scattering
is present, the self-emission of the telescope, based on Equation (2.12), becomes
Bie = B,(1—7), where B, is the Planck emission at the temperature of the telescope.

Thus, Equation (2.40) can be rewritten as
Co=[NT+B(1-7)|R, +e. (2.41)

Assume the blackbody targets have a complete emittance of 1 so that 7 = 0, the
uncalibrated observed spectra Cy and Cg for the hot and cold blackbodies can be

expressed as

Cyg=ByR,+¢€¢ and C¢ = BgR, +e, (242)

where By and B¢ are known blackbody radiances at the hot and cold temperatures.

Therefore, the gain slope (or the responsivity) can be obtained as

Oy —Co

R, =H—=¢
By — Bc

(2.43)

To determine the instrument self-emission offset term, a deep space view is used for
solving the transmittance 7 [10]. The uncalibrated deep space spectrum Cg for a
space scene By is

Cs = [BsT+ Bi(1 —7)|R, +¢, (2.44)

then 7 can be found by differencing the space and the cold blackbody views:
Cs—Cc = [(1 - T)Bt + 17Bg — Bc] R,. (2.45)

Note that by differencing multiple references during the calibration process, the un-
known noise term has been eliminated from the general equation.

As described in Equation (2.40), spectral calibration accounts for the instrument
operator £, which is frequency dependent. The calibration process typically can be

divided into three basic stages. The first step involves the assignment of correct
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wavenumbers to the raw spectrum. This is accomplished using the spectral refer-
ences provided by a metrology laser. The operation of a metrology laser and its
purpose as a sampling reference will be discussed further in the next chapter. The
second step corrects the sinc apodization effect introduced in Section 2.4.2, whereas
the self-apodization effect is compensated for during the last step of the calibration

procedure [51, 59].
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CHAPTER 3

FTS AND IMAGING FTS SAMPLING SYSTEMS

A common problem that exists in FTS is concerned with how to compensate for
sampling errors when an interferogram is sampled at nonuniform instants in the path-
difference domain. These errors, due to various mechanical irregularities, are generally
associated with a continuous scanning system, which samples the interferogram at
either equal space or equal time intervals. In an equal time sampling (ETS) scheme,
the samples collected at equal time intervals do not necessarily represent uniform
sample values taken as a function of the OPD if the scanning mirror drive has a
varying speed. In an equal space sampling (ESS) scheme, the interferogram data is
collected at uniform path difference positions, in which case the error arises when
the mirror velocity is varying during the integration. In both systems, the accuracy
of the reconstructed signal can be significantly compromised if no error correction is
performed. For an IFTS, the off-axis effects also affect the accuracy of the sampling

locations.

3.1 FTS/IFTS Sampling Techniques

There are two basic techniques for recording and sampling an interferogram. In
the first approach, the movable mirror is translating at constant velocity so that
a continuous interferogram is obtained at the detector; the interferogram is then
sampled by a separate sampling circuitry. This is referred to as the continuous or
rapid scanning scheme. In the second approach, the mirror steps through sample
points by quickly moving to and stopping at a sampling location, and then holding
the current position for the desired integration interval. This is known as the step

scan method, in which discrete interferogram samples are produced directly without
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additional sampling mechanism. The underlining goal of a sampling system is to
collect samples at precisely known uniform locations. Based on this criterion, the
step scan approach offers several advantages over the continuous scanning method in
terms of accurate positioning controls. For example, the step scan system is static
during the integration, which is desirable in order to guarantee that the temporal
acquisition of data is consistent. For a continuous scanning system, this condition
cannot be satisfied because the mirror is continuously moving, and this results in
some relatively small position deviations. However, the step scan is not as widely used
as the continuous scan for several reasons. First, the step scan requires a complex
servo design that is too demanding for most FT'S applications; second, to be able to
accomplish precise accelerating and decelerating movements, the sample rate has to
be kept relatively low [9, 64]. Therefore, only continuous scanning method will be
considered.

The continuous scanning method can be further subdivided into two categories:
the equal space sampling and equal time sampling systems. Both systems are guided
by a stabilized monochromatic laser reference. The sinusoidal laser signal is passed
through the interferometer, and generates light and dark fringes as the mirror scans
back and forth. The fringes are then detected by a separate detector, and used as
inputs to a zero-crossing circuit and a counter, which indicates the exact elapsed
clock cycles between fringes. Because the laser wavelength is known, fringes of the
detector laser signal are counted to accurately measure the displacement of the moving
mirror [52, 67].

In the ESS method (see Figure 3.1), the detector sampling is guided by the laser
reference; in some cases, the mirror movement is also monitored and controlled by the
same laser reference. The detected IR signals are sampled at equal spaced intervals
by an A/D, which is clocked by the laser fringes. At selected zero or fractional zero

crossings, a sample-and-hold circuit is triggered and held momentarily while the A /D
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measures the magnitude of the signal and outputs it to the DSP. In the ETS method
(Figure 3.2), the laser signal only serves as a reference of the mirror movement because
in this case, the IR signals are sampled at equal time intervals by the A/D that is

triggered by an external clock [9, 67].
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Figure 3.1: The equal space sampling system.

Suppose the mirror velocity cannot be controlled precisely due to mechanical irreg-
ularities, surface roughness, external disturbances, etc., this would result in undesir-
able sampling errors in both the ETS and ESS systems. For an ETS, the fluctuations
of mirror speed cause the interferogram to be sampled at irregular sampling locations
in the space domain, even though samples are taken at equal time instants. The
laser reference signal monitors exactly how much deviations are present in the final
measurement. For an ESS, the sampling position error is less severe when compared
to the ETS because samples are collected at selected laser fringes. However, errors
are still present since the mirror velocity may vary during the integration [67, 77].
For instance, the collection of samples is triggered at equal space instants, but during

this period of time, a varying mirror velocity could cause an incorrect measurement.
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Figure 3.2: The equal time sampling system.

3.2 Nonuniform Interferogram Reconstruction — Problem
Defined

Previously we have reviewed basic sampling methodology for a FTS. Now we will
investigate the sampling positioning error in detail and its impact on sampling recon-
struction algorithms. Throughout the rest of the discussion, the words “nonuniform”
and “irregular” are used interchangeably to describe samples taken at nonuniform lo-
cations with positioning uncertainties due to instrumental imperfections that require
to be corrected, which should be distinguished from samples that are purposely taken
at nonuniform instants.

The first section is devoted to sampling theorems, which explain the fundamental
algorithm applied to reconstruct uniformly sampled data. Then the nonuniform sam-
pling problem is addressed for a one-dimensional FTS and for a multi-dimensional

IFTS.
3.2.1 Sampling Theorems

This section serves as a theoretical background of the sampling theorem, in addition,
the reconstruction algorithm for uniformly sampled interferograms will be presented.
In Equation (2.28), a continuous doubled-sided interferogram I(z) and its spectrum

E(0) form a Fourier transform pair. Suppose I(z) is sampled at a set of equally spaced
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discrete points z, to produce a sample set I(z,), then the original interferogram
can be uniquely determined by this collection of values when certain constraints are
superimposed on both the signal and its samples. The interferogram can be modeled

in the form of

I(@) = > I(a)S(x), (3.1)

n€Z
where S,, represents a set of expansion functions that interpolates over the sample

values. In other words, the interferogram can be completely recovered from its sam-
ples when a suitable set of interpolation functions is selected. The Shannon (WKS)
sampling theorem states that if I(z) contains no frequencies higher than W, the
bandwidth of I(x), then /(z) can be uniquely determined by its equidistant points
spaced 1/2W apart. To derive a kernel function for the interpolation, let {e’°*»} be
a basis function in the frequency domain, where z,, = 2n/2W. Then the spectrum
E(0) can be written as a linear combination of the basis function as

E(0) =Y e o] < W (3.2)
neZ

The Fourier coefficients ¢,, are:

w
1 ) 1 n
_ E 27\'¢7n/2Wd — I .
e 2W/ (o)e’ 7= swliep)
“w

Note that ¢, is essentially composed of I(n/2W), which are sample points of I(z)
spaced 1/2W apart. Multiply both sides of Equation (3.2) by e/2™® and integrate

over [—m, 7], it becomes

w

w
2rox — Bl 2o (z—n/2W)
/E(O’)BJ do . Q—WX(ZW) /ej do.
W Lo

-w
Notice that the left-hand side of the equation above is I(x) by Fourier analysis.

Finally, the reconstruction formula is

I(2)=Y" 1(5—;—/) sinc(2Wz — n), (3.3)

neZ
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where sinc(z) is defined as
sine(x) = (3-4)

The above equation has the general form of Equation (3.1), and offers an explicit
solution for recovering a bandlimited signal from its samples when at least two samples
per cycle of the highest frequency component are present. The sinc kernel forms an
orthogonal set that spans the signal space of I(x). Note that it takes on the value of
one at available sample points and zero at the others.

The reconstruction formula can be seen as a low-pass process in the frequency
domain. It is known that the spectrum of a periodic impulse train is another periodic
impulse train

S 6 - nAz) o 3 emmas 31; > (o—20). (3.5)

nez nez nez

in which nAx are uniformly spaced sample points with Ax as its sampling interval.

The sampled version of a continuous interferogram can be expressed as follows:

I(z) = I(x) Z §(x — nAx), (3.6)
nez
and
I,(z) = I(nAx). (3.7)

Using the relation in Equation (3.5), the spectrum of a sampled interferogram can be

represented as

B2 () = Aiz_ S Eo - &), (3.8)

neEL
where E(-) is the Fourier transform of the original interferogram, and the right-hand

side of the above equation contains multiple replicas of this spectrum. Therefore, a
suitable reconstruction function must be chosen so that only one copy of the spectrum
is obtained. A low-pass filter in the frequency domain would be sufficient for signal

recovery, and furthermore its inverse Fourier transform is equivalent to a sinc function.
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3.2.2 Nonuniformly Sampled Interferograms

When the sampling locations are nonuniformly distributed, the reconstruction method
described previously no longer applies. This situation arises in F'TS interferogram
sampling if the mirror velocity is varying. For an ETS system with a single detec-
tor element, samples are collected at equal time intervals, and their corresponding
sampling locations in space can be derived according to laser fringe crossings. For
example, in Figure 3.3, a typical clock cycle signal between fringes as a function of
the OPD is shown. Each data point indicates the number of 25ns clock periods that
has passed since the last laser fringe crossing. This elapsed clock periods during each
crossing would be constant if the mirror is moving at a constant velocity. Using this
measurement, we can obtain accurate estimates of the sampling location in space.
Similarly, for an ESS system, uncertainties in the path difference domain during inte-
gration or collection time periods can be obtained based on the laser reference signal.
For both the ETS and ESS cases, the varying mirror velocity could result in an incor-
rect measurement. For the ETS system, the problem is defined as how to reconstruct
the interferogram from samples collected at known irregular locations. However, the
laser reference only has a finite lifetime. If this reference information is unavailable,
which means samples are taken at unknown locations, the reconstruction problem
becomes less tangible. For the ESS system, the problem can be stated as how to
fix the errors caused by incorrect measurements taking during the collection periods.
Under these conditions, the more rational approach would be to take all available
factors into account, which include the characteristics of the interferogram and its
spectrum, and develop an application based reconstruction algorithm.

An IFTS with an array of detectors experiences the same problems that were
defined for the 1-D sampling systems. In addition, the distortion in sampling locations
caused by off-axis effects becomes too large to be neglected for a FPA. Recall in

Section 2.4.2, the fundamental formulation of a differential element for the off-axis
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Figure 3.4: GIFTS FPA off-axis geometry for an array of detectors with one pixel
enlarged to show details.
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interferogram is written as

dlp(z) = dQ [ E(0)e?*™ 7%y, (3.9)

g ~—g

For the GIFTS geometry, the maximum angle subtended by the FPA is ~ 97.39
milliradians. Then the half angle subtended by a single pixel is b ~ ((97.39/2)/128 =
0.38 milliradians (see Figure 3.4). If @ is the off-axis angle to the center of a given
pixel, # can be viewed as its mean off-axis angle. Then the measured interferogram

at each pixel as a function of 8 can be derived from the following integration:

B fQ dQ/fE(O_)ej27razcost9do.

Iy(z) T , (3.10)

where Iy(x) is normalized by the total solid angle subtended by a given pixel. Replac-
ing [, dS¥ with [ d¢ f;}z sin 6df’ to incorporate the contribution of the off-axis angles
for an individual detector, which can be achieved by integrating € between 8, = 8 —b

and 62 = 6 + b, the resulting intensity for each off-axis pixel element is

Iy(z) = /E(a) sinc(QWUIM)ejz"az(l_#)da. (3.11)

Note that the shape of each square pixel is approximated as small segments of a
circular ring with angular radius 6 and width 2b. If the pixels are labelled with a
coordinate system (i,7), with corresponding edge pixels expressed as (64,64) and

(—64,—64), 0 is related to b by

6 = by/(2]i] — 1)2 + (2]5] — 1)2. (3.12)

Figure 3.5 maps the circular rings for all detector pixels. Each ring has a width of
2b; its corresponding off-axis angle 6 is also labelled. According to Equation (3.12),
the off-axis angle is constant for a ring at a given radius where pixel (i, j) is located
on that ring. As a result, the off-axis interferograms are sampled at slightly shorter

OPDs by a factor of (1 — (8% + b%)/2); using the inverse relationship, the off-axis
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spectra are expanded to slightly higher wavenumbers. In Figure 3.6 three on-axis
OPD sample points are shown, with their off-axis sample locations ranging from the

center to a corner pixel [72, 74, 75].
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Figure 3.5: GIFTS off-axis angle approximation (from [74]).

In summary, for a single array FTS, the interferogram requires to be reconstructed
from irregularly sampled data due to mirror velocity errors. For an IFTS, besides the
random velocity uncertainty, off-axis effects will also cause deterministic distortions in
the sampling position. These will apply to both the ETS and ESS scanning systems,
and when the laser reference is unavailable, the reconstruction is performed without
specifically knowing the exact sampling locations.

Now let’s consider the error that occurs when an interferogram is sampled at
irregular intervals where samples are no longer equidistantly spaced. If we represent

the time jitter error by a set of small perturbation values, is it possible to recover
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Figure 3.6: Off-axis sampling of three interferogram sample points. Pixels are se-
lected at (0.6637, 0.6654, 0.6671 cm); the off-axis variations are plotted for every pixel
along the diagonal from the center to a corner pixel of the detector array (from [10]).
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the original signal accurately from these nonuniform sample values? In theory, it
has been proven that as long as the density of the sample points {z,} is higher
than the Nyquist rate, then a bandlimited signal is uniquely defined by its irregular
sample values [11, 34, 40, 43, 44, 53, 73]. Having established that, the next question
would be what type of reconstruction technique can be employed to accomplish this
task. Observations made in the frequency domain suggest that the spectrum of a
nonuniformly sampled signal is heavily aliased, and that the spectrum repetition
property is lost. Consequently, a linear time-invariant filter is no longer sufficient
for signal reconstruction. The reconstruction error using the ordinary sinc kernel
function can be written as

e(z) = I(z) — 2@: 1(%‘/ +8,) sinc(@2Wz — n), (3.13)
where §,, denotes offset values from the uniform sample points. Many attempts have
been made to minimize this error, including techniques that are connected to different
variations of the sampling theorem and those that are based on other interpolation
or estimation methods [34, 43, 44]. The simplest method for reducing the time jitter
error is to over-sample the signal at a much higher rate [12, 20, 52]. Although this does
not necessarily minimize the error, it does recover the original signal with a negligible

error [43, 44]. Details on this technique are discussed in the following chapter.
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CHAPTER 4

RECONSTRUCTION OF IRREGULARLY SAMPLED
DATA

This chapter presents a survey of various techniques for signal reconstruction from
nonuniformly sampled data. An extensive amount of work has been developed in this
particular area, where many of these techniques are closely connected to deviations
of the original Shannon’s sampling theorem; other branches such as linear modeling,
splines, Lagrange interpolation, etc. have also been studied extensively. For finding
an optimal reconstruction solution in a practical application, besides the accuracy
of the algorithm one must also take its feasibility and complexity into consideration.
Algorithms that produce slightly superior results may not be the best solution if they
require large computational overhead. In addition, prior knowledge about the data
characteristics can be taken into consideration in the formulation of such a problem.

First, we review some of the currently applied algorithms in the FTS industry,
which can be classified as interpolative methods. Then we explore the option of using

iterative methods to reconstruct nonuniform samples.

4.1 Reconstruction by Interpolative Methods

In the previous chapter, we have seen that even though a unique solution cannot be
obtained from irregular samples via the conventional reconstruction method, when
the signal is oversampled at a much higher rate compared to the Nyquist rate the low-
pass method can produce a relatively reasonable reconstruction with negligible errors.
The equal time sampling (ETS) with digital filter and numerical resampling method

introduced in [12, 20, 52| was developed based on this useful property of oversampling.
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In this particular reconstruction strategy, known as the Brault algorithm [12, 20, 52,
57], the interferogram I(z) is acquired as a voltage signal V(t), and therefore, is a
function of time. The signal V(¢) is sampled at equal time instants nAt. The sample
points t, corresponding to equal space intervals, nAz, can be determined according
to the elapsed clock periods between fringe zeros crossings. Then the interferogram
I(t) as a function of time is reconstructed by a low pass filter, and consequently, 1(¢,,)
can be found from /(t), which is ideally equivalent to the data obtained as equal space
samples [(nAzx). This was made possible with tolerable errors based on the fact that
the original interferogram is oversampled.

When an interferogram is sampled at near critical frequency, the digital filter with
resampling strategy becomes less reliable since a low-pass filter cannot compensate
for the smearing error of spectra caused by time jitters. Many approaches based
on the sampling theorem have been developed and can be roughly categorized into
non-iterative and iterative methods. For example, in [53] Papoulis has proposed
a non-iterative method that involves the mapping of irregular samples into regular
samples using a one-to-one transformation between a set of nonuniform and uniform
sample points. Another example would be the reconstruction of a band-limited signal
by interpolating the sample sequence and its derivatives, details can be found in [58].
However, more promising strategies for recovering the original signal sampled at the
critical frequency would be an algorithm that is iterative in nature. In the following

section, most discussions will be focused on iterative reconstruction schemes.

4.2 Reconstruction by Iterative Methods

In [45, 46], Marvasti has proposed an iterative method for recovering a band-limited
signal from its nonuniform samples. The algorithm adapted the concept of frames,
which can be found in problems related to non-harmonic Fourier series analysis. Be-

ginning with an initial estimate set to zero, at each successive iteration, the difference
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between known sample values and reconstructed sequence from the previous update
convolved with the sinc kernel function, together multiply by a convergence constant
A to form an adjustment term, where A has a range between 0.5 and 1. Then a new

set of estimates is found by summing up this adjustment with previous estimates.

N-1
n=0

The algorithm can be outlined as follows: Let {z,} be a sampling set with a

maximum gap 6 = sup (Tpt1 — Tn) < %, then I(x) can be reconstructed from its

nonuniform samples /(x,) by the iterative algorithm:

I(z) = 0 (4.1)
Lin(z) = L(z)+A Z (I(l'n) - Ij(xn)) sinc(z — zn) (4.2)
n=0

where sinc(z) = %. The bandwidth of the signal is B, and Az is the (uniform)
sampling period. To avoid the aliasing effect, the bandwidth B must satisfy the
condition 0 < B < ﬁ, thus, the Nyquist interval is defined as QA—; in this case.

A modified version called adaptive weights method was first introduced by Fe-
ichtinger and Grochenig [23, 24, 25, 71]. The motivation for incorporating a weight
vector into the interpolation process is to compensate for the irregularities among
sample points. The weight vector is selected to be proportional to the local variations
of the point densities in order to improve the convergence rate. Unlike the Marvasti
method, the initial estimate is realized as the convolution between a sinc interpo-

lation function and the data sequence at irregular intervals. The algorithm can be

summarized as

I(z) = - I(z,)w, sinc(z — z,) (4.3)
n=0
Livi(z) = L(z)+ i (I(zy) — 1;(zs))wn sinc(z — z,,). (4.4)
n=0
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The adaptive weights for Nyquist sampling sets are chosen to be the differences be-

tween midpoints of samples z, and z,1, w, is given by

Ip+1 — Tp-1

Wp ' = My — Myt = 5 , and
N-1
an = N.
n=0

The convergence of both algorithms described above is established in [24] using the
fact that the sinc kernel function can be seen as a frame operator. A system of
functions {f;};er in a Hilbert space H is called a frame, if there exist two constants
0 < A < B, such that
AP < DI FOP < BI|P VI € H.
nel
If A = B, the frame is said to be tight. For any frame, the frame operator S is defined

as

2
Sl = A+BJZE;<I’ i fi

where I = I(x) is the continuous band-limited signal. Since S is a positive self-adjoint

operator that is also invertible [42, 71], the non-orthogonal expansion of [ is

I=8S"'1=) (IS
jer
This equation shows that I can be reconstructed via iteration from its coefficients

(I, fn) with a rate of convergence given by p = g—jﬁ [71]. In the irregular sam-

pling problem, if lirin T, = 00, and the maximum sampling gap § satisfies § =
n—x1roo
Sup (Tny1 — Tn) < ?—g, then the frame operator is

N-1

ST = Z I(z,) sinc(x — xn),

n=0
and sinc(z — ) is a frame with bounds 4 > (1—§/Az)? and B < (1+§/Axz)?%. [23,
24, 25, 42, 45, 46, T1].
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Besides using an adaptive weight vector, the rate of convergence can be further

improved by considering an acceleration technique. The method of steepest descent

serves as a foundation for many other iterative algorithms. Consider the quadratic

function

1
F(z) = 5xTAgc — bz (4.5)

where b € R® and A € R**" is assumed to be positive-definite and symmetric,

because A is positive-definite, the surface defined by F(z) is shaped like a parabolic

bowl. The gradient of F(x) is

[ LF@) |
9 p(g
VF(z) = *’ff()

7e (@) |

To minimize F(x), one can set F'(z) = Ax — b to zero, therefore, the problem of

minimizing F(z) is equivalent to solving Az = b, and the optimal solution point is

x = A~ 'b. Consider some arbitrary point p, and p = z+e, e # 0. From Equation 4.5,

F(p)

F(z+e)

S+ Azt o)~z te)

1 1 1
%xTA:E + -2-:rTAe + EeTAx + §eTAe — bz —bTe

%zTA:r — b+ %eTAe +e'b—b'e (by symmetry of A)
F(z) + %eTAe

1
F(a)+5(p—2) Alp—2).

Since A is positive-definite, then for all p # z, F(p) > F(z). Hence, z is a global

minimum of F. Let r, = b — Axy be the residual of x,. If the residual is nonzero,

then there exists a positive ax such that F(zx + axri) < F(zg). Since

1
F(Il‘k- + a;ﬂ‘k) = §<$k + oy, Az + C!kA'I'/g> — <7‘k + Axg, zp + akrk.),
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and
OF [Oou = oy (T, Ar) — Tk, T) = 0,

then
<7‘k )
(ri, Arg)

Table 4.1 outlines the adaptive weights steepest descent method, in this case, the

Qf =

residual ri is defined as the difference between the initial and current reconstructed

signals, and S represents the sinc operator.

Table 4.1: The adaptive weights steepest descent method.

Initialization: Io(z) is arbitrary
Computation: For £=0,1,2,...
(a) re = b— SIk(z),
Sl (z) = NX_:I I (zn)wy, sinc(z — z,).

n=0

N-1
b= Y I(xy)w, sinc(z — zy).
T rnrn)
(b) ek = 7570

(¢) Lipa(z) = Ir(x) + g

The method of steepest descent uses residuals as its direction vectors, and very
often the algorithm takes a direction similar to earlier steps. This leads to unnecessary
repetitions in search directions. Conjugate gradient offers a superior alternative which
involves the use of a separate set of search vectors. This method allows the search
direction to be conjugate to all previous directions. The solution is to find a pi so
that it is A-orthogonal to px i, i.e., pF Apr_1 = 0. Let Ii(z) be arbitrary and let
successive approximation to the solution I(z) be I 1(x) = Ix(x) + arpr, where py
is a direction vector. The quantity oy is found to minimize F(Ixy(z)). Let po = 1o
for £ = 0, and pr = ¢ + Bkpr-1 for k > 1. B is chosen such that py is the closest
vector to 7,1 and is A-conjugate to pr—1 [13, 29]. Note that py and I} (z) are built up
so that Iiy1(z) minimize F'(x) over the whole vector space of all previous directions,

{p1,p2,-.,pr}. The algorithm is outlined in Table 4.2.
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Table 4.2: The adaptive weights conjugate gradient method.

Inatialization: ro =b— Sly(x) R
Po=To
Computation: For k=1,2,...

_ {re_1re—a)
(a) Ok = (Ph—1,SPr_1)

__ (reme)
d) B = (Tk—llcﬂ‘:—l>

e) Pk = Tk + Brpr—1
N-1
Sh(z) = 3 I(zn)wy sinc(z — x,).

(
(C) Th = Thk—1 — QxSPr—1
(
(

n=0
N-1
b= 3 I(zn)w, sinc(z —z,).
n=0
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CHAPTER 5

RECONSTRUCTION OF IRREGULARLY SAMPLED
INTERFEROGRAMS

This chapter introduces methods for reconstructing nonuniformly sampled interfer-
ogram arrays. An interpolative algorithm is formulated in the case where sampling
locations are available. When spatial location irregularities are unknown, a separate
method that involves the recovery of a uniform sample spectrum is proposed based
on interferometric characteristics of the data spectrum. In addition, the procedures

of generating a nonuniform test data cube will be presented.

5.1 Nonuniform Interferogram Reconstruction — Rewvisited

Previously we have seen that the problem of reconstructing a nonuniformly sampled
interferogram exists in both the ESS and ETS systems. Furthermore, the irregular
sampling locations are available only when a laser signal is employed as a guiding
reference. When this is no longer the case, the sampling error must be corrected
without the specific knowledge on the irregularities involved in the mirror movement.
The current correction strategy used in the area of F'TS is described in Section 4.1,
and is known as the Brault algorithm. In this method, the irregularly sampled inter-
ferogram is resampled at a regular grid, which is achieved by first applying a low-pass
interpolation process to obtain the continuous-time interferogram, then resample this
interferogram at regular locations in space. This is a straightforward, yet effective
way of reconstructing a nonuniformly sampled interferogram especially when the in-
terferogram is oversampled. However, the interpolation may only be done when the

sample locations in space are known. These locations are provided by the laser fringe
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crossing times. In Section 4.2, iterative techniques were introduced as general-purpose
nonuniform reconstruction solutions. These algorithms are computationally more in-
volved than the Brault algorithm. However, they generally produce more reliable
results than the Brault algorithm near the Nyquist sampling rate. Again, however,
the sampling location information is required when using these iterative reconstruc-
tion techniques. Based on these facts, a reconstruction algorithm that is capable of
correcting the irregular sampling errors “blindly” is needed when the laser reference
signal is not present. On the other hand, if the laser signal is obtainable and sampling
locations are known, then an extension of the Brault algorithm that is suitable for

solving the multi-dimensional (multi-pixel FPA) reconstruction problem is proposed.

Table 5.1: Interferogram reconstruction problems.

1-D M-D
with laser reference with laser reference
1-D M-D

without laser reference | without laser reference

The interferogram reconstruction problems can be summarized as in Table 5.1.
For a single-detector (1-D) problem, with the sampling location reference given to
us, we could recover the correct interferogram easily using an interpolative method.
For the multi-detector (M-D) array problem, the same 1-D interpolation technique
can be applied to frames of data with the addition of an off-axis effect correction
routine. Recall in Section 3.2.2, the off-axis effects cause the interferograms to be
sampled at slightly shorter OPD, therefore, resulting a distortion in both the space
and wavenumber domains. In the spectral domain, the off-axis spectra are expanded

to slightly higher wavenumbers, causing them to have different spectral sampling
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intervals. The wavenumber of the entire spectrum is shifted by an amount o(1 — f)
with f = (1 — 92—42“"2) (Section 3.2.2), and o is the given wavenumber without the
off-axis effects. Since b and 8 are functions of pixel locations, the greatest distortion

is experienced by the corner pixel elements as shown in Figure 5.1. Here the spectral

x10° Spectra for Pixels (1,1) and (-64,-64)

T T T T T T
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Figure 5.1: Wavenumber shifts between the center and corner pixels due to the
off-axis effects. The center pixel (1,1) is plotted in blue, where as the corner pixel
(-64,-64) is plotted in red. Both spectra are zoomed in near the ozone absorption
band centered at 9.6 ym to show details.

shift can be seen by looking at shift in the position of each absorption band. Therefore,
the off-axis correction algorithm must be able to re-map the spectra to their correct
wavenumber grids.

If the nonuniform sampling locations are unknown, which is the case when a
laser reference is not present, the reconstruction algorithm must be able to correct

”

the sampling errors “blindly.” To be able to correct the positional errors without
actually knowing the positions can be a tricky task, unless we know certain properties
of the data that we are trying to recover. In the following sections, we will discuss

these known data characteristics and the possibilities of incorporating them into the
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reconstruction algorithms. Similarly, the “without references” case applies to both
single- and multi-detector problems.

Before we continue onto the next section, let’s recall the notation that has been
used so far. Table 5.2 shows the equivalency between an interferogram as a function

of time and as a function of space.

Table 5.2: Interferogram notations.

Continuous interferogram as a function of
space z or time ¢

Measured interferogram as a function of
nonequal space z,, or equivalent equal time | I(zn) | I(nAt)
nAt.

Desired interferogram as a function of equal
space nAz, or equivalent nonequal time t,,.

I(z) | 1(®)

I(nAz) | I(t,)

5.2 The Problem with Known Sampling Locations

Start with the simpler case, in which the temporal sampling locations ¢,, correspond-
ing to equal space intervals nAzx can be derived from the collected laser fringe crossing
information. If we have equal time samples, I(nAt), then the continuous interfero-

gram as a function of time, I(¢), can be reconstructed via the following interpolation:

I(t) = i I(nAt) sinc(t — nAt) (5.1)
A i I(nAt) sinc(t — nAt), (5.2)
n=0

where I(nAt) is the discrete interferogram measured at equal time instants triggered

by an external clock signal, and sinc{-} is the interpolation function defined as

sinc(t) = %. Suppose I(t) is resampled at t,, then

I(t,) = I(nAt)* sinc(t,) (5.3)

= I(kAt) sinc(t, —kAt), n=0,1,...,N — 1. (5.4)
k=

b4

(=}
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Since ¢, is equivalent to nAz in space, then I(t,) is the desired interferogram sam-
pled at equal space locations, I(nAx). For an array of detectors, the reconstructed

interferogram data cube can be written as

2

-1
Ly,(nAz) =1, ,(t,) = Y I ,(kAt) sinc(t, — kAt). (5.5)
0

o
I

Where (z,y) indicates the pixel coordinates ranging from (-64, -64) to (64, 64) on
a diagonal of the FPA, but excluding pixel (0, 0), that is pixels (0, 1), (0, -1), (-1,
0), and (-1, 0) do not exist. When applied to 16,384 pixels, the sinc interpolation
can be computational demanding. Suppose we could have a solution that is slightly
less accurate but requires significantly less computing power, would not that solution
be a more desirable alternative? Or maybe we could offer a flexible solution that
allows the user to decide which factor is the more important one for the application
on hand: speed or accuracy. Two such alternatives are presented in the following
chapter. The first involves the truncation of the sinc kernel function. The accuracy
of the recovered data depends on the length of the truncation window being applied
to the sinc kernel. A longer window length results in better data quality, but requires
more computation, although this relationship is not necessarily linear. The second
alternative takes advantage of a double-scanned interferogram. We can roughly view
the two-sided scanning process as taking the data measurement twice, back-to-back,
with a small time delay. That is the reason why an ideal interferogram is symmetrical
about the ZPD. When random sampling offsets are present, each pair of symmetrical
data measurements are in the neighborhood of the correct data value, and we know
exactly how far they are from the desired point. Suppose that the interferogram does
not experience any rapid changes within this neighborhood. Then we could easily
apply a linear interpolation based on each symmetrical pair, therefore, approximating

the correct value.
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5.3 The Problem with Unknown Sampling Locations

Now we consider the situation in which a laser reference is not available, and the
nonuniform spatial sampling locations are unknown. In this case, the problem cannot
be solved by any form of interpolative scheme because it is impossible to formulate
and evaluate an interpolation function without actually knowing where the sample
positions are. Therefore, additional information on the interferogram itself and /or its
spectral properties must be taking into account.

First we note that the radiance spectrum of each interferogram is strictly bandlim-
ited. The band coverage is pre-defined by the system specification, and is physically
realized by selecting a particular type of detector (material) that is spectrally sensitive
to the IR radiation within this band region. For example, the GIF'TS spectral cover-
age for long-wave and short/mid-wave IR radiation is 685-1130 cm™! and 1650-2250

~1, respectively. Suppose nonuniform sampling position errors are encountered

cm
during data collection. What kind of effects will these errors have on the spectral
band if we take the DCT of the measured interferogram? In Figure 5.2 (a), the
spectrum of uniform spatial samples F(mAo) is plotted along with the nonuniform
spectrum E(kAa). From the close-up of these spectra in Figure 5.2 (b), we can
see that the spectrum derived from the nonuniform samples exhibits oscillating dis-
tortions in the out-of-band portion of the spectrum, whereas the original spectrum
has zero values in the same spectral region in an ideal case. Based on this observa-
tion, a bandlimited spectrum can be stated as a valid objective or constraint in the
formulation of the reconstruction algorithm.

Another noticeable difference between these two spectra is in the phase angle.
As described in Section 2.4.1, an ideal interferogram is symmetrical about ZPD and
has a real spectrum; the imaginary part is present due to various phase errors and

complex noises. Even though this is the case, the real part of the spectrum has a

far greater amplitude than the imaginary portion of the spectrum. The amplitude
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(b) Enlarged view of out-of-band region from the same plot

Figure 5.2: The original (in blue) and nonuniform (in red) long-wave radiance
spectra for pixel (-64,64)

63



ratio between the two is on the order of 10® based on the simulation result obtainec
from a nonuniformly sampled interferogram with maximum sampling offsets within
+10% of the original locations. As a result, the phase angles are concentrated in the
neighborhood of 0. This is, however, not the case when the interferogram is nonuni-
formly sampled. Here the real and imaginary parts of the spectrum are comparable
in amplitudes. This effect can be seen in Figure 5.3, where unwrapped phase angles

Phase Angles of Unif. and Nonunif. Spectra

500 r —_—

500 N\,
-1000}- \
-1500

2000 B

Unwrapped Phase Angle in Radians

-2500 \

-3000 b b
N\

~3500
0

500 1000 1500 2000 2500
Sample number

Figure 5.3: Phases of the original and nonuniform spectra for pixel (-64,-64).

are shown for both the original and nonuniform spectra. The blue curve indicates the
unwrapped phase for the original spectrum, whereas the spectrum with nonuniform
samples is plotted in red. Therefore, a second objective would cause the reconstructed
spectrum to be real or “almost” real, or equivalently, a guaranteed symmetry in the
space domain.

So far we have seen that the nonuniform sampling errors in an interferogram
are reflected by its spectral changes, and it may be possible to correct these dis-
tortions more effectively by using a constrained iterative reconstruction algorithm

that imposes known properties on the solution in both the space (interferogram) and
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spectral domains, rather than working in only one domain as we did with the inter-
polative methods. Therefore, a reasonable tactic for solving the problem, without
the reference provided by a laser signal, would be the one that attempts to solve the
reconstruction problem in the frequency domain, i.e., to recover the correct spectrum
instead of the interferogram samples. These iterative algorithms perform an update
of the interferogram values in the space domain, along with an update of the spectrum
in the frequency domain during each iteration. To ensure the corrected spectrum is
consistent with the measurement, most reconstruction algorithms seek a cost func-
tion that combines the residual norm with a set of constraints. For example, the data
consistency constraint can be expressed as the distance between the measurement
and the estimate. The goal is to correct the errors in the measurement according to
some known properties about the data, however, the estimate should still agree with
the measurement to a certain degree. The optimal solution is obtained by finding
a solution that minimizes this cost function, and satisfies the known constraints. A
weighting parameter is usually used in conjunction with the constraints, which gives

)

the solution the freedom to be “in favor” of the constraints or the measurement.
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Figure 5.4: Three parameters that define an absorption band.
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In our case, the magnitude response of the nonuniform spectrum differs from the
original spectrum primarily in the amplitude, while its shape or envelop does not
change significantly. Consequently, the residual norm would not be a useful measure
of the data consistency because two correct spectra from different ground scenes
usually only differ in amplitudes also, e.g., the ground area under the clear sky will
have higher magnitude values than the ground scene covered by clouds. Therefore,
verifying the data consistency by data values would not be a favorable choice because
we have no way of knowing whether the amplitude change is caused by sampling
errors or by nature. A more appropriate criterion can be found if we take a closer
look at the absorption bands. Generally, each band can be characterized by three
parameters: the position at band minimum, the width at FWHM, and the band
depth (Figure 5.4). Since the band depth is an indication of the amplitude, any
changes may result from either sampling errors or different ground scenes, it would
not make a good measure for data consistency. This leaves us with band position
and width, which are more reliable measures because they do not vary greatly due to
atmospheric properties.

Based on the observations made above, we developed a reconstruction algorithm
that has a top level structure as shown in Figure 5.5. First, we generate an initial
estimate based on the nonuniform measurement. Then we compute the radiance
spectrum by taking the FFT (Fast Fourier Transform) of the initial estimate. The
“goodness” of this solution is then evaluated against a set of objective functions,
which are defined according to the spectral properties as described previously. These
objectives can be written as

min f: R*" =R
IeFCRn

£~ > wifi(D). (5.6)

where R™ denotes n-dimensional Euclidean space, the set F C R" is the feasible
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Figure 5.5: The basic structure of the reconstruction algorithm without sampling
location references.

search space defined by a set of constraints, and I = (I3, ..., ) is the interferogram
vector that optimizes (minimizes) a set of objective functions f;(-). Three objectives
are being considered: the total OOB (out-of-band) spectral signal, the out-of-band
spectral signal variation, and the entropy of the entire spectrum. The first objective
restricts the OOB spectral noise, and is designed based on the fact that a uniform
spectrum is bandlimited. Suppose a nonuniformly sampled spectrum has a high OOB
signal that is due to an offset at ZPD. In this case, the OOB signal will not be a good
indication of the quality of this solution since the error is the result of a sample DC
offset. Therefore, the second objective is necessary to ensure that a good solution

will have low out-of-band noise that is spectrally flat (white). This objective function
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computes the total distances of each OOB spectral data value from the average OOB
value. A lower distance measurement implies a lower data deviation, thus a flatter
OOB signal. The third objective function computes the spectral entropy. As we
have discussed previously, the location and width of each absorption band should not
vary. However, detecting these features (location and width) over numerous bands
for each spectrum at each evaluation would be a labor intense and rather difficult
task. The minimum entropy criterion offers a measure for the overall shape of the
absorption bands instead of monitoring each band individually. The entropy of a given
spectrum is defined as the logarithm of the number of all possible distinct spectral
configurations. The minimum entropy assumes the most spectrum information, i.e.,
known band locations and widths. As opposite to the well known maximum entropy
method, which offers a uniform (flat) solution, the minimum entropy algorithm finds
the “sharpest” spectrum, i.e., the one that has the spikiest or deepest absorption
bands. A simple approach for dealing with multiple objectives is to assign each
individual objective a positive coefficient w;, i = 1, ..., k. The weighted cost functions
are then summed up to produce a single scalar measure. In Equation (5.6), the vector
to be optimized is represented by interferogram sample values, alternatively, a vector
composed of nonuniform sampling time instants ¢, can be used instead:

min f: R*" >R

teFCR®
k
FU() = D wifi(I(8)). (5:7)

where t = (¢,...,t,). If the optimal time instants, t* € R, are obtained, then the
interferogram values at t* will correspond to equal space sampling. After computing
the objective function, the result of our current performance evaluation together with
a set of constraints will lead to a new update. Three constraints are chosen to be
considered: the symmetry of the interferogram, the lower and upper bounds of the

estimation, and the consistency with the measured data. A symmetry constraint
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will guarantee a real spectrum. The limits are designed to confine the estimate
to a bounded region, which will ensure the interferogram sample values are within
certain limits of the measured sample values. This region is assigned based on the
assumption that the position offset errors are within 10% of the correct sampling
locations. Finally, the estimate in the space domain also must be consistent with
the measurement; this can be done by incorporating the measured interferogram into
the estimation process, for example, it can be used as an initial estimate. Note that
the consistency constraint is also monitored by the data limit constraint. After the
update, the iteration continues until a stopping criterion is met. The implementation

and derivation of these algorithms will be presented in the following chapters.

f

Figure 5.6: An illustration of the proposed constraints in the interferogram domain.

In summary, Figures 5.7 and 5.6 illustrate the concept of having multiple objec-
tives and constraints in the reconstruction problem. In Figure 5.7, we use an arbitrary
pair of samples as an example, here the estimated sample pair I(n) and I (N —n)
must be equal in order to satisfy the symmetry constraint. Their possible solution
values are confined within the indicated range, and the initial estimate is set to be

the measured nonuniformly sampled interferogram (not shown in the Figure). These
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Figure 5.7: An illustration of the proposed objectives in the spectral domain.

two constraints will ensure the estimate is consistent with the measurement in the in-
terferogram domain. Meanwhile, in Figure 5.7, the objective functions in the spectral
domain are shown. The entropy objective ensures the “nulls” from the absorption
bands are kept to be narrow, sharp, and as deep as possible. Whereas the out-of-band
portion of the spectrum is monitored by the total OOB signal and the OOB signal
deviation. All of these objectives and constraints are working in parallel as they were
in a “tug of war.” The desired solution is found to be the one that satisfies all of

them the best.

5.4 Generating the Test Data Cube

Before any reconstruction algorithm can be developed, a set of nonuniformly sampled
interferograms must be generated in the space domain, which requires the knowledge
of irregular spatial sampling locations derived from the laser signal. In order to
generate this set of nonuniform offset values, we adopt a clock signal from the test
measurements that were obtained from a real F'TS instrument. The experimental
clock reference signal in Figure 3.3 is obtained with a HeNe laser of wavelength 633
nm, and the number of 25 ns clock periods ¢, since the previous fringe crossing is

counted, where n = 0, ..., N — 1 crossings. To find a set of offset samples from the
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clock signal, first, we compute the average clock periods, ¢, over all fringe crossings:

A 271:/_—01 Cn
= == 5.8
o= Lonct (53)
Then the offset samples normalized to an arbitrary sampling interval At is
en=At[c"T_C], n=0,...,N—1. (5.9)

The nonuniform time instants ¢,, which is equivalent to nAz, can be derived from
t, = nAt + e,; nAt represents equal time sampling locations. The parameter At
is chosen so that when the interferogram I(nAt) is upsampled by an integer factor
M = At. The upsampling factor should be sufficiently large in order to create a
smooth plot with a fine grid, from which irregular time samples can be taking with a
relatively high resolution in terms of sampling positions. Figure 5.8 shows the steps

of generating a nonuniformly sampled interferogram.

1(tn)

Cn () ¢ At [cu—é} €n n Cubic Spline 1(nAt)

& Interpolation

nAt

Figure 5.8: Generating a nonuniform interferogram.

To simulate the nonuniform sampling effect, an error-free discrete interferogram
I(t,) of length 2048 is used as the original signal. With the uniformly sampled inter-
ferogram 1(t,), t,, and nAt available at hand, we need to determine the irregularly
sampled interferogram I(nAt). We will do this by using a cubic spline interpolation
of the upsampled interferogram. The cubic spline function is guaranteed to be smooth
in the first derivative, and continuous through the second derivative [55]. Given the

interferogram function 7, = I(t,), n = 0,...,IN — 1, a linear interpolation function
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Figure 5.9: A sample plot of the generated nonuniform interferogram.

between a particular interval ¢, = mAt and t,, 41 = (m+ 1)At is
I =Al,+ Bl,,1, (5.10)

where

t —t t—1t
—mtl " and B= —— "

tm+1 - tm

A= (5.11)

tm+1 - tm

A cubic spline formula will need some higher order terms in addition to Equation
( 5.10) to satisfy the 1%t and 2"¢ derivative conditions. Thus, the complete cubic

spline function [55] can be derived as

I = AL, + BlL,1 + CI,, + DI, ., (5.12)
where
1 1
C = 6(A3 — A)(tmy1 — tm)?, and D = 6(33 — B)(tmy1 — tm)% (5.13)

In Figure 5.9, a sample graph illustrates the relation between uniform and nonuniform
time samples, along with their corresponding temporal sampling positions. For an
array of detectors, the same data generation method has been applied to each single
interferogram vector. In the following two chapters, we will discuss the algorithm

details for correcting these nonuniform sampling errors.
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CHAPTER 6

INTERFEROGRAM RECONSTRUCTION WITH
KNOWN SAMPLING LOCATIONS

Continued from the previous chapter, this chapter presents the details of reconstruct-
ing nonuniformly sampled interferograms when their irregular sampling positions are
known from a laser reference signal. In Section 6.1, we introduce the procedures
for solving the one-dimensional reconstruction problem. Two algorithms will be dis-
cussed. The first algorithm is based on using truncated sinc interpolation kernels
for reconstruction. The second method uses a simple linear interpolation and the
symmetry property of the interferogram to solve the problem. In Section 6.2, these
two methods are modified to recover an array of interferogram measurements. In

addition, a routine for correcting the array off-axis effects is presented.

6.1 One-Dimensional Reconstruction

This section focuses on the correction of a single interferogram through a sinc or
linear interpolation. Their formulation will be given in the following subsections.

The advantages and disadvantages of each algorithm also will be discussed.
6.1.1 The sinc and Truncated sinc Interpolations

Recall in Section 5.2, the equal space samples at corresponding nonequal time instants

is given by

I(t,) = I(nAt)x* sinc(t,) (6.1)

A I(kAt) sinc(t, — kAt), n=0,1,...N —1. (6.2)

0

P4
—

=
Il
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If the number of the sinc kernel functions is reduced to L = 2W 4+ 1 <« N, then we

could estimate the interferogram as

I(t,) = i I(kAt) sinc(t, — kAt). (6.3)

k=n-W

This formulation is equivalent to multiplying sinc(-) by a rectangular window of length

L, this is
N-1
I(ta) = Y I(kA) sinc(t, — kAt) w((n — k)At), (6.4)
k=0
where
Lo k[ <W,
w(kAt) = (6.5)

0, otherwise.
Notice that the truncation window function is centered at the sample of interest. For
instance, if we wish to recover I(t;), then the windowed sinc kernels are centered
at sample 7, as the sample number is changing, so does the truncation window. If
the sample is located at the beginning or the end of the signal where there are not
enough samples on one side of it, zero values are used for these missing samples in the
calculation. One of the advantages of applying a truncation window is that not all of
the N sinc functions are required for calculating the interpolation outputs, therefore,
saving a significant amount of computational power, especially when L <« N. The
second advantage would be the flexibility of the interpolation process. If a more
accurate result is required, then we can set L equals to /V, which is equivalent to the
reconstruction algorithm without any truncation. On the other hand, if a less precise
result is needed, then we can set the length of L to be much shorter than N, e.g.,
L = 9. In general, the quality of the reconstructed output improves as the window
length L increases, however, this relationship is not necessarily linear. The rate of
improvement decays as the window length grows. We will discuss these results further

in Section 6.3.
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6.1.2 Linear Interpolation

This section introduces an alternative reconstruction method based on the symmetry
property of an interferogram. A double-sided interferogram contains data values that
are symmetrical about the ZPD in an ideal situation. We can interpret the double
scanning process as taking the same measurements twice during a short period of time.
If these samples are irregularly spaced, then for a particular sample point, there are
two measurements available in the neighborhood of the desired sample location after
scanning. It is very unlikely that the sampling location offsets of these two measured
values are equal during a double-scan. Since we have the values and locations of two
distinct samples that are near the desired sample point, a linear interpolation will
give us an estimate of the desired sample based on these available information. This
algorithm is very simple to implement; it requires very little computational resources.
The results are relatively accurate when compared to other reconstruction methods,
especially when the original interferogram is oversampled.

For an arbitrary sample point j, where 1 < j < N/2 — 1, the equal time symmet-
rical samples are I(jAt) and I((N — j)At). Their absolute sampling location offsets

from the desired point ¢; and {y_; can be written as
(51 = |jAt - t]' |, and (66)
0o = | (N - j)At —tn—j | (6.7)

Note that t; = ty_; for an ideal interferogram due to symmetry. The slope a and

y-intersect factor b can be found from

aby+b =I((N-j)At).



Therefore, the estimated equal space sample value at ¢; is

R at; +b, if 61 # do;
1) = 1Ga0+1((N-7)at) . (6.9)
\ O if 6, =6,
and
L(tn-5) = 1(t;). (6.10)

If the two offsets are equal in some rare cases, then the average of these two measure-
ments is used as the equal space estimate. Figure 6.1 shows how to obtain one equal
space sample based on two symmetrical equal time sample points using the technique

of linear interpolation.

Figure 6.1: The reconstruction of sample j via linear interpolations.

The above reconstruction scheme applies to samples n = 1,...,N/2 — 1. Addi-
tional steps must be considered when n = 0 and N/2 since there are no symmetrical
counterparts available for these sample points at the ZPD and MPD. For the sample
taken at MPD, we simply neglect the offset error because the value at MPD is very
small compared with the others. A sampling positional error at ZPD will cause a DC

offset in the frequency or wavenumber domain, thus, we can correct the ZPD sample
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by subtracting this offset from its spectrum in the frequency domain. Please refer to

Section 7.1.2.6 for details.

6.2 Multi-Dimensional Reconstruction

In this section, the interpolation methods described in the preceding section are
modified to solve the multi-dimensional reconstruction problem. Furthermore, an

off-axis effect correction algorithm is introduced for an array of detectors.
6.2.1 Linear and sinc Interpolations

For the sinc interpolation, the reconstructed equal space interferograms are

Liy(t)) = L, (nAt)* sinc(t,) (6.11)
N-1
= I y(kAR) sinc(t, — kAt), n=0,1,...,N — 1. (6.12)
k=0
This equation applies to all pixels in the array, where z,y = —64,...,—-1,1,...,64

indicate the coordinates of each detector element. Similar to the one-dimensional
case, a moving truncation window can be applied to the detector array, the estimated

interferograms can written as

N-1
Ly(tn) = Ly (kAt) sinc(t, — kAt w((n — k)At). (6.13)
k=0

The definition of the windowing function w(kAt) is identical to that given in Equa-
tions (6.5). Suppose we wish to reconstruct sample j for all pixel coordinates z and
y such that a frame of data needs to be recovered, and the index of this frame is j,
for 0 < j < N — 1. With a truncation window applied to the data cube, the de-
sired equal space data frame is found by interpolating the equal time frames situated
around frame j. A pictorial explanation of this process can be seen in Figure 6.2.
The equal time frame j is shown in blue, along with its neighbors shown in gray. The

length of the truncation window L = 2W + 1 determines the number of equal time
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Figure 6.2: The sinc interpolation between interferogram frames.

frames being used in the interpolation. The desired equal space frame j is shown in

vellow.

The concept of interpolating data between interferogram frames also applies to
the linear method. Here the calculation of §; and d» remains the same since all array

elements experience the same amount of nonuniform sampling offsets, thus

1 | nAt —t, ’, and (6.14)

& = |(N=n)At—ty n|, Vn. (6.15)

The slope a,, and y-intersect factor b;, must be found independently for each coor-

dinate, and they are

Az y 01 +byy = I, (nAY)

(6.16)
Ay 02+ bsy =L, ((N—n)At), Vn, zand y.
Therefore, the estimated equal space frames are
A Az y tn + bz,y7 lf 51 7é 52;
Iy (tn) = (6.17)

Loy (A + L, ((N-5)At)
2 H

if 5, = 6,
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and

~

L y(ty_y) = fm,(tn), VYn, zand y. (6.18)

The concept of linearly interpolating symmetrical interferogram frames can be seen
in Figure 6.3. For the reconstruction of an arbitrary frame j, the desired equal space
frames j and N — j are shown in yellow whereas the equal time frames used for the

interpolations are drawn in blue.

Equal T }ne Frame j Equal Time Frame N — j

s 1

4 A

Equal Space Frame j ~——__ " Equal Space Frame N — j

Figure 6.3: The linear interpolation between interferogram frames.

6.2.2 Off-axis Effect Correction

In addition to the nonuniform sampling error caused by mechanical irregularities of
the scanning system, for an array of detectors, we must also consider the off-axis effect
that was formerly introduced in Section 3.2.2 as the off-axis effect. Unlike the random
offset errors discussed previously, the off-axis effect errors are systematic. The value
of the off-axis distortion factor is determined by the location of each pixel, which can

be found from

(6.19)



where

8 =by/(2|z| — )2+ (2]y] — 1)2. (6.20)

Note that x and y indicate the pixel location, and b is the half angle subtended by a
single pixel, which has the value of b &2 0.38 milliradians. From these two equations,
we know that the off-axis pixels are sampled at slightly shorter OPDs, therefore, the
spectra of these pixels are expanded to higher wavenumbers. The largest distortion
is experienced by the corner pixels. From [74], the off-axis distortions in the space

and wavenumber domains can be summarized into Table 6.1.

Table 6.1: On-axis and off-axis interferogram sampling parameters.

Interferogram parameters On-axis Off-axis
Sampling ' T
interval in OPD: dx de' =dx- f
Maximum N R
optical delay: X=)de| X'=X-f
Spectral 1 o
sampling interval: do = 2X do’ = 7
Maximum _ 1 e
spectral range: = 3dr 7

To correct the off-axis sampling errors, a frequency domain approach is imple-
mented. The first step involves the correction of random sampling errors using one of
the interpolation methods described in the previous section. The resulting interfero-
grams can be written as I, ,(nAz), Vz,y. Their corresponding spectra, E,,(kAa),
can be obtained via FFT. Since the off-axis pixel spectra are expanded to higher
wavenumbers, a frequency sample rate conversion is performed for each unique coordi-
nate (z,y) so that the spectral values of the corresponding interferograms are restored
onto a shorter wavenumber grid. These procedures are outlined in Figure 6.4. Note
that factors M and D are chosen larger enough so that pixels with different distor-

tion factors will be restored onto distinct wavenumber grids. For example, the corner
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pixel (64,64) experiences the off-axis effect by an amount of f = 0.9977, whereas
pixel (32,32) has a f value of 0.9994. If for both interferograms, M and D are set to
have the values of 100 and 99, respectively, then these two pixel spectra are corrected
by the same amount, which is undesirable if high-resolution results are needed. On
the other hand, suppose M equals 1000 for both pixels; D is equal to 997 for pixel
(64, 64), and 999 for pixel (32, 32), then we will be able to obtain two unique solutions

for both of them.

Iy (nAz) Eqy(kAc) Egnazis(kAg)
I FFT T %
1
€,y 1 _ M
Compute f f—D

Figure 6.4: The off-axis effect correction algorithm outline.

6.3 Implementation and Results

This section presents the implementation and test results of the algorithms described
previously. First, the complexity of each algorithm is discussed, which is followed
by test results of these algorithms obtained from MATLAB simulations under noisy
conditions and at different sampling rates. Finally, a comparison is made between

these test results and those obtained from the existing methods.
6.3.1 Complexity, Noise, and Sampling Rate

The computational complexities of the algorithms introduced earlier are shown in
Table 6.2. The required number of multiplications and additions are listed in columns.
For the sinc interpolation, the variable L represents the truncation window length. In
the multi-dimensional case, the numbers of operations are multiplied by the number

of pixels to be recovered.
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Table 6.2: An algorithm complexity analysis.

\ Method ] Multiplications | Additions

. sinc Interpolation NL N(L-1)
Linear Interpolation | 3(N/2-1) 5(N/2 —1)
ZPD Estimate 2N log,(N) | 2N logy(N)

The next experiment examines the effects of an additive noise vector on the per-
formance of each algorithm at different sampling rates. In this test, the signal is
corrupted by the detector noise, which has the characteristic of a white (normally
distributed) noise with an amplitude of v/2N, where N is the number of samples.
The detector noise is set to be real, asymmetrical about the ZPD, and assumed to be
spectrally uncorrelated. The amplitude of the detector noise v2N is determined such
that its real part in the spectral count domain is NESRx R;, where NESR is the noise
equivalent spectral radiance for the GIFTS instrument, and R; is the instrument re-
sponsivity. The quantity NESR X R; is equal to 1 count in the spectral count domain,
which requires the noise amplitude of 2NV in the interferogram count domain. The
factor of /2N is generated when we take the inverse FFT of the detector noise in the
spectral count domain. The derivation of the detector noise can be found in [74].
The errors of the reconstructed signals are computed for both the noise-corrupted and

noise-free interferograms (Table 6.3). These errors are measured in 2-norm, which are

defined by
Nl 1/2 . 1/2
) = 2 = I(nAz) — [(nAZ))? S 6.21
el {Z} {Z( (niz) — (n m»} (6.21)

where [(nAz) is the estimated uniformly spaced interferogram. For the sinc inter-
polation method, the results are obtained at three different window lengths, L =
2W +1 = 7, 129, and 513. As discussed earlier in the chapter, the performance
of a truncated sinc interpolation scheme improves as the window length increases,

however, at a decaying rate, which can be seen from the errors of the reconstructed
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outputs shown in Table 6.3. The linear interpolation method performed remarkably
well in the test, especially when no detector noise is present. This is because each
nonuniform sample pair is located near the desired equal space sample, even closer
than the neighboring samples of the desired equal space sample. For example, the
distances from I(jAt) to I(t;) and I((N — j)At) to I(t;) are much closer than the
distance from I((j — 1)At) to I(¢;) because the maximum offset errors are within
+10% of the uniform sampling location. When an additive noise is included with
the signal, the linear interpolation outputs experience relatively larger changes in the
resulting errors. When the original nonuniform interferogram is oversampled at 4
times, as expected, all algorithms achieved better results compared to those obtained
at near Nyquist rate.

Table 6.3: Reconstruction results (with references) from interferograms with the
additive detector noise at different sampling rates .

Noise Near Nyquist 4x
Condition Method Rate Oversampled
Without Noise sinc L=17 5.9626e4 6.3840e3
(original error: | sinc L =129 3.6740e4 2.5781e3
lle|| = 1.2107e5) | sinc L =513 3.6707e4 2.2691e3
Linear 1.4442e4 1.6319e3
With Noise sinc L =7 5.9669¢4 8.6489¢3
(original error: | sinc L =129 3.6742e4 4.3588e3
le]| = 1.2120e5) | sinc L =513 3.6709e4 4.1022e3
Linear 1.7515e4 6.7941e3

6.3.2 Comparison of Reconstruction Test Results

Comparisons are made between the algorithms introduced in this chapter and the
existing methods described in Chapter 4. Similarly, the tests are conducted under
noisy and noise-free conditions at near Nyquist sampling rate. In general the it-
erative methods outperformed the Brault algorithm and any of the truncated sinc

interpolation schemes, however, they do require more computational resources. In
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Table 6.4: Comparison of test results (with references) between reconstruction meth-
ods.

I Noise Condition | Method Reconstructed Signals 1
sinc L =17 5.9626e4
sinc L =129 3.6740e4
Linear 1.4442¢e4
Without Noise Brault 2.4793e4
(original error: Marvasti (iter.=5) 2.3131e4
lle|| = 1.2107e5) | Adaptive Weights (iter.=5) 2.4318e4
Steepest Descent (iter.=b) 2.0237e4
Conjugate Gradient (iter.=5) 1.9875e4
sinc L =7 5.9669e4
sinc L =129 3.6742e4
Linear 1.7415e4
With Noise Brault 2.4830e4
(original error: Marvasti (iter.=5) 2.3978e4
llell = 1.2120e5) | Adaptive Weights (iter.=5) 2.4530e4
Steepest Descent (iter.=>5) 2.2767e4
Conjugate Gradient (iter.=5) 2.0722e4

addition, the issues of stability and convergence rate must also be taking into con-
sideration when using an iterative algorithm. Once again, the linear interpolation
method produced the most favorable results when compared with outputs from any
other techniques. For the GIFTS application, each interferogram data cube contains
a huge amount of data. As a result, any one of the iterative methods that requires
the repetitive computation of N? sinc kernels would be impractical. The digital
filtering (Brault) method is a more suitable candidate, however, it does not offer
any options for the output data quality. The truncated sinc interpolation method
provides multi-resolution solutions, which is decided based on the desired speed vs.
accuracy criterion. Finally, when there is no additive noise present, the linear inter-
polation method is simple to implement, highly efficient, and is capable of achieving

exceptionally accurate results.



CHAPTER 7

INTERFEROGRAM RECONSTRUCTION WITH
UNKNOWN SAMPLING LOCATIONS

This chapter presents the key elements of reconstructing the nonuniformly sampled
interferogram array without the availability of the location reference. In Section 7.1,
the minimization problem is briefly reintroduced; an evolutionary approach is cho-
sen as the most suitable candidate for dealing with a complex model function. Also
in this section, a short introduction of the evolutionary computational principle is
given, followed by two algorithms that are designed for solving the nonuniform recon-
struction problem. These two routines are compared side-by-side to determine the
best scheme. In Section 7.2, the extension of the algorithm is made for the recovery
of a multi-dimensional interferogram array. Finally, implementation details of these
techniques and analyses of the test results are presented in the final section of the

chapter.

7.1 One-Dimensional Reconstruction

This section focuses on solving the one-dimensional nonuniform interferogram re-
construction problem without knowledge of the sampling locations. The concept of
optimizing a multiple-objective function with additional constraints was formulated
in Section 5.3 based on the interferogram’s spatial and spectral properties. Now the
question remains: how do we find a suitable optimization method for solving such a
problem defined in Section 5.37 Recall in Equation (5.6), the three objectives that
were defined included the total OOB spectral signal, its variation, and the entropy

of the spectrum. In addition, three constraints were presented as the data limits, the
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symmetry of the interferogram and data consistency according to the measurement.
Note that the vector to be optimized is in the spatial domain while all objective func-
tions are in the wavenumber domain. Therefore, a Fourier transform is required at
each function evaluation, and furthermore, both objectives and constraints include
nonlinear functions. Based on these observations, an optimization algorithm that is
too restrictive in terms of the required form and conditions of the evaluation function
is undesirable; an algorithm that is too demanding in terms of computing power is
also unfit for the problem. For example, traditional methods that involve the calcula-
tion or estimation of a gradient function is too costly, even impossible to compute in
this case. An algorithm that requires the objective function to be convex, quadratic,
or linear, etc. is also out of the question because our objective functions do not fit
into any of these required forms. Non-derivative techniques that rely on the idea of
transforming a current estimate into a better solution based on the merit of the eval-
uation function seem to be promising since they can be easily applied to our model.
However, very often these methods search for a solution in a local neighborhood and,
as a result, converge to a local optimum. This is especially a problem if the objective
function has a complex “hilly” landscape. Therefore, a desirable algorithm should
be able to find a global optimal solution; it should be relatively simple to imple-
ment, and it should be capable of dealing with a variety of model functions without
too many restrictions. An evolutionary algorithm (EA) that simulates the natural
selection process among a group of potential solutions fits the description well. In
addition to its simplicity, this approach offers several advantages in terms of finding
the optimal solution. First of all, EAs work on stochastic models, which generate and
mutate solutions based on a set of probabilistic rules. Secondly, an EA evaluates a
population of individual solutions simultaneously, they evolve and adapt according
to the rule of the survival of the fittest. In the end, a population of the strongest

solutions remains. Finally, local optima can be escaped since EAs are global search
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methods. The actual algorithm structure is described in the following section.
7.1.1 Introduction to Evolutionary Algorithms

Evolutionary algorithins, as the name implies, capture the essence of a Darwinian
biological evolutionary process. In the beginning, a randomly selected population
composed of a number of individuals (potential solutions) is created. Each individual’s
fitness is judged based on its performance outcome at the evaluation function. Those
individuals with the weakest results are quickly eliminated while the strongest are
kept to generate offspring. This new population will acquire certain characteristics
from their parents, yet, random mutations and variations are also taking place among
them. Once again, these new individuals are competing to survive according to the
evaluation function. As a result, a new generation emerges from the previous one.
The cycle continues as each new generation becomes more fit to this simulated genetic
environment than the last one until a termination condition is reached. In the end,
an elite population of fittest individual solutions has been produced.

In Figure 7.1, the structure of an evolutionary optimization algorithm is shown.
Before an initial population is selected, a representation of the data vector to be
optimized is chosen. A representation is a mapping scheme that transforms the
original state space of possible solutions into an encoded state space. For example, a
fixed-length vector of symbols such as a string of binary bits, or integers can be used
as valid representations [2, 27, 47, 48]. Once the data vector has been mapped into the
encoded space, a population is created randomly. At this point, several parameters
are required to be considered. For example, the number of individuals in the initial
population, and the probability distribution of the population. There are no concrete
principles for setting up these variables in the field of evolutionary computation, in
general, so the best set of parameters are determined experimentally for a particular

application. The next stage involves the evaluation of each individual’s fitness. A
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Figure 7.1: The evolutionary algorithm outline.

well-chosen evaluation function should satisfy some basic requirements. For example,
the optimum solution should receive the most favorable evaluation. In addition,
there should be a correlation between how fit the rest of the solutions are and their
evaluation scores, i.e., the relative quality of each individual is directly reflected by
its evaluation ranking [48]. Next, a selection operator is applied to the population.
An example of a simple selection scheme eliminates the unfit individuals who have
the lowest evaluation scores and promotes the higher ranking ones. The “survivors”
remain and will be able to generate offspring. The new generation will experience
some form of variation or mutation. A zero mean Gaussian random variable is a
popular choice as a variation operator when the solution vector is represented as
continuous or integer variables. Very often, the Gaussian mutation variable is added
to the previous generation. On the other hand, a bit flip or crossing over (two or

more solutions exchanging bits) would make a better choice as a variation operator
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for a binary string since binary variation is usually done by changing one or several
bit values. The iteration continues until a termination condition is reached.

There are several approaches for handling the constrained optimization problem
using the evolutionary algorithms. The simplest solution is the “death penalty”
method, in which individuals who do not satisfy the constraints are rejected perma-
nently. Although it is simple to implement, this strategy seems to be too “crude” in
certain cases. For example, suppose an individual has a high evaluation score, how-
ever, lies on the boundary between the feasible and infeasible regions of the search
space. A total elimination of this particular solution may not be the most desirable
choice. A better alternative considers penalizing or repairing these infeasible solu-
tions, usually by incorporating a penalty factor in the evaluation function {3, 26, 48].

In summary, evolutionary algorithms are stochastic global optimization methods
that were developed based on the principle of natural selection and adaptation. Un-
like classic optimization techniques, EAs can work on a variety of function types and
require the least amount of mathematic resources. Because of their flexibility, the
design choices of each parameter are endless, ranging from simple decision rules to
elaborate dynamic systems. There are no standard sets of rules of selecting them.
Thus, the best evolutionary algorithm is the algorithm that works best for the ap-
plication on hand. In the following sections, we will discuss how the nonuniform

interferogram reconstruction problem fits into the evolutionary way of thinking.
7.1.2 Interferogram Reconstruction: Algorithm A

This section describes a recovery algorithm that emphasizes the estimation of sam-
pling locations. Recall in Equation (5.7), the vector to be optimized is stated as the
sample positions in time. This requires a mapping between the sample time instants
and their corresponding interferogram function values. Both sides of the interfero-

gram need to be corrected, the symmetry constraint is carried out by assigning a
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penalty factor for the infeasible solutions. We name this routine Algorithm A. An
alternative method that rejects all asymmetrical solutions, therefore, only estimates
the values of a half interferogram, will be introduced later on. For now, we discuss

the design details of Algorithm A.

7.1.2.1 Representation

o
Interpolator -
I(nAt) | : I0) T2
T A I |
2 S ) | PR . VA
] I
rnv_1

Figure 7.2: Reconstructing the continuous interferogram in time.

To find an appropriate representation for the optimization vector, consider a pro-
cedure similar to the case in which sample locations are known. In Chapter 6, the
one-step reconstruction algorithm can be seen as a two-step process. That is the
uniform time samples are reconstructed through an interpolator, followed by a re-
sampling. The upsample rate is selected large enough so that the resulting interfer-
ogram has a relatively high resolution, thus, resembles a continuous signal. Similar
steps are applied to the without-reference case, as shown in Figure 7.2, to generate a
heavily over-sampled interferogram I(t) from equal time samples I(nAt). Here, the
time instants ¢, corresponding to equal space samples are unknown. However, it is
assumed that we may place lower and upper bounds on the range of values where
these samples may be located. This leads us to the limit constraint, which was de-
scribed in Chapter 5. The nonuniform position offsets in time are within 10% of

the original uniform locations, which are derived based on the characteristics of the
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moving mirror. These offsets can be translated into equivalent offset sample numbers.
For instance, if the upsample rate is chosen to be M = 128, then the desired data
value is located within +128 x 10% = 413 samples of the original. If the limits are
relaxed to 20% to account for the worst case scenario, then the desired data value
lives in a neighborhood of £26 samples of the measured data value. In this case, each
sample has (2 x 26) + 1 = 53 possible candidates, which calls for a partition of I(t)

into a matrix A (Figure 7.2), as follows,

T
Qo0 ap1 ces Qo(r—1y Iy
T
aio a1 cee Ayp 1) ry
A = - : (7.1)
NxL
T
Av-1o An-1y -+ Av_1yr-v) Ty_1

where each row of A represents all possible data values (neighborhood) of a particular
sample. The matrix A is of size N x L, where N is the total number of samples to be
corrected or the length of the interferogram to be recovered, and L = 53 is the length

of the row vector r,,. The vector can be written as
T
r, = [ano, aniy -+, an(L,l)] ,formn=0,..., N —1. (7.2)

The relation between r, and the estimated continuous interferogram I(t) can be
expressed as

(i), i, ..., (L-1]" ifn=0

r, =
[[(Mn—-1) -5, .., [(Mn—-1)+ 5] ifn=1,..., N-1
(7.3)

Note that when n = 0, all 53 samples of the vector ry are taken on the right side of the
measured value instead of from both sides. This is the case because if the first data
point was sampled incorrectly, then it must be a delayed sample. In Figure 7.3, the
concept of generating matrix A is illustrated. Each red line indicates an equal time

sample value and its corresponding sample number, whereas the two blue neighboring
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Figure 7.3: Generating the data matrix A.

dashed lines represent a region of the correct data value (and its location) for this
particular sample. Each sample point n has a unique data vector r,, that is composed
of all possible solution candidates as shown. Figure 7.4 shows an enlarged portion of
Figure 7.3 that includes the vector ry.

r; = [r(0),...,m (L —1)]F
Tl(L— 1)

Tt (0)

T N M g,

e ) S

S
—
D
(\V)

Figure 7.4: Generating the data matrix A.

Having established r,, for n = 0,..., N — 1, the next step is to find a suitable
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representation so that the array elements in r, can be retrieved easily through a
simple mapping. Since the source for signal errors is in the sampling position, a
representation that can reflect the positional variations would be a logical choice.
Define a vector 1 as

L=[lo, b, -, v 1], (7.4)

where 0 < [, < L-—1,and n =0, ..., N — L. The interferogram sample values for

one possible solution out of all LV solutions are found from

r(l) = [’r()(l()), T](ll), R T'N—l(lN—l)]T
= [I(), sy [Nfl]T
= L (7.5)

For example, to recover the n'h

sample, 1, is estimated to be any integer between 0
and L — 1 = 52. Then the corresponding function value is found from I,, = r,(l,)
for this particular sample. Details on creating one data segment r,, are shown in
Figure 7.5. Now the problem has reduced to estimating an integer vector of length
N with the condition that each single element is bounded between 0 and 52. Notice

that we have reduced the original task into a combinatorial optimization problem in

which the solution of interest belongs to a finite and countable set.
7.1.2.2  Initialization

Two factors must be considered in order to initialize a population of potential so-
lutions: the population size, and the way it is generated. A simple and popular
approach is to randomly select individuals from all possible solutions using a uni-
form or Gaussian distribution. In our case, we could initialize an individual I? as N
truncated normally distributed random integers ~ N (26, 0). The vector has a mean
of 26 since it ranges from 0 to 52, and sample 26 is the default location; o is the

th

standard deviation of I?. The superscript p indicating that the vector is p** member
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Figure 7.5: The representation of n'! data segment.

of the population, and p =0, ..., P—1 with P representing the population size. This
formulation seems to be an acceptable choice. However, if we take a closer look at a
typical FTS clock cycle as shown in Figure 3.3, and zoom in on any data segment of
length N = 2048 (Figure 7.6(a)), we see that the clock signal does not behave like
random noises as shown in Figure 7.6(b), instead, it oscillates in a wave like motion
with correlations among samples. How can we capture its characteristics and yet still
preserve the randomness of the population? One potential solution is to use a simple
one dimensional random walk to generate 1. First, we let Z;, Z,,..., Zy_1 be inde-
pendent identically distributed random variables with P(Z, = 1) = P(Z, = —1) = 1.

The random walk process X, is

n—1

anzzk n:1’27---7N_17 (7'6)
k=0

and Xo = 0. Next, we set I” to be the sum of a constant vector and X,, so that 1I? has
a mean of 26. In addition, the elements of I? are set to be bounded between 0 and
52. Figure 7.7 shows an example of an initialized population that is generated based

on a random walk process.
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Figure 7.6: A comparison between the clock signal and a Gaussian random vector
of the same length.
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Figure 7.7: Generating an individual I’ based on a random walk process.
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The next task in the initialization process is to determine a proper population
size. This step is essentially experimental. A series of size choices are tested, ranging
from 10 individuals to 100. The results (presented in the last section of this chapter)
reveal that there are no significant differences in terms of the quality of restored
interferograms. In general, a greater number of individuals has the advantage of
introducing diversity to the population, but it requires more computing power. The
reason that the size does not matter much in this case is because one individual of the
population is set to be the default measurement in order to satisfy the data consistency
constraint described in Section 5.3. Here we implant the equal time interferogram
measurement in the population, so that other members can be influenced by it. We
assign 1° to denote the measured equal time interferogram, and the rest of the members

IP are written as follows:

©= 0,0, ..., &% (7.7)
P = [157 l% ) lel]Tv (78)
for p=1, ..., P— 1. The actual interferogram population is expressed as:
I’ =r(1°, (7.9)
and
r = r (7.10)
T
- [Ig, 15;_1]
T
- [ro(zg), (@), ..., TN,I(z';V_l)]  p=1,...,P—1.

This scheme is illustrated in Figure 7.5 for an arbitrary sample n. Where 12 = r,,(19)
is the measured function value for sample n; its corresponding index 10 is centered
at 26, which is true for all samples (n = 0,..., N —1). The randomly generated p**
member of the population /2 is located anywhere between 0 and 52, and its function

value is written as I? = r,(IP).
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7.1.2.8 FEvaluation

A properly selected evaluation function plays an important role in the success of an
evolutionary algorithm. Based on the formulation in Equation (5.7), the evaluation

function for the p** individual is stated as

evaly, (F) = Z w; fi(r(1))
Z w; f; (IP). (7.11)

This function is expressed as a weighted combination of three objects, namely, the en-
tropy, the out-of-band signal, and the OOB signal deviation. To derive an expression
for the minimum entropy criterion, first, we define the DFT of each estimate:
Er = F{I’}
N-1

= > e P™N k=0, ..., N1, (7.12)

n=0

which is composed of a real and a imaginary part
EF = Ef, + jEf. (7.13)

Note that the spectrum is complex due to the fact that the estimated non-ideal
interferogram may not be symmetrical about the ZPD. Now we can estimate the

power spectrum of IP as

2

12 1
P — —_— P = —_—
PP = N|E | ~ (7.14)

N-1

p_—j2mnk/N
E Ie
n=0

From the definition given in [33], the entropy H” for a Gaussian random process

with power spectrum PP is
H? =) "In P} (7.15)
k
In order to compare and rank the entropy values among all solution candidates, a

normalization procedure is required so that all members in the population will have
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an equal area under their spectra as written in Equation (7.16).

NE =) Ei=-- =) B (7.16)
k k k

Recall that the relationship between the area under an entire spectrum and the first

sample value in space is
D= % > E, (7.17)
k
then the requirement stated in Equation (7.16) can be satisfied by setting the ZPD
values of all solutions to be equal. By selecting the anchor ZPD value to be the

default ZPD measurement I{, and setting the ZPDs of the rest individuals to have

the same value as 1§}, a modified population can be written as

. I n=0
P = (7.18)
P n=1, ..., N—1,
where
D=0R=..=I"" (7.19)

The updated spectrum and power spectrum of fﬁ are

EF = F{I*} (7.20)
and
5 1~ 1 1 N-1 N P 2
P — —|fP|* = — Pe=j2mn 21
respectively. From this, we define the entropy measure as:
AP)=> "I P (7.22)
k

The second objective is the total out-of-band signal of the interferogram. Since the
spectrum is confined to lie within the band between w; < k < ws, any signal outside

this region can be quantified using the objective function

@Y=" |EL] (7.23)

k<wi, k>ws
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Another objective is imposed on the spectrum to monitor the out-of-band signal,
this function measures the total deviation of the OOB spectral samples from their
mean values. A high sample mean indicates that the spectrum has a “wavy” baseline,

whereas a low average value implies a flat OOB signal. This objective is given by
> B,
k<wi, k>w2
N — (w2 —w1 + 1)

@y =Y

k<wy, k>w2

4
ER,k -

(7.24)

Finally, to be able to combine the results from all three evaluation functions and
generate a single output, a normalization step is necessary. This can be done using

the equation
fi(IP)
iy = Il
VEL 1A

, fori=1,2,3. (7.25)

Table 7.1: A comparison between three evaluation functions.

Trial Known Performance Entropy OOB Signal || OOB Sig. Dev. sum | Rank
SNRE ’ lell , Rank | Results I Rank | Results l Rank || Results | Rank |
I 54.88 | 0.71e5 1 0.3389 8 0.1338 3 0.3626 7 0.84 3
ic 53.88 | 0.75e5 2 0.2459 1 0.3931 7 0.2541 3 0.89 4
i 51.72 | 0.83e5 3 0.3196 4 0.0331 1 0.2019 1 0.55 1
it 51.69 | 0.84e5 4 0.2856 2 0.1326 2 0.2456 2 0.66 2
g 50.54 | 0.89e5 5 0.3397 9 0.2427 4 0.3803 10 0.96 5
I° 48.78 | 0.96e5 6 0.3250 6 0.4412 | 10 0.3562 6 1.12 | 10
I 47.46 | 1.03e5 7 0.3250 5 0.2742 5 0.3701 9 0.97 6
I° 47.26 | 1.04e5 8 0.3386 7 0.3984 8 0.3658 8 1.10 9
iz 46.17 | 1.10e5 9 0.3423 | 10 0.3593 6 0.2829 4 0.98 7
IS 45.39 | 1.15e5 | 10 0.2873 3 0.4386 9 0.2840 5 1.01 8

How well does each of these objectives perform in terms of choosing and ranking
a population of solutions? Suppose we randomly generate 10 individuals I° to I%, and
evaluate their true performance by the SNRs of the estimated spectra and £, norm

errors of the estimated interferograms. The error in the £s norm is defined as

1/2

ell = { }/ _ {Nu ) (726
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and the spectral signal-to-noise (SNR) is

N-1 9
> ||
ﬂ’;) . (7.27)
|2

N—-1

SNRg = 10 log ( k
> | By — B
k=0

The results along with their ranks are shown in Table 7.1. Note that the order of
these test interferograms has been rearranged according to their ranks. Next, we
test how accurate can each of these three objectives predict the correct ranking.
The normalized outputs and their corresponding ranks for each evaluation function
are shown in columns. The summed results from all three evaluation functions are
shown in the last two columns. There are no obvious indications that one objective is
significantly better than the others, however, a simple conclusion can be drawn from
the summed results is that the objective functions can roughly identify an individual
as in the top or bottom 50% of the population, which is a useful fact in the up-coming
selection stage.

The next question is: how well does each objective perform in terms of recovering
the uniform spectrum? Three nonuniform interferograms are generated for this test,
their corresponding clock signals are plotted in Figures 7.8 (a), (c), and (e). The
spectra of these irregular interferograms are plotted against uniform spectra in the
background as seen in Figures 7.8 (b), (d), and (f). Every one of these signals has
been reconstructed using the three evaluation functions separately, their individual
performance in terms of SNRs and error norms are shown in Table 7.2. The last
column in the table shows the results obtained using the equal-weighted sum of all
three objectives. The test for each interferogram is repeated five times and the average
results are shown in bold faced numbers. Again, no indication of major superiority
of any one of the three functions, therefore, the weighting factors are simply set

to be equal based on this observation. Note that the combined evaluation function
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(d) The uniform (blue) and nonuni-
form (red) spectra of test signal 2.

(e) The clock cycle of test signal 3.
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(f) The uniform (blue) and nonuni-
form (red) spectra of test signal 3.

Figure 7.8: The clock cycle segments and the spectra of three corresponding test

signals.
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Table 7.2: Test results of each individual evaluation function from three nonuniform
interferograms.

| Signal Entropy [ OOB Signal | OOB Sig. Dev. | Combined
| SNREg lell SNREg llell SNRE el SNREg lle]|
I'(nAt) 51.74 | 8.34e4 50.28 | 8.98e4 49.73 | 9.22e¢4 55.77 | 6.82e4
SNRg=47.26 || 64.96 | 4.3led || 49.95 | 9.13e4 52.70 | 7.95e4 | 60.05 | 5.5led
flel|=1.04e5 50.33 | 8.95e4 66.68 | 3.95e4 48.70 | 9.7T1e4 55.73 | 6.83e4
50.65 | 8.8le4d 56.17 | 6.68e4 51.14 | 8.59e4 61.96 | 5.0led
52.82 | 7.90e4 60.53 | 5.38e4 52.68 | 7.96e4 61.21 | 5.19e4
| Mean 54.10 | 7.66e4 | 56.72 | 6.82e4 || 50.99 | 8.69e4 | 58.94 | 5.87e4
SNRe | lell || SNRe | lell || SNRe | le | SNRe | |l
I*(nAt) 64.05 | 4.51e4 51.27 | 8.54e4 49.54 | 9.31e4 65.92 | 4.11ed
SNRg=47.15 || 51.65 | 8.38e4 51.62 | 8.39e4 51.44 | 8.46e4 59.91 | 5.55e4
lel=1.73e5 | 47.65 | 1.02¢5 | 67.30 | 3.81e4 || 4829 | 9.91e4 | 59.41 | 5.694
55.59 | 6.69e4 55.99 | 6.75e4 65.32 | 4.23e4 66.65 | 3.96e4
48.67 | 9.73e4 52.30 | 8.1le4 48.68 | 9.72e4 59.12 | 5.76e4
| Mean 53.52 | 7.95e4 || 55.71 | 7.14e4 || 52.65 | 8.33e4 || 62.20 | 5.01e4
SNRg | el SNRg | lel || SNRg | |le]] SNRg | |lell
P (nAt) 54.05 | 7.32e4 50.25 | 8.99e4 62.54 | 4.86e4 68.01 | 3.70e4
SNRg=47.40 || 58.65 | 5.88ed 73.02 | 2.88e4 61.26 | 5.18e4 64.79 | 4.34e4
[le]|=1.04e5 49.65 9.47e5 56.17 6.69e4 56.86 6.46e4 76.75 2.39e4
54.59 | 7.33e4 57.84 | 6.15e4 61.04 | 5.24e4 75.39 | 2.56e4
56.67 | 6.69e4 50.51 | 8.87e4 60.67 | 5.34e4 59.97 | 5.53e4
Mean 54.55 | 7.34e4 || 57.56 | 6.71e4d || 60.48 | 5.52e4 || 68.98 | 3.70e4

out-performed any single function alone. In addition, when compared with single-
objective outputs, the multi-objective test results show a more stable trait over the
five runs.

So far, we have not yet considered the symmetry constraint. In Section 7.1.1, we
discussed the advantage of having a soft constraint when solving optimization prob-
lems in general. This can be achieved by assigning a penalty factor to the infeasible
solutions. For the interferogram reconstruction case, it is easy to impose a hard con-
straint that “forces” the interferogram to become symmetrical. However, this may
not be a good choice in a non-ideal situation since real interferogram measurements
experience varies noises, which make them become slightly asymmetrical. Therefore,

we would not want to reject those solutions with high evaluation scores but failed
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to satisfy the symmetry condition. If a symmetrical interferogram is required after-
ward, we can always correct the asymmetrical interferogram by setting the imaginary
part of its spectrum to zero. There are many techniques for designing the constraint
functions in evolutionary algorithms as described in [3, 48]. We select the ranking
system because of its simplicity and effectiveness for this particular problem. To for-
mulate the symmetry constraint, if we adopt the notation introduced in [48], then

the evaluation function is
eval, (IP) = evaly, (IP) + Q(PP), (7.28)
where

QM) = wq(I) (7.29)

represents the penalty function for asymmetrical solutions; similarly, w is the weight-
ing factor for this penalty function, which is defined according to the importance of

the symmetry constraint. The penalty is quantified as follows

N/2-1
qI) = > |E-L_,| (7.30)
n=1
which is normalized by
! Ip
M p— (7.31)

Va0 le @)’
7.1.2.4 Selection

Once a population is evaluated, the selection is done based on each member’s fitness
at the evaluation stage. Naturally, the rule of the survival of the fittest has come to
shine in this step. From the previous observation, a selection is made where the top
50% fittest individuals from the last step are chosen. Define a function «(7) that
arranges the order of the estimates according to each solution’s relative fitness in the

population. For example, «(0) stores the index of the strongest individual, whereas
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a(P — 1) stores the index of the weakest solution. Thus,
a(t) = order {eval (1)}, (7.32)
for

i =0, .., P—1 (7.33)

0 < a(i)) <P-1.
From the order in (i), the corresponding evaluation function is
eval, (1°0) = sort {eval, (")}, (7.34)

such that

eval,(1°0) < eval,(1°V) < ... < eval,(14F~V), (7.35)

Notice that the highest ranking individual has the lowest evaluation result since this

is a minimization problem. The selected set of candidates is
sel(190)) = {10©@ e ey (7.36)

where

J =21_1 odd P
(7.37)

J zg-l, even P.
An example of the selection rule is shown in Table 7.3, which borrows the results from
the first few columns in Table 7.1. For a group of individuals Ir ,where p=20, ..., 9,
we have their SNRs and corresponding ranks listed in the second and fourth rows,
respectively. The indices of the top five fittest members are shown in row number

five as function values of (7). And finally, the “survivors” of this selection round

are first five elements in the last row.
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Table 7.3: An example of the selection rule.

Wil | I° | T | B | P[P [ |7 [P | P

SNRg || 48.78 | 51.69 | 46.17 | 45.39 | 50.54 | 51.72 | 53.88 | 54.88 | 47.46 | 47.26
D, 1 0 1 2 3 4 5 6 7 8 9
rank 6 4 9 10 5 3 2 1 7 8
0 i’ 6 5 1 4 0 8 9 2 3
la(z) 17 16 15 11 14 10 18 19 12 13

7.1.2.5 Varation

In this section, we introduce a variation operator. When applied to the previously
selected members, it will produce the next generation of offspring. This new genera-
tion does not include any members from the previous one, instead, all individuals are
descendants of the selected solutions. This can be accomplished using a single-parent
scheme. In contrast to the mating or the cross over technique, each individual is
mutated from only one parent. Therefore, it can only possess the characteristics of a
single parent. To be able to create such an offspring, we use a small amount of zero
mean Gaussian perturbation as the mutation operator, and apply this variation to
the parent through addition. In other words, the offspring is generated by adding a
small zero mean Gaussian integer vector to the parent vector. We allow each parent
to have two children so that the new generation will have the same population size

as before. The Gaussian variation is defined as
d” ~ N(0,0(g)), (7.38)

and the mutation operator d? is the truncated integer version of d?. The new variable
g=0,1,...,G, denotes the generation number. In Equation (7.38), the standard de-
viation o is written as a function of g, which implies that the variation is not constant
across different generations. More specifically, this type of varying mechanism can

be classified as a dynamic Gaussian mutation as described in [48]. The justification
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of this operation is based on the fact that as the generation grows, the population
becomes more adapted to its environment, therefore, a smaller amount of mutation is
required. Suppose we let the variation be proportional to the number of generations,
this leads to

1
J(g)ocg,gzo,l,...,G'—l. (7.39)

This equation tells us that as time goes by (more generations are created), the vari-
ation becomes less. A new generation is emerged from the old one with the help of

the dynamic Gaussian mutation operator. This step can be written as
(1(0,0(1'))’ &) = l(l,p), (7.40)

where 102U)) represents the selected individuals, d? is the variation operator, and
107 ig the new generation. The generation variable has been incorporated into this
equation. For example, an arbitrary sample 197 tells us that it is the nth sample
that belongs to the p** member of the population from the ¢*" generation. The 0
generation, i.e., ¢ = 0, is used to represent the initialized population. Using the
two offspring per single parent scheme, the actual members of this new generation

(assume P is odd) are

1(1‘0) - 1(0,0)
l(l,l) — l(O,a(O)) +d1
112 = 10.e(0) 4 g2
19— J0e0) 4 g3
(7.41)
1(1,4) — 1(0,0(1)) +d4
l(l,P72) _ l(O,a(J)) +dP—2

1(1,P~1) — 1(0,04(])) + dell
Note that the first member is always the default measurement as described in previous

sections. In Figure 7.9, new members are generated for an odd-number population,
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in which every parent creates two offsprings. If an even number of the population is

used, then only one child is produced from the last ranking solution.

1(0,a(3)). 1(0.2(0)) 1(0,a(1)) 1(0:2(J))
° ° °
109 0 & » “« e « e
1(150) — 1(010) l(l,l) 1(1)2) 1(1)3) 1(1'4) 1(11P*2) l(l,P"l)

Figure 7.9: Creating the first generation when P is odd.

7.1.2.6 Stopping and Post-process

This is the final stage of the algorithm, in which the iteration stops after a certain
number of generations. The simplest way to achieve the termination is to stop the
program after a fixed number of generations. A more sophisticated method would
involve setting up a stopping condition, with the program simply stopping when the
condition is met. A third method is a combination of both techniques, which allows
the program to terminate when either one of the two conditions is met. For example,
the iteration stops after a maximum number of generations is reached or after a certain
performance criterion is satisfied. This last method seems to be the best choice in
terms of finding the most favorable solutions, and yet, escaping from the danger of
letting the program fall into an infinite loop.

After the program has been successfully terminated, the fittest members, 1(¢=1.20))
are selected according to the same selection rule described earlier. At this point, we
could choose the best ranking individual to be our ultimate solution. Alternatively,
we could use the average of the entire selection as the final answer. The second
method is chosen because, as shown previously, the evaluation function can correctly

estimate the top 50% of the population. In other words, we can identify the top

107



50% fittest members with a certain degree of confidence, but not each individual’s
ranking within that collection. In summary, at a given generation g, the selected

interferograms corresponding to 19*0) are
T(9:2() — r(l(gya(j))). (7.42)
A single solution is found from the average of all interferogram estimates, and
1ot
v = 5 Zl(gya(j))_ (7.43)
3=0

This solution together with the value of g are used to determine whether the stopping

condition is satisfied:

A

Does g <G or eval(l) < csop ?

If either one of these two conditions is reached, then the mean solution is

[E—1el) = g, (1(G1al)) (7.45)
) ’
L, = 3160, (7.46)
j=0

As described in Section 6.1.2, the ZPD value can be estimated from the spectrum DC

offset. The spectrum can be obtained from

After the DC offset correction, the new spectrum can be expressed as

Z Em,k

k<wi, k>w2

N—(wg—w1+1)’

Ep=Epy— Y k. (7.48)

Thus, the final solution is
I=FYE). (7.49)

The complete structure of Algorithm A is shown in Figure 7.10. In the following
section, a slightly different approach for reconstructing the nonuniform interferogram

is presented.
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Figure 7.10: The structure of Algorithm A.
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7.1.3 Interferogram Reconstruction: Algorithm B

The second reconstruction algorithm emphasizes the estimation of interferogram val-
ues instead of sampling locations. In Equation (5.6), the vector to be optimized is
stated as the data value of each measurement. In this algorithm, only half (a single
scan) of the interferogram is being estimated, the other half is simply set equal to
the first scan in order to satisfy the symmetry constraint. We name this routine
Algorithm B. In the previous section, we have discussed the advantage of having a
soft symmetry constraint, however, in two special cases the hard constraint imposed
in Algorithm B is a better choice. The first case occurs when only a single scan
is available. The second case occurs when one scan is significantly better than the
other scan; the amount of the difference between these two scans is determined ex-
perimentally, and will be discussed later in this Chapter. The structure of this second
method is very similar to that of Algorithm A; the procedures of these two methods
are almost identical except for the representation and initialization sections.

In Algorithm B, the matrix B of size % x L represents all possible interferogram

sample values in a single scan, which can also be written as row vectors s,,:

boo bor ... bow-y st

b b ... bir_y s
_ 10 11 1(L—1) _ 1 7 (7.50)

XL : : : :
Lb(%’—x)o b(%’—m e b(g_x)(rwx)_ hs?’;‘.ifl_
and

N

S, = [bno, b’nly ey bﬂ(L—l)]T, for TL:O,...,E. (751)

The definitions of B and s, are somewhat different from those of Equation (7.1).
Since only half of the data samples are being estimated, at a given point 7, all
nearby sample values from the two sample points in the original measurement that

are symmetrical about the ZPD) i.e., n and N —n, need to be bounded by the elements
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of s,. For instance, from Algorithm A, the vector r,, represents all possible values in
the neighborhood of point n, whereas ry _,, stores possible sample values around point
N — n, which is the symmetrical counterpart of point n. Then it would be desirable
for vector s,, with the same length as r,, to span the feasible range of interferogram
sample values at sample points n and N —n. We set the largest and smallest values

for both r,, and its symmetrical counterpart ry_,, for all n as follows

,Bn, maz — HaX {I'n, rN—n}, and (752)
N
6n,min = min {rm rN—n}a n= 0, LR 5 (753)

With 8y, mae and Bn, min, the elements of s, are set equal to 53 equally spaced samples

within this range, which are written as

_ (/671,7naz - /Bn,mz‘n) o !V
S, = 7 t forn=0,..., 5 (7.54)

where L = 53 and
t=[1,2,3, ..., L—11]". (7.55)

The representation of Algorithm B is
1={lo, b, ..., In]", (7.56)

and

= I, (7.57)

The subscript h reminds us that only half of the interferogram is being estimated.
The values of the representation vector 1 are the same as in Algorithm A, i.e., l,, is an
integer between 0 and L — 1, however, the meaning of 1 is no longer the same. Recall

in Algorithm A, the elements of 1 indicate the relative sampling locations, therefore,
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we could estimate these locations and evaluate them based on their corresponding
sample values. But in Algorithm B, this “location-value” information is lost. Instead,
we estimate the sample values directly by finding a data range and petition it into
L equally spaced amplitude values. Here the elements of 1 are merely the indices of
these samples, which do not represent the sampling locations.

The initialization steps are very similar to those in Algorithm A, except that the

total number of samples is % + 1 instead of N. The population I? is initialized as
10 = [lg’ l?’ et loﬁ]T; (7-58)
2

r=p r ..., 5" foop=1,...,P—1 (7.59)
2

The corresponding interferogram vectors are

19 = 5(1%), (7.60)
and
I, = s(I) (7.61)
= [Iz,m I]I:’lr ey ]:’%]T (762)
= [s0(®), s1i(®), ..., sn(@)', p=1, ..., P~ 1L (7.63)

In Figure 7.11, vectors s, (I?) and s,,(I%) represent an arbitrary individual and the
default measurement, respectively. Note that the elements of vector 1° are no longer
centered at index number 26 as in Algorithm A, this is because the sampling location
information of the original measurement is not in 1° any more. Consequently, an
extra step is necessary to determine the values of 1°, which can be derived from the
corresponding locations of the measured interferogram sample values in s,, . First, we
must decide which half of the measured interferogram to use as our reference. Suppose

we separate the interferogram into two parts, and extend each part to the full length
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Figure 7.11: Generating the data matrix B.
by setting its second half to be equal to the first, then they can be expressed as

I(nAt), n=0,1,..., ¥

L (nAt) = (7.64)

I(N —=n)At), n=%+1,..., N1,

and

I(nAt), n=0;, %, o, N—-1

N
I((N -n)At), n=1, ..., 37 — L
Next, we apply the same evaluation function evaly,(-) to both interferograms, and

select the one that performed better, then the chosen half, written as IY, is
I = sel (evalfi (L (nAt), Ig(ﬂAﬁ))). (7.66)

Now we need to determine what are the indices of the samples of 12 in s,, which are
the desired values of I°. Since the elements of s,, do not represent the exact sample
values of I9, a search method is needed to find the locations of the closest data values

for all samples. This can be done by comparing every single sample in I} with its
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corresponding possible values in s, as shown in Figure 7.12, then [ V n is

o _ 0o
L, = min {11} — bl } (7.67)

= IIlllIl {llf?,n - bnOlv 'Il(z),n - bnlla EEER |]I(z),n - bn(L—l)l } (768)

bn5 bnﬁ bn? bn(L—l)
/%5 6 7 50 51 52

L=0 1 2 3 4 R
bnO bnl bn?) bn3 bn4 Il(z),n

Figure 7.12: Estimating the initial individual 1°.

Once V? is initialized, the corresponding interferograms of full lengths are

. n=o01..,°%
p=y " ? (7.69)

n

Iy n=%+1 .., N-L

The following evaluation section is the same as in Algorithm A, except there is
no constraint penalty factor in the evaluation function since the symmetry constraint
is imposed by estimating only half of the interferogram. Same for the selection,
variation and stopping steps with the exception of only half the data length is used.

The complete structure of Algorithmn B is shown in Figure 7.13.
7.1.4 Making a Choice: A or B, or A and B

Which one of these two algorithms is a better choice: A or B? The answer depends
on the characteristics of the measurement. If one of the two measured interferogram
scans is significantly better than the other according to the evaluation result, then

B is superior to A. This is because in Algorithm B, we take the advantage of having
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Figure 7.13: The structure of Algorithm B.

115



the better scan in the population at the starting point, which can positively influence
all other members in the group. This may occur when only a single side of the
interferogram is available or when one scan experiences much more sampling offset
errors than the other, which may be the case in a mechanical failure. However, if
both scans are comparable in quality, then there is no gain in working on only one of
them. Furthermore, it is better to use the entire interferogram in that case, because
while one scan may have better measurements for certain samples, the other scan
may do a better job at measuring some other samples. Therefore a compromising
solution would combine the best of both ways, if a judgment can be made on the
interferogram based on a designated measure beforehand, then we can decide which
algorithm to use. To design a decision making device, we evaluate both scans with

the same function evaly,(+), the results are

€ = evalfz(ll(nAt)), and (7.70)

e = evaly, (I(nAt)). (7.71)

If one scan is as much as twice better than the other, then Algorithm B is selected;
otherwise, Algorithm A is the better choice. The factor of two is selected based on the
simulation performed on several interferograms. The results have shown that when
the evaluation score of one scan is two times better than the other scan, Algorithm
B works better than A; otherwise, A is superior to B. This decision scheme can be

written as

B, if|&]|>20r <05

Algorithm : (7.72)

A, otherwise.

This decision making process in shown in Figure 7.14.
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4@ Yes

No

Algorithm A

Figure 7.14: The algorithm selection rule.

7.2 Multi- Dimensional Reconstruction

For an array of detectors, the simplest approach is to apply the reconstruction scheme
designed for the one-dimensional problem to each interferogram in the array indepen-
dently. But this method does not take advantage of having multiple measurements,
with each detector experiencing the same sampling offsets. Another useful observa-
tion is that many of the interferograms are highly correlated because of the similarities
in atmospheric features. Therefore, a better solution would be a parallel correction
algorithm that evaluates a population based on a member’s fitness at all detectors.
The fittest individuals are selected to be those who can perform the best over all
array elements. Therefore, a more sophisticated ranking system is required in order
to identify the best solutions in the population. Another issue is concerned with the

choice of the algorithm to be used. If each array element is treated individually, then
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the method described in Section 7.1.4 is sufficient, i.e., either one of the two tech-
niques can be applied; the choice is made based on the decision measure described
earlier. If all interferograms are corrected simultaneously, then Algorithm A is the
better choice since it estimates the offset locations that are universal to all array ele-
ments. Algorithm B would not be a suitable method because it primarily estimates
the values of the interferogram, thus, a single estimate update cannot be applied
to the entire array. Now we discuss how to modify Algorithm A for reconstructing
multiple interferograms in parallel.

L, (t)
| Representation l

17 rn,a:,y
Initialization

I’r;,y I(g+l,p)

Evaluation i
eval, (I} ) | Mutation

Selection 1(9,2())
177" [ Re-selection |

Yes

Estimates iw

Figure 7.15: The algorithm outline for multi-dimensional reconstructions.

The same procedures as introduced in Algorithm A are applied to the multi-
dimensional case with the exception of an extra selection-mutation transitional step.
The outputs at each stage are outlined in Figure 7.15. Note that subscripts z,y
denote the coordinates of the array elements, and x, y = —64,...,—1,1,...,64. A
“re-selection” step is necessary for reconstructing an array of pixels. To see the

reason behind this step, we first review the case for a single interferogram. We
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initialize P individuals that are represented by sampling location vectors 17, p =
0,..., P—1. Then we evaluate P interferograms based on the information provided by
IP. After the evaluation step, we select the J fittest interferograms in the population,
from which, we could obtain the corresponding J sampling location vectors 1%¢)
for y = 0,...,J — 1. In the multi-dimensional case, we initialize the same set of
individuals I? as for the one-dimensional case. However, in the evaluation stage,
P x 128? interferograms or P interferogram data cubes are generated, from which,
the J x 1282 fittest interferograms are selected. Similarly, this will give us J x 1282
corresponding sampling location vectors 1%9), Now we must take an extra selection
step to find J sampling location vectors, which will be used to create P individuals for
the next generation. Thus, an additional system is required to re-select J members

out of all 128 x 128 x J selections, i.e.:
lggvba(y)) = 1920 vz y. (7.73)

Note that the 128 x 128 x J individuals are not all unique solutions, for instance, some
of the fittest members for one interferogram may also be the fittest solutions for other
interferograms. Then a reasonable assumption is that the fittest individual among all
members in the population is the one that has the most frequent occurrences as a top
ranking solution based on its evaluation results at all interferograms. For example,
in Table 7.4, the values of the ranking variable a(j) is listed for four pixels elements,
ranging from pixel number (1,1) to (2,2). The first row tells us that for pixel (1,1),
the fittest member is individual number 1; the second fittest member is individual
number 3; the third is number 5, and so on. The same interpretation applies to the
rest of the pixels as well. Suppose all elements in Table 7.4 are sorted by the number
of occurrences as shown in Table 7.5. Then we could say that individual number
7 is the fittest member in the population for all interferograms, and there is a tie
for second place between solutions 3 and 5. Since there are 4 individuals having the

same rank of 3, we simply pick the first 2 individuals in order to maintain the same
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Table 7.4: An example of the selected individuals for z, y = 2.

a1a(g) |1 3 5 4 7
alyg(j) 2 3 7 6 5
01271(]') 5 3 7 8 2
agyg(j) 7 4 6 8 9

Table 7.5: The number of occurrences and ranking for each individual in the popu-
lation.

Individual |0 1 2 3 4 5 6 7 8 9
Occurrences |0 1 2 3 2 3 2 4 2 1
Rank 5 4: 323 2 31 3 4

population size.

Alternatively, we could use a “total-scoring” system to select the required J sam-
pling location vectors. An example of this reselection method is shown in Table 7.6.
The evaluation score of a particular individual 1P at a given pixel (z,y) is written
as €, . For all individuals in the population, their evaluation scores at all pixels
are listed in the table. These scores are summed up to produce the last row €? for
p=0,...,P—1. An element in the last row is an indication of how well does an
individual perform over all pixels. In the next step, we rank €?, and select J indi-
viduals with the highest scores, i.e., €Y for j = 0,...,.J — 1. Finally, we find their

corresponding sampling location vectors 1¢0),

7.3 Implementation and Results

This section is concerned with several implementation issues related to each algorithm,
which include the algorithm complexity, parameter selections, its performance under
noisy conditions, and the effect of different sampling rates. The test results obtained

from MATLAB simulations are also presented and analyzed.
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Table 7.6: A reselection example for the multi-dimensional reconstruction problem.

. Individual I?

Pixel (z,y) o P I 17T
(1,1) 6(1),1 51,1 €y
(1,2) 6(1)’2 e{a . eggl
(2,1) € €l Y
@2 | &, o e

) 2,2 2,2 s 2,2
. . . P_'

(128,128) 6(1)28,128 6%28,128 - 612&112?3

Sum €Y el ... €l

7.3.1 Algorithm Complexity

The arithmetic complexity of Algorithm A is shown in Table 7.7. The explanation
of each symbol can be found in Table 7.8. At each stage of the algorithm, the
approximate number of multiplications and additions are listed for most functions.
Certain operations such as sorting and ranking, do not have a countable number of
“mults” and “adds”, in which case, we adopt the o-notation defined in [18, 65] to
express the asymptotically bound of the running time for these special functions.
Note that for the evaluation, selection, and variation stages, the number of each
particular operation is repeated for P x (G times to account for all individuals in
the population through all generations. Similarly, the complexity of Algorithm B
is shown in Table 7.9, which has a similar number of required operation. For the
multi-dimensional algorithm, the approximate complexity is the number of pixels to
be reconstructed times the required operations listed for Algorithm A.

In Table 7.8, a typical set of values for the variables in the complexity calculation
is shown. The numbers of multiplications and additions are computed for the three
routines. The required mults and adds operations for Algorithm A is approximately

equal to 107, whereas for Algorithm B, the requirement drops slightly to 7 x 108.
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Table 7.7: A complexity analysis of Algorithm A.

Stage Function Number of Number of Running Time

g Multiplications Additions for Others

Representation Interpolator NM logy(NM) | NM logy(NM) -
Initialization -

(Px) P N logy(N) N logy(N) -
FFT N logy(N) N logy(N) -

f1(1P) N N-1 o(N In N)
f2(P) - W-1 -

. f5(IP) w W-1)+Ww -
El‘galu*g“’“ SP )P 3N 3(N —1) -
() Si(®) 3N - -

/() - N -3 -
Voo lg@)* | N/2-1 N/2 -2 -
q (IP) N/2 -1 - -
Selection Sort, )
(P x Gx) order, etc. - - o(P logy(P))
Variation Gaussian N
(P xGx) mutation N -1 -
L, - N(J—1) -
Stopping & Ejn N logy(N) N logy(N) —
Post-process E w Ww-1)+W -
I N logy(N) N logy(N) -

122




Table 7.8: A sample complexity calculation for all algorithms.

| Parameter Symbol H Algorithm A | Algorithm B ' M-D Algorithm J
Signal length N 2048 2048 2048
Oversample rate M 128 128 128
OOB length %% 185 185 185
Population size P 10 10 10
Generation number G 15 15 15
Selection size J 5 5 5
Dimension size D - - 1282
Number of Multiplications ~ 107 ~Tx10% T ~ 16384 x 107
Number of Additions ~ 107 ~Tx108 | ~ 16384 x 107

7.3.2 Algorithm Parameter Tests

One of the strengths of an evolutionary algorithm is its flexibility in terms of selecting
the appropriate parameter values; there are no rules or restrictions on the parameter
choices. This unique feature offers us endless possibilities. However, at the same
time, it makes the problem more difficult to solve because these parameters need
to be determined empirically. This section describes the determination processes of
several important variables introduced earlier.

In the initialization stage (Section 7.1.2), the choices of two parameters are par-
ticularly interesting, namely, the population size P and the standard deviation o of
the population. Each one of these two parameters is tested at four different values;
the averaged results over five runs are shown in Table 7.10. The same nonuniform
interferogram I'(nAt) from Table 7.2 is used for these tests; without any correction
being applied to it, I*(nAt) has the SNR and error norm of 47.26dB and 1.04e5,
respectively. Note that each parameter is tested at various values when others are
held constant; these default settings are shown as shaded cells in Table 7.10.

As discussed in Section 7.1.2.2, the population size does not influence the results
significantly. Tests are performed on groups that are composed of 10, 40, 70, and 100

individuals, the qualities of the reconstructed signals seem to be comparable; since the
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Table 7.9: A complexity analysis of Algorithm B.

Stage Function Number of Number of Running Time
Multiplications Additions for Others
. Interpolator NM logy(NM) | NM logy(NM) -
Representation S, N/2+1 N2+1 B
Imt‘(a]i‘fgt“’“ P N/2 logy(N/2) | N/2 logy(N/2) -
FFT N/2 logs(N/2) | N/2logy(N/2) -
f1(1P) N N-1 o(N In N)
Evaluation fo(TP) - W -1 -
(P x Gx) f5(IP) W W-1)+Ww -
Vo @) 3N 3(N - 1) -
£() 3N - -
Selection Sort,
(P x Gx) order, etc. B B o(P logy(P))
Variation Gaussian
(P x Gx) mutation N N-1 a
I, - N(J-1) -
Stopping & E, N log,(N) N logy(N) -
Post-process E W w-0+W -
I N logy(N) N logy(N) -

smaller population size requires less computation, the most preferable choice would
be somewhere between 10 and 40. The standard deviation of the initial population
is tested at four different values as well; the best result is obtained when o is set
to 4, which indicates that the population should not be initialized overly diversified.
However, at the same time, it should not be too concentrated around the center value
either. The choices of parameters for the evaluation and selection stages are discussed
in Sections 7.1.2.3 and 7.1.2.4. In the variation stage, we examine the results from
using a constant Gaussian mutation at three fixed magnitudes, and compare them
to the output obtained from applying a dynamic Gaussian mutation. The dynamic
approach clearly out-performed any fixed mutation technique. Lastly, the algorithm
is tested for different numbers of generations. As indicated in Table 7.10, the quality

of the output improves as the generation number increases, however, at a decaying
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Table 7.10: Parameter selection tests. (The results are average values over 5 trial
runs .)

Population size P 10 40 70 100
SNRE 62.82 | 66.65 | 66.26 64.36
llel| 4.78e4 | 3.96e4 | 4.04e4 4.44e4
Initialization Std. Dev. o 2 4 8 16
SNRE 54.00 | 62.82 | 57.54 57.35
ilell 7.45e4 | 4.78e4 | 6.24e4 6.30e4
Weighting factors w; See Table 7.1
Evaluation o . .
Individual function fj(-) See Table 7.2
& Selection Selection rule (%) See Table 7.3
Mutation d? 0=2| 0=4 | o =28 | Dynamic o(g)
Variation SNRE 49.77 | 53.05 | 48.47 62.82
llel| 9.2led | 7.82e4 | 9.82e4 4.78¢4
Generation G 5 15 25 50
Stopping SNRg 48.48 | 62.82 | 63.18 74.93
llell 9.82e4 | 4.78e4 | 4.71e4 2.62e4

improvement rate. How many generations are sufficient and will the correct signal
ever be recovered? The answer to the first question is entirely depended on the
requirement for a particular application. Since a complete solution is computed at
each generation, the iteration can be terminated after any number of generations,
which depends on the desired quality of the final solution [48]. The second question
is concerned with the convergence of the algorithm.

The convergence analysis of an evolutionary algorithm can be categorized into
two classes: the first type focuses on the convergence property of a single fittest
solution in the population, thus, the convergence of this type is named as point-wise.
The second type attempts to examine the convergence of an entire population, and is
described as population-wise [32, 31]. Both types of analyses emphasize the operation
of the variation/mutation in order to prove a guaranteed global convergence. In [56],
authors concluded that with an infinite population size, the resulting solutions are

distributed in the vicinity of the optimum. Furthermore, the mean of the resulting
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population converges to the optimal point, which can be seen as a population-wise
convergence. When the population size is finite, it has been shown that the fittest
solution converges to the optimum over an infinite number of generations using the
Borel-Cantelli Lemma [4, 5]. In this case, the convergence is point-wise since only a
single fittest solution is considered. Recall in Equation 5.7, the optimization problem
has the form of

£ = f(I') := min { fI))I € F CR"}, (7.74)

where f* is the optimal solution, and f(I) is defined as

f(I) = Zwifi(l)'

The Borel-Cantelli Lemma [4, 5, 32, 31] is stated as follows: Let p, := P{I, € Ly;}
be the probability to reach the level set L¢«y. for an arbitrary € > 0 at generation g.

If
D_Py =0
g=1

then f(I;) — f* — 0 as g — oo for any initial point Iy € F. This can be expressed in

the equivalent form of
P{lim (£(1,) = £ =0} =1 (7.77)
Equation 7.77 states that when the number of generation approaches infinity, the

probability of a guaranteed convergence equals one.
7.3.3 Reconstruction Test Results

In this section, the results from several reconstruction tests are presented. The first
experiment is conducted to test the algorithm’s performance under noisy conditions.
The second test demonstrates the effect of the interferogram sampling rate on the
outputs. Finally, the reconstruction results obtained from a 2 x 2-pixel array are

shown.
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Table 7.11: Reconstruction results (without references) from interferograms with
additive detector noise.

Noise Signal Properties Reconstructed
Condition || Without Corrections Signals
SNRg | |lell || SNRg | |le
Without | I' | 47.26 | 1.04e5 || 58.94 | 5.87e4

Noise I’ | 4715 | 1.73¢5 || 62.20 | 5.01e4
P 4740 | 1.04e5 || 68.98 | 3.70e4
With IT[ 4723 | 1.05e¢5 | 69.88 | 5.55e4
Detector || I | 47.14 | 1.74e5 || 60.98 | 5.28¢e4
Noise || I3 | 47.35 | 1.05e5 | 61.45 | 3.86e4 |

In the first test, three nonuniformly sampled interferograms are created by apply-
ing three separate sets of clock signals to a single interferogram. These signals are
identical to the test interferograms that have been analyzed in Table 7.2. Note that
only the detector noise has been added to the signals; the detector noise has the char-
acteristic of a white (normally distributed) noise with a amplitude of v/2N [74], where
N is the number of samples. In Table 7.11, the default error properties are shown
for signals under noisy and noise-free conditions. The errors of the reconstructed
signals are also presented in the table. The results from recovered signals reveal no
major decline in the quality of the outputs when the detector noise is present. The

Table 7.12: Reconstruction results (without references) from interferograms sampled
at different rates.

Near Nyquist 4% 8x
Signal Rate Oversampled Oversampled
SNRg | lefl | SNRg | [lell || SNRg | |||
I' | Original | 47.26 | 1.04e5 || 72.15 | 3.01le4 | 103.94 | 6.13¢3
Corrected | 58.94 | 5.87e4 || 88.41 | 1.48e4 || 112.06 | 4.09e3

Original | 47.15 | 1.73e5 || 59.94 | 5.54ed || 74.21 | 2.71e4
I* [ Corrected || 62.20 | 5.01e4 | 77.80 | 2.54e4 | 92.21 | 1.10e4
Original || 47.40 | 1.04e5 || 58.56 | 5.92e4 || 71.50 | 3.11ed
I* | Corrected | 68.98 | 3.70e4 || 76.52 | 2.48¢4 || 84.90 | 1.594
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next experiment investigates the reconstruction results obtained at different sampling
rates. The nonuniform interferograms are sampled at near Nyquist rate, 4x, and 8x
oversampling rates. The outputs from these tests are summarized in Table 7.12. The
errors are shown for both the original (reconstructed without any corrections) and
the corrected signals for the purpose of comparison. A conclusion can be drawn from
these data outputs: as the signal sampling rate increases, the qualities of both the

original and the corrected signals improve as well.

Table 7.13: Reconstruction results (without references) from a four-pixel array.

Signal Reconstructed
Pixel Properties Signals
(z,y) || SNRp | [le]] SNRg [

(-1,-1) || 38.0932 | 1.9162€5 || 69.6741 | 3.9504e4
(-1, 1) || 38.0990 | 1.9179¢e5 || 69.8955 | 3.9071e4
(1, 1) || 38.0968 | 1.9174€5 || 69.1203 | 4.0616e4
(1, -1) || 38.0921 | 1.9159¢e5 || 69.1548 | 4.0545e4

Finally, we examine the results from a nonuniformly sampled four-pixel array.
Note that the previous tests are performed on a single interferogram that has sampled
nonuniformly at three distinct sets of clock signals. Here, the multi-dimensional test
is conducted on a four-pixel array consisting of four nonuniform interferograms, which
are created using only one set of clock signal. The test results are shown in Table 7.13
for pixels (1,1) to (—1,—1). Because the multi-dimensional reconstruction algorithm
corrects all interferograms in parallel, as a result, the errors of recovered signals have
similar magnitudes.

Alternatively, for an array of pixels, we could use the single-pixel reconstruction
algorithm on each interferogram, and repeat for the total number of pixels in the
array. By doing so, the interferograms are corrected independently. However, the
multi-dimensional reconstruction algorithm has several advantages over the single-

pixel reconstruction method. First of all, if any pixel detector is experiencing higher
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noise, the single-pixel algorithm may not be able to recover the desired signal. On
the other hand, the multi-dimensional method works on all pixels in parallel since all
pixels in the array experience the same sampling offset error. This will give us a chance
to recover the desired interferogram based on the information provided by other pixels.
Secondly, the multi-dimensional method should produce more stable results because
the performance of each estimated solution is evaluated among all pixels. This is
equivalent to performing the evaluation test for each estimate 1282 times. The fittest
individual should have the highest total evaluation score, and will be recognized by
most pixels. However, from the simulation results presented earlier, there are no
significant improvements when the multi-dimensional algorithm is applied. This is
because only a small number of pixels are tested due to limited computation resource,
in addition, the amount of the detector noise used in the simulation was the same for
all pixels. If real data cube measurements were used in the test, the outcome may be
different. However, this may require further analyses and comparison on the results

obtained from real interferogram data cube measurements.
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CHAPTER 8

CONCLUSIONS

A common problem that exists in F'T'S is concerned with how to compensate for sam-
pling errors when an interferogram is sampled at nonuniform instants in the path-
difference domain. These errors, resulting from various mechanical irregularities, are
generally associated with a continuous scanning system, which samples the interfer-
ogram at either equal space or equal time intervals. In both systems, the accuracy
of the reconstructed signal can be significantly compromised if no error correction is
performed. For an IF'TS, the off-axis effects also affect the accuracy of the sampling
locations. Furthermore, if the nonuniform sampling locations are unknown, which is
the case when a laser reference is not present, the reconstruction algorithm must be
able to correct the sampling errors “blindly.”

The current technique for solving this problem in the FTS industry involves a low-
pass interpolation/resampling process, which has been applied only to a single detec-
tor problem, and it does not offer a solution when sampling locations are unknown.
Other reconstruction methods for solving generic nonuniform sampling problems in-
clude a variety of iterative algorithms, which attempt to recover the desired signal
via a series of updates on the sinc interpolation kernels and data outputs. Although
these algorithms are capable of producing excellent results, they are extremely time-
consuming and impractical for processing a large quantity of data as for the case of
an IFTS. Both the iterative and non-iterative strategies rely on the knowledge of ir-
regular sample positions, which are unavailable if the laser reference is not employed.
Thus, a reconstruction algorithm that is capable of correcting the irregular sampling

errors without the knowledge of sample positions must be developed. This is possible
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only because additional information on the data itself allows us to impose a set of

constraints to the solution.

8.1 Summary of Thesis Contributions

In this thesis, the nonuniform reconstructions have been categorized into two classes,
namely, the with-reference and without-reference cases. Each case is discussed indi-
vidually for both the single-pixel and array problems. The unique contributions of

this thesis can be summarized as follows:

e When sampling positions are available, two alternatives are presented. The
first method recovers the data using a truncated “sinc” interpolation, which is
proven to be a better alternative than the existing techniques because it allows
the option of choosing the desired data quality by setting a particular truncation

window length.

e A second method is designed for solving the nonuniform reconstruction prob-
lem by employing a linear interpolation based on the interferogram’s symmetry
property. This method is very simple to implement and computational efficient,

and offers exceptionally accurate results when additive noises are kept low.

e In the case where sampling locations are unknown, which has no previous tech-
niques for solving such a problem, an optimization problem with multiple ob-
jective and constraint functions is designed based on the spatial and spectral

characteristics of the data measurement.

e The optimization problem is solved using an evolutionary approach, in which
potential solutions are competing to be the fittest individual in a simulated
natural environment. Two evolutionary algorithms are developed and compared
to obtain the most desirable solution. The choice of which algorithm to use is

made based on the characteristic of each particular interferogram. One is based
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on the estimation of sampling offsets while the other attempts to recover the

actual values of all correct samples.

e The extensions of these algorithms are made to solve the multi-dimensional
array problem. These algorithms show promising results, when compared with
the original erroneous interferograms, the errors of recovered signals have been

reduced by at least 50% on average.

8.2 Further Research Topics

In this section, we present a list of potential research topics that can be further
pursued. The list includes further algorithm developments and additional analyses

on the reconstruction results. Further algorithm developments include:

e A real-time reconstruction algorithm that is suitable for on-board implementa-
tion. This algorithm may not produce the optimal solution, however, it will be

able to operate under limited resources available in a real-time environment.

e A nonuniform reconstruction algorithm for recovering the super-channel data.
The super-channel data is produced by integrating the interferogram spectrum
over different bands. Therefore, the reconstruction algorithm must be able
to recover the uniformly sampled spectrum for the selected frequency bands

without having the entire wide-band spectrum available.

e A multi-dimensional algorithm that incorporates the off-axis effect correction
routine into the nonuniform sampling reconstruction algorithm. For example,
the off-axis correction can be embedded into any one of the interpolative recon-

struction methods.
Further analyses on the reconstruction results include:
e The noise factor being considered in this thesis was simulated uncorrelated

detector noise. However, for real interferogram measurements, other form of
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noise will present. Therefore, further analyses on the reconstruction results are

required under different noise conditions.

Similarly, once the real measurements become available, the pros and cons of us-
ing the multi-dimensional algorithm will need to be further analyzed. Compar-
isons will be made between the routine that corrects interferograms in parallel

and the algorithm that treats each pixel independently.

The benefits of the nonuniform reconstruction algorithm on the final data prod-
uct will need to be addressed. For example, after the reconstruction step, how
much improvements do we see in the quality of the absorption data, moisture,

wind, and other atmospheric profiles.
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